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Summary

The work presented here deals with the derivation and travelling wave analysis of partial
integrodifferential equation models for EMT-mediated immunosuppression in cancer with
phenotypic heterogeneity, including also the dynamics of killer and regulatory immune
cells. Existing literature addresses models of cancer invasion with phenotypic variabil-
ity, primarily focusing on aspects such as the movement of cancer cells by chemotaxis
or haptotaxis. However, none of these specifically cover the dynamics of regulatory and
killer cells during the EMT transition and their impact on the immune response to cancer
progression. This knowledge gap is one of the reasons why we have chosen to explore this
topic.
To gain a better understanding of the phenomenon, we conducted bibliographic research,
examining various biological studies. This led to the development of a mathematical
model that is both accurate and biologically consistent, yet simple enough to be tackled
using appropriate mathematical tools to yield results. Experimental evidence shows that
mesenchymal cancer cells promote the recruitment of regulatory cells, which, in turn,
inhibit the immune response of killer cells, creating an immunosuppressive microenviron-
ment that protects the tumor. Conversely, epithelial cancer cells are associated with lesser
recruitment of regulatory cells, resulting in a higher presence of killer cells and thus a more
pronounced immune action. This is particularly evident in carcinomas, where the roles of
regulatory and killer cells are respectively played by T cells and CD8+ T cells.
In this work, we assume that cancer cells could have a phenotypic state ranging from to-
tally epithelial to completely mesenchymal, which we model through the structure variable
y. Including the phenotypic trait allows us to take into account intrapopulation hetero-
geneity in cancer, which is a key factor influencing various dynamic aspects. Specifically,
a mesenchymal phenotype is characterized by high mobility and low proliferative ability,
while an epithelial phenotype prioritizes reproduction over movement, reflecting the bio-
logical principle of “go or grow”. Mesenchymal cells show a high production of chemical
attractant, which is responsible for recruiting regulatory cells. Indeed, regulatory cells
undergo chemotactic movement, migrating towards areas with greater attractant concen-
tration. On the other hand, killer cells move up the density gradient of cancer cells and
their activity is inhibited in the presence of a sufficient concentration of regulatory cells.
These biological considerations are expressed mathematically by carefully choosing func-
tions to model the phenotype-dependent mobility, production, and growth of cancer cells,
as well as the chemical-dependent growth of regulatory and killer cells. Using these func-
tions, we can define jump probabilities in branching random walks on a lattice in both
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physical and phenotypic space, formulating three coupled discrete agent-based models for
the densities of cancer, regulatory and killer cells. These are also coupled with a discrete
finite difference equation for the concentration of the chemical attractant.
Through limit procedures and under appropriate regularity assumptions, we formally
derive the corresponding continuous model, composed of two partial integrodifferential
equations (IPDE) for the density of cancer and killer cells, coupled with two partial differ-
ential equations (PDE) for the concentration of the chemical attractant and the density
of regulatory cells. Despite the system’s complexity, we show through formal asymptotic
techniques that a detailed analysis within the framework of the travelling wave can be
performed, obtaining invasion fronts with phenotypic structure.
As a preliminary step, we rescale the continuous model with appropriate powers of a small
parameter ε, according to the biological relevance of the terms within the equations.
Then we introduce the WKB ansatz for the density of cancer cells. Combining this ap-
proach with asymptotic expansions of the involved quantities, we derive an equation and
a constraint for u as ε → 0. Through several mathematical steps, we obtain a transport
equation for ȳ, that is the value of the dominant phenotypic trait at position x and time
t. We can conclude that the density of cancer cells converges to a Dirac delta distribution
centred at the maximum phenotype ȳ.
Shifting our focus to the traveling wave framework, we investigate the monotonicity of
traveling front solutions, the wavefront position and the minimum propagation speed. We
conclude that the maximum phenotypic trait ȳ presents a monotonically increasing profile
along the wave variable z = x − ct while the density of cancer cells ρ has a decreasing
behaviour. Using these results within the remaining equations, we can finally derive the
profiles of the chemical concentration and densities of killer and regulatory cells.
As expected from biological evidence, mesenchymal cells dominate the wavefront while
epithelial cells reside at the rear, following a leader-stalker cell dynamics. Various scenar-
ios are proposed to investigate how the emergence of a spatial organisation influences the
degree of infiltration of killer cells into the tumour via the concentration of attractant and
regulatory cells.
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Chapter 1

Introduction

1.1 Biological Background
In the following paragraph, we give a detailed biological description of the EMT program
[150] with particular interest in its role in cancer invasion and its immunosuppressive
implications. Focusing on the biological assumptions on which our mathematical model
relies, we underline the main features that are the basis of our work. A brief and general
description of cancer metastasis and invasion process is also given.

1.1.1 Metastasis and Invasion Process in Cancer

Figure 1.1. Metastasis is defined as the biological process leading to the forma-
tion of a secondary neoplasm far from the primary tumour site. Reproduced from
"NCI Dictionary of Cancer Terms" [43].

According to [43], cancer metastasis is defined as the process leading to the spread and
dissemination of cancer cells from their original location ( i.e., the primary tumor site,
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Introduction

where they first formed) to another organ of the body [99].
The development of carcinoma metastases involves a complex sequence of biological

events called the "invasion-metastasis cascade" [47]. We refer to Figure 1.3 for a schematic
representation of the several steps composing this complex process, which are explained
more in detail in the following [139].

Local Invasion

At first, epithelial cells composing the primary tumour locally invade the surrounding
extracellular matrix (ECM) and stromal cell layers (local invasion step). In order to facil-
itate invasion, carcinoma cells increase the production of metalloproteinases, which in turn
degrade the basement membrane (BM) and the surrounding extracellular matrix (ECM).
Depending on the microenvironmental conditions, cancer cells can migrate as cohesive
units (collective invasion) or as "single cells"( mesenchymal or ameboid invasion) [144]. In
the latter case, cancer cells undergo the epithelial-to-mesenchymal (EMT) transition to
facilitate invasion. As a result, intercellular junctions that hold together the epithelial tis-
sue are dissolved, increasing cell invasiveness [134]. Furthermore, EMT is orchestrated by
some transcription factors that also lower E-cadherin levels, the milestone of the epithelial
phenotype.

Intravasation, Transport and Survival in Circulation

Figure 1.2. The travel of cancer cells in the circulation system. After intrava-
sation, some mechanisms help cancer cells during their path (e.g. neutrophils
that facilitate extravasation and metalloproteinases secretion) while others fac-
tors act to destroy them (e.g. mechanical stresses, immune attacks by NK cells).
Reproduced from Lambert et al. [78]

At some point during the local invasion, cancer cells reach the vasculature and penetrate
the walls of microvessels, which are made of endothelial cells. If this first step is success-
ful, cancer cells are transported through the vasculature, disseminating via circulation
(intravasation and transport step). The complexity of the intravasation step highly de-
pends on the geometry and topology of blood vessels. Tumor cells could also promote the
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formation of new, tortuous, and inefficient blood vessels through the secretion of vascular
endothelial growth factors (VEGFs) [27]. This process is called "neoangiogenesis". Circu-
lating tumor cells (CTCs) have an estimated life of several hours [93] before dying due
to the leak of adhesion to ECM (anoikis) [60]. In addition, CTCs have a larger diameter
than the blood vessels, resulting in the majority of CTCs being trapped in the capillary
shortly after entering the circulation. Furthermore, cancer cells resist the hemodynamic
shear forces and cooperate to face immune attacks of killer cells by forming large clusters
called "emboli" [72].

Arrest at distant locations and extravasation

During their travel through the vasculature, CTCs stop at certain locations due to topo-
logical restrictions of the vessels or the detection of specific signals indicating favourable
conditions (arrest step). Thus, metastases are formed by carcinomas only on a limited set
of organs [47]. At this point, CTCs cross from vessels into the surrounding tissues (ex-
travasation step). To facilitate this process, the primary tumor is able to secrete factors
that enhance vascular permeability, for example in the extravasation of breast cancer cells
into the lungs [62, 102]. We highlight that intravasation and extravasation steps are not
simply the "inverse" mechanism, but they are very different since they involve different
microenvironments, macrophage populations [117] and vasculature [27].

Figure 1.3. The invasion-metastasis cascade. Initially, tumor cells depart from
their primary growth sites through local invasion and intravasation processes. Sub-
sequently, these cells undergo systemic translocation, including survival in the circu-
latory system, arrest within a distant organ site, and extravasation. Upon reaching
a new location, these cells adapt to and thrive within the foreign microenvironments
of remote tissues, forming micrometastases and establishing metastatic colonization.
Reproduced from Valastyan et al. [139]

Micrometastasis Formation and Metastatic Colonization

After extravasation, cells struggle to survive in the new hostile microenvironment to form
micrometastases (micrometastasis formation step). In some instances, primary tumors
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secrete signals that convert this hostile microenvironment into a more hospitable one be-
fore the arrival of cancer cells [115]. In this way, the death rate of the new unadapted
cancer cells is lowered, and the chances of surviving increase. Finally, the surviving cells
proliferate at metastatic sites, creating macroscopic neoplasms ( colonization step). Of
note is that micrometastasis could enter a state of dormancy due to the incompatible
microenvironment and proliferate only a long time after their first establishment [31], for
example in mammary carcinoma [12]. Alternatively, the metastatic colony could stay the
same in number also because its continuous proliferation is counterbalanced by apoptosis
caused by immune actions [31], like in prostate tumor [73]. The most successful cells in
metastatic colonization are called "tumor-initiating cells" (TICs), which have great self-
renewal capacity and are only a few within a tumor. Once again, EMT is essential since
its transcription factors stimulate the conversion of carcinoma cells into TICs, confer-
ring replication properties [134]. In conclusion, metastasis is a challenging and inefficient
process, given that only a very low percentage (around 0.01% [31]) of initial CTCs suc-
cessfully complete all metastasis steps and generate macroscopic neoplasms (secondary
tumor establishment step).

1.1.2 The Epithelial-to-Mesenchymal Transition (EMT)

Basics of the EMT program

Figure 1.4. Essential representation of the main features linked with the EMT program.
Epithelial cells undergoing EMT lose cell-cell adhesion and acquire mesenchymal features,
increasing their invading power. Reproduced from Michelizzi et al. [94]

The epithelial-to-mesenchymal transition (EMT) is a cell program occurring in various
biological scenarios. Shortly, EMT is the process through which epithelial cells change
their structure, assuming mesenchymal characteristics [96] (see Figure 1.4). This means
migrating from E to M along the phenotypic axis. This process is not a "black or white"
situation since evidence proves that the transition from E to M could also be partial. In
this sense, a spectrum of intermediate states is generated, in which cells acquire many
but not all mesenchymal features ( see Figure 1.5). In this sense, carcinosarcomas are an
"exception" since there’s a net separation between mesenchymal and epithelial cells with
no intermediate states assumed [135]. Of note, the EMT program has multiple variants,
depending on the type of cells involved, triggering TFs factors and cellular microenvi-
ronment. Specific indicators called EMT biomarkers are involved in EMT transition,
allowing us to monitor this process. One of the most important epithelial markers is E-
cadherin, which maintains cell-to-cell and cell-to-matrix adhesion. The downregulation of
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Introduction

Figure 1.5. The plasticity of the EMT transition. The EMT program is not the uni-
directional transition from epithelial to mesenchymal phenotype but intermediate states
are also generated between the two extremes in which the cell only partially exhibits
mesenchymal characteristics. Reproduced from Zhang et al. [150]

E-cadherin results in the up-regulation of N-cadherin, a mesenchymal marker enhancing
cellular motility [89]. Transcriptor factors linked with the EMT program and affecting
the regulation of E-cadherin are Slug and Snail (SNAI1), ZEB-1 and TWIST. In partic-
ular, these TFs inhibit the expression of the E-cadherin, facilitating EMT transition and
promoting invasion [89]. A more detailed dissertation on the contexts in which TFs work
is given below.
EMT program has a key role in a wide range of biological processes. In embryonic mor-
phogenesis, EMT plays a fundamental role in the differentiation of metazoan into various
cell types [81, 96]. In fact, significant developmental deficits arise when EMT factors are
suppressed [28, 35, 69, 71, 140]. From tissue fibrosis and cancer progression to wound heal-
ing, EMT is involved in a wide range of pathological processes [96, 125]. During wound
healing, epithelial cells at the edge of the wound undergo the EMT transition in order
to acquire motility and rebuild the tissue. Subsequently, these cells reverse the process
(MET) to accelerate growth and reinstate the integrity of the sheet [124].
In tumor progression, EMT-acquired mesenchymal features are fundamental for carcinoma
cells to complete invasion and metastasis steps (invasion in the primary site, intravasa-
tion in blood vessels, and extravasation) [78, 133]. In the metastasis colonization process,
the EMT reversibility into MET is crucial (see Figure 1.6). At early stages, cells un-
dergo EMT, acquiring mesenchymal features like enhanced motility. This allows tumor
cells to disseminate better (dissemination step). Afterwards, cells reverse the process
into MET, acquiring epithelial features like high growth ability. This facilitates the for-
mation of macroscopic metastases and promote the establishment of a secondary tumor
[80, 98, 136].
In multiple types of cancer, stem-like cells could be generated by the EMT transition. A
cancer stem cell (CSC) has some peculiar features, like high self-renewal and the ability to
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regenerate the tumor tissue [23, 107, 125]. When it comes to the development of metas-
tases, drug resistance, tumor growth and relapse, CSCs play an important role. In some
experiments, cancer cells undergoing EMT acquire stemness ( e.g. in mammary tissue
[61, 88]) and increase their ability to form tumorspheres and initiate tumors ( e.g. in
breast cancer [88]). In mice, non-CSC cells often transform into CSCs as a consequence
of EMT [29, 30]. However, other researches suggest that stemness might be linked to a
transitional state between the mesenchymal and epithelial phenotypes, a tradeoff between
the two opposed traits. Indeed, carcinoma cells completing a full EMT transition lose
stem-like properties, allowing us to conclude that a mesenchymal trait does not always
imply increased stemness [23, 39, 88].

Figure 1.6. The reversibility of the EMT program into MET is fundamental
in many invasion steps. Many factors are involved in this complex process, from
chemicals triggering the two programs (EMT and MET initiators) to factors that
identify the single phenotypic state (epithelial and mesenchymal markers) and
facilitate the acquisition/loss of mesenchymal characteristics. Reproduced from
"Madame Curie Bioscience Database" [89].

EMT in cancer progression
EMT and metastasis

Metastasis is one of the most dangerous aspects of cancer: almost 90 % of oncologic pa-
tients die due to complications related to metastasis rather than primary tumors [78, 91].
Epithelial-to-mesenchymal transition (EMT) plays an important role in all metastasis and
invasion steps. EMT converts epithelial cells into mesenchymal ones, which are charac-
terised by enhanced motility and higher secretion of ECM-degrading factors. In this sense,
EMT increases cell invasiveness ( see Figure 1.7 (A) ). When the primary tumor is estab-
lished, migration towards adjacent tissues could happen as a single cell [76, 91, 98, 136]
but more often in a collective way [1, 36, 50, 51]. Experimental evidence shows a great
presence of the E-cadherin (epithelial) marker in the bulk of the tumor, where cells also
maintain cell-cell junctions. On the contrary, cells at the leading edges of the cancer
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mass express mesenchymal features like enhanced motility and high secretion of matrix-
degrading proteases, promoting invasion [116, 119, 147, 148]. This evidence suggests that
epithelial cells reside in the bulk of the tumor while mesenchymal cells stay at the front,
leading cancer invasion. This process reflects a leader-stalker cell dynamic, with the more
mesenchymal cells acting as leaders and the more epithelial as followers. During the in-
travasation step, carcinoma cells penetrating the vasculature (called CTCs i.e. circulating
tumor cells) show partial EMT activation, residing in an intermediate state between ep-
ithelial and mesenchymal endpoints [149], see Figure 1.7 (B) ). Following extravasation,
tumor cells may be eliminated by the immune system or enter a dormant state in re-
sponse to the new hostile microenvironment [67, 92, 95]. In this context, the plasticity of
the EMT transition is essential for the outgrowth of macrometastases from disseminated
dormant cells (see Figure 1.7 (B) ).

Figure 1.7. The EMT program is important during multiple steps of metastasis and
invasion. (A) At the primary tumor location, EMT is induced to increase cell invasive-
ness. Indeed, migration and dissemination are supported by mesenchymal features like
enhanced cell motility and increased secretion of ECM-degrading enzymes. (B) Cells
involved in intravasation (CTCs) undergo a partial EMT transition, showing both mes-
enchymal and epithelial characteristics. (C) During extravasation, cells reverse the EMT
program into MET to reacquire epithelial features that promote the colonization process
and the growth of secondary metastases. Reproduced from Zhang et al. [150]

At this stage, cells often reverse EMT program into MET, reacquiring epithelial fea-
tures that are useful to create secondary tumors, like enhanced ability to duplicate and
grow (see Figure 1.7 (C) ). For instance, primary tumor cells in mouse models of breast
and skin cancers undergo EMT transition to disseminate into the lungs and then reverse
EMT into MET to form macroscopic metastases at periferic sites [98, 136]. Although the
reconversion into a fully epithelial phenotype is helpful for the growth of metastases, it
is not strictly necessary in all cases. For example, macrometastases in invasive lobular
carcinoma of the breast originate from fully mesenchymal cells [17]. Since EMT generates
cells residing in almost all the phenotypic states along the E-M axis, we can say that EMT
is a major contributor to phenotypic heterogeneity within a tumor. This heterogeneity is
a significant obstacle to the success of cancer therapies [38, 56, 90, 122].
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Relation between EMT and therapeutic resistance

The EMT program also increases the resistance of cancer cells to death. For instance,
EMT causes cancer cells to become resistant to multiple drugs [125, 134] through various
mechanisms such as slow proliferation rate, increased secretion of anti-apoptotic pro-
teins and regulation of ABC transporters that facilitate drug efflux (see Figure 1.8 (A)
) [40, 120, 141]. As a result of the EMT program, cancer cells modify their phenotypic
trait, acquiring resistance to targeted therapies. For example, EMT transition induces
lung and ovarian cancer carcinoma cells to switch from the EGFR to the AXL receptor,
acquiring resistance to EGF-targeted therapy [25, 59] (see Figure 1.8 (B) ). Moreover, the
genetic variability produced by the EMT transition could also lead to the emergence of
an advantageous drug-tolerant phenotypic trait. Due to his high fitness, this variant will
establish itself as the dominant phenotype due to natural selection. For example, a mes-
enchymal drug-resistant state emerges in lung cancer as a genetic mutation in response
to EGFR-inhibiting treatments [65].
However, the aspect that is of utmost importance for our objectives is that the EMT
program leads to the creation of an immunosuppressive tumour microenvironment, which
confers resistance to immunotherapies (see Figure 1.8 (C) ) [131]. The mechanisms leading
to EMT-mediated resistance to immunotherapy include both cell-autonomous and non-
autonomous pathways.
From a cellular point of view, carcinoma cells undergoing EMT acquire mesenchymal
characteristics, such as less susceptibility to apoptosis, thereby becoming less vulnera-
ble to cytotoxic T cell-mediated lysis [3, 64]. Compared to epithelial cells, mesenchymal
cells in mouse mammary tumour models show lower levels of MHC-I molecules and β2-
microglobulin, leading to a higher immune resistance [42]. According to [34, 97], the
immune response can be hindered in cases of breast and lung carcinomas due to the
upregulation of ZEB1 EMT-TF, which in turn causes the expression of PD-L1 that sup-
presses the functions of T cells.
From a cellular environmental point of view, the EMT program is responsible for remod-
elling of the tumour microenvironment into an immunosuppressive state (see Figure 1.8
(C) ). In melanoma cells, the SNAIL-induced EMT process amplifies the influx of im-
munosuppressive regulatory T cells into the tumor microenvironment. This is facilitated
by the heightened secretion of TGF-β and thrombospondin-1 by the quasi-mesenchymal
cancer cells [77]. In models of breast cancer, tumors originating from a higher proportion
of epithelial carcinoma cells exhibit an increased presence of M1 anti-tumor macrophages
as well as CD8+ T lymphocytes. Conversely, neoplasms initiated from more mesenchymal
cells show a higher concentration of regulatory T cells (T-regs) and M2 pro-tumorigenic
macrophages and a reduced number of CD8+ cytotoxic T cells, which also exhibit exhaus-
tion. Of note, a small subset of quasi-mesenchymal cancer cells within a breast tumor can
foster an immunosuppressive microenvironment which, in turn, safeguards the coexisting
majority of epithelial cancer cells from immune assaults [42].

