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Summary

The ever-increasing density of objects in low Earth orbit (LEO) has raised concerns
about the potential for a future cascade of collisions, a phenomenon known as the
Kessler Syndrome. Such collisions could inflate the amount of space debris, posing
significant risks to operational satellites and future space missions. In response
to this, and in alignment with new de-orbit regulations, there is a shift towards
refining collision avoidance strategies to minimize propellant consumption. Indeed,
despite the relatively low fuel requirements of individual collision avoidance ma-
neuvers, their growing necessity places a considerable strain on satellite fuel budgets.

In this context, the objective of this research is to develop a tool that uses
indirect optimization to identify propellant-efficient collision avoidance trajectories
between two orbiting objects. To this end, the indirect approach is employed
to exploit the theory of optimal control, applied to spacecraft trajectories, and
to transform the optimization problem into a boundary value problem, which is
subsequently solved by means of shooting procedures. This method ensures precise
optimization and offers significant advantages in terms of computational costs,
particularly when low-thrust is considered.

The study uses a modified version of a collision probability calculation method
originally developed by Alfano and Negron. This method assesses the risk of
collision between two objects in a high-fidelity LEO dynamic model. Meanwhile,
trajectory optimization is performed using a simpler two-body dynamic model. This
approach ensures robust convergence of the optimization method and maintains
dynamic accuracy, due to the low maneuvering times involved.

Moreover, this work offers valuable theoretical insights into the indirect opti-
mization method and illustrative examples that facilitate a more comprehensive
grasp of the method’s practical implementation.
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Chapter 1

Introduction

1.1 Preface
Since the advent of the Space Age, there has been a pronounced emphasis across
a range of disciplines associated with space exploration on the development of
technical and theoretical solutions aimed at enhancing the payload fraction, even
by modest increments. This focus is largely a consequence of the fact that while
the payload mass encapsulates the entirety of a mission’s objectives, it constitutes
merely a fraction of the total spacecraft or launcher mass. In the field of mission
analysis, the Tsiolkovsky equation stands as a fundamental tool for comprehending
how trajectory optimization can maximize the payload mass:

mf

mi

= exp−∆v
c

(1.1)

The "rocket equation" indicates that the final mass increases when the required
delta-v decreases, suggesting that the mass of a mission’s payload can be higher if
the same mission can be executed with a more efficient flight profile.

Various trajectory optimization approaches have been developed over the years.
Derek Lawden’s work in 1963 [1] initiated the exploration of space trajectory
optimization. His research focused on deriving optimal analytical solutions for
simplified space flight missions, utilizing optimal control theory principles.

Optimal control theory, with roots dating back to the 17th century, has seen
significant advancements over the years. Contributions from mathematicians like
Euler, Bellman, and Pontryagin have paved the way for understanding and solving
optimization problems in various domains, including space trajectory planning.

In recent decades, the interest in space trajectory optimization has continued to
grow, driven by the increasing complexity of space missions. While the foundational
principles remain unchanged, the application of optimization theory has evolved,
particularly with the development of numerical optimization methods.
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1.2. RESEARCH TOPIC

1.2 Research Topic

The issue of space debris in Low Earth Orbit (LEO) is a growing concern within the
space community. The term "Kessler Syndrome" refers to a scenario proposed by
NASA scientist Donald J. Kessler in 1978, which describes a runaway chain reaction
of collisions between objects in space [2]. Essentially, when two objects collide,
they create more debris, which increases the likelihood of further collisions, leading
to a cascading effect where the amount of debris grows exponentially. This poses
significant risks to operational satellites, spacecraft, and future space missions.

Satellites in lower orbits face an increased risk of collision due to the dense
presence of defunct satellites, spent rocket stages and other debris. This risk
is amplified by the increasing number of large constellations of small satellites
occupying these altitudes, resulting in a higher frequency of potential conjunction
events. As a result, there is a growing emphasis on developing and implementing
effective collision avoidance strategies to reduce the risk of accidental collisions and
ensure the sustainability of space operations.

Satellite operators are implementing various collision avoidance techniques to
safeguard their spacecrafts. These strategies typically involve monitoring the
satellites’ orbital path and the surrounding space environment using ground-based
radar and space-based sensors. If a potential collision is detected, operators can
maneuver the endangered satellite to a safer orbit, either by adjusting its trajectory
slightly or by performing a larger orbital maneuver to avoid the debris entirely.

One important consideration in refining collision avoidance strategies is mini-
mizing propellant consumption: although these kind of maneuvres usually require
low fuel expenditures, un-optimized maneuvering to avoid debris can deplete lim-
ited onboard propellant reserves prematurely, reducing the satellite’s operational
lifespan.

This work aims to provide a valuable contribution to this field by exploiting
the indirect optimization method to identify propellant-efficient collision avoidance
trajectories with low-thrust propulsion.

1.3 Dissertation overview
A concise outline of the thesis contents is here provided.

• Chapter 2 presents a brief introduction on the main optimization methods
used in spacecraft trajectory optimization and follows with the definition of
an optimal control problem, the indirect approach to the problem and the
main solving methods utilized. Two theoretical examples illustrate how the
described method can be applied.
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1.3. DISSERTATION OVERVIEW

• Chapter 3 describes the reference systems and the dynamic models involved
in this work.

• Chapter 4 illustrates the methodology used to perform close approach analysis
and the general workflow implemented to identify elegible collision avoidance
maneuvers.

• Chapter 5 provides practical information onto the method’s implementation
and an orbital transfer optimization example with comments.

• Chapter 6 finally delivers the results of an example conjunction event and
subsequent evasion maneuver, along with an in-depth analysis of the solution
behavior.

• The closing statements in chapter 7 offer a summary of the most significant
achievements of the work and suggest potential future improvements.

3



Chapter 2

Spacecraft Trajectory
Optimization

2.1 Introduction
Trajectory analysis and optimization is crucial to the success or even feasibility of a
space mission. The problem can be stated as the determination of a trajectory that
satisfies some constraints required by the mission, while extremizing some quantity
of importance. Since the trajectory followed by a spacecraft directly impacts on
the amount of propellant needed for set mission, hence influences the mass budget,
which relates to mission feasibility and costs, the most common objective is to
minimize propellant consumption or equivalently to maximize the spacecraft’s final
mass.

Most of the methods used for the optimization of space trajectories fall into
three main categories: direct methods, indirect methods, and evolutionary algo-
rithms. Direct methods discretize trajectory and controls and, starting from a
guess solution, evaluate a performance index and constraint satisfaction; with the
aim of improving the performance index, this parameter optimization problem
is then solved by means of gradient-based procedures. Direct methods provide a
straightforward implementation, high robusteness and good capability of treating
complex problems. However, since the solution is based on the approximation made
through dicretization, a dense mesh is required in order to obtain accurate results,
hence computational costs are usually high [3]. Indirect methods use the optimal
control theory (OCT) to derive first-order necessary conditions and transform the
optimization problem into a boundary value problem (BVP), which is then solved,
starting from a tentative solution, by means of shooting procedures. The most
important feat of indirect methods is that they provide first order optimal solutions
-in the limits of the dynamic model and the numerical accuracy of integration-.

4



2.2. THE OPTIMAL CONTROL PROBLEM

Moreover they offer low computational costs and vast theoretical insight over the
optimization problem, but the necessity of deriving case-specific equations and
defining near-optimal guesses have made these methods less appealing than the
direct ones. Further information about the state-of-the-art in numerical methods to
solve optimal control problems can be found in [4]. Lastly, evolutionary algorithms
are comparatively simple and easy to use, they don’t require a tentative solution
and offer higher robustness. They make use of populations of solutions that evolve
towards the optimum following rules that often mimic natural phenomena. Relying
on heuristic methods, the solutions obtained have no proof of being the actual
global optima.

The most suitable mathematical formulation for an optimization problem re-
garding finite-thrust missions is a time-continuous optimal control problem [5]. In
section 2.2.1 a general statement of the problem will be provided, followed by a
more in-depth description of the optimization method adopted in this work (i.e.,
the indirect method) starting from section 2.2.2.

2.2 The Optimal Control Problem
An Optimal Control Problem (OCP) aims at maximizing a chosen merit index
by establishing an admissible control law, while ensuring that the system satisfies
specified constraints, as it evolves from an initial to a final state over a defined
time interval.

2.2.1 General Statement
The system is described by a set of state variables x(t) ∈ Rn that evolve over
time according to n first order differential equations. These ODEs are function of
the state vector x(t), the control vector u(t) ∈ Rm, which contains the m control
variables, and, of course, the independent variable time t. The ODE system can be
generically written as:

ẋ(t) = f (x(t),u(t), t) (2.1)

An optimal solution defines the optimal trajectory x∗(t), subject to optimal controls
u∗(t), that maximizes a specified merit index. As previously mentioned, the optimal
trajectory has to satisfy constraints of various kind; if these constraints concern
state and time solely at the extremes of the time interval, the problem defined in
(2.1) is a Two Point Boundary Value Problem (TPBVP) and the extremal boundary
conditions imposed at t = t0 and at t = tf are called external boundaries. These
BCs can be written as a set of homogeneous algebraic equations and grouped in
the constraint vector:

ψ(x0,xf , t0, tf ) = 0 (2.2)

5



2.2. THE OPTIMAL CONTROL PROBLEM

where ψ : [Rn,Rn,R,R]→ Rq collects the q constraints; x0 and xf stand for x(t0)
and x(tf ) respectively.

Constraints may also concern the control variables u, therefore u ∈ U , where
U represents the set of admissible controls.

The criterion that completes the OCP and drives the optimization process is
represented by the merit (or performance) index J , which must be maximized or
minimized. In general, J is a functional comprised of two terms:

J = φ(x0,xf , t0, tf ) +
Ú tf

t0
[Φ(x(t),u(t), t)] dt (2.3)

• The first function φ depends uniquely on the values assumed by the state and
time variables at the boundaries. φ quantifies the cost of reaching the desired
final state;

• The second term, being an integral over the time interval, depends on the
values that the state variables, controls and time assume during the trajectory.
This term quantifies how the solution evolved between the initial and final
states.

Equation (2.3) can be equivalently rewritten in Lagrange’s or in Mayer’s for-
mulation, respectively by posing φ = 0 or Φ = 0 and by introducing opportune
auxiliary variables. Mayer’s formulation is usually preferred to define an optimiza-
tion problem that searches for extremal values of a functional, which is the case of
this work’s OCP.

The problem described in equations (2.1) to (2.3) is called Bolza Problem. A
concise mathematical formulation of this time-continuous optimization problem is
here presented, utilizing Mayer’s formulation of the merit index:

PBolza =



max
u∈U

J = φ(x0,xf , t0, tf )

ẋ(t) = f(x(t),u(t), t)

s.t. ψ(x0,xf , t0, tf ) = 0

(2.4)

Maximization can be turned to minimization by changing the sign of φ; in this
work, a maximization problem will be considered.

2.2.2 Necessary Conditions
A necessary, or first order, condition for optimality dictates that the first variation
of the performance index J must be zero for any permissible variation along the
trajectory and at the boundaries [6].

6



2.2. THE OPTIMAL CONTROL PROBLEM

A modified functional, or augmented merit index, J ∗ is defined through the
introduction of Lagrange multipliers µ and adjoint variables λ [7]:

• Lagrange multipliers are constants associated with boundary conditions and
provide a measure of how much the constraints are respected. They are
collected in the q-component vector µ;

• Adjoint variables, also reffered to as costates, are linked to the state variables
and provide a measure of the weigth of each state variables over the merit
index. They are collected in the n-component adjoint vector λ.

