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Abstract

Recent developments in the global space exploration have put a spotlight on the
Moon, attracting the attention of major space agencies and private companies.
NASA’s ambitious plans for sustained human presence in cislunar space, e.g. the Lu-
nar Orbital Platform-Gateway program, has raised interest in cislunar orbits, looking
for some desirable properties such as relatively low transfer costs from Earth, low
orbit maintenance costs, and favourable communications opportunities with both
Earth and the lunar south pole. Among libration-point orbits, Halo Orbit families,
and particularly Near-Rectilinear Halo Orbits, are of special interest due to their
appealing characteristics from multiple perspectives. Perfectly periodic in the Circu-
lar Restricted Three-Body Problem model, NRHOs comprise a subset of the halo
orbit families in the Earth-Moon system, characterized by close lunar passages and
nearly-stable behaviour, thus requiring low-cost maintenance.

As the cislunar region is anticipated to become increasingly populated with
spacecraft, including potential debris, it is important to highlight the necessity of
strategic deorbiting planning and compliance with international laws governing
space debris. This study focuses on optimizing lunar de-orbiting trajectories that
use electric propulsion and depart from a NRHO, with a particular emphasis on
minimizing propellant usage. The chosen reference orbit is the Gateway’s southern
L2 NRHO, with perilune and apolune radii of 3,300 km and 70,000 km and 9:2
synodic resonance with respect to the Moon’s orbit around Earth. Its exact periodic
motion is computed by single-shooting method via Differential Correction.

The main objective of the proposed research is to optimize low-thrust lunar
de-orbiting trajectories by employing an indirect method based on the Optimal
Control Theory that transforms the propellant minimization problem into a Two-
Point Boundary Value Problem. The single-shooting method shows bang-bang
control derived from the Pontryagin’s Maximum Principle to optimize the trajectories,
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ensuring that a specific region in the lunar north pole is targeted. The dynamic model
considers 3-body gravitation (spacecraft subject to Earth and Moon gravity) within
the Circular Restricted Three-Body Problem.

Results identify a specific orbital arc in the NRHO, post-apolune, which is
deemed ideal for de-orbiting the satellite via a two-burn trajectory that enables direct
disposal towards the lunar north pole, significantly reducing propellant consump-
tion. This reduction in propellant required for de-orbiting allows the mission to
allocate more fuel for earlier operational phases, effectively extending the mission’s
operational lifespan.
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Chapter 1

Introduction

1.1 Motivation and objectives

In the evolving panorama of global space exploration, the Moon and cis-lunar space
is increasingly capturing the interest of major space agencies and private companies
worldwide. The cis-lunar domain, identified as that area of deep space under the
gravitational influence of the Earth-Moon (EM) system, offers affordable near-term
opportunities to help pave the way for future global human exploration acting as
a crucial link between current missions and future deep space endeavors. The
upcoming direction is to exploit Earth’s orbital environment, the surface of the Moon,
and cislunar space to foster the critical technologies, operational capabilities, and
commercial space economy with a view to sustainable human presence on the Moon,
Mars, and beyond.

In this complex environment, there are five special points, called Lagrangian
Points, where the gravitational forces of two large bodies, in this case the Earth and
the Moon, balance the centripetal force felt by a smaller object, e.g. a Spacecraft (SC).
This equilibrium allows the smaller object to maintain a stable position relative to the
two larger bodies. This mathematical problem, known as the "General Three-Body
Problem", was considered by Italian-French mathematician Joseph-Louis Lagrange
in his prize-winning paper [1].

In recent years, space mission design has focused on three-dimensional periodic
and quasi-periodic orbits near the libration points in the EM three-body problem. This
shift aligns with predictions made in the Vision for Space Exploration plan, outlined
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Introduction

in early 2004, which emphasized the importance of easily accessible cislunar space
for future space exploration objectives [2]. Consequently, over the past two decades,
there has been a growing interest in the concept of establishing a manned facility
in a long-term relatively stable orbit in lunar vicinity. Missions may be established
in EM libration orbits as a part of communication or navigation architecture, like
in the ESA’s Moonlight initiative [3], or to deploy and service spacecraft either in
transit from the Moon or stationed at other Sun-Earth (SE) or EM libration regions.
Moreover, these particular orbits may well become a prime staging area in the effort
to colonize space near Earth or to colonize the Moon. [4].

The first mission to orbit the EM Lagrange points was the ARTEMIS (EML1 and
EML2 Lissajous orbits, on either side of the Moon), part of the THEMIS extended
mission of NASA with the aim of studying a type of magnetic phenomena called
substorms in Earth’s magnetosphere that tend to intensify auroras near Earth’s poles
[5, 6]. Then, the CNSA with its Chinese Lunar Exploration Program launched
and will launch spacecraft towards libration point orbits like Chang’e 5-T1 and
Queqiao relay satellite of Chang’e 4 mission respectively on a EML2 Lissajous
orbit and a EML2 Halo orbit [7]. JAXA’s EQUULEUS cubesat was launched in
2022 to reach a quasi-periodic Halo orbit around EML2 using lunar flybys and solar
perturbation in order to study the Earth’s plasmasphere and demonstrate trajectory
control techniques exploiting Sun-Earth-Moon dynamics [8].

Among other initiatives and space programs, the Artemis one is the most ground-
breaking. The main objective of NASA’s missions, in collaboration with ESA, JAXA,
DLR, ASI, ISA and CSA, is to land the first woman and first person of color on the
Moon, explore the lunar surface more than ever before, and lay the groundwork for
sending astronauts to Mars [9]. The first one, Artemis 1, took place in late 2022 and
was a successful unmanned lunar flight test for Space Launch System (SLS) rocket
and Orion Spacecraft to prepare subsequent missions with astronauts, as planned for
Artemis 2 and then for Artemis 3 that will mark humanity’s first return to the lunar
surface in more than 50 years. To achieve this goal, the crew will travel toward the
Moon and Orion will perform a series of two engine burns to place the spacecraft in
a EML2 NRHO, selected to achieve long-term Artemis goals.