Summarising, epithelial-mesenchymal transition (EMT) significantly reduces the effec-
tiveness of current anticancer treatments, which predominantly focus on eradicating ep-
ithelial non-cancer stem cells (non-CSCs) within the tumor mass, but fail to address the
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Figure 1.8. The EMT program provides resistance to therapies. (A) The EMT in-
duces multidrug resistence on tumor cells through various mechanisms such as slow
proliferation rate, increased secretion of anti-apoptotic proteins and regulation of ABC
transporters that facilitate drug efflux. (B) EMT program causes cancer cells to
change their phenotypic trait, acquiring resistance to targeted therapies. As a result
of EMT transition, lung and ovarian cancer carcinoma cells switch from the EGFR
to the AXL receptor, gaining resistance to EGF-targeted therapies. (C) The EMT
program modifies tumor microenvironment into a more immunosuppressive one, con-
ferring resistance to immune action and therapies. This involves cell-autonomous and
non-autonomous processes, upregulating and downregulating specific molecules. Of
note, in carcinoma, the tumour microenvironment is remodelled by recruiting M2 pro-
tumorigenic macrophages and regulatory T cells and suppressing the infiltration of
"killer" cytotoxic T cells. Reproduced from Zhang et al. [150]

mesenchymal CSC component. Within the realm of immunotherapy, an immunosuppres-
sive tumor microenvironment induced by EMT may confer protection not only to mes-
enchymal CSCs but also to epithelial non-CSCs. Moreover, due to their tumour-initiating
capabilities, the surviving cancer stem cells (CSCs) possess the potential to generate new
tumors, subsequently contributing to the manifestation of clinical diseases.

Complexity of the EMT-induced phenotypic spectrum
Throughout the multistep progression of carcinomas, Epithelial-Mesenchymal Transition
(EMT) plays a pivotal role across the entire cellular population residing in the interme-
diate phases between fully epithelial and fully mesenchymal states. This phenomenon
contributes to the emergence of a continuum of phenotypic states along the E versus M
axis. Each intermediate state displays unique characteristics, including varying levels of
invasiveness and drug resistance, which may support cancer growth and spread during
specific stages of tumour invasion. Given the complexity of the phenotypic spectrum,
considering the EMT program as universal and unique would be an error [105]. Indeed,
there is a wide range of EMT versions, each acting on a certain phenotypic state along
the E-M axis.
The phenotypic heterogeneity originated by the EMT program is influenced by several
mechanisms. As previously elucidated, the execution of the EMT program is facilitated
by a select group of EMT-Transcription Factors (EMT-TFs) including SNAIL, TWIST,
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SLUG, and ZEB1. These regulators possess divergent capacities in mediating the conver-
sion of epithelial cells into mesenchymal phenotypes [79, 108]. For example, SLUG main-
tains stemness in mammary stem cells and SNAIL generates CSCs and triggers metastasis
in breast cancer [148]. The regulatory mechanism represented by SNAIL can elicit dis-
parate responses across various carcinoma models. SNAIL is of paramount importance in
facilitating metastasis within the context of a breast cancer mouse model, yet it proves
unnecessary for metastatic processes in pancreatic cancer mouse models [2, 148, 151].
Moreover, the initiation of EMT is triggered by the assimilation of different heterotypic
signals, which are detected with varying intensity by each cancer cell. This variation in
signal perception is contingent upon the heterogeneous nature of the tumour microenvi-
ronment and the specific positioning of the cell relative to the sources of these signals
[118]. Intuitively, different combinations of signals result in cancer cells assuming distinct
EMT intermediate states along the E-M axis. As a consequence, a topological localization
of traits induced by EMT could emerge within neoplasms. For instance, cells exhibiting
partial-EMT characteristics are concentrated at the forefront of the primary tumor and
promote invasion in head-and-neck squamous cell carcinomas [116].

Therapeutic strategies targeting EMT

In conclusion, EMT transition plays a fundamental role in cancer progression and invasion.
Of particular importance is the plastic nature of the EMT program, which results in the
emergence of intermediate phenotypic states on the E-M axis. Given his contribution to
the development of resistance to immuno- and chemo-therapies, further in-depth study of
the EMT program is necessary to develop efficient treatments for cancer. Some potential
strategies could include:

• Targeting cancer cells with mesenchymal/CSC characteristics, which are responsible
for the immunosuppressive action. In lung cancer patients, evidence shows that the
EMT-induced resistance to EGFR-targeted treatment is lost by inhibiting the AXL
tyrosine kinase (an EMT-induced receptor conferring resistance to EGFR-targeted
therapies) [25].

• Reversing the EMT program at specific stages of tumour development, limiting inva-
siveness and tumour-initiating ability. In mammary tumour cells, MET is triggered
by cholera toxin and forskolin [106].

• Reducing the plasticity of cancer cells, targeting specific signals that trigger and
sustain mesenchymal states ( for instance, TGF-β inhibitors counteract the EMT)
[68].

1.1.3 Summary of Relevant Biological Assumptions for our math-
ematical model

Briefly, in our work we focus on the collective migration of cancer cells during the in-
vasion and metastasis cascade. Invading fronts are characterised by great phenotypic
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heterogeneity which results in the emergence of a leader-follower cell dynamic. In this
context, mesenchymal cells act as leaders. Located at the invading edge, mesenchymal
cells possess favourable features that promote invasions, like enhanced mobility and sig-
nificant production of ECM-degrading proteases and chemical signals attracting follower
cells. As an energetic tradeoff, more mesenchymal cells exhibit lower proliferative abil-
ity than more epithelial ones. On the other hand, epithelial cells reside in the bulk of
the tumour and act as followers. Being less motile and showing enhanced cell-to-cell
adhesion, epithelial cells are more proliferative but also produce growth-inducing fac-
tors targeting mesenchymal cells in order to maintain a global balance in the overall
number of cells. In this sense, collective invasion is an ensemble process in which differ-
ent phenotypic subpopulations of cancer cells cooperate to promote cancer invasion. A
great interchange exists between these phenotypic subpopulations, given that cancer cells
could change their phenotype due to EMT or MET transition. Of particular interest for
our dissertation is the immunosuppressive effect of the EMT program, which remodels
the cellular microenvironment to protect cancer cells from immune response [150]. We
will focus on the specific cases of melanoma and breast cancer, in which we can detect
two types of cells, regulatory T cells and immune killer cells, having an essential role in
regulating the immune response to cancer. In the first case, evidence shows that EMT-
induced mesenchymal cells produce specific molecules (TGF-β and thrombospondin-1)
that promote the infiltration of immunosuppressive regulatory T cells within cancer [77].
In the second case, tumours emerging from more epithelial cells show a high concentra-
tion of M1 anti-tumour macrophages and CD8+T cells, resulting in a relevant immune
action. Conversely, neoplasms initiated from more mesenchymal cells contain more M2
pro-tumorigenic macrophages and regulatory T cells and fewer CD8+T cells, inhibiting
the immune response. Furthermore, only few mesenchymal cells are sufficient to create an
immunosuppressive microenvironment which also protects the epithelial population [42].
To conclude, the mesenchymal trait is associated with increased secretion of chemicals
that attract regulatory T-cells, which in turn repel immune killer cells, resulting in an
immunosuppressive effect that safeguards and promotes tumour growth. On the other
hand, epithelial cells are unable to produce enough T-regs-attracting chemicals to confer
protection to cancer cells, which are now heavily targeted and killed by immune cells.

1.2 Mathematical Modeling Background
From the mathematical point of view, various models dealing with the biological processes
of tumour metastasis and invasion have been proposed over the years. Of note, useful re-
views of the state of the art are given in [5, 49, 121].
Particular attention has been given to haptotaxis-driven invasion. In this case, the proto-
type model consists of a coupled system of two PDEs and ODEs, governing the temporal
and spatial evolution of some quantities that are typically the cancer cell density, the con-
centration of matrix-degrading enzymes (MDE) and the density of extra-cellular-matrix
(ECM). Cancer cells migrate due to various factors, including random motion (linear dif-
fusion term) and haptotaxis (advection term depending on the ECM gradient), and also
proliferate (non-local reaction term). For the sake of simplicity, early models assume a
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homogeneous population of cancer cells like in [10]. More precisely, in [10], Chaplain et
al. present two haptotaxis-fuelled invasion models: the first is a continuous homogeneous
model at the macroscale, and the second is an individual-cell (discrete) model at the
microscale. A detailed analytical study of these models is performed, including proofs
of local and global existence, boundness and uniqueness of the solutions. The blow-up
of solutions [123] and the radially symmetric case [123] are also investigated. Various
extensions of this prototype have been studied: in [7, 32], the focus is on the role of
uPA (urokinase plasminogen) activation system in ECM degradation, in [53, 104] non-
local terms are included to model cell-cell adhesion while in [37] mechanics aspects and
interaction forces are incorporated in the particular case of melanoma. This prototype
has also been generalized to a non-homogeneous cancer population, taking into account
phenotypic heterogeneity, which is a key factor in the invasion process. Binary models
consider only two phenotypic states, typically one "migrating" and the other "proliferat-
ing" according to the "go or growth" paradigm. Models of this type have been applied
in glioma growth [74, 113, 128] and acid-mediated invasion [130]. Another approach is
to include a continuous structure variable representing the phenotypic trait of the single
tumor cell [110]. This approach has been employed in chemotaxis/proliferation scenarios
[83] to study growth processes driven by chemotaxis but also in mobility/proliferation sce-
narios to investigate growth processes induced by density [84] or pressure [87]. Regarding
cancer, we highlight models dealing with the avascular growth of tumors [45] and the phe-
notypic variability emerging within neoplasms [46, 85, 143]. Of note, many studies rely on
a discrete rather than a continuous approach. Individual base models (IBM) have the ad-
vantage of tracking the single-cell behaviour [145, 146] and are widely used also in cancer
invasion [10]. Of note, the passage from a discrete to a continuous model could be done
directly or inversely. The "inverse" way is to build the continuous model and then derive
the discrete one through discretization, defining suitable movement probabilities for the
random walks and obtaining the governing rules at the single-cell level. This approach is
employed in [10] starting from the prototype model mentioned above. Further extensions
of this model have been developed to study the effect of hypoxia on metastatic growth
[9], including phenotypic heterogeneity and oxygen-depending proliferation, and also to
investigate the role of epithelial and mesenchymal phenotypes during invasion-metastasis
cascade [49]. However, the "direct" and more natural way is first to postulate the discrete
model and then derive the corresponding continuous model through limiting procedures.
This approach is employed to study chemotaxis-driven self-organization processes [103],
non-linear diffusion in crowded environments [109] and aggregation, collapse, and blow-up
dynamics [129].

Mathematical modelling applied to the study of populations with heterogeneous mobil-
ity has recently gained importance, thanks to its various applications in biomedicine, espe-
cially in cancer evolution. These models are usually formulated as reaction-diffusion equa-
tions with non-local reaction terms. In [11], Arnold A. et al. focus on reaction-diffusion
equations with a structure parameter (that is the typical framework in selection-mutation-
competition-migration models) and demonstrate the existence of nontrivial steady states.
One of the milestones in this field is the cane toad invasion model [15], which explains
mathematically the emergence of accelerating invading fronts [114, 126, 127, 138]. These
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analytical results perfectly match biological evidence showing a spacial sorting with more
motile individuals residing at the leading edge. More in general, the existence of solutions
in the travelling wave framework has been proved [19, 20, 21, 137], and the acceleration
of invading fronts has also been widely studied [16, 20, 22]. Of note, Bouin,E et al. in
[20] derive a dispersion relation between the wave speed and the spatial decay. Using
these results, an equation governing the evolution of the dominant phenotypic trait is also
obtained.
Of particular relevance for our purpose are [83, 84], which inspired us and constitute the
basis for the work presented here. In [84], Lorenzi et al. formulate a continuous model for
the growth of a phenotype-structured population characterized by heterogeneous prolifer-
ation and mobility, which is particularly relevant for glioma growth. Here, the evolution
of cancer cell density is governed by a non-local advection-reaction-diffusion equation,
which models random movement (linear spacial-diffusion term) with heterogeneous motil-
ity ( phenotype-dependent diffusion coefficient), phenotypic and density-dependent growth
(non-local reaction term) and spontaneous heritable genetic mutations (linear phenotypic-
diffusion term). Using the Hamilton-Jacobi approach, a detailed asymptotic analysis is
performed in the travelling-wave framework, investigating travelling-front solutions and
their properties. In [83], Lorenzi T. and Painter K.J. extend the classical chemotaxis
model of Keller and Segel to include intra-population heterogeneity. The evolution of the
population density is now governed by a non-local advection-reaction-diffusion equation
coupled with an integro-differential equation for the chemical factor. Even in this case,
long-time solutions appear as travelling fronts with a precise biological meaning.
Our work can be seen as an extension of the model presented in [84] to take into ac-
count the dynamics of regulatory cell and killer cells in order to study the EMT-induced
immunosuppressive effects. In particular, the equation governing the evolution of cancer
cell density shears similarity to the one presented in [84] since we consider a population
with heterogeneous motility and proliferation ability through a structure variable repre-
senting the phenotypic trait. Our model also includes three additional equations. The
first one governs the evolution of a chemical factor that attracts regulatory cells and that
is secreted by cancer cells with a phenotypic-dependent production rate. This equation
is inspired by the one for the attractant in the generalized Keller-Siegel model [83] or by
the one for the evolution of the MDE in the haptotaxis model [82]. The second and third
additional equations govern the evolution of two types of cells involved in regulating the
immunity response: regulatory and killer cells. These equations do not depend on the
phenotypic structure variable and take the form of advection-reaction-diffusion equations,
representing biological migration processes driven respectively by chemotaxis and local
differences in cancer cell density. If we look only at the first three equations composing
our model, we find out some formal similarities with haptotaxis models like [82] (same
equations but with different biological meanings). This motivates the extensive review
of haptotaxis models with particular focus on their mathematical analysis given in this
section.
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Chapter 2

The Individual Based Model

2.1 Preliminary assumptions

In this section, we build on the approaches developed in [24, 82, 87] to formulate an
individual-based model with phenotype structure for cancer invasion.
In this model, we consider a population of cancer cells which are able to secrete a chemical
factor attracting regulatory cells. These cells, in turn, inhibit killer cells responsible for
the immune action (i.e., the attack and elimination of the cancer cells), conferring immu-
nity to the population. Further details of the mathematical formalization are provided in
the respective sections.
Tumor cells, regulatory cells and killer cells are represented as agents, while the concen-
tration of chemical attractant is described by a non-negative function. We allow cancer
cells to move in a phenotype-dependent way toward areas with lower density, neglecting
random undirected movement ( i.e. spatial diffusion). In addition, tumor cells can un-
dergo heritable spontaneous phenotypic changes (randomly, not biased by the surrounding
microenvironment) and phenotype-dependent proliferation (division/death ). A further
cause of death for cancer cells is the encounter with killer cells. We put ourselves in a sce-
nario in which the chemical factor is secreted by the cancer cells at a phenotype-dependent
rate, then diffuses following Fick’s Law and decays spontaneously. Both regulatory and
killer cells undergo random undirected movement and proliferation. While regulatory cells
migrate due to chemotaxis in response to the concentration of the chemical attractant,
killer cells move up the gradient of cancer cell density. Furthermore, regulatory cells are
produced by a chemical-dependent source, while killer cells come from a source depending
on the density of regulatory cells. Both types of cells die spontaneously at a constant rate.
More details about the dynamics are given below.
We consider a 1D scenario in which cancer, regulatory, and killer cells and the attractant
concentration are distributed along the real line R. The phenotypic state of each cell is
represented by the structure variable y ∈ [0, Y ] ∈ R+, which allows us to take into account
the intra-population heterogeneity existing in proliferation, chemical secretion and mobil-
ity. We assume that small values of the structure variable (y → 0 ) are associated with
an epithelial phenotype characterized by high proliferation, low motility and low chemical
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production. On the contrary, for high values of the phenotypic variable ( y → Y ) cancer
cells show more mesenchymal features like enhanced mobility, high secretion of attractant
and low proliferation rate (see Figure 2.1). On one hand, these assumptions reflect the
"go or growth" dynamic which governs cellular life due to energetic factors. On the other
hand, these hypotheses reflect the immunosuppressive action of the EMT transition. In-
deed, evidence shows that cancer cells entering an EMT-induced mesenchymal state can
modify the tumoral microenvironment into a more immunosuppressive one. This results
in protecting even the epithelial cells in the surroundings from the immune response. In
the particular case of melanoma [77] and breast tumor [42], mesenchymal cells promote
the infiltration of regulatory T cells into cancer, while a significant presence of epithelial
cells attracts T CD8+ anti-tumoral killer cells. Here, a more mesenchymal trait results
in greater secretion of chemical factor, attracting more regulatory cells, whose presence
reduces the tendency of killer cells to move towards the cancer cells, inhibiting the immune
response and protecting them.