The modified functional in Mayer’s formulation is defined as:

J ∗ = φ+ µTψ +
Ú tf

t0
[λT (f − ẋ)] dt (2.5)

where:

φ ≜ φ(x0,xf , t0, tf ) (2.6a)

ψ ≜ ψ(x0,xf , t0, tf ) (2.6b)

J ∗ = J if ψ = 0 and f − ẋ = 0, that is if all boundary conditions and differen-
tial equations are respected, therefore, solving the augmented problem with the
modified functional in equation (2.5) is mathematically equivalent to solving the
problem defined in (2.4), provided all constraints are respected.

A simpler expression for J ∗ can be obtained by integrating the −λT ẋ term in
equation (2.5) by part:

Ú tf

t0
(−λT ẋ) dt = (−λTf ẋf ) + (λT0 ẋ0) +

Ú tf

t0
(λ̇Tx) dt (2.7)

Therefore:

J ∗ = φ+ µTψ + (λT0 ẋ0 − λTf ẋf ) +
Ú tf

t0
(λT f + λ̇Tx) dt (2.8)

7



2.2. THE OPTIMAL CONTROL PROBLEM

One can now proceed to differentiate J ∗ and obtain:

δJ ∗ =
A
∂φ

∂t0
+ µT ∂ψ

∂t0
−H0

B
δt0+ (2.9a)

+
A
∂φ

∂tf
+ µT ∂ψ

∂tf
+Hf

B
δtf+ (2.9b)

+
A
∂φ

∂x0
+ µT ∂ψ

∂x0
+ λT0

B
δx0+ (2.9c)

+
A
∂φ

∂xf
+ µT ∂ψ

∂xf
− λTf

B
δxf+ (2.9d)

+
Ú tf

t0

CA
∂H
∂x

+ λ̇T
B
δx + ∂H

∂u
δu
D
dt (2.9e)

where H is the system’s Hamiltonian and is defined, in Mayer’s formulation, as:

H ≜ λTf (2.10)

As mentioned, optimality requires δJ ∗ = 0 for any admissible variation (δt0, δtf ,
δx0, δxf , δx, and δu). Therefore, an adequate set of Lagrange multipliers µ and
adjoint variables λ is to be defined.

2.2.3 Boundary Conditions for Optimality
In a Two Point Boundary Value Problem, boundary conditions for optimality are
composed of a set of ODEs that define time (2 transversality conditions) and
state (2n optimality conditions) at the extremal points of the trajectory.

These boundary conditions arise by nullifying the coefficients of δt0, δtf , δx0, δxf
in equation (2.9):

∂φ

∂t0
+ µT ∂ψ

∂t0
−H0 = 0 (2.11a)

∂φ

∂tf
+ µT ∂ψ

∂tf
+Hf = 0 (2.11b)

∂φ

∂x0
+ µT ∂ψ

∂x0
+ λT0 = 0 (2.11c)

∂φ

∂xf
+ µT ∂ψ

∂xf
− λTf = 0 (2.11d)

8



2.2. THE OPTIMAL CONTROL PROBLEM

Boundary Conditions on Time:
From the two transversality equations (2.11a) and (2.11b):

• If initial or final time is not constrained and does not appear in φ, the cor-
risponding Hamiltonian is null and said time is dependent upon optimization;

• If time is assigned (ψ contains equations like t0 − ta = 0 or tf − tb =
0) the corresponding Hamiltonian is free and its value is dependent upon
optimization.

Boundary Conditions on State Variables:
From the optimality conditions enunciated in equations (2.11c) and (2.11d):

• If the i-th state variable xi is free at a certain point, i.e. it does not appear
neither in ψ nor in any constraint, its associated adjoint variable λxi

is null
at that point;

• If xi is assigned, the corresponding adjoint variable is free at the same point.

2.2.4 Equations for adjoint and control variables
Imposing the last line of equation (2.9) equal to 0 yelds a set of ODEs that describes
how adjoint variables and controls evolve over time, in particular:

• By nullifying the coefficients of δx the n Euler-Lagrange equations for
the adjoint variables are obtained:

∂λ

∂t
= −

A
∂H
∂x

BT
(2.12)

• By nullifying the coefficients of δu the m algebraic equations for the
control variables arise: A

∂H
∂u

BT
= 0 (2.13)

In general one or more control variables may be subject to external constraints,
so that u ∈ U , where U represents the admissibility domain. A specific control
may be dependent on state variables and on time; in this work only explicit and
constant constraints are dealt with, like limiting a control to a maximum and
minimum value: Umin ≤ u ≤ Umax. If explicit admissibility constraints are present,
the optimal control u∗ ∈ U for the optimal trajectory is the one that maximizes the
Hamiltonian in each point of the trajectory. This concept is known as Pontryagin’s
Maximum Principle (PMP).

In practice, two cases arise:

9



2.3. MULTI-POINT BOUNDARY VALUE PROBLEM

• The optimal control value u∗ provided by equation (2.13) belongs to the
admissibility domain: the control constraint is not active in that point (the
control is locally un-constrained);

• The optimal control value u∗ provided by equation (2.13) doesn’t belong to the
admissibility domain: the optimal control is set to the edge of the admissibility
domain (the control is locally constrained).

When the Hamiltonian is linear (affine) with respect to a specific control variable,
equation (2.13) cannot be satisfied. In such cases, the control variable does not
appear explicitly in the equation, rendering the corresponding control undetermined.

In the case of a Hamiltonian that is affine with a control variable ui:

∂H

∂ui
= kui

(2.14)

with kui
being constant, it is evident that Equation (2.13) cannot hold true,

except for when kui
= 0. To resolve this, the Pontryagin Maximum Principle

(PMP) is utilized to determine the value of the control variable [8]. If kui
/= 0,

maximizing the Hamiltonian involves setting the control variable to either its
maximum admissible value, ui = Ui,max, when kui

> 0, or its minimum admissible
value, ui = Ui,min, when kui

< 0. This condition is commonly referred to as
"bang-bang" control, and it will be the implemented control strategy in the optimal
control problem considered in this work.

If kui
= 0 during a finite time interval, a strategy involving singular arcs must

be adopted.
The problem presented so far is a Two-Point Boundary Value Problem: with the

imposed boundary conditions ψ = 0 (q equations), one has 2n + q + 2 equations,
respectively from optimality ((2.11c) and (2.11d)), control (2.13) and transversality
(eq. (2.11a) and (2.11b)), which implicitly determine the initial values for 2n
differential equations (n states x and n costates λ), q adjoint constants (µ) and 2
times (t0 and tf ).

2.3 Multi-Point Boundary Value Problem
If a mission imposes any constraints in internal points along the trajectory, such
as specified functions of state variables or variables discontinuities, the resulting
optimization problem is a Multi-Point BVP (MPBVP). The trajectory is divided
into np subintervals, called phases or arcs, so that the integration can be split into
np intervals at the relevant (np − 1) intermediate points. The j-th interval spans
from t(j−1)+ to t(j)− and the variable values at the extremities of said interval are
x(j−1)+ and x(j)− respectively, where j = 1, ..., f .

10
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Due to the added complexity of the problem, this work does not implement
the MPBVP formulation and instead focuses on the resolution of TPBVPs. For
the sake of completeness, some basic information regarding MPBVPs is provided
below; for further details please refer to [3].

As anticipated, in a MPBVP, boundary conditions can be imposed at the internal
boundaries in addition to the external boundaries seen in equation (2.2). BCs are
again generally Non Linear and may be function of both the state variables and
the independent time variable:

ψ
1
x(j−1)+,x(j)−, t(j−1)+, t(j)−

2
= 0, j = 1, ..., np (2.15)

The performance index for the MPBVP is defined as:

J = φ(x0,x1±, ...,xf , t0, t1±, ..., tf ) +
npØ
j=1

Ú t(j)−

t(j−1)+

[Φ(x(t),u(t), t)] dt (2.16)

Where φ is now dependent on the values that variables and times have at every
boundary. The summation of all the integrals of Φ still depends on the values
that the state variables, controls and time assume during the trajectory and now
accounts for how the solution evolves arc-by-arc.

The augmented merit index J ∗ can now be obtained; in Meyer’s formulation, it
has the form:

J ∗ = φ+ µTψ +
npØ
j=1

Ú t(j)−

t(j−1)+

[λT (f − ẋ)] dt (2.17)

which can be integrated by part to obtain:

J ∗ = φ+ µTψ +
npØ
j=1

1
λT(j−1)+ẋ(j−1)+ − λT(j)−ẋ(j)−

2
+

npØ
j=1

Ú t(j)−

t(j−1)+

(λT f + λ̇Tx) dt

(2.18)
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The first order differentiation of J ∗, δJ ∗, is now expressed per each arc as:

δJ ∗ =
A

∂φ

∂t(j−1)+
+ µT ∂ψ

∂t(j−1)+
−H(j−1)+

B
δt(j−1)++ (2.19a)

+
A

∂φ

∂t(j)−
+ µT ∂ψ

∂t(j)−
+H(j)−

B
δt(j)−+ (2.19b)

+
A

∂φ

∂x(j−1)+
+ µT ∂ψ

∂x(j−1)+
+ λT(j−1)+

B
δx(j−1)++ (2.19c)

+
A

∂φ

∂x(j)−
+ µT ∂ψ

∂x(j)−
− λTf

B
δx(j)−+ (2.19d)

+
npØ
j=1

Ú t(j)−

t(j−1)+

CA
∂H
∂x

+ λ̇T
B
δx + ∂H

∂u
δu
D
dt, j = 1, ..., np (2.19e)

Boundary Conditions for Optimality
Optimality and Transversality conditions are more conveniently expressed at the
generic point j:

∂φ

∂tj+
+ µT ∂ψ

∂tj+
−Hj+ = 0 j = 1, ..., np − 1 (2.20a)

∂φ

∂tj−
+ µT ∂ψ

∂tj−
+Hj− = 0 j = 1, ..., np (2.20b)

∂φ

∂xj+
+ µT ∂ψ

∂xj+
+ λTj+ = 0 j = 1, ..., np − 1 (2.20c)

∂φ

∂xj−
+ µT ∂ψ

∂xj−
− λTj− = 0 j = 1, ..., np (2.20d)

Equations for adjoint and control variables
Considerations on Euler-Lagrange and control equations remain identically true
in the Multi-Point formulation of the OCP.

Significant difficulties in the MPBVP convergence arise when the relevant times
are unknown and the lenghts of the integration intervals are free. In order to
fix the extremes of the integration intervals of each arc, a transformation of the
independent variable (time, t) is operated, so that in the j-th arc, t is replaced by:

ϵ = j − 1 + t− tj−1

tj − tj−1
= j − 1 + t− tj−1

τj
(2.21)
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Where τj ≜ tj − tj−1 is unknown and subject to optimization. In the j-th arc, ϵ
varies between j-1 and j, hence assumes consecutive integer values at the boundaries
of the interval.
The state ODEs during the j-th arc become:

ẋ(t) = dx(t)
dϵ

= τj
dx(t)
dt

(2.22)

2.4 Numerical Methods for Indirect Optimiza-
tion

The analytical solution for the BVPs above illustrated is usually impossible to obtain,
especially when the system dynamics is non-linear; therefore, proper numerical
methods have to be employed. The most well-known methods to solve the BVP
numerically are the shooting techniques; collocation methods are also exploited to
solve generic BVPs. Besides these general-purpose methods, a sequential gradient
restoration algorithm can be implemented to solve BVPs that originate from OCPs.

• Shooting methods transform the Boundary Value Problem into an Initial
Value Problem (IVP), which can be solved via well-established algorithms
and led to convergence by Newton-like or gradient methods. They are easy
to understand and very efficient, but their efficacy is strongly linked to the
behaviour of the IVP.

