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Summary

This thesis deals with the study of nonequilibrium, one-dimensional traffic phe-
nomena which are modelled as lattices gasses, i.e. systems of particles that inhabit
a discrete, one-dimensional lattice and evolve by choosing an action out of a finite
set of possible ones, according to a continuous time Poisson process. In particular
we study the well-known Totally Asymmetric Simple Exclusion Process (TASEP),
in which particles hop from site to site in one direction only (totally asymmetric)
on the condition that the landing site is empty (simple exclusion), and a TASEP-
derived model called pausing TASEP (pTASEP) in which, on top of the previous
dynamics, particles can randomly enter and exit a paused state during which they
are unable to advance.

The first aim of this work is to explore the feasibility of using the pTASEP as a
mean to model the phenomenon of antibiotics inhibited protein translation, that is
the process in which mRNA templates (the lattice) are read site by site by protein-
synthetizing ribosomes (the particles), while subject to stochastic pauses due to
antibiotics. Unlike for the standard TASEP, for the pTASEP there are no known
exact, closed-form expressions for the physical observables of interest. Preexisting
literature contains only mean field theories in very restrictive geometries, such
as the closed ring (periodic boundary conditions) rather than the more useful
open segment (open boundaries conditions), and no inquiry into the phenomena
taking place in the biologically relevant parameter space. In this work we provide
a numerical analysis, through simulations based on Gillespie’s algorithm, of said
region of the parameter space, proving that finite size effects are predominant in
a non-negligible portion.
We extended the previous mean field theories to the open boundaries case, showing
a similar accuracy compared to the periodic case in the absence of finite size effects.

Finally, we provide minimal, approximate models to predict such finite size phe-
nomena in both the periodic and open boundaries cases, finding good agreement
with numerical results and thus providing greater insight into the effects that the
system size has on the emitted particle current. Both approximate models were
obtained by considering the clear time scale separation between the ribosome dy-
namics and the antibiotics dynamics, as the latter are several orders of magnitude
slower than the former. In the open case this implies that, for biologically relevant
lattice sizes and system parameters, pauses are rare, in the sense that the average
time spent on the lattice is much smaller than the antibiotics kinetics timescales.
These considerations suggest seeing the system as an intermittent one, oscillating
between a behaviour described by the standard TASEP and one dominated by the
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antibiotics-induced pauses. These simplifications allowed to obtain a simple rela-
tion between the particle current emitted by the lattice and the antibiotics binding
rate, which is the parameter of greatest interest as it is directly linked with antibi-
otics concentration. The results show a qualitative agreement across several orders
of magnitude of variations of the binding parameters, which could not be obtained
by the usual mean field theory. The same considerations were used for the model
equipped with periodic boundary conditionss, with the difference that we had to
describe the transient between the two behaviours explicitly to obtain agreements
with the simulations. To do so I made use of a continuum limit approximation,
in which the system is described by a quasi-linear, Burgers-like partial differential
equation. The resulting model provides better agreement with numerical results
than the simple mean field model, with the difference becoming more dramatic
as the antibiotics dynamics become slower and slower, compared to the ribosome
dynamics.

The second part of the present work presents a novel link between the algebraic
properties of the matrix appearing in the master equation governing the evolu-
tion of the system (the transition rate matrix) and the closed form expressions
of physical observables in the standard TASEP. We first showed how all physical
observables of the system can be written as functions of the trace of powers of the
transition rate matrix, making use of the Faddeev-Leverrier algorithm. We then
decomposed the transition rate matrix as a sum of terms, in what is known as the
quantum Hamiltonian formalism, to show that the values of said traces depend on
how the terms of the quantum Hamiltonian commute with each other. This part
of the work constitutes a step in the attempt to recover already known analytical
results for the standard TASEP, but without making use of the ad hoc Ansatz
currently needed to obtain them. The appeal of this line of research is to develop
a more general solution method that could be applied to models for which the
Ansatz used for the standard TASEP is not useful (such as the aforementioned
pTASEP), which to this day still lack an exact treatment.
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Chapter 1

Nonequilibrium lattice
models

In this chapter we will introduce the field of lattice based non-equilibrium models
and showcase their usefulness both in providing predictions for physical phenomena
and in being a paradigmatic example for non-equilibrium physics as whole. In the
second section we will introduce the totally asymmetric simple exclusion process
(i.e. the TASEP) and discuss its main features.

1.1 Background and motivation
Throughout this work we will discuss models describing out of equilibrium systems,
that are systems exhibiting an irreversible exchange of some physical quantities,
such as mass or heat. These systems, despite said net exchange, can still reach
states in which all physical observables become time invariant. Such states are
referred to as nonequilibrium steady-states and they represent the main object of
inquiry of this thesis. When a system is in equilibrium with its environment and
reaches a steady state it is well known that its micro-states follow a Boltzmann dis-
tribution, but there is no such equivalent in nonequilibrium physics and, as such,
each model has to be treated individually. Compared to more complete physical
theories, the field of nonequilibrium statistical physics appears as a collection of
results and techniques lacking a unifying theory [18].
We will focus on a subclass of models that could be categorized as driven, one
dimensional, lattice gases. These systems are essentially stochastic processes tak-
ing place in continuous time and on a discrete lattice composed of a finite number
L of sites. Each site can exist in a finite number m of states and interact with
other sites of the lattice, generally its nearest neighbors. As a consequence the
configuration space χ will be finite ( |χ| = n = Lm) and full knowledge of the
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Nonequilibrium lattice models

system at a certain time t can be encoded in a vector x(t) ∈ {1, ..., m}L called the
configuration vector, where numbers 1, .., m identify the state of a given site. A
transition between two configurations, say i and j, is a Poisson process governed
by a transition rate λij, meaning that after an infinitesimal time period dt the
system will have transitioned from j to i with probability λijdt. If we define as
Pj(t) the probability of being in configuration j at time t, the above behaviour can
be properly described by a master equation [21]:

d

dt
Pj(t) =

Ø
i∈χ
i /=j

[λijPi(t) − λjiPj(t)] . (1.1)

It is convenient to define a probability vector, assigning to each configuration its
probability at a given time, whose entries obey Eq.(1.1). We obtain

d

dt
P (t) = −HP (t), (1.2)

where H ∈ Rn,n is the matrix defined as Hi,j = −λji if i /= j, while the diagonal
elements are chosen so that all columns sum up to zero. We will refer to the
solution of the linear problem formed by Eq.(1.2) together with an initial condition
P0 = P (0) as P (t|P0). We will say that the stochastic system is ergodic [2] if

lim
t→+∞

P (t|P0) = P ∀P0 ∈ [0,1]n

that is if there exists a unique steady-state probability distribution and if said
distribution can be reached by all possible initial conditions. All systems in the
following work will be ergodic, so the question of finding the unique steady-state
probability distribution is well posed. We say that a given system has been solved
exactly when there are known, closed-form relationships for the physical observ-
ables of interest that depend explicitly on the system size L and the transition
rates of the system and, as a consequence, it is possible to compute their infinite
size limits. The existence of said limits means that, while for small sizes a system
can experience finite size effects, there exists a size after which the dynamics can
be considered size independent. This asymptotic study is of great interest both
applicative, because often real life phenomena happen on lattices that are well
beyond the scale of size-dependency, and theoretical, for the insurgence of limit
phenomena such as phase transitions.

1.2 The Totally Asymmetric Exclusion Process
(TASEP)

The Totally Asymmetric Simple Exclusion Process (TASEP) was proposed for the
first time by MacDonald et al. [15] to describe the kinetics of bio-polymerization on
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1.2 – The Totally Asymmetric Exclusion Process (TASEP)

nucleic acid templates, i.e. protein synthesis. It remains the most paradigmatic
model in nonequilibrium statistical physics as it is simple enough to be exactly
solvable while still exhibiting non trivial phenomena exclusive of non equilibrium
physics, such as boundary driven phase transitions. For this reasons the TASEP
holds the same role that the Ising model has for equilibrium physics [18]. The
model consists of a finite dimensional lattice of size L, where every site i (1 ≤ i ≤ L)
can either be occupied (τi = 1) or empty (τi = 0). After each infinitesimal time
step dt all particles can perform a hop to the right with probability γdt, where γ is
known as the hopping rate. Thus, if at time t the system exists in the configuration
x(t) = (τ1, ..., τn) we will have:

τi(t + dt) =
1 with probability pi = τi + γ[τi−1(1 − τi) − τi(1 − τi+1)]dt

0 with probability 1 − pi

(1.3)

for i = 1, ..., L − 1.
To complete the model we have to add to (1.3) other rules concerning the bound-
aries to describe how particles enter site i = 1 and exist i = L, known as boundary
conditions. There exists two options of interest: open and periodic. The periodic
system is essentially a ring and, even tough it is not a realistic model of biosyn-
thesis, it is of theoretical interest as it is more easily treated than the open one.
For the periodic boundaries we have:

τ1(t + dt) =
1 with probability p1 = τ1 + γ[τL(1 − τ1) − τ1(1 − τ2)]dt

0 with probability 1 − p1
;

τL(t + dt) =
1 with probability pL = τL + γ[τL−1(1 − τL) − τL(1 − τ1)]dt

0 with probability 1 − pL

.

(1.4)

In the open system, instead, the lattice is a segment onto which particles are
injected at site i = 1 to then be ejected at site i = L. Both injection and ejection
are Poisson processes, with rates α and β respectively. Thus we have the following
update rules:

τ1(t + dt) =
1 with probability p1 = [α(1 − τ1) − γτ1(1 − τ2)]dt

0 with probability 1 − p1
;

τL(t + dt) =
1 with probability pL = [γτL−1(1 − τL) − βτL]dt

0 with probability 1 − pL

.

(1.5)

It is worth noting that in both cases there exists a complete symmetry between
particles and holes. If we inverted the labels between particles and holes we would
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Nonequilibrium lattice models

end up again with a TASEP but with opposite hopping direction with respect to
the original. Throughout this work our main observable of interest will be the
steady state particle current J , that is the mean number of particles moving per
time unit out of a site. In particular in the case a of periodic boundaries we are
interested in current between any two sites i and i + 1, while in the open system
we are interested in the exit current at site L.

Figure 1.1: Panel (a) shows the TASEP with periodic boundary conditions, while
panel (b) with open boundary conditions.