Figure 2.1. The main features linked with epithelial and mesenchymal states: prolifer-
ation,attractant secretion and motility.

2.2 Discretized variables and governing rules
We discretise the continuous variables of time t ∈ R+ and space x ∈ R, obtaining the
discrete variables of time tk = kτ and space xi = i ∆x with k ∈ N0, τ ∈ R+

∗ , i ∈ Z,
and ∆x ∈ R+

∗ . We use the notation R+
∗ to denote the set of positive real numbers.

Furthermore, the phenotypic variable y is also discretized as yj = j ∆y ∈ [0, Y ] with
j ∈ N0 and ∆y ∈ R+

∗ . The quantities τ, ∆x and ∆y are, respectively, the time step, space
step, and phenotype step.
Each agent (i.e. each cancer cell) occupies a certain position in the lattice {xi}i∈Z ×
{yj}j∈N0 . We introduce the dependent variable Nk

i,j ∈ N0, which represents the number
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of cancer cells in the phenotypic state yj at spacial position xi and time tk. Using this
definition, we can express quantities like the cell population density (i.e. the density in
space and phenotype)

nk
i,j ≡ n(tk, xi, yj) :=

Nk
i,j

∆x∆y
, (1.1)

and the cell density (i.e. population density integrated over the phenotype, depending
only on the space variable)

ρk
i ≡ ρ(tk, xi) := ∆y

Ø
j

nk
i,j . (1.2)

Similarly, we define MK
k
i ∈ N0 and MR

k
i ∈ N0 respectively as the number of killer and

regulatory cells in position xi at time tk. We assume these two populations have no
phenotypic heterogeneity, so variable y is not involved in these quantities. We can write
the density of regulatory cells

m
R

k
i ≡ m

R
(tk, xi) := MR

k
i

∆x
, (1.3)

and the density of killer cells

m
K

k
i ≡ m

K
(tk, xi) := MK

k
i

∆x
. (1.4)

Finally, we let
Sk

i ≡ S(tk, xi) (1.5)
be the concentration of the chemotaxis factor at position xi and time tk . Our model relies
on some biological rules and mechanisms summarized in the figures below and described
more precisely in the specific sections. In the remainder of this work, when we refer to cell
density (or simply density), we are talking about the density ρ of cancer cells. Whereas, if
we want to indicate n,m

K
,m

R
we will use the terms, respectively: cell population density,

density of killer cells and density of regulatory cells.

2.3 Cancer cells dynamics
During a time step [tk, tk+1], cancer cells in the phenotypic state yj ∈ (0, Y ) in spacial
position xi ∈ R can undergo:

• density-dependent movement towards regions with lower concentration of tumor cells

• heritable spontaneus phenotypic changes

• proliferation

• death, either spontaneous or caused by the immune action of killer cells

Now we consider each of these cases, formalizing them in a mathematical way through
the definition of suitable probabilities.
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2.3.1 Movement towards less crowded regions
We employ a biased random walk along the spacial dimension to model the movement of
cancer cells in response to density variations. To capture the fact that cells move towards
regions with lower cell density (i.e. in the opposite direction to the density gradient),
we let the movement probabilities depend on the difference between the density at the
current location and the one at nearby positions.
In our model, cancer cells with a higher value of phenotypic variable y (i.e. more mesenchy-
mal) exhibit greater mobility than the ones with a lower value of y (i.e. more epithelial).
To take into account this biological fact, the function µ(y), representing the mobility of a
cell with phenotype y , is taken as an increasing function of y:

µ(0) ≥ 0, dµ(y)
dy > 0 for y ∈ (0, Y ]. (1.6)

Defining P k
DLi,j

the probability that a cancer cell with phenotype yj at time tk and position
xi moves leftwards to xi−1, and P k

DRi,j
the probability to move rightwards to xi+1, we write:

P k
DLi,j

:= ηµ(yj)
(ρk

i − ρk
i−1)+

2ρmax
, P k

DRi,j
:= ηµ(yj)

(ρk
i − ρk

i+1)+

2ρmax
con (·)+ = max(0, ·),

(1.7)
where ρmax ∈ R+

∗ is the maximum value of density (see also Section 2.3.3) and η ∈ R+
∗ is

a scaling factor, small enough to ensure that ηµ(yj) ≤ 1.
In this way

0 < P k
DLi,j

+ P k
DRi,j

< 1 ∀i, j, k.

Furthermore, the probability of not moving is given by:

P k
DSi,j

:= 1 − (P k
DLi,j

+ P k
DRi,j

). (1.8)

2.3.2 Phenotipic changes
In order to include the heritable sponaneous phenotypic changes that a cancer cell could
undergo, we consider a random walk along the phenotypic dimension. After a single time
step [tk, tk+1] a cancer cell could change its phenotypic state with a probability 0 < β ≤ 1
or keep the same phenotype with probability 1 − β.
A tumor cell in the phenotypic state yj could switch into the state yj−1 with probabil-
ity P k

Di,j
or into yj+1 with probability P k

Ui,j
. Since we consider spontaneous phenotypic

changes, both phenomena are equally likely to happen:

P k
Di,j

= P k
Ui,j

:= β

2 . (1.9)

The probability of not undergoing any phenotypic variation is then:

P k
Ni,j

:= 1 − (P k
Di,j

+ P k
Ui,j

). (1.10)
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2.3.3 Cell division and death
If we look at the proliferation events, we assume that a dividing cancer cell is instan-
taneously replaced by two cancer cells which inherit its phenotypic trait yj and spacial
position xi. Furthermore, when a cell dies, it is instantaneously removed from the system.
To include phenotypic heterogeneity and contact inhibition of growth, we assume that
proliferation and death probabilities for a cancer cell at position xi depend both on the
phenotypic state y and the cell density ρ, through a suitable function G(y, ρ). The de-
pendence on ρ is included to take into account volume-filling effects, which reflect the
natural tendency of cancer cells to limit their proliferation if the surroundings are densely
populated. Since death could be either spontaneous or caused by the encounter with a
killer cell that happens at rate γ, the total proliferation rate R must also be a function of
m

k
. In summary, we can define:

R(y, ρ(t, x),m
K

(t, x)) = G(y, ρ(t, x)) − γ m
K

(t, x), (1.11)

that is the net density growth rate of cancer cells with phenotype y at position x and time t
as a result of duplication and death events, which are also influenced by the density of killer
cells m

K
. Here, G(y, ρ) is a function that represents the fitness (i.e. the net proliferation

rate) of cancer cells with phenotype y surrounded by density ρ(t, x). It also makes sense
to impose a saturating condition on the growth function G so that proliferation is totally
inhibited when the maximum density value ρmax is reached:

G( 0, ρmax) = 0, ∂ρG(·, ρ) < 0 for (y, ρ) ∈ (0, Y ] × R+, (1.12 a)

where 0 < ρmax < ∞ is the local carrying capacity of the population (i.e., the system’s
maximum capacity in terms of cell density ).
Building on the biological observations, a more mesenchymal phenotype (high y) entails
lower proliferation compared to a more epithelial one (low y). This happens due to
the energetic cost of migration, which tends to establish the so-called "go or growth"
mechanism for the cell dynamics [4, 5, 52, 54, 55, 57, 58, 63, 66, 100]. These considerations
bring to the following modelling assumptions:

G( Y, 0) = 0, ∂yG( y, ·) < 0 for (y, ρ) ∈ (0, Y ] × R+. (1.12 b)

In particular, we focus on the case:

G(y, ρ) := r(y) − ρ with r(Y ) = 0, r(0) = ρmax,
dr(y)

dy < 0 for y ∈ (0, Y ],
(1.13)

where r(y) is a smooth and bounded function that models the net proliferation rate of
cancer cells with phenotype y. In the following, we will assume ρmax = 1.
Finally, denoting by P k

Ai,j
the death probability and by P k

Bi,j
the division probability of a

cancer cell in the phenotypic state yj at position xi between time steps tk and tk+1, we
have:

P k
Ai,j

= τ R(yj , ρ
k
i ,mR

k
i )−, P k

Bi,j
= τ R(yj , ρ

k
i ,mR

k
i )+,

with (·)− := − min(0, ·), (·)+ := max(0, ·).
(1.14)
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Thus, the probability that a cancer cell remains quiescent, without dying or duplicating,
will be:

P k
Qi,j

:= 1 − (P k
Ai,j

+ P k
Bi,j

). (1.15)

Choosing τ small enough, ensure that P k
Ai,j

+ P k
Bi,j

≤ 1 ∀i, j, k.
Assumptions (1.12 a),(1.12 b) together with (1.14), ensure that if ρk

i ≥ ρmax then cancer
cells in position xi could either enter a state of dormancy or die during the time interval
[tk, tk+1]. In turn this ensures that

if max
i∈Z

ρ0
i ≤ ρmax ⇒ then ρk

i ≤ ρmax ∀(k, i) ∈ N0 × Z.

Figure 2.2. Schematic summary of the mechanisms included in the individual-based
model for cancer cells. In a time step [tk, tk+1] a cancer cell with phenotype yj ∈ (0, Y )
at position xi ∈ R: a) can move down the density gradient to positions xi−1 or xi+1 with
probabilities P k

DLi,j
and P k

DRi,j
given by (1.7) or does not move with probability P k

DSi,j

given by (1.8) b) changes its phenotypic state into yj−1 or yj+1 with probabilities P k
Di,j

and P k
Ui,j

given by (1.9) or remains in the same phenotypic state with probability P k
Si,j

given by (1.10) c) dies or divides with probabilities P k
Ai,j

and P k
Bi,j

given by (1.14) or
remains quiescent with probability P k

Qi,j
given by (1.15).

2.4 Chemical factor dynamics
As already mentioned in the previous part, between time steps [tk, tk+1] the concentration
of the chemical factor in spacial position xi ∈ R changes due to:

• spacial diffusion according to the classical Fick’s Law of diffusion with coefficient
Ds ∈ R+

∗ ,

• natural decay with elimination rate λ,

• production by the cancer cells with phenotype-dependent production rate P (yj).

As mentioned, mesenchymal cells (high y) give cancer immunity by recalling many regu-
latory cells. Since regulatory cells move up the chemical gradient, the previous scenario
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could happen only if the mesenchymal phenotype is associated with a larger produc-
tion of S(x, t) than the epithelial one (low y). In other words, low chemical production by
ephitelial cells implies low attraction of regulatory cells, which means less immunity. These
considerations inspire us to model the production rate P (y) as an increasing function of
the phenotypic variable y:

P (0) > 0, P (Y ) < ∞,
dP (y)

dy > 0. (1.16)

Naming Sk
i the concentration of attractant at position xi and time tk, the mass conser-

vation principle allows us to write a difference equation for the evolution of the chemoat-
tractant concentration:

Sk+1
i = Sk

i + τ

 DS (L Sk)i − λSk
i +

✶supp(ρk
i )

ρk
i

Ø
j

1
P (yj) nk

i,j

2
∆y

 , (1.17)

where L refers to the discrete Laplacian (in the finite-difference sense) that is:

(LSk)i := Sk
i+1 + Sk

i−1 − 2Sk
i

∆2
x

.

Of note, we divide it all by ρk
i in order to have a kind of integral average of the chemoat-

tractant produced by cancer cells at position xi and time tk .

Figure 2.3. Schematic summary of the mechanisms influencing the evolution
of the chemical concentration over time. In a time step [tk, tk+1], the concen-
tration of the attractant is subject to: d) diffusion at rate DS e) production by
cancer cells in the phenotypic state yj at a phenotypic-dependent rate P (yj) f)
spontaneous decay at rate λ.

2.5 Regulatory cells dynamics
Since we assume no heterogeneity within the population of regulatory cells, the phenotypic
variable y is not included in the following formulation. This means that we neglect the
contribution of phenotypic changes. In the following, these assumptions will also be true
for the killer cells. Biologically, we assume that regulatory cells could undergo:
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• chemotaxis-driven movement in response to the concentration S of the chemical
attractant,

• undirected random movement ,

• chemical-dependent proliferation and spontaneous death

2.5.1 Chemotactic Movement
Following the approach in [24, 33], we employ a biased random walk to model the chemo-
tactic cell movement, with probabilities expressed as a function of the difference of chem-
ical concentration between the point occupied by the cell and the neighbourhood. This
allows us to include the fact that regulatory cells move towards regions with a higher
concentration of the attractant, i.e. up the direction of the gradient of S. Calling P k

CLi

the probability that a regulatory cell in position xi at time tk ends up in position xi−1
and P k

CRi
the probability to jump in position xi+1, it results:

P k
CLi,j

:= ν
(Sk

i−1 − Sk
i )+

2SM
, P k

CRi,j
:= ν

(Sk
i+1 − Sk

i )+

2SM
with (·)+ = max(0, ·), (1.18)

where ν > 0 is a parameter related to the chemotactic sensitivity, and SM is proportional
to the maximum value assumed by the chemoattractant. The probability of not moving
by chemotaxis is given by:

P k
CSi,j

= 1 − (P k
CLi,j

+ P k
CRi,j

). (1.19)

2.5.2 Random Movement
We model the random cell movement through a biased random walk in the spacial variable
with a movement probability ϑ so that 0 < ϑ ≤ 1. We call P k

Li
the probability that a

regulatory cell at time tk in position xi ends up in position xi−1 and P k
Ri

the probability
that the cell jumps in position xi+1. Since the movement is undirected, the two cases have
the same probability of happening:

P k
Li

= P k
Ri

:= ϑ

2 , (1.20)

Complementary, the probability of not undergoing random movement is :

P k
Si

:= 1 −
1
P k

Li
+ P k

Ri

2
. (1.21)

2.5.3 Cell division and death
We assume an instantaneous division, generating two regulatory cells identical to the
mother cell and in the same spatial position xi. After death, the regulatory cell is instan-
taneously removed from the system. We introduce a function Γ

R
( m

R
, S) which represents

the net density proliferation rate of regulatory cells in position xi at time tk due to external
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production and cellular death, which are processes influenced by the chemical concentra-
tion S and the density of regulatory cells itself m

R
. We assume that regulatory cells are

produced by a so-called "diffuse source" at a chemical-dependent rate Λ(S) and are elim-
inated at a constant rate γ

R
. This occurs, for example, if we consider a scenario in which

a network of capillaries transports regulatory cells ( thus T-regs are potentially avail-
able everywhere instantaneously) that can extravasate only at specific locations where the
chemical signal is sufficiently strong. As a consequence, we can define:

Γ
R
(m

R
, S) = Λ(S) − γ

R
m

R
, (1.22)

where γ
R

is the elimination rate of regulatory cells while Λ(S) is the chemical-dependent
proliferation rate. Since a higher concentration of chemical factor S implies a greater
attraction of regulatory cells, the chemical-dependent proliferation rate Λ(S) has to be
modeled as a non-negative function preserving the monotonicity of its argument S, that
is:

dΛ(S)
dS ≥ 0 for S ∈ R+ with Λ(0) = 0. (1.23)

We let P k
ARi

be the death probability of a regulatory cell at position xi between time steps
tk and tk+1. An explicit formulation is:

P k
ARi

= τ γ
R
. (1.24)

As a consequence, the probability of a regulatory cell to remain quiescent is given by

P k
QRi

:= 1 − P k
ARi

. (1.25)

Choosing the time step τ small enough ensure that P k
ARi

≤ 1 ∀i, j, k.
Furthermore, the total number of regulatory cells entering the balance in position xi

during the time step [tk, tk+1] due to the chemical-dependent source is given by

τ Λ(Sk
i ), (1.25b)

since Λ(Sk
i ) is the chemical-dependent rate at which regulatory cells enter the system at

position xi per unit time.

2.6 Killer cells dynamics
Similarly to regulatory cells, killer cells can undergo:

• density-dependent movement towards regions with a higher concentration of cancer
cells in order to eliminate them,

• random undirected movement,

• regulatory-dependent proliferation and spontaneous death
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Figure 2.4. Schematic summary of the mechanisms included in the individual-based
model for regulatory cells. In a time step [tk, tk+1] a regulatory cell at position xi ∈ R: g)
can move due to chemotaxis to positions xi−1 or xi+1 with probabilities P k

CLi,j
and P k

CRi,j

given by (1.18) or does not move with probability P k
CSi,j

given by(1.19) h) undergoes
random movement to xi−1 or xi+1 with probabilities P k

Li,j
and P k

Ri,j
given by (1.20) or

does not move with probability P k
Si,j

given by(1.21) i) dies with probability P k
ARi,j

given
by (1.24) or remains quiescent with probability P k

QRi,j
given by (1.25) j) can originate

from an external chemical-dependent source in the number given by (1.25b)

.

2.6.1 Movement towards regions with higher density of cancer
cells

The approach is similar to the one employed in Section 2.3.1 for the density-dependent
movement of cancer cells. The difference is that now we want to model a movement up
to the cell density gradient, so in the opposite direction if compared with the previous
discussion. Similarly, we employ a biased random walk in the spatial dimension with jump
probabilities depending on the density difference between the lattice point occupied by
the cell and the neighbourhood.
Calling P k

F Li
the probability that a killer cell in position xi at time tk ends up in position

xi−1 and P k
F Ri

the probability to jump in position xi+1, we can define:

P k
F Li

:= σ
(ρk

i−1 − ρk
i )+

2ρmax
, P k

F Ri
:= σ

(ρk
i+1 − ρk

i )+

2ρmax
with (·)+ = max(0, ·), (1.26)

where σ > 0 is a parameter related to the sensitivity to density-driven movement and ρM

is the carrying capacity of the cancer cell density. Consistently, the probability to not
move to cell density gradient is given by:

P k
F Si

= 1 − (P k
F Li

+ P k
F Ri

). (1.27)

2.6.2 Random Movement
Regarding the undirected random movement, the approach is exactly the same as the one
presented in Section 2.5.2 for the regulatory cells. For this reason, we briefly recall that
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even in the case of killer cells, the probability to move leftwards or rightwards is given by

P k
Li

= P k
Ri

:= ϑ

2 , (1.28)

whereas the probability of not undergoing random movement is

P k
Si

:= 1 −
1
P k

Li
+ P k

Ri

2
, (1.29)

with ϑ being the movement probability of the biased random walk for the random undi-
rected motion.