• Collocation methods search for an approximate solution over the entire interval
of interest, hence no initial value problem is explicitly integrated. This allows
for a more global approach to the BVP solution, avoiding convergence issues
caused by IVP instability. These methods’ computational efficiency is lower
than the shooting techniques’ since they rely on low order quadrature schemes
[5].

• Sequential Gradient Restoration relies on the solution of many auxiliary
linear TPBVPs, the solution of the original problem is found iteratively, after
performing a sequence of gradient restoration steps.

Due to their straight-forward implementation and high efficiency, shooting
techniques are the implemented numerical method to solve the BVPs in this work.

2.4.1 Single Shooting Method
The "shooting" procedure consists in finding the initial values for the state, costate
and unknown parameters, which guarantee the satisfaction of all boundary condi-
tions. Dependent variables at the boundaries are obtained via numerical integration
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of the ODE system, once initial conditions are provided. Starting from an initial
guess, initial conditions are adjusted exploiting Newton-like or gradient based
methods through a process of differential correction. In other words, the BVP
that describes a trajectory optimization problem is transformed into an Initial
Value Problem (IVP), which is iteratively solved via numerical integration in order
to compute corrections (through a differential corrector) for undesired terminal
deviation, updating the initial conditions at each r-th iteration. It is important
noting that not all initial values may be allowed to vary, and some final conditions
may be free to aquire any feasible value; therefore, the divergence between the
desired final state and the actual one should imply a correction only to the initial
guesses that are allowed to vary.

Let y ∈ R2n+p be the vector that collects state x(t) and adjoint λ(t) variables
and unknown parameters c ∈ Rp:

y(t) = (x(t),λ(t), c)T (2.23)

and y0 be the initial conditions vector.
The result of a shooting method is the Shooting Function S, which associates to

any initial conditions vector a residual on the boundary conditions:

S : R(2n+p) → R(2n+p)

y0 ↣ ψ(Y+(y0),T+(y0),Y−(y0),T−(y0)) (2.24)

where Y+ and Y− are two vectors that collect the values that y assumes at either
side of the boundaries:

Y+ =
î
y(j−1)+,∀j = 1, ..., np

ï
Y− = {yj−,∀j = 1, ..., np} (2.25)

The roots of the shooting function provide the BVP solution.
The appeal of this approach is justified by its simplicity and strenghtened by the

state-of-the-art of numerical analysis for IVPs. However, there is no guarantee of
convergence for this method under general assumptions: single shooting is usually
successfull if the ODE system is not severely unstable or very stiff and if a good
initial estimate of y0 can be made. A good y0 guess is required because shooting
with a wrong initial estimate may lead to an IVP whose solution doesn’t exist
over the whole integration domain, which would prevent the convergence of the
iterative process. The main difficulty with the indirect approach to trajectory
optimization is linked to the adjoint variables (or costates). Initial values for the
costates are unknown and the non-linearity of the problem implies that the course
of the solution is very sensitive to some or all of these initial adjoint variables.
Moreover, the problem’s costates lack of the physical significance of the state
variables, so estimating an initial guess can be quite challenging. IVP stability is
another requirement to guarantee stability of the algorithm.
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2.4.2 Multiple Shooting
The multiple shooting technique is a variant of the single shooting that aims
to enlarge its applicability field and reduce its drawbacks. A multiple shooting
approach splits the integration interval, hence the trajectory, into subintervals
at specified points. Analogously to single shooting, the values of the dependent
variables at the beginning of each sub-arc are treated as problem unknowns. Proper
boundary conditions are introduced to guarantee trajectory continuity at the
interfaces of each sub-domain and separate integrations over each sub-interval are
performed, thus reducing the influence of the initial guess on the error. Convergence
is usually easier, at the expense of a larger number of unknowns, hence increased
computational times and a more difficult formulation of the problem. For these
reasons, the simple shooting technique is preferred in this work.

2.5 Differential Correction
The differential correction procedure aims at nullifying the difference between the
desired final state y∗

f and the one obtained via IVP resolution yf . Let δyf be the
discrepancy between the desired and the actual final states:

δyf = y(y0, tf )− y∗(y∗
0, tf ) (2.26)

A specific correction in the initial state, say δy0, should produce the needed initial
state y∗

0:
y∗

0 = y0 + δy0 (2.27)
A first order Taylor expansion of the constraint vector ψ is performed to evaluate
how to update the initial state:

ψ(y) = ψ(y0) + ∂ψ(y0)
∂y

(y− y0) (2.28)

The derivatives of the constraints with respect to the state vector quantities form
a Jacobian matrix G(ψ(y0),y) ∈ Rq×2n that can be referred to as Error Gradient
Matrix :

G(ψ(y0),y) = ∂ψ(y0)
∂y

=


∂ψ1
∂y1

∂ψ1
∂y2

. . . ∂ψ1
∂y2n

∂ψ2
∂y1

∂ψ2
∂y2

. . . ∂ψ2
∂y2n... ... . . . ...

∂ψq

∂y1

∂ψq

∂y2
. . . ∂ψq

∂y2n

 (2.29)

The error gradient matrix linearly maps the variation of the errors on the
boundary conditions to the variations of the initial state. It can be obtained
analytically, but this procedure is usually rather heavy both in terms of analytical
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effort to obtain the necessary equations, and time to program and debug the code,
and also implies larger computational costs [9]. Thus the analytical approach should
be employed only when other numerical techniques fail to provide convergence. In
this work a numerical method is adopted.

2.5.1 Newton’s Method
The values of the error gradient matrix G, are obtained by varying the unknowns
by a small amount and solving the IVP problem with the new perturbed initial
conditions vector. The correction of the tentative values is thus obtained under a
linear approximation.

Let r represent the current step of the iterative shooting procedure: (y0)r is
perturbed by a small delta in its i-th component in order to obtain the error
gradient matrix’s i-th column. According to a forward-finite-difference scheme: Let
[(y0)r]p be the perturbed initial state:

[(y0)r]p = (y0)r + ei ·∆ (2.30)

where ei is a 2n-component-unit-vector, with all elements equal to zero except for
the i-th element. Then the i-th column of the error gradient matrix is:

Gr[:, i] = [(ψ(y0))r]p − (ψ(y0))r
∆ (2.31)

The r+1 initial guess is then defined as:

(y0)r+1 = (y0)r −G−1
r (ψ(y0))r (2.32)

Linearization may introduce errors that can prevent convergence and induce insta-
bility; for this reason two relaxation parameters are introduced, K1 and K2. Both
reduce the parameter correction: K1 is utilized performing a check on error variation
and reducing, usually by half, parameter correction if max(ψr+1) > K1max(ψr).
This operation is known as bisection; the bisection parameter K1 is usually equal
to 2. K2 is introduced in the correction scheme:

(y0)r+1 = (y0)r −K2G
−1
r (ψ(y0))r (2.33)

K2 is usually set in the range 0.01 ≤ K2 ≤ 1 but its efficacy is strongly dependent
on the closeness of the initial state to the actual solution and on the overall problem
dimensions. The closer to the solution, the greater K2 can be.
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2.6 The Rocket Sled Problem
In this section, an illustrative example is presented in order to clarify how an
optimal control problem can be solved via indirect optimization and a single
shooting procedure. The one-dimensional problem under investigation consists of a
mass point that has to cover a fixed distance in a fixed time, arriving and departing
with zero velocity. The maximum value of acceleration or deceleration provided
by the control is limited and the goal is to minimize the control consumption, i.e.
maximize the final mass.

The mathematical formulation of the OCP is:

OCP =



max J = mf

ṙ(t) = v, t ∈ [0, tf ]

v̇(t) = T/m, t ∈ [0, tf ]

ṁ(t) = −T/c, t ∈ [0, tf ]

s.t.

|T | ≤ Tmax

ri = 0; rf = 0.1

vi = 0; vf = 0

mi = 1; mf = free

(2.34)

The state and costate vectors for this OCP are defined as:

x(t) = (r,v,m)T λ(t) = (λr, λv, λm)T (2.35)

and the control variables vector is:

u(t) = (T ) (2.36)

The Hamiltonian can now be stated:

H = λTf = λrv + λv
T

m
− λm

T

c
= λr(v) + T

m

5
λv − λm

m

c

6
(2.37)

Since the Hamiltonian is linear with the control variable T , a bang-bang control
rises and a switching function SF can be defined:

SF = λv − λm(m/c) (2.38)
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Usually, in order to maximize the Hamiltonian, the control variable would be set to
its upper boundary, Tmax when the switching function is positive and to its lower
boundary, zero, when the SF is negative. In this example this bang-bang control
strategy would prevent the point-mass from decelerating since there is no control
on the direction of thrust, therefore, the control strategy is slightly modified as
follows:

T =



Tmax, if SF > 1

0, if − 1 < SF < 1

−Tmax, if SF < −1

(2.39)

The Euler-Lagrange equations for the adjoint variables are:

dλr
dt

= −∂H
∂r

= 0 (2.40a)

dλv
dt

= −∂H
∂v

= −λr (2.40b)

dλm
dt

= −∂H
∂m

= λv
T

m2 (2.40c)

The Two Point BVP is now completely defined and can be solved via numerical
integration. Within the Scipy "solve ivp" environment in Python, an explicit
Runge-Kutta method of order 8 was exploited to integrate this problem’s ODEs.
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Figure 2.1: Rocket Sled Example: state variables, mass and switching function
during the maneuver. Tmax = 1, c = 100

The solution obtained exhibits an initial acceleration determined by the switching
function being grater than 1 for a brief moment, followed by a lenghty coasting
phase in which −1 < SF < 1. A final deceleration is provided (SF < −1) to reach
the end point with a null trajectory.

2.6.1 Two Dimensional Example

The same problem can now be stated adding a degree of freedom: the point mass
is now free to move on the x-y plane. Initial and final y positions are the same in
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order to replicate the previous example. The following OCP is defined:

OCP =



max J = mf

ẋ(t) = vx, t ∈ [0, tf ]

ẏ(t) = vy, t ∈ [0, tf ]

v̇x(t) = T
m

cos(α), t ∈ [0, tf ]

v̇y(t) = T
m

sin(α), t ∈ [0, tf ]

ṁ(t) = −T
c
, t ∈ [0, tf ]

s.t.

T ≤ Tmax

xi = 0; xf = 0.1

yi = 0; yf = 0

vxi = 0; vxf = 0

vyi = 0; vyf = 0

mi = 1; mf = free

(2.41)

Where α is the thrust angle and represents the second control variable: the control
variable vector is now u(t) = (T, α). The Hamiltonian for this OCP is:

H = λTf = λxvx + λyvy + λvx
T

m
cos(α) + λvy

T

m
sin(α)− λm

T

c
(2.42)

Optimal Control Equations for the control variables are:
∂H

∂T
= 0 (2.43a)

∂H

∂α
= 0 (2.43b)

Equation (2.43a) yelds the same result as the 1D optimal control equation: the
Hamiltonian is linear with the Thrust and therefore a bang-bang control is adopted;
equation (2.43b) provides the optimal thrust direction as a function of the costates:

α = arctan

A
λvy
λvx

B
(2.44)
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It follows that now the point-mass can accelerate or decelerate deliberately so a
normal bang-bang control can be utilized:

T =


Tmax, if SF > 0

0, if SF < 0
(2.45)

where the switching funcion is defined as:

SF = λvx cos(α) + λvy sin(α)− λm(m/c) (2.46)

The Euler-Lagrange equations for the adjoint variables are obtained the same way
as previously. The obtained TPBVP was solved with the same numerical method
and the following results were obtained:

Figure 2.2: 2D Example: state variables, mass, switching function and thrust
angle during the maneuver. Tmax = 1, c = 100

It is possible to observe that the solution to the 2D trajectory optimization
problem is nearly identical to the one-dimensional case, despite the control laws
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employed being different. In the two-dimensional case, when the "rocket sled" must
decelerate, thrust is provided along the velocity vector with opposite direction,
as it is denoted by α = −180◦ in the graph above. The position and velocity
values along the y-axis are negligible since they approach machine precision. By
incrementally introducing additional complexities into the trajectory optimization
problem through a systematic, step-by-step approach, it is possible to validate the
novel tool by reproducing the preceding scenario. This methodology was employed
to ultimately develop a three-dimensional trajectory optimization tool incorporating
two-body dynamics.
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Chapter 3

Dynamic Model

This chapter introduces the dynamic model implemented in the optimization
framework (in section 3.3) as well as the main reference systems used during the
analysis and main coordinate transformations required (in section 3.1). Furthermore
the perturbations considered in the high-fidelity orbit propagator employed in the
collision risk evaluation tool are presented in section 3.4.