1.2.1 Periodic boundary conditions
The periodic system represents the simpler scenario as the number of particles N
on the lattice remains constant and is a fixed parameter. Being that the system
exhibits no bias towards any particular site, all possible lattice configurations are
equally likely. This in turn allows us to compute the aforementioned particle
current. The particle current between two consecutive sites, say i and i + 1, can
be seen as an effective hopping rate describing the number of successful hopping
events between two sites. The steady state current J is identical for every site
as a consequence of all configurations being equally likely and it will be given by
the hopping rate times the probability that the event is allowed. Knowing that in
total there are

1
L
N

2
possible configurations we can write:

J = γ

1
L−2
N−1

2
1

L
N

2 = γ
N

L

L − N

L − 1

if we now take the limit for N, L −→ ∞, ρ = N
L

= constant, which we will refer
to as the thermodynamic limit, we get

J = γρ(1 − ρ), (1.6)

which is the celebrated current-density relation, see Fig.(1.2). TASEP-like systems
can indeed exhibit size dependent behaviour, and such finite size effects will be
the key focus of the coming chapters. For the standard TASEP here described
they become negligible already for moderate system sizes, making the study of
thermodynamic limits very appealing.
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1.2 – The Totally Asymmetric Exclusion Process (TASEP)

Figure 1.2: Current density relation for the periodic TASEP where γ = 1.

1.2.2 Open boundary conditions

The open system is of greater applicative interest as it describes a transport process
between two reservoirs maintained at fixed densities. Said density reservoirs can
be imagined as two virtual sites labelled as i = 0 and i = L + 1, where a site
density has to be interpreted as the mean site occupation . From now onward
when speaking of the standard open TASEP we will consider all rates to have
been renomarlized over γ, so that, without loss of generality, we can write γ = 1.
In this context the virtual site i = 0 will have fixed density ρ0 = min(α,1), while
virtual site i = L + 1 will be associated with a density ρL+1 = max(1 − β,0). It
can be observed that during the system steady state there exist a portion of the
lattice where the particle density is roughly constant and its determined by the
choice of the ejection and injection rates. We will refer to this region as the bulk
of the system and to the bulk density as ρbulk. The fact that the boundaries of the
system determine the behaviour of its bulk is a unique feature of nonequilibrium
systems as, unlike in their equilibrium counter parts, the boundaries effects are
transported deep within the lattice, rather then vanishing as the system is probed
deeper and deeper within the bulk. Interestingly, the bulk density experiences a
first order phase transition as the parameters are varied, leading to the following
phase plane:

ρbulk =


α if α < 1

2 , β > α

β if β < 1
2 , α > β

1
2 if α, β > 1

2

.

This behaviour can be rationalized trough the use of a mean field approach, where
one ignores site correlations and considers Eq.(1.6) as always locally valid. Inter-
estingly this simplified approach correctly predicts the real current behaviour, as
the the bulk density determines the overall current and the current density relation

13



Nonequilibrium lattice models

still holds:

J =


α(1 − α) if α < 1

2 , β > α

β(1 − β) if β < 1
2 , α > β

1
4 if α, β > 1

2

.

We will refer to the region where J = 1
4 as the maximal current phase, to the

region where the current is constrained by the injection rate as the low density
phase and to the region where the ejection rate is limiting as the high density
phase. The complete phase diagram can be seen in Fig.(1.3). We will not provide

Figure 1.3: Boundaries driven phase transitions in the TASEP

the details of the mean-field theory of the TASEP, which can be found, for example,
in [18]. Although it succeeds in predicting the current phase plane, we will move
directly to the exact theory developed by Derrida et al. [5]. This theory not only
offers a mathematically rigorous explanation for the phase diagram but is also
able to deliver results beyond the reach of mean-field theories, such as exact, size-
dependent expressions for the physical observables of interest, i.e. particle current
and density.
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Chapter 2

Mathematical context and
exact results

In the first two sections of this chapter we will present the solution method known
as the matrix factorization method, first utilized by Derrida et al. in 1992 [5] for
solving the open TASEP. We will then review their derivation of the main features
of the open TASEP, with a special focus on phase transitions. In the last section
we will instead present a result, due to Krebs et al. [13], providing a greater
understanding of the applicability and limits of the matrix factorization method.
The main takeaway of this part is that, even when the method is applicable, it has
no guarantee of leading to closed form expressions for the physical observables of
the system, thus leaving mean field and approximate theories as the only tools for
more general models.

2.1 Mathematical formalization of the TASEP

Throughout the coming two sections we will assign to each site of the system a
boolean variable τi, 1 ≤ i ≤ L, where τi = 0 will mean that site i is empty
and vice versa. We will refer to the probability of finding a system of size L in
configuration τ1, ..., τL at time t as PL(τ1, ...τL; t), while the absence of the variable
t will mean that we are referring to the unique steady state probability of the
configuration. Our goal is to write Eq.(1.1) explicitly for the open TASEP update
rules (1.3),(1.5). To do so we will introduce matrices representing transition out
of (diagonal elements) and into (off diagonal elements) a given configuration. We
will call hl and hr the matrices describing, respectively, configuration changes due
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Mathematical context and exact results

to a particle entering and exiting the lattice. By choosing as base {0; 1} we have

hl =
A

−α 0
α 0

B
, hr =

A
0 −β
0 β

B
.

Transition between configurations due to a particle hopping forward require a 4 by
4 matrix, as they describe a two site interaction. In particular rules (1.5) describe
the following transition:

1 0 γ−→ 0 1,

by choosing as a base B = {(0,0); (0,1); (1,0); (1,1)} we can write:

h =


0 0 0 0
0 0 1 0
0 0 −1 0
0 0 0 0

 ,

where again we assume, without loss of generality, that the transition rates have
been normalized as to have γ = 1. We can now write Eq.(1.1) for the open TASEP:

∂

∂t
PL(τ1, ..., τL; t) =

Ø
σ1∈{0,1}

(hl)τ1,σ1PL(σ1, τ2, ..., τL; t)+

+
L−1Ø
i=1

Ø
(σi,σi+1)∈B

(h)(τi,τi+1)),(σi,σi+1)PL(τ1, ..., σi, σi+1, ..., τL; t)+

+
Ø

σL∈{0,1}
(hr)τL,σL

PL(τ1, τ2, ..., σL; t) .

(2.1)

Let i ∈ I be an indexing of the set of all possible configurations, so that ∀(τ1, ..., τL)
it’s possible to univocally write PL(τ1, ..., τL; t) = (PL(t))i, where PL(t) ∈ [0,1]L
is the vector having for the i-th entry the probability of finding the system at
time t in the configuration indexed by i ∈ I. We are interested in computing the
steady state probability vector PL, but it will be more convenient to first compute
a vector parallel to it whose entries do not in general sum up to one. We will refer
to said vectors fL ∈ RL for which ∃k ∈ R s.t. fL = kPL as vectors of statistical
weights.

2.2 Exact results for the TASEP
2.2.1 The matrix factorization method
Our goal is to find the probability vector P L, or a statistical weights vector fL, for
which Eq.(2.1) is equal to 0. Let us assume that there exists two scalar quantities
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x0, x1 ∈ R such that the following expressions are true:Ø
σ1∈{0,1}

(hl)τ1,σ1PL(σ1, τ2, ..., τL; t) = xτ1PL−1(τ2, ..., τL; t) (2.2)

L−1Ø
i=1

Ø
(σi,σi+1)∈B

(h)(τi,τi+1)),(σi,σi+1)PL(τ1, ..., σi, σi+1, ..., τL; t) = (2.3)

= −xτi
PL−1(τ1, ..., τi−1, τi+1, ..., τL; t) + xτi+1PL−1(τ1, ..., τi, τ i + 2, ..., τL; t)

Ø
σL∈{0,1}

(hr)τL,σL
PL(τ1, τ2, ..., σL; t) = −xτL

PL−1(τ1, τ2, ..., τL−1; t). (2.4)

If conditions (2.2) to (2.4) are verified it follows immediately that the master
equation Eq.(2.1) is identically zero. If we now find an expression for the steady
state probability of a given configuration satisfying the aforementioned conditions
then the problem is solved. To achieve this we introduce the matrix product Ansatz,
which states that for every configuration τ1, ..., τL one can have a statistical weight
of the form:

fL(τ1, ..., τL) = w⊺

C
LÙ

i=1
(τiD + (1 − τi)E)

D
v (2.5)

where D, E are matrices associated respectively with occupied and empty sites,
while w, v are appropriately sized vectors so that the product gives a scalar. If we
now substitute Eq.(2.5) into conditions (2.2)-(2.4) we get:

αw⊺E = x1w
⊺ = −x0w

⊺,

DE = −x0D + x1E, (2.6)
βDv = x1v = −x0v.

Finally, choosing x0 = −x1 = 1 and substituting in conditions (2.6) we obtain

w⊺E = 1
α

w⊺,

DE = D + E, (2.7)

Dv = 1
β

v.

It is possible to explicitly write a choice of v, w, E, D fulfilling the conditions (2.7)
and actually there are infinite many of them, but it will be shown in the following
that the algebraic conditions themselves are sufficient to compute all observables
of interest. As such we will not provide examples, but some can be found in the
original work by Derrida et al. [5].
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2.2.2 Physical observables as a function of the factorization
matrices

To compute any physical observable we first need to calculate the normalization
function ZL, that is the sum of all statistical weights:

ZL =
Ø

(τ1,...,τL)
fL(τ1, ..., τL),

where the sum has to be interpreted as over all possible configurations. Substitut-
ing Eq.(2.5) and using conditions (2.7) we get

ZL = w⊺(D + E)Lv := w⊺CLv, (2.8)

where we have defined the matrix C = D + E. Let ρi,L be the average occupation
of a site i, which can be seen as a particle density. We have:

ρi,L =
q

(τ1,....,τL) τifL(τ1, ...., τL)
ZL

= w⊺Ci−1DCL−iv

w⊺CLv
, (2.9)

where one can compute the second equality by using the matrix product form of
fL and the algebraic rules just as before. The current emitted by the system is
given by:

JL = βρL,L,

and by using Eq.(2.9) one obtains:

JL = β
w⊺CL−1Dv

ZL

= β
1
β

ZL−1

ZL

= ZL−1

ZL

. (2.10)

Thus, we only need to find an explicit expression for ZL to compute the particle
current.

2.2.3 Normalization generating function
There are several ways to obtain exact combinatorial expressions for the normal-
ization function ZL and the particle current JL from the above relations. Here we
will present a generating function approach as it is very elegant and arguably the
fastest. The derivation presented from now onwards is found in [18]. By definition
the generating function of the quantity ZL is

Z(z) =
+∞Ø
L=0

zLZL, (2.11)
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so that ∀L > 0 we have:

ZL = 1
L!

A
dL

dzL
Z(z)

B-----
z=0

.