2.6.3 Cell division and death
Under the same assumptions of instantaneous proliferation and death made in Section
2.3.3 and Section 2.5.3, we now introduce a function Γ

K
( m

R
,m

K
) which represents the net

density proliferation rate of killer cells in position xi at time tk due to external production
or cellular death. We let Γk depend on both m

K
and m

R
to include the antagonistic

behaviour of killer and regulatory cells. This reflects, even in this case, a "diffuse source
" approach: killer cells are diffused everywhere in the vasculature but are instantaneously
available only at specific locations where the concentration of regulatory cells is favourable
to extravasation. We can take:

Γ
K

( m
R
,m

K
) = B(m

R
) − γ

K
m

K
, (1.30)

where γ
K

is the elimination rate for killer cells and B(m
R
) is the non-negative proliferation

function, representing the effect of the density of regulatory cells on the proliferation of the
killer ones. Consistently with the evidence showing EMT-induced immunity in cancer, we
can consider different biological scenarios through different formulations of the function
B(m

R
).

One possible option is to assume that a large number of regulatory cells result in inhibiting
the production of killer cells. So, we expect B(m

R
) to vanish for high value of m

R
, that

is:
lim

m
R

→+∞
B(m

R
) = 0 (1.31a)

On the other hand, we expect B(m
R
) to vanish even for low value of m

R
since that’s

the case of a reduced-size cancer which does not trigger a strong immune response. So it
holds:

lim
m

R
→0

B(m
R
) = 0 (1.31b)

Another option is to consider the inhibition of killer cell proliferation as a process that
goes hand in hand with an increase in the presence of regulatory cells. In other words,
the greater the number of regulatory cells, the higher the immunosuppressive inhibition
and, thus, the lower the production of killer cells. This translates into assuming B(m

R
)

as a non-negative increasing function of m
R
, that is:

dB(m
R
)

dm
R

≥ 0 for m
R

∈ R+ with B(0) > 0. (1.31c)
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We denote by P k
AKi

the death probability of a killer cell in position xi between time steps
tk and tk+1. Explicitly, we define:

P k
AKi

= τ γ
K
. (1.32)

Consequently, the probability of a killer cell to remain quiescent is given by

P k
QKi

:= 1 − P k
AKi

. (1.33)

Choosing the time step τ small enough, ensure that P k
AKi

+ P k
BKi

≤ 1 ∀i, j, k.
Furthermore, the total number of killer cells entering the balance in position xi during
the time step [tk, tk+1] due to the regulatory-dependent source is given by

τ B(m
R

k
i ) (1.34)

since B(m
R

k
i ) is the regulatory-dependent rate at which killer cells enter the system at

position xi per unit time.

Figure 2.5. Schematic summary of the mechanisms included in the individual-based
model for killer cells. In a time step [tk, tk+1] a killer cell at position xi ∈ R: l) can move
via density-driven motion to positions xi−1 or xi+1 with probabilities P k

F Li,j
and P k

F Ri,j

given by (1.26) or does not move with probability P k
F Si,j

given by(1.27) m) undergoes
random movement to xi−1 or xi+1 with probabilities P k

Li,j
and P k

Ri,j
given by (1.28) or

does not move with probability P k
Si,j

given by(1.29) n) dies with probability P k
AKi,j

given
by (1.32) or remains quiescent with probability P k

QKi,j
given by (1.33) o) can originate

from an external regulatory-dependent source in the number given by (1.34)

.
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Chapter 3

Formal derivation of the
continuum model from the
individual-based model

In this section, we present a formal derivation of the continuum model, starting from the
individual-based one. Building on the rules presented on Chapter 2, we first formulate discrete
balance equations for the evolution of the cancer cell density n, the chemoattractant concentra-
tion S and the regulatory and killer densities m

R
and m

K
. Then, we obtain a set of approximate

equations by substituting discrete variables with continuum ones. Under appropriate regularity
assumptions, we can then employ Taylor expansions. Finally, some calculations and simplifica-
tions lead us to the formal derivation of the continuum model.
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3.1 Derivation of the equation for the cancer cell density
n

Recalling the rules governing cell dynamics presented in Section 2 for the individual-based model,
the principle of mass balance gives for the cancer cell density:

nk+1
i,j =nk

i+1,j+1

;
β

2
è
1 + τR

1
yj , ρ

k
i ,mK

k
i

2é 5ηµ (yj)
2ρmax

1
ρk

i+1 − ρk
i

2
+

6<
+ nk

i−1,j+1

;
β

2
è
1 + τR

1
yj , ρ

k
i ,mK

k
i

2é 5ηµ (yj)
2ρmax

1
ρk

i−1 − ρk
i

2
+

6<
+ nk

i+1,j−1

;
β

2
è
1 + τR

1
yj , ρ

k
i ,mK

k
i

2é 5ηµ (yj)
2ρmax

1
ρk

i+1 − ρk
i

2
+

6<
+ nk

i−1,j−1

;
β

2
è
1 + τR

1
yj , ρ

k
i ,mK

k
i

2é 5ηµ (yj)
2ρmax

1
ρk
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i

2
+

6<
+ nk

i,j+1

;
β

2
è
1 + τR

1
yj , ρ

k
i ,mK

k
i
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1 − ηµ (yj)

2ρmax

51
ρk

i − ρk
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2
+

+
1
ρk
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2
+

66<
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i,j−1

;
β

2
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+
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ρk
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2
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66<
.

This equation is built considering all the possible source terms, recalling that a spacial jump
happens only if the local density is lower than the one in the neighbours, while the phenotypic
one is random. The net growth between time steps tk and tk+1 is also included. In particular,
the mass could enter the balance through:

• both phenotipic and spatial jump from the neighbours yj−1 or yj+1 and xi−1 or xi+1 to the
correct position xi and phenotype yj (first four rows)

• only phenotipic jump and no spatial movement( fifth and sixth rows)

• only spacial jump and no phenotipic changes ( seventh and eighth rows)

• neither spacial movement nor phenotipic changes (ninth row)

Using the fact that for τ,∆x, and ∆y sufficiently small the following relations hold:

nk
i,j ≈ n(t, x, y) ≡ n, nk+1

i,j ≈ n(t+τ, x, y), nk
i±1,j ≈ n (t, x± ∆x, y) , nk

i,j±1 ≈ n (t, x, y ± ∆y)

ρk
i ≈ ρ(t, x) ≡ ρ, ρk

i±1 ≈ ρ (t, x± ∆x) , µ (yj) ≈ µ(y) ≡ µ, R
1
yj , ρ

k
i ,mK

k
i

2
≈ R(y, ρ,m

K
) ≡ R,
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The discrete equation can be rewritten as:

n(t+ τ, x, y) = n (t, x+ ∆x, y + ∆y)
;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
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Assuming the function n to be sufficiently regular, we now expand using Taylor

n (t, x, y ± ∆y) = n± ∆y
∂n

∂y
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y

2
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In this way, the above equation can be rewritten as:

n(t+ τ, x, y) = n

;
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2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
+ n

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
− ∆x

∂n

∂x

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+ ∆y

∂n

∂y

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
− ∆x∆y

∂2n

∂x∂y

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+ ∆2

x

2
∂2n

∂x2

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+

∆2
y

2
∂2n

∂y2

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+ n

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
+ ∆x

∂n

∂x

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
− ∆y

∂n

∂y

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
− ∆x∆y

∂2n

∂x∂y

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
+ ∆2

x

2
∂2n

∂x2

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
+

∆2
y

2
∂2n

∂y2

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
+ n

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
− ∆x

∂η

∂x

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
− ∆y

∂n

∂y

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+ ∆x∆y

∂2n

∂x∂y

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+ ∆2

x

2
∂2n

∂x2

5
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x∆x) − ρ)+

6<
+

∆2
y

2
∂2n

∂y2

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+ +

6
+ n

;
β

2 [1 + τR]
5
1 − ηµ

2ρmax

è
(ρ− ρ (t, x+ ∆x))+ + (ρ− ρ (t, x− ∆x))+

é6<
+ ∆y

∂n

∂y

;
β

2 [1 + τR]
5
1 − ηµ

2ρmax

è
(ρ− ρ (t, x+ ∆x))+ + (ρ− ρ (t, x− ∆x))+

é6<
+

∆2
y

2
∂2n

∂y2

;
β

2 [1 + τR]
5
1 − ηµ

2ρmax

è
(ρ− ρ (t, x+ ∆x))+ + (ρ− ρ (t, x− ∆x))+

é6<
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+ n

;
β

2 [1 + τR]
5
1 − ηµ

2ρmax

è
(ρ− ρ (t, x+ ∆x))+ + (ρ− ρ (t, x− ∆x))+

é6<
− ∆y

∂n

∂y

;
β

2 [1 + τR]
5
1 − ηµ

2ρmax

è
(ρ− ρ (t, x+ ∆x))+ + (ρ− ρ (t, x− ∆x))+

é6<
+

∆2
y

2
∂2n

∂y2

;
β

2 [1 + τR]
5
1 − ηµ

2ρmax

è
(ρ− ρ (t, x+ ∆x))+ + (ρ− ρ (t, x− ∆x))+

é6<
+ n

;
(1 − β)[1 + τR]

5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
+ ∆x

∂n

∂x

;
(1 − β)[1 + τR]

5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ) +

6<
.

+ ∆2
x

2
∂2n

∂x2

;
(1 − β)[1 + τR]

5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
+ n

;
(1 − β)[1 + τR]

5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
− ∆x

∂n

∂x

;
(1 − β)[1 + τR]

5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+ ∆2

x

2
∂2n

∂x2

;
(1 − β)[1 + τR]

5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+ n

;
(1 − β)[1 + τR]

5
1 − ηµ

2ρmax

è
(ρ− ρ (t, x+ ∆x))+ + (ρ− ρ (t, x− ∆x))+

é6<
+ h.o.t.

Rearranging and collecting the derivatives of n, we have:
n(t+ τ, x, y) =

n

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
+ n

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+n

;
β

2 [1 + τR]
5
θ

2 + ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
+ n

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+n

;
β

2 [1 + τR]
5
1 − ηµ

2ρmax

è
(ρ− ρ (t, x+ ∆x))+ + (ρ− ρ (t, x− ∆x))+

é6<
+n

;
β

2 [1 + τR]
5
1 − ηµ

2ρmax

è
(ρ− ρ (t, x+ ∆x))+ + (ρ− ρ (t, x− ∆x))+

é6<
+n

;
(1 − β)[1 + τR]

5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
+ n

;
(1 − β)[1 + τR]

5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+n

;
(1 − β)[1 + τR]

5
1 − ηµ

2ρmax

è
(ρ− ρ (t, x+ ∆x))+ + (ρ− ρ (t, x− ∆x))+

é6<
+∆x

∂n

∂x

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
− ∆x

∂n

∂x

;
β

2 [1 + τR]
5

ηµ

2Emax
(ρ (t, x− ∆x) − ρ)+

6<
+∆x

∂n

∂x

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
− ∆x

∂n

∂x

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+∆x

∂n

∂x

;
(1 − β)[1 + τR]

5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
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− ∆x
∂n

∂x

;
(1 − β)[1 + τR]

5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+ ∆y

∂n

∂y

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
+ ∆y

∂n

∂y

;
β

2 [1 + τR]
5

ηµ

2Emax
(ρ (t, x− ∆x) − ρ)+

6<
− ∆y

∂n

∂y

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
− ∆y

∂n

∂y

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+ ∆y

∂n

∂y

;
β

2 [1 + τR]
5
1 − ηµ

2ρmax

è
(ρ− ρ (t, x+ ∆x))+ + (ρ− ρ (t, x− ∆x))+

é6<
− ∆y

∂n

∂y

;
β

2 [1 + τR]
5
1 − ηµ

2ρmax

è
(ρ− ρ (t, x+ ∆x))+ + (ρ− ρ (t, x− ∆x))+

é6<
+ ∆x∆y

∂2n

∂x∂y

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
− ∆x∆y

∂2n

∂x∂y

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
− ∆x∆y

∂2n

∂x∂y

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
+ ∆x∆y

∂2n

∂x∂y

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+ ∆2

x

2
∂2n

∂x2

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
+ ∆2

x

2
∂2n

∂x2

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+ ∆2

x

2
∂2n

∂x2

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
+ ∆2

x

2
∂2n

∂x2

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+ ∆2

x

2
∂2n

∂x2

;
(1 − β)[1 + τR]

5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
+ ∆2

x

2
∂2n

∂x2

;
(1 − β)[1 + τR]

5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+

∆2
y

2
∂2n

∂y2

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
+

∆2
y

2
∂2n

∂y2

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+

∆2
y

2
∂2n

∂y2

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
+

∆2
y

2
∂2n

∂y2

;
β

2 [1 + τR]
5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+

∆2
y

2
∂2n

∂y2

;
β

2 [1 + τR]
5
1 − ηµ

2ρmax

è
(ρ− ρ (t, x+ ∆x))+ + (ρ− ρ (t, x− ∆x))+

é6<
+

∆2
y

2
∂2n

∂y2

;
β

2 [1 + τR]
5
1 − ηµ

2ρmax

è
(ρ− ρ (t, x+ ∆x))+ + (ρ− ρ (t, x− ∆x))+

é6<
+ h.o.t.

41



Formal derivation of the continuum model from the individual-based model

Further simplifying yields

n(t+ τ, x, y) =

n

;
β[1 + τR]

5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
+ n

;
β[1 + τR]

5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+n

;
β[1 + τR]

5
1 − ηµ

2Emax

è
(ρ− ρ (t, x+ ∆x))+ + (ρ− ρ (t, x− ∆x))+

é6<
+n

;
(1 − β)[1 + τR]

5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
+ n

;
(1 − β)[1 + τR]

5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+n

;
(1 − β)[1 + τR]

5
1 − ηµ

2ρmax

è
(ρ− ρ (t, x+ ∆x))+ + (ρ− ρ (t, x− ∆x))+

é6<
+∆x

∂n

∂x

;
β[1 + τR]

5
ηµ

2ρmax
(ρ− ρ (t, x+ ∆x))+

6<
−∆x

∂n

∂x

;
β[1 + τR]

5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+∆x

∂n

∂x

;
(1 − β)[1 + τR]

5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
−∆x

∂η

∂x

;
(1 − β)[1 + τR]

5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+∆y

∂n

∂y

;
β[1 + τR]

5
ηµ

2ρmax
(ρ (t, x+ ∆y) − ρ)+

6<
− ∆y

∂n

∂y

;
β[1 + τR]

5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+∆2

x

2
∂2n

∂x2

;
β[1 + τR]

5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
+∆2

x

2
∂2n

∂x2

;
β[1 + τR]

5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
.

+∆2
x

2
∂2n

∂x2

;
(1 − β)[1 + τR]

5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
+∆2

x

2
∂2n

∂x2

;
(1 − β)[1 + τR]

5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+

∆2
y

2
∂2n

∂y2

;
β[1 + τR]

5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
+

∆2
y

2
∂2n

∂y2

;
β[1 + τR]

5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+

∆2
y

2
∂2n

∂y2

;
β[1 + τR]

5
1 − ηµ

2ρmax

è
(ρ− ρ (t, x+ ∆x))+ + (ρ− ρ (t, x− ∆x))+

é6<
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Cancelling out terms in which β appears, we find

n(t+ τ, x, y) = n

;
[1 + τR]

5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
− n

;
[1 + τR]

5
ηµ

2ρmax
(ρ− ρ (t, x+ ∆x))+

6<
+n

;
[1 + τR]

5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
− n

;
[1 + τR]

5
ηµ

2ρmax
(ρ− ρ (t, x− ∆x))+

6<
+ n{[1 + τR]}

+∆x
∂n

∂x

;
[1 + τR]

5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
− ∆x

∂n

∂x

;
[1 + τR]

5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+ ∆y

∂n

∂y

;
β[1 + τR]

5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
− ∆y

∂n

∂y

;
β[1 + τR]

5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+ ∆2

x

2
∂2n

∂x2

;
[1 + τR]

5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
+ ∆2

x

2
∂2n

∂x2

;
[1 + τR]

5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+

∆2
y

2
∂2n

∂y2 {β[1 + τR]} + h.o.t.

Using the relation (f)+ − (−f)+ = f which holds for real functions f , we obtain:

n(t+ τ, x, y) = n

;
[1 + τR]

5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)

6<
+ n

;
[1 + τR]

5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)

6<
+ ∆x

∂n

∂x

;
[1 + τR]

5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
− ∆x

∂n

∂x

;
[1 + τR]

5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+ ∆y

∂n

∂y

;
β[1 + τR]

5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
− ∆y

∂n

∂y

;
β[1 + τR]

5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+ ∆2

x

2
∂2n

∂x2

;
[1 + τR]

5
ηµ

2ρmax
(ρ (t, x+ ∆x) − ρ)+

6<
+ ∆2

x

2
∂2n

∂x2

;
[1 + τR]

5
ηµ

2ρmax
(ρ (t, x− ∆x) − ρ)+

6<
+

∆2
y

2
∂2n

∂y2 {β[1 + τR]} + n{[1 + τR]} + h.o.t.

Assuming the function ρ to be sufficiently regular, substituting the following Taylor expansion

ρ (t, x± ∆x) = ρ± ∆x
∂ρ

∂x
+ ∆2

x

2
∂2ρ

∂x2 + h.o.t.

we have:

n(t+ τ, x, y) = n

I
[1 + τR]

C
+∆2

xηµ

2ρmax

∂2ρ

∂x2

DJ
+ n{[1 + τR]} + ∆x

∂n

∂x

;
[1 + τR]

5
ηµ

2ρmax

3
+∆x

∂ρ

∂x

4
+

6<
− ∆x

∂n

∂x

;
[1 + τR]

5
ηµ

2ρmax

3
−∆x

∂ρ

∂x

4
+

6<
+ ∆y

∂n

∂y

;
β[1 + τR]

5
ηµ

2ρmax

3
+∆x

∂ρ

∂x

4
+

6<
− ∆y

∂n

∂y

;
β[1 + τR]

5
ηµ

2ρmax

3
−∆x

∂ρ

∂x

4
+

6<
+

∆2
y

2
∂2n

∂y2 {β[1 + τR]} + h.o.t.

Considering terms of order O
!
τ∆2

x

"
and O

1
τ∆2

y

2
as h.o.t. yields
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n(t+ τ, x, y) = n

IC
+∆2

xηµ

2ρmax

∂2ρ

∂x2

DJ
+ n{[1 + τR]} + ∆x

∂n

∂x

;5
ηµ

2ρmax

3
+∆x

∂ρ

∂x

4
+

6<
− ∆x

∂n

∂x

;5
ηµ

2ρmax

3
−∆x

∂ρ

∂x

4
+

6<
+ ∆y

∂n

∂y

;
β

5
ηµ

2ρmax

3
+∆x

∂ρ

∂x

4
+

6<
− ∆y

∂n

∂y

;
β

5
ηµ

2ρmax

3
−∆x

∂ρ

∂x

4
+

6<
+

∆2
yβ

2
∂2n

∂y2 + h.o.t.