3.1 Reference systems
A generic reference system is uniquely defined by its origin, a fundamental plane
and an orthonormal right-handed triad forming the reference frame (RF). Reference
systems can be inertial, in which Newton’s first law holds true, or non-inertial;
the choice of using one or the other is dictated by which is more suitable to a
specific analysis. The primary distinction between inertial and non-inertial reference
systems can be attributed to the presence or absence of apparent accelerations
resulting from relative observations. For instance, in non-inertial reference systems
such as rotating frames, additional pseudo-accelerations such as the Coriolis effect
manifest. The description of the motion of objects such as satellites or celestial
bodies in relation to the Earth is straightforward within an inertial reference
system. This allows the use of various coordinate systems, such as cartesian or
polar coordinates, for the accurate representation of the objects’ positions.

3.1.1 EME2000 RF
In the present work the geocentric-equatorial reference system coincides with the
Earth Mean Equator and equinox of epoch J2000 (EME2000). The JPL DE440
ephemerides utilised in this analysis encompass nutations and librations with
respect to the Inertial Celestial Reference Frame (ICRF), thereby rendering the
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EME2000 RF (also known as J2000) a quasi-inertial reference system. However,
since the rotational offset between the ICRF and the J2000 is minimal, the latter
will be considered inertial in this work. The J2000 RF has its origin at the Earth’s
center, its reference plane is the equatorial plane and its unit vectors Î, Ĵ , K̂ have
Î pointing towards the vernal equinox, K̂ normal to the reference plane and Ĵ
completing the triad.

3.1.2 Perifocal RF
The perifocal RF has its origin at the center of the gravitational body and its
reference plane contains the satellite’s motion. Its unit vectors are p̂sc, q̂sc, ŵsc,
where the p̂sc unit vector coincides with the eccentricity vector direction ê, ŵsc is
normal to the orbital plane and pointing towards the direction of the specific angular
momentum vector ĥ, and q̂sc completes the triad. The shape and orientation of
a conic in space can be described by a set of parameters such as the Keplerian
ones: a, e, i,Ω, ω, ν uniquely define the orbit’s geometry and orientation while also
identifying the spacecraft’s position. A subset of these parameters is suffiecient for
the perifocal representation as the conic equation shows:

r = a (1− e2)
1 + e cos(ν) (3.1)

The true anomaly ν identifies the angular position of the spacecraft, while the
semi-major axis a and the eccentricity e fully define a closed orbit.

To orient the perifocal RF in the three dimensional space (with respect to J2000)
the remaining three Keplerian parameters are needed. In particular, the inclination
i identifies the angle between the equatorial and perifocal planes, the right ascension
of ascending node (RAAN) Ω identifies the engle between Î and the intersection
between the two reference planes where the spacecraft passes from the southern to
the northern hemisphere (line of nodes n̂), and the argument of the periapsis ω
identifies the angle between the line of nodes and the periapsis, for non-circular
orbits.

3.1.3 ZEN RF
The Zenith-East-North reference frame has its origin in the spacecraft’s center of
mass, which makes it a non-inertial frame. Its unit vectors û, v̂, ŵ conveniently
describe the SC’s velocity components in radial, tangential and normal directions,
respectively. The radial direction is determined by extending the position vector of
the spacecraft from the center of the Earth. The tangential and normal directions
correspond to the orientations of a parallel and a meridian on a celestial sphere.
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3.1.4 ITFR93 RF
The International Terrestrial Reference Frame (ITRF) 93 is a geocentric reference
frame established in 1993. It serves as a standard coordinate system for global
positioning and geodetic and atmospheric measurements. ITRF93 is geocentric, has
the equatorial plane as reference plane and unit vectors X̂, Ŷ , Ẑ with X̂ laying on
the reference plane and positive through the intersection with the prime meridian,
Ŷ positive through 0° N, 90° E, and Ẑ axis parallel to the mean Earth rotation
axis and positive toward the North Pole.

3.2 Time-invariant coordinate transformation
For specific computations or better understanding of the information provided by
a set of coordinates it is sometimes necessary to switch between reference frames.
For this purpose, simple elementary rotational matrices are implemented. These
matrices are composed of a series of Direction Cosine Matrices (DCMs). For a
generic positive rotation of α the DCMs are defined in the following form:

R1 =

 1 0 0
0 c(α) s(α)
0 −s(α) c(α)

 ,R2 =

 c(α) 0 s(α)
0 1 0

−s(α) 0 c(α)

 ,R3 =

 c(α) s(α) 0
−s(α) c(α) 0

0 0 1


where s and c stand for sin and cos respectively.

Figure 3.1: from J2000 RF to ZEN RF
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As an example, the transformation between J2000 coordinates to ZEN coordi-
nates, depicted above, is achieved with the following steps:

• A first rotation of θ about the K̂ axis is performed:

rÎ′,Ĵ ′,K̂ = R3(θ)rÎ,Ĵ ,K̂ (3.2)

• Now a second rotation of ϕ about the Ĵ ′ is needed:

rû,v̂,ŵ = R2(ϕ)rÎ′,Ĵ ′,K̂ (3.3)

While described as being carried out with individual steps, the coordinate transfor-
mation can be performed in a single operation by defining the complete rotational
matrix:

R32(θ, ϕ) = R2(ϕ) ·R3(θ) (3.4)

so that the coordinate transformation can be written as:

rû,v̂,ŵ = R32(θ, ϕ) · rÎ,Ĵ ,K̂ (3.5)

3.3 Two Body Problem
The two-body problem in astrodynamics involves the gravitational interaction
between two celestial bodies, typically a central body and an orbiting body. In this
scenario, the influence of other celestial bodies is assumed to be negligible. The
motion of the orbiting body is governed by conservation principles such as energy
and angular momentum, along with Kepler’s laws of planetary motion describing
its orbit. This simplified model well describes the motion of a spacecraft orbiting
the Earth in LEO because other significant gravitational masses, such as the Moon
and Sun, are much farther away than the Earth and their effect on the spacecraft’s
orbit is negligible in preliminary analysis [10].

The state of a SC is described by the following set of ODEs in an inertial RS
centered in the primary celestial body, such as J2000.

dr

dt
= V (3.6a)

dV

dt
= g + T

m
+ ap (3.6b)

dm

dt
= −T

c
(3.6c)
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where equations (3.6a) and (3.6b) describe how the SC’s position and velocity
change over time, repectively. Equation (3.6c) represents the decrease in mass due
to propellant expenditures. The term g is the gravitational acceleration:

g = − µ
r2
r

r
(3.7)

where µ is the gravitational parameter of the central body and r is the vector
connecting the centers of mass of the two bodies.

3.3.1 Assumptions for the Two-Body Equation
To derive the two-body equation, we make several assumptions:

• The mass of the satellite is negligible compared to the mass of the attracting
body, which is often the case for artificial satellites;

• The chosen coordinate system is inertial, which simplifies the calculations by
removing derivatives of the coordinate system itself;

• Both the satellite and the attracting body are assumed to be spherically
symmetric with uniform density, allowing them to be treated as point masses;

• The only forces considered are gravitational forces acting along the line joining
the centers of the two bodies.

For two-body motion, these assumptions are the defining statements, but, as
later sections will describe, perturbations significantly change the orbit and can’t
be ignored for real-world simulations. These hypotheses leave us with the basic
two-body equation, which is derived directly from Newton’s law of gravitation.

r̈ = − µ
r2
r

r
(3.8)

Two useful quantities result from this simplification: specific angular momentum
and specific mechanical energy, and it can be demonstrated that both of these are
constant along any given orbit. The conservation of the specific angular momentum:

h = r × v = cost (3.9)

implies that, for two body motion, the satellite’s orbit is always confined to the
plane of the orbit. Any position and velocity pair taken at the same point in time
uniquely determines the specific angular momentum of the orbit.

Specific mechanical energy is composed of two terms, the first represents the
specific kinetic energy, while the second refers to the specific potential energy:

E = V 2

2 −
µ

r
= c (3.10)
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3.4. PERTURBING ACCELERATIONS

where c is a constant and its value is arbitrary, which allows to designate the
condition for E = 0 which in space mechanics occurs with a parabolic trajectory.
The transition from negative to positive values of E distinguishes closed orbits
(ellipses, E < 0) from open orbits (E ≥ 0, for parabolas (=) and hyperbolae (>)).

The application of two-body dynamics requires the definition of Sphere of
Influence (SOI). Although the SOI has characteristic shapes depending on the
complex interaction among other gravitational bodies, under suitable simplifying
assumptions it can be considered a perfect sphere surrounding the central body,
within which the gravitational pull of that body dominates all orbital motion.
Beyond this sphere, the gravitational influence of other bodies becomes more
significant and affects the trajectory of the satellite to a greater extent. The
sphere’s radius is approximately equal to:

rSOI,ij ≈ rij

3
mj

mi

42/5
(3.11)

where rij = rj − ri is the position vector of the smaller j-th gravitational body
with respect to the bigger i-th gravitational body.

As long as the optimization tool is concerned, a simple 2BP was implemented to
allow for easier convergence and faster computation time. This choice is justified
by the order of magnitude of the accelerations involved in the LEO environment:
Earth’s gravitational pull is by far the strongest, with an order of magnitude
between 1 × 10−2 and 1 × 10−3km/s, whilst other celestial bodies like the Sun
and Moon cause accelerations of around 1 × 10−9 km/s. Drag is the strongest
perturbation at lower altitudes but is highly dependant on the analyzed object’s
attitude and consequent reference surface, with accelerations varying between
1 × 10−5 and 1 × 10−12 km/s within the first km above Earth surface. Earth
oblateness, represented by the J2 coefficient causes a deviation of the gravitational
field of Earth from perfect sphere with an acceleration of around 1 × 10−5. In first
approximation and with restrained propagation times it is possible to neglect these
perturbations. On the other hand, high-fidelity propagation is needed to obtain
reliable ephemerides for accurate computations of the Probability of Collision (PoC)
between two orbiting objects. Therefore, a more complicated dynamic model was
implemented in the collision risk evaluation tool. The perturbations considered in
the model are presented in the next section.

3.4 Perturbing accelerations
The dynamical model employed in the propagation tool developed for this thesis
incorporates the four main perturbing effects experienced by an orbiting object in
a LEO trajectory: Earth’s asphericity, atmospheric drag, solar radiation pressure
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3.4. PERTURBING ACCELERATIONS

and lunisolar effect. These perturbations were identified as the most significant
in a LEO environment and, combined, they constitute the cumulative perturbing
acceleration found in the system of equations (3.6b).

ap = aJ + aD + aSRP + a3B (3.12)

The following sections present a detailed discussion of each perturbation, accompa-
nied by a comprehensive account of the modeling techniques employed.

