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Abstract

This research focuses on identifying low-thrust optimal trajectories for inserting
satellites into a Distant Retrograde Orbit (DRO) around the Moon with minimum
propellant usage, contributing to cost-effective strategies and enabling heavier pay-
loads for future cislunar missions. This study is motivated by the growing interest in
establishing a scientific presence in cislunar space, with initiatives aiming to position
orbital stations on such orbits, or to utilize lunar resources and create a launchpad for
missions to Mars and beyond. NASA’s Artemis program is heading in this direction.
Among potential locations, Periodic Orbits around Lagrangian Points, including
DROs and Near-Rectilinear Halo Orbits (NRHOs), present promising options. DROs,
in particular, offer significant advantages due to their stability, reducing maintenance
costs and prolonging mission lifespans.

To optimize DRO insertion trajectories, a Two-Point Boundary Value Problem
approach is employed. This method enhances solution convergence amid the chaotic
gravitational dynamics between Earth and the Moon and includes an iterative shoot-
ing procedure with a bang-bang thrust control law derived from indirect optimal
control theory. Pontryagin’s Maximum Principle is applied to ensure the optimality
of control solutions.

DRO computations are performed within the Circular Restricted Three-Body
Problem (CR3BP) framework using a single-shooting method based on the State
Transition Matrix analysis. This model accounts for the gravitational influences of
the Moon, which significantly impacts both the injection trajectory and the stability
of the DRO.

Results indicate that two-burn finite-thrust trajectories present the most efficient
means for direct DRO insertion from Earth, effectively exploiting the Earth-Moon
gravitational interaction without the need of performing a lunar gravity assist or
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multiple swing-bys. The optimal trajectory is proven to be the one that best fits the
shape of the orbit, inserting the satellite directly into the final stable DRO.
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Chapter 1

Introduction

1.1 Preface

Since ancient times, humanity has gazed upon the Moon with fervent fascination,
intrigued by its mysteries and unexplored possibilities. As early as the III millennium
BC in Mesopotamia, the Moon was venerated, personified as the Sumerian god Sin,
also known as Nanna. The Pantheon of ancient Greeks included the lunar goddesses
Selene, sister to Helios (the Sun) and Eos (the Aurora), and Artemis, the goddess of
crescent moon, while the Romans worshipped the corresponding Luna and Diana.
Beyond its religious significance, lunar observations profoundly influenced astrology,
esotericism, and obviously astronomy. The Roman calendar itself was based on
lunar months, at least until the advent of Julian calendar in 46 BC. The Moon has
perpetually inspired countless myths and legends. During the Middle Ages, popular
belief held that men transformed into fierce wolves under the light of the full Moon,
giving rise to the iconic imagery of werewolves. This mystical allure with the Moon
extended into art and literature in subsequent centuries. In Dante’s masterpiece, La
Divina Commedia (early 14th century), he describes the ascent through the Moon’s
spheres towards Paradise. In Ludovico Ariosto’s chivalric epic Orlando Furioso
(1516), the knight Astolfo rides a hippogriff to the Moon to regain the lost sanity of
the protagonist Orlando. The fascination for lunar voyages also permeated modern
science-fiction literature, from Jules Verne’s From the Earth to the Moon (1865) to
H.G. Wells’ The First Men in the Moon (1901), and Edgar Rice Burroughs’ The
Moon Maid (1926). In the fantasy genre, J.R.R. Tolkien’s cosmology of his fictional
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Introduction

universe Arda includes the lunar goddess Isil (or Ithil), a counterpart to our real
Moon. The theme of lunar voyages quickly captured the attention of the newborn
cinema, from George Méliès’ A Trip to the Moon (1902), depicting a spaceship of
bullet-like shape fired to the Moon by a cannon, to Fritz Lang’s Woman in the Moon
(1929) and Irvin Pichel’s Destination Moon (1950), written by Robert A. Heinlein.
During the second half of the 20th century, NASA’s Mercury (1958-1963), Gemini
(1964-1966), and Apollo (1969-1972) space programs marked the beginning of a
unprecedented era in space exploration. These missions, which culminated with
humanity’s first steps on the Moon, captivated global imagination and continued to
inspire people. Even before the Apollo 11 mission, Robert Altman and William Con-
rad’s Countdown (1967) narrated the story of the first Moon landing rushed by NASA
to preempt Sovietic Union. The following year, was released the science-fiction
masterpiece par excellence 2001: A Space Odyssey by Stanley Kubrick. Inspired
by Arthur C. Clarke’s story The Sentinel (1951), it features the discovery of a giant
extraterrestrial monolith in Tycho crater, which prompts the protagonists to embark
on a deep space mission. More recently, even in the iconic Star Trek saga (1998), the
Moon is envisioned as a large space station of millions of inhabitans, while in Duncan
Jones’ film Moon (2009), it becomes a massive mining base for isotope extraction.
Also noteworthy are Ron Howard’s Apollo 13 (1995), about the miraculous rescue
of the crew following the mission own failure, and Damien Chazelle’s First Man
(2018), depicting Neil Armstrong’s preparations for the historic Moon landing.

Fig. 1.1 An iconic frame from the first science-fiction film set in space, A trip to the Moon by
George Méliès (Le voyage dans la Lune, 1902).
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Today, after centuries of dreaming and sixty years of actual exploration, all the
major space agencies and private companies in the world are once again planning to
send humans to the Moon, this time with the aim of establishing a stable presence
in the cislunar space. Indeed, this region has gained significant interest over the
past decade, serving as a base-ground scenario and testing zone for both several
lunar missions and deeper space exploration endeavors. In this regard, the unfolding
NASA’s Artemis Program aims at setting foot on the Moon for the first time since
Apollo 17 in 1972, specifically to create a sustainable human base in the lunar South
Pole region [1]. Additionally, the presence of unique gravitational balance points
in the Earth-Moon (EM) system, namely the Lagrangian Points L1 and L2, offers
numerous opportunities for establishing long-term infrastructure relatively close to
the Moon. Indeed, an object positioned at L1 or L2 maintains a fixed position with
respect to the rotating primaries, making these points strategic locations for stationing
satellites, space telescopes, and even orbiting space stations. These installations may
enable continuous monitoring of Earth, Moon, and deep space phenomena, produce
a more practical handling of lunar resources, and facilitate spacecrafts assembly
and supply for more distant explorations, as for the Deep Space Transport. The
future Lunar Orbital Platform-Gateway (LOP-G), previously known as Deep Space
Gateway (DSG), represents a collaborative initiative between NASA, ESA, CSA, and
JAXA to address these objectives [2, 3]. This long-term platform will be deployed
in a stable orbit around L2, positioned at an average distance of 61,500 km from
the Moon. In particular, it will be placed in a Southern L2 Near Rectilinear Halo
Orbit (NRHO) with a 9:2 Lunar Synodic Resonance and a perilune average radius
of 70,000 km, allowing to minimize station keeping and eliminate eclipses almost
completely. Therefore, the Lunar Gateway embodies the next frontier of space
exploration, serving as a valuable waypoint and operational base for more ambitious
missions towards Mars and beyond. Over the years, other several space missions on
orbits around EM L1 and L2 have been proposed, but, till now, only the Artemis
missions were actually implemented.

However, beyond the study of Lagrangian Points (LPs), the interest of scientific
community focuses on the emergence of periodic or quasi-periodic orbits in the
cislunar scenario, especially those around L2 [4, 5]. In particular, researchers
worldwide have been investigating multiple orbit families, from the more classical
Lyapunov, Halo, and Lissajous orbits, to the more recent NRHOs and DROs. All of
these invariant structures would play a key role in designing lunar staging orbits, and
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facilitating low-energy trajectories both for Earth-to-L2 or Earth-to-Moon transfers
[6–8]. At this purpose, strategies like Indirect transfer [9], Weak Stability Boundary
[10, 11], or Lunar flyby [12] have been explored. All these approaches capitalize on
the unique dynamics of LPs and their associated quasi-stable orbits to enable more
efficient and cost-effective trajectories for future space missions.

The present thesis starts from such heritage, proposing to determine valuable
trajectories for accessing the cislunar space and inserting satellites into a Moon-
centered Distant Retrograde Orbit (DRO). Specifically, this involves modeling a
DRO insertion within a multi-body gravitational scenario, by identifying the optimal
strategy, among the possible ones, that minimizes the fuel consumption. To achieve
this, an iterative shooting procedure based on indirect optimization methods is
implemented, leveraging the fundamentals of Optimal Control Theory (OCT). An
overview of the current state of research on DROs and optimization methods in space
trajectory applications is given below.

1.2 State of the art

DROs are a specific class of Periodic Orbits (POs) in the Earth-Moon three-body
system, which combine a retrograde motion, opposite to the Moon’s orbiting direc-
tion, and large amplitudes. In more general terms, these orbits can be centered in
the secondary attractor of any Circular Restricted Three-Body Problem (CR3BP),
of which they represent a closed solution. This model considers the dynamics of
two main bodies, rotating on circular orbits around a common barycenter, and a
smaller third mass of negligible gravitation, and has been extensively adopted for the
classical Sun-Earth and Earth-Moon systems.

As early as 1968, Broucke provided initial evidence of the existence of DROs
within the CR3BP [13]. Further investigations into DROs are attributed to Hénon
[14–18], focusing on the specific Hill’s Case model derived from the broader CR3BP
framework. In such scenario, Hénon treated different orbits families numerically,
investigating their generation and stability properties. Listed in Hénon family f ,
DROs are indeed characterized by a very high stability due to the interactions with
L1 and L2. A comprehensive classification of POs is provided in [15].
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As regards the Earth-Moon system, Whitley and Martinez have been compared
various types of POs as potential staging orbits in cislunar space [6]. Among the
examined options, only NRHOs and DROs have proven to be feasible, due to their
high accessibility and minimal eclipse periods. DROs, in particular, exhibit a multi-
years stability so that no corrective maneuvers are required. Their general stability
has been formally studied in [19, 20]. These unique properties have led DROs
to be rediscovered in recent years, paving the way for more in-depth analyses and
promising mission concepts. In 2011, NASA proposed the Asteroid Redirect Mission
(ARM), intended to visiting a large near-Earth asteroid for collecting samples, by
exploiting DROs’ stability [21]. Unfortunately, the mission was canceled in 2017.
Notably, DROs was even considered as a cost-effective alternative to NRHOs for
stationing the Lunar Gateway.

Among all the proposed missions involving DROs, NASA’s Artemis I stands
out as the only one that has been developed and completed [22]. Launched in 2022,
this uncrewed mission served as a testing flight of the Orion spacecraft and Space
Launch System rocket (SLS) in preparation for subsequent Artemis missions. After
separation from the upper stage, the capsule performed a Trans-Lunar Injection (TLI)
on a Moon-centered DRO, flew-by around the Moon, and then returned to Earth
[23]. The Orion spent a total of three weeks in space, 6 days of which on orbit,
approaching approximately to a distance of 130 km from the lunar surface during
fly-bys. Further details on mission design and a complete optimization analysis of
the Artemis I trajectory are given in [24, 25].

In literature, several works have investigated how to exploit DROs as low-energy
transfer orbits in the EM CR3BP [26–28]. Indeed, it is possible to study their
dynamical evolution and leverage the manifolds for maneuvering at much lower
costs compared to traditional operations in the Keplerian model [29, 30]. Different
mission scenarios for a transfer to DROs are explored in [31]; these solutions for
DRO insertion range from exploiting the adjacent Lyapunov orbits at L1 and L2 to
performing a powered lunar fly-by (exactly like Artemis I) or even undertaking a
more complex direct transfer. Recent contributions have directly analyzed a transfer
from an initial parking DRO to Low Lunar Orbits [32]. A diverse scenario is proposed
in [33], where a LEO-to-DRO transfer is coupled with a rendezvous maneuver on
lunar orbits for future space outposts or supply stations. Conte, moreover, examines
DROs as support trajectories for refueling during deeper space missions [34, 35].

5



Introduction

However, the majority of these studies encompasses various differential correc-
tion and numerical optimization methods to identify feasible trajectories that ensure
minimal cost while addressing mission requirements. For this reason, the following
section provides a brief introduction to space trajectory optimization, the principles
of which are widely used in this thesis.

1.3 Optimization methods in space trajectories

The origins of Optimal Control Theory (OCT) date back to the 18th century, anchored
in Euler and Lagrange’s studies on Calculus of Variations (CoV), of which the OCT
represents an extension [36–38]. However, it was not until the mid-20th century
that OCT gained prominence, finding significant applications in the then newborn
aerospace industry [39–42]. In particular, the need to overcome the limit imposed by
the maximum transportable propellant, along with the existing mission constraints,
created fertile ground for optimization in space trajectories. By reducing propellant
requirements for a fixed spacecraft mass, more payload can be carried onboard,
which is the primary scope of any mission concept.

Historically, two different types of optimization methods have been implemented
to solve boundary value problems: direct and indirect methods [43]. Direct methods
perform a transcription of the original problem in to a new finite-dimensional one;
all continuous functions are discretized into a refined mesh, requiring a large number
of variables to describe the problem. Direct methods generally exhibit an higher
robustness compared to indirect methods, often reaching the final solution even
without a complete understanding of the scenario. However, this may result in a
suboptimal solution, not an optimal one, which requires further refinement techniques
to tackle scarce accuracy.

Indirect methods, instead, are generally faster due to a smaller set of describing
variables. Starting from initial guesses, they can achieve accurate optimal solutions,
by offering theoretical insights which guide the procedure. For this reason, the
indirect approach is preferred in this thesis, offering a better comprehension of the
problem. However, necessary conditions for optimality have to be retrieved for the
specific case study. Indirect methods introduce additional variables, or costates,
related to the original ones, thus producing an augmented boundary value problem.
Given their sensitivity to initial conditions, these methods has to be improved through
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tailored control strategies, capable to aid convergence. A detailed analysis and
comparison between these two numerical approaches is provided in Chapter 3.

1.4 Main objectives

This thesis fits perfectly with the described framework, focusing on the optimization
of direct transfer trajectories to a lunar DRO within the CR3BP model. The analysis
relies on the indirect formulation to compose a two-point boundary value problem.
Specifically, a single-shooting algorithm based on Newton’s method is implemented,
assuming a bang-bang thrust control strategy. The Pontryagin’s Maximum Principle
(PMP) is adopted to ensure the optimality of solutions.

As anticipated, the examined scenario involves an Earth-to-Moon transfer tra-
jectory, followed by a Distant Retrograde Orbit Insertion (DRI) maneuver. The aim
is to identify the optimal trajectory at minimum propellant request that fulfills all
boundary conditions. First off, such DRO has to be generated; the abovementioned
shooting procedure allows to compute a completely closed orbit in the CR3BP, then
targeted as final condition for the actual optimization process.

Therefore, this thesis operates on two different fronts; on one hand, it confirms
the enduring human attractiveness to the Moon, specifically the renewed scientific
interest in cislunar space operations. On the other hand, it provides a powerful
tool, based on the indirect optimization, that can be broadly applied -with minor
adjustments- to various types of optimal control problems. Such necessity arises
from Mascolo’s extensive research [44], of which this work is a derivative.

The main objectives of this thesis are:

• Unify and improve the results of previous research within the framework of
lunar transfers and cislunar operations on DROs.

• Develop an automated tool to generate periodic orbits in the CR3BP model,
providing a starting solution for the optimization problem of the case study.

• Implement a single-shooting algorithm that leverages the benefit of indirect
methods to identify an optimal, cost-effective trajectory while satisfying mis-
sion requirements and constraints.
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• Investigate the characteristics of stable periodic orbits in the vicinity of the
Moon, providing useful considerations for future mission concepts.

1.5 Thesis overview

The overall structure of the thesis is outlined as follows.

Chapter 2 discusses the dynamical model adopted for the whole analysis. A
preliminary overview of the two-body problem is provided to clearly understand the
scenario under investigation. The three-body problem, specifically the CR3BP, is
introduced, including its main assumptions and respective equations of motion, with
a focus on the existence of equilibrium points. Finally, the n-body problem is briefly
mentioned for completeness.

Chapter 3 explores the generation of periodic orbits in the three-body model via
differential correction. In particular, a single-shooting method is presented, serving
as a baseline for the main optimization procedure. Some considerations about how
such orbits would be transitioned in a higher-fidelity model are also provided.

Chapter 4 delves into the Optimal Control Theory, offering a detailed compar-
ison between direct and indirect methods. The original scenario is transformed
in a Two-Point Boundary Value Problem (TPBVP) and an effective thrust control
strategy is adopted. Numerical techniques and manipulations to improve the indirect
optimization procedure are extensively discussed in their main aspects.

Chapter 5 introduces the scenario under investigation, where a DRO insertion
in the Earth-Moon system is completely performed. The analysis aims at identify
the optimal trajectory for the case study, applying the OCT principles previously
discussed. The problem’s Boundary Conditions (BCs) are specified, and opportune
strategies complying with the Pontryagin’s Maximum Principle are implemented to
ensure optimality.

Chapter 6, in conclusion, summarizes the final results of this thesis, followed by
some suggestions on potential improvements and future research directions.
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Chapter 2

Dynamic models

Chapter 2 offers a comprehensive description of the adopted dynamical model.

First off, the Chapter introduces the main assumptions underlying the two-body
problem formulation. This includes preliminary considerations on classical orbital
parameters and the reference systems used to describe the Spacecraft (SC) motion.
In subsequent sections, a detailed overview of the three-body problem is provided,
with a specific focus on the CR3BP model, extensively employed in this thesis.
The CR3BP Equations of Motion (EoMs), along with the definition of gravitational
equilibrium points and Zero Velocity Surfaces (ZVSs) are also discussed. At the
end, the n-Body Problem (NBP) is briefly reported, mentioning the most commonly
used perturbations to add complexity to the scenario. However, only those elements
necessary for laying the groundwork of later analysis are explored. Further details
on the fundamentals of orbital mechanics can be found in the eminent works cited in
references [45–49].