On future missions, NASA and its partners will assemble the Lunar Orbital
Platform-Gateway (LOP-G) in a designated NRHO, a lunar space station much
smaller and more focused platform than the International Space Station, to serve as
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Introduction

a hub for next Artemis missions. Gateway is a vital component of the NASA-led
program to return to the Moon and pave the way for future Mars exploration. For
long-term operations, the LOP-G acts as a staging area for both human and robotic
lunar expeditions, extending the duration of stays on the Moon and potentially
accommodating multiple surface visits within a single mission [10]. In the realm
of numerous possibilities, the Gateway Program opted for a NRHO of the EML2

southern family as its operational orbit with a 9:2 lunar synodic resonance. A
CubeSat, launched in June 2022, is the first spacecraft to test such unique elliptical
lunar orbit as part of the Cislunar Autonomous Positioning System Technology
Operations and Navigation Experiment (CAPSTONE). Acting as a pathfinder for
Gateway, CAPSTONE aims to reduce risk for future spacecraft by validating new
navigation technologies and verifying the dynamics of this halo-shaped orbit [11].

In general, NRHOs combine the benefits of Low Lunar Orbit (LLO), which
provides easy access to the Moon’s surface, with those of a Distant Retrograde Orbit
(DRO), known for its stability and thus fuel efficiency. In fact, these orbits exhibit
neutral stability features, leading to minimal requirements for orbit maintenance
and hence lower costs. Additionally, NRHOs enable spacecraft to reach the lunar
surface in about half a day. Specifically, orbits that belong to the southern family
offer exceptional communication coverage for areas near the Moon’s south pole, area
of particular interest for astronauts in order to test living conditions on extraterrestrial
bodies. A key characteristic of the selected 9:2 lunar synodic resonance NRHO
is its capability to sustain nearly perpetual line-of-sight with Earth. This ensures
continuous communication between Earth and the Moon, a critical factor for lunar
missions [12–14].

This ambitious program will bring together a growing presence of commercial,
civil, and military stakeholders in the cis-lunar space, with the potential to navigate
to different orbits around the Moon with both human and robotic exploration mis-
sions. This will entail a carefully orchestrated sequence of multiple launches in lunar
orbit and spacecraft dockings with the forthcoming LOP-G. However, alongside the
promise of these advancements lies a considerable challenge that must be addressed:
the potential creation of significant amounts of space debris. The increase in space-
craft, satellite launches, and orbital activities raises concerns about the environmental
impact on the space surrounding Earth and the Moon. Space debris, consisting of
defunct satellites, discarded rocket stages and fragments from erosion and collisions,
poses a serious threat to operational spacecraft, including crewed missions and
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essential satellite infrastructure, limiting the ability to launch new spacecraft and
eventually making entire orbits unusable. Another consequence is an increase of
costs for space operations by requiring efforts to shield against or maneuver around it.
The proliferation of space debris in lunar orbit could complicate navigation, increase
the risk of collisions, and potentially hinder nations’ ambitions, creating a situation
comparable to the highly populated near-Earth region. This is why it necessitates
the implementation of comprehensive Cis-lunar Space Traffic Management (CSTM)
strategies, debris monitoring systems, and the development of debris mitigation and
removal technologies to achieve Cis-lunar Space Situational Awareness (CSSA) and
Cis-lunar Domain Awareness (CDA) allowing for the sustainable long term usability
of the region [15].

To comply with current and future regulations and prevent the contamination
of cislunar space, upcoming missions must minimize their debris production and
carefully orchestrate the disposal of involved spacecraft. Given the intricate dynamic
environment, the challenge of End-of-Life (EOL) disposal becomes notable for cis-
lunar missions. Drawing from existing research [16, 17] and the historical record of
previous missions, a cislunar spacecraft at EOL has three primary disposal strategies:
executing an Earth atmospheric re-entry [18], moving to a stable graveyard orbit
(cislunar or heliocentric) or de-orbiting onto the lunar surface [19]. Each presents
specific constraints, advantages and drawbacks. Earth re-entry is a well-established
practice in Space Debris Mitigation (SDM) for Earth-orbiting missions but is less
common for lunar mission disposal due to the high transfer costs back to Earth and
operational complexity. More cost-effective alternatives leverage the dynamics of the
Sun-Earth-Moon system, harnessing the concept of graveyard orbit (often used for
satellites on GEOs) but with many factors to deal with, given the complex dynamics.
On the other hand, several missions have opted for lunar impact as a method of
disposal [20, 21]. In this case impacts must be strategically managed to minimize
risk to human assets and historical landmarks on the Moon taking into account the
possibility of targeting a specific location used as graveyard in which the remnants
of spacecraft intentionally deorbited on the surface could provide a rich source of
raw materials more accessible and practical for future utilization.

The core of this thesis is the optimization of electric propulsion de-orbiting
trajectories with a view towards utilizing lunar impact in a northern polar graveyard
region as a disposal strategy, with a particular emphasis on minimizing propellant
usage. This strategy is evaluated not just for its potential to mitigate space debris, but
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also for its prospective contribution to the lunar economy by recycling the materials
from the impacted spacecraft. The orbit chosen as the departure orbit is the LOP-G’s
Southern EML2 NRHO, anticipated to be the primary destination for spacecraft in
the coming years and potentially the main source of artificial debris in cislunar space.
Within the Circular Restricted Three-Body Problem (CR3BP), the selected orbit
presents a perfectly periodic motion that will be computed in Chapter 3.

From the perspective of propellant consumption, optimizing the trajectory for
EOL operations implies minimizing the required propellant for de-orbiting, thus
reducing costs and extending the operational lifespan of the satellite considering that
satellites are launched with a finite amount of propellant intended for station keeping,
orbit adjustments, and eventually, de-orbit maneuvers.

As will be described in Chapter 4, there are two main categories of numerical
methods to solve such infinite-dimension time-continuous problem: Direct Methods
and Indirect Methods. Both show advantages and drawbacks in terms of computa-
tional cost, implementation complexity, accuracy and sensitivity to the initial guess.
For the purpose of this thesis, an indirect method is preferred due to the method’s
ability to deliver precise and potentially optimal solutions efficiently. Despite the
presence of convergence challenges, the strategic value of indirect methods lies in
their capacity to provide detailed insights into the problem’s formulation and guide
iterative enhancements towards the optimal solution.