3.4.1 Earth asphericity
The irregular shape of the Earth gives rise to gravitational anomalies across its
surface, which in turn affect the gravitational attraction experienced by orbiting
objects. These anomalies are primarily the result of the centrifugal force generated
by the Earth’s rotation, which causes the equatorial regions to bulge outward, giving
the Earth a slightly oblate shape. This asymmetry is a significant contributor to
variations in the gravitational field, which in turn perturb the orbits of satellites and
other objects. Furthermore, areas of higher mass concentration, such as mountains
or dense rock formations, exert slightly stronger gravitational forces than regions
with lower mass concentration, such as ocean basins or valleys. These variations in
gravitational attraction contribute to additional perturbations in the trajectories
of orbiting objects.

Given that the gradient of the potential for a central body yields the acceleration,
it is possible to form a potential function that includes the perturbing accelerations
due to a nonspherical central body, for further details please refer to [10]. The
dimensional aspherical potential U of an object positioned at geocentric distance
r, with longitude θLO ans latitude φ can be expressed as:

U =µ
r
{1−

∞Ø
l=2

Jl

3
R⊕

r

4l
Pl[sin(φ)]+

+
∞Ø
l=2

lØ
m=1

3
R⊕

r

4l
Pl,m[sin(φ)][Cl,m cos(mθLO) + Sl,m sin(mθLO)]} (3.13)

where Pl,m are the associated Legendre polynomials, and Cl,m and Sl,m are the
spherical harmonic coefficients. This form highlights the different contributions to
the potential from zonal and tesseral terms:

• Zonal harmonics are defined by the zeroth order (m = 0) and are accounted for
in the first term of equation (3.13). As can be seen, this term lacks dependency
on longitude, indicating that the field is symmetrical about the polar axis.
They represent bands of latitude. The term J2 (l = 2,m = 0) is the most
significant contributor to the gravitational departure of Earth from a perfect
sphere, accounting for the majority of the planet’s oblateness [10].
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• Tesseral harmonics are a subset of harmonics that account for cases where
l /= m /= 0. They are represented by the second term in equation (3.13). Their
purpose is to model specific regions on Earth that deviate from a perfect
sphere. The case of l = m defines sectoral harmonics, which represent bands
of longitude [10].

In order to retrieve the most accurate spherical harmonic coefficients the Earth
Gravitational Model 2008 (EGM2008) was implemented in the Python tool de-
veloped for this work. Extensive details regarding this model can be found in
[11].

As mentioned, equation (3.13) needs the terrestrial longitude, which is the angle
between X̂ and the spacecraft’s projected position on the ITRF93’s reference plane.
To obtain θLO the following relation can be exploited:

θLO(t) = θijk − θGijk
(t) = θijk − [θGrefijk

+ w⊕(t− tref )] (3.14)

where tref is the J2000 epoch, January 1st, 2000 at 12:00:00 UTC, and θGrefijk
=

280.46061837504deg is the longitude of the prime meridian in the J2000 RF at that
epoch. w⊕ is evaluated assuming the sidereal day equal to 86164.098903690351s
(precession is neglected).

Accelerations caused by Earth’s irregular gravitational field are obtained by
calculating the gradient of the potential function. In order to compute the pertur-
bations that deviate Earth’s potential function from that of a sphere (µE/r), the
function that is partially derived is Φ = U + µE/r; in the ZEN RF:

(aJ)u = ∂Φ
∂r

(3.15a)

(aJ)v = ∂Φ
∂θ

1
r cosφ (3.15b)

(aJ)w = ∂Φ
∂φ

1
r

(3.15c)

The calculation of derivatives with respect to r and θ is relatively straightforward;
on the contrary, derivatives with respect to φ, involve the computation of the
derivatives of the associated Legendre functions. These derivatives are obtained
recursively, exploiting the characteristics of Legendre polynomials.

In first analysis, greater propagation performances with an acceptable degree of
fidelity can be achieved by considering the sole J2 perturbation. This case involves
only one associated Legendre function, P2,0:

P2,0 = 1
2[3 sin2(φ)− 1] (3.16)
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Perturbing accelerations can be easily obtained:

(aJ)u = µ

r2{J2

3
R⊕

r

42 1
2[3 sin2(φ)− 1]}+ µ

r
{J2

A
R2

⊕
r3

B
[3 sin2(φ)− 1]} (3.17a)

(aJ)v = 0 (3.17b)

(aJ)w = − µ
r2{J2

3
R⊕

r

42
3 sin(φ) cos(φ)} (3.17c)

3.4.2 Atmospheric Drag
Although the atmosphere is quite rarefied in its upper layers, it still has a low
density of molecules that, when colliding with an orbiting object, provide a drag
force that is non-negligible for high-fidelity LEO modeling. As a matter of fact,
next to the oblateness of the Earth, atmospheric drag most strongly influences
the motion of a satellite near Earth, and during the last few revolutions of a
satellite’s life, drag effects can be more dominant than J2 effects [10]. Being a
velocity-dependent perturbation, drag force is nonconservative and changes the
total energy of the orbit, lowering it. Drag changes mainly the semimajor axis
and eccentricity of the orbit. Acceleration due to drag can be expressed with the
following, well known equation:

aD = −1
2
CDA

m
ρv2

rel

vrel
|vrel|

(3.18)

where CD is the drag coefficient, A and m are the spacecraft’s exposed cross-
sectional area and mass respectively, and vrel is the relative velocity between the
spacecraft and the atmosphere.

• the drag coefficient is a dimensionless quantity that reflects the satellite’s
susceptibility to drag forces. For satellites in the upper atmosphere it is
usually approximated to 2.2 (using a flat plate model). Spheres have CD ≈ 2.0
to 2.1. The drag coefficient is satellite configuration-specific and is seldom
approximated to more than three significant digits [10];

• the cross-sectional area of the spacecraft exposed to the relative velocity is
dependent on spacecraft attitude, in first analysis it will be approximated to
a constant value. Usually m/(CDA) is referred to as ballistic coefficient, BC
which is another measure of a satellite’s susceptibility to drag effects [10];

• the atmospheric density, ρ, is a crucial parameter, since its value, in addition to
altitude, is strongly influenced by Earth’s magnetic field and solar activity and
can vary by orders of magnitude. To properly estimate the atmosphere’s density
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at relevant positions and epochs the MSIS (Mass Spectrometer and Incoherent
Scatter Radar) atmospheric model was implemented in the developed tool. The
MSIS model is based on empirical formulations derived from observational data
collected by various instruments such as mass spectrometers and incoherent
scatter radars. For more specific information regarding this model please refer
to [12].

• The velocity is not the velocity vector found in the state vector, but it’s
relative to the atmosphere, which has a mean motion due to Earth’s rotation:

vrel,ijk = vsc,ijk −w⊕ × rijk (3.19)

3.4.3 Solar Radiation Pressure
Like drag, solar radiation pressure is a non-conservative disturbance but becomes
more pronounced at higher altitudes. One of the most difficult aspects of solar
radiation analysis is accurately modeling and predicting solar cycles and variations.
Because this disturbance has a lesser effect on orbiting objects at the altitudes of
interest for this work, an average energy of incoming solar radiation is considered.
The solar-radiation constant, or solar flux, SF, is:

SF = 1367 W/m2 (3.20)

Using Einstein’s law relating energy with mass, E = mc2, with c being the speed
of light, it is possible to find the force of solar pressure per unit area, psrp, which is
equal to the change in the momentum imparted to the object of mass m:

psrp = mc = E

c
= 1367

3× 108 = 4.5567× 10−6 N

m2 (3.21)

By introducing the reflectivity, CR, and the exposed area to the sun A⊙, it is now
possible to define the force of the solar radiation pressure [10]:

FSRP = −psrpCRA⊙
rsc⊙
|rsc⊙|

(3.22)

where:

• rsc⊙ is the J2000 position vector of the Sun with respect to spacecraf;

• the reflectivity, CR, is value between 0.0 and 2.0 that indicates how the satellite
reflects the incoming radiation. A value of 0.0 means the object is transluscent
to incoming radiation: no momentum is transmitted. A value of 1.0 means
that all the radiation is absorbed (black body), and all the momentum is
transmitted, resulting in perturbing force. A value of 2.0 indicates that all the
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radoation is reflected and twice the momentum is transmitted, which is the
case for a flat mirror perpendicular to the light source [10]. As it is for the
drag coefficient, the reflectivity is a satellite configuration-specific parameter
and depends on spacecraft attitude and light conditions, in this work it will
be approximated to a constant value;

• much like it is for the cross sectional area considered in the computation
of drag forces, the exposed area to the sun A⊙ is dependent on spacecraft
attitude and is here approximated to a constant value.

Newton’s second law allows us to determine the acceleration experienced by an
object of mass m irradiated by the Sun:

aSRP = FSRP
m

= −psrpCRA⊙

m

rsc⊙
|rsc⊙|

(3.23)

Once again, a coordinate transformation is needed to obtain the acceleration
components in the ZEN RF.

The modeling of this disturbance is inevitably correlated to the illumination
conditions of the spacecraft. Unless following a dusk-to-dawn orbit, the object of
interest will experience periods of partial and total eclipse, penumbra and umbra
respecively, determined mainly by the shadowing of the Sun caused by Earth.
During umbra conditions the SRP perturbing acceleration is null, while during
penumbra it is proportional to the fraction of solar radiation that is still able to
reach the spacecraft.

Figure 3.2: Light conditions to be evaluated

To assess these cases, it is necessary to evaluate the apparent size of the relevant
celestial bodies, as seen from the spacecraft, θ⊙ and θ⊕, along with the angular
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separation between them γ, [13].

θ⊙ = arcsin
A
R⊙

rsc⊙

B
(3.24a)

θ⊕ = arcsin
A
R⊕

rsc⊕

B
(3.24b)

γ = arccos
A
rsc⊙ · rsc⊕

rsc⊙rsc⊕

B
(3.24c)

The function L, which assesses the light conditions experimented by the satellite,
is now introduced:

L =



1 if γ − θ⊙ > θ⊕

0 if θ⊕ > γ + θ⊙

1− θ2
⊕
θ2

⊙
if θ⊙ − θ⊕ ≥ γ or γ ≥ θ⊙ + θ⊕

1− A+B−C
πθ2

⊙
else

(3.25)

where:

A = θ2
⊕ arccos

A
γ2 + θ2

⊕ − θ2
⊙

2γθ⊕

B
(3.26a)

B = θ2
⊙ arccos

A
γ2 + θ2

⊙ − θ2
⊕

2γθ⊕

B
(3.26b)

C = 1
2
ñ

(−γ + θ⊕ + θ⊙)(γ + θ⊕ − θ⊙)(γ − θ⊕ + θ⊙)(γ + θ⊕ + θ⊙) (3.26c)

L needs to be multiplied to aSRP from equation (3.23) to obtain the true pertur-
bative accelerations caused by solar radiation along the satellite’s trajectory, [14].
The Sun’s position with respect to Earth and to the orbiting object is retrieved
from DE440 JPL ephemerides.

3.4.4 Lunisolar Effect
Third bodies, such as the Moon and the Sun, have small perturbing effects in lower
orbits, but are still considered in the dynamic model to ensure high-fidelity orbit
propagation. The contribution of the i-th body is modeled as:

a3Bi = µi

A
rsat−i
r3
sat−i

− ri
r3
i

B
(3.27)

34



3.4. PERTURBING ACCELERATIONS

where µi is the gravitational parameter of the i-th body, rsat−i is the position vector
of the satellite relative to the i-th body, and ri is the position vector of the i-th
body relative to Earth.