Consider the formal matrix series:
1

1 − zC
=

∞Ø
i=0

ziCi,

so that Eq.(2.11) can be written as:

Z(z) = w⊺ 1
1 − zC

v. (2.12)

By introducing the auxiliary variable η(z) defined as z = η(1 − η) and using the
identities (2.7) is possible to prove that:

1
1 − zC

= 1
1 − ηE

1
1 − ηD

,

which substituted in Eq.(2.12) along with conditions (2.7) gives us:

Z(z) =
A

1 − η(z)
α

B−1 A
1 − η(z)

β

B−1

. (2.13)

The conventional condition Z(0) = 1 implies that we have to choose the root
η(z) = 1

2(1 −
√

1 − 4z), completing Eq.(2.13). We are interested now in providing
an explicit expression for the quantities ZL, which are the coefficients of the terms
in the power series expansion of the generating function. Given a formal series
G(x) we will refer to the coefficient of xn as {xn}G(x). It’s possible to recover the
aforementioned coefficient trough an application of the Lagrange inversion formula
for generating functions ([18], [27]), obtaining:

ZL = {zL}Z(z) =
LØ

p=0

p(2L − p − 1)!
L!(L − p)!

pØ
q=0

3 1
α

4p 3 1
α

4p−q

. (2.14)

Eq.(2.14) is already sufficient to derive a phase diagram by studying its asymptotic
form, but we will first focus on obtaining similar exact combinatorial identities for
the particle densities ρi,L at a given site site i.

2.2.4 Exact density profiles
Lets recall Eq.(2.9):

ρi,L = w⊺Ci−1DCL−iv

ZL

,

19



Mathematical context and exact results

which we can rewrite by investigating the matrix product DCj, for a generic j.
By computing manually the products for a few manageable values of j one can
deduce (and subsequently prove by induction) the following relation:

DCj =
j−1Ø
k=0

Bk+1,1C
j−k +

j−1Ø
k=2

Bj,k−1D
k, (2.15)

where we have introduced the combinatorial quantity BN,p, defined as:

BN,p =


p(2N−p−1)!
N !(N−p)! for 0 < p ≤ N

0 otherwise
.

By substituting Eq.(2.15) into Eq.(2.9) one gets:

ρi,L =

qL−i

n=1 Bn,i
ZL−n

ZL
+ Zi−1

ZL

qL−i
p=1 BL−i,p

1
βp+1 for 0 < i < L

ZL−1
βZL

for i = L
. (2.16)

Now we can write both the particle current and the density profile for finite sizes
as functions of the normalization, which is itself known for all systems sizes L.
Our next goal is to describe phase transitions by looking of the asymptotics of
the system, which we can do reasonably fast thanks to knowing the generating
function of the sequence of normalization constants {ZL}∞

L=1, given by Eq.(2.13).

2.2.5 Asymptotics and the exact phase plane
The asymptotic behaviour of an infinite sequence, such as {ZL}∞

L=1, is determined
by the singularity of least module of the sequence’s generating function [27]. The
generating function Eq.(2.13) always exhibits, no matter the values of of α and β, a
square root singularity in z = 1

4 . Function Z(z) can also exhibit poles depending on
the values of the parameters α and β: the first factor contributes a pole whenever
a = η(z), which is possible only for α < 1

2 , same goes for the second factor and
β. The two nodes, when they exist, have always smaller module then the square
root singularity, while the singularity of least module between the two nodes is
determined by which parameter is smaller. Regions of the parameter space in
which different singularities dominate correspond to regions in which the sequence
{ZL}∞

L=1 has different asymptotic behaviour, thus providing the phase plane. From
the analysis above follows that there exist three such regions:

• region {α, β ∈ R+| α, β > 1
2}, where the square root singularity dominates;

• region {α, β ∈ R+| α < 1
2 , β > α}, where the pole due to the first factor of

Eq.(2.13) dominates;
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• region {α, β ∈ R+| β < 1
2 , α > β}, where the pole due to the second factor

of Eq.(2.13) dominates.

The above phase diagram corresponds exactly to the well known one shown in
Fig.(1.3). To compute the infinite size limit of the current we first need to remind
some properties of generating functions [27]. Consider a generating function f(x)
and its associated series [xn]f(x). Let x0 be the singularity of least module of f(x)
so that one can write:

f(x) = fr(x)
3

1 − x

x0

4−η

.

Then, for integer η one has:

[xn]f(x) ∼
A

η + n − 1
n

B
fr(x0)x−n

0 , (2.17)

while for non-integer η:

[xn]f(x) ∼ fr(x0)
Γ(η)nη−1 fr(x0)x−n

0 , (2.18)

where the factor fr is given by:

fr(x0) = lim
x→0

3
1 − x

x0

4η

f(x). (2.19)

Equations (2.17),(2.18) and (2.19) allow to compute the asymptotic form of {ZL}∞
L=1,

which in turn, together with the current equation (2.10), allows to compute the
infinite size limit of the particle current J(α, β) , trough straightforward, albeit
lengthy, computations. One eventually obtains:

ZL ∼


αβ(1−2α)

(β−α) [α(1 − α)]−L−1 if α < 1
2 , β > α

αβ(1−2β)
(α−β) [β(1 − β)]−L−1 if β < 1

2 , α > β
4αβ(α+β−1)√

π(2α−1)2(2β−1)2
4L

L3/2 if α, β > 1
2

,

to then obtain trough Eq.(2.10):

J =


α(1 − α) if α < 1

2 , β > α

β(1 − β) if β < 1
2 α > β

1
4 if α, β > 1

2

,

which corresponds exactly to the mean field prediction.
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2.3 Closing remarks on the matrix fact factor-
ization method

Krebs et al. demonstrated [13] that the unique stationary solution P of any mas-
ter equation of the form (1.2) describing a one-dimensional system with nearest-
neighbor interactions in the bulk and one-site interactions at the boundaries can
be expressed as a matrix product. That means that it is always possible to
choose an auxiliary vectors space V , two vectors v, w ∈ V and 2m operators
A1, . . . , Am, B1, . . . , Bm such that:

h




A1
A2
·
·

Am

⊗


A1
A2
·
·

Am



 =


B1
B2
·
·

Bm

⊗


A1
A2
·
·

Am

−


A1
A2
·
·

Am

⊗


B1
B2
·
·

Bm

 ,

w⊺h(l)


A1
A2
·
·

Am

 = −w⊺


B1
B2
·
·

Bm

 and h(r)


A1
A2
·
·

Am

 v =


B1
B2
·

Ḃm

 v,

and
P (τ1, . . . , τn) = w⊺Aτ1Aτ2 . . . Aτnv,

where m is the number of sates a single site can be in, n is the numbers of config-
urations of the whole lattice, h, h(r), h(l) are respectively the matrices describing
the bulk and boundaries interactions and τi ∈ {1, . . . , m} is the state of site i. In
the case discussed earlier the standard TASEP one has m = 2, (A1, A2) = (E, D),
B1 = −B2 = 1 and the matrices h, h(r), h(l) are defined at the beginning of
Section 2.1. The reason closed-form relations like Eq.(2.8) are possible in the
standard TASEP is that the operators Bi happen to actually be numbers, which is
not generally the case. The matrix factorization method is a reformulation of the
standard eigenvector problem associated with the transition rate matrix H and
does not provide additional insight beyond that. Therefore, it is not strictly an
Ansatz, although it is often referred to as such, but rather a resolution method
that may or may not simplify the original eigenvalue problem.
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Chapter 3

Biopolymerization processes
as lattice gases

Protein synthesis is a fundamental biological process involving two distinct biopoly-
merization events: transcription and translation. During transcription, DNA
is transcribed into messenger RNA (mRNA) by the enzyme RNA polymerase
(RNAP). This mRNA then serves as a template for translation, during which ribo-
somes assemble proteins based on the mRNA sequence. In both stages, molecular
machines—RNAP in transcription and ribosomes in translation—move unidirec-
tionally along their respective templates, which are linear sequences of nucleotides
(DNA or RNA).

The transcription process begins when RNAP binds to a specific region of the
DNA, initiating the production of an mRNA strand complementary to the DNA
template. This mRNA carries the genetic information from the nucleus to the
cytoplasm, where translation occurs. During translation, ribosomes decode the
mRNA sequence into a chain of amino acids, producing functional proteins. The
information encoded in these templates is represented by a finite sequence of nu-
cleotides—four bases (A, U, G, C) in the case of mRNA—organized in codons,
each specifying a particular amino acid. This finite sequence behaves like a dis-
crete, one-dimensional lattice along which the molecular machinery moves step by
step, synthesizing proteins according to the encoded instructions.

A key feature of this process, confirmed by experimental evidence [16], is that
multiple instances of a given protein can be synthesized simultaneously on the same
mRNA template. This results in the formation of polyribosomes, or polysomes,
where several ribosomes are translating a single mRNA at once. Similarly, in tran-
scription, multiple RNA polymerases can transcribe the same gene simultaneously.
However, due to the linear nature of the template and the need to preserve its in-
tegrity, meaning no section of the template can be skipped, there is only one active
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Figure 3.1: Schematic representation of the processes of transcription and trans-
lation.

site at each point along the sequence, and molecular machines cannot overtake one
another. This restriction leads to traffic-like behavior, where queuing phenomena
naturally arise.

These observations suggest that queuing effects must be accounted for when
modeling the dynamics of transcription and translation. Recognizing this, Mac-
Donald et al. introduced the TASEP in 1968 [15] as a mathematical model to
describe such traffic behavior. While the standard TASEP simplifies some aspects
of polymerization dynamics, such as neglecting the fact that particles (like ribo-
somes or RNAPs) occupy multiple sites on the template due to their physical size,
it remains the only exactly solvable model of driven lattice gases. As such, TASEP
provides an invaluable tool for quantitatively understanding the effects of traffic
during transcription and translation.

Even though more complex models do not have an exact analytical solution,
they can still be effectively simulated using methods such as Gillespie’s algorithm.
Numerical analysis can provide biologically relevant insights. In the following, we
will introduce one of the many possible extensions of the TASEP: a model where
particles can stochastically enter, and subsequently exit, a paused state, known as
the pTASEP.

This pause mechanism was originally introduced in [12] to model the stalling
of RNAPs during transcription, however it will be shown to have much broader
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applicability in various polymerization phenomena.

3.1 The pausing TASEP (pTASEP)
The pTASEP introduces a new state configuration, which is the paused state. In
the same vein as Section 2, one can equip every site i of a lattice of length L with a
function τi(t), which takes values in {0,1,2} depending on whether site i is empty,
hosts a "free" particle or a paused one, respectively.