Therefore the optimization is carried out with an indirect method based on the
Optimal Control Theory (OCT), which transforms the propellant minimization prob-
lem into a Two-Point Boundary Value Problem (TPBVP). Pontryagin’s Maximum
Principle (PMP) allows the definition of a bang-bang control to optimize the trajecto-
ries starting from various points on the NRHO, ensuring that a specific region at the
lunar north pole is targeted maximizing the final mass and, equivalently, minimizing
the propellant consumption.

1.2 Thesis Overview

In Chapter 2, following a brief overview of the basic principles of orbital mechanics
and Two-Body Problem, the discussion shifts to spacecraft motion influenced by
Earth and Moon, dealing with the Three-Body Problem (3BP) and its simplification
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in the Circular Restricted Three-Body Problem (CR3BP), actually employed as
dynamic model in this thesis. The equations of motion for CR3BP are derived, from
which the concepts of Lagrangian Points and Zero-Velocity Surfaces are explored.

Chapter 3 deals with Periodic Orbits (POs) construction, introducing the single
shooting and differential correction strategies, used for identify and compute exact
periodic motions across specific families of orbits in the CR3BP framework.

Chapter 4 introduces the Optimal Control Theory (OCT) and the necessary con-
cepts for transforming a dynamic problem into an Optimal Control Problem (OCP),
focusing on an indirect approach. It transforms a general optimization problem into
a Two-Point Boundary Value Problem (TPBVP) outlining key optimization results
and effectively applying OCT to spacecraft trajectory optimization domain, the core
focus of this thesis.

Chapter 5 analyzes the solutions for optimal de-orbiting trajectories into a north-
ern lunar polar graveyard region, obtained varying the injection point on the NRHO.
Boundary conditions, both initial and terminal, are presented to fully define the prob-
lem. Results are illustrated and analyzed in order to identify the optimal minimum-
propellant solution.

Finally, Chapter 6 summarizes the findings, highlighting the main results and
suggesting possible research directions.
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Chapter 2

Dynamic models

Chapter 2 presents the dynamic model implemented in this thesis, following a brief
overview of the basic principles of orbital mechanics and related concepts. The
goal is to establish a comprehensive understanding of the mathematical and physical
frameworks that underpin the study of trajectory optimization. After a quick look
on the classic but timeless Two-Body Problem (2BP), the discussion extends to the
transition to the Three-Body Problem (3BP) and its simplification in the Circular
Restricted Three-Body Problem (CR3BP), employed as dynamic model for the
indirect optimization process. Key concepts such as the Jacobi Integral, Lagrangian
Points (LPs) and Zero-Velocity Surface (ZVS) are introduced, which are essential
for understanding the dynamics within this framework.

The notations adopted henceforth will follow that of Mascolo’s PhD dissertation
[22], used as guiding reference of this work. Written in list form, they are as follows:

• column vectors are written in lowercase bold fonts (xxx), except for known
quantities (such as velocity VVV );

• unit vectors are presented in lowercase bold fonts with a hat (x̂xx) ;

• matrices are denoted by bold uppercase letters (XXX);

• quantities that are time derivatives are marked with one or more dots, applicable
to both scalars and vectors (ẋ, ẋxx);

• Greek letters, different fonts or tilde superscripts indicate quantities that have
undergone some mathematical manipulations (e.g. non-dimensionalization).

7



Dynamic models

2.1 Two-Body Problem

Before introducing the dynamic model adopted in this thesis, it is worthwhile to
provide a recap of the fundamental principles of orbital mechanics, including an
overview of orbital parameters and their significance in the so-called Two-Body
Problem (2BP). Further in-depth analysis can be found to well-known textbooks on
orbital mechanics [23–25] and are beyond the scope of this work.

2.1.1 Reference Systems

ĴJJ

Reference Plane
ϕ

Perifocal plane

Ω ϑ

ω

Periapsis p̂ppSC(êee)

q̂qqSCŵwwSC(ĥhh)

rrr ν

K̂KK

ÎII
Vernal Equinox �

n̂nn
Line of nodes

i
ûuu

ŵww

v̂vv

Fig. 2.1 EME2000
{

ÎII, ĴJJ, K̂KK
}

, perifocal { p̂ppSC, q̂qqSC, ŵwwSC} and ZEN {ûuu, v̂vv, ŵww} RFs

A Reference Frame (RF) is specified by an ordered set of three mutually orthogonal,
possibly time dependent, unit-length direction vectors necessary to describe the
position, velocity, and acceleration of a spacecraft. Instead, the term "system"
includes the description of the physical environment as well as the theories used in
the definition of the coordinates [26]. Hence, a generic Reference System (RS) is
uniquely defined by its origin, a fundamental plane, and the RF itself. The choice
between using an inertial or non-inertial RS depends on the specific requirements
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Dynamic models

of the analysis being conducted. The primary distinction between these two types
of systems lies in whether pseudo-accelerations, like the Coriolis effect observed in
rotating RFs, are considered. In a nutshell: in an inertial RS Newton’s first law, the
law of inertia, holds true; in a non-inertial RS rotations and accelerations induce the
presence of apparent forces.

A widely used reference frame in celestial mechanics and astrodynamics is the
so-called Earth Mean Equator and Equinox of Epoch J2000 (EME2000), represented
in Figure 2.1. Its origin coincides with the Earth’s center, the reference plane is the
equatorial plane, and its unit vectors

{
ÎII, ĴJJ, K̂KK

}
are defined as:

• ÎII aligned towards the direction of the Vernal equinox;

• K̂KK normal to the reference plane;

• ĴJJ completing the triad.

Unlike the International Celestial Reference Frame (ICRF)1, which is the ref-
erence for ephemerides provided by the JPL [28], the EME2000 doesn’t include
nutations and librations, thus assuming the "quasi-inertial" status. However, given
the difference between the dynamical EME2000 reference frame and the ICRF at a
level of 0.01 arc second determined with an accuracy of 0.003 arc second [29], then
the EME2000 RF is considered inertial.