The following notation, unless otherwise specified, will be employed throughout
this thesis; vectors will be presented as column vectors in bold lowercase fonts,
except for known quantities (e.g., velocity VVV and thrust TTT ), while matrices will
be in bold uppercase letters (AAA); unit vectors, again in bold lowercase fonts, are
denoted by a hat (x̂xx); first or multiple-orders time derivatives will be respectively
marked with one or multiple dots, for both scalar and vector quantities (ẋ, ẍ, ẋxx, ẍxx);
a tilde superscript (x̃xx) as well as Greek letters or Calligraphic fonts will be used to
distinguish nondimensional quantities from dimensional ones.
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2.1 Two-Body Problem

The Two-Body Problem (2BP) is the first approximate representation used in orbital
mechanics to describe the motion of massive bodies under their mutual gravitational
attraction. Also known as Kepler problem, this model simplifies the complexities of
multi-body interactions by reducing the system to only two bodies, allowing for an
exact analytical solution.

More precisely, the 2BP main assumptions are:

• The two bodies are considered as point particles.

• Masses are constant, with m ≪ M.

• No additional forces, except for gravity, are considered.

Given that one body (i.e. the SC) is much smaller than the other, its mass is
assumed to be negligible which gives the epithet restricted to the model. This means
that such a small body does not exert any influence on the primary, but is only
affected by its gravitation.

X̂XXF

ŶYY F

ẐZZF

rrrM rrrm

rrr

M
m

Fig. 2.1 Representation of the 2BP in a generic inertial RF {X̂XXF ,ŶYY F , ẐZZF}.

From Newton’s law of universal gravitation, considering two bodies at a relative
distance of rrr = rrrM − rrrm in a generic reference frame {X̂XXF ,ŶYY F , ẐZZF}, the following
expression holds:

r̈rr ≈−GM
r2

rrr
r
=− µ

r2
rrr
r
. (2.1)
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Therefore, the set of 2BP Equations of Motion (EoMs) is easily obtained:

r̈rr+
µ

r2
rrr
r
= 000, (2.2)

where G ≈ 6.67× 10−20 km3/kg/s2 is the universal gravitational constant, while
µ = GM is the planetary gravitational parameter. Values of µ for different main
bodies are provided in table 2.1.

Table 2.1 Planetary gravitational parameters for different primaries in the Solar system.

Bodies µ [km3/s2]

Sun 1.3271×1011

Earth 3.9860×105

Moon 4.9028×103

After some mathematical manipulations, two constants of motion can be derived
for the purposes of this discussion. The first quantity is the specific mechanical
energy E , clearly defined in the so-called vis-viva equation:

E =
V 2

2
− µ

r
, (2.3)

where the first and second terms are respectively the specific kinetic and potential
contributions. Such energy remains constant for any orbit in the 2BP domain and is
strictly related to the shape of orbit itself:

E =− µ

2a
. (2.4)

Depending on values assumed by E , the trajectory in question can be a closed
orbit (for ellipses, E < 0) or an open one (for parabolas, E = 0 while, for hyperbolae,
E > 0).

The second conservation law regards the aforementioned specific angular mo-
mentum:

hhh = rrr×VVV . (2.5)

These considerations lead to several key concepts in astrodynamics, such as
Kepler’s laws and closed-form equations for orbit determination, laying the ground-
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work for understanding more complex analyses. Further details can be found in
[45, 47, 48].

2.1.1 EME2000 reference systems

Reference
plane

ϕ

Orbital
plane

ÎII
Vernal Equinox �

ĴJJ

K̂KK

n̂nn
Line of nodes

Ω ϑ

ω

ν

p̂ppSC (êee)
Periapsis

q̂qqSC

ŵwwSC (ĥhh)
ûuu
v̂vv

ŵww

rrr

i

Fig. 2.2 EME2000 {ÎII, ĴJJ, K̂KK}, perifocal { p̂ppSC, q̂qqSC, ŵwwSC}, and ZEN {ûuu, v̂vv, ŵww} RFs.

A generic Reference System (RS) is uniquely defined by a right-hand triad of
mutually orthogonal axes centered in its origin and lying on its fundamental plane,
thus composing the specific Reference Frame (RF). Two different types of RFs
exist: inertial and non-inertial, primarily distinguished by their state of motion.
Indeed, in the first ones an object remains at rest or moves at a constant velocity,
in absence of any external force. Conversely, non-inertial RFs are characterized
by their own acceleration or rotation, which gives rise to apparent forces, such as
Coriolis centrifugal accelerations. The selection of an appropriate RS depends on the
particular analysis being conducted; the motion of a satellite with respect to Earth, is
more conveniently implemented by employing an inertial reference frame.

For the 2BP, an equatorial geocentric quasi-inertial RS is generally adopted,
specifically the Earth Mean Equator and Equinox of Epoch J2000 (EME2000). As
depicted in Figure 2.2, such RF, also directly called J2000, presents its origin at
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the Earth’s center and the equatorial plane as its fundamental one. Its unit vectors,
indicating the three axes directions, are: ÎII aligned toward the direction of Vernal
Equinox, K̂KK normal to the reference plane, and ĴJJ completing the right-handed triad.

To easily describe the satellite motion, the EME2000 can be accompanied by
other two reference systems:

• The non-inertial perifocal RF, {p̂ppSC, q̂qqSC, ŵwwSC}, whose two main axes p̂ppSC and
ŵwwSC are respectively aligned with the eccentricity êee and the specific angular
momentum ĥhh vectors directions, while q̂qqSC ends the triad.

• The topocentric, non-inertial Zenith-East-North (ZEN) RF, {ûuu, v̂vv, ŵww}, whose
axes coincide with the radial, tangential, and normal directions of the satellite’s
velocity components {ûuu, v̂vv, ŵww}.

The coordinates of a vector can be expressed in any of these reference systems;
in that sense, it is necessary to perform a conversion between different RFs using
proper elementary rotation matrices, which are composed of a set of Direction Cosine
Matrices (DCMs). Since the purpose of this Section is only to provide a general
overview of the 2BP, the implementation of such matrices is not discussed.

2.1.2 Conic equation

p̂ppSC (êee)

q̂qqSC

F ′ F

p

ra rp
a

rrr
ν

Fig. 2.3 Perifocal reference plane.

Assuming a closed orbit not subject to any external perturbation, a spacecraft would
follow a conic path indefinitely, in accordance with the Kepler’s First Law. Such a
conic can be precisely described by using a set of classical Keplerian parameters
{a,e, i,Ω,ω,ν}, which uniquely define its configuration and orientation in space.
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Specifically, the semi-major axis a, namely the half distance between the apsides,
determines the orbit’s dimensions, while its shape depends on the eccentricity e,
quantifying the deviation from a circle; these two elements are often linked via
another Keplerian parameter, the semilatus rectum p = a(1− e2). The true anomaly
ν specifies the SC’s angular position with respect to periapsis, the closest point to
the main body. The mean anomaly M can also be used for this purpose. However,
these three elements are sufficient to define the SC’s position on a specific orbit in
the perifocal RF. They are related to each other by the well-known conic equation:

r =
a(1− e2)

1+ ecosν
. (2.6)

In order to complete the representation in three-dimensional space (with respect
to the EME2000), the remaining three Keplerian parameters are required. Indeed,
the inclination i quantifies how much the orbital plane may be inclined with respect
to the reference equatorial plane. The intersection between these two planes is
the line of nodes n̂nn, along which the passage of from the southern to the northern
hemisphere and viceversa respectively occurs at two reference points, namely the
ascending and descending nodes. The right ascension of the ascending node (RAAN)
Ω specifies the orientation of this line, measured from the ÎII axis, heading towards the
ascending node. The last parameter is the argument of periapsis ω , which indicates
the position of pariapsis relative to the line of nodes, provided that Ω is defined (i.e.
for non-circular and non-equatorial orbits). Figure 2.3 clearly shows the fundamental
plane of the aforementioned perifocal RF, where the satellite’s orbit lies and all these
parameters are explicitly defined.

2.1.3 2BP Equations of Motion

The evolution of SC’s state in the 2BP over time can be described by the following
set of governing ODEs:

drrr
dt

=VVV (2.7a)

dVVV
dt

= ggg0 +
TTT
m
+

LLL
m
+

DDD
m
+ap (2.7b)

dm
dt

=−TTT
c
. (2.7c)
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where the EME2000 RF is considered. The first two lines, (2.7a) and (2.7b), specify
the variations in terms of SC’s position rrr and velocity VVV under different influences
and perturbations. In particular, besides the thrust vector TTT , other accelerations are
taken into account, such as the aerodynamic forces -namely the lift LLL and the drag
DDD- and possible external perturbations ap. The last equation, (2.7c), refers to the
propulsive system, representing the decrease in mass due to fuel consumption. The
term ggg0 is the gravitational acceleration, as per equation (2.1):

ggg0 =− µ

r2
rrr
r
. (2.8)

If only such force is present without any external acceleration, all these quantities
can be integrated analytically in the 2BP domain.

2.2 Three-Body Problem

This section delves into the Three-Body Problem (3BP) formulation, a model that
more accurately reflects the real-scenario conditions.

Differently from the 2BP, which provides an elegant analytical solution for
the dynamic system, the addition of a third body in the 3BP introduces a level of
complexity that precludes closed-form solutions for the EoMs. As a result, the
predictable conic paths typical of a two-body interaction give way to more elaborate
trajectories, shaped by the mutual gravitational influences of the three bodies involved.
In particular, the model of the Circular Restricted Three-Body Problem (CR3BP)
is presented here, which, under specific assumptions, is sufficient to preliminarily
elucidate these complex interactions and set the stage for understanding a multi-body
gravitational scenario.

Considering a generic binary system, the 3BP implies the presence of two
main bodies, with masses m1 and m2 respectively for the bigger and smaller one,
revolving around their barycenter and a third body representing the spacecraft. As a
fundamental hypothesis of the CR3BP, the third mass is smaller than the primaries,
so its gravitational contribution is assumed negligible [49, 45].
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2.2.1 Synodic reference frame

O

ẑzzS, ẐZZF

X̂XXF

ŶYY F

x̂xxS

ŷyyS

rrr1(t) rrr2(t)

rrr 13(
t) rrr23 (t)

rrr 3(
t)

ûuuŵww

v̂vv

θ(t) ωS(t)

Fig. 2.4 Synodic RF {x̂xxS, ŷyyS, ẑzzS} in a generic binary system (not in scale).

A schematic representation of the three-body scenario is provided in Figure 2.4.
When the two primary bodies are observed from an inertial RS {X̂XXF ,ŶYY F , ẐZZF},
their mutual angular speed ωS(t) arises. The non-inertial rotating reference sys-
tem {x̂xxS, ŷyyS, ẑzzS}, known as the synodic RF, is centered in the barycenter and follows
the main bodies’ motion; the direction of x̂xxS axis coincides with the line joining the
two bodies, the ẑzzS axis is normal to their orbital plane, and the ŷyyS axis completes the
triad. Such a whole framework exactly resembles the Earth-Moon system, where
a small generic object (i.e. the SC) freely moves in the 3D space under the mutual
influence of both the Earth and Moon. Similarly, the dynamics of the 3BP can also
be applied to the Sun-Earth-Moon system, where our satellite takes the role of third
body.

A generic distance between any two bodies is denoted with the vector:

rrri j(t) = rrri(t)− rrr j(t), (2.9)

where the element rrri(t) = rrrOi(t) indicates the i-th body’s position with respect to
the origin O. Therefore, the vector rrr12(t) represents the distance between the two
primaries, to which the rotation rate ωS(t) is strictly related. The dimensional mean
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motion for the binary system then can be expressed as:

n(t) =

√
µ1 +µ2

r3
12(t)

=

√
µ∗

r3
12(t)

, (2.10)

where µ∗ is the sum of the specific gravitational parameters of the primaries µ1

and µ2. Hence, the angle θ between an inertial RS and the synodic RF can be
easily computed by multiplying the mean motion to the elapsed time t, measured in
seconds:

θ(t) = n(t) · t, (2.11)

In general, since the distance rrr12(t) varies over time, the mean motion and the
angle θ exhibit a roto-pulsating behaviour as the ephemerides and the eccentricity of
Keplerian orbits are considered in the analysis. However, the transition to CR3BP is
completed by assuming that the main bodies describe two perfect circular Keplerian
orbits around their barycenter. With this further simplification, the primaries’ position
vectors ri(t) = ri become time-independent in magnitude and, therefore, the mean
motion remains constant, resulting in a prograde θ that varies linearly over time with
a constant angular velocity ωS.

To enhance numerical precision, the quantities of the CR3BP are typically nondi-
mensionalized with respect to the following characteristic values:


ℓ∗ = r1 + r2

m∗ = m1 +m2

T ∗ ≜

√
(ℓ∗)3

Gm∗ .

(2.12a)

(2.12b)

(2.12c)

Specifically, the characteristic length ℓ∗ is the fixed mean distance between the
two main bodies, while the characteristic mass m∗ is the sum of their masses; the
characteristic time T ∗ is implicitly derived by imposing that the nondimensional
universal gravitational constant equals the unity in the Kepler’s Third Law formula-
tion.
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Therefore, the nondimensional quantities for distances, masses, and times are
obtained:


ρ12 =

r12

ℓ∗
= 1

µ ≜
m2

m∗

τ =
T

T ∗ = 2π

(2.13a)

(2.13b)

(2.13c)

With some mathematical steps, the nondimensional mass ratios can be easily
retrieved:

µ ≜
µ2

µ∗ , (2.14a)

µ1

µ∗ = 1−µ. (2.14b)

Similarly, the barycenter position with respect to the first primary is:

ρCG =
∑ρiµi

∑ µi
= µ, (2.15)

and, so:

ρ1 =
r1

ℓ∗
=−µ (2.16a)

ρ2 =
r2

ℓ∗
= 1−µ. (2.16b)

2.2.2 CR3BP Equations of Motion

The compact dimensional form of the CR3BP EoMs is derived from Newton’s
Second Law (NSL):

r̈rr =− µ1

r2
13

rrr13

r13
− µ2

r2
23

rrr23

r23
, (2.17)

where the SC position vectors with respect to the main bodies can be generalized as:

rrri3 = rrr3 − rrri i = 1,2. (2.18)
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Henceforth, given that the primaries are not influenced by the SC, its subscript 3
is omitted for brevity and SC’s coordinates simply coincide with {x,y,z} values.

In the synodic RF, the EoMs projected into the three directions take the form:

ẍxx =− µ1

r3
13
(x− x1)−

µ2

r3
23
(x− x2) (2.19a)

ÿyy =− µ1

r3
13

y− µ2

r3
23

y (2.19b)

z̈zz =− µ1

r3
13

z− µ2

r3
23

z. (2.19c)

where the relative position vectors are:

ri3 =
√

(x− xi)2 + y2 + z2, i = 1,2. (2.20)

In order to project the EoMs in the inertial RF, the transport theorem must be
employed. Indeed, for a generic variable f :

d f F

dt
=

d f R

dt
+ωωω

R/F
S × f R, (2.21)

where the superscripts F and R respectively refer to fixed and synodic RFs, and R/F
suggests that such quantity is measured in the rotating RF with respect to the inertial
one. Therefore, the inertial velocity is:

ṙrrF =
drrrF

dt
=

drrrR

dt
+ωωω

R/F
S × rrrR, (2.22)

while the acceleration can be computed as:

r̈rrF =
dṙrrF

dt
=

dRṙrrF

dt
+ωωω

R/F
S × ṙrrF

=
dR

dt

(
ṙrrR +ωωω

R/F
S × rrrR

)
+ωωω

R/F
S ×

(
ṙrrR +ωωω

R/F
S × rrrR

)
= r̈rrR + ω̇ωω

R/F
S × rrrR +ωωω

R/F
S × ṙrrR +ωωω

R/F
S × ṙrrR +ωωω

R/F
S ×

(
ωωω

R/F
S × rrrR

)
= r̈rr+ ω̇ωωS × rrr+2ωωωS × ṙrr+(ωωωS × rrr) . (2.23)

In the last line, the superscripts are dropped for brevity, since all terms are referred
to the rotating RF. The first term in the Right-Hand Side (RHS) is the rotating
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acceleration, whereas the other three terms represent respectively the tangential,
centripetal, and Coriolis accelerations. Under the CR3BP assumptions, given that
the considered orbits are circular, no variation of both ωS and position vector norm
arise, thus the tangential and centripetal accelerations are both null. The sole Coriolis
acceleration remains for any rotating frame. Moreover, one has:

ωωωS = ωSẑzzS, (2.24)

where, from the Kepler’s Third Law:

ωS =

√
µ1 +µ2

r3
12

. (2.25)

However, by explicitly expressing the quantities in equation (2.23) for the most
generic case in the 3BP, the velocity shows the following components:

ṙrrF = (ẋx̂xxS + ẏŷyyS + żẑzzS)+

∣∣∣∣∣∣∣
x̂xxS ŷyyS ẑzzS

0 0 ωS

x y z

∣∣∣∣∣∣∣
= (ẋx̂xxS + ẏŷyyS + żẑzzS)+ [(−yωS)x̂xxS − (−xωS)ŷyyS +(0)ẑzzS]

= (ẋ− yωS)x̂xxS +(ẏ+ xωS)ŷyyS +(ż)ẑzzS, (2.26)

whereas for the acceleration:

r̈rrF = r̈rr+ ω̇ωωS × rrr+2ωωωS × ṙrr+ωωωS × (ωωωS × rrr)