Once again, using the relation (f)+ − (−f)+ = f , we obtain:

n(t+ τ, x, y) =n
IC

+∆2
xηµ

2ρmax

∂2ρ

∂x2

DJ
+ n{[1 + τR]} + ∆2

x

∂n

∂x

;5
+ ηµ

2ρmax

∂ρ

∂x

6<

+ ∆y∆x
∂n

∂y

;
β

5
+ ηµ

2ρmax

∂ρ

∂x

6<
+

∆2
yβ

2
∂2n

∂y2 + h.o.t.

Further rearranging yields

n(t+ τ, x, y) = ∆2
xηµ

2ρmax

C
n
∂2ρ

∂x2 + ∂n

∂x

∂ρ

∂x

D
+n+ τRn+

∆2
yβ

2
∂2n

∂y2 +β∆y∆x

5
ηµ

2ρmax

∂ρ

∂x

6
∂n

∂y
+ h.o.t.

Dividing both sides by τ we have

n(t+ τ, x, y) − n

τ
= ∆2

xηµ

2ρmaxτ

C
n
∂2ρ

∂x2 + ∂n

∂x

∂ρ

∂x

D
+Rn+

∆2
yβ

2τ
∂2n

∂y2 +β∆y∆x

τ

5
ηµ

2ρmax

∂ρ

∂x

6
∂n

∂y
+ h.o.t.

Now we let the time-step τ → 0, the space-step ∆x → 0 and the phenotype-step ∆y → 0 in
such a way that

∆2
xη

2ρmaxτ
→ α ∈ R+

∗ , and
∆2

yβ

2τ → ω ∈ R+
∗

we formally obtain
∂n

∂t
= α µ(y)

C
n
∂2ρ

∂x2 + ∂n

∂x

∂ρ

∂x

D
+Rn+ ω

∂2n

∂y2 ,

which simplifies to

∂n(t, x, y)
∂t

− α µ(y) ∂
∂x

3
n(t, x, y)∂ρ(t, x)

∂x

4
= R(y, ρ,m

K
) n(t, x, y) + ω

∂2n(t, x, y)
∂y2 .

Using the definition (1.11) for the term R(y, ρ,m
K

) we recover:

∂tn− α µ(y) ∂x (n ∂xρ) = G(y, ρ) n+ ω ∂2
yyn− γ m

K
n,

that is the PIDE (2.10)1 for n(t, x, y).
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3.2 Derivation of the equation for the attranctant S
Using the fact that for τ,∆y and ∆x sufficiently small it holds

nk
i,j ≈ n(t, x, y) nk+1

i,j ≈ n(t+ τ, x) ρk
i ≈ ρ(t, x)

Sk
i ≈ S(t, x) Sk+1

i ≈ S(t+ τ, x) Sk
i±1 = S(t, x± ∆x) P (yj) ≈ P (y)

and the sum on j formally converge to integral for ∆y → 0, we obtain the approximated equation:

S(t+τ, x) = S(t, x)+τ
5
DS

S(t, x+ ∆x) + S(t, x− ∆x) − 2S(t, x)
∆2

x

− λS(t, x) +
✶supp(ρ)

ρ(t, x)

Ú
P (y) n(t, x, y) dy

6
.

Dividing by τ and letting τ → 0 and ∆x → 0, formally gives:

∂tS = ✶supp(ρ)

Ú Y

0

P (y)
ρ(t, x) n(t, x, y) dy − λS +Ds ∂

2
xxS,

that is the PDE (2.10)3 for the evolution of the attractant concentration S.

3.3 Derivation of the equation for the density of regula-
tory cells m

R

For simplicity, we rename the spacial step as ∆x = h and the density of regulatory cells as
m

R
= u, and then we write the discrete equation based on the rules presented in Section 2.5 .

The principle of mass conservation gives:

uk+1
i = (1 − γ

R
τ)
;
uk

i + ϑ

2

3
uk

i−1 + uk
i+1

4
−ϑ uk

i

+ ν

2SM

53
Sk

i − Sk
i−1

4
+
uk

i−1 +
3
Sk

i − Sk
i+1

4
+
uk

i+1

6
− ν

2SM

53
Sk

i−1 − Sk
i

4
+
uk

i +
3
Sk

i+1 − Sk
i

4
+
uk

i

6 <
+τΛ(Sk

i ).

In this equation appears the factor (1 − γ
R
τ) representing the probability that a regulatory cell

remains quiescent (without dying) between time tk and tk+1. The first three terms in the curly
brackets represent the fact that the density of regulatory cells at a certain time in a certain
position xi is given by the density that is already in the correct position at a previous time plus
the contribute of the mass that will jump in or out the position xi from the neighbours due to
random motion. The other two terms represent, respectively, the source and sink terms related
to the chemotactic motion so that the mass in the neighbourhood tends to move in position
xi if there is a higher chemical concentration, and vice versa the mass undergoes the opposite
movement, exiting from the balance. In addition, the last term represents an external source
that produces regulatory cells depending on the concentration of the chemical attractor at the
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specific location.
For spacial and time step h, τ sufficiently small it holds:

tk ≈ t tk+1 ≈ t+ τ xi ≈ x xi±1 ≈ x± h

uk
i ≈ u(t, x) uk+1

i ≈ u(t+ τ, x) uk
i±1 ≈ u(t, x± h)

Sk
i ≈ S(t, x) Sk+1

i ≈ S(t+ τ, x) Sk
i±1 ≈ S(t, x± h) Λ(Sk

i ) ≈ Λ(S)
Substituting these relations into the discrete formulation, we obtain an approximated equation:

u(t+ τ, x) = (1 − γ
R
τ)
;
u(t, x) + ϑ

2

3
u(t, x− h) + u(t, x+ h)

4
−ϑ u(t, x)

+ v

2SM

53
S(t, x) − S(t, x− h)

4
+
u(t, x− h) +

3
S(t, x) − S(t, x+ h)

4
+
u(t, x+ h)

6
− v

2SM

53
S(t, x− h) − S(t, x)

4
+
u(t, x) +

3
S(t, x+ h) − S(t, x)

4
+
u(t, x)

6 <
+ τΛ(S).

We suppose these functions to be sufficiently regular; in particular we ask u(t, x) and S(t, x) to
be twice differentiable in space x and u(t, x) differentiable also in time t so that we can write
Taylor expansions in x and t:

u(t+ τ, x) = u+ τ
∂u

∂t
+ h.o.t

u(t, x± h) = u ± h
∂u

∂x
+ h2

2
∂2u

∂x2 + h.o.t

S(t, x± h) = S ± h
∂S

∂x
+ h2

2
∂2S

∂x2 + h.o.t

Introducing these definitions into the above equation:

u+ τ
∂u

∂t
= (1 − γ

R
τ)
;
u+ ϑ

2

3
u− h

∂u

∂x
+ h2

2
∂2u

∂x2 + u+ h
∂u

∂x
+ h2

2
∂2u

∂x2

4
−ϑ u

+ ν

2SM

53
S − S + h

∂S

∂x
− h2

2
∂2S

∂x2

4
+

3
u− h

∂u

∂x
+ h2

2
∂2u

∂x2

4
+
3
S − S − h

∂S

∂x
− h2

2
∂2S

∂x2

4
+

3
u+ h

∂u

∂x
+ h2

2
∂2u

∂x2

46
− ν

2 SM

53
S − h

∂S

∂x
+ h2

2
∂2S

∂x2 − S

4
+
u+

3
S + h

∂S

∂x
+ h2

2
∂2S

∂x2 − S

4
+
u

6 <
+ τΛ(S) + h.o.t.

Simplifying some terms:

u+ τ
∂u

∂t
= (1 − γ

R
τ)
;
u+ ϑ

h2

2
∂2u

∂x2 + ν

2SM

53
+h∂S

∂x
− h2

2
∂2S

∂x2

4
+

3
u− h

∂u

∂x
+ h2

2
∂2u

∂x2

4
+
3

−h∂S
∂x

− h2

2
∂2S

∂x2

4
+

3
u+ h

∂u

∂x
+ h2

2
∂2u

∂x2

46
− ν

2 SM

53
−h∂S

∂x
+ h2

2
∂2S

∂x2

4
+
u+

3
+h∂S

∂x
+ h2

2
∂2S

∂x2

4
+
u

6 <
+ τΛ(S) + h.o.t.
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Grouping some terms:

u+ τ
∂u

∂t
= (1 − γ

R
τ)
;
u+ ϑ

h2

2
∂2u

∂x2 + ν

2SM

53
+h∂S

∂x
− h2

2
∂2S

∂x2

4
+

3
u− h

∂u

∂x
+ h2

2
∂2u

∂x2

4
+
3

−h∂S
∂x

− h2

2
∂2S

∂x2

4
+

3
u+ h

∂u

∂x
+ h2

2
∂2u

∂x2

4
−
3

−h∂S
∂x

+ h2

2
∂2S

∂x2

4
+
u−

3
+h∂S

∂x
+ h2

2
∂2S

∂x2

4
+
u

6 <
+ τΛ(S) + h.o.t.

We now use for the terms in u the well known fact that for a generic function f holds (f)+ −
(−f)+ = f :

u+ τ
∂u

∂t
= (1 − γ

R
τ)
;
u+ ϑ

h2

2
∂2u

∂x2 + η

2SM

53
+h∂S

∂x
− h2

2
∂2S

∂x2

4
+

3
−h∂u

∂x
+ h2

2
∂2u

∂x2

4
+
3

−h∂S
∂x

− h2

2
∂2S

∂x2

4
+

3
+h∂u

∂x
+ h2

2
∂2u

∂x2

4
+
3

+h∂S
∂x

− h2

2
∂2S

∂x2

4
u+

3
−h∂S

∂x
− h2

2
∂2S

∂x2

4
u

6 <
+ τΛ(S) + h.o.t.

Neglecting the term of order greater than 2 in h:

u+ τ
∂u

∂t
= (1 − γ

R
τ)
;
u+ ϑ

h2

2
∂2u

∂x2 + ν

2SM

5 3
+h∂S

∂x

4
+

3
−h∂u

∂x

4
+
3

−h∂S
∂x

4
+

3
+h∂u

∂x

4
−h2∂

2S

∂x2 u

6 <
+ τΛ(S) + h.o.t.

Once again we use the rule (f)+ − (−f)+ = f for the term with h
∂u

∂x
:

u+ τ
∂u

∂t
= (1 − γ

R
τ)
;
u+ ϑ

h2

2
∂2u

∂x2 + ν

2SM

5
−h2∂S

∂x

∂u

∂x
− h2∂

2S

∂x2 u

6 <
+ τΛ(S) + h.o.t.

Neglecting the term with τh2 we finally have:

u+ τ
∂u

∂t
= u+ ϑ

h2

2
∂2u

∂x2 + ν

2SM

5
−h2∂S

∂x

∂u

∂x
− h2∂

2S

∂x2 u

6
−γ

R
τu+ τΛ(S) + h.o.t.

Recognizing in the brackets the derivative of a product with respect to x ad dividing by τ :
∂u

∂t
= ϑ

h2

2τ
∂2u

∂x2 − ν h2

2τSM

∂

∂x

5
∂S

∂x
u

6
−γ

R
u+ Λ(S) + h.o.t.

Letting τ → 0 and h → 0, in such a way that
νh2

2τSM
→ α

R
χ

R
∈ R+

∗ ,
ϑh2

2τ → DR ∈ R+
∗

Returning to the original variable u = m
R

, the equation becomes:
∂m

R

∂t
+ α

R

∂

∂x

5
χ

R

∂S

∂x
m

R

6
= DR

∂2m
R

∂x2 + Λ(S) − γ
R
m

R
.

that is exactly the equation (2.10)4 governing the evolution of m
R
.
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3.4 Derivation of the equation for the density of killer
cells m

K

Using the same approach as the regulatory cell case, we write the discrete equation based on the
rules presented in Section 2.4. Renaming the spacial step as ∆x = h and the killer cell density
as m

k
= u, the principle of mass conservation now gives:

uk+1
i = (1 − γ

K
τ)
;
uk

i + ϑ

2

3
uk

i−1 + uk
i+1

4
−ϑ uk

i

+ σχ
K

2ρmax

53
ρk

i − ρk
i−1

4
+
uk

i−1 +
3
ρk

i − ρk
i+1

4
+
uk

i+1

6
− σχ

K

2ρmax

53
ρk

i−1 − ρk
i

4
+
uk

i +
3
ρk

i+1 − ρk
i

4
+
uk

i

6 <
+ τB(m

R

k
i ).

This equation is composed of a right-hand-side that is multiplied by the factor (1 − γ
k
τ) that

represents the probability that a regulatory cell remains quiescent (without dying) between time
tk and tk+1. The first three terms in the curly brackets represent the fact that the density of
killer cells at a certain time in a certain position xi is given by the density already in the correct
position at a previous time plus the contribution of the mass that will jump in or out the position
xi from the neighbours due to random motion. The other two terms represent, respectively, the
source and sink terms related to the motion towards higher tumour cell density so that the mass
in the neighbourhood tends to move in position xi if there’s a higher cancer cell density, and
vice versa the mass undergoes the opposite movement, exiting from the balance. In addition,
the last term represents an external source that produces killer cells depending on the presence
of regulatory cells at the specific location.
For spacial and time step h, τ sufficiently small it holds:

tk ≈ t tk+1 ≈ t+ τ xi ≈ x xi±1 ≈ x± h

uk
i ≈ u(t, x) uk+1

i ≈ u(t+ τ, x) uk
i±1 ≈ u(t, x± h)

ρk
i ≈ ρ(t, x) ρk+1

i ≈ ρ(t+ τ, x) ρk
i±1 ≈ ρ(t, x± h) B(m

R

k
i ) ≈ B(m

R
)

Substituting these relations into the discrete equation, we obtain an approximated form:

u(t+ τ, x) = (1 − γ
K
τ)
;
u(t, x) + ϑ

2

3
u(t, x− h) + u(t, x+ h)

4
−ϑ u(t, x)

+ σχ
K

2ρmax

53
ρ(t, x) − ρ(t, x− h)

4
+
u(t, x− h) +

3
ρ(t, x) − ρ(t, x+ h)

4
+
u(t, x+ h)

6
− σχ

K

2ρmax

53
ρ(t, x− h) − ρ(t, x)

4
+
u(t, x) +

3
ρ(t, x+ h) − ρ(t, x)

4
+
u(t, x)

6 <
+ τB(m

R
).

We suppose the involved functions to be sufficiently regular, in particular, u(t, x) and ρ(t, x)
twice differentiable in space x and u(t, x) differentiable in time t so that can be expanded using
Taylor in x and t:

u(t+ τ, x) = u+ τ
∂u

∂t
+ h.o.t
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u(t, x± h) = u ± h
∂u

∂x
+ h2

2
∂2u

∂x2 + h.o.t

ρ(t, x± h) = ρ ± h
∂ρ

∂x
+ h2

2
∂2ρ

∂x2 + h.o.t

Introducing these definitions into the above equation:

u+ τ
∂u

∂t
= (1 − γ

K
τ)
;
u+ ϑ

2

3
u− h

∂u

∂x
+ h2

2
∂2u

∂x2 + u+ h
∂u

∂x
+ h2

2
∂2u

∂x2

4
−ϑ u

+ σχ
K

2ρmax

53
ρ− ρ+ h

∂ρ

∂x
− h2

2
∂2ρ

∂x2

4
+

3
u− h

∂u

∂x
+ h2

2
∂2u

∂x2

4
+
3
ρ− ρ− h

∂ρ

∂x
− h2

2
∂2ρ

∂x2

4
+

3
u+ h

∂u

∂x
+ h2

2
∂2u

∂x2

46
− σχ

K

2ρmax

53
ρ− h

∂ρ

∂x
+ h2

2
∂2ρ

∂x2 − ρ

4
+
u+

3
ρ+ h

∂ρ

∂x
+ h2

2
∂2ρ

∂x2 − ρ

4
+
u

6 <
+ τB(m

R
) + h.o.t.

Simplifying some terms:

u+ τ
∂u

∂t
= (1 − γ

K
τ)
;
u+ ϑ

h2

2
∂2u

∂x2 + σχ
K

2ρmax

53
+h∂ρ

∂x
− h2

2
∂2ρ

∂x2

4
+

3
u− h

∂u

∂x
+ h2

2
∂2u

∂x2

4
+
3

−h∂ρ
∂x

− h2

2
∂2ρ

∂x2

4
+

3
u+ h

∂u

∂x
+ h2

2
∂2u

∂x2

46
− σχ

K

2ρmax

53
−h∂ρ

∂x
+ h2

2
∂2ρ

∂x2

4
+
u+

3
+h∂ρ

∂x
+ h2

2
∂2ρ

∂x2

4
+
u

6 <
+ τB(m

R
) + h.o.t.

Grouping some terms:

u+ τ
∂u

∂t
= (1 − γ

K
τ)
;
u+ ϑ

h2

2
∂2u

∂x2 + σχ
K

2ρM

53
+h∂ρ

∂x
− h2

2
∂2ρ

∂x2

4
+

3
u− h

∂u

∂x
+ h2

2
∂2u

∂x2

4
+
3

−h∂ρ
∂x

− h2

2
∂2ρ

∂x2

4
+

3
u+ h

∂u

∂x
+ h2

2
∂2u

∂x2

4
−
3

−h∂ρ
∂x

+ h2

2
∂2ρ

∂x2

4
+
u−

3
+h∂ρ

∂x
+ h2

2
∂2ρ

∂x2

4
+
u

6 <
+ τB(m

R
) + h.o.t.

We now use for the terms in u the well known fact that for a generic function f holds (f)+ −
(−f)+ = f :

u+ τ
∂u

∂t
= (1 − γ

K
τ)
;
u+ ϑ

h2

2
∂2u

∂x2 + σχ
K

2ρmax

53
+h∂ρ

∂x
− h2

2
∂2ρ

∂x2

4
+

3
−h∂u

∂x
+ h2

2
∂2u

∂x2

4
+
3

−h∂ρ
∂x

− h2

2
∂2ρ

∂x2

4
+

3
+h∂u

∂x
+ h2

2
∂2u

∂x2

4
+
3

+h∂ρ
∂x

− h2

2
∂2ρ

∂x2

4
u+

3
−h∂ρ

∂x
− h2

2
∂2ρ

∂x2

4
u

6 <
+ τB(m

R
) + h.o.t.
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Neglecting the term of order greater than 2 in h:

u+ τ
∂u

∂t
= (1 − γ

K
τ)
;
u+ ϑ

h2

2
∂2u

∂x2 + σχ
K

2ρmax

5 3
+h∂ρ

∂x

4
+

3
−h∂u

∂x

4
+
3

−h∂ρ
∂x

4
+

3
+h∂u

∂x

4
−h2 ∂

2ρ

∂x2 u

6 <
+ τB(m

R
) + h.o.t.