Functional for tracing the motion of satellites are the perifocal RS and the non-
inertial topocentric Zenith-East-North (ZEN), depicted in Figure 2.1. Their definition
is not particularly relevant to this thesis work and are therefore mentioned only for
completeness.

2.1.2 Equations of motion

The basis of the analytical description of the motion of bodies in space is a combina-
tion of two of Newton’s laws: the second law of motion and the law of gravitation
[23]. Actually, Johannes Kepler provided the first quantitative statements about

1The International Celestial Reference Frame (ICRF) was made to coincide almost exactly with
the J2000 frame and is a catalog of adopted positions of 608 extragalactic radio sources, 212 of which
are defining sources that establish the orientation of the International Celestial Reference System
(ICRS) axes, with origin at the solar system barycenter [27].
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orbital mechanics with the well-known first, second and third laws based entirely on
empirical data, missing the concept of gravitational force. Some decades later, Isaac
Newton developed the fundamental theory which explained why planetary motion
satisfied these three laws.

According to the Kepler’s first law, in the absence of external perturbations, the
geometrical shape of the orbit of a planet is an ellipse with the Sun at one focus,
whose equation in polar form is the conic equation:

r =
a(1− e2)

1+ ecosν
=

p
1+ ecosν

, (2.1)

where a, e and ν are respectively the semi-major axis, the eccentricity and the true
anomaly (three of six orbital parameters described later), and p is the semilatus
rectum.

By combining Newtons’s second law of motion and law of gravitation and
making some simplifying assumptions, one can demonstrate why and how the shapes
and speeds of the orbits behave. Assuming to adopt an inertial reference system
and the presence of only two spherically symmetric bodies, one of mass m and its
primary of mass M such that M >> m with constant values, one obtains the so-called
Two-Body Problem (2BP) with its equation of motion

r̈rr =− µ

r2
rrr
r
, (2.2)

where µ = GM. From the non-linear equation (2.2), with some manipulations
[23, 24, 30], it is possible to retrieve two constants of the motion, very useful in
providing information about its solution rrr(t) without actually obtaining it. The first
one constant of motion is the specific mechanical energy

E =
V 2

2
− µ

r
, (2.3)

consisting of two terms, respectively the specific kinetic energy and potential energy,
capable of providing important information about the shape of the orbit. The second
useful result is the conservation of the specific angular momentum

hhh = rrr×VVV , (2.4)
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therefore the vector rrr is normal to the constant vector hhh. This suggests that the
relative motion occurs within a fixed plane in space, i.e. the orbit plane, with hhh as its
normal vector. What Kepler’s second law states, i.e. a line segment joining a planet
and the Sun sweeps out equal areas during equal intervals of time, is a consequence
of the principle of conservation of angular momentum.

A further manipulation of the equation of motion (2.2) in the 2BP domain, first
performed by Newton, allows its analytical integration leading to an outstanding
result:

r =
h2/µ

1+(B/µ)cosν
, (2.5)

where BBB is a vector constant of integration and turns out to be an additional constant
of the motion, and ν is the angle between vectors BBB and rrr. As is immediately
apparent, the equation (2.5) resembles the (2.1). Identifying p = h2/µ , e = (B/µ)

and ν as the true anomaly, it is evident that also equation (2.5) is the conic equation:
ellipses match the mathematical form of gravitational orbits, confirming what Kepler
stated. Note that, in general, gravitational orbits are conic sections, which include
circles, ellipses, parabolas, and hyperbolas, based on values assumed by a,e and so
on [30].

Finally, also the proportionality between the square of the orbital period of a
planet (or, in general, the secondary body) and the cube of the semi-major axis of its
orbit asserted by Kepler’s third law is a natural consequence of the inverse-square
gravitational force field of the sun (or, in general, the primary body).

To conclude this section, an overview of the six classical orbital elements (also
known as Keplerian elements) is provided. Five independent quantities are sufficient
to describe the size, shape, and orientation of an orbit while the last is needed to
locate the orbiting body at a particular place and time. These elements are:

• a, the semi-major axis, describing the size of the orbit;

• e, the eccentricity, defining the shape of the orbit;

• i, the inclination, the angle of the orbital plane wrt a reference plane;

• Ω, the longitude of the ascending node, an angle in the reference plane locating
the ascending node in the line of nodes wrt a reference line;

11
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• ω , the argument of periapsis, an angle in the orbital plane that identify the
periapsis wrt the ascending node in the direction of motion;

• ν , the true anomaly, identifying the angular position of the orbiting body in
the orbital plane, measured at epoch from the periapsis.

The choice of the more convenient reference plane usually falls on the Earth’s
equatorial plane in the case of a satellite orbiting the Earth or the ecliptic plane (i.e.
the Earth’s orbit plane around the Sun) for interplanetary trajectory, while the choice
for the reference line is the direction from the Sun to the first point in Aries, a fixed
point on the celestial sphere [23].

2.2 Three-Body Problem

As summarized in Section 2.1, the 2BP laid the foundations of modern astrodynamics,
while greatly simplifying the reality. The Three-Body Problem (3BP) introduces
a third interacting body to the Newtonian framework, exponentially increasing the
complexity of the system. Indeed, unlike the 2BP where an elegant analytical
solution exists, the 3BP does not yield to such straightforward closed-form solutions
except in special cases. Hence, this escalation from two to three bodies marks
a critical transition point in the study of dynamical systems although providing
a sufficiently accurate framework for preliminary analysis directly applicable to
real-world scenarios, more comprehensively characterized by the N-Body Problem
(NBP).

The purpose of this section is to introduce a generic 3BP related to a generic
binary system composed of two primary bodies revolving around its barycenter, both
modeled as point-masses of value m1 and m2 for the bigger and smaller, respectively.
The two primary body (which could be Sun and Earth for a SE system or Earth
and Moon for a EM system) mutually influence the 3D motion of the third body
(which could be the Moon in the first case and a SC in the second one). Under
the assumption of negligible mass of the third body, the transition is from 3BP to
Restricted Three-Body Problem (R3BP). Essentially, the third body is influenced by
both gravitational forces of the two primary bodies without influencing their relative
motion. The addition of a further hypothesis allows to shift to the Circular Restricted
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Three-Body Problem (CR3BP): the primaries follow circular Keplerian orbits around
their common center of mass.