This allows us to write the update rules for the bulk of the system (1 < i < L):

τi(t + dt) =



1 with probability p1 = δτi,1 + γ
1
δτi−1,1δτi,0 − δτi+1,0δτi,1

2
dt+

+ (k−δτi,2 − k+δτi,1) dt

2 with probability p2 = (k+δτi,1 − k−δτi,2) dt

0 with probability 1 − p1 − p2

,

while the boundaries update rules, either periodic or open, can be written
analogously to Eq.(1.4).

As stated earlier, the subsequent expansions discussed in this thesis are moti-
vated by the existence of a class of antibiotics that disrupts protein synthesis by
binding temporarily to ribosomes, blocking them for a stochastically determined
period of time [23, 28, 20]. The TASEP with dynamical defects (ddTASEP) rep-
resents another, seemingly distinct, extension of the TASEP, originally introduced
in [24] for a single defect and later extended in [19, 25]. In the ddTASEP, defects
can bind and unbind to empty sites, obstructing particle movement. These de-
fects can, for example, model the effects of regulatory proteins in transcription, or
secondary structures in translation.

Although the dynamics of pTASEP and ddTASEP differ, the two models are
equivalent through a mapping between particles (occupied sites) in one model
and holes (unoccupied sites) in the other. In fact, just as the pTASEP features
advancing particles that pause/unpause, the ddTASEP can be interpreted as re-
ceding holes that become blocked/unblocked. Thus, the two models are equivalent
upon exchanging ρ with 1 − ρ ([11])1.

A mean-field theory, ignoring correlation between particles, was presented in
[26] for the pTASEP. The following subsections will present said theory and a

1Whenever the paper [11] is cited in this chapter, it refers to results obtained by PhD student
Johannes Keisers, under the supervision of Luca Ciandrini and Norbert Kern. In contrast, the
results within the same paper cited in Chapter 5 were developed by myself, with the same
supervision. The numerical data required for the figures were produced by Johannes Keisers,
while all analytical results used in the images were derived by myself.
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recent expansion to open boundary conditions [11], along with a discussion about
its performance in predicting actual numerical results.

Figure 3.2: The pTASEP with open and periodic boundary conditions

3.1.1 Mean-field treatment of the pTASEP
The pTASEP involves two interconnected dynamical processes. The first is the
standard exclusion process, discussed in the previous section, which operates far
from equilibrium. The second process, however, involves particles transitioning
between paused and unpaused states, and this occurs at equilibrium. As a result,
in the steady state, the proportion of time a particle remains in either the paused
or unpaused state is determined directly by equilibrium conditions:

fp = k+

k+ + k−
, fa = k−

k+ + k−
.

Thus, fp denotes the fraction of paused particles (i.e. paricles that cannot move
due to their internal state), and fa the fraction of active (non-paused) particles,
fp + fa = 1. Wang et. al [26] developed a mean-field approximation for the
pTASEP by assuming that only particles that are both active and not blocked by a
paused particle ahead, contribute to the current J . The mean-field approximation
of the current obtained in [26] reads:

JMF = γρfJ(1 − ρ), (3.1)

where
fJ := k−

k− + k̂+
, k̂+ := k+ + γρfp .
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This reflects the fact that a particle contributing to the current will now longer do
so after becoming paused (rate k+) or after moving (rate γ) to encounter a paused
particle (probability ρfp). This should take into account both the internal pausing
dynamics and the new queuing phenomena

These considerations constitutes the mean-field theory introduced in Wang et.
al [26], resulting in Eq. (3.1).

In this context, fJ can be understood as the effective probability that a particle
contributes to the current. This is derived from the typical time a particle remains
in the paused state (1/k−) and the corresponding effective time (1/k̂+) spent in
the state where it contributes to the current.

Equation (3.1) effectively captures the general behavior observed in stochastic
simulations. However, while the analytical solution aligns with numerical results
in many cases, it becomes less precise when k− and k+ are reduced. In the next
chapter, we will analyze the accuracy of the mean-field predictions in the parameter
space of our interest.

Given that the fundamental relation J(ρ) for the pTASEP is known, as shown
in Eq. (3.1), it is possible to extend the mean-field solution to systems with open
boundary conditions, which allows us to explore how the rates α and β control the
different phases.

To achieve this, we make use of the maximum current principle, developed by
Krug [14], to describe boundary-induced phase transitions. This principle asserts
that

J = max
ρ∈[min(ρL+1,ρ0),max(ρL+1,ρ0)]

J(ρ) , (3.2)

where 0 and L + 1 refer to two fictitious reservoir sites located at the ends of the
lattice, extending the system. These reservoirs have densities selected to simulate
the desired entry and exit rates, under the assumption that the dynamics between
the reservoirs and the lattice follow the same microscopic rules as in the bulk.

The current from the reservoir with density ρ0 to the first site is given by
γ ρ0 fJ(1 − ρ1), which corresponds to the current dictated by the entry rate, α(1 −
ρ1). Therefore, we set α = γ ρ0 fJ. Similarly, the exit current is determined by the
fraction of active particles leaving the last site at rate β, i.e., βρLfa. Importantly,
all active particles on the last site contribute to the current since they cannot
be blocked by traffic or paused particles downstream. The exit current is then
replicated by the density ρL+1 in the right reservoir. Since the current in this case
is γ ρL fJ (1 − ρL+1), we require β = γ(1 − ρL+1)fJ/fa.

Thus, the reservoir densities ρ0 and ρL+1 are directly determined by the entry
and exit rates, respectively.

The phase diagram is derived from the maximum current principle, which is
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applied by setting the derivative of Eq. (3.1) to zero:

J = JLD when ρ0 < 1 − ρL+1, ρ0 < ρmax

J = JHD when ρ0 > 1 − ρL+1, ρL+1 > ρmax

J = JMC when ρ0 ≥ ρmax, ρL+1 ≤ ρmax

with
ρmax := −χ +

ñ
χ2 + χ and χ := k+ + k−

γfp

.

We are thus able to recover a phase diagram containing the same three phases
characterising the standard TASEP, even though the boundaries between them
are shifted.

3.2 Comparison with numerical results
The aim of this section is to explore the performance of the mean -field theory
presented above, comparing its predictions to numerical simulations, with a focus
in the biologically-relevant section of the parameter space.

Regarding transcription, single-molecule studies of in vitro transcription have
shown that RNA polymerases (RNAPs) transition into and out of a paused state at
rates between 0.07 - 0.15 s−1 and roughly 1 s−1, respectively [12]. The elongation
speed of RNAPs varies between 20 and 80 nucleotides per second, leading to a
timescale difference between the pausing and resuming processes of one to three
orders of magnitude. Additionally, the ddTASEP model has been employed to
describe how DNA blockages influence RNAP traffic. These blockages can be
caused by regulatory proteins that bind and unbind from the DNA template, such
as histones or methylated-DNA binding proteins. For example, the MeCP2 binding
protein has a rate of k± 0.04/s, again showing a similar time-scale separation.

In the case of antibiotics-inhibited translation, the parameters depend on the
choiche of antibiotic. For example chloramphenicol, erythromycin and tetracy-
cline all disrupt the process of elongation during translation, which is what we
are modelling. The binding and unbinding rates of these translation inhibiting
antibiotics are again several orders of magnitude lower than the elongation rate of
the ribosome [7, 4, 23, 28].

For instance, chloramphenicol has a binding rate constant of (kon = 5.6 ×
10−4µM−1s−1) and an unbinding rate of (k− = 1.23 × 10−3s−1) [8]. As typical
sublethal doses of antibiotics range from 2 µM to 12 µM [22], the timescales are
up to five orders of magnitude apart.

Typical lattice lengths ranges from the low hundreds to the few thousands of
sites, with the vast majority of known proteins being less than a thousand sites
long.
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With these number in mind we investigate pausing parameters up to six order of
magnitude smaller then the elongation parameter. In the following all parameters
will be adimensionalised taking the elongation parameter as a reference, so that
γ = 1.

3.2.1 Periodic boundary conditions
The parameter space was explored by choosing three lattice lengths (200, 500 and
750 sites) and for each constructing a current-density plot for around 50 couples of
the binding and binding parameters. To achieve a current-density plot the TASEP
dynamics was simulated for 50 different, equally spaced density values spanning
from ρ ≈ 0.01 to ρ ≈ 0.99, measuring each time the steady-state current. The
error was maesured by taking the relative error between the mean-field prediction
for the current maximum and the simulated current at the corresponding density
value. This was done as often the main objective behind traffic modelling is to
predict the optimal density choice to maximise the current. The results show a
good agreement, at least qualitatively, the closer the binding and unbinding rates
are to the elongation rate. Moreover, the deterioration of the reliability of the
prediction happens sooner the shorter the lattice length, as shown in Fig(3.3).
We conclude that a major part of the error is due to the emergence of finite size
phenomena, which will be the subject of the next chapter.

Figure 3.3: Panel (a) shows the behaviour of the mean-field theory’s error in the
parameter space for lattice size 750, while panel (b) shows the regions where the
error rises above 50% as the lattice size is varied

When the binding and unbinding parameters are close to the elongation one it
can be seen that, although the current is systematically over-estimated, the point
of maximum current is predicted with good precision, as seen in Fig(3.4).
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Figure 3.4: Current-density plot for two choices of binding and unbind rates, for
a lattices of 1000 sites.

3.2.2 Open boundary conditions
Again for moderate time scale separation there exists good agreement between the
mean-field prediction and the simulations results. In Fig(3.5) a current-density
plot is reobtained by varying the parameters α and β. The low density branch,
where the initiation rate α is the limiting factor for the current, is obtained by
varying α at a fixed β. Both current and density are measured empirically and
plotted against the respective prediction. Similarly the high density branch is
computed by varying β at a fixed α. The two branches meet at the point of
maximum current, where the limiting factor for the current is again the elongation
rate. Fig(3.5) thus shows both good agreement in the current prediction and that
the overall behaviour follows the predicted phase diagram. It’s worth noting how
this case too shows a decay in the accuracy of the prediction as the time separations
increases, leading to similar conclusions as before.

Said deterioration in the quality of the approximation can be seen in Fig(3.6),
showing the behaviour of the current as the initiation rate (panel a) and the
termination rate (panel b) are varied, all other parameters being equal. All plots
reach a plateau as when the parameter of interest is increased to the point of
not being limiting anymore, which corresponds to the value at which the system
experiences a phase transition.

The proposed phase diagram is explored in the case of k+ = k− = γ, as to
exclude the aforementioned finite size effects. Fig(3.7) shows that the mean-field
prediction is indeed descriptive of the phenomenology of the system, showing its
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Figure 3.5: Current-density relation in the open boundaries case. The lattice is
1000 sites long.