Once again we use the rule (f)+ − (−f)+ = f for h ∂u

∂x
:

u+ τ
∂u

∂t
= (1 − γ

K
τ)
;
u+ ϑ

h2

2
∂2u

∂x2 + σχ
K

2ρmax

5
−h2 ∂ρ

∂x

∂u

∂x
− h2 ∂

2ρ

∂x2 u

6 <
+ τB(m

R
) + h.o.t.

Neglecting the term with τh2 we finally have:

u+ τ
∂u

∂t
= u+ ϑ

h2

2
∂2u

∂x2 + σχ
K

2ρM

5
−h2 ∂ρ

∂x

∂u

∂x
− h2 ∂

2ρ

∂x2 u

6
−γ

K
τu+ τB(m

R
) + h.o.t.

Recognizing in the brackets the derivative of a product with respect to x ad dividing by τ :

∂u

∂t
= ϑ

h2

2τ
∂2u

∂x2 − σχ
K
h2

2τρM

∂

∂x

5
∂ρ

∂x
u

6
−γ

K
u+ B(m

R
) + h.o.t.

Letting τ → 0 and h → 0, we define the coefficients:

σh2

2τρmax
→ α

K
∈ R+

∗ ,
ϑh2

2τ → D
K

∈ R+
∗

So that, recalling also that u = m
K

the final form of the equation is

∂m
K

∂t
+ α

K

∂

∂x

5
χK

∂ρ

∂x
m

K

6
= DK

∂2m
K

∂x2 + B(m
R
) − γ

k
m

K
,

that is exactly equation (2.10)5 governing the evolution of m
K

.
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Chapter 4

The model object of study

In this chapter we give a short review of the continuum model formally derived in Chapter
3, explaining the physical meaning of the parameters and functions comprised in this
model. Then we illustrate the approach used to tackle our model, and, relying on the
previous literature, we present expected results and questions.

4.1 The continuum model
The model derived in Chapter 3 for cancer invasion is the following:

∂tn− αµ(y) ∂x (n ∂xρ(t, x))) = G(y, ρ)n+ ω ∂2
yyn− γm

K
n

ρ(t, x) :=
Ú Y

0
n(t, x, y) dy, (x, y) ∈ R × (0, Y )

∂tS = ✶supp (ρ(t,x))

Ú Y

0

P (y)
ρ(t, x) n(t, x, y) dy − λS +Ds ∂

2
xxS

∂tmR
+ α

R
∂x( m

R
χ

R
∂xS ) = Λ(S) − γ

R
m

R
+D

R
∂2

xxmR

∂tmK
+ α

K
∂x( m

K
χ

K
∂xρ ) = B(m

R
) − γ

K
m

K
+D

K
∂2

xxmK

(2.10)

Here, the structure variable y ∈ [0, Y ] represents the phenotypic state of each cancer
cell. This allows us to include the intra-population heterogeneity that the tumor exhibits
in terms of mobility, proliferation, and chemical production. As already mentioned, we
associate higher values of y with a more mesenchymal behaviour and lower values of y
with a more epithelial one.
The first equation (2.10)1 is a partial-integro-differential equation (PIDE) governing the
evolution of n(t, x, y) that is the cancer cell population density with phenotype y at
position x ∈ R and time t ∈ [0,+∞], subject to zero Neumann boundary conditions at
y = 0 and y = Y . This equation involves ρ(x, t) that is the cell density at position x and
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time t, defined by (2.10)2.
Looking at the left-hand side of (2.10)1, the second term takes into account the tendency
of cells to move towards less crowded regions (down to the cell density gradient ) [6],[26] .
The function αµ(y) with α > 0 models the cell mobility. Since mesenchymal cells exhibit
greater motility than the epithelial ones, we have defined µ as an increasing function of
the cell phenotypic state y ( cf.(1.6) ). The first term of the right-hand side of (2.10)1
represents the change of the population density due to cell division and death. Here, the
rate G(y, ρ(t, x)) embodies the fitness of cells in the phenotypic state y at time t and
position x, surrounded by cell density ρ(x, t). To include volume-filling effects and the
"go or growth" dynamics, G has been defined as a decreasing function of y and ρ ( see
definition (1.12 a) and properties (1.12 b),(1.13) ). The second term on the right-hand
side of the PIDE (2.10)1 reflects the spontaneous, heritable phenotypic changes [70] that
a cancer cell can undergo at rate ω > 0. Finally, the last term in (2.10)1 represents the
death of a cancer cell due to the encounter with a killer one that happens at rate γ > 0.
The third equation in (2.10) governs the evolution of S(x, t), that is the concentration of
the chemotactic factor. The integral term in the right-hand side of (2.10)3 represents the
weighted integral average production of the attractant S, which occurs at a phenotype-
dependent rate P (y). Since mesenchymal cells produce more attractant than the epithelial
ones, we have defined P (y) as an increasing function of y (c.f. (1.16)). The second term
on the right-hand side of (2.10)3 embodies the spontaneous degradation of the chemical
factor , which occurs at rate λ. Finally, the last term of (2.10)3 reflects the spacial diffusion
of the attractor, following the classical Fick’s Law, with diffusion coefficient Ds.
The remaining equations (2.10)4 and (2.10)5 govern the evolution of m

R
and m

K
that

are, respectively, the density of regulatory and killer cells at position x and time t. Both
equations have a similar right-hand side, consisting of spatial diffusion, production and
elimination terms. The elements that change are the diffusion coefficient (respectively
D

R
and D

K
), the elimination rate (respectively γ

R
and γ

K
) and the proliferation rate (

Λ(S) and B( m
R
)). The proliferation term depends on S in the regulatory case while is

a function of m
R

in the killer case. This choice aims to model the antagonism of the two
types of cells and their different sources. Since the chemical factor attracts regulatory
cells, the chemical-dependent proliferation rate Λ(S) is defined as an increasing function
of S ( see (1.23) ). On the other hand, killer cells proliferate with a regulatory-dependent
rate B(m

R
), whose definition changes according to the biological scenario of interest (see

(1.31a),(1.31b),(1.31c) for some possible choices). Another difference between (2.10)4 and
(2.10)5 is in the transport term on their left-hand side. This reflects the fact that two
different physical causes dictate movement. The regulatory cells move by chemotaxis with
chemotactic sensitivity coefficient χ

R
, while the killer cells move up to the cell density

gradient with sensitivity coefficient χ
K

.

4.2 Expected results and questions
Relying on the pre-existing literature, we can study the asymptotic behaviour of the cell
population density n through a rescaling operation followed by a travelling wave analysis
on the equation (2.10)1. We expect to find that the cell population density n converges
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weakly in measures to a delta distribution centred in a dominant phenotype ȳ multiplied
by the cell density ρ. This procedure allows us to obtain a transport equation for the
dominant phenotype y(z). Consistently with the experimental evidence, we expect y(z)
to behave as a wave that links values near 0 in the rear (where the majority of cells
are epithelial) to values near Y at the edge the front (where the prevalent phenotypic
trait is mesenchymal). This reflects the emergence of phenotypically structured invading
cell fronts, in which mesenchymal cells act as leaders while the epithelial cells behave as
followers, similarly with [82, 83, 84]. Moreover, we expect the cell density ρ to be a wave
which reaches maximum value ρmax at the rear and tends to zero near the front. Employing
the same rescaling approach to equation (2.10)3 and substituting the asymptotic solution
found for n, working in the travelling wave framework, we will find an explicit form for
the wave associated with S in analogy with [82, 83]. A priori, we do not know how
this wave will be since its behaviour depends on the combined effects of density growth
rate and chemical factor production rate, which are both functions of the phenotype and
depend on the modelling choices. Under the hypothesis that P (Y ) >> P (0) we can
envisage that the wave has a peak at the front, where the more mesenchymal cells are
located. Finally, using the known results for ρ and S into the travelling-wave rescaled
version of (2.10)4 and (2.10)5, we obtain explicit expressions for m

K
and m

R
. Due to

their "antagonism", we expect them to be waves with opposite behaviour. In particular,
we expect a peak of regulatory cells at the front since the wave for S exhibits a peak
at that location. As a consequence, in this region the density of killer cells has to be
very low. Furthermore, we expect that a tumor composed of more mesenchymal cells will
show a greater concentration of attractant S, then a greater density of regulatory cells
m

R
which hinders the penetration of killer cells m

K
into the tumor bulk. In this case, we

expect the wave for m
K

to be low within the tumor bulk, that is, for z < l where z = l is
the position of the front edge. Conversely, a more epithelial tumor is supposed to face a
heavier immune response due to the shortage of chemical attractant and regulatory cells
within tumor. In the latter case, we expect m

K
to be higher within the tumor than the

previous one. Outside the tumour, i.e. for z > l, the lack of cancer cells results in limited
chemical production and thus the absence of regulatory cells, which implies a massive
presence of killer cells in both scenarios.
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Formal asymptotic analysis

In this section, we conduct a travelling wave analysis of an opportune rescalation of the
system (2.10). We lean on the asymptotic method developed in [83, 84], which builds on
the Hamilton-Jacobi approach employed in previous works [14, 41, 70, 86].

5.1 Rescaled model

We put ourselves in a biological scenario in which cancer cell proliferation and chemoat-
tractor production/degradation play a stronger role in the system dynamics than cell
density-directed movement and immune action of killer cells, which play a stronger role
than spacial diffusion of chemicals and phenotypic changes [8, 10, 70, 101, 132]. Hence,
introducing a small parameter ε ∈ R+

∗ , we rescale the equations for n and S, choosing:

α := ε ω := ε2 D
S

:= ε2. (3)

Regarding the dynamics of regulatory and killer cells, we focus on a biological scenario
in which the spacial diffusion happens on a longer characteristic timescale than the cell
movement that in turn plays a weaker role than cellular proliferation and death. This
corresponds to the parameter scaling:

α
K

:= ε α
R

:= ε D
K

:= ε2 D
R

:= ε2. (3.1)

Finally, to study the long time behaviour of the solution, we employ a time rescaling:
t → t

ε , leading to :

n( t
ε , x, y) := nε(t, x, y) , S( t

ε , x, y) := Sε(t, x, y)

m
K

( t
ε , x, y) := m

K ,ε(t, x, y), m
R
( t

ε , x, y) := m
R,ε(t, x, y)
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In so doing, we obtain the following rescaled version of system (2.10):

ε ∂tnε − ε µ(y) ∂x (nε ∂xρε) = G(y, ρε)nε + ε2 ∂2
yynε − ε m

K ,εnε

ρε(t, x) :=
Ú Y

0
nε(t, x, y) dy, (x, y) ∈ R × (0, Y )

ε ∂tSε = ✶supp (ρε(t,x))

Ú Y

0

P (y)
ρε(t, x) nε(t, x, y) dy − λSε + ε2 ∂2

xxSε

ε ∂tmR,ε + ε ∂x( m
R,ε χR

∂xSε ) = Λ(Sε) − γ
R
m

R,ε + ε2 ∂2
xxmR,ε

ε ∂tmK ,ε + ε ∂x( m
K ,ε χK

(m
R,ε) ∂xρε ) = B(m

R,ε) − γ
K
m

K ,ε + ε2 ∂2
xxmK ,ε

(3.3)

5.2 Formal limit for ε → 0
On the basis of the Hamilton-Jacobi method in [14, 41, 86, 110, 111], we make the so-called
real phase WKB ansatz [13, 44, 48]:

nε(t, x, y) = e
uε(t,x,y)

ε , (3.4)

so :

∂tnε = ∂tuε

ε
nε, ∂xnε = ∂xuε

ε
nε, ∂2

yynε =
3 1
ε2 (∂yuε)2 + 1

ε
∂2

yyuε

4
nε. (3.5)

Substituting the latter expressions into the PIDE for nε (3.3)1, making explicit the product
derivative on the left-hand side and simplifying, we obtain the following Hamilton-Jacobi
equation for uε(t, x, y):

∂tuε−µ(y) (∂xuε ∂xρε + ε ∂2
xxρε ) = G(y, ρε)+(∂yuε)2+ϵ ∂2

yyuε−ε mK ,ε, (x, y) ∈ R×(0, Y ).
(3.6)

We can express uε and ρε through their asymptotic expansions in terms of ε:

uε = u+ εu1 + ε2u2 + ..., ρε = ρ+ ερ1 + ε2ρ2 + ... for ε → 0, (3.7)

where u and ρ are the leading-order terms of the expansions. Substituting these expansions
into (3.8) and taking the limit for ε → 0, we obtain an equation for the principal term u :

∂tu− µ(y) ∂xρ ∂xu = G(y, ρ ) + (∂yu)2, (x, y) ∈ R × (0, Y ). (3.8)

Constraint on u
Let x ∈ R so that ρ(t, x) > 0 i.e.

x ∈ supp(ρ).
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Let y(t, x) be a nondegenerate maximum point of u(t, x, y) that is

y(t, x) ∈ arg max
y∈[0,Y ]

u(t, x, y),

with ∂2
yyu(t, x, y) < 0 by definition of nondegenerate maximum point.

Note that if uε is a strictly concave function of y, then under assumptions (1.12 b) we can
expect the same property to hold for u, which means that we can expect u(t, x, y) to have
a unique maximum point y(t, x).
Since for the growth function G(y, ρε) holds (1.12 a),(1.12 b), then we also expect

ρε(t, x) < ∞ for all ε > 0,

which implies that nε is bounded in L1([0, Y ]) for ε → 0. Recalling the ansatz (3.4), this
is possible only if the following constraint is satisfied for all t > 0:

u(t, x, y(t, x)) = max
y∈[0,Y ]

u(t, x, y) = 0, x ∈ supp(ρ), (3.9)

which also implies:

∂yu(t, x, y(t, x)) = 0 and ∂xu(t, x, y(t, x)) = 0, x ∈ supp(ρ). (3.10)

Equation (3.8) together with the constraint (3.9) can be seen as a constrained Hamilton-
Jacobi equation with ρ(x, t) > 0 that plays the role of the Lagrange multiplier associated
to the constraint.

Relation between ȳ(t, x) and ρ(t, x)
Evaluating now the equation (3.8) at y = y(t, x):

∂tu(t, x, y) − µ(y) ∂xρ ∂xu(t, x, y) = G(y, ρ ) + (∂yu(t, x, y) )2,

and using the constraint (3.9) and the relations (3.10), we find:

G(y(t, x), ρ(t, x)) = 0, x ∈ supp(ρ). (3.11)

Recalling the definition of G(y, ρ) given by (1.13) we have:

r(y(t, x)) − ρ(t, x) = 0 =⇒ ρ(t, x) = r(y(t, x)) x ∈ supp(ρ). (3.12)

The monotonicity assumptions (1.12 b) or (1.13) ensure that the maps ρ → G(·, ρ) and
y → G(y, ·) are both invertible. As a consequence (3.12) is a biunivocal correspondence
between y(t, x) and ρ(t, x).

Expression for S(t, x)
Under the validity of the ansatz (3.4) for nε , if uε and u are strictly concave functions of
y and u satisfyies the constraint (3.9), then the following asymptotic result holds:
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nε(t, x, y) −−⇀
ε→0

ρ(t, x) δȳ(t,x)(y) weakly in measure, (3.13)

where δȳ(t,x)(y) is the Dirac delta centred in y = y(t, x). This means that at position x and
time t, all cells express the dominant phenotypic trait y = y(t, x), while other phenotypic
variants are locally absent.
As previously done, we take the asymptotic expansion of the function Sε representing the
chemical attractant:

Sε = S + εS1 + ε2S2 + .., (3.14)

where S is the leading-order term. Using (3.14) into the rescaled equation for Sε (3.3)3
and taking the limit for ε → 0, using also the asymptotic result (3.13), we obtain an
equation for the leading-order term S :

✶supp (ρ(t,x))

Ú Y

0
P (y) δȳ(t,x)(y) dy = λS =⇒ S(t, x) = P (y(t, x))

λ
✶supp (ρ(t,·))(x),

(3.15)
where ✶(·) is the indicator function of the set (·). As expected, out of supp(ρ), the chemical
concentration S vanishes due to the absence of cancer cells producing it.

5.2.1 Behaviour of m
K

and m
R

Recalling the equations for m
K

and m
R

in (3.3) , properly rescaled with ε:

∂tmR,ε
(t, x) + ∂x( m

R,ε
(t, x) χ

R
∂xSε(t, x) ) = ε ∂2

xxmR,ε
(t, x) + Λ(Sε(t, x)) − γ

R
m

R,ε
(t, x)

∂tmK,ε
(t, x) + ∂x( m

K,ε
(t, x) χ

K
∂xρε(t, x) ) = ε ∂2

xxmK,ε
(t, x) +B(m

R,ε
(t, x)) − γ

K
m

K,ε
(t, x)

(3.16)

As previously done, we assume that we can take asymptotic expansions of m
R,ε

and m
K,ε

:

m
R,ε

= m
R

+ εm
R1

+ ε2m
R2

+ ..

m
K,ε

= m
K

+ εm
K1

+ ε2m
K2

+ ..
(3.17)

where m
R

and m
K

are the leading terms.
Introducing expansions (3.7), (3.14), (3.17) into (3.16) and taking the limit for ε → 0, we
obtain the following expressions for the leading-order terms m

R
and m

K
:

Λ(S(t, x)) − γ
R
m

R
(t, x) = 0

and
B(m

R
(t, x)) − γ

K
m

K
(t, x) = 0.

From these we obtain an explicit form for m
R
(t, x)

m
R
(t, x) = Λ(S(t, x))

γ
R

, (3.18)
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and for m
K

(t, x):

m
K

(t, x) = B(m
R
(t, x))
γ

K

. (3.19)

Since S(t, x) is known from the previous asymptotic analysis (see (3.15)), then m
R

can
be derived directly through (3.18). Once m

R
is also known, we can use its expression into

(3.19) to determine m
K

explicitly. In particular, outside supp(ρ(t, ·))(x) we know that
S(t, x) vanishes and consequently so does m

R
(t, x) according to (3.18) and (1.23). This

implies that m
K

(t, x) is high due to (1.31c) and (3.19).