2.2.1 Synodic Reference System

O

ẑzzS, ẐZZF

X̂XXF

ŶYY F

x̂xxS

ŷyyS

rrr1(t) rrr2(t)

rrr 13(
t) rrr23 (t)

rrr 3(
t)

θ(t) ωS(t)

Fig. 2.2 Synodic reference system (not-to-scale)

The non-inertial rotating RF {x̂xxS, ŷyyS, ẑzzS} centered in the barycenter of the system,
depicted in Figure 2.2, is called Synodic RF and its axes are defined as follows:

• x̂xxS axis is aligned with the line connecting the two primaries;

• ẑzzS axis is normal to the plane containing the orbits of the primaries;

• ŷyyS axis completes the right hand triad.

Its angular velocity follows that of the two primaries wrt the inertial RF
{

X̂XXF , ŶYY F , ẐZZF
}

shown in Figure 2.2, namely ωS(t).

Let rrri j be defined as the position vector from the i-th to the j-th body:

rrri j(t) = rrrOi(t)− rrrO j(t), (2.6)
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where the subscript O means wrt the origin. Then, The dimensional mean motion
for the binary system can be expressed as

n(t) =

√
µ1 +µ2

r3
12(t)

=

√
µ∗

r3
12(t)

, (2.7)

with µ∗ indicating the sum of the specific gravitational parameters of the primaries.
The angle between the inertial and the synodic RFs at epoch can be computed as

θ(t) = n(t) t, (2.8)

where t is the dimensional elapsed time in seconds. It is evident that if the distance
r12 is not constant (e.g. with the use of planetary ephemerides), then θ and n
typically lead to roto-pulsating dynamics. In the CR3BP domain, the assumption of
considering the orbits of the primaries as circular (meaning r1 and r2 have constant
magnitudes) leads to a constant relative distance r12 as well as a constant mean
motion n over time. Specifically, the prograde angle θ that is swept out maintains a
constant angular velocity ωS.

2.2.2 Nondimensionalization

As is commonly done in the literature [22, 24, 31–33], the next step involves nondi-
mensionalizing the characteristic quantities of the CR3BP, namely length, mass and
time. The constant distance of the two primaries is chosen to be the length unit, as
mass unit is considered the sum of the two primaries masses and the time unit is then
selected to make the orbital period of the two primaries about the system barycenter
(Tsid) equal to 2π time units [32]:

ℓ∗ = r12 = r1 + r2 (2.9a)

m∗ = m1 +m2 (2.9b)

T ∗ ≜

√
(ℓ∗)3

Gm∗ . (2.9c)
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Hence, the non-dimensional quantities in the CR3BP result

ρ12 =
r12

ℓ∗
= 1, (2.10a)

µ ≜
m2

m∗ , (2.10b)

τsid =
Tsid

T ∗ = 2π. (2.10c)

From equation (2.10b) one can express the two non-dimensional mass ratios as

µ2

µ∗ = µ,
µ1

µ∗ = 1−µ, (2.11)

and as of consequence, the barycenter wrt the bigger primary results

ρCG =
∑ρiµi

∑ µi
= µ, (2.12)

resulting in the following non-dimensional coordinates of m1 and m2:

ρ1 =
r1

ℓ∗
=−µ, (2.13a)

ρ2 =
r2

ℓ∗
= 1−µ. (2.13b)

2.2.3 Equations of Motion

Adding a second primary body at equation (2.2), the compact form of the equations
of motion results

r̈rr =− µ1

r2
13

rrr13

r13
− µ2

r2
23

rrr23

r23
. (2.14)

In order to lighten the notation, henceforth the subscript 3 is omitted for the SC,
expressing its coordinates by {x, y, z} values. By projecting equation 2.14 in the
synodic RF directions one has

ẍxx =− µ1

r3
13
(x− x1)−

µ2

r3
23
(x− x2) (2.15a)

ÿyy =− µ1

r3
13

y− µ2

r3
23

y (2.15b)

z̈zz =− µ1

r3
13

z− µ2

r3
23

z, (2.15c)
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where the relative positions are

ri3 =
√

(x− xi)2 + y2 + z2, i = 1,2 , (2.16)

being, as the synodic RF is defined, yi and zi equal to zero.

The next step involves the projection of eqs. (2.15) into the inertial RF, indicated
by the prescript F , standing for "fixed" while the synodic one by R, standing for
"rotating". It is worth recalling the transport theorem for a generic quantity ⋆,

F d⋆
dt

=
R d⋆

dt
+ R/F

ωωωS × R⋆, (2.17)

where R/F indicates a quantity measured in the rotating RF wrt the inertial one. The
above theorem allows to write the velocity in the inertial RF as

F ṙrr =
R drrr

dt
+ R/F

ωωωS × Rrrr. (2.18)

Analogously, in the inertial acceleration, three corrective terms appears:

F r̈rr =
F dṙrr

dt
=

R d F ṙrr
dt

+ R/F
ωωωS × F ṙrr

=
R d

dt

(
Rṙrr+ R/F

ωωωS × Rrrr
)
+ R/F

ωωωS ×
(

Rṙrr+ R/F
ωωωS × Rrrr

)
= Rr̈rr+ R/F

ω̇ωωS × Rrrr+ R/F
ωωωS × Rṙrr+ R/F

ωωωS × Rṙrr+ R/F
ωωωS ×

(
R/F

ωωωS × Rrrr
)

F r̈rr = r̈rr+ ω̇ωωS × rrr+2ωωωS × ṙrr+ωωωS × (ωωωS × rrr) , (2.19)

in which in the last line, where all the terms are referred to the rotating RF, the
prescripts R and R/F are omitted. On the right-hand side of eq. (2.19), after the
first term representing the acceleration in the synodic RF, the tangential, centrifugal
and Coriolis accelerations arise, respectively. Under the CR3BP assumptions, the
variation of ωS and r are null: the tangential and centripetal accelerations are zero,
only Coriolis acceleration remains. However, for completeness a general case of
3BP is considered for now. Considering that ωωωSSS = ωS ẑzzS and expanding quantities in
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the inertial velocity in eq. (2.19), its components result