Figure 3.6: Plot of the current against (a) the initiation rate and (b) the termina-
tion rate for a lattice 1000 sites long.

usefulness in the absence of finite size effects, that is, unfortunately, in a very
limited portion of the biologically relevant portion of the parameter space.
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Figure 3.7: The entire phase diagram for k− = k+ = γ. Straight lines correspond to
the predictions of the phase transitions while the heatmap represents the outcome
of the simulated current
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Chapter 4

Modelling finite-size effects

The following chapter will be devoted to deriving minimal models describing the
finite-size effects discussed earlier. The motivation behind is twofold: firstly cor-
roborating the hypothesis that the main source of error are indeed the finite-size
effects and, secondly, to show that even in their presence it is possible to explain
the system behaviour simply, without having to rely on simulation exclusively.

The approach for both periodic and open boundary conditions will rely on
assuming the system to oscillate intermittently between periods of time where no
paused particle is present on the lattice and "paused" periods, where at least one
is present. This is intrinsically a finite-size consideration as it is clear that, as the
number of particles on the lattice grows to infinity, the chances of observing no
paused particles go to zero.

4.1 Periodic boundary conditions
When the particle movement is much faster than the pausing dynamics (i.e. in
the biologically relevant regime k−, k+ ≪ γ) it is reasonable to first assume that
all particles cluster together behind a particle in the paused state. In this state,
unpausing events of the leading particle determine an intermittent current Jc es-
tablished by the detaching fronts. When finite-size effects are relevant, there is a
non-negligible probability of dissolving the complete cluster, which effectively goes
to zero for high density. In this case, the system will relax from the ‘cluster state’
to the standard TASEP state (with no particles paused), with a particle current
J0.

We address this situation by developing a two-term equation, with one term
describing the current produced in the absence of pauses, weighted by the proba-
bility P0 of having no paused particles on the lattice, and the other describing the
current produced by the system in the complementary case, weighted by 1 − P0.
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Modelling finite-size effects

Since the particle number ρL is constant, as well as the average ratio of active
particles fa (at steady state), P0 is given by

P0 = (fa)ρL =
A

k−

k− + k+

BρL

(4.1)

and the current equation reads

J = P0J0 + (1 − P0)Jc , (4.2)

where the current is J0 when no particles are in the paused state, and Jc when
at least one particle is paused. This hypothesis, which might seem too simplistic
at first, is corroborated by numerical measurements: Fig(4.1) shows the empirical
probability of observing a certain number of clusters on a lattice, as measured at
the system’s steady state; one can observe a bimodal distribution made of a Gaus-
sian bell, typical with the standard TASEP, and a sharp peak on the one cluster
occurrence. Thus we have some evidence of the duality between a completely clus-
tered condition and one relaxing towards an homogeneous density. For this reason
we will refer this approximation as the single-cluster approximation.

Figure 4.1: Probability distribution of the number of clusters for L = 250, k− =
10−3, k+ = 10−6, ρ = 0.33.

4.1.1 Cluster and relaxation current
When the leading particle becomes unpaused, d + 1 particles detach from the
cluster, representing an effective density (d + 1)/L. Due to the aforementioned
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4.1 – Periodic boundary conditions

timescale separation between the two dynamics and the modest lattice lengths of
the systems of our interest, we make the hypothesis that these particles travel the
L(1 − ρ) empty sites without becoming paused and rejoin the cluster from the
other end. This sub-cluster detachment occurs intermittently, with a typical time
between events given by 1/k−, the inverse of the unpausing rate of the particle at
the front of the cluster. Putting all this together, in the clustered regime the mean
particle current reads

Jc = k−(1 − ρ)(d + 1) . (4.3)

The number of particles d detaching together with the leading particle can
be computed explicitly as the expected value of the number of negative results
(finding a free particle) of a Bernoulli experiment before a successful one (finding
a paused particle). If x is said random variable then we know that it is distributed
as a negative binomial distribution and its expected value is:

⟨x⟩ =
+∞Ø
i=0

(fa)i(1 − fa)i i .

However, as the cluster is finite, we constrain d + 1 ≤ N , i.e. d ≤ ρL − 1. We thus
obtain

d =
ρL−2Ø
i=0

(fa)i(1 − fa)i +
+∞Ø

i=ρL−1
(fa)i(1 − fa)(ρL − 1) ,

where the last sum bounds x with (ρL − 1) in the Bernoulli experiment. After
using the geometric series (and semi-series) identities we obtain:

d = k−

k+

1 −
A

k−

k− + k+

BρL
 , (4.4)

which reduces to k−/k+ for clusters of infinite length. The value of d can then
be plugged into Eq. (4.3) to evaluate Jc.

To obtain the relaxation current J0 we model the dissolution of the cluster and
study how the density profile relaxes to the homogeneous profile of the standard
TASEP. Put differently, we compute the time-dependent particle current J0(t)
which relaxes to the steady state value given by Eq. (4.2). The evolution of den-
sity profiles of the exclusion process can be studied in the hydrodynamic limit [18],
considering ρ(x, t) as a continuous variable in both space and time. The derivation
of the time dependent density profile ρ(x, t) will be the subject of the next sec-
tion. Assuming it to be known for the moment we can compute the instantaneous
current:
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Modelling finite-size effects

j(t) = γ

L

Ú L

0
ρ(x, t) (1 − ρ(x, t)) dx , (4.5)

which is the space-averaged current at time t.
We are interested in the current from time 0, that is when the fully packed

cluster (density 1) starts to dissolve due to the absence of paused particles, to the
expected time required for a new pause, which on average will occur after a time
τ = 1

ρLk+
that corresponds to the inverse of the rate of pausing of any of the ρL

particles. Making use of the aforementioned density profile one obtains:

j(t) =


γ2

6L
t if t ∈ [0, ρL

γ
)

γρ
1
1 − 2

3

ñ
ρL
γt

2
if t ∈

è
ρL
γ

, L
4ργ

2
γ
è
ρ(1 − ρ) − L

48γ2t2

é
if t ∈

è
L

4ργ
, +∞

2
.

(4.6)

Finally, J0 in Eq. (4.2) is given by the function

J0(τ) = 1
τ

Ú τ

0
j(t) dt (4.7)

evaluated at τ = 1
ρLk+

.
We now have all components of Eq. (4.2), which can thus be tested against numer-
ical results. Fig. 4.4 shows how the current J0 compares to a numerical ensemble
average of the current, where t = 0 corresponds to the instant in which the last
paused particle is freed.

4.1.2 Density profile in the continuum limit
In this section we derive the aforementioned time-dependent density profile re-
quired to compute the integral in Eq.(4.5). It has been proven [1] that the evolu-
tion of the density profile, seen as a continuous variable in time and space, in the
TASEP is given by the unique entropic weak solution of a generalized Burgers’
equation with appropriate boundary and initial conditions. From now onward,
to avoid ambiguity, we will use ρ to refer to the number of particles divided by
the lattice length, while for the density profile in the continuum limit we will use
ρ(x, t). Thus, in the case of a clustered initial state and periodic boundaries on
has: 

∂ρ(x,t)
∂t

− γ (1 − 2ρ(x, t)) ∂ρ(x,t)
∂x

= 0 ∀t ≥ 0, ∀x ∈ [0, L]
ρ(x, 0) = 1 ∀x ∈ [0, ρL]
ρ(x, 0) = 0 ∀x ∈ (ρL, L]
ρ(0, t) = ρ(L, t) ∀t ≥ 0

,

where we have placed the beginning of the cluster on the first site for convenience.
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4.1 – Periodic boundary conditions

Figure 4.2: Cluster dissolution of the single-cluster configuration (L = 100, ρ =
0.3). Panel (a) shows the numerical time evolution of the cluster and Panel (b)
shows the time evolution of the single cluster according to the continuum limit
approach.

Figure 4.3: Cluster dissolution of the single-cluster configuration at four different
time instants, the solid line represents the continuum limit solutions while dots
are the numerical ensemble average.(L = 100, ρ = 0.3).
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To lighten the notation it is convenient to adimensionalize the time variable trough
the transformation t′ = tγ, yielding:

∂ρ(x,t)
∂t

− (1 − 2ρ(x, t)) ∂ρ(x,t)
∂x

= 0 ∀t ≥ 0, ∀x ∈ [0, L]
ρ(x, 0) = 1 ∀x ∈ [0, ρL]
ρ(x, 0) = 0 ∀x ∈ (ρL, L]
ρ(0, t) = ρ(L, t) ∀t ≥ 0

(4.8)

where we have relabeled t′ as t. Owing to the quasi linear nature of the Burgers’
equation, the initial value contained at any given point (x0,0) remains constant
along the characteristic lines:

x(t) = x0 + (1 − 2ρ(x0,0)) t

up until the point in the space-time cylinder where two distinct characteristics
meet. At that point, to obtain a weak solution of Eq. (4.8), we consider a shock
wave originating from that point and obeying the ODE:

ẋ(t) = 1 − ρl − ρr (4.9)

Figure 4.4: Comparison between the simulated and predicted current as a function
of time, starting from a configuration with all particles clustered on the first sites.
The horizontal line correspond to the expected steady-state value.

that is, the time derivative of the shock profile is the mean of the time derivatives
of the characteristics to its left and to its right [1]. When two characteristics diverge
one from the other, and as such there exist points on the space-time cylinder which
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4.1 – Periodic boundary conditions

do not belong to the support of any characteristic line, there can be multiple weak
solutions satisfying (4.8). The entropic one, which is the one actually describing
the system, is obtained by connecting linearly (in space) the solutions existing
at the boundaries of the divergence region, giving rise to what is often called a
rarefaction fan. From t = 0 up until t = ρL there will be a vertical shock separating
a region with particle density ρ = 1 from a region with ρ = 0 at position x = 0,
while a rarefaction fan will form at the point x = ρL. Thus we have

ρ(x, t) =


1 0 ≤ x < ρL − t
ρL+t−x

2t
ρL − t ≤ x < ρL + t

0 ρL + t ≤ x < L .

, t ∈ [0, ρL)

Starting from t = ρL the 0−density characteristics will intersect with the rarefac-
tion fan’s characteristics producing a shock, which will itself exist up until the last
0-characteristic will have intersected it. Depending on the starting cluster length
the shock may or may not cross the system boundary, in which case its periodicity
has to be accounted for. The shock curve s(t) can be computed by solving the
ODE (4.9) along with the condition x(ρL) = 0, leading to:

s(t) = t − 2
ñ

ρLt + ρL .