= r̈rr+

∣∣∣∣∣∣∣
x̂xxS ŷyyS ẑzzS

0 0 ω̇S

x y z

∣∣∣∣∣∣∣+2

∣∣∣∣∣∣∣
x̂xxS ŷyyS ẑzzS

0 0 ωS

ẋ ẏ ż

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
x̂xxS ŷyyS ẑzzS

0 0 ωS

x y z

∣∣∣∣∣∣∣
= (ẍ−2ẏωS + yω̇S)x̂xxS +(ÿ+2ẋωS + xω̇S)ŷyyS +(z̈)ẑzzS +

∣∣∣∣∣∣∣
x̂xxS ŷyyS ẑzzS

0 0 ωS

−yωS xωS 0

∣∣∣∣∣∣∣
= (ẍ−2ẏωS − yω̇S − xω

2
S )x̂xxS +(ÿ+2ẋωS + xω̇S − yω

2
S )ŷyyS +(z̈)ẑzzS. (2.27)
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Equalling equations (2.19) and (2.27) component by component yields:

ẍ−2ẏωS − yω̇S − xω
2
S =− µ1

r3
13
(x− x1)−

µ2

r3
23
(x− x2) (2.28a)

ÿ+2ẋωS + xω̇S − yω
2
S =− µ1

r3
13

y− µ2

r3
23

y (2.28b)

z̈ =− µ1

r3
13

z− µ2

r3
23

z. (2.28c)

Both for a historical convention and numerical accuracy, the SC’s coordinates
and position vector in the CR3BP are nondimensionalized as follows:

ξ =
x
ℓ∗

η =
y
ℓ∗

ζ =
z
ℓ∗

ρ =
r
ℓ∗

(2.29a)

(2.29b)

(2.29c)

(2.29d)

Given that there are no roto-pulsating behaviours, one has a nondimensional
angular velocity WS = ωS/ω∗

S = 1 and thus ẆS = 0. Therefore, the full set of
nondimensional ODEs in the CR3BP dynamic model is:

ξ̈ −2η̇ −ξ =−1−µ

ρ133 (ξ +µ)− µ

ρ233 [ξ − (1−µ)] (2.30a)

η̈ +2ξ̇ −η =−1−µ

ρ133 η − µ

ρ233 η (2.30b)

ζ̈ =−1−µ

ρ133 ζ − µ

ρ233 ζ . (2.30c)

As anticipated, such complex dynamics lead to unpredictable trajectories in-
fluenced by the third body’s gravitation. Indeed, unlike the closed conics seen in
Section 2.1.2 for the 2BP, CR3BP orbits cannot be defined by Keplerian elements,
as they generally exhibit irregular shapes and unstable behaviors.
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2.2.3 Jacobi integral

The Jacobi integral is the sole, consistent pseudo-integral of motion that is conserved
in the dynamics of the CR3BP. Within the rotating synodic RF, it allows to investigate
which regions are accessible to the third body and identify areas where escapes or
collisions are not possible under the CR3BP assumptions. As a central element
in orbital mechanics, the Jacobi integral is invaluable for planning space mission
trajectories and analyzing orbital stability. It is derived by first defining the potential
function U in the inertial RF:

UF =
2

∑
i=1

µi

ri3
, (2.31)

where i indicates a generic gravitational body while 3 refers to the SC. By projecting
this in the rotating RF, the centrifugal potential is also considered:

UR =
µ1

r13
+

µ2

r23
+

1
2

ωS(x2 + y2), (2.32)

or, in nondimensional form, the pseudopotential arises:

U R =
1−µ

ρ13
+

µ

ρ23
+

1
2
(ξ 2 +η

2). (2.33)

Deriving such quantity with respect to the nondimensional coordinates:

∂U

∂ξ
= ξ − 1−µ

ρ3
13

(ξ +µ)− µ

ρ3
23
[ξ − (1−µ)] (2.34a)

∂U

∂η
= η − 1−µ

ρ3
13

η − µ

ρ3
23

η (2.34b)

∂U

∂ζ
=−1−µ

ρ3
13

ζ − µ

ρ3
23

ζ . (2.34c)

By combining equations (2.30) and (2.34) one obtains:

ξ̈ −2η̇ =
∂U

∂ξ
(2.35a)

η̈ +2ξ̇ =
∂U

∂η
(2.35b)

ζ̈ =
∂U

∂ζ
. (2.35c)
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Moreover, multiplying each of the dimensional equations in (2.28) by 2ẋ, 2ẏ, 2ż,
and then summing them results in:

2ẍẋ+2ÿẏ+2z̈ż+2ω
2
S (ẋx+ ẏy) = 2ẋ

∂U
∂x

+2ẏ
∂U
∂y

+2ż
∂U
∂ z

= 2
dU
dt

, (2.36)

by integrating which, the Jacobian integral equation arises:

ẋ2 + ẏ2 + ż2 =V 2 = 2U − JC. (2.37)

The term on the Left-Hand Side (LHS) represents the velocity squared V 2 in
the synodic RF. In the RHS, the pseudopotential U includes the integrated term
ωS(x2+y2), whereas JC is commonly known as the Jacobi Constant. Such a constant
of motion can be seen as an inverse mechanical energy-like quantity, sum of the
kinetic and potential energy contributions. Hence, an higher JC implies less energy
for the SC in the rotating frame. In the nondimensional synodic form one has:

ξ̇
2 + η̇

2 + ζ̇
2 = V2 = 2U −JC. (2.38)

2.2.4 Lagrangian Points

ξ̂ξξ s

η̂ηηs

L1 L2L3

L4

L5

Fig. 2.5 Lagrangian Points in a generic synodic RF.
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Within the framework of the CR3BP analytical solutions indeed exist. Although
today the complete set of ODEs (2.35) still requires a numerical approach, in 1772
Lagrange revealed the presence of equilibrium points, then named Lagrangian Points
(LPs) in tribute to his work [50]. Therefore, retracing Lagrange’s steps provides
useful theoretical insights into the 3BP dynamics.

First of all, the gradient vector of the pseudopotential is set equal to zero:

∇U = 0, (2.39)

which means imposing zero velocities and accelerations in the synodic RF.

By expliciting (2.39) in the scalar form, a specific set of coordinates {ξi,ηi,ζi},
with i = 1, ...,5, can be retrieved per each of the five LPs:

∂U

∂ξ
= 0 = ξ − 1−µ

ρ3
13

(ξ +µ)− µ

ρ3
23
[ξ − (1−µ)] (2.40a)

∂U

∂η
= 0 = η − 1−µ

ρ3
13

η − µ

ρ3
23

η (2.40b)

∂U

∂ζ
= 0 =−1−µ

ρ3
13

ζ − µ

ρ3
23

ζ . (2.40c)

The last equation (2.40c) is immediately satisfied by imposing ζ = 0, implying
that all of these equilibrium solutions lie in the ξ̂ξξ S − η̂ηηS plane. Then, the two
remaining equations (2.40a) and (2.40b) are solved via substitution. Setting also
η = 0 yields a quintic equation, function of the sole ξ , which has to be solved
numerically. The first three equilibrium solutions are known as collinear libration
points, as they exist along the ξ̂ξξ S axis. They are considered unstable points since
a small perturbation from the equilibrium state causes an object placed there drift
further away from the LP itself. The other two roots can be found by imposing the
primaries distances with respect to the SC, ρ13 and ρ23, equal to unity, thus obtaining
the triangular libration points at the vertices. They are assumed stable as long as the
primary-to-secondary mass ratio is greater than 24.96; when an object placed at L4
or L5 accelerates away, the Coriolis force intervenes to correct its trajectory.

Figure 2.5 shows, in a generic binary system, the position of LPs, where the main
bodies’ gravitational forces perfectly balance. This framework also applies to the
Earth-Moon system, on which this thesis focuses. The collinear point L1 lies on the
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ξ̂ξξ S axis between the two primaries and is called cislunar point; L2 is the translunar
point, located beyond the Moon, while the trans-Earth point L3 is situated on the
other side symmetrically with respect to the Moon; L4 and L5 are equidistant from
the primaries at the vertices of the two equilateral triangles. When observed from an
inertial RF, the entire system revolves around the barycenter, which resides inside
the Earth, about 4800 km from its center of mass [47].

Some approximations for the quintic equation can be deduced via the perturbation
theory [51]. The complete form for the numerical computation of LPs is:

ξ
5 ∓ (3−µ)ξ 4 +(3−2µ)ξ 3 −µξ

2 ±2µξ −µ = 0. (2.41)

Assuming that the smaller between the two main bodies is orders of magnitude
smaller than the bigger body, as for the EM system, the first two LPs are equidistant to
the smaller primary; they are situated close to the Hill’s sphere radius, approximately
at the distance:

xLi ≈∓r12

√
µ2

3µ1
i = 1,2. (2.42)

2.2.5 Zero-velocity surfaces

The previous formulation on the Jacobi integral leads to the concept of Zero-Velocity
Surfaces (ZVSs), Hill’s solutions for the CR3BP [52]. On these surfaces, given that
the relative velocity is null in the synodic frame, the third body has zero kinetic
energy (V= 0). It implies that the total energy is entirely potential, thus limiting the
SC allowed regions, where it has sufficient energy to reach them without additional
propulsion. Therefore, for a given JC value, the ZVSs act as a constraint on motion,
providing the SC’s boundaries equation:

JC = 2U = 2
(

1−µ

ρ13
+

µ

ρ23

)(
ξ

2 +η
2) . (2.43)

By inverting signs in equation (2.38), the representation of these surfaces come
closer to the expected understanding of potential energy, as illustrated in Figure 2.6.
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Fig. 2.6 Three-dimensional Earth-Moon ZVSs at LPs energy.

When a spacecraft in proximity to a main body travels at an initial velocity
close to the orbital one, its apogee-like condition, namely the maximum apogee
it could reach if all the orbit’s energy is converted in altitude, will be confined in
the gravitational field taking shape around the primaries. In the three-dimensional
Earth-Moon system such area, delimited by the mentioned ZVSs is almost toroidal.

As the initial total energy increases, the Jacobi Constant JC assumes lower
positive values, so that the SC expands its accessible regions. The first surfaces
intersecting point is reached at L1, as in Figure 2.6, followed closely behind by
the L2 point. Theoretically, a SC able to cross the translunar boundary has enough
energy to escape from the EM binary system. By further increasing its energy, the
SC can access the L3 energy level, thereby widening the corridor until escape in that
direction becomes possible. If a SC can arrive at L4 or L5, no regions of motion
within the entire system are forbidden. These LPs are named accordingly to the order
in which they become accessible, which in turn corresponds to the decreasing order
of their Jacobi Constant values.
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Fig. 2.7 Earth-Moon ZVSs at LPs energy on the ξ̂ξξ S − η̂ηηS plane.

The same concepts are shown in Figure 2.7, projecting the EM system on the ξ̂ξξ S−
η̂ηηS plane. The green curve delimits areas characterized by JC < JC,L1; inside the
yellow curve JC,L2 <JC <JC,L1, while up to the red one JC,L3 <JC <JC,L2;
finally, regions circumscribed by the L3 curve have JC,L4 = JC,L5 < JC < JC,L3.
This relation between accessibility and JC values can be easily observed in Table
2.2, where the LPs coordinates and the corresponding Jacobi Constants are provided.

Table 2.2 EM Lagrangian Points positions and Jacobi Constants in the synodic RF.

LPs ξ η ζ JC

L1 0.83740242 0.00000000 0.00000000 3.188326
L2 1.15618808 0.00000000 0.00000000 3.172147
L3 -1.00506193 0.00000000 0.00000000 3.012145
L4 0.48785136 0.86602540 0.00000000 2.987999
L5 0.48785136 -0.86602540 0.00000000 2.987999
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2.3 N-Body Problem

For the purposes proposed in this thesis, the use of the CR3BP model is sufficient.
However, for a better understanding of the fidelity level of the adopted scenario, the
NBP is briefly discussed in this Section.

The NBP model considers a multiple-body gravitation, where each body dynami-
cally influences and is influenced by the others. Furthermore, planetary ephemerides
are employed, quantifying the evolution of positions and velocities over time under
all the existing perturbations and phenomena. Therefore, a realistic scenario, closer
to the real solar system, is composed.

The simplest model implies the presence of four bodies (n=4), namely the Sun,
Earth, Moon, and the SC itself. Differently from the 3BP, an inertial RS is preferred
here for its effectiveness in formulating EoMs; all the trajectories are computed in the
EME2000 RS, as depicted in Figure 2.8. Actually, JPL ephemerides1 are generally
set within the International Celestial Reference Frame (ICRF) and comprise libration
and nutation effects, which characterize the EME2000 as quasi-inertial. Nonetheless,
the rotational offset between the ICRF and the EME2000 is negligible, allowing the
EME2000 to be definetively considered inertial.

ÎII

ĴJJ

K̂KK

rrrk j(t)

rrr i j(t)
rrri j(t)

rrrki (t)
rrr k j
(t)

ϑk(t)

ϑi(t)

ϑk(t)
ϕk(t)

ϕi(t)

ϕk(t)

Fig. 2.8 EME2000 RF in the 4BP.

1They are regularly computed by the JPL’s Navigation and Ancillary Information Facility (NAIF),
which provides tools and data for planning mission trajectories and performing scientific analyses.
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From the NSL, a SC in this RF experiences an acceleration of:

r̈rri =−
n

∑
j=1
j ̸=i

µ j

r3
ji

rrr ji, (2.44)

where the Earth is denoted as the k-th body, with additional body labeled as the j-th
entity, excluding the spacecraft which is marked as i.

Reformulating the equation with respect to the central body (i.e. the Earth)
provides the following second-order ODE:

r̈rrki =−(µi +µk)

r3
ki

rrrki +
n

∑
j=1

j ̸=i,k

µ j

(
rrri j

r3
i j
−

rrrk j

r3
k j

)
. (2.45)

Beyond the influence of the Moon and Sun’s gravitation, other two pertubative
effects are conventionally included:

• The Earth’s asphericity, as this non-uniform distribution of mass creates varia-
tions in the Earth’s gravitational field.

• The solar radiation pressure, exterted by photons emitted by the Sun when
they hit a surface at the speed of light.

By summing these contributions, the overall perturbation that affects the system
dynamics can be written in form of perturbing acceleration:

ap = aSM +aasph +aSRP. (2.46)

Some considerations on how this model would influence the concept of the
implemented orbits will be provided in Section 3.5.
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Chapter 3

Periodic Orbits generation in the
CR3BP

This Chapter delves into the numerical processes that allow the construction and
validation of POs in the Circular Restricted Three-Body Problem (CR3BP). Although
it may seem more convenient to analyze orbits in a n-body model, calculating them
within a lower-fidelity CR3BP provides a valuable starting point for the optimization
problem, which represents the real core of this thesis.

Underlying the procedure is the concept of differential correction; once an initial
estimate of the periodic solution is made, it is iterated and corrected until a solution
satisfying the desired conditions is reached. Through the use of a sensitivity matrix,
named State Transition Matrix (STM), a linear mapping between the initial and
final conditions is performed to better guide the solution updating. Specifically, a
single-shooting procedure based on such correction scheme is implemented, thus
yielding exact periodic motions for specific orbits in the CR3BP domain.

Starting from analytical approximations, two main families of POs are computed:
Lyapunov Orbits (LOs), lying on the same plane of the two primary bodies, and
Distant Retrograde Orbits (DROs), which are again planar, but deviate from the first
ones by increasing dimensions. Further considerations about the role of ephemerides
and the transition to Quasi-Periodic Orbits (QPOs) in the higher-fidelity NBP are
finally provided.
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3.1 Orbits analytical approximation

The current section introduces the construction of orbits -and more in general of
trajectories- within the CR3BP domain, serving as a foundation and precursor for
the optimization procedure. Specifically, the generation process starts from the
orbits analytical approximation, leading to the numerical computation of POs via
Differential Correction (DC) and single-shooting methods.