Two terms can be distinguished in expression (3.27):

• the first contribute is called direct effect and represents the acceleraration that
the third body induces on the object of interest;

• the second term is reffered to as indirect effect since it models the acceleration
that the third body induces on the central body, in this case Earth.
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Chapter 4

Close Approach Analyis

"Close Approach" refers to the moment when two spacecraft are at their closest
point to each other. The importance of accurately analyzing these conditions,
known as "Conjunction Assessment," is underscored by events like the 2009 Iridium-
33/Cosmos-2251 collision, which generated a substantial amount of additional
orbital debris endangering satellite operations in LEO. The need to consider collision
avoidance as part of routine operations is evident to all mission operators and
should also be seen as good practice in view of space debris mitigation. Since May
2004, the Center for Space Standards and Innovation (CSSI) has been issuing daily
reports on potential conjunctions within a 5 km distance threshold for the upcoming
week. These reports cover all objects in Earth orbit using the complete catalog
of unclassified NORAD Two-Line Elements (TLEs) available to the public. This
program is known as Satellite Orbital Conjunction Reports Assessing Threatening
Encounters in Space (SOCRATES) [15]. Via STK’s Conjunction Analysis Tool,
SOCRATES is able to provide reports on both minimum distance and maximum
probability for the conjunction. The developed tool for this thesis implements a
simplified version of a method developed by Alfano and Negron, called the Alfano-
Negron Close Approach Software (ANCAS). This method provides close approach
data between two arbitrary, non-maneuvering spacecrafts, and is here simplified
by lacking covariance information, since this topic wasn’t the focus of this work.
Insights on the method are provided in section 4.2, for further information please
refer to [10].

4.1 Apogee-Perigee Filter
A first screening filter was implemented to reduce the computational burden where
it is not needed: a simple comparison between apogee and perigee values of the
orbits provides a rapid estimation to determine if close approaches are possible.
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If the absolute value between the largest perigee, rpmax, and the smallest apogee
ramin, is greater than a threshold distance, the two objects will not come close
enough to require a full conjunction assessment:

if : |rpmax − ramin| > TD, then : no conjunction (4.1)

Spacecrafts that pass this initial test do not require any further processing.

4.2 Miss Distance Determination
As previously mentioned, the Probability of Collision estimation tool exploits a high
fidelity propagator to obtain accurate orbit data for the two objects of interests and
the ANCAS method to perform the conjunction assessment. ANCAS has several
advantages over traditional, brute force, methods, like sequencially stepping along
the orbits of the two satellites:

• it uses a relative-distance function for which each point and slope matches in
the blending functions;

• the method may use any propagation scheme;

• the results are obtained from a closed-form solution and eliminate the need
for iteration.

In the context of this chapter the two objects being observed for conjunction
assessment will be reffered to as "primary" and "secondary" satellites, where the
primary satellite is the maneuvering spacecraft in case collision avoidance is deemed
necessary and the secondary object represents either an active or passive satellite
or orbital debris.

From the propagated trajectories, the J2000 positions of the primary and
secondary satellites, respectively rp and rs, are used to obtain the relative-distance
vector, rd and its time derivatives:

rd = rs − rp (4.2a)

ṙd = ṙs − ṙp (4.2b)

r̈d = r̈s − r̈p (4.2c)

Since a splining technique is implemented in this method, large time steps are
allowed for the propagation, ensuring lower computation times. Now it is possible
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to define the distance function, fd(t), and its time derivatives:

fd(t) = rd · rd (4.3a)

ḟd(t) = 2(ṙd · rd) (4.3b)

f̈d(t) = 2(r̈d · rd + ṙd · ṙd) (4.3c)

Close approach conditions verify when the distance function is at a local minimum,
which is when ḟd(t) = 0 and f̈d(t) > 0, where the second condition ensures that
the two objects are in the same half-plane of the orbit. Cubic splining in each
integration time interval is exploited to find the times of closest approach: given
the distance function and its time derivatives at the beginning and end of each
time interval, tn and tn+1 respectively, the cubic polynomial Pc(τ) is defined as:

Pc(τ) = αc3τ
3 + αc2τ

2 + αc1τ + αc0 (4.4)

where τ is a normalized time variable and uniformly spans the interval (0.0 < τ <
1.0) and the αc coefficients are defined as follows:

αc0 = ḟd(tn) (4.5a)

αc1 = f̈d(tn)∆t (4.5b)

αc2 = −3ḟd(tn)− 2f̈d(tn)∆t+ 3ḟd(tn+1)− f̈d(tn+1)∆t (4.5c)

αc3 = 2ḟd(tn) + f̈d(tn)∆t− 2ḟd(tn+1) + f̈d(tn+1)∆t (4.5d)

with ∆t = tn+1 − tn, tn+1 > tn.
If:

dPc(τ)
dτ

> 0 at τ = τroot (4.6)

a local minimum distance exists.
Now, using quintic splining, it is possible to account for the contribute of acceleration
and determine the distance at τroot. Three quintics must be solved (one for each
axis), with the quintic polynomial Pq(τ) being:

Pqi(τ) = αq5iτ
5 + αq4iτ

4 + αq3iτ
3 + αq2iτ

2 + αq1iτ + αq0i (4.7)
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with i = {I, J,K} and the αqi defined as:

αq0i = rdi(tn) (4.8a)

αq1i = ṙdi(tn)∆t (4.8b)

αq2i = 0.5r̈di(tn)∆t2 (4.8c)

αq3i = −10rdi(tn)− 6ṙdi(tn)∆t− 1.5r̈di(tn)∆t2

+ 10rdi(tn+1)− 4ṙdi(tn+1)∆t+ 0.5r̈di(tn+1)∆t2 (4.8d)

αq4i = 15rdi(tn) + 8ṙdi(tn)∆t+ 1.5r̈di(tn)∆t2

− 15rdi(tn+1) + 7ṙdi(tn+1)∆t− r̈di(tn+1)∆t2 (4.8e)

αq5i = −6rdi(tn)− 3ṙdi(tn)∆t− 0.5r̈di(tn)∆t2

+ 6rdi(tn+1)− 3ṙdi(tn+1)∆t+ 0.5r̈di(tn+1)∆t2 (4.8f)

The minimum distance (dclose or minimum range) and corresponding time (tclose or
time at closest approach, TCA) are:

dclose =
ñ
P 2
qI(τroot) + P 2

qJ(τroot) + P 2
qK(τroot) (4.9a)

tclose = tn + τroot ∗∆t (4.9b)

Since this work was based on the absence of known covariances -the unceranties
of the predicted state-, the following computation of the Probability of Collision
(PoC) is based on a numerical approximation that provides the worst-case collision
potential by finding the combined Gaussian probability density that maximizes
collision probability [16].

PoCmax = 1
2{erf

r + 1
2
√
r

ó
−ln

31− r
1 + r

4+ erf

r − 1
2
√
r

ó
−ln

31− r
1 + r

4} (4.10)

where erf is the error function and r is defined as the combined object radius
normalized with respect to the miss distance:

r = robj1 + robj2
dclose

(4.11)

For the purposes of this work, computing the worst-case PoC would be too
conservative: by accounting for the worst-case uncertainties on the spacecrafts
positions, too large maneuvers would be required to lower the PoC to an acceptable
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risk level. Hence, a new Probability of Collision has been created by computing
a weighted mean between the worst-case PoC and a linear function representing
the best-case PoC, for which the risk is acceptable when the minimum range is
greater than the combined object radius and is null for an infinite minimum range.
The weights are computed as a function of the time at closest approach (TCA)
so that the worst-case probability is progressively heavier the greater the TCA is.
The resulting weighted PoC should be solely regarded as a benchmark to assess
the efficacy of a collision avoidance maneuver and shouldn’t in any case replace
the results of a more sophisticated PoC computing method involving covariance
matrices. The following is a flowchart showing the main steps of the PoC assessment
tool:
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Figure 4.1: PoC computation

4.3 Safety Standards

An essential component of any collision avoidance strategy is the criteria for
determining when to execute an avoidance maneuver. The risk threshold that
was considered in this work was retrieved from ESA’s current collision avoidance
strategies. [17] states that a risk threshold of 1 × 10−4 one day to the event leads
to a risk reduction of around 90%. Therefore, in this work, an avoidance maneuver
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has to be executed whenever the estimated PoC is greater than 1 × 10−4 and should
modify the primary spacecraft’s semimajor axis enough to guarantee a new PoC
lower than 1 × 10−4. The following flowchart summarises the general steps needed
to search for the optimal avoidance maneuver:

Figure 4.2: Maneuver threshold and general search method for Optimal trajectory

where δ represents a fixed step variation of the target semimajor axis.

In theory, the trajectory of the primary spacecraft must be optimized for each
new target orbit in order to determine the object’s position and mass at the end
of the maneuver. These values must then be entered as new initial conditions
in the PoC evaluation tool. This is true if the optimization and PoC dynamic
frameworks are identical. In this work’s case, however, using the primary object
state resulting from a two-body propagation while obtaining the secondary object
position with a perturbed propagation would lead to erroneous evaluations of the
risk of collision. Given that the trajectories in question require low maneuvering
times, it was deemed sufficient to evaluate the resulting PoC by modifying the
semimajor axis of the corresponding delta in each iteration. This approach not only
ensures the validity of the obtained PoC but also eliminates the need for trajectory
optimization on a repeated basis. The workflow of this research project can be
schematized as follows:
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Figure 4.3: Implemented maneuver search

Once a first admissible semimajor axis variation is identified, a bisection approach
is employed to reduce the delta interval until a one-meter precision is achieved.
Pursuing a precision below this threshold was deemed to be an excessive demand
for the purposes of this study, given the approximations made in terms of PoC
calculation and optimal trajectory determination.
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Chapter 5

The Implemented Optimal
Control Problem

This chapter presents an overview of the implemented Boundary Value Problem
in section 5.1. Collision avoidance maneuvers (CAMs) could be performed by
changing any orbital element of at least one of the colliding objects, but in-track
maneuvers are usually the preffered strategy, since a change in the semimajor axis
directly affects the radial distance between the satellites and affects the orbital
period; the distance at closest approach is increased by the combined effect of these
2 phenomena, while ∆V requirements are minimized. Therefore, ∆a maneuvers
are investigated, under the hypothesis of a free-attachment orbital insertion, i.e.
without specifying an exact target point on the target orbit. Moreover the time
needed to perform the maneuver is left as a free variable; more on this is discussed
in section 5.1.3. Finally, in section 5.2 an illustrative example is discussed.

5.1 OCP for space trajectory optimization

The Optimal Control Problem applied to the system of ODEs derived for a two-
body dynamic model in the Cartesian reference frame (J2000) aims to find the
optimal control law T ∗(t) that maximizes the final mass of the spacecraft at the
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end of the trajectory and is defined as:

OCP =



max J = mf

ṙ(t) = V , t ∈ [0, tf ]

V̇ (t) = − µ
r3r + T

m(t) , t ∈ [0, tf ]

ṁ(t) = −T
c
, t ∈ [0, tf ]

s.t.