F ṙrr = (ẋ x̂xxS + ẏ ŷyyS + ż ẑzzS)+

∣∣∣∣∣∣∣
x̂xxS ŷyyS ẑzzS

0 0 ωS

x y z

∣∣∣∣∣∣∣
= (ẋ x̂xxS + ẏ ŷyyS + ż ẑzzS)+ [(−yωS)x̂xxS − (−xωS)ŷyyS +(0)ẑzzS] ,

F ṙrr = (ẋ− yωS)x̂xxS +(ẏ+ xωS)ŷyyS +(ż) ẑzzS. (2.20)

Similarly, the inertial acceleration shows the following components:

F r̈rr = r̈rr+

∣∣∣∣∣∣∣
x̂xxS ŷyyS ẑzzS

0 0 ω̇S

x y z

∣∣∣∣∣∣∣+2

∣∣∣∣∣∣∣
x̂xxS ŷyyS ẑzzS

0 0 ωS

ẋ ẏ ż

∣∣∣∣∣∣∣+ωωωS ×

∣∣∣∣∣∣∣
x̂xxS ŷyyS ẑzzS

0 0 ωS

x y z

∣∣∣∣∣∣∣
= (ẍ−2ẏωS − yω̇S) x̂xxS +(ÿ+2ẋωS + xω̇S) ŷyyS +(z̈)ẑzzS +

∣∣∣∣∣∣∣
x̂xxS ŷyyS ẑzzS

0 0 ωS

−yωS xωS 0

∣∣∣∣∣∣∣ ,
F r̈rr =

(
ẍ−2ẏωS − yω̇S − xω

2
S
)

x̂xxS +
(
ÿ+2ẋωS + xω̇S − yω

2
S
)

ŷyyS +(z̈)ẑzzS. (2.21)

By equating the components of equations (2.15) and (2.21) individually, it is
possible to obtain the full set of ODEs for the cartesian components

ẍ−2ẏωS − yω̇S − xω
2
S =− µ1

r3
13
(x− x1)−

µ2

r3
23
(x− x2) (2.22a)

ÿ+2ẋωS + xω̇S − yω
2
S =− µ1

r3
13

y− µ2

r3
23

y (2.22b)

z̈ =− µ1

r3
13

z− µ2

r3
23

z. (2.22c)

Applying the simplifications and nondimensionalization of the CR3BP, namely
ωnd = ωS/ω∗

S = 1 =⇒ ω̇nd = 0, and

ξ =
x
ℓ∗

(2.23a)

η =
y
ℓ∗

(2.23b)

ζ =
z
ℓ∗
, (2.23c)
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the full system of non-dimensional equations of motion for the cartesian components
in the CR3BP dynamical model has the form

ξ̈ −2η̇ −ξ =−1−µ

ρ3
13

(ξ +µ)− µ

ρ3
23

[ξ − (1−µ)] (2.24a)

η̈ +2ξ̇ −η =−1−µ

ρ3
13

η − µ

ρ3
23

η (2.24b)

ζ̈ =−1−µ

ρ3
13

ζ − µ

ρ3
23

ζ . (2.24c)

2.2.4 Jacobi Integral

Note that the equations (2.24) are three second-order, non-linear, coupled differential
equations. Despite the simplifications adopted by CR3BP, it remains a system that
cannot be solved analytically. However, it is possible to derive a pseudo-integral of
motion in the rotating RF used to explore what trajectories the third body can follow
given some initial energy state and as a means to verify the accuracy of a numerical
integration [24]. The starting point is the definition of a positive potential function U
in an inertial RF as

FU =
2

∑
i=1

µi

ri3
, (2.25)

where the subscript i is referred to each i-th primary body. Taking into account the
centrifugal potential in a 3BP rotating RF, the equation above is modified as follows

RU =
µ1

r13
+

µ2

r23
+

1
2

ωS(x2 + y2), (2.26)

and with CR3BP hypothesis and nondimensionalization it becomes

RU =
1−µ

ρ13
+

µ

ρ23
+

1
2
(ξ 2 +η

2), (2.27)
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defined as pseudopotential. By taking it and deriving wrt non-dimensional coordi-
nates one has

∂U

∂ξ
= ξ − 1−µ

ρ3
13

(ξ +µ)− µ

ρ3
23

[ξ − (1−µ)] (2.28a)

∂U

∂η
= η − 1−µ

ρ3
13

η − µ

ρ3
23

η (2.28b)

∂U

∂ζ
=−1−µ

ρ3
13

ζ − µ

ρ3
23

ζ , (2.28c)

which compared and combined to eqs. (2.24) yield

ξ̈ −2η̇ =
∂U

∂ξ
(2.29a)

η̈ +2ξ̇ =
∂U

∂η
(2.29b)

ζ̈ =
∂U

∂ζ
. (2.29c)

Manipulating the dimensional equations (2.22) by multiplying the first with 2ẋ,
the second with 2ẏ and the third with 2ż and then summing them, one obtains

2ẍẋ+2ÿẏ+2z̈ż+2ω
2
S (ẋx+ ẏy) = 2ẋ

∂U
∂x

+2ẏ
∂U
∂y

+2ż
∂U
∂ z

= 2
dU
dt

, (2.30)

whose integration produces the Jacobi Integral

ẋ2 + ẏ2 + ż2 =V 2 = 2U − JC, (2.31)

which in non-dimensional form results

ξ̇
2 + η̇

2 + ζ̇
2 = V2 = 2U −JC. (2.32)

On the left-hand side there is the velocity squared in the synodic RF, dimensional
and non-dimensional respectively. On the right-hand side the two terms are respec-
tively the pseudopotential and the so-called Jacobi constant. The greater JC is, the
less energy the SC has in the synodic RF, meaning that it is similar to an inverse
energy-like quantity, analogous to the inverse of E seen in eq. (2.3).
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2.2.5 Lagrangian Points

For bodies in circular orbits about the system center of mass, Lagrange in his
outstanding work [1] found five distinct three-body formations that are invariant
when viewed from the rotating reference frame [24], called in his honor Lagrangian
Points (LPs).