Since the CR3BP is a time-invariant model, its set of epoch-independent, au-
tonomous EoMs can be linearized in order to investigate the SC behavior nearby LPs.
By applying a Taylor series expansion to the RHS of equation (2.35), and denoting
the second partial derivatives of U as:

∂ 2U

∂ξ ∂η
≜ Uξ η , (3.1)

one obtains the following variational equations:

ξ̈ −2η̇ = Uξ ξ

∣∣
LPξ +Uξ η

∣∣
LPη +Uξ ζ

∣∣
LPζ (3.2a)

η̈ +2ξ̇ = Uηξ

∣∣
LPξ +Uηη

∣∣
LPη +Uηζ

∣∣
LPζ (3.2b)

ζ̈ = Uζ ξ

∣∣
LPξ +Uζ η

∣∣
LPη +Uζ ζ

∣∣
LPζ , (3.2c)

with the subscript LP referring to the partial derivatives computed at the equilibrium
points. This notation is omitted here for clarity. Since all the equilibrium points lie on
the ξ̂ξξ S − η̂ηηS plane, the mixed partial derivatives containing ζ are null by definition,
namely Uξ ζ = Uηζ = 0. As a result, the out-of-plane motion ζ , induced by the
acceleration ζ̈ , exhibits a linear behavior, whose effects on the in-plane motion in the
ξ and η directions are negligible. Indeed, the last line in system (3.2), ζ̈ = Uζ ζ ζ , is
decoupled from the other two, and proves to be an harmonic in the ζ̂ζζ S direction:

ζ = Aζ cos(ωζ τ)+Bζ sin(ωζ τ), (3.3)

where Aζ and Bζ are constants depending on the initial conditions. The out-of-plane
frequency can be computed as:

ω
2
ζ
=−Uζ ζ . (3.4)
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The first two equations (3.2a) and (3.2b) form a coupled system of two second-
order ODEs that can be reformulated into a set of four first-order ODEs:


ξ̇

η̇

ξ̈

η̈

=


0 0 1 0
0 0 0 1

Uξ ξ Uξ η 0 2
Uηξ Uηη −2 0




ξ

η

ξ̇

η̇

 , (3.5)

or, in compact form:

˙̃XXX = ÃAAX̃XX , (3.6)

where ÃAA is the nondimensional Jacobian matrix and X̃XX represents here the (planar
reduced) nondimensional state of the SC. Looking at the determinant, a quartic
equation arises:

λ
4 +
(
4−Uξ ξ −Uηη

)
λ

2 +
(
Uξ ξ Uηη −U 2

ξ η

)
= 0, (3.7)

thus yielding four different roots. By implementing the procedure presented in
Szebehely [49], it is proven that at the three collinear points, for 0 < µ < 1/2, the
following holds:

Uξ ξ > 0, Uηη < 0, Uξ η = 0. (3.8)

Hence, the equation (3.7) can be rewritten to find the two roots Λ1/2 as:

Λ
2 +2β1λ −λβ

2
2 = 0, (3.9)

where:

Λ = λ
2

β1 = 2−
Uξ ξ +Uηη

2

β2 =
√

−Uξ ξ Uηη

 ⇒ Λ1/2 =−β1 ±
√

β 2
1 +β 2

2 . (3.10)

The four eigenvalues are:

λ1/2 =±
√

Λ1, (3.11a)

λ3/4 =±
√

Λ2. (3.11b)
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The first two eigenvalues in equation (3.11a) are real ones, whereas the other
two in equation (3.11b) are pure imaginary. The third eigenvalue, namely the first
imaginary solution, provides the in-plane frequency of the linearized PO:

ω3 =−iλ3. (3.12)

The solutions for ξ and η as a function of the nondimensional time τ are coupled
and exhibit both aperiodic exponential growths and decays, which may affect the
stability of trajectory around the collinear points. The first-order approximation
sought for the following analysis is a purely aperiodic structure. After further
mathematical manipulations and by nullifying any aperiodic exponential instability,
a simplified set of EoMs is obtained [53]:



ξ (τ) = Aξ cos(ω3τ +φ)

η(τ) =−c2Aξ sin(ω3τ +φ)

ζ (τ) = Aζ cos(ωζ τ +ψ)

ξ̇ (τ) =−Aξ ω3 sin(ω3τ +φ)

η̇(τ) =−c2Aξ ω3 cos(ω3τ +φ)

ζ̇ (τ) =−Aζ ωζ sin(ωζ τ +ψ)

(3.13a)

(3.13b)

(3.13c)

(3.13d)

(3.13e)

(3.13f)

where Aξ and Aζ are respectively the initial amplitudes in the ξ̂ξξ S and ζ̂ζζ S directions.
Specifically, the quantity Aξ resembles the semimajor axis of a generic orbit, whereas
the semiminor axis Aη can be computed as:

Aη = c2Aξ . (3.14)

The trajectories resulting from the system (3.13) can be used as initial analytical
solutions for the differential correction procedure. Indeed, where an analytical
propagation yields an indefinitely stable elliptical orbit, using the initial state vector

X̃XXa
(τ0) =

{
ξ0, η0, ζ0, ξ̇0, η̇0, ζ̇0

}T
as a starting condition for the NL integration of

the CR3BP EoMs, a divergent, non-linear behavior emerges. The probability of
remaining stable for longer in the integrated orbit increases as the dimensions of the
initial analytical one are smaller. To effectively predict the evolution and stability of
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POs in the CR3BP, the momentum integral is introduced:

MI =
∫

τ f

τ0

[
ξ (τ)ξ̇ (τ)+η(τ)η̇(τ)+ζ (τ)ζ̇ (τ)

]
dτ. (3.15)

Such a line integral is computed over the SC integrated state from τ0 to τ f

and allows to predict with a sufficient margin when nonlinearities are inducing an
undesired escape. Specifically, the momentum integral is typically observed to
exhibit a negative trend over time; when MI > 0 at a specific point, it serves as a
warning sign of potential escape: the integrated orbit deviates significantly and the
solution diverges from the desired closed trajectory.

3.2 Differential Correction

In this thesis, the study of POs’ stability is not strictly necessary, as long as the
baseline departure trajectory remains for a reasonable time in its initial configuration.
In particular, a simple single-shooting method is employed to fulfill the requirement
of preserving the orbit stability for at least a single complete period. Additionally,
this method improves the initial guesses resulting from the analytical approach, as
seen in section 3.1. Two types of periodic orbits are considered: planar Lyapunov
Orbits (LOs) and Distant Retrograde Orbits (DRO)s.

In order to find a specified path from an initial state X̃XX(τ0) to a desired final
state X̃XX(τ f ), or from XXX(t0) to XXX(t f ) in dimensional quantities, a classic Two-Point
Boundary Value Problem (TPBVP) is implemented. The procedure implies that a
reasonable initial guess is selected for the initial state and integrated for a specified
duration, changing the initial quantities iteratively, until an integrated final state
converges to the desired condition. The key concept is to understand how the initial
state should be corrected to produce the final one, namely to analyze how X̃XX(τ0) and
X̃XX(τ f ) are related along the trajectory. This method proves to be extremely robust
and provides theoretical insights about the evolution of states over time and the
correction of the baseline trajectory under specific boundary conditions.

The variation between the desired XXX∗(τ f ) and the actual final state XXX(τ f ) can be
expressed as:

δ X̃XX(τ f ) = X̃XX
(
X̃XX(τ0),τ f

)
− X̃XX∗

(
X̃XX∗

(τ0),τ f

)
, (3.16)
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where the DC procedure aims at nullifying such discrepancy. For this purpose, a
specific correction in the initial state, say δ X̃XX(τ0) produces the following desired
initial state:

X̃XX∗
(τ0) = X̃XX(τ0)+δ X̃XX(τ0). (3.17)

By expanding and linearizing the equation (3.16), one has:

δ X̃XX(τ f ) = X̃XX
(
X̃XX(τ0),τ f

)
− X̃XX∗

(
X̃XX∗

(τ0),τ f

)
= X̃XX

(
X̃XX(τ0)+δ X̃XX(τ0)

)
− X̃XX∗

(
X̃XX∗

(τ0),τ f

)
=

∂ X̃XX(τ f )

∂ X̃XX(τ0)
δ X̃XX(τ0),

δ X̃XX(τ f ) = Φ̃ΦΦ(τ f ,τ0)δ X̃XX(τ0). (3.18)

where the first term in the RHS of equation (3.18) is the State Transition Matrix
(STM), Φ̃ΦΦ(τ f ,τ0), in its nondimensional form in the CR3BP domain. As per equation
(3.6), the STM, often denoted as sensitivity matrix, allows to quantify how much
variations in the final state are sensible to changes in the initial state. Such linear
mapping can be indeed performed through the partial derivatives of all state quantities
computed at a specified final time τ f with respect to all the same quantities at the
initial time τ0. Therefore:

Φ̃ΦΦ(τ,τ0) =



∂ξ

∂ξ0

∂ξ

∂η0

∂ξ

∂ζ0

∂ξ

∂ ξ̇0

∂ξ

∂ η̇0

∂ξ

∂ ζ̇0

∂η

∂ξ0

∂η

∂η0

∂η

∂ζ0

∂η

∂ ξ̇0

∂η

∂ η̇0

∂η

∂ ζ̇0

∂ζ

∂ξ0

∂ζ

∂η0

∂ζ

∂ζ0

∂ζ

∂ ξ̇0

∂ζ

∂ η̇0

∂ζ

∂ ζ̇0

∂ ξ̇

∂ξ0

∂ ξ̇

∂η0

∂ ξ̇

∂ζ0

∂ ξ̇

∂ ξ̇0

∂ ξ̇

∂ η̇0

∂ ξ̇

∂ ζ̇0

∂ η̇

∂ξ0

∂ η̇

∂η0

∂ η̇

∂ζ0

∂ η̇

∂ ξ̇0

∂ η̇

∂ η̇0

∂ η̇

∂ ζ̇0

∂ ζ̇

∂ξ0

∂ ζ̇

∂η0

∂ ζ̇

∂ζ0

∂ ζ̇

∂ ξ̇0

∂ ζ̇

∂ η̇0

∂ ζ̇

∂ ζ̇0



=

[
Φ̃ΦΦρρ Φ̃ΦΦρV

Φ̃ΦΦVρ Φ̃ΦΦVV

]
, (3.19)
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where the STM is a Φ̃ΦΦ ∈ R6×6 matrix composed by four square submatrices 3×3
of partial derivatives; the first subscript denotes the numerator, the second one
the denominator, with the vectors ρρρ and VVV respectively indicating nondimensional
position and velocities. For the sake of brevity, a simpler notation is introduced:

X̃XX f ≜ X̃XX
(
X̃XX(τ0),τ f

)
, (3.20a)

X̃XX0 ≜ X̃XX(τ0). (3.20b)

Given its strong connection with state variations over time, the STM evolves over
the trajectory in the same manner as the trajectory itself. So, for a generic time τ:

˙̃
ΦΦΦ(τ,τ0) =

d
dτ

Φ̃ΦΦ(τ,τ0) =
d

dτ

(
∂ X̃XX
∂ X̃XX0

)
=

∂

∂ X̃XX0

(
dX̃XX
dτ

)
=

∂
˙̃XXX

∂ X̃XX
∂ X̃XX
∂ X̃XX0

,

˙̃
ΦΦΦ(τ,τ0) = ÃAA(τ)Φ̃ΦΦ(τ,τ0). (3.21)

Therefore, the evolution of the STM is described by its own set of 36 governing
ODEs via the Jacobian matrix ÃAA(τ). Such matrix, also a function of the state of
the reference trajectory, plays exactly the same role of the Jacobian one in equation
(3.6). Moreover, similarly to the STM, ÃAA ∈ R6×6 is composed by four square 3×3
submatrices:

ÃAA(τ) =

[
000 III
UUU ΩΩΩ

]
, (3.22)

or, in explicit form:

ÃAA(τ) =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

Uξ ξ Uξ η Uξ ζ 0 2 0
Uηξ Uηη Uηζ −2 0 0
Uζ ξ Uζ η Uζ ζ 0 0 0


. (3.23)
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To verify the elements of ÃAA(τ), one can simply double-check the set of equations
(3.2). The explicit form of the second partial derivatives of the pseudopotential U is
omitted here for brevity, but is provided in Appendix A.

3.3 Single-shooting procedure

Fig. 3.1 Single-shooting procedure for a generic Lyapunov orbit in the CR3BP domain [44].

As anticipated, the shooting method essentially consists in adjusting some initial
conditions until a targeted set of specified final conditions is respected, in the form of
a TPBVP. This procedure requires possibly computing corrections from undesired
terminal deviations, in order to refine the initial state iteratively until convergence.

Figure 3.1 shows, for example, the single-shooting method applied to generic
planar Lyapunov orbit in the EM binary system. The green orbit is the targeted final
trajectory, precisely the Lyapunov orbit; such solution is defined by an initial state
X̃XX∗

0 which produces, after a complete revolution, the final state X̃XX∗
f . The red trajectory,

instead, is a non-converged tentative solution to obtain the same Lyapunov orbit.

While its departure guess X̃XX0 has been imposed to coincide with the desired
initial point, the integrated final state X̃XX f does not achieve the targeted one. Indeed,
in shooting methods, some initial quantities may be fixed to specified values, and not
all the final conditions are constrained to the targeted ones, but some of them may
be allowed to acquire any feasible values. In the example, since the initial positions
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are fixed, the discrepancy between the desired X̃XX∗
f and the actual X̃XX f can be imputed

to the initial guesses for the sole velocities. Therefore, only these values should be
allowed to vary during correction.

In general, the free-variable vector X̃XX0 ∈ Rn×1 has the form:

X̃XX0 = {X1, X2, . . . , Xn}T , (3.24)

and may contain all state elements, such as positions, velocities and integration
times.

The constraint vector, on the other hand, targets the desired final quantities,
which, in this analysis, correspond to all those relevant in generating POs in the
CR3BP. So, the constraint vector χχχ(X̃XX0) ∈ Rm×1, deriving from X̃XX0, accounts the
differences between actual and desired final states, including final positions and
velocities:

χχχ(X̃XX0) = {χ1, χ2, . . . , χm}T =



ξ −ξ ∗

η −η∗

ζ −ζ ∗

ξ̇ − ξ̇ ∗

η̇ − η̇∗

ζ̇ − ζ̇ ∗


. (3.25)

The correction method now can be translate into searching for a specified initial
state X̃XX∗

0 that satisfy all constraints, so that:

χχχ(X̃XX∗
0) = 000. (3.26)

In order to quantify how a variation in the free-variable vector affects the con-
straint vector, a first-order Taylor expansion is performed. For a generic new variable
state vector X̃XX , the constraint vector can be defined as:

χχχ(X̃XX) = χ̃χχ(X̃XX0)+
∂ χ̃χχ(X̃XX0)

∂ X̃XX
(X̃XX − X̃XX0). (3.27)
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Here, the partial derivatives of the constraints with respect to the forward-in-time
free-variable quantities form again a Jacobian matrix J̃JJ(χ̃χχ(X̃XX0), X̃XX) ∈ Rm×n:

∂ χχχ(X̃XX0)

∂ X̃XX
= J̃JJ(χχχ(X̃XX0), X̃XX) =



∂ χ1

∂ X̃1

∂ χ1

∂ X̃2
· · · ∂ χ1

∂ X̃n

∂ χ2

∂ X̃1

∂ χ2

∂ X̃2
· · · ∂ χ2

∂ X̃n

...
... . . . ...

∂ χm

∂ X̃1

∂ χm

∂ X̃2
· · · ∂ χm

∂ X̃n


. (3.28)

Such matrix closely resembles the STM in equation (3.19) and allows to un-
derstand how the design vector X̃XX0 must be updated at each step. Expanding the
constraint vector in an iterative form, the subsequent step r+1 can be expressed as a
function of the previous r-th step:

χχχ(X̃XX r+1) = χχχ(X̃XX r)+
∂ χ̃χχ(X̃XX r)

∂ X̃XX r+1
(X̃XX r+1 − X̃XX r). (3.29)

To avoid a burdening notation the following shortenings are introduced:

χχχr ≜ χχχ
(
X̃XX r
)
, (3.30a)

J̃JJ(χχχr)≜ J̃JJ
(
χχχ(X̃XX r), X̃XX r+1

)
. (3.30b)

If a solution exists, then χχχr+1 = 000 and an iterative solution takes the form:

χχχr +
[
J̃JJ(χχχr)

]
(X̃XX r+1 − X̃XX r) = 000. (3.31)

Therefore, one can compute at each iteration the state of the design vector X̃XX r

and the updated value of the constraint vector χχχr, derived directly from integrating
all EoMs from X̃XX r, as per:

X̃XX r+1 = X̃XX r −
[
J̃JJ(χχχr)

]−1
χχχr. (3.32)

39



Periodic Orbits generation in the CR3BP

If there are more state variables than constraints n > m, the minimum norm
update equation is used in place of equation (3.32):

X̃XX r+1 = X̃XX r −
[
J̃JJ(χχχr)

]T [J̃JJ(χχχr)J̃JJ(χχχr)
T
]−1

χχχr, (3.33)

guiding the next solution to be not too far to the initial guess X̃XX r, among the infinite
possible ones. A relaxation parameter κR is introduced to aid the convergence,
allowing to perform small corrections at each iteration. Typically, for planar LOs a
κR ≈ 0.5 is sufficient, whereas more complex trajectories has to be computed with
smaller coefficients. Formally, an iterative Richardson’s correction method arises:

X̃XX r+1 = X̃XX r −κR ·
[
J̃JJ(χχχr)

]−1
χχχr, if n = m, (3.34a)

X̃XX r+1 = X̃XX r −κR ·
[
J̃JJ(χχχr)

]T [J̃JJ(χχχr)J̃JJ(χχχr)
T
]−1

χχχr, if n > m. (3.34b)

3.3.1 Variable Time vs Fixed Time Differential Correction

In the DC process, the integration time may be variable, and thus included in the
design vector, or imposed, giving respectively rise to two different procedures: the
Variable-Time Differential Correction (VTDC) and the Fixed-Time Differential
Correction (FTDC). In this analysis, the integration time is set to the period of a
single, complete revolution about a specific PO. The general form of the design
vector X̃XX0, including time, is:

X̃XX0 =
{

ξ , η , ζ , ξ̇ , η̇ , ζ̇ , τ

}T
, (3.35)

where τ is specifically the nondimensional period of the PO, namely:

τ = τ f − τ0. (3.36)

If the time is constrained, it is sufficient to exclude it from the free-variable
vector and specify the period of the PO directly; indeed, the complete constraint
vector coincides with the one in equation (3.25). Since there are seven free variables
now, coupled with six constraints, the Jacobian is composed by a further column,
corresponding to the partial derivatives of the other state variables with respect to
the integration time τ , namely velocities and accelerations. Therefore, the complete
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Jacobian matrix J̃JJ ∈ R6×7 attains the form:

J̃JJ(χχχ(X̃XX0), X̃XX0) =



∂ξ f

∂ξ0

∂ξ f

∂η0

∂ξ f

∂ζ0

∂ξ f

∂ ξ̇0

∂ξ f

∂ η̇0

∂ξ f

∂ ζ̇0

∂ξ f

∂τ

∂η f

∂ξ0

∂η f

∂η0

∂η f

∂ζ0

∂η f

∂ ξ̇0

∂η f

∂ η̇0

∂η f

∂ ζ̇0

∂η f

∂τ

∂ζ f

∂ξ0

∂ζ f

∂η0

∂ζ f

∂ζ0

∂ζ f

∂ ξ̇0

∂ζ f

∂ η̇0

∂ζ f

∂ ζ̇0

∂ζ f

∂τ

∂ ξ̇ f

∂ξ0

∂ ξ̇ f

∂η0

∂ ξ̇ f

∂ζ0

∂ ξ̇ f

∂ ξ̇0

∂ ξ̇ f

∂ η̇0

∂ ξ̇ f

∂ ζ̇0

∂ ξ̇ f

∂τ

∂ η̇ f

∂ξ0

∂ η̇ f

∂η0

∂ η̇ f

∂ζ0

∂ η̇ f

∂ ξ̇0

∂ η̇ f

∂ η̇0

∂ η̇ f

∂ ζ̇0

∂ η̇ f

∂τ

∂ ζ̇ f

∂ξ0

∂ ζ̇ f

∂η0

∂ ζ̇ f

∂ζ0

∂ ζ̇ f

∂ ξ̇0

∂ ζ̇ f

∂ η̇0

∂ ζ̇ f

∂ ζ̇0

∂ ζ̇ f

∂τ



, (3.37)

where the first six rows and columns compose a 6×6 submatrix exactly coinciding
with the STM in equation (3.19). Denoting each element of such submatrix with ϕi j,
the following compact form of Jacobian can be used:

J̃JJ(χχχ(X̃XX0), X̃XX0) =



ϕ11 ϕ12 ϕ13 ϕ14 ϕ15 ϕ16 ξ̇ f

ϕ21 ϕ22 ϕ23 ϕ24 ϕ25 ϕ26 η̇ f

ϕ31 ϕ32 ϕ33 ϕ34 ϕ35 ϕ36 ζ̇ f

ϕ41 ϕ42 ϕ43 ϕ44 ϕ45 ϕ46 ξ̈ f

ϕ51 ϕ52 ϕ53 ϕ54 ϕ55 ϕ56 η̈ f

ϕ61 ϕ62 ϕ63 ϕ64 ϕ65 ϕ66 ζ̈ f


. (3.38)

where the velocities and accelerations in the last column can be determined by
evaluating the EoMs at the final state along the integrated trajectory, namely X̃XX f .