To understand where this equation is defined we have to compute the intersection
point x∗ with x = t − (1 − ρ)L (the last 0−characteristic) in non-periodic space
and then check how many lattice lengths are spanned by the two curves before
intersecting. We obtain x∗ =

1
1
4ρ

− 1 + ρ
2

L, as such the shock will cross the
boundary n =

è
x∗

L

é
=
è

1
4ρ

− 1 + ρ
é

times, where the square brackets mean that we
are considering the integer part of their argument. Thus we obtain:

ρ(x, t) =


0 0 ≤ x < s(t)
ρL+t−x

2t
s(t) ≤ x < t + ρL

0 t + ρL ≤ x < L

for ∀t ∈ [ρL, (1 − ρ)L), while for i = 1, .., n we have

ρ(x, t) =


0 0 ≤ x < s(t) − iL
(ρ−i)L+t−x

2t
s(t) − iL ≤ x < t + (ρ − i)L

0 t + (ρ − i)L ≤ x < s(t) − (i − 1)L
(ρ−i+1)L+t−x

2t
s(t) − (i − 1)L ≤ x < L

for t ∈ [(1 − ρ)L + (i − 1)L, (1 − ρ)L + iL) . Finally, we get to the time instant
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t∗ = L
4ρ

where the last 0−characteristic line meets the shock:

ρ(x, t) =


(ρ−n−1)L+t−x

2t
0 ≤ x < t − nL − (1 − ρ)L

0 t − nL − (1 − ρ)L ≤ x < s(t − nL)
(ρ−n)L+t−x

2t
s(t − nL) ≤ x < L

for t ∈
è
(1 − ρ)L + nL, L

4ρ

2
.

Some of the characteristics will cross the lattice to intercept other characteristics
from the same rarefaction fan, leading to a new shock z(t), which is going to
propagate to infinity. Solving (4.9) we obtain:

z(t) =
3

ρ − n − 1
2

4
L + ct

and imposing the condition z( L
4ρ

) = x∗ − nL = we get:

c = 1 − 2ρ.

The shock will meet the boundary at time:

t∗∗ = L

4ρ
+ L − (x∗ − nL)

c

so we have

ρ(x, t) =


(ρ−n−1)L+t−x
2t

0 ≤ x < z(t)
(ρ−n)L+t−x

2t
z(t) ≤ x < L

for t ∈
è

L
4ρ

, t∗∗
2
. From t∗∗ onwards the system will repeat periodically up to infinity,

with a time period τ given by:

τ = L

c
= L

1 − 2ρ
.

Thus ∀t ≥ t∗∗ one has:

ρ(x, t) =


(ρ−n−m−2)L+t−x
2t

0 ≤ x < c(t − t∗∗) − mL
(ρ−n−m)L+t−x

2t
c(t − t∗∗) − mL ≤ x < L

where m =
è

t−t∗∗

τ

é
. Now all one needs to obtain Eq.(4.7) is to transform back the

time unit and compute the integral.
In Fig. (4.2) we compare the predictions for the evolution of the density profile

compared to simulations at four different time instants. Fig. (4.3) show the con-
tinuous evolution of the density profile in time and space for the simulated system
(a) and for the analytical approach used in this appendix (b).
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4.1 – Periodic boundary conditions

Figure 4.5: Heatmap showing the behaviour of the error made by the single cluster
approximation. The lattice is 250 sites long.

4.1.3 Results

We now proceed to analyze and compare the previously developed mean-field
model for the pTASEP from [26], alongside the single-cluster approximation in-
troduced in this thesis. The single-cluster model effectively predicts the system’s
behavior in the presence of strong finite-size effects, as demonstrated in Fig.(4.6).
To systematically evaluate the accuracy of this approximation within the k−, k+
parameter space, the predicted particle current is compared to simulation results
across the parameter space in Fig.(4.5).

Comparing it to the previously presented heatmap in Fig.(3.3) reveals how
the previous models fail to capture the finite-size effects present in the lower-left
region of the parameter space, where the single-cluster approximation performs
better. However, the increasing error for large values of k− and k+ in the single-
cluster model is a consequence of the breakdown of the single-cluster assumption
in regions where the separation of timescales between these rates and γ becomes
unclear. In this regime, the single-cluster approximation is expected to fail, making
it a complementary approach to the earlier mean-field models of pTASEP, which
similarly struggle to account for finite-size effects.

The finite-size dominated regime differs not only in a quantitative sense but also
qualitatively. Fig. (4.6) illustrates how, in the presence of finite-size effects, the
typical bell-shaped current-density relationship of TASEP now exhibits a "bump"
at low densities. This phenomenon can be understood by noting that the current
during the relaxation phase is significantly higher than that generated by the
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Modelling finite-size effects

Figure 4.6: Impact of finite-size effects on the J(ρ) relationship. The pTASEP
solution is represented in blue, the single-cluster approximation in orange, and
the numerical simulation in grey. Panels (a) to (c) illustrate the emergence of
finite-size effects as k+ is varied from 10−6 to 10−4 and 10−2, with L = 250 and
k− = 10−3 held constant. Panels (d) to (f) show a similar emergence of finite-size
effects as the system size L is varied, while keeping k− = 10−3 and k+ = 10−4

fixed.

breaking fronts in the clustered phase. Consequently, in addition to the usual
competing effects, where increasing particle density enhances movement but also
introduces traffic, this regime introduces an increased likelihood of long clusters
forming due to pauses.

4.2 Open boundary conditions
Handling open boundaries is significantly more complicated than the periodic case,
as the number of particles on the lattice is no longer conserved over time. This
makes it impossible to use a fixed particle count to calculate probabilities or to
assume that the pausing dynamics have reached a steady state.

However, within the parameter range of our interest, we expect that the single-
blockage behavior observed for periodic boundary conditions can also apply to the
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4.2 – Open boundary conditions

open boundary case. In this scenario, the system can exist in one of two states: a
’clogged’ state (similar to the clustered phase seen in periodic boundaries), where
the lattice is filled up to the first paused particle, and a pause-free state, where
the system behaves like the standard TASEP.

Due to the separation of timescales between k−, k+, and γ, we can assume
that particles almost instantaneously fill the lattice up to the position of the first
paused particle. Similarly, particles downstream of the rightmost paused particle
quickly exit the system. Following the same reasoning as used to derive Eq. (4.2),
we introduce a two-term model for the current:

J = τ0

τc + τ0
J0 + τc

τc + τ0
Jc , (4.10)

where τ0 and τc represent the average durations of the pause-free state and
the clogged state, respectively. The pause-free phase behaves like the standard
TASEP, so that J0 is given by the standard TASEP’s steady-state current.

To evaluate the current in the clogged phase, let x denote the position where a
particle first transitions into the paused state, starting from the pause-free regime.
The position x (measured in lattice sites) also corresponds to the number of par-
ticles that form the initial cluster. In the standard TASEP, particle density is
uniform, and since each particle has an equal probability of pausing, the average
value of x is ⟨x⟩ = L/2. The current in the clogged state, Jc, can thus be approxi-
mated as the number of particles in the cluster divided by the typical duration of
the clogged state, Jc = L/(2τc). Substituting this into Eq. (4.10) gives:

J = τ0

τ0 + τc

J0 + 1
τ0 + τc

L

2 . (4.11)

The timescale τ0 is determined by the rate at which particles transition from
the pause-free state, which is proportional to the total number of particles times
k+. This gives:

τ0 = 1
ρLk+

= γ

αLk+
, (4.12)

where, in the last expression, we assume the lattice is in the low-density (LD)
phase, with ρ = α/γ.

The average duration of the clogged state, τc, is more difficult to express in
a closed form and must be computed numerically. This is because τc can be
shorter or comparable to the time required for the paused particle fraction fp to
reach equilibrium. After the first pausing event forms the extensive cluster, other
particles may also pause, further slowing down the return to the pause-free state.
The clogged state ends when all paused particles become active again and leave
the lattice, along with the particles that were blocked behind them. Implicit in
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Modelling finite-size effects

this reasoning is the assumption that active particles not trapped in the cluster
will exit the system without pausing again.

To compute τc, we first calculate the time evolution of fp, starting from a state
where all particles are active:

fp(t) = k+

k+ + k−

1
1 − e−(k++k−)t

2
, (4.13)

which asymptotically approaches the steady-state value of fp = k+
k++k−

. At any
given time t, the mean number of particles dt trapped between the first and second
paused particles can be estimated using the negative binomial distribution, which
gives the average number of failures before another paused particle appears. This
is given by:

dt = 1 − fp(t)
fp(t) . (4.14)

The average lifetime τ(x) of a paused particle located at position x is t− = 1/k−,
and the expected number of particles between two paused particles is given by dt

evaluated at t = t−. With this, we can numerically estimate the time required to
free all particles trapped in the clogged state. Specifically, after the leading particle
becomes active, the number of freed particles is d1 + 1, where d1 represents the
number of particles between the first and second paused particles at time t1 = t−.
If d1 + 1 exceeds x, we stop and set τ(x) = t−. Otherwise, we compute subsequent
distances di, evaluating Eq. (4.14) at times ti = i× t−, and continue until the total
number of freed particles exceeds x. The duration τ(x) is then approximated as
j × t−, where j is the number of intervals needed.

Finally, averaging τ(x) over all possible cluster sizes gives the value of τc to
be used in Eq. (4.10). Although this method relies on numerical calculations,
it is still significantly faster than directly simulating the entire system, and its
success underscores both the importance of finite-size effects and the validity of
our approximation.

4.2.1 Results
Our theory is in good agreement with the simulations, particularly for small lat-
tices. In Fig. (4.7), we demonstrate that the two-state approximation in Eq. (4.10)
accurately predicts the particle current J , even for small systems (L = 50), and
when the binding rate k+ is varied over several orders of magnitude.

The primary interest in this work lies in establishing a clear relationship between
the particle current and the binding rate k+. This is motivated by findings in the
literature suggesting that the concentration of antibiotics in the cytoplasm directly
affects the binding rate. As the antibiotic concentration increases, the likelihood

44
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Figure 4.7: The current as a function of k+ is compared for various system sizes,
with parameters k− = 10−3, α = 0.1, and β = 1. The solution provided by Eq. ??
shows good agreement for small system sizes but its accuracy diminishes as the
lattice size increases

of particles entering the paused state rises, leading to a greater binding rate k+. In
contrast, the unbinding rate k− appears to be independent of concentration and
is instead determined by the specific choice of antibiotic. This makes it critical
to understand how the system’s behavior, particularly the current J , responds to
variations in the binding rate, as it may offer insights into how different antibiotics
influence intracellular processes.