The initial step of Lagrange’s approach involves setting the gradient vector of
the pseudopotential function ∇U to zero. This equates to enforcing conditions of
zero velocity and zero acceleration within the rotating reference frame, as can be
deducted from eqs. (2.29), resulting

∂U

∂ξ
= 0 = ξ − 1−µ

ρ3
13

(ξ +µ)− µ

ρ3
23

[ξ − (1−µ)] (2.33a)

∂U

∂η
= 0 = η − 1−µ

ρ3
13

η − µ

ρ3
23

η (2.33b)

∂U

∂ζ
= 0 =−1−µ

ρ3
13

ζ − µ

ρ3
23

ζ . (2.33c)

From the above system it is possible to determine five set of non-dimensional
coordinates {ξi, ηi, ζi}, one per each LP. Observing the equation (2.33c) is imme-
diately evident that it is satisfied for ζ = 0, meaning that all the five LPs lie in the
ξ̂ξξ S − η̂ηηS plane. Then, eqs. (2.33a) and (2.33b) can be solved via substitution. By
imposing η = ζ = 0, one obtains a quintic equation,

ξ
5 ∓ (3−µ)ξ 4 +(3−2µ)ξ 3 −µξ

2 ±2µξ −µ = 0, (2.34)

to be solved numerically, which yields three real roots corresponding to the so-called
collinear libration points L1, L2 and L3, existing on the ξ̂ξξ S. The other two roots are
named triangular collinear points L4 and L5, being positioned at the vertices of the
equilateral triangle obtained setting ρ13 = ρ23 = 1 and having as base the primaries
distance. As an example, the positions of LPs of a binary system with mass ratio of
µ = 0.1 (almost ten time greater than EM one) are shown in Figure 2.3.
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ξ̂ξξ s

η̂ηηs

L1 L2L3

L4

L5

Fig. 2.3 LPs in a generic synodic RS with µ = 0.1

Note how L3 is located just outside the radial distance where L4 and L5 are found
(defined by the outermost circle), while L1 and L2 appear to be at the same distance
from the smaller primary, with L2 actually being slightly farther away. The other
two circles represent the primaries’ circular orbits, observed from an inertial RF, wrt
the system barycenter.

2.2.6 Zero Velocity Surfaces

A common application of the Jacobi integral is to define regions around m1 and m2

within which the third body (e.g. a SC) can move, based on its initial conditions.
Extreme points on a trajectory occur whenever the velocity VVV goes to zero. Therefore,
setting VVV= 0 in the eq. (2.32) and explicating the pseudopotential U as in eq. (2.27),
for a specific Jacobi constant JC yields an algebraic expression for all feasible
{ξ , η , ζ} "apogee-like" locations, known as Zero Velocity Surface (ZVS):

JC = 2U = 2
(

1−µ

ρ13
+

µ

ρ23

)
+
(
ξ

2 +η
2) . (2.35)
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(a) 3D view

(b) ξ̂ξξ S - η̂ηηS view

Fig. 2.4 Earth-Moon ZVSs

22



Dynamic models

It should be noted that the null velocity being discussed is relative to the rotating
RF, and thus the inertial velocity of the third body is not zero.

The surfaces defined by eq. (2.35) and illustrated for the EM system in Figure
2.4 delineate the geometric limits possible for a specified relative energy state. The
more JC decreases, the more the energy increases and consequently the forbidden
zones shrink (i.e. the SC widens its accessible regions).

The colored dots indicates the locations of each LP, coinciding with the local
maxima of the function −JC, whose coordinates and Jacobi constant values are
indicated in the following table.

ξ η ζ JC

• L1 0.83740242 0.00000000 0.00000000 3.188326
• L2 1.15618808 0.00000000 0.00000000 3.172147
• L3 -1.0056193 0.00000000 0.00000000 3.012145
• L4 0.48785136 0.86602540 0.00000000 2.987999
• L5 0.48785136 -0.86602540 0.00000000 2.987999

Table 2.1 EM LPs coordinates and Jacobi constants

The naming convention of the Lagrange Points (LPs) is based on the values of
the Jacobi Constant in descending order, as shown in Table 2.1. This sequence also
coincidentally reflects the order of accessibility of these points, based on their energy
requirements. In fact, the LP associated with the highest non-dimensional JC value,
which necessitates the lowest energy for access, is designated as the first, i.e. L1.
Subsequent points follow in order of decreasing JC values, meaning in ascending
order of required energy. Notably, L4 and L5, which have identical and the lowest
JC values among the LPs, represent thresholds of energy accessibility. If a SC
has the energy to reach these points, it can potentially access all regions within the
CR3BP framework.

2.3 N-body Problem

For the sake of completeness, a brief description of the N-Body Problem (NBP)
is provided, a model that more accurately reflect the complexities of the solar
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system, incorporating the influences and disturbances caused by other celestial
bodies and phenomena within the solar system. While the simplified model, such
as CR3BP, serves as a valuable resource for initial analyses and considerations in
multi-body dynamics, obtaining high-precision trajectory optimization necessitates
employing a more detailed dynamical model, with the employment of JPL’s planetary
ephemerides.

In contrast to the 3BP, it is more advantageous to use a non-rotating reference
system when handling the equations of motion in the NBP, employing the EME2000
RS using Earth as the central body.