As mentioned, all of this correction scheme, where the influence of the variable
integration time on the final state is quantified along the state evolution itself, is
indicated as a VTDC procedure. On the other hand, if the integration time is a
constrained quantity, then the Jacobian coincides in its full form with the STM and a
FTDC has to be adopted.
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3.4 Lyapunov orbits computation in the CR3BP

Underlying the POs computation procedure are two main considerations worth
specifying preliminarily. Firstly, as previously noted, the CR3BP is an autonomous,
time-invariant dynamical model. This implies there is no preferred direction of
integration over time; indeed, integrating a correct initial state X̃XX∗

0 over a whole
period forward in time τ yields the same terminal conditions as integrating backward
in time −τ , provided the appropriate velocity components are correctly inverted.
Secondly, according to the mirror theorem [54], POs in the CR3BP model that
intersect a specific plane perpendicularly twice exhibit symmetrical configurations
relative to that plane. Consequently, these observations lead to a more straightforward
and efficient implementation of the shooting method; since the LO clearly shows
symmetric properties with respect to the ξ̂ξξ S − ζ̂ζζ S plane, it is sufficient to compute
only half the orbit. Then, the complete LO can be easily obtained in a single iteration
by doubling the integration time.

As regards the computation of planar orbits in the CR3BP, a generic LO, which
lies on the ξ̂ξξ S − η̂ηηS plane in the synodic frame, does not present neither position ζ

nor velocity ζ̇ components in the out-of-plane direction. Moreover, due to its planar
nature, when the LO crosses the ξ̂ξξ S − ζ̂ζζ S plane, it does not have also velocities along
the ξ̂ξξ S direction, thus ξ̇0 = ξ̇τ f /2 = 0. So, a simple targeting scheme would require
to check if, after half orbit, the LO crosses the plane again perpendicularly. The
design vector and the constrained vector are constructed accordingly to the provided
considerations on the orbit. Therefore:

X̃XX0 =


ξ

η̇

τ

 , (3.39)

where the only quantities allowed to vary and be corrected are the starting position
on the ξ̂ξξ S axis, the initial velocity along the −η̂ηηS direction (for a ξ0 lying on the
positive side of L2) and, if needed, the integration time. The terminal constraint
vector, related to desired initial state X̃XX∗

0, is thus defined as:

χχχ

(
X̃XX∗

0

)
=

{
η f

ξ̇ f

}
= 000. (3.40)
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The Jacobian can be directly computed by extracting the appropriate rows and
columns from the complete matrix in equation (3.38). In particular, for the planar
Lyapunov case, rows {2,4} corresponding to {η f , ξ̇ f } are extracted and then reduced
only to the columns {1,5,7}, corresponding to {ξ0, η̇0,τ}:

J̃JJ =

[
ϕ21 ϕ25 η̇ f

ϕ41 ϕ45 ξ̈ f

]
. (3.41)

Figure 3.1 shows a complete L2-centered LO family which has been computed
via continuation strategy in the Earth-Moon binary system.

Fig. 3.2 L2 Lyapunov orbits family in the EM binary system.
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An analytical LO of size Ay = 1×104 km -i.e. the elliptical black orbit centered
in L2- serves as starting point. To explore variations, the initial position ξ0 is
perturbed by a small finite step dξ0, which is kept fixed during the DC procedure,
thus allowing only the initial velocities η̇0 and the integration time τ to be propagated.
Due to nonlinearities, convergence robustness improves when the varying ξ0 point
is the one that produces smaller variations while increasing the orbit shape, more
precisely the positive coordinate ξ beyond L2.

Please note from the colorbar that, as the LOs depart further from L2, they require
greater energy, thus resulting in lower associated JC values. Moreover, such larger
orbits are distinguished by their characteristic cashew shape, whereas smaller LOs,
with higher JC values, closely reflect the elliptical geometry of the analytical one.

3.5 DROs computation in the CR3BP

Broucke, in his 1968 work Periodic Orbits in the Restricted Three-Body Problem with
Earth-Moon Masses first mentioned the existence of DROs by exploring symmetric
POs in the planar CR3BP [13]. In the same years, Hénon’s studies emerged as a
major reference on the subject [14–18], offering a comprehensive investigation of
DROs in the Hill’s Problem, a simplified case of the CR3BP. In this scenario, the
system dynamics are considered primarily around the secondary body, assuming
an infinite distance between the two primaries [52]. Nonetheless, the term Distant
Retrograde Orbit (DRO) was apparently coined by Ocampo and Rosborough only
twenty-five years later, in 1993 [28].

Analyzing several POs families in the Earth-Moon system, Hénon identified
specific selenocentric POs characterized by a quasi-elliptical shape and very large
radii with respect the closest primary (i.e. the Moon). DROs are indeed "distant"
as they are situated at significant distances from the Moon, with medium radii
extending tens of thousands of kilometers from the lunar surface. Moreover, these
orbits exhibit a retrograde rotating motion, orbiting in the opposite direction to the
Moon’s trajectory. Such unique geometry, combined with their relative position
within the Earth-Moon gravitational field, contributes to a high level of stability,
leading DROs to be classified in the Hènon family f .
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Unlike orbits near L1 and L2, which are unstable to small perturbations and
require constant corrections to remain stable, DROs pass above these points at a
greater distance, avoiding stability issues and maintaining their trajectory over time.
These properties make DROs perfect solutions for long-term space missions, such as
Earth or Moon observation missions, where frequent orbital corrections are typically
required.

However, DROs are stable when only planar motion is considered; a change
in stability can signal various bifurcations with other families of POs, even three-
dimensional ones. Although studying such variants plays an important role in
characterizing the dynamics of DROs, this thesis focuses solely on analyzing the
relationship between DROs and LOs for the purpose of constructing these orbits.
Since they are both planar orbits, the targeting scheme for DROs involves exactly
the same design and constraint vectors seen in Section 3.3.2. The planar bifurcation
from LOs, indeed, occurs when the tangential velocity η̇ increases to such an extent
as to produce orbits with greater amplitudes and lower JC, capable of exceeding
even L1.

As per 3.39, the design vector is:

X̃XX0 =


ξ

η̇

τ

 . (3.42)

Again, it is required that the orbit crosses the ξ̂ξξ S − ζ̂ζζ S plane with no velocity
component along the ξ̂ξξ S direction, so:

χχχ

(
X̃XX∗

0

)
=

{
η f

ξ̇ f

}
= 000. (3.43)

The reduced Jacobian matrix is the same of equation (3.41):

J̃JJ =

[
ϕ21 ϕ25 η̇ f

ϕ41 ϕ45 ξ̈ f

]
. (3.44)

As for the Lyapunov case, the DC procedure allows only the initial velocity η̇0

and the integration time τ to vary at fixed initial position ξ0. Here, the guess velocity
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η̇0, again negative due to retrograde motion, is increased manually until an extended
quasi-elliptical orbit -i.e. a DRO one- is obtained. In particular, by vaguely taking
the Artemis I mission orbit as reference [24], a LO with ξ0 ≈ 70,000 km (kept fixed)
is chosen as guess and only the η̇0 variable is modified.

Therefore, the targeted DRO is computed from the initial state:

X̃XX0 = {1.180000, 0.000000, 0.000000, 0.000000,−0.498237, 0.000000}T ,

τ = 3.224769, JC = 2.927885,

where η̇0 is the specific value of initial velocity that can be perturbed to retrieved the
DRO family (Figure 3.4). Finally, such orbit is verified by comparing the solution
with existing orbits in the NASA’s database [55].

Fig. 3.3 Targeted Distant Retrograde Orbit.
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The main characteristics of the implemented DRO are provided in Table 3.1
below.

Table 3.1 DRO characteristic properties.

Property Value Unit

Perilune 70392.55 km
Apolune 96058.13 km
Period 14.00 days

It is worth noting that such periodic orbits are only meaningful within the context
of the CR3BP. When a generic trajectory is integrated in a higher-fidelity model,
additional perturbations and influences from multi-body gravitation inevitably cause
a nonlinear behavior, highly divergent from the expected one. Indeed, the concept of
periodicity itself ceases to exist in the NBP. Therefore, specific strategies to tackle
nonlinearities and aid convergence during the DC process are required.

To perform a transition from the POs just computed in the CR3BP to QPOs
in the NBP, the ephemerides data must be taken into account. If implemented,
this procedure would gradually replace the analytical solution with its medium-
fidelity counterpart PO, then transitioned in the NBP via a time-dependent coordinate
transformation. By defining a first guess integration time, corresponding to the guess
period of QPO, a FTDC strategy should be employed.

After incorporating all the gravitational perturbations and achieving QPO final
conditions relatively close to the initial ones within an acceptable error, it would
be necessary to implement a subsequent VTDC to actually target and "close" the
trajectory. Please remember that, while the generation of POs in the CR3BP provides
only a valuable starting point for the optimization of the analyzed DRI scenario, such
a complex transition to the NBP is beyond the scope of this thesis.
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Fig. 3.4 DRO family in the EM binary system.
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Chapter 4

Optimal Control Theory

Optimal Control Problems (OCPs) are a specific class of mathematical problems
concerning the search for control actions able to optimize a certain performance
index in a constrained dynamic system. The optimization can result in either a
maximization or a minimization of the objective function, representative of the
system behavior. Basically, this involves the identification of the most effective
control law -one among the admissible strategies- which guides the system over time
from an initial state to a desired final state, while considering system dynamics and
constraints. Hereafter, necessary conditions that ensure an optimal solution will be
outlined on the basis of Optimal Control Theory (OCT).

In space trajectories optimization, regardless of the specificities strictly related
to the examined problem, it is possible to generalize the OCP in a time-continuous
mathematical formulation, commonly adopted for finite-thrust mission scenarios.
The problem conventionally revolves around maximizing the final mass of the
spacecraft, which is equivalent to minimize the fuel consumption, or minimizing
the time of flight. The selection of the proper merit index is essential to define
the optimization problem in compliance with mission objectives and requirements.
In this thesis the maximization of m f is indeed proposed: the primary objective
is to identify the lunar transfer requiring the lowest orbit insertion costs, thereby
increasing the storable payload.

Due to the presence of nonlinearities in the objective function and/or constraints,
no analytical solution is available, so OCPs are treated as Non Linear Programming
Problems (NLPs), making them suitable to a wider range of numerical approaches.
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Therefore, each complex OCP is decomposed into smaller and more manageable
subproblems through a transcription process, aimed at finding an approximate
discrete-time solution almost close to the continuous original one. The resulting
discretized OCP can now be solved using numerical optimization methods, based
on various iteration and approximation techniques. However, a comprehensive
dissertation about nonlinear programming and transcription is provided in [56, 57],
but such detailed analysis exceeds the bounds of this thesis. Betts also delved
into NLPs numerical resolution, outlining all the mathematical aspects of different
approaches [43, 58].

The structure of Chapter 4 is depicted below. The first section explores the
numerical features of direct and indirect optimization, comparing them and offering
an overview that corroborates the choice of an indirect procedure in the thesis. The
presented approach broadly follows that provided by Mascolo [44], with additional
references in [59, 60]. Section 4.2, indeed, offers a complete formulation of a generic
OCP, delineated as a Two-Point Boundary Value Problem (TPBV), where constraints
are imposed only at the extremal points of domain.

In the following sections, the numerical procedure implemented to solve this
BVP is thoroughly detailed. The transition to a Multi-Point Boundary Value Problem
(MPBVP), achieved by adding further conditions to intermediate nodes of trajectory,
is also analyzed in a brief excursus. In the end, Section 4.5 delves into the application
of OCT to space trajectory optimization, providing the basis for the examined case
study.

4.1 Direct versus Indirect optimization methods

Numerical methods are essential to deal with the transcribed OCP, since they convert
the initial infinite-dimensional problem into a new one with a finite dimension. As
mentioned above, these optimization methods are broadly divided into two main
classes: direct and indirect. Although Direct Methods (DMs) have historically been
preferred due to their simpler implementation, since Lawden’s studies in the 1950s
[61–64], Indirect Methods (IMs) have been reevaluated in space trajectory optimiza-
tion, making a comparison between these two approaches extremely interesting.
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DMs offer a versatile strategy for treating complex problems in optimal con-
trol, given their high robustness and flexibility in handling dynamics and diverse
constraints. As the name suggests, they tackle the OCP directly, performing a
time-discretization of both state and controls, and solving differential equations via
numerical integration; this implies that a large number of unknown variables arises,
significantly increasing computational costs. The procedure consists in starting from
a tentative solution, then evaluating the evolution of the performance index and
constraints over time, and based on this, iteratively refining the initial guess again
with the aim of optimize the cost function [65]. This parametric representation of the
OCP, obtained bypassing the underlying dynamics of the system, may suffer from
approximation errors and scarce accuracy, so that solution refinement techniques
should be implemented. Unfortunately, the existence of such a strong correlation
between the guesses and the final values can lead to a solution that is suboptimal,
but not necessarily the optimal one. Moreover, the lack of theoretical insights into
the nature of the problem completes the picture, making it difficult to understand
whether such a solution is truly optimal.

Within this framework, IMs represent a viable alternative. Originated with the
CoV (Bernoulli’s brachistochronous curve problem, 1696 1), this approach provides
a faster and more accurate solution at minimal computational costs [66]. Differently
from DMs, the indirect optimization aims to maximize (or minimize) a functional,
by first deriving the first-order necessary conditions for optimality, thus defining
a Boundary Value Problem (BVP). Starting from initial guesses, the formulation
involves evaluating the errors on Boundary Conditions (BCs) and then modifying the
tentative solution to reduce such errors until convergence is achieved [67]. IMs have
proven effective in solving sophisticated problems, from TPBVP to more articulate
MPBVP, where the domain is partitioned into discrete subintervals and the internal
nodes between them are conveniently constrained. The search for suitable adjoint
variables, or costates, introduced to initialize the indirect optimization problem, poses
a more significant challenge compared to DMs, inherently demanding considerable
time and efforts from the user. Although, even in this case, the solution strictly
depends on initial conditions, IMs delve deeper into the problem offering valuable
theoretical insights about how to adjust the guesses and guide the solution towards
optimality. As a result of such a complex implementation, in the last decades, IMs

1The brachistochronous is the curve that allows a massive particle to go from one point to another
in the shortest possible time. This problem inspired Lagrange’s work on CoV.
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has often been relegated to the background in favor to direct ones. However, the
use of appropriate techniques to improve their robustness has allowed IMs to be
rediscovered and extended to a wide range of space trajectory applications. Further
details on numerical methods comparison and state-of-art are explored in [68–72].

For all these reasons, the use of an IM in the present thesis is well-motivated. An
iterative shooting procedure is proposed, demonstrating the effectiveness of such
a IM in different mission scenarios, from impulsive orbital transfer to low-thrust
manoeuvres. Moreover, among the best known methods, the Pontryagin’s Maximum
Principle (PMP) is employed, which provides necessary optimality conditions of
controls and state variables through the introduction of the so-called Hamiltonian
function 2.

4.2 General statement for Optimal Control Theory

The primary objective in OCT is to define the optimal control law that either maxi-
mizes or minimize a cost function, while satisfying all the system constraints. The
control strategy must consider system evolution over time, leading it towards a
desired final state and optimizing the functional along the way. As anticipated,
the proposed formulation is specifically referred to space trajectory optimization
problems. For the sake of brevity, the discussion will focus solely on maximization,
omitting dual aspects related to minimization.

Formally, the trajectory evolution over time is governed by a set of first-order
ODEs ẋxx(t), which are derived from the fundamental principles of mechanics applied
to the examined SC system. Given n state variables and m control variables, these
equations, depending on both the state vector xxx(t) ∈ Rn and the control vector
uuu(t) ∈ Rn, can be written as:

ẋxx(t) = fff (xxx(t), uuu(t), t) (4.1)

where the time t is an independent variable. Therefore, the OCP aims at identifying
the optimal trajectory xxx∗(t), guided by optimal controls uuu∗(t), that maximizes the
objective function J. Such a merit index quantifies the system "performance", namely

2One valuable alternative to PMP is represented by the Hamilton-Jacobi-Bellman equations, which
directly derive the optimal control policy through dynamic programming [73].
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the effectiveness of control actions with respect to system dynamics and constraints,
and takes the form:

J= ϕ(xxx0, xxx f , t0, t f )+
∫ t f

t0
Φ(xxx(t), uuu(t), t)dt (4.2)

This functional is composed by two main scalar terms:

• The first one ϕ depends on the values that state variables and time have at the
external boundaries (i.e. the extremal ones), giving particular weight to the
desired final state.