For small lattices, where finite-size effects dominate, our approximation shows
strong predictive power. However, for larger lattices, the accuracy of the two-
state model diminishes, as the approximation fails to capture the full complexity
of the system in this regime. Despite this limitation, the results presented here
demonstrate that the model provides a useful framework for understanding the
impact of binding and unbinding dynamics on particle transport, particularly in
scenarios where the binding rate is subject to external modulation, such as in the
presence of varying antibiotic concentrations.
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Chapter 5

Algebraic treatment and
future expansions

In this chapter we provide novel approach to achieve the normalization function
for a TASEP- like system, giving it a completely combinatorial meaning. We ap-
ply this line of reasoning to the standard TASEP and we show the it provides
a promising way to attempt to recover known results without making use of the
Matrix Factorization Ansatz. The interest to do so lies in the hope to one day
develop a resolution method applicable to still unsolved problems where the afore-
mentioned Ansatz is not valid.

5.1 Transition matrix co-factors and the adjoint
matrix

Consider a continuous time, ergodic stochastic process, taking place in a finite
state space χ. Call P (t) ∈ [0,1]n, where n = |χ|, the probability distribution on
the states of the system at time t. The probability distribution is governed by the
master equation:

dP (t)
dt

= AP (t), (5.1)

where A ∈ Rn is called the transition rate matrix and Ai,j = λj→i is the rate
of transition from configuration j to configuration i. Being that the process is
assumed to be ergodic [2] there exists a unique steady state probability vector P ,
such that, no matter the initial condition, we have limt→∞ P (t) = P and

AP = 0. (5.2)
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Equation (5.2) can, in theory, always be solved exactly, giving:

P i = det(A(i,i))qn
j=1 det(A(j,j)) = fiqn

j=1 fj

, (5.3)

where A(i,j) refers to the square matrix obtained by removing the i-th row and
j-th row from A and fi := det(A(i,i)). The value fi is called the statistical weight
of configuration i and Z = qn

j=1 fj is the associated normalization function. Its
worth noting that [2] the normalization function Z corresponds, up to a sign, to
the coefficient cn−1 of the linear term of the characteristic polynomial of A, that
is:

pA(λ) = λn +
n−1Ø
i=1

ciλ
n−i,

where in our case cn = 0 as it is the determinant of A. As it was shown in the
first chapter the normalization function is extremely informative in and on itself,
providing for example the locations in the phase space of phase transitions. As
such the focus of the chapter will be on studying the normalization function Z
rather then specific physical observables.

5.2 Faddeev-LeVerrier algorithm and Bell’s poly-
nomials

The Faddeev-Leverrier algorithm is a method to construct recursively the coeffi-
cients of the characteristic polynomial of a matrix , including the one we are after.
It is of particular interest to our case as it links said coefficients to the traces of
consecutive powers of the original matrix. In the next section I will give a com-
binatorial meaning to this method in the context of the TASEP’s transition rate
matrix. The algorithm states [10] that the coefficients can be found recursively
trough the formulas:

N1 = I, c1 = − tr AN1,
N2 = AN1 + c1I, c2 = −1

2 tr AN2,
...

Nn = ANn−1 + cn−1I, cn = − 1
n

tr ANn,

. (5.4)

where I is the identity matrix.
Interestingly the coefficient values can be given [17] a closed form combinatorial

expression trough the use of the complete exponential Bell polynomials. Given a
sequence {xn} of variables, the complete exponential Bell polynomials are defined
as the coefficients of the generating function [3]:

Ψ(t) = e
q

m>1 xm
tm

m! ,
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that is:
e
q

m>1 xm
tm

m! = 1 +
Ø
n>1

Bn
tn

n! ,

where Bn = Bn(x1, . . . , xn) is the n-th Bell polynomial in the variables x1, . . . , xn.
Trough direct calculation one can then find the closed form expression for the
n−th Bell polynomial [3]:

Bn = n!
nØ

k=1

Ø
{a1,...,an−k+1}

n−k+1Ù
i=1

xai
i

(i!)aiai!

where the second sum is to be taken over all sets of integers {a1, ..., an−k+1} such
that: qn−k−1

i=1 ai = k,qn−k−1
i=1 iai = n.

Both the coefficients in (5.4) and the Bell polynomials can be written in matrix
form [17], leading to:

cm = 1
m!Bm

1
−0!tr(A), −1!tr(A2), . . . , −(m − 1)!tr(Am)

2
.

Now, if A is the transition rate matrix of a stochastic system of the type described
earlier, we can write the partition function as:

Z = cn−1 = 1
(n − 1)!Bn−1

1
−0!tr(A), −1!tr(A2), . . . , −(n − 2)!tr(An−1)

2
, (5.5)

where n is the number of states. Out of all the ways in which the partition function
can be written, Eq.(5.5) is of interest because, in the case of lattice systems such
as the TASEP, the traces of the powers of the transition rate matrix can be given
a combinatorial meaning, which is the subject of the next section.

5.3 Application to the TASEP
Consider a one-dimensional lattice of L sites equipped with the TASEP dynamics
described in the first chapter. Let the transition rate be normalized so that the
hopping rate can be taken equal to 1, while we will refer to the initiation rate
as α and to the termination rate as β. To write explicitly the opposite of the
transition rate matrix H = −A of the system one can start by writing three
matrices describing the transition between two configuration due, respectively to
a particle entering, hopping and exiting the lattice. Doing so leads to:
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h(l) =
A

α 0
−α 0

B
, h =


0 0 0 0
0 0 −1 0
0 0 1 0
0 0 0 0

 , h(r) =
A

0 −β
0 β

B
. (5.6)

Following [13] we can write H as a sum of terms, one for each stochastic event
that can take place on the lattice. Given that the first site can experience both
initiation and hopping event and that the last site can only experience termination
events, there will be a total of L + 1 such terms. Thus, the matrix H can be written
as:

H = h(l) ⊗ I⊗L
m +

L−1Ø
j=1

I⊗j−1
m ⊗ h ⊗ I⊗L−j−1

m + I⊗L−1
m ⊗ h(r), (5.7)

where ⊗ is the Kronecker product. The Kronecker product of two matrices of
arbitrary dimensions A ∈ Rm,n and B ∈ Rp,q is defined as the matrix:

A ⊗ B =


a11B . . . a1nB

... . . . ...
am1B . . . amnB

 ∈ Rmp,nq.

Figure 5.1: Matrices referring to systems of size 5 (a), 6 (b) and 7 (c), where the
values −1, −α, −β are represented by the colors green, blue and red respectively.
The diagonal has been set to zero for ease of representation, the diagonal elements
are chosen so that all elements of a column sum up to zero.

From the definition it immediately follows that tr(A ⊗ B) = tr(A)tr(B). Here
is as summary of properties of the Kronecker product that will be used later on
[9]:
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• (αA) ⊗ B = A ⊗ (αB) = α(A ⊗ B) for any scalar α and matrices A, B.

• A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C for any three matrices A, B, C.

• (A + B) ⊗ C = A ⊗ C + B ⊗ C for any three matrices A, B, C.

• If Iℓ is the ℓ−dimensional square identity matrix then I⊗m
ℓ = Iℓm and Iℓ⊗Im =

Iℓm.

• (A1 ⊗ A2 ⊗ · · · ⊗ Ak)(B1 ⊗ B2 ⊗ · · · ⊗ Bk) = A1B1 ⊗ A2B2 ⊗ · · · ⊗ AkBk for
appropriate dimensions.

Going back to the results of the previous section, it is of interest to be able to
compute tr(Hn) for an arbitrary integer exponent n and arbitrary system’s size
L as it would lead to a combinatorial expression for the normalization function
trough Eq.(5.5). First, eq.(5.7) can be rewritten as

H = H0 +
L−1Ø
j=1

Hi + HL,

now we have:

tr (Hn) = tr

H0 +
L−1Ø
j=1

Hi + HL

n

=
Ø

s∈Σn

tr(s), (5.8)

where, borrowing from jargon of trace theory [6], we call Σn the set of all strings
of length n over the alphabet Σ = {Hi}L

i=0. The next subsection will characterize
a subset of Σn and provide its contribution to Eq.(5.8). Examples of the matrices
H for some values of L can be seen in Fig.(5.1). From now onwards the set Σn will
be referred to as a dictionary, Σ as an alphabet and the elements in Σn as either
strings or words.

5.3.1 Algebraic properties of Σ
Given the alphabet Σ = {Hi}L

i=0 defined above, a few important properties can be
observed immediately. That is:

HiHi±1Hi = 0 ∀i ∈ {1, . . . , L − 1}, (5.9)
Hm

i = Hi ∀i ∈ {1, . . . , L − 1} ∀m ∈ N, (5.10)
Hm

0 = αm−1H0 ∀m ∈ N, (5.11)
Hm

L = βm−1HL ∀m ∈ N, (5.12)
[Hi, Hj] = 0 |i − j| > 2. (5.13)
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From now onwards, a subset of Σ such that all of its elements commute one with
the will be referred other to as an independent set. A string composed of letters
from an independent set will itself be called independent, while one where every
letter does not commute with at least one other letter will be called dependent.
We will call a string t a rewriting of s if they are equal or if they differ by a scalar
factor of the form αaβb, for some a, b. To to be able to characterize Σn is important
to observe:

Observation 1. Consider s ∈ Σn. Then, either s can be rewritten such that each
factor Hi, i = 1, . . . , L − 1, appears at most twice, or s = 0. This rewriting allows
a factorization of s into sub-strings s = r

si, where no pair (si, sj) shares any
letter except H0 and HL, and each si either consists of non-repeated letters or has
the form:

si = bm,n [Hm−1Hn+1] bm,n,

where bm,n is a permutation of the string HmHm+1 . . . Hn with 0 < m, n < L.

The following proposition provides a sufficient and necessary condition for a
generic s ∈ Σn to equal the null matrix, which will be useful in the following
calculations.

Proposition 1. Given s ∈ Σn, one has s = 0 if and only if it contains a sub-string
of the form HimHi±1nHi, where m, n are strings of elements that commute with
Hi.

Proof. The proof will proceed by showing that the matrices in the factors described
in Obs.(1) are always non-zero, to then show that so are their products. Products
of independent letters are non-zero as an immediate consequence of mixed product
property, as such only strings of dependent letters will be considered.