T ≤ Tmax

ri,Vi ← initial orbit keplerian elements

rf ,Vf ← target orbit keplerian elements

mi = msc

tf = free

(5.1)

As already presented in chapter 2, to each state variable is associated a costate,
or adjoint, variable. The augmented state vector, or fullstate, is defined as:

fullstate = {x, y, z, vx, vy, vz,m, λx, λy, λz, λvx, λvy, λvz, λm}

= {r,V ,m,λr,λV , λm} = {S,m,C, λm} (5.2a)

Now the Hamiltonian for the defined OCP can be obtained:

H = λTf = λr · V + (λV · r) −µ
r3 + λV ·

T

m
− λm

T

c
(5.3)

5.1.1 Optimal Thrust
The PMP states that the optimal control maximizes the Hamiltonian H in order
to maximize the merit index J . As it can be seen from equation (5.3), the optimal
thrust direction that maximizes the Hamiltonian is parallel to the adjoint velocity
vector, or primer vector, λV :

T = T
λV
λV

(5.4)

where λV is the primer vector’s module:

λV =
ñ
λ2
vx + λ2

vy + λ2
vz (5.5)
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The thrust vector can be decomposed as follows:

Figure 5.1: Thrust angles in the cartesian RF

with: 
Tx = T sinαT
Ty = T cosαT cos βT
Tz = T cosαT sin βT

(5.6)

Hence, the thrust angles αT and βT can be expressed in terms of the velocity
costates:

sinαT = λvx
λV

(5.7a)

cosαT cosβT = λvy
λV

(5.7b)

cosαT sinβT = λvz
λV

(5.7c)

By grouping the terms that contain the control variable T in equation (5.3), the
Hamiltonian can be re-written by highlighting the switching function, SF:

H = λr · V + (λV · r)−µ
r3 + TSF (5.8a)

SF = λV
m
− λm

c
(5.8b)

From equation (5.8a) it is clear that the Hamiltonian is linear with the control,
hence a bang-bang control law arises, and that the optimal thrust magnitude is
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5.1. OCP FOR SPACE TRAJECTORY OPTIMIZATION

maximized when its multiplier, the switching function, is positive, and is minimized
when the SF is negative:

T =


Tmax, if SF > 0

0, if SF < 0
(5.9)

5.1.2 Euler-Lagrange Equations
The ODEs for the costate variables are obtained via the partial derivation of the
Hamiltonian with respect to the corresponding state variables, with a minus sign;
the resulting vectorial equations are here reported:

dλr
dt

= −∂g
∂r
· λV (5.10a)

dλV
dt

= −λr (5.10b)

dλm
dt

= T

m2λV (5.10c)

where in equation (5.10a) g = − µ
r3r.

5.1.3 Terminal Conditions
As mentioned at the beginning of this chapter, the maneuver of choice in this
work is a free-time, free-attachment orbital insertion. A free-attachment orbital
insertion doesn’t specify the insertion point on the final orbit, leaving the final
true anomaly as a free variable, to be determined by the optimal solution. For this
purpose, the reduced transversality conditions described in [18] were exploited to
obtain a condition that accounts for the added degree of freedom of the true anomaly.

Reduced Transversality Conditions:
The reduced transversality conditions are analogous to the transversality conditions,
here referred to as "optimality conditions", for the same OCP, with the variables in
the terminal constraints replaced by the orbital elements. The keplerian orbital
element vector is referred to as K:

K = [a, e, i,Ω, ω, ν] ∈ R6 (5.11)

Let Ki be a free element that does not appear in any constraint, in this case Ki = ν,
in general, at tf :

∂ψ

∂Ki

= ∂ψ(Sf )
∂Sf

∂Sf
∂Ki

= 0, i ∈ I (5.12)
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where I is the set of indices of the Ki free elements, ψ is the constraints vector,
and Sf is the final state obtained from the keplerian orbital element vector.
The optimality conditions in equation 2.11d:

Cf = µT
∂ψ

Sf
(5.13)

are modified through the introduction of the y vector, yi (with i = 1, . . . , n n =
number of free K) being a set of linearly independent solutions to the system:A

∂ψ(Sf )
∂Sf

B
y = 0 (5.14)

so that the optimality conditions (5.13) can be replaced by:

y(xf ) ·Cf = 0 (5.15)

From the analogy between expressions (5.12) and (5.14), one can obtain the (6−n)
reduced transversality conditions:

∂Sf
∂Ki

·Cf = 0 (5.16)

A solution for a free-time, free-attachment orbital insertion must include the
seven initial costates, the time to maneuver and the final true anomaly. Nine total
unknowns require 9 boundary conditions, which are here presented:

• Maximum final mass:
from the optimality condition in equation (2.11d):

λmf = 1 (5.17)

• Free-time:
from the transversality conditions in equation (2.11b):

Hf = 0 (5.18)

• Free-attachment:
from the reduced transversality conditions, (5.16):

Vf · λrf −
µ

r3
f

rf · λV f = 0 (5.19)

• Final state BCs:

rf = r∗
f (5.20a)

Vf = V ∗
f (5.20b)
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where r∗
f and V ∗

f represent the final desired state, which is obtained by updating
the required final keplerian elements with a new final true anomaly in every new
iteration.

Figure 5.2: TPBVP implemented cases

5.2 An Illustrative Example: LEO orbital inser-
tion

In this example a medium-sized satellite with the following characteristics:

S/C mass Isp T
600 kg 3000 s 0.5 N

Table 5.1: Example spacecraft

will be performing an orbital transfer between two circular orbits with the
following keplerian parameters:
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Orbit a [km] e i [deg] Ω [deg] ω [deg] ν [deg]
Initial Re + 450 0.00 0.00 0.00 0.00 0.00
Target Re + 460 0.00 0.01 0.00 0.00 free

Table 5.2: Targeted maneuver

By releasing both the time needed to maneuver and the final true anomaly
from any constraints, the optimization tool will try to bring the time up to a
virtually infinite value in order to have infinitesimal thrust impulses only at the
perigees, where the maneuver is most efficient. To highlight this phenomenon
and the capabilities and limits of the tool the solutions that follow were found by
cyclically fixing the maneuver time and then releasing it to find the next solution
with a continuation approach. Therefore, the tool has been exploited with both
modes from the right-hand-side of graph 5.2, but the same could be achieved by
working with the two left-hand-side-modes in the same way.

5.2.1 Differential Correction - Jacobian Matrix
As mentioned in chapter 2 what drives a guess solution to the actual solution is a
differential corrector that exploits Newton’s method. The purpose of this section is
to highlight how the Jacobian matrix was built for the two modes that were used
in this example.

Free-time, free-anomaly
This is the case mentioned above, nine unknowns and nine boundary conditions
define a 9× 9 Jacobian matrix:

G =



(δxf )p−δxf

∆λx

(δxf )p−δxf

∆λy
. . .

(δxf )p−δxf

∆ν

(δxf )p−δxf

∆t

... ... . . . ...
(δλmf )p−δλmf

∆λx

(δλmf )p−δλmf

∆λy
. . .

(δλmf )p−δλmf

∆ν

(δλmf )p−δλmf

∆t

(freeν)p−freeν
∆λx

(freeν)p−freeν
∆λy

. . . (freeν)p−freeν
∆ν

(freeν)p−freeν
∆t

(Hf )p−Hf

∆λx

(Hf )p−Hf

∆λy
. . .

(Hf )p−Hf

∆ν

(Hf )p−Hf

∆t


(5.21)

where δ stands for the mismatch between the obtained and the desired value, the
subscript p means perturbed and freeν is the condition expressed in equation (5.16).

The Jacobian matrix is calculated iteratively by column, by perturbing each
guess solution (the seven costates, the true anomaly and the time of maneuver) of
a ∆, which is usually the same for every variable.
Notice that when perturbing the final true anomaly no integration of the sys-
tem’s ODEs is required since no initial value is perturbed in the IVP. This was
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the reason why it was opted to perform Point-to-Orbit maneuvers and not viceversa.

Fixed-time, free-anomaly
When a specific time to maneuver is defined the unknowns become eight and there’s
no need to compute the Hamiltonian anymore, therefore the Jacobian matrix loses
the last column and the last line to become an 8× 8 matrix:

G =



(δxf )p−δxf

∆λx

(δxf )p−δxf

∆λy
. . .

(δxf )p−δxf

∆ν

... ... . . . ...
(δλmf )p−δλmf

∆λx

(δλmf )p−δλmf

∆λy
. . .

(δλmf )p−δλmf

∆ν

(freeν)p−freeν
∆λx

(freeν)p−freeν
∆λy

. . . (freeν)p−freeν
∆ν

 (5.22)

5.2.2 Results

The two proposed results presented in this section demonstrate the distinctions
between a low maneuver time solution and a high one. Subsequently, a parametric
analysis of the initial costates is provided.

Low maneuver time solutions
In these types of solutions, propulsion is active for the majority of the time.
As illustrated by the switching function 5.5 and the two-dimensional and three-
dimensional representations of the trajectory 5.6, brief coasting arcs remain present
and cannot be eliminated. Convergence difficulties occur with lower maneuver
times, as these coasting phases allow for the thrust angles to invert their trend
without causing disturbance in the solution determined by the relatively high thrust.
It is important to note that these are not minimum time solutions, as those would
require a different set of terminal conditions.
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Figure 5.3: Semimajor axis, eccentricity and inclination during the maneuver

As it can be seen from the evolution of the first three keplerian parameters, the
orbit is raised and inclination is changed almost continuously, as expected. The
tool is able to bring the eccentricity of the final orbit back to the targeted value (0)
by defining a last propulsive burst.
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Figure 5.4: RAAN, argument of periapsis and true anomaly during the maneuver

Figure 5.5: switching function, mass and thrust angles during the maneuver
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The in-plane thrust angle α testifies that thrust is not provided along the velocity
vector, therefore allowing for shorter maneuver times, at the expenses of efficiency.
The out-of-plane thrust angle β switches from positive to negative values depending
on where the spacecraft is along the orbit: utilizing the out-of-plane angle φ from
the J2000 polar coordinate system, when the spacecraft travels from φmin to φmax
the β angle is positive, whereas when the spacecraft travels in the remaining portion
of the orbit the β angle is negative.

(a) Trajectory in initial perifocal plane (b) Trajectory in J2000 RF

Figure 5.6: Low maneuver time trajectory

High maneuver time solutions
This was the highest maneuver time that allowed for convergence. It is noticeable
from the switching function graph that the thrust-coast structure of this solution
is fairly complicated and pushes the boundaries of what can be achieved without
defining an a-priori arc structure: minimal changes in the initial conditions can
cause great variations to the final condition and solution divergence is highly
probable if the K1 and K2 relaxation parameters are not set correctly.
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Figure 5.7: Semimajor axis, eccentricity and inclination during the maneuver

With a comparable precision to the low-maneuver-time case, the semimajor and
inclination targeted values are reached. The optimization tool wasn’t able to fully
satisfy the eccentricity constraint, however, its low value allows the solution to
be considered valid. As mentioned, the high times involved in this IVP cause the
convergence to be fairly complicated, and parameters that are not directly targeted,
such as the eccentricity (which is rendered through the velocities in the terminal
conditions), can be hard to obtain precisely.
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Figure 5.8: RAAN, argument of periapsis and true anomaly during the maneuver

Figure 5.9: switching function, mass and thrust angles during the maneuver
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(a) Trajectory in initial perifocal plane (b) Trajectory in J2000 RF

Figure 5.10: High maneuver time trajectory

The in-plane thrust angle α testifies that, when provided, thrust acts mostly
along the velocity vector (α = 0), which is the most propellant efficient orbit raising
strategy. The out-of-plane thrust angle β determines the inclination change by not
being exactly zero or −180.