Transport equation for y
Taking the derivative of (3.8) with respect to y and evaluating the resulting equation in
y = y(t, x), we obtain

∂2
ytu(t, x, y) − dµ

dy

----
y=y

∂xρ ∂xu(t, x, y) − µ(y) ∂xρ ∂
2
yxu(t, x, y) =

= ∂yG(y, ρ) + 2 ∂yu(t, x, y) ∂2
yyu(t, x, y),

which, using constraint (3.9) and results (3.10), simplifies to:

∂2
ytu(t, x, y) − µ(y) ∂xρ ∂

2
yxu(t, x, y) = ∂yG(y, ρ) x ∈ supp(ρ). (3.20a)

Differentiating now the first relation of (3.10) with respect to t, we find:

∂2
ytu(t, x, y) + ∂2

yyu(t, x, y) ∂ty(t, x) = 0 ⇒ ∂2
ytu(t, x, y) = −∂2

yyu(t, x, y) ∂ty(t, x).

If, instead, we differentiate the same equation with respect to x, we find:

∂2
xyu(t, x, y) + ∂2

yyu(t, x, y) ∂xy(t, x) = 0 ⇒ ∂2
yxu(t, x, y) = −∂2

yyu(t, x, y) ∂xy(t, x).

We have now expressions for ∂2
ytu(t, x, y) and ∂2

yxu(t, x, y) that we can substitute into
(3.20a), together with ∂2

yyu(t, x, y) < 0 ( because y is the unique maximum point of u
that is a strictly concave function of y ). The result is the following transport equation
for y(t, x) :

∂ty − µ(y) ∂xρ ∂xy(t, x) = 1
−∂2

yyu(t, x, y)∂yG(y, ρ), x ∈ supp(ρ), (3.20)

that is a generalised Burgers equation with source term, given that ρ(t, x) is linked to
y(t, x) through (3.11) or is given explicitly by (3.12).

5.3 Travelling-wave analysis
Formulation of the travelling wave problem
Introducing the travelling wave ansatz

u(t, x, y) = u(z, y), ρ(t, x) = ρ(z), y(t, x) = y(z), S(t, x) = S(z),
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m
R
(t, x) = m

R
(z), m

K
(t, x) = m

K
(z)

with
z := x− c t, c ∈ R+

∗

into
• the equation for u (3.8):

−(c+ µ(y)ρ′)∂zu = G(y, ρ) + (∂yu)2, (z, y) ∈ R × (0, Y ), (3.21)

• the constraint on u (3.9):

u(z, y(z)) = max
y∈[0,Y ]

u(z, y) = 0, z ∈ supp(ρ), (3.22)

• the relations (3.10) consequences of the constraint:

∂yu(z, y(z)) = 0, ∂zu(z, y(z)) = 0, z ∈ supp(ρ), (3.23)

• the relation (3.12):

G(y(z), ρ(z)) = 0 ⇒ ρ(z) = r(y(z)), z ∈ supp(ρ), (3.24)

• the equation for S (3.15):

S(z) = P (y(z))
λ

✶supp(ρ)(z), (3.25)

• the equation for m
R

(3.18):

m
R
(z) = Λ(S(z))

γ
R

, (3.26)

• the equation for m
K

(3.19):

m
K

(z) = B(m
R
(z))

γ
K

, (3.27)

• the transport equation for y (3.20) :

−( c+ µ(y) ρ′) y′ = 1
−∂2

yyu(z, y)∂yG(y, ρ), x ∈ supp(ρ),

( c+ µ(y) ρ′) y′ = ∂yr(y)
∂2

yyu(z, y) , x ∈ supp(ρ).
(3.28)

We are looking for a wave-like solution y(z) satisfying (3.28) and the following asymptotic
condition:

lim
z→−∞

y(z) = 0, (3.29)

which is introduced since r(0) = ρmax ( see (1.13) ) and thus

lim
z→−∞

ρ(z) = ρmax. (3.30)
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Monotonicity of the wave
Taking the derivative of the constraint (3.24) with respect to z, we obtain

∂yG(y(z), ρ(z)) y′(z) + ∂ρG(y(z), ρ(z)) ρ′(z) = 0, z ∈ supp(ρ), (3.31a)

from which we find an expression for ρ′(z):

ρ′(z) = −∂yG(y(z), ρ(z))y′(z)
∂ρG(y(z), ρ(z)) z ∈ supp(ρ). (3.31b)

Substituting (3.31b) into (3.28)

− c y′ + µ(y) ∂yG(y, ρ)
∂ρG(y, ρ) (y′)2 = 1

−∂2
yyu(z, y)∂yG(y, ρ),

that is,

y′ = −∂yG(y, ρ)
c

A
1

∂2
yyu(z, y) + µ(y)(y′)2

−∂ρG(y, ρ)

B
, z ∈ supp(ρ). (3.31)

Since ∂2
yyu(z, y) < 0 and ∂yG(y, ·) < 0, ∂ρG(·, ρ) < 0 for (y, ρ) ∈ (0, Y ] × R+ ( see

(1.12 a), (1.12 b) ), relations (3.31) and (3.31b) allow us to conclude that:

y′(z) > 0 and ρ′(z) < 0, z ∈ supp(ρ). (3.32)

Biologically speaking, these results are consistent with experimental evidence. Firstly, the
prevalence of epithelial cells is observed in the bulk of the tumor, while more mesenchymal
cells are highlighted at the front. Therefore, it makes sense that the dominant phenotype
y is an increasing function of z. At the same time, most cells reside in the bulk of the
cancer mass while only a few occupy the front, so it is correct that the cancer density ρ
decreases with z.

Position of the front
Putting together relation (3.24) with the monotonicity results (3.32) and the modeling
assumptions (1.12 b) and (1.13), we can conclude that the position of the front of y(z),
satisfying transport equation (3.28) and asymptotic condition (3.29), coincides with

the unique point l ∈ R so that y(l) = Y and y(z) < Y on (−∞, l) . (3.33a)

This implies supp(ρ) = (−∞, l) from which (3.25) becomes:

S(z) = P (y(z))
λ

✶(−∞, l)(z). (3.33)

Outside supp(ρ)(z) ( i.e. for z ∈]l,+∞) ) we conclude that S(z) vanishes. According
to (3.26) and (1.23) also m

R
(z) vanishes and this implies that m

K
(z) is high due to

(1.31c) and (3.27). These results perfectly reflect our modelling assumptions and make
sense biologically. Indeed, we are considering an asymptotical scenario in which chemical
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diffusion is neglected, and the only factor determining the concentration of the attractor
is the presence of cancer cells producing it. Given that outside supp(ρ)(z) there are no
cancer cells, the chemical concentration here must be zero. Since regulatory cells are
recruited where the attractant concentration is sufficiently high, the density of regulatory
cells is also zero outside supp(ρ)(z). As the absence of regulatory cells means no inhibition
of killer cells, the density of killer cells must be high outside supp(ρ).

Mimimum wave speed
Differentiating (3.21) with respect to y gives

−(c+ µ(y)ρ′) ∂2
yzu(z, y) − dµ(y)

dy ρ′ ∂zu(z, y) = ∂yG(y, ρ) + 2 ∂yu(z, y) ∂2
yyu(z, y).

Then, evaluating in y = y(z) and using the properties (3.22), (3.23), we find:

−(c+ µ(y)ρ′) ∂2
yzu(z, y) − ∂yG(y, ρ) = 0. (3.34)

The result (3.19) in the travelling wave framework, gives:

∂2
yzu(z, y) = −∂2

yyu(z, y)y′.

Substituting into the latter equation the expression for y′ from (3.31a), it results:

∂2
yzu(z, y) = ∂2

yyu(z, y)∂ρG(y, ρ)
∂yG(y, ρ) ρ

′.

Now that we have an explicit form for the term ∂2
yzu(z, y), we use it into (3.34) and, in

so doing, we obtain:

µ(y) ∂2
yyu(z, y) ∂ρG(y, ρ) (ρ′)2 + c ∂2

yyu(z, y) ∂ρG(y, ρ) ρ′ + (∂yG(y, ρ))2 = 0.

In the particular case in which G(y, ρ) is defined through (1.13), it holds:

∂ρG(·, ρ) = −1 and ∂yG(y, ·) = dr(y)
dy .

Hence, the previous equation becomes:

µ(y) ∂2
yyu(z, y) (ρ′)2 + c ∂2

yyu(z, y) ρ′ −
3 dr(y)

dy

42
= 0. (3.35)

We can look at (3.35) as a quadratic equation of ρ′ that has real negative roots, consistently
with the monotonicity result (3.32). In order to have real roots the following condition
has to be satisfied:

( c ∂2
yyu(z, y) )2 + 4 µ(y) ∂2

yyu(z, y)
3 dr(y)

dy

42
≥ 0,
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that is,

c2 ≥ −4 µ(y)
∂2

yyu(z, y)
(∂2

yyu(z, y))2

3 dr(y)
dy

42
.

Since
∂2

yyu(z, y) < 0 ⇒ ∂2
yyu(z, y) = −| ∂2

yyu(z, y) |,

recalling also that c ≥ 0 , we can thus conclude:

c ≥ 2
ó

µ(y)
∂2

yyu(z, y)

----dr(y)
dy

---- .
So there is a minimum wave speed c∗ satisfying:

c∗ = sup
z∈supp(r(y))

2
ó

µ(y(z))
∂2

yyu(z, y(z))

----dr(y(z))
dy

---- , (3.36)

where we have used the relation between ρ(z) and r(y(z)) given by (3.24).
As a consequence of (3.36), ifñ

µ(Y )
----dr(Y ))

dy

---- → ∞ for Y → ∞, (3.37)

then c∗ → ∞ for Y → ∞ and thus front acceleration may occur.

5.4 Illustration of the asymptotic results
In this section, we first choose coefficients and suitable functions for the model (3.3) ( i.e.
satisfying the modelling assumptions), then we use these to produce some plots in the
travelling-wave framework to illustrate the asymptotic results obtained in the previous
sections.
For the sake of simplicity, we assume Y = 1 so that y ∈ [0,1]. According to (1.6) we can
take the phenotypic-dependent mobility as:

µ(y) := y2. (4.1)

To satisfy assumptions (1.12 a),(1.12 b) on the cancer cells growth function G(y, ρ) in the
particular case given by (1.13) we define:

r(y) := 1 − y2. (4.2)

We assume λ = 1 In order to satisfy assumptions (1.16) on P (y) we also define:

P (y) := 1 + y

2 . (4.3)

Since Λ(S) has to satisfy assumption (1.23), at first instance we can define it as:

Λ(S) = S. (4.4)

63



Formal asymptotic analysis

This modelling assumption is now made for the sake of simplicity but it can be modi-
fied, choosing a suitable function respecting the assumption (1.23). Another modelling
assumption is the choice of B(m

R
), which has to be made carefully depending on which

behaviour we want to model. Since 0 ≤ y(z) ≤ 1 ∀z ∈ [−∞, l], definition (4.3) together
with (3.25) ensure that 0 ≤ S(z) ≤ 1 ∀z ∈ [−∞, l]. Then, definition (4.4) together
with (3.26) ensure that 0 ≤ m

R
(z) ≤ 1 ∀z ∈ [−∞, l]. Hence, the following definition for

B(m
R
) is well posed and satisfies assumptions (1.31c):

B(m
R
) = 1 −m

R
. (4.5)

Now, we postulate the shape of the solution y(z) according to the asymptotical con-
ditions (3.32), (3.33a) and (3.29). In this way, we can consider y(z) as given and subse-
quently derive the other quantities using the asymptotical results. At first, we arbitrarily
assume the position of the front at z = l. Then, the solution y(z) has to be an increasing
function of z, linking the two extremes: y = 0 at the rear, i.e. for z → −∞ and y = 1 at
the wave-front, i.e. for z = l. For representative purposes, we must consider z in a finite
interval, we take z ∈ [0, l]. As a consequence, the behaviour at z = 0 in the following
illustrations reflects the behaviour for z → −∞ in the travelling wave framework.
For simplicity, we assume y(z) to be a sigmoid function:

y(z) = 1
1 + e−k(z−z0) , (4.6)

where k and z0 are parameters influencing respectively the slope of the sigmoid and the
point at which it reaches half of its maximum value. At first, we can choose k = 0.42
and z0 = 0.59 ∗ l. In the following, we will refer to this choice of parameters as the
"mid-sigmoid" case. Now, knowing the explicit form of y(z), we can determine the shape

Figure 5.1. Plot of the phenotypic dominant trait y(z) assumed as the "mid-sigmoid"
(4.6) (left), the density of cancer cells ρ(z) obtained through (3.24) (center) and the
concentration of the chemical attractant S(z) obtained through (3.25) (right).

of the density ρ(z) using the asymptotic result (3.24) and the assumption (4.2). At this
point, we can employ the explicit formula (3.25) together with the definitions (4.2) and
(4.3) to obtain the shape of the attractant concentration S(z). Putting this result for
S(z) and the definition (4.4) into (3.26) and choosing a suitable coefficient γ

R
, we obtain
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an explicit expression for the density of regulatory cells m
R
(z). Once m

R
(z) is known and

the coefficient γ
K

is fixed, the formula (3.27) gives us the shape of the density of killer
cells, under the modelling assumption (4.5). In the following, we will always consider
γ

R
= γ

K
= 1 .

Figure 5.2. Plot of the density of regulatory cells m
R

(z) obtained through (3.26) (left)
and the density of killer cells m

K
(z) obtained through (3.27) (right).

Figure 5.3. The overlapping plots of all the quantities involved in our analysis under
the mid-sigmoid assumption (4.6) for y. Due to our modeling choices, S ≡ m

R
.

In this first basic example, we notice that the phenotypic spatial organization emerging
in y(z) reflects on the concentration of the chemical factor S that impacts the shape of
the density of regulatory cells m

R
which in turn influence the production of killer cells

m
K

(Figure 5.1 and Figure 5.2). Near the leading edge, where the dominant phenotypic
trait is mesenchymal, we can see a higher concentration of chemicals, which results in
enhanced production of regulatory cells and reduced presence of killer ones. The situation
is the opposite in the bulk, where more epithelial cells reside: indeed, at this location,
more killer cells are attracted due to the lack of regulatory cells. These results, although
simple, reflect biological evidence and simulate the scenario we expect, consistently with
the modelling assumptions on which our model relies.
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After this basic example, we explore other modelling choices for the shape of the
dominant phenotypic trait y(z). Assuming the two growth functions B(m

R
) and Λ(S) to

be fixed as in the previous case (see (4.4) and (4.5)), we now investigate how the other
involved quantities are affected by changing the shape of the dominant phenotypic trait
y. We expect a cascade effect in which a change in y will produce significant changes in
its dependent quantities. This study can be seen as a sort of parametric study perturbing
the solution of the transport equation (3.28).
Firstly, we change the shape and speed of the phenotypic switch between epithelial and
mesenchymal traits, observing how it affects the degree of infiltration of killer cells within
the tumour mass. We chose three shapes for y(z) that are two sigmoids and a power
function. The mid-sigmoid case has already been investigated as the first basic example.
In particular, we take:

y(z) = 1
1 + e−km(z− cml)) , (mid-sigmoid)

where l is the position of the front edge while km and cm are parameters which determine
the shape of the sigmoid. In particular, we chose km = 0.42 and cm = 0.59.
Then,

y(z) = 1
1 + e−ks(z− csl) , (sigmoid)

where l is the position of the front edge while ks and cs are parameters that determine
the shape of the sigmoid. In particular, we chose km = 0.4 and cs = 0.50.
Finally,

y(z) =
3
z

l

4n

, (power)

where l is the position of the front edge and n is a parameter influencing the steepness of
the power function. Here, we chose n = 3, which is the cubic case.

Figure 5.4. Plot of the dominant phenotypic trait y(z) and the asymptotic forms of the
cancer density ρ(z) and the concentration of the attractor S(z) resulting from y taken as
(mid-sigmoid), (sigmoid) or (power) function.

Focusing on the comparison of sigmoid, mid-sigmoid and cubic case (Figure 5.4 and
Figure 5.5 ), we notice that a steeper slope of y(z) influences the shape of ρ(z) and following
even S(z) changes. In particular, we can see that a faster transition towards y = 1, which
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Figure 5.5. Plot of the asymptotic forms of the densities of regulatory m
R

and killer
m

K
cells resulting from y taken as (mid-sigmoid), (sigmoid) or (power) function.

means a greater number of mesenchymal cells originated by the EMT transition, results
in a global increase in the concentration of the chemical factor S within the tumor. This
results in greater recruitment of regulatory cells m

R
in the bulk of the tumor, leading to

enhanced immunosuppression and less penetration of killer cells m
K

. Numerically, this
observation is confirmed if we look at the total number of killer cells penetrating the bulk
of the tumour by calculating the integral under the curve m

K
in the three different cases.

We have: Ú l

0
m

K
(z) dz = 6.74 in the sigmoid case,Ú l

0
m

K
(z) dz = 7.98, in the mid-sigmoid case,

and Ú l

0
m

K
(z) dz = 10.12 in the cubic case.