• The second one Φ, integrated from the initial to the final time, reflects the
trend of state quantities, controls, and time itself along the trajectory. It is a
measure of how the solution evolves to reach the final condition.

This expression can be opportunely rearranged either in the Lagrange’s formula-
tion, with ϕ = 0, or in the Mayer’s formulation, with Φ = 0. As will be discussed
further, the Mayer’s formulation is adopted in this thesis. In the optimal condition,
the merit index must be maximized, while satisfying any type of constraint that
may be imposed on the state variables and time at the extremes of domain, so that a
TPBVP arises. Such BCs are grouped in the constraint vector:

χχχ(xxx0, xxx f , t0, t f ) = 000. (4.3)

The control vector uuu may also be bounded to respect admissibility criteria, which
are detailed later on. A simpler notation is proposed for clarity:

ϕ ≜ ϕ(xxx0, xxx f , t0, t f ), (4.4a)

χχχ ≜ χχχ(xxx0, xxx f , t0, t f ). (4.4b)

A Bolza’s problem is thus defined; indeed, the equations (4.1) to (4.3) lay the
foundation for such a classical TPBVP, aimed to optimize a system under specific
BCs, by solving a set of time-continuous ODEs between two extremal states.

The implementation of IM can be now introduced, with its mathematical princi-
ples to be explored henceforth. This approach assumes the optimization of a new
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merit index J∗, obtained by inserting opportune auxiliary variables, that can be
expressed as follows:

J∗ = ϕ +µµµ
T

χχχ +
∫ t f

t0

[
Φ+λλλ

T ( fff − ẋxx)
]

dt. (4.5)

Therefore, such augmented functional includes the adjoint variables, or costates,
contained in the adjoint vector λλλ (t)∈Rn and bijectively related to the state quantities,
and the Lagrange multipliers µµµ ∈ Rm, referred to BCs. The performed augmentation
is tailored for OCPs, where the optimization is also subject to constraints. Indeed, for
a generic non-converged solution (i.e. when χχχ ̸= 000) state equations are not respected
and ẋxx ̸= fff , while for an optimal one both BCs and dynamics are satisfied, thus χχχ = 000
and ẋxx = fff and, therefore, J= J∗. As a result, solving the problem in equation (4.5)
then coincides with optimizing the original one in equation (4.2), one provided that
all conditions are met.

In theory, since time derivatives ẋxx(t) are unknown variables and must be inte-
grated during the optimization, the process could be simplified by integrating the
−λλλ

T ẋxx term in equation (4.5) by part:∫ t f

t0
(−λλλ

T ẋxx)dt =−(λλλ T xxx)
∣∣∣t f

t0
+
∫ t f

t0
(λ̇λλ

T
xxx)dt. (4.6)

Thus, by substituting into the equation (4.6), one retrieves:

J∗ = ϕ +µµµ
T

χχχ +(λλλ T
0 xxx0 −λλλ

T
f xxx f )+

∫ t f

t0
(Φ+λλλ

T fff + λ̇λλ
T

xxx)dt. (4.7)

All the indirect optimization process revolves around the system Hamiltonian H,
which appears in equation (4.7):

H ≜ Φ+λλλ
T fff . (4.8)

Indeed, the Hamiltonian is an indispensable quantity to formulate the equations
that describe the problem, namely the optimality, transversality, and the control
equations. In IMs, maximizing the merit index J∗ means respecting the first-order
necessary conditions for optimality, therefore, the J∗ has to be stationary at the
optimal point, i.e. δJ∗ = 0. With some mathematical manipulations, the first-order
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differential δJ∗ attains the following form:

δJ∗ =

(
∂ϕ

∂ t0
+µµµ

T ∂ χχχ

∂ t0
−H0

)
δ t0+ (4.9a)

+

(
∂ϕ

∂ t f
+µµµ

T ∂ χχχ

∂ t f
+H f

)
δ t f+ (4.9b)

+

(
∂ϕ

∂xxx0
+µµµ

T ∂ χχχ

∂xxx0
+λλλ

T
0

)
δxxx0+ (4.9c)

+

(
∂ϕ

∂xxx f
+µµµ

T ∂ χχχ

∂xxx f
−λλλ

T
f

)
δxxx f+ (4.9d)

+
∫ t f

t0

[(
∂H

∂xxx
+ λ̇λλ

T
)

δxxx+
∂H

∂uuu
δuuu
]

dt. (4.9e)

Since δJ∗ must be null, a targeted choice of both costates λλλ and Lagrange
multipliers µµµ allows to nullify, for any variation in times, states, and controls, all their
respective multiplying coefficients. Depending on which term is imposed equal to
zero, a different condition arises, thus composing the entire set of the BVP boundary
conditions. So, by nullifying the coefficients in lines (4.9a) and (4.9b), two algebraic
equations at the initial and final times are defined, known as transversality conditions;
lines (4.9c) and (4.9d) yield optimality conditions, namely 2n algebraic equations,
each referred to a state quantity at both the external boundaries; finally, when the
latter coefficients are null, line (4.9e) provides n Euler-Lagrange equations for the
adjoint variables and m algebraic control equations. Hence, under the imposed BCs,
the BVP is totally delineated by a total of 2 + 2n+m equations, which respectively
determine 2 times (t0 and t f ), n initial variables for both state (xxx) and costate (λλλ ),
and m multiplying coefficients (µµµ). All of these conditions will be examined below.

4.2.1 Boundary conditions for optimality

The transversality and optimality conditions dictate the behavior of trajectory at both
times and states at the extremes of domain. These BCs, obtained by nullifying the
coefficients of δ t0, δ t f , δxxx0, and δxxx f in equations (4.9), compose the following set
of ODEs:
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∂ϕ

∂ t0
+µµµ

T ∂ χχχ

∂ t0
−H0 = 0 (4.10a)

∂ϕ

∂ t f
+µµµ

T ∂ χχχ

∂ t f
+H f = 0 (4.10b)

∂ϕ

∂xxx0
+µµµ

T ∂ χχχ

∂xxx0
+λλλ

T
0 = 000 (4.10c)

∂ϕ

∂xxx f
+µµµ

T ∂ χχχ

∂xxx f
−λλλ

T
f = 000. (4.10d)

Now, the role of Hamiltonian function H in the indirect optimization can be
clarified. Indeed, from the two transversality equations (4.10a) and (4.10b), if the
time appears neither in the function ϕ nor in the vector χχχ , the extremal values of
Hamiltonian H0 and H f are both null, and the values for time are dependent on
the optimization. Conversely, if time is contained in χχχ , namely the initial and final
times are fixed, then the respective Hamiltonian values are free and dependent on the
process. Moreover, if the time variable is unconstrained but subject to optimization
(i.e. generally minimization), the related Hamiltonian H f is equal to 1.

The optimality equations (4.10c) and (4.10d) follow a similar reasoning. If a
specific i-th state variable xi does not feature nor in ϕ nor in χχχ , the associated costate
λxi is equal to zero. On the other hand, if such xi is constrained, its adjoint variable
results free at the same point. For a free state variable, for example the SC final mass,
that has to be optimized (i.e. maximized), the corresponding costate is of unity.

To summarize the foregoing discussion, one has:

• if

{
t0

t f
/∈

{
ϕ

χχχ
⇒

{
H0 = 0

H f = 0

• else if

{
t0

t f
∈

{
ϕ

χχχ
⇒

{
H0 ̸= 0

H f ̸= 0

• if

{
xi0

xi f

/∈

{
ϕ

χχχ
⇒

λxi0
= 0

λxi f
= 0

• else if

{
xi0

xi f

∈

{
ϕ

χχχ
⇒

λxi0
̸= 0

λxi f
̸= 0
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4.2.2 Equations for adjoint variables and controls

From the last line (4.9e) of equation (4.9) one can retrieve the set of ODEs that
delineates the evolution of adjoint variables λλλ and controls uuu over time. By imposing
the coefficients of δxxx equal to zero, the first set of n Euler-Lagrange equations for
costates arises:

dλλλ

dt
=−

(
∂H

∂xxx

)T

, (4.11)

given that λλλ (t) ∈ Rn, and so its first-order derivatives λ̇λλ . On the other hand, by
imposing the coefficients of δuuu equal to zero, the set of m algebraic equations for
controls is obtained: (

∂H

∂uuu

)T

= 0. (4.12)

As previously mentioned, the control vector uuu may be partially or totally con-
strained within certain limits of admissibility, such that uuu(xxx(t), t) ∈ UUU, where these
control actions might depend on both state variables and time itself. Therefore, it
suggests that a specific control variable u should be properly kept within the explicit
range Umin < u < Umax.

This is where the Pontryagin’s Maximum Principle (PMP) (or Pontryagin’s
minimum Principle, PmP, for minimization problems) is invoked; the optimal con-
trol uuu∗ ∈ UUU is the one that, per each point in the desired trajectory, maximizes the
Hamiltonian at that precise point. Such optimal law establishes the necessary con-
ditions under which the control policy, resulting from the implemented method, is
indisputably deemed optimal rather than suboptimal.

Furthermore, equation (4.12) implies that the i-th control ui is not necessarily
constrained to the admissible boundaries; according to the PMP, if Ui,min < ui <

Ui,max, such control is unbounded, otherwise it is assigned to the extremes of UUU.

However, depending on the derivation of Hamiltonian in equation (4.12), two
cases arise:

∂H

∂ui
=

 f (ui) if H nonlinear wrt ui,

kui else if H affine,
(4.13)
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where kui is constant. In the first case, the derivation yields a function of the bounded
control ui, setting the conditions that guide the control strategy. On the other hand, if
the Hamiltonian H is linear, or affine, with respect to the control (except for kui = 0),
no information about the strategy to be adopted is provided, and a specific approach
has to be sought. Specifically, a bang-bang control strategy is employed, influenced
by the coefficient kui resulting from derivation (4.13). For kui ̸= 0, the Hamiltonian is
maximized by switching the control between its extremal allowable values, without
assuming intermediate values. Therefore:

• the control is set to its maximum admissible value, ui = Ui,max, when kui > 0,

• otherwise it is set to its minimum, ui = Ui,min, when kui < 0.

Moreover, if kui = 0, then bang-bang controls are not applicable, thus necessi-
tating the introduction of singular arcs. As described in [74], this strategy occurs
when the solution cannot be directly determined by applying PMP, but requires
the evaluation of high-order conditions involving derivatives of the Hamiltonian
function3. Fortunately, such complex scenario never arises in this thesis, since the
Hamiltonian under investigation is affine to the control. Therefore, the selected
control variable -the thrust T - is handled through a simpler bang-bang strategy, and
commuted between its maximum Tmax and its minimum value Tmin (i.e., 0). Further
details on the proposed model will be explored in Section 4.5.

Summarizing for a generic control ui, from results of the Hamiltonian derivation
in (4.12), the following applies:

• if f (ui) ⇒ Ui,min < ui < Ui,max,

• else if kui


> 0 ⇒ ui = Ui,max,

< 0 ⇒ ui = Ui,min,

= 0 ⇒ singular arcs strategy.

3Differently from bang-bang controls (or nonsingular arcs), singular arcs involve additional
conditions to identify the optimal control policy, such as the generalized Legendre-Clebsch condition.
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4.3 Multi-Point Optimal Control Problem

Converting a TPBVP into a MPBVP could facilitate the intricacies of computational
modeling, enhancing the numerical convergence of the solution algorithms and
improving code robustness. Such a flexible approach breaks down complex dynamics
into a number of np manageable subintervals, called indistinctly phases or arcs, while
constraints are imposed in both external and internal points along the trajectory.
Within each arc, variables are presumed to be continuous, at least up to the junction
points, where discontinuities may arise as different arcs meet.

A schematic representation of the domain partition for a MPBVP is depicted in
Figure 4.1.

Fig. 4.1 Schematic representation of domain partition into multiple arcs [44].

The notation previously introduced in (4.1) to (4.3) for the TPBVP, is reformu-
lated henceforth to accommodate the MPBVP. Thus, the subscript for each quantity
denotes, from 0 to np, the considered node of the trajectory, with the addition of a
plus or a minus sign, respectively referred to the values immediately before and after
the boundary in the neighborhood of that point.

Therefore, the MPBVP merit index is defined as:

J= ϕ(xxx( j−1)+, xxx j−, t( j−1)+, t j−)+
np

∑
j=1

∫ t j−

t( j−1)+

[Φ(xxx(t), uuu(t), t)]dt, (4.14)

where J is not only influenced by the values of both state and time variables for each
node, but takes also into account how the solution evolves arc by arc.
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In this case too, the BCs are generally Non Linear (NL) and again may depend
on the state vector and time. So, one has:

χχχ(xxx( j−1)+, xxx j−, t( j−1)+, t j−) = 000, j = 1, . . . ,np. (4.15)

The augmented functional J∗ incorporates the mentioned constraints, facilitating
the search for the optimal point, while ensuring the solution compliance with the
underlying conditions. It takes the form:

J∗ = ϕ +µµµ
T

χχχ +
np

∑
j=1

∫ t j−

t( j−1)+

[
Φ+λλλ

T ( fff − ẋxx)
]

dt. (4.16)

and, after integrating by part:

J∗ = ϕ +µµµ
T

χχχ +
np

∑
j=1

[
λλλ

T
( j−1)+xxx( j−1)+ −λλλ

T
j−xxx j−

]
+

np

∑
j=1

∫ t j−

t( j−1)+

[
Φ+λλλ

T fff − λ̇λλ
T

xxx
]

dt.

(4.17)

The first order differentiation δJ∗, expressed per each arc, is:

δJ∗ =

(
∂ϕ

∂ t( j−1)+
+µµµ

T ∂ χχχ

∂ t( j−1)+
−H( j−1)+

)
δ t( j−1)++ (4.18a)

+

(
∂ϕ

∂ t j−
+µµµ

T ∂ χχχ

∂ t j−
+H j−

)
δ t j−+ (4.18b)

+

(
∂ϕ

∂xxx( j−1)+
+µµµ

T ∂ χχχ

∂xxx( j−1)+
−λλλ

T
( j−1)+

)
δxxx( j−1)++ (4.18c)

+

(
∂ϕ

∂xxx j−
+µµµ

T ∂ χχχ

∂xxx j−
−λλλ

T
j−

)
δxxx j−+ (4.18d)

+
np

∑
j=1

∫ t j−

t( j−1)+

[(
∂H

∂xxx
+ λ̇λλ

T
)

δxxx+
∂H

∂uuu
δuuu
]

dt, j = 1, . . . ,np. (4.18e)

Instead of considering the transition of a single j-th arc from t( j−1)+ to t j− , it is
more efficient to focus on the boundary points themselves, which transversality and
optimality conditions are explicitly formulated as:
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∂ϕ

∂ t j+
+µµµ

T ∂ χχχ

∂ t j+
−H j+ = 0, j = 0, . . . ,np −1 (4.19a)

∂ϕ

∂ t j−
+µµµ

T ∂ χχχ

∂ t j−
+H j− = 0, j = 1, . . . ,np (4.19b)

∂ϕ

∂xxx j+
+µµµ

T ∂ χχχ

∂xxx j+
+λλλ

T
j+ = 000, j = 0, . . . ,np −1 (4.19c)

∂ϕ

∂xxx j−
+µµµ

T ∂ χχχ

∂xxx j−
−λλλ

T
j− = 000, j = 1, . . . ,np. (4.19d)

All the considerations on Euler-Lagrange and control equations, previously made
for the TPBVP, remain essentially unchanged in the MPBVP domain.

4.4 Implementation of Boundary Value Problems

The main purpose of this thesis is to optimize transfer trajectories to lunar DROs
within a medium-fidelity model that accurately reflects the CR3BP dynamics. This
BVP implementation requires to address the numerical issues that arise as the IM
is developed, along with managing the nonlinearities inherent in such a complex
scenario. Consequently, it is essential to enhance code robustness and mitigate the
solution high sensitivity with respect to variations in initial conditions.

To tackle these challenges, an augmented TPBVP has been formulated, as de-
tailed in previous sections. Therefore, the initial state vector is now composed of the
previous one extended with the adjoint vector:

yyy0 =
{
(xxx0)

T , (λλλ 0)
T}T

. (4.20)

The objective is to identify the optimal initial state yyy∗0 that allows reaching the
desired final state yyy∗f , while satisfying all BCs. The indirect optimization is performed
through the single-shooting method earlier described in Section 3.3, selected for its
straightforward implementation and low computational demands. This approach
aligns with the aim of developing a practical and replicable solution methodology
based on the IMs formulation, capable of handling the complex dynamics of the
CR3BP. The entire procedure is explored in the following Section.
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The set of governing equations to be integrated is generally reformulated as:

ẏyy = fff (yyy(t), t), (4.21)

Given that the OCP may involve also some constant variables, a new vector zzz
can be employed:

zzz =
{

yyyT , cccT}T
, (4.22)

obtained by coupling yyy with the constant vector ccc. So, the system set of ODEs
becomes:

żzz =
dzzz
dt

= fff (zzz(t), t), (4.23)

where:

ċcc =
dccc
dt

= 000. (4.24)

All the constraints are satisfied if:

χχχ(zzz) = 000. (4.25)

As seen in Section 3.3, the implemented shooting procedure aims at finding the
optimal initial state qqq∗0 which fulfills BCs χχχ(qqq∗) = 000. The process starts by defining
an initial guess for the state vector qqqr = zzz0, then proceeding iteratively. The error
in BCs is computed between the values at the r-th iteration and the successive ones
through a first-order Taylor expansion:

χχχ(qqqr+1) = χχχ(qqqr)+
∂ χχχ(qqqr)

∂qqqr+1
(qqqr+1 −qqqr). (4.26)

In this approximation, the partial derivatives of the constraint vector χχχ with
respect to the state vector compose the Jacobian matrix JJJ(χχχ), which is crucial in
understanding how small changes in qqq affect the problem, and thereby how to correct
the guess after each iteration.
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The following notation is introduced for brevity:

χχχr ≜ χχχ(qqqr), (4.27a)

JJJ(χχχr)≜ JJJ(χχχ(qqqr),qqqr+1). (4.27b)

If the solution exists, then χχχr+1 = 000 and therefore:

χχχr +[JJJ(χχχr)](qqqr+1 −qqqr) = 000. (4.28)

From this, it is possible to retrieve the state of the design vector qqq at each iteration:

qqqr+1 = qqqr − [JJJ(χχχr)]
−1

χχχr. (4.29)

Rigorously, the Jacobian matrix should be exactly computed with respect to the
examined homogeneous problem, introducing a new STM matrix for linear mapping.
As per equation (3.18), the evolution of such matrix over time is described by its own
set of ODEs, which would then need to be added to the system governing equations.