Part 1: Sub-strings with non repeated letters
To expand the products in Σn its convenient to rewrite the matrices in (5.6) as:

h(l) = α(a2 + a4), h(r) = β(a1 + a3), h = a1 ⊗ a2 − a3 ⊗ a4, (5.14)

where a1, a2, a3, a4 ∈ R2,2. The following multiplicative table holds:

* a1 a2 a3 a4

a1 a1 0 a3 0
a2 0 a2 0 a4

a3 0 a3 0 a1

a4 a4 0 a2 0

.
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Consider a string si in which all letters in {H1, . . . , HL−1} once, where the require-
ment for all the letters to be present is asked only to ease the notation and the
results can trivially be extended to any string of independent, non repeated letters.
One can use (5.14) and the multiplicative table to expand si in a sum where each
term is a series of Kronecker products of the matrices I, ai for i = 1, . . . ,4. Lets
call t the term formed by multiplying matrices of the form:

− (I ⊗ · · · ⊗ I ⊗ a3 ⊗ a4 ⊗ I ⊗ · · · ⊗ I) ,

direct computation gives:

t = (−1)L−1a3 ⊗
C

L−2p
i=2

bi

D
⊗ a4, (5.15)

where bi = a2 if Hi−1 comes first in t than Hi, in the opposite case bi = a1. One
can see that t /= 0 and it can’t cancel out with other terms as no other shares
its Kronecker-factorization. Direct computation shows that H0t, tH0, H0tH0 /= 0
and
HLt, tHL, HLtHL /= 0, proving that strings of non repeated letters can never
equal the null matrix.
Part 2: Sub-strings with repeated letters
Consider a string s of repeated terms of the form described in Obs.(1). Again,
without real loss of generality, consider the case where s contain all the letters in
Σ\{H0, HL}. As before on can focus on one of the terms in the expansion of s
obtaining:

t = (−1)L−1a3 ⊗ a3 ⊗
C

L−−3p
i=3

bi

D
⊗ a4 ⊗ a4

where bi are defined as before. By the same argument this proves that s /= 0.
From this formula is also clear that arbitrary products of the type of sub-strings
described above will always have at least one non-zero term, thus proving the
theorem.

To proceed in computing (5.8) one needs to more information about the traces
of the non-null elements of Σn. On that regard one has:

Proposition 2. Let s ∈ Σn such that s /= 0. Then:

1. if the factor of s all commute with each other then:

tr(s) = αnα βnβ 2L−min(nα,1)−min(nβ ,1)−2M ,

where M is the number of distinct symbols appearing in s other then H0 and
Hn, while nα and nβ are the number of occurrences of letter H0 and HL,
respectively;
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2. if s contains dependent terms and tr(s) /= 0 then all letters in Σ must appear
at least once.

Proof. Consider again the expansion of s in terms of the matrices a1, a2, a3 and
a4. Being that tr(a1) = tr(a2) = 1 and tr(a3) = tr(a4) = 0, a term in the
expansion has to be composed only of a2 and a1 Kronecker-factors for its trace to
be non zero. If s is a product of independent terms then there is only one such
term in its expansion. Each Hi ∈ Σ\{H0, HL} contributes an a1 ⊗ a2 factor, while
{H0, HL} contribute an a2 and a1 factor each, proving statement (1). Now consider
products of independent, non repeated letters in Σ\{H0, HL}, let t be one such
product. Repeating letters only add to the conditions to be satisfied for tr(s) /= 0,
so asking for s to not contain repetition does not lead to a loss of generality. Then
among the terms in its expansion the only candidate to have non-zero trace is the
one formed by multiplying the factors of the form:

− (I ⊗ · · · ⊗ I ⊗ a3 ⊗ a4 ⊗ I ⊗ · · · ⊗ I) .

Calling it t1 we have the following result:

t1 = (−1)m−1I ⊗ · · · ⊗ I ⊗ a3 ⊗
C

m−2p
i=2

bi

D
⊗ a4 ⊗ I · · · ⊗ I,

where m is the number of letters in t1 and bi as stated earlier is either a1 or a2.
It follows that tr(t) = 0, but if t contained all the letters in Σ\{H0, HL} then its
product with H0 and HL (no matter their position and repetitions) would have
trace equal to (−1)L, multiplied by some monomial in α and β given by the number
of times that H0 and HL are repeated.

Point (1) of the above proposition provides a complete characterization of the
independent strings in Σn, while point (2) implies that dependent strings con-
tribute to Eq.(5.8) only monomial of degree between 2 and n − L . To proceed in
the computation of Eq.(5.8), it is convenient to consider it as a sum between the
contribution of independent strings and dependent ones

tr(Hn) = In
L + Dn

L, (5.16)
where both terms in the r.h.s. are polynomials in α and β. Surprisingly, it was
observed that In

L seems to follow a relatively simple closed form expression:

In
L (α, β) =

Ø
0≤i<L
i even

A
L − 1

i

B 53
α + i

2

4n

+
3

β + i

2

4n6
+

+
Ø

0≤i<L
i odd

A
L − 1

i

B 53
α + β + i − 1

2

4n

+
3

i + 1
2

4n6
. (5.17)
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The above expression is, as of now, without proof and as such it should be seen as
a conjecture. It was checked extensively for different choices of (L, n) trough the
use of a Julia without revealing counterexamples.

While obtaining a closed form for Dn
L still proves elusive, the above statement

gets us closer to the stated goal of solving the TASEP exactly without making
use of the Matrix Factorization Ansatz. The above discussion about independent
terms can also be extended to different, unsolved problems without apparent im-
pediments, as it was hoped.

5.4 The case of the two sites TASEP
In this subsection, we apply the methodology proposed earlier to the case of stan-
dard TASEP dynamics on a two-site lattice. The choice of a two-site lattice is
motivated by the fact that it represents the minimal system size that allows for
both hopping between sites and boundary phenomena. The goal of this subsection
is to clarify the proposed methodology and to compare the preliminary results
with exact results, which are feasible to obtain due to the modest system size.

Applying Eq.(5.7) to this case gives:

H = h(l) ⊗ I2 + h + I2 ⊗ h(r) = H0 + H1 + H2 =


β −α 0 0
0 α + β −1 0

−β 0 1 −α
0 −β 0 α

 .

To be able to compute the normalization function Z2 using Eq.(5.5) we first
have to compute the quantities tr(H i) for i = 1, 2, 3. We take the chance given
by the minute size of the system to show case the combinaotrial approach discussed
earlier, that is taking advantage of Eq.(5.8). We have:

tr(H2) =
Ø

s∈Σ2

tr(s),

where Σ = {H0, H1, H2} and Σ2 is the set of all words of two letters, where each
letters comes from the alphabet Σ. Is easy to see that Σ2 contains 32 = 9 elements,
of which 5 being independent, which are: H2

0 , H0H2, H2H0, H2
1 , H2

2 . For the
reasons stated earlier we expect tr(H2) to coincide exactly with the contribution
of the independent terms, that is tr(H2) = I2

2 (α, β). We can immediately check
the validity of Obs(5.17) against direct computation, observing that it is indeed
true and obtaining:

I2
2 = 1 + α2 + β2 + (α + β)2 = tr(H2),

where the final equality was verified trough direct computation of the matrix power.
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Moving on to tr(H3), this time we expect to differ from I3
2 (α, β). In partic-

ular, according to Prop.(2), out of all the dependent words in Σ3 only H0H1H2,
H0H1H2, H1H0H2, H1H2H0, H2H1H0 and H2H0H1 can contribute to tr(H3), as
they contain all elements of the alphabet Σ. It is thus straightforward to compute
the polynomial D3

2, as defined in Eq.(5.16), by summing the tarce of the terms
above. One obtains:

D3
2(α, β) = −6αβ,

while from Obs.(5.17) one has:

I3
2 (α, β) = α3 + β3 + (α + β)3 + 1.

By direct computation the trace ends up being:

tr(H3) = α3 + β3 + (α + β)3 + 1 − 6αβ,

which does indeed coincide with the polynomial I3
2 (α, β)+D3

2(α, β), in accordance
with the results of this chapter. Being that tr(H) = 2α + 2β + 1, we can now
proceed to apply Eq.(5.5):

Z2 = −1
6B3

1
−tr(H), −1!tr(H2), −2!tr(H3)

2
=

= α2β + α2 + αβ2 + αβ + β2. (5.18)

The validity of the above equation can be checked by explicitly computing the
linear coefficient of the characteristic polynomial of matrix −H. This can be done
easily trough any symbolic linear algebra routine, for example trough the use of
the polychar() function in MATLAB. Doing so reveals that Eq.(5.18) is indeed
correct.
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Chapter 6

Conclusions and further
developments

The first part of this work, from Chapter 1 to Chapter 4, aims to explore the
feasibility of modeling the process of antibiotics-inhibited translation through the
pTASEP. In doing so, we propose that the observed inadequacy of the existing
mean-field theory in the parameter space of interest is due to the emergence of
severe finite-size effects. This explanation is corroborated by an extensive numeri-
cal exploration of the parameter space and by the success in recovering predictive
power trough the models proposed here.

In fact, we succeed in producing minimal but effective models, for both bound-
ary conditions, describing the current of the system in the presence of extreme
finite-size effects. Still, to be able to describe the actual behavior of ribosomes,
the model needs further expansion, both in its definition and in the effectiveness
of its approximations.

On the first front, the pTASEP as described here fails to take into account
that the mRNA template itself (i.e., the lattice) has a limited lifespan, which is
itself a random variable, after which it is recycled. On the second front, we lack a
convincing approximate theory able to describe both the presence and the absence
of finite-size effects and, most importantly, the transition between the two regimes.
In addition, to truly eliminate the need for numerical simulations, an exact theory,
similar to the one developed for the standard TASEP and briefly presented in this
thesis, is needed.

To this end, in the final chapter, an effort was made to provide a new frame-
work to obtain exact results in lattice systems. The primary goal, for now, is to
reproduce the known standard TASEP results, but without relying on the Ansatz
currently required to derive them. We propose a novel approach to obtain the
normalization function for the system, which allows us to assign it a combinatorial
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meaning. Although this approach is still in its early stages, we at least have a
clear path for further development. In particular, the most immediate deficiencies
in the results presented lie in Prop. (1) and Eq. (5.17). The first provides only a
partial characterization of the elements in Σn, which, to be complete, requires a
necessary and sufficient condition for dependent elements to have a non-zero trace,
as well as a formula for said trace. The second, as of now, still lacks a rigorous
proof and is corroborated only by numerical evidence. Developing a proof, other
then corroborating the result, may also help in deducing an expression for the still
elusive polynomial Dn

L. The lack of results for Dn
L led to the inability to recover

Eq. (5.18) without making use of direct computations, as shown in Section (5.4).
In conclusion, the research conducted in this thesis provides valuable insights

into the limitations of existing models for antibiotics-inhibited translation, partic-
ularly in the presence of finite-size effects. While we have succeeded in developing
minimal models that capture these effects, further refinements and expansions are
needed to describe biological systems more accurately. On a broader theoretical
level, the novel approach to exact results in lattice systems opens a promising av-
enue of exploration, although significant challenges remain. Addressing the open
problems identified in this work constitutes a clear direction for future research,
with the potential to shed some light on still unresolved lattice systems.
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