As expected, the scenario leading to a lower presence of killer cells within the tumour is
the one linked to the sigmoid case, which in our work is the modelling choice with a more
rapid transition to the mesenchymal phenotype. We can conclude that a faster transition
towards the mesenchymal trait results in a lower presence of killer cells within the tumor
mass which means enhanced protection from the immune action. Of note, the penetration
of killer cells into the cancer mass could not be blocked totally due to the "diffuse source"
assumption for m

R
and m

K
. Indeed, this modelling assumption will always lead to a

non-null density of killer cells in the bulk of the tumour, where the dominant phenotypic
trait is epithelial, and the chemical concentration and the density of regulatory cells are
near zero. Fixing the modelling choice for y(z), Figure 5.6 shows the overall situation ob-
tained by the superposition of the plots of all the quantities involved in our study, further
confirming the considerations just exposed.
At this point, we can compare the cases of tumours arising from a pool of more mesenchy-

mal or epithelial cells, highlighting the difference that emerges in the derived quantities.
In particular, we assume the more mesenchymal tumor to be composed of cells in the
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Figure 5.6. Overlapped plot of all the involved quantities resulting from y taken as
(power) , (mid-sigmoid) or (sigmoid) function respectively.

phenotypic range y ∈ [a,1] while the more epithelial neoplasm covers the range y ∈ [0, b]
with a, b fixed. We also investigate the case of an intermediate tumor originating from
cells in the phenotypic range y ∈ [0,1]. For simplicity, we always choose y(z) as a function
like the "mid-sigmoid" one, changing parameters appropriately to reflect what we want
to model. In particular, we consider three different states that we denote as Epithelial,
Mesenchymal and Intermediate.
Firstly,

y(z) = 1
1 + e−kI (z− cI l) , (Intermediate)

that is the usual "mid-sigmoidal" case with coefficients cI = 0.42 and kI = 0.59.
Then,

y(z) = a+ 1 − a

1 + e−kM (z− cM l) , (Mesenchymal)

with coefficients cM = 0.35 and kM = 0.54 and a that is a parameter representing the
minimum value of the phenotypic dominant trait y(z) ( reached in the bulk at z = 0).
We will assume a = 0.8 in the following.
Finally,

y(z) = b

1 + e−kE(z− cE l) , (Epithelial)

with coefficients cE = 0.37 and kE = 0.57 and b that is a parameter representing the
maximum value of the phenotypic dominant trait y(z) (reached in the leading edge at
z = l). We will assume b = 0.2 in the following.
Of note, our results still hold in the case of a tumor in which the dominant phenotype is
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not zero in the bulk (i.e. if limz→−∞ y(z) /= 0), provided we change assumption (3.31a)
consistently with the scenario we are studying ( in our work this happens in the mes-
enchymal case in which the value at the rear is y = 0.8).
As expected, the tumour initiated from more mesenchymal cells shows a lower density
of cancer cells ρ but a greater production of attractant S than the one starting from
the more epithelial pool (Figure 5.7). These results also affect the number of regulatory
cells m

R
attracted, which is very high in the more mesenchymal case, inducing very low

recruitment of killer cells m
K

and so a powerful immunosuppressive action (Figure 5.8).
Due to its low chemical secretion, the tumor composed of more epithelial cells is not able
to recall enough regulatory cells to effectively counteract the immune action of killer cells,
which can therefore penetrate the tumour mass in large quantities.
Numerically, these observations are confirmed if we compute the total number of killer
cells penetrating the bulk of the tumour by calculating the integral under the curve mK

in the three different cases. More in detail, we have:Ú l

0
m

K
(z) dz = 12.30 in the Epithelial case,

Ú l

0
m

K
(z) dz = 7.98 in the Intermediate case

and Ú l

0
m

K
(z) dz = 1.74 in the Mesenchymal case.

As expected, the scenario with the lower penetration of killer cells and, consequently,
the greater immunosuppressive response is the one related to the modelling choice of
a tumour composed of more mesenchymal cells. Conversely, the higher penetration of
killer cells and, consequently, the stronger immune response is observed in the case of a
tumor arising from more epithelial cells. Fixing the modelling choice for y(z), Figure 5.9
shows the overall situation obtained by the superposition of the plots of all the quantities
involved in the model, further confirming the observations just discussed.

Figure 5.7. Plot of the dominant phenotypic trait y(z), the asymptotic forms of
the cancer density ρ(z) and the attractor concentration S(z) resulting from y taken as
(Intermediate), (Mesenchymal) or (Epithelial) function .
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Figure 5.8. Plot of the asymptotic forms of the densities of regulatory m
R

and killer m
K

cells resulting from y taken as (Intermediate), (Mesenchymal)
or (Epithelial) function .

Figure 5.9. Overlapped plot of all the involved quantities resulting from y taken as
(Epithelial) , (Intermediate) and (Mesenchymal) function respectively.
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Chapter 6

Conclusions and research
perspectives

6.1 Conclusions and Biological Implications
This thesis deals with the derivation and travelling wave analysis of partial integro-
differential equation models for EMT-mediated immunosuppression in cancer with phe-
notypic heterogeneity, including also the dynamics of killer and regulatory immune cells.
Experimental evidence shows that mesenchymal cancer cells recruit regulatory cells, which
suppress killer cell activity, creating a protective environment for the tumour. On the
other hand, epithelial cancer cells experience higher immune activity due to the greater
presence of killer cells. Cancer cells could have a phenotypic state ranging from totally
epithelial to completely mesenchymal, modelled by the structure variable y. Specifically,
a mesenchymal phenotype is characterized by high mobility and low proliferative abil-
ity, while an epithelial phenotype prioritizes reproduction over movement, reflecting the
biological principle of “go or grow”. Mesenchymal cells also show a high production of
chemical attractant, which is responsible for recruiting regulatory cells which migrate due
to chemotaxis. On the other hand, killer cells move up the density gradient of cancer cells
and their activity is inhibited by regulatory cells. These biological considerations are ex-
pressed mathematically by choosing suitable functions to model the phenotype-dependent,
mobility, production, and growth of cancer cells, as well as the chemical-dependent growth
of regulatory and killer cells. After this, we can define jump probabilities in branching
random walks on a lattice in physical and phenotypic space, formulating three coupled
discrete agent-based models for the densities of cancer, regulatory and killer cells that are
also coupled with a discrete finite difference equation for the concentration of the attrac-
tant. Through limit procedures, we formally derive the corresponding continuous model,
composed of two partial integro-differential equations (IPDE) for the density of cancer
and killer cells, coupled with two partial differential equations for the concentration of the
chemical attractant and the density of regulatory cells. Despite the system’s complexity,
we show through formal asymptotic techniques that a detailed analysis within the frame-
work of the travelling wave can be performed, obtaining invasion fronts with phenotypic
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structure. As a preliminary step, we rescale the continuous model with appropriate powers
of a small parameter ε, according to the biological relevance of the terms within the equa-
tions. Combining WKB ansatz for the density of cancer cells with asymptotic expansions,
we derive an equation and a constraint for the new function u as ε → 0. Through several
mathematical steps, we obtain a transport equation for y(t, x), which is the dominant
phenotypic trait at position x and time t. Shifting our focus to the traveling wave frame-
work, we investigate the monotonicity of traveling front solutions, the wavefront position
and the minimum propagation speed. We conclude that the maximum phenotypic trait y
presents a monotonically increasing profile along the wave variable z = x − ct while the
density of cancer cells ρ has a decreasing behaviour. Finally, we can derive the profiles of
the chemical concentration and densities of killer and regulatory cells using these results.
As expected, mesenchymal cells dominate the wavefront while epithelial cells reside at
the rear, following leader cell dynamics. Various scenarios are proposed to investigate
how this spatial organisation influences the degree of infiltration of killer cells into the
tumor. In particular, a tumour originating from a set of more mesenchymal cells shows
less infiltration of killer cells and thus limited immune action than a tumour originating
from more epithelial cells. The speed with which EMT is able to convert epithelial cells
into mesenchymal cells also affects the penetration of killer cells. In this sense, a greater
switiching rate implies a greater slope of the dominant phenotype curve y and thus the
creation of a more protective immunosuppressive environment.

6.2 Research perspectives
The model presented here could be extended in many ways. Under the same assumptions,
the model could be refined by choosing more suitable functions and parameters to fit with
real data. For example, exploring various scenarios by choosing "ad hoc" proliferation
functions for the regulatory and killer cells. Performing a sort of parametric study on
these functions, one could investigate how these changes affect the penetration of killer
cells and the position and speed of the wavefront. An interesting modelling alternative
could be to neglect sources within the equations for regulatory and killer cells, giving more
importance to the transport terms as the only ones dictating the migration. Rather than
a "diffuse source" approach, we can consider an initial pool of regulatory and killer cells
which move towards the tumour following chemical or physical stimuli (chemotaxis and
density-driven migration). This approach has been investigated in Appendix, but it still
needs to be refined in order to obtain reasonable outcomes.
Changing the model, we could also include haptotaxis as one of the causes of motion
and study how the presence of regulatory/killer cells will affect this phenomenon. In this
sense, a more mesenchymal phenotype would be linked with a greater secretion of MMP
(metalloproteinases), which degrades the surrounding ECM (extracellular matrix) and
helps the invasion process. From a mathematical point of view, this means adding to the
system (2.10) two coupled evolutionary equations for the concentration of MMP and the
density of ECM, resulting in some changes in the shapes of the solutions.
Another possibility would be to refine the current study by including intra-population
phenotypic heterogeneity for regulatory and killer cells, leading to the differentiation of
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the abilities of individual cells. This way, regulatory and killer cells would have different
powers to eliminate cancer cells and to inhibit killer cells depending on their phenotypic
state. Following this idea, we can also include phenotypic heterogeneity in the prolifera-
tion process, considering also the case in which cancer cells divide into daughter cells with
a different phenotype.
Regarding the EMT-induced immunosuppression, it would be intriguing to study mathe-
matically some other aspects revealed by experimental evidence [150]. Among them is the
emergence of a mutant phenotypic variant that the selection mechanism establishes as the
dominant trait within a tumour due to its high fitness and enhanced resistance to ther-
apies. Of note is also the EMT-related phenomenon of "receptor switching" that makes
targeted therapies fail, especially in breast tumours. In this sense, more specific models
could be formulated to investigate the role of the EMT transcriptor factors (like Slug
and Snail, ZEB-1 and TWIST ) and EMT biomarkers (like E-cadherin and N-cadherin)
which are involved in invasion and immune processes in certain types of cancers (breast,
melanoma, mammary and lung tumour) [150].
Another attractive option would be to extend this model to a 2D domain in both physical
and phenotypic space. In the physical space, this allows us to investigate the emergence
of symmetric structures like spheroids and to study more in-depth the factors leading to
a symmetry break with the arising of the so-called "tumour fingering". In the phenotypic
space, a higher dimensionality enables decoupling some processes, which are taken as si-
multaneous in a 1D scenario, like the increase in motility and chemical secretion ability
for mesenchymal cells. Of note, the model proposed in our work for carcinoma cells could
be adapted to simulate other specific leader-follower cell dynamics, like the fibronectin-
VEGF signalling in NSCLC (non-small cell lung cancer) [75].
A natural generalisation of this model is obtained by including pressure as the determining
factor for migration in the equation (2.10)1. Equations (2.10)1 and (2.10)2 would thus be
replaced by the system

∂tn− αµ(y) ∂x (n ∂xP(t, x))) = G(y,P(t, x))n+ β ∂2
yyn− γmkn

P ≡ Φ(ρ), ρ(t, x) :=
Ú Y

0
n(t, x, y) dy, (x, y) ∈ R × (0, Y )

(2.10mod)

imposing zero Neumann conditions at y = 0 and y = Y . In this formulation, P(t, x) is
the pressure applied by cells residing at position x and time t, linked to the cell density
ρ(t, x) by the constitutive law Φ(ρ). In this sense, the model becomes more mechanistic
and, under certain assumptions on the function Φ(ρ) [112], we recognise a porous medium
equation governing the evolution of P .
Ultimately, this work provides a starting point for the formulation of increasingly com-
plex and precise models of tumour invasion which also take into account EMT-induced
immunosuppressive effects given by the combined action of multiple types of agents, such
as regulatory and killer cells in the specific cases of melanomas and carcinomas. We hope
this work will provide interesting insights and enable further developments for future
research in this area.
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Appendix

7.1 Another approach to the behaviour of m
K

and
m

R

Here, we present the initial approach that we have employed to study the behaviour of
m

K
and m

R
that lead us to some unexpected conclusions. Firstly, we discuss a modelling

assumption that differs from our actual work and then show how it affects the results. The
essential difference is that now we switch from a "diffuse source" method to an approach
that gives more importance to the transport component in the equations for m

R
and m

K

Movement towards regions with higher density of cancer cells

The approach is similar to the one employed in Section 2.6.1 for the density-dependent
movement of killer cells. To include the fact that the cancer gains a certain level of
immunity when enough regulatory cells are present, we introduce the function χ

K
(m

R
k
i )

so that:
dχ

K

dm
R

< 0,

which represents the regulatory-dependent motility function of killer cells. We model χK

as a decreasing function of mR to reflect the tendency of killer cells to lose motility and
reduce their migration towards cancer when lots of regulatory cells surround it. In other
words, high m

R
implies low m

K
, which, in turn, results in an immunosuppressive action

since only a few cancer cells are eliminated.
In particular, we can take:

χ
K

(m
R
) = ψ0 − ψ1

mR

1 +mR
(2.9)

with ψ0 that is the maximum mobility of a killer cell, reached when m
R

→ 0 while ψ1
is related with the minimum velocity of migration, that is ψ0 − ψ1 > 0 when m

R
→ ∞.

Calling P k
F Li

the probability that a regulatory cell in position xi at time tk ends up in
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position xi−1 and P k
F Ri

the probability to jump in position xi+1, we have:

P k
F Li

:= σ χ
K

(m
R

k
i ) (ρk

i−1 − ρk
i )+

2ρmax
, P k

F Ri
:= σ χk(m

R

k
i ) (ρk

i+1 − ρk
i )+

2ρmax
with (·)+ = max(0, ·).

(1.26bis)
where σ > 0 is a scaling factor so that σχ

K
(m

R
k
i ) ≤ 1 and ρmax is the carrying capacity

of the tumoral cell density. Obviously, the probability of not moving is given by:

P k
F Si

= 1 − P k
F Li

− P k
F Ri

(1.27bis)

Using these newly defined probabilities, we derive the continuum model and switch to
the travelling-wave framework. For the sake of simplicity, we neglect growth terms in the
equations for mK and mR:

Γ
R
(m

R
, S) = 0, Γ

K
(m

R
, m

K
) = 0. (3.2bis)

This is the case in which an initial concentration of regulatory and killer cells, located in
a certain region, remains constant in number but can change its spatial distribution by
moving towards cancer.Recalling the equations for m

K
and m

R
in (3.3) , properly rescaled

with ε and assuming null growth (c.f. (3.2bis) ):

∂tmR,ε
(x, t) + ∂x( m

R,ε
(x, t) χ

R
∂xSε(x, t) ) = ε ∂2

xxmR,ε
(x, t)

∂tmK,ε
(x, t) + ∂x( m

K,ε
(x, t) χ

K
(m

R,ε
) ∂xρε(x, t) ) = ε ∂2

xxmK,ε
(x, t)

(3.38bis)

Introducing expansions (3.7), (3.14), (3.17) into (3.38bis) and taking the limit for ε → 0,
we obtain equations for the leading-order term m

R
and m

K
:

∂tmR
(x, t) + ∂x( m

R
(x, t) χ

R
∂xS(x, t) ) = 0

and
∂tmK

(x, t) + ∂x( m
K

(x, t) χ
K

(m
K

) ∂xρ(x, t) ) = 0

whose the travelling wave formulation is:

−c m′
R
(z) + (m

R
(z) χ

R
S′(z)) ′ = 0 (3.40bis)

and
−c m′

K
(z) + (m

K
(z) χ

K
(m

R
) ρ′(z)) ′ = 0 (3.41bis)

We are searching for travelling waves m
K

(z) and m
R
(z) satisfying the asymptotic condi-

tions :
lim

z→+∞
m

R
(z) = m0

R
, lim

z→+∞
m

K
(z) = m0

K
, (3.42bis)

that is like assuming a source of regulatory and killer cells for z → +∞ Therefore, by
definition a travelling wave links two equilibriuum solution so

lim
z→+∞

S′(z) = 0, lim
z→+∞

ρ′(z) = 0 (3.43bis)
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Integrating then (3.40bis) and (3.41bis) between z and +∞, using (3.42bis) e (3.43bis),
it results:Ú +∞

z

!
−c m′

R
(z) + (m

R
(z) χ

R
S′(z)) ′" dz = 0 ⇒ −c m0

R
+ c m

R
(z) −m

R
(z)χ

R
S′(z) = 0 ,Ú +∞

z

!
−c m′

K
(z) + (m

K
(z) χ

K
(m

R
) ρ′(z))′ " dz = 0 ⇒

−c m0
K

+ c m
K

(z) −m
K

(z)χ
K

(m
R
(z)) ρ′(z) = 0 .

From which we obtain an explicit form for m
R
(z):

m
R

=
m0

R

1 − χR

c S
′(z) (3.44bis)

and for m
K

(z):

m
K

=
m0

K

1 − χ
K

( m
R

(z))
c ρ′(z)

(3.45bis)

These quantities are linked with S and ρ, whose behaviour is known from the asymptotic
analysis previously executed. Expressions (3.44bis) and (3.45bis) lead us to unexpected
conclusions. Firstly, to study the behaviour of m

R
(z), we have to investigate how S′(z)

is. For some suitable choices of parameters and functions in (3.25), the shape of the wave
representing the chemical factor S(z) is a function reaching its maximum roughly at the
front z = l. In light of these considerations, we expect m

R
(z) to have a similar asymptotic

behaviour as S(z) since the only mechanism acting is the chemotactic movement that
causes the regulatory cells to concentrate where S(z) is greater.
Since P (0) > 0 (see (1.16)), we have

lim
z→−∞

S(z) = S0 > lim
z→+∞

S(z) = 0.

Furthermore, it holds

lim
z→±∞

S′(z) = 0 ⇒ lim
z→±∞

m
R
(z) = m0

R

This is the first surprising fact: we expect to have a larger accumulation of regulatory
cells at z → −∞ rather than the source value m0

R
given at +∞. Then, looking at the

monotonicity of S, we can observe that the peak located in z = l is preceded by a region in
which S is increasing (S′(z) > 0) and followed by a region in which S is null since we are
out of supp(ρ). According to the formula (3.44bis), this means that mR(z) is discontinuous
at the front z = l, jumping from mB

R
> m0

R
before the front to mA

R
= m0

R
after. Similar

considerations can be made looking at the formula (3.45bis). In this case, we physically
expect to have a very low density in the bulk for z → −∞ because killer cells don’t have
any reason to penetrate due to the shielding effect of the barrier of regulatory cells at the
front z = l. For z → +∞, we expect m

K
to reach the maximum value since the regulatory

density is low there (this coincides with the source m0
K

assumed at z → +∞ ). Clearly
this is not happening in (3.45bis), because ρ′(z) → 0 for z → −∞ implies m′

K
(z) → 0 for
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z → −∞. Therefore, from (3.32) we can conclude that m
K
< m0

K
for z ∈ supp(ρ), while

m
K

= m0
K

otherwise . So the profile of m
K

starts from the value m0
K

for z → ∞, then
decreases for z ∈ supp(ρ) until z = l where it jumps to the constant value m

K
= m0

K
for

z ∈ (l,+∞). By the way this behaviour is not totally wrong; the only strange fact is that
the maximum value m0

K
is also attained at the bulk (z → −∞). Biologically speaking,

this makes no sense: killer cells have no reason to be found deeply into the bulk, since their
migration will be previously inhibited and blocked by the barrier made of regulatory cells
at the front z = l. These results are consequences of the modelling choice of not including
source terms in the evolutionary equations (3.38bis). This implies that the dynamics of
m

R
and m

K
are dictated only by the transport terms and, as a consequence, are too

strongly influenced by the initial condition given for z → +∞. This results in giving us
outcomes that do not match biological expectations. For these reasons, in our work, we
set aside this approach, including source terms into (3.38bis).
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