In this case, the Jacobian matrix JJJ(χχχ) is simply approximated via the forward
finite-difference methods as:

JJJ(χχχr) =
χχχ

p
r −χχχr

∆
, (4.30)

where each free-variable element of vector qqqp is perturbed with a ∆ = 1×10−7:

χ
p
ir ≜ χ(qp

ir), (4.31a)

qp
ir ≜ qir +∆. (4.31b)

This approximation makes the problem adaptable to any variation in constraints,
initial conditions, or even time schemes, allowing for more flexible analyses.

In conclusion, the presented TPBVP is governed by the system:

żzz = fff (żzz(t), t), (4.32)

formed by the sole set of system principal ODEs. By integrating simultaneously them,
it is possible to determine the optimal initial state zzz0 which allows to reach the desired
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final state zzz f (zzz0(t), t0) while respecting the imposed constraints χχχ . Such integration
relies on the Adams-Moulton numerical approach, an implicit and linear multistep
method with variable step size and order [75, 76]. Specifically, the algorithm
implements the LSODA Python integrator, known for its stability and robustness,
making it well-suited to handle stiff differential equations [77]. In addition, the code
is precompiled in C++ language, significantly enhancing computational capabilities.
This hybrid approach leverages the speed and efficiency of C++ while maintaining
the flexibility and ease of use of Python. On a standard 2.80 GHz CPU laptop with an
i7 Intel Core processor, LSODA proves particularly effective, achieving convergence
with computation times of 1 hundredth of second per iteration and an error tolerance
of 1e-7. This precision, combined with the inherent speed of the indirect method,
allows for the calculation of multiple solutions in a very short time frame.

In order to improve the iterative procedure, two numerical techniques are also
implemented:

• A relaxation parameter κ1 is introduced during the correction per each iteration:

zzzr+1 = zzzr −κ1 · [JJJ (χχχr)]
−1

χχχr, (4.33)

where κ1 = 1× 10−3 ÷ 1× 10−5. Usually, lower values are suitable during
the initial assumptions for unknown variables, whereas higher values can be
chosen only when the solution is reasonably close to the optimal one.

• Let be Emax = max(χi) the code required precision. At the end, a control on
boundary conditions is imposed between the error at each iteration and the
subsequent one:

Emax,r+1 < κ2 ·Emax,r, (4.34)

where κ2 = 2÷3. The latter parameter is effective in facilitating the conver-
gence of first step, even tough the first couple of steps increase the maximum
error while establishing the proper optimality direction in the search space. If
the error becomes significantly large, then the equation (4.34) does not hold
and a bisection method is applied on the correction up to five times. After that,
the process is automatically stopped since it is unable to converge from the
selected attempt solution.
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4.5 OCT for space trajectory applications

The spacecraft CR3BP dynamical system subject to optimization is [78]:

dξ

dt
= ξ̇ (4.35a)

dη

dt
= η̇ (4.35b)

dζ

dt
= ζ̇ (4.35c)

dξ̇

dt
= 2η̇ +ξ − 1−µ

ρ3
13

(ξ +µ)− µ

ρ3
23

[ξ − (1−µ)]+
Tξ

m
(4.35d)

dη̇

dt
=−2ξ̇ +η − 1−µ

ρ3
13

η − µ

ρ3
23

η +
Tη

m
(4.35e)

dζ̇

dt
=−1−µ

ρ3
13

ζ − µ

ρ3
23

ζ +
Tζ

m
(4.35f)

dm
dt

=−T
c

(4.35g)

or, in compact form:

dρρρ

dt
= VVV (4.36a)

dVVV
dt

= ggg(ρρρ)+hhh(VVV)+
TTT
m

(4.36b)

dm
dt

=−T
c
, (4.36c)

where ρρρ = {ξ ,η ,ζ}T and VVV =
{

ξ̇ , η̇ , ζ̇
}T

are the nondimensional position and
velocity vectors. The functions ggg(ρρρ) and hhh(VVV), introduced to compact the equations,
are respectively:

ggg(ρρρ) =



ξ − 1−µ

ρ
3
13

(ξ +µ)− µ

ρ
3
23

[ξ − (1−µ)]

η − 1−µ

ρ
3
13

η − µ

ρ
3
23

η

−1−µ

ρ
3
13

ζ − µ

ρ
3
23

ζ


(4.37a)
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hhh(VVV) =


2η̇

−2ξ̇

0

 (4.38b)

The first two lines, (4.36a) and (4.36b), are obtained from equations (2.30)
by adding the thrust term TTT , while the last equation (4.36c) represents the mass
consumption due to the propulsion, strictly depending on the effective exhaust
velocity c = Ispg0. The spacecraft mass m and the thrust magnitude T are non-
dimensionalized by using the initial spacecraft mass m0.

Such system of ODEs characterizes an OCP aimed at finding the optimal control
law uuu∗(t) that maximizes the merit index, generally equivalent to the final mass of
the spacecraft.

The Mayer formulation is preferred here, so one has:

J= ϕ = m f . (4.39)

The state vector xxx(t) ∈ Rn is:

xxx =
{

ξ , η , ζ , ξ̇ , η̇ , ζ̇ , m
}T

, (4.40)

the variables of which are associated to their corresponding adjoint variables, thus
composing the augmented state vector yyy(t) ∈ R2n:

yyy =
{

ξ , η , ζ , ξ̇ , η̇ , ζ̇ , λξ , λη , λζ , λ
ξ̇
, λη̇ , λ

ζ̇
, m, λm

}T
.

(4.41)

Please note that the vector yyy has no superscript here, but already contains the
nondimensional quantities according to the CR3BP formulation. Moreover, yyy coin-
cides with the vector zzz seen previously, since there are no additional constants in this
case (ccc = 000).
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By expressing the EoMs, as discussed in (4.35), the Hamiltonian is specifically
defined for space trajectory OCPs:

H = λλλ
T fff =

2n

∑
i=1

λi fi = λξ ξ̇ +λη η̇ +λζ ζ̇+

+λ
ξ̇

[
2η̇ +ξ − 1−µ

ρ3
13

(ξ +µ)− µ

ρ3
23

(ξ −1+µ)+
Tξ

m

]
+

+λη̇

[
−2ξ̇ +η − 1−µ

ρ3
13

η − µ

ρ3
23

η +
Tη

m

]
+

+λ
ζ̇

[
−1−µ

ρ3
13

ζ − µ

ρ3
23

ζ +
Tζ

m

]
+

−λm
T
c
,

(4.42)
or, in compact form:

H = λλλ
T
ρVVV+λλλ

T
V

[
ggg(ρρρ)+hhh(VVV)+

TTT
m

]
−λm

T
c
, (4.43)

where λλλ ρ and λλλV are respectively the adjoint vectors for position and velocity.

By grouping all terms multiplying the thrust-to-mass ratio, one obtains:

H = λλλ
T
ρVVV+λλλ

T
V [ggg(ρρρ)+hhh(VVV)]+T

(
λλλ

T
V

m
TTT
T
− λm

c

)
, (4.44)

thus finding that the Hamiltonian is linear with respect to the control uuu(t), namely
the thrust vector TTT in its magnitude and direction. For this reason, as seen in Section
4.2.2, a bang-bang control must be implemented. Such operation is performed by
means of the Switching Function (SF) parameter, obtained in equation (4.44) as:

SF =
λλλ

T
V

m
TTT
T
− λm

c
. (4.45)

Therefore, in accordance with the PMP, the optimal control which maximizes
the merit index (i.e. m f ) is the thrust that maximizes the Hamiltonian:

H = λλλ
T
ρVVV+λλλ

T
V [ggg(ρρρ)+hhh(VVV)]+TSF. (4.46)
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The bang-bang technique implies a control to be modulated along the trajectory
as follows; the thrust is maximized, T = Tmax, when SF > 0, while it is imposed
null, T = 0, when SF < 0, thus defining the entire control strategy. For a MPBVP,
unfortunately not employed here, such technique would be implemented arc by arc,
strictly guiding the trajectory during the mission. The singular arcs scenario, instead,
which requires the computation of SF time derivatives, is definetively excluded from
the discussion.

As regards the thrust direction, Lawden provides an important insight [61]: the
optimal thrust direction that maximizes the switching function, and consequently the
Hamiltonian in (4.44), is parallel to the adjoint velocity vector λλλV, named Primer
vector:

λλλV =


λ

ξ̇

λη̇

λ
ζ̇

 , λV = ∥λλλV∥. (4.47)

As a result, the switching function SF in equation (4.45) can be rewritten in its
scalar form as:

SF =
λV

m
− λm

c
. (4.48)

The thrust TTT vector can be decomposed via its two characteristic angles, the
in-plane angle αT and the out-of-plane angle βT , as shown in Figure 4.2:

TTT =


Tξ

Tη

Tζ

= T


cosαT cosβT

sinαT cosβT

sinβT

 , T = ∥TTT∥. (4.49)

The optimal values for these angles are retrieved by deriving the Hamiltonian in
equation (4.42) with respect to the thrust angles themselves:

∂H

∂αT
=−λ

ξ̇
sinαT +λη̇ cosαT = 0 (4.50a)

∂H

∂βT
= λ

ζ̇
cosβT −

(
λ

ξ̇
cosαT +λη̇ sinαT

)
sinβT = 0. (4.50b)
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Fig. 4.2 Thrust angles in the synodic EM RF.

Then, the following optimal directions are obtained:

cosαT cosβT =
λ

ξ̇

λV
(4.51a)

sinαT cosβT =
λη̇

λV
(4.51b)

sinβT =
λ

ζ̇

λV
(4.51c)

which coincide with the cosine directors of the thrust vector TTT . Therefore, the optimal
thrust angles are easily computed from equations (4.51a) to (4.51c) via primer vector
λλλV. The augmented BVP is finally completed by finding the adjoint variables
via integration from equation (4.11). Their problem-specific form is presented in
Appendix B.

During an indirect optimization process in highly nonlinear dynamical systems,
the evaluation of error gradients demands great computational efforts and time. For
such a complex CR3BP model, the implemented gravitational interactions may
affect the procedure, giving rise to numerical issues in handling thrust discontinuities.
Indeed, when the switching function oscillates around zero changing its sign multiple
times during the integration, the automatic sequence of thrust-coast phases may be
compromised, leading to the elimination of a desired thrust phase (SF > 0) or to
the introduction of an unwanted coast phase (SF < 0). Moreover, if a solution is
on the border between two different switching families, for example a two-burn
(T-C-T) and a three-burn (T-C-T-C-T) structure, the switching function may oscillate
indefinetively without converging.
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Over the years, several numerical techniques have been implemented to address
these critical issues, from smoothing techniques [79] to the most recent integrated
control regularization method [80], but their investigation is beyond the scope of
this research. A different approach implies that the problem’s switching structure
is specified a priori, thus defining a tailored series of thrust-coast phases along the
entire trajectory. Such an arc sequence is modified only if the PMP is violated,
following the strategic corrections suggested by the examined switching function.
An additional boundary condition is imposed, fixing the switching function to
zero when the thruster is turned on or off (i.e. at switching points). In this way,
the procedure robustness is significantly enhanced, accelerating convergence and
increasing numerical precision.

However, it is important to highlight that while this approach is well-suited
for the analysis, it was not implemented due to time constraints and the inherent
complexity of the method.
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Chapter 5

Lunar transfer trajectories to Distant
Retrograde Orbits in the CR3BP

Chapter 5 describes the actual scenario of this thesis, aimed at finding optimal
Earth-Moon direct transfers that ensure a final DRO insertion (DRI) with minimum
propellant usage. All the examined trajectories result from the implemented TPBVP,
grounded on the optimal control IM formulation and the use of a bang-bang thrust
control law. The dynamical model considers a three-body gravitation under the
assumptions of the CR3BP, whose EoMs have been presented in Chapter 2.

As anticipated, the core of the analysis involves searching for the optimal costates
that allow the spacecraft to thrust in preferential directions and correct the trajectory
while satisfying all imposed constraints. The complexity of the CR3BP model makes
this research more challenging, as the solution may exhibit unexpected behaviors
due to the combined gravitational effects.

The case study is perfectly framed by introducing all the boundary conditions
characterizing the lunar transfers. This includes reporting the features of the space-
craft and the selected engine, as well as the initial conditions for departure from
Earth and the terminal conditions to insert into DRO. The target orbit is computed via
a single-shooting procedure and STM, as seen in Chapter 2, employing a fixed-time
correction scheme.

There are multiple potential applications for these results. Optimizing such
EM transfers can significantly enhance mission efficiency, reducing costs for lunar
exploration and establishing a reliable supply chain for lunar bases [32]. Additionally,
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the stable nature of the DRO makes it an ideal location not only for approaching the
Moon but also for long-term scientific missions, space telescopes, and as a staging
point for deeper space exploration [33–35].

5.1 Boundary conditions

5.1.1 Spacecraft propulsion system

This section introduces the specific properties of the spacecraft, which is assumed
to be punctiform, and describes the thruster it is equipped with for the examined
scenario.

To overcome the physical limitations of traditional chemical propulsors, which
have low specific impulses (at best, Isp = 350÷450 s), Electrical Propulsion (EP)
is preferred here. EP thrusters are characterized by very high Isp, on the order
of thousands of seconds, depending on the engine’s operating principle, whether
electrothermal, electrostatic, or electromagnetic. On the other hand, these devices
produce lower accelerations over time, necessitating an effective ∆V greater than the
ideal one and thus extending thrust phases for hours, days, or even weeks. Since the
goal of this analysis is solely to preserve propellant, irrespective of mission duration,
engine efficiency is crucial. Other considerations regarding eclipse periods, during
which solar power supply ceases, are beyond the scope of this thesis.

Several EP thrusters have been developed and tested over the past decades;
however, none of these have been used as a reference since their applications are
usually limited to small correction maneuvers. For a complete Earth-Moon transfer,
an ideal electrostatic thruster with rather optimistic specifications has been selected.
These characteristics, including thrust, specific impulse, and the total mass of the
satellite, are provided in Table 5.1 below.

Table 5.1 SC characteristic properties.

Quantity Value Unit

m0 1000 kg
Isp 3000 s
T 1.0 N

72



Lunar transfer trajectories to Distant Retrograde Orbits in the CR3BP

Thrust and specific impulse are considered constant, resulting in the bang-bang
control discussed in Section 4.5.

Although the ultimate goal is to identify cost-effective trajectories by minimizing
propellant requirements, the implemented problem actually optimizes the SC final
mass. The relationship between mass consumption and velocity change, namely the
cost of maneuvering, is expressed by the Tsiolkovsky equation:

∆V =−Ispg0 ln
(

m f

m0

)
, (5.1)

where:
mp = m0 −m f . (5.2)

Please note that the propellant mass mp generally constitutes around 10÷15% of
the initial mass m0.

5.1.2 Initial conditions

To accurately define an EM transfer, a proper selection of the initial and final
conditions is essential. While the final points on the orbit are well-known, the
challenge arises with the initial point, the state of which, especially the velocities, is
unknown regardless of the selected location.

Leveraging the lack of a preferential direction of integration over time, as dis-
cussed in Section 3.4, the trajectory is integrated backward in time, starting from the
DRO and arriving near Earth. Therefore, by reversing the integration time, the initial
point of this integration will coincide with the target of the transfer, while the final
point will provide the departure point of the transfer itself.

In particular, the trajectory is computed by integrating equations (2.30), without
considering any thrust; the aim of this strategy is only to obtain a reference trajectory,
so no correction is needed. The point at η = 0 on DRO, used as the starting point
for the orbit computation in Section 3.5, is selected as the initial condition for the
integration:

{1.180000, 0.000000, 0.000000, 0.000000,−0.498237, 0.000000}T ,

73



Lunar transfer trajectories to Distant Retrograde Orbits in the CR3BP

A grid-search method is employed to identify the final (nondimensional) ∆VVV f

components along the ξ̂ξξ S and the η̂ηηS directions, which, combined, allow the DRI
maneuver. As a result, the final velocities ξ̇ and η̇ have to be increased by:

∆VVV f =

{
0.1000
−0.5000

}
. (5.3)

The integration time, which is negative, is gradually increased until the final
point of the trajectory is within a certain distance from Earth, here set to 20000 km.
So, by integrating backward for 5.6954 days, the following point is retrieved:

{−0.008135,−0.051873, 0.000000, 5.979900,−0.240686, 0.000000}T ,

which can be considered as a generic point on a circular parking MEO with a radius
of 20000 km, used to leave the planet. The whole integrated trajectory is represented
in Figure 5.1, where the radii of Earth and Moon are multiplied by a scale factor of
1000 for representation purposes.

Fig. 5.1 EM transfer integrated backward over time.