The first solution presented is similar to what can be expected from using
Edelbaum’s approximation of continuous low-thrust orbital transfer maneuvers,
although the simplifying hypotheses of that approach are not fully met here: the
transfer orbit should be nearly circular and the orbital plane variation should
be minimal. On the other hand, the high-time maneuver solution shows a more
efficient maneuver where thrust is provided only at the nodes. The thrust direction
is defined to combine (with a vectorial sum) the Delta V needed to change the
energy of the orbit (and cause its rise) with the Delta V required to achieve the
target orbital plane.
When the thrust misalignment is small, as in the latter solution, the orbital plane
change has little influence on the total Delta V required. With more time to
maneuver, the thrust misalignment for each infividual burn can be reduced, hence
reducing the total Delta V required; confirmation of the trend can be found in
graph 5.11.
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Parametric analysis
As stated above, the optimization tool was exploited, for this example, to find
solutions with progressively higher maneuver times. The solutions’ trend can be
easily seen in this graph:

Figure 5.11: Solution behaviour against number of revolutions

As evidenced by the number of ignitions curve, consistent data from converged
solutions was successfully retrieved until approximately six orbital periods of
maneuver time. Subsequently, only a few convergences were obtained. Although
partially explained in the previous section, the reason for this convergence difficulty
is most evident by looking at the following graphs, where the initial costates were
plotted for every converged solution:
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Figure 5.12: Parametric analysis of initial costates

Strong gradients in the initial costates suggest that fairly considerable changes
in the initial guesses don’t cause solution divergence, in this case the differential
corrector can be set to work in the best conditions and provides convergence in a
few seconds if a good initial guess is provided. On the contrary, when the initial
costates have a nearly null gradient the smallest initial delta can cause serious
solution oscillation. With this scale it is almost impossible to discern a difference
between a 10 orbital periods solution from a 40 orbital periods one, which denounces
bad conditioning for the differential corrector to work properly. For these reasons,
when the thrust-coast structure becomes too complicated, an a-priori arc structure
definition is advised, along with a multiple shooting approach.
It is also worthy of note that the strongest position costate is the one linked to
the x value, since the satellite’s initial position is on the x axis. On the contrary,
the strongest velocity costate is the one linked to vy which represents the initial
along-track velocity and is the most important value when considering a delta
semimajor-axis-maneuver.
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Chapter 6

Collision Avoidance
Trajectories

As explained in the previous chapter, the preferred maneuvering strategy in this
research is a semimajor axis variation. Because the optimization tool lacks the
perturbative accelerations that characterize a LEO environment, an important
precaution was adopted in this work: the primary spacecraft orbits Earth with
a circular trajectory and, if needing to perform a CAM, it has to target an also
circular evasion orbit. This is done to eliminate potential inaccuracies in the PoC
calculation resulting from apsis rotation of elliptical orbits, which is a perturbative
effect that arises due to Earth’s asphericity.

In order to simulate an actual scenario, the primary spacecraft’s propulsion
characteristics were based on a datasheet from state-of-the-art Hall-effect thrusters
suitable for use as main propulsors in small-sized satellites. The case study is set in
the lower region of the LEO environment, which is the typical operational domain
for these kinds of spacecraft.

6.1 Case study

Two objects of interest were modeled in the PoC tool with the following keplerian
elements:

Name a [km] e [deg] i [deg] Ω [deg] ω [deg] ν [deg]
Primary Re + 300.000 0.00 45.00 1.00 0.00 1.00

Secondary Re + 300.155 0.00 −0.01 0.00 0.00 0.99

Table 6.1: Example satellites’ keplerian parameters
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For the purposes of this illustrative example, both satellites have initial circular
orbits and the same geometric and mass properties:

rsat−p = rsat−s = 1m (6.1a)

msat−p = msat−s = 150kg (6.1b)

The primary spacecraft has a Hall-effect thruster with the following specifications:

Isp = 1400s T = 0.025N (6.2)

By propagating both satellites in the high-fidelity LEO model the following trajec-
tories are found:

Figure 6.1: Propagated example orbits: blue = primary s/c, orange = secondary
s/c

A potential collision is found after approximately 2 orbits of propagation:
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TCA [s] dclose [km] PoC
10818.04 0.107284 3.614 × 10−4

Table 6.2: Conjunction event

According to the safety standards defined in section 4.3, a collision avoidance
maneuver is hereby required. By following the algorithm represented in 4.3, the
least propellant demanding maneuver that lowers the probability of collision below
1 × 10−4, is found to be a semimajor axis lowering of 19 meters, rounded up to the
nearest integer. The evasion maneuver yelds the following results:

TCA [s] dclose [km] PoC ∆a [km] mp [kg] tCAM [s]
10818.53 0.388371 9.959 × 10−5 -0.019 1.192 × 10−5 667.76

Table 6.3: Conjunction event after the CAM and CAM data

The following figure summarises the variation of the primary spacecraft’s keple-
rian elements during the evasion maneuver along with the switching function and
optimal thrust angles.
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(a) Semimajor axis, eccentricity and in-
clination during the maneuver

(b) RAAN, argument of periapsis and
true anomaly during the maneuver

(c) Switching function, mass and thrust angles during the maneuver

Figure 6.2: Evolution of spacecraft and control variables during the selected CAM

The semimajor axis behavior during the identified maneuver can be misleading:
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by not being monotonically decreasing, it may induce the wrongful idea of the
maneuver not being optimal for its case. As the J2000 polar coordinates in the next
figure clarify, the radius is in fact monotonically decreasing, while the semimajor
axis isn’t. This is a consequence of the eccentricity requirement, which dictates the
circularization of the targeted orbits and therefore causes semimajor axis variation.

(a) J2000 polar coordinates (b) ZEN velocities

Figure 6.3: Evolution of spacecraft’s state in J2000/ZEN coordinates during the
selected CAM

Note that the radial component of the velocity starts and ends at zero, con-
firming that the initial and final orbits are in fact circular, and the east and north
components evolve along the trajectory according to the orbital plane’s inclination:
the closer to the ascending node (φ = 0), the higher the north component w is,
and, the closer is the out-of-plane angle φ to the orbit’s inclination, the higher the
east velocity component v.
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6.1.1 Parametric Analysis of results

In order to extrapolate additional useful insights from this example a parametric
evaluation of the maneuver to be performed by the primary satellite was carried out
with the trajectory optimization tool. Iteratively the tool evaluated a Hohmann-like
maneuver with a target delta semimajor axis spanning between −50m and +50m.
A constant ∆a = 10m step was adopted to find the first solutions, using a continuity
approach, additional solutions where found by setting ∆a = 5 between the solutions
that yielded the best results in terms of PoC. The following graphs highlight the
evolutions of the solutions’ keplerian parameters, polar J2000 positions and ZEN
velocities as well as the controls and the spacecraft’s mass:

Figure 6.4: Semimajor axis, eccentricity and inclination during the evaluated
maneuvers

The same considerations made for figure 6.2 about the semimajor axis variation
apply here. The J2000 polar coordinates provided later on should clarify the trends.
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Figure 6.5: RAAN, argument of periapsis and true anomaly during the evaluated
maneuvers

Figure 6.6: J2000 Polar coordinates during the evaluated maneuvers

66



6.1. CASE STUDY

Figure 6.7: ZEN velocities during the evaluated maneuvers
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Figure 6.8: switching function, mass and thrust angles during the evaluated
maneuvers

Figure 6.9: 2D trajectories in the orbital plane
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As illustrated in the switching function graph 6.8, all solutions identified are
characterized by the presence of continuous propulsion. The sole exception is
the case of ∆a = +15m, which exhibited a brief coasting phase (visible in the
semimajor axis graph 6.4, light blue line). The reasons for this behavior can be
attributed to the extremely small state variations targeted, paired with a low-thrust
control and, possibly, the lack of an a-priori arc definition. Furthermore, the time
of maneuver was set to be free, but bounded to a maximum value of an orbital
period, which precludes the possibility for the solution to have multiple thrusting
arcs at perigees, where theoretically most efficient. This was an author’s decision
related to this trajectory optimization’s objectives of providing short-term evasion
maneuvers, and that certainly helped in obtaining convergence by reducing the
solutions search space. Moreover, with the selected propulsive parameters, the
problem’s objective of maximizing the final mass is mostly affected by the thrust
time, rather than by the kind of trajectory, hence the optimizer is more prone to
reducing the overall maneuver time. All of the identified solutions exhibit a similar
structure: when the objective is to raise the orbit, a first phase in which the thrust
vector is oriented along the direction of the velocity, with a radial component, is
followed by a second circularizing phase in which thrust is provided against the
velocity, viceversa happens in the case of an orbit lowering.
The following graphs highlight the fundamental simmetry between the identified
orbit raising and orbit lowering solutions:

Figure 6.10: Trajectory in initial perifocal plane
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Figure 6.11: Trajectory in J2000 RF

In light of these results, it can be reasonably concluded that the repositioning
maneuver to be performed following TCA should bear a strong resemblance to the
CAM in terms of propellant expenditure and time to maneuver.
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Risk Evaluation
The curve below relates the considered maneuvers to their corresponding PoC
computation and highlights the better fitness of negative semimajor axis variation
solutions, as expected, since they ensure greater radial separation between the
primary and the secondary spacecrafts.

Figure 6.12: PoC evaluation for each candidate maneuver
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Initial Costates
By plotting each solution’s initial costates other observations can be made:

Figure 6.13: Initial costates for each solution

Although lacking a physical significance and a clear predictable trend, initial
costates can provide valuable insights into a solution’s behavior. With experience
and critical analysis of the results, sensible guesses can be made. By recognizing
that a typical Hohmann-like maneuver has a thrust-coast-thrust structure (TCT), it
can be deduced that the initial switching function should be positive. A relationship
between the primer vector and the mass costate is established by the definition
of the SF 5.8b and is evident in the graph above: when the primer vector rises in
module, the mass costate plummets, and vice versa. From the definition of the
thrust angles in terms of velocity costates 5.7, it is possible to predict the former
if the direction of the initial thrust is known: as mentioned above, the identified
trajectories have predictable along-track, along-velocity or against-velocity initial
thrust and the graph above confirms the trend in terms of positive or negative
initial velocity costates. Although with a different scale, which is here omitted
since it is determined by the problem’s optional adimensionalization, the initial
position costates follow an almost identical trend compared to the velocity ones.
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It is important to notice how the dominant costate is related to the x-coordinate,
as the primary spacecraft’s initial position in the J2000 RF is almost coincident
with the x axis. Different co-dependencies can be expected with different initial
positions.
Parametric analyses of converged solutions are of great importance for the com-
prehension of costate behaviour, and can be of significant assistance with initial
guesses, which, under the influence of the specific characteristics of the optimization
problem, can considerably impact the convergence capabilities of the presented
method.
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Chapter 7

Closing Remarks and Future
Development

The work’s objective of developing a fully functional optimization tool based on the
indirect transcription of the optimal control problem was widely met. Moreover,
this work allowed for the modeling of a typical LEO environment, along with a
basic methodology for the development of a conjunction analysis tool. By providing
practical examples that cover the entire process followed to develop the optimization
tool, the author hopes to contribute to a further understanding of the method and
its applicability.

Evasion maneuvers push the boundaries of what can be achieved with indirect
methods: the high precision required and the extremely low variation between
initial and target states cause convergence to be difficult and obtainable only when
initial guesses are good; critical analysis of the results and of the optimal costates
was provided to help in this direction.

By following a homotopy-continuation approach, future developments of the
optimization tool should gradually introduce LEO perturbations, and therefore
allow for a complete coupling with the PoC computation tool. Furthermore, the
translation from a TPBVP to a MPBVP with an inequality interior point constraint
would guarantee a complete optimization of both the evasion and the re-positioning
legs of the CAM, albeit greater problem complexity and convergence difficulties
are to be expected.
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