ÎII

ĴJJ

K̂KK

rrrk j(t)

rrr i j(t)
rrri j(t)

rrrki (t)
rrr k j
(t)

ϑk(t)

ϑi(t)

ϑk(t)
ϕk(t)

ϕi(t)

ϕk(t)

Fig. 2.5 N-Body Problem representation in EME2000 RF

As depicted in Figure 2.5, the central body is the k-th among the n, the subscript
j refers to each gravitational body and i indicates the SC. Adopting a generic inertial
RF one can express the SC acceleration as

r̈rri =−
n

∑
j=1
j ̸=i

µ j

r3
ji

rrr ji, (2.36)

but its formulation is more conveniently expressed if relative to the body chosen as
central in the EME2000 RF, resulting in a set of second-order ODEs:

r̈rrki =−(µi +µk)

r3
ki

rrrki +
n

∑
j=1

j ̸=i,k

µ j

(
rrri j

r3
i j
−

rrrk j

r3
k j

)
. (2.37)
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It should be pointed out that all states in NBP are time-dependent, the notation
(t) is omitted for clarity.
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Chapter 3

Periodic Orbits

Chapter 3 focuses on the construction of families of Periodic Orbits (POs) within
the CR3BP ultimately aiming to identify the LOP-G’s Near-Rectilinear Halo Orbit
(NRHO) which determines the initial conditions for the de-orbiting trajectories to
be optimized, a process extensively described in the following chapters. As seen
in Section 2.2, CR3BP dynamics is described by a time-invariant, autonomous
system of epoch-independent equations that can be linearized to facilitate differential
correction procedure, making it a very effective framework for generation of POs,
which can be then converged in an N-body ephemeris model for higher-fidelity
mission analyses.

Initially the methodologies employed for the construction and validation of
Periodic Orbits (POs) within the CR3BP are described: through the implementation
of a single-shooting method and the utilization of the State Transition Matrix (STM),
the Differential Correction (DC) process enables the identification and construction
of exact periodic motions across specific families of orbits. Specifically, the EML2

Lyapunov Orbits (LOs) and then bifurcating Halo Orbits (HOs) families are obtained
via continuation strategies.

How such POs families can be transitioned into Quasi-Periodic Orbits (QPOs) in
the NBP is not a primary focus of this thesis and can be found in Mascolo’s PhD
dissertation [22].
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3.1 An analytical approximation

To investigate the behavior of a spacecraft in proximity to LPs within the CR3BP
domain, it is useful to linearize the equations of motion from equations (2.29) near
these equilibrium points, by applying a Taylor series expansion to the right-hand
side of each one:

ξ̈ −2η̇ = Uξ ξ

∣∣
LPξ +Uξ η

∣∣
LPη +Uξ ζ

∣∣
LPζ (3.1a)

η̈ +2ξ̇ = Uηξ

∣∣
LPξ +Uηη

∣∣
LPη +Uηζ

∣∣
LPζ (3.1b)

ζ̈ = Uζ ξ

∣∣
LPξ +Uζ η

∣∣
LPη +Uζ ζ

∣∣
LPζ , (3.1c)

where the generic second partial derivative is expressed as

∂ 2U

∂ •∂◦
≜ U•◦, (3.2)

with the LP subscript meaning that is computed at the LPs, henceforth omitted for
brevity. Since all the LPs lie in the ξ̂ξξ S − η̂ηηS plane, as derived in Section 2.2.5, the
mixed partial derivatives containing ζ go to zero by definition: Uξ ζ = Uηζ = 0.
This allows for the decoupling of the last equation (3.1c), which is essentially a
harmonic in the ζ̂ζζ S direction

ζ̈ = Uζ ζ ζ , ζ = Aζ cos(ωζ τ)+Bζ sin(ωζ τ), (3.3)

with the acceleration ζ̈ producing an out-of-plane motion ζ whose variation has a
linear, negligible influence on the in-plane motion in the ξ and η directions [22].
The constants Aζ and Bζ depends on the initial condition, while the out-of-plane
frequency is

ω
2
ζ
=−Uζ ζ . (3.4)

On the other hand, the equations (3.1a) and (3.1b) are two coupled second-order
ODEs, more conveniently transformed in a set of four first-order ODEs

ξ̇

η̇

ξ̈

η̈

=


0 0 1 0
0 0 0 1

Uξ ξ Uξ η 0 2
Uηξ Uηη −2 0




ξ

η

ξ̇

η̇

 , (3.5)

27



Periodic Orbits

whose matricial form is
˙̃XXX = ÃAAX̃XX , (3.6)

where ÃAA is the non-dimensional Jacobian matrix and X̃XX is the non-dimensional
state vector of the SC (with ζ and ζ̇ missing, due to the planarity of motion). The
complete form of the Jacobian matrix and the first and second partial derivatives can
be retrieved in Appendix A.

Now, following the Szebehely’s procedure [34], at the three collinear points for
0 < µ < 1/2

Uξ η = 0, Uξ ξ > 0, Uηη < 0,

therefore the characteristic polynomial of matrix ÃAA is of the form

Λ
2 +2β1Λ−β

2
2 = 0, (3.7)

where

Λ = λ
2 (3.8a)

β1 = 2−
Uξ ξ +Uηη

2
(3.8b)

β
2
2 =−Uξ ξ Uηη . (3.8c)

Two pairs of eigenvalues can be derived, of which λ1 and λ2 are real while λ3

and λ4 are imaginary. In particular, the first imaginary solution provides the in-plane
frequency of the linearized PO

ω3 =−iλ3. (3.9)

The solutions for ξ (τ) and η(τ) are coupled and include aperiodic exponential
instabilities and aperiodic decays. However, through additional mathematical ma-
nipulation and by setting all aperiodic exponential instabilities to zero [35], a much
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simpler set of equations of motion is derived, taking the form of

ξ (τ) = Aξ cos(ω3τ +φ) (3.10a)

η(τ) =−c2Aξ sin(ω3τ +φ) (3.10b)

ζ (τ) = Aζ cos(ωζ τ +ψ) (3.10c)

ξ̇ (τ) =−Aξ ω3 sin(ω3τ +φ) (3.10d)

η̇(τ) =−c2Aξ ω3 cos(ω3τ +φ) (3.10e)

ζ̇ (τ) =−Aζ ωζ sin(ωζ τ +ψ), (3.10f)

in which one can simply specify an amplitude Aξ in the ξ direction and consequently
derive Aη = c2Aξ in the η direction , which can be interpreted as semi-minor and
semi-major axes, respectively.

Trajectories derived from the equations in (3.10) can serve as initial seeds
for differential correction methods. Specifically, by using the initial state vector

X̃XXa
(τ0) =

{
ξ0, η0, ζ0, ξ̇0, η̇0, ζ̇0

}T
analytical propagation yields an indefinitely sta-

ble elliptical orbit. Instead, employing the same X̃XXa
(τ0) as