However, since the code shows high sensitivity even to very small variations in
velocity near Earth, it is preferred to break the trajectory to concentrate corrections
only in the second part during the optimization. In other words, this strategy exploits
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manually the same principle behind the MPBVP already seen in Section 4.3, where
the trajectory is automatically divided into multiple arcs. This breakpoint, marked
with a yellow star on the plot, is obtained by cutting off the integration time to 5.40
days:

{0.193506, 0.092323, 0.000000, 1.634975, 2.003608, 0.000000,}T .

Consequently, the initial mass m0 has to change, taking into account the fuel
burned during the first half. Again, from the Tsiolkovsky equation, one has:

mb
0 = m0 e−

∆V0
c = 944.65kg, (5.4)

where the superscript b indicates the residual mass at breakpoint after the first
segment and will be omitted henceforth for clarity. The ∆V0 coincides with the
difference between the starting velocity on the trajectory and the circular velocity on
MEO:

∆V0 = ∥V0∥−VMEO = ∥V0∥−
√

µE

rMEO
= 1.6737km/s. (5.5)

This new initial mass and the state of breakpoint now represent the real initial
conditions xxx0 for the optimization problem:

xxx0 = {0.193506, 0.092323, 0.000000, 1.634975, 2.003608, 0.000000, 1.000000}T ,

where the last unit value is exactly the mass, which is nondimensionalized by the SC
mass itself.

To ensure the process converges, these quantities must be accompanied by seven
reasonable adjoint variables, associated to initial mass, position and velocities, which
are unknown. While some demonstrate a perceivable progression over time, others
exhibit a less predictable behavior. The magnitude of a specific costate indicates
the relevance of the corresponding state variable at the same moment in time. In
particular, adjoint velocities play a key role, as they emphasize the importance of
each thrust direction with respect to the others; the sign of each adjoint indicates
whether its thrust component aligns (if positive) or opposes (if negative) the direction
of that velocity.
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Given the form assumed by the switching function in this analysis (see Section
4.5), the velocities and the position costates impact directly the correction procedure
by influencing the slope and the level of the SF itself, respectively. Specific guesses
must be selected based on the expected behavior of the SF, and then the optimal
constants can be identified iteratively. In this case, the adjoint variables λξ and λη are
both set to 1×10−1, while λ

ξ̇
and λη̇ can be imposed in the range 1×10−2÷1×10−3.

The λζ and λ
ζ̇

guesses are less relevant since the scenario is entirely planar. However,
the high delicacy of the code prevents using null values, so small non-zero initial
values are fixed equal to 1× 10−7. Finally, λm, indicator of the SC mass, is set
around 1.

5.1.3 Terminal conditions

Fig. 5.2 Selected final points on DRO.
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For fixed initial conditions, each transfer trajectory is uniquely distinguished by its
final conditions. In this regard, the DRO is discretized into 100 different points, for
which positions and velocities are known. Once the convergence for a specific final
point is achieved, one can proceed to others using a continuation strategy to identify
the optimal trajectory. Specifically, given the dynamics of the problem, the range of
interest is from point 97 to point 24.

Since the code proves to be extremely sensitive to changes in the Hamiltonian,
the Fixed-Time Differential Correction (FTDC) procedure is employed. Starting
from the period of the integrated trajectory, the integration time is manually increased
to allow corrections until convergence. As a consequence, the application of the
PMP ensures the solution optimality only for that specific time. Such limitation
is mitigated as much as possible by exploring different times for each solution in
hundredths of a day to avoid falling into a suboptimal solution.

The reduced set of terminal boundary conditions has the form:

χχχ f =
{

ξ f , η f , ζ f , ξ̇ f , η̇ f , ζ̇ f , λm f , ∆τ f

}T
, (5.6)

where the notation ∆τ is employed to distinguish the nondimensional integration
time for transfer optimization (∆t for the dimensional one) from the integration time
τ used during the orbits construction process. Please note that the time of flight
will now be measured starting from the breakpoint. Therefore, 0.2954 days must be
added to retrieve the effective total transfer time.

5.2 Fixed-time transfer trajectories

First off, a fixed-time sensitivity analysis is conducted for the first obtained conver-
gence. In this case, convergence is reached with a transfer time of ∆t f = 7.1 days,
targeting the same final point of the integrated trajectory (i.e. the point at η = 0), re-
ferred to here as point 1. Different values of ∆t f are investigated in the neighborhood
of these 7.1 days to evaluate the impact of assigned time on the solution.

Figure 5.3 clearly shows how the structure of switching function and the fuel
consumption change at varying of time of flight.
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Fig. 5.3 SF structure and burned propellant mass for different ∆t f at point 1.

Under the same conditions, no convergence is achieved for lower times than
7.1 days, as the spacecraft has too little time and thrust to appropriately correct
the trajectory and complete the transfer. All the SFs belong to the same family;
they exhibit a two-burn structure, consisting of an initial thrust phase to orient the
trajectory, a coasting phase, and a final thrust phase to achieve the orbit insertion
(T-C-T scheme). Steeper slopes of SF involve longer coasting phases, which may
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lead the satellite in a free-dynamic condition. To take back the trajectory on a
controlled track, stronger corrections are required in the residual time, resulting in a
more significant fuel consumption, with an almost linear trend.

For this reason, the evolution of in-plane angles α for these initial trajectories is
reported in Figure 5.4. All the coasting phases occurs between 0.2 and 1.3 days.

Fig. 5.4 Evolution of in-plane angles α over time for different ∆t f at point 1.

The solution at minimum propellant requests ends up coinciding with the one
at minimum time, exactly at 7.1 days. For longer durations, the insertion trajectory
slightly deviates from the optimal condition, causing the code to thrust in different
directions, even if unnecessarily. After the coasting phase, the trajectory tends to
open less outward and increase the satellite tangential velocity, before recovering
in the final part. During this segment, indeed, the thrust opposes the SC’s forward
motion almost parallelly, slowing it down just enough for the DRI maneuver.

Moreover, it is worth remembering that in the CR3BP, due to existing perturba-
tions, there are predefined paths for a given energy value, namely the Hill surfaces
(see Section 2.2.5). Deviating from these trajectories may also require additional
propellant.
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The continuation strategy starts from here; similar reasonings are applied to the
other points as well, searching for the solution at minimum time and consumption
per each targeted point.

Fig. 5.5 Transfer trajectories for all targeted points on DRO in the ξ̂ξξ S − η̂ηηS plane.

By varying the final point on DRO and the relative fixed time, the entire family
of solutions emerges. In Figure 5.5, all the resulting transfer trajectories are plotted
in the ξ̂ξξ S − η̂ηηS plane as a function of the total ∆V utilized. A particular focus on the
targeted points on orbit is also provided.
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As previously mentioned, the concentration is on a limited area of interest
on the final DRO. Concerning points at negative η , it is not practical to proceed
beyond point 24, as the required ∆V only increases. The trends of SF, besides, are
increasingly flattening, indicating a gradual transition to another family, specifically
to a five-phase structure (T-C-T-C-T). On the other side, solutions beyond point 97
show a considerable increase in the slope of SF, while still maintaining a two-burn
structure. Targeting these points implies transfers at the lowest times, increasing the
difficulties in achieving convergence with the provided thrust values.

Fig. 5.6 SF structures for all trajectories. Lowest-time solutions stand out for their slopes.

The diverse behavior of η > 0 solutions is also reflected in the evolution of
guesses over time (Figure 5.7). Particularly, while for λξ , λη , and λ

ξ̇
such curves

follow the longer-time solutions, for λη̇ they rise sharply, similar to what is observed
for the SFs. This is because the guess λη̇ is associated with the most significant
variable of the problem -i.e. the η̇ velocity-, which directly influences the primer
vector in SF. The trends of λζ and λ

ζ̇
, instead, stabilize at zero throughout the entire

integration time. In order to respect the optimality conditions, λ
ζ̇

values gradually
increase to 1.
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Fig. 5.7 Evolution of guesses {λxi , λη , λζ , λ
ξ̇
, ,λη̇ , λ

ζ̇
, λm} over time for all solutions.
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The variation in the assigned time of flight is depicted in Figure 5.8 below. Each
final point is expressed in percentage of position along the orbit, where point 1
corresponds to 0%. The graph also reports the percentage of coasting time with
respect to the relative transfer time (from breakpoint) for some solutions.

Fig. 5.8 Fixed time of flight ∆t f for each solution. The percentages of coasting time with
respect to the transfer time are also reported.

It is easy to observe that, following the irregular shape of the DRO and targeting
progressively more distant points, the assigned ∆t values exhibits a perfectly linear
trend, as one might expect. Once again, the resistance encountered in converging the
solutions for η > 0 leads to a more cautious and gradual allocation of times, which
explains the slightly lower slope of the initial segment.

Proceeding to η < 0 results in longer coasting time, but also the thrusting phases
extend. Indeed, the propellant mass requests increases progressively (Figure 5.9),
where, as usual, the relationship between mp and ∆V is described by the Tsiolkovsky
equation. Counterintuitively, a shorter transfer does not necessarily mean a lower
consumption. For positive η values, while the transfer time decreases, the fuel
consumption begins to increase again since the thrust phases must be sufficient to
reach the orbit within the limited time available.

This increase is slightly mitigated by the easier achievement of the tangency
condition between the trajectory and the orbit. Indeed, the optimal trajectory better
suits the quasi-elliptical shape of the DRO by inserting the spacecraft with a velocity
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that is as aligned as possible with the orbit velocities. Higher thrust values would
be necessary to explore other solutions, both in terms of arc structure and insertion
point on the DRO.

Fig. 5.9 Burned propellant mass (and total cost ∆V ) for each solution. The percentages of
SC final mass with respect to the initial mass are also reported.

As expected, the optimal trajectory proves to be the one at minimum time that
least deviates from the integrated trajectory, specifically the one that targets point 1.
This point ensures a perfectly tangential insertion at ξ̇ = 0, with a consumption of
"only" 19.35 kg, equal to :

xxx∗f = {1.180000, 0.000000, 0.000000, 0.000000,−0.498237, 0.000000, 925.3047}T ,

where m∗
f = 925.31 kg is the optimal value of the SC final mass. The complete

results are provided in Table 5.2.

The optimal transfer trajectory can be retrieved from the specific optimal guesses,
λλλ
∗
0 = {λξ ,λη ,λζ ,λξ̇

,λη̇ ,λζ̇
,λm}T , reported here:

λλλ
∗
0 = {0.431809, 0.162831, 0.000000, 0.040203, 0.035012, 0.000000, 0.977617}T .
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Table 5.2 Optimal final results

∆t∗ m∗
f m∗

p ∆V ∗

[days] [kg] [kg] [km/s]

7.10 925.31 19.35 0.6082

The plot in Figure 5.10 highlights the diverse phases along the trajectory, distin-
guished by color depending on whether the engine is turned on (in red) or off (in
green). This low-thrust engine requires the satellite to thrust for the majority of the
trajectory, except during the phase from ξ ≈ 0.40 to 0.51, where it coasts.

Fig. 5.10 Optimal transfer trajectory to point 1, divided into thrust phases (SF > 0, in red)
and coast phases (SF < 0, in green).

As anticipated, the SF follows the T-C-T family scheme. Such structure, coupled
with the final mass evolution over time, is displayed in Figure 5.11. The portion
of the SF curve at negative values, corresponding to the coasting phase, results in
a plateau at 942.32 kg in the total mass trend. It is precisely the duration of such
coasting phase (equal to 7.2% of the assigned transfer time), that makes this solution
stand out from the others, ensuring the best compromise between saving propellant
and maintaining a controlled trajectory.
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Fig. 5.11 Evolution of switching function and SC total mass fraction over time.

The direction of the thrust vector is not immediately apparent. For this reason, it
is necessary to carefully analyze the evolution of the in-plane and out-of-plane thrust
angles over time (Figure 5.12).

The α angle exhibits an always increasing trend. The initial values around
40÷50◦ determine an acceleration in the forward direction. The satellite tends to
open the trajectory upwards, arching it just enough to allow for DRO insertion.
During the second thrust phase, the angle assumes values well beyond 90◦, as the
SC thrusts radially outwards and slows down.
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The continuous deceleration peaks towards the end, when α reaches values
around 111◦, resulting in a thrust nearly opposite to the trajectory. This braking
completely nullifies the velocity component along the ξ̂ξξ S axis, leading the spacecraft
to the desired insertion velocities. The β angle, on the other hand, is always null, as
the examined scenario is entirely planar.

Fig. 5.12 Evolution of the in-plane α and out-of-plane β thrust angles over time.

For completeness, the time evolution of positions and velocities is also reported.

The trends of ξ and η perfectly reflect the arching of trajectory, while the
velocities ξ̇ and η̇ decrease until they match those of point 1. Once again, the planar
dynamics of the problem impose that ζ and ζ̇ are null.
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Fig. 5.13 Evolution of positions {ξ ,η ,ζ} and velocities {ξ̇ , η̇ , ζ̇} over time.
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Chapter 6

Conclusions

This thesis focuses on optimizing low-thrust lunar transfer trajectories within a
medium-fidelity model, reflecting the current interest in establishing a scientific
presence in cislunar space. Specifically, the scenario involves direct insertion tra-
jectories into a selenocentric Distant Retrograde Orbit (DRO) within the planar
Circular Restricted Three-Body Problem (CR3BP). Due to their high level of stabil-
ity, these orbits are ideal solutions for long-term space missions, limiting the orbital
maintenance corrections that are typically required.

In this context, space trajectory optimization represents the core of this work.
Chapter 4 provides an extensive investigation of Optimal Control Theory (OCT),
enabling a comparison between direct and indirect numerical methods. Although
more challenging to implement, the indirect formulation has been identified as
the most suitable for space application problems, ensuring more robust solutions
and higher computational speed. The existance of transversality and optimality
conditions at the extremal points of the domain leads to the formation of a classical
Two-Point Boundary Value Problem (TPBVP).

For solving the case study BVP, all these principles have been applied to imple-
ment an iterative single-shooting algorithm with a fixed-time differential correction
scheme. The objective was to maximize the final mass of the spacecraft, thus reduc-
ing propellant requirements and allowing for heavier mission payloads. However, the
selection of a specific transfer time may result in a suboptimal solution. To address
this issue, a time sensitivity analysis was conducted for each solution, inferring that
the best trajectories were those with not only minimal fuel consumption but also
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minimum time. The Pontryagin’s Maximum Principle (PMP) allowed the validation
of an optimal solution for that assigned time.

By leveraging the theoretical insights offered by the examined problem, a bang-
bang control law was implemented, switching discontinuously between thrust and
coast phases along the trajectory. Additionally, other tailored strategies have been
employed to tackle the numerical intricacies of indirect method and facilitate the
search for optimal guesses. Among these strategies, the trajectory was divided into
two parts, with only the second one being subject to optimization, thereby redefining
initial boundary conditions and simplifying the problem dynamics. The terminal
conditions for the insertion, instead, were determined by positions and velocities on
the DRO. Such a periodic orbit was initially computed within the CR3BP model,
again using an iterative shooting method, then, it was discretized into several points,
which served as targeted points for the optimization process.

To conclude, the dual purpose of this research has thus been achieved. The
implemented code has proved to be flexible and efficient, establishing a valuable
baseline for identifying cost-effective trajectories in the most diverse applications.
Moreover, direct solutions to reach cislunar space, by exploiting the presence of
stable, periodic DROs have been explored. Results suggest that two-burn trajectories
provide the most effective approach for the orbit insertion. The optimal trajectory is
the one at minimum fuel consumption, which best fits the quasi-elliptical shape of
DRO in the shortest time.

6.1 Future research

Various possibilities for future developments would have been investigated in more
detail with more available time. First, the limitations related to a fixed-time analysis
need to be addressed. One promising direction is to effectively convert the TPBVP
into a Multi-Point Boundary Value Problem (MPBVP), dividing the trajectory into
multiple arcs and imposing additional boundary conditions at intermediate nodes.
This strategy would perfectly fit the complex dynamics of the case study, allowing
for effective handling of the code high sensitivity to variable-time corrections. At
that point, the application of the PMP would ensure the incontrovertible optimality
of the solution. Additionally, the challenges of the indirect method could be tackled
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by defining a priori the succession of thrust and coast phases for the entire trajectory,
thus stabilizing the switching structure and guiding the solution towards optimality.

Further improvements could focus on refining numerical techniques to enhance
the algorithm efficiency and robustness. An automatic tool for generating guesses
could also be implemented to reduce computational times, allowing for a rapid
evaluation of different solutions. The high adaptability of the code leaves the door
open for additional customizations.

The fundamentals of OCT can be extended to more complex space mission
applications. For example, it may prove interesting to explore alternative solutions to
DRO direct insertions, such as multi-revolution trajectories or transfers that exploit
the contact points between DROs and tangential Lyapunov orbits [31]. Then, these
maneuvers could be coupled with various scenarios of imminent interest, from
rendezvous with asteroids to lunar landing operations [32–35].

For better adherence to reality, the model could be transitioned from the adopted
CR3BP to a higher-fidelity n-Body Problem (NBP). Starting with a 4-body gravi-
tational model (including the Sun, Earth, Moon, and spacecraft), ephemerides data
and planetary perturbations must be taken into account. As mentioned in Chapter 3,
the examined periodic orbits would be converted into Quasi-Periodic Orbits (QPOs)
in the NBP, losing any stability or periodicity properties. Due to perturbing accelera-
tions, such orbits diverge from their regular, closed CR3BP counterparts, generally
exhibiting an unpredictable behavior. Future research may be directed towards inves-
tigating how perturbing effects impact on trajectory evolution. Moreover, variations
in departure dates may significantly affect optimized trajectories, revealing diverse
behaviors based on the relative positions of celestial bodies.
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Appendix A

CR3BP Partial pseudopotential U

derivatives

First derivatives
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CR3BP Partial pseudopotential U derivatives

Second derivatives
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Appendix B

Euler-Lagrange equations for the
adjoint variables
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Euler-Lagrange equations for the adjoint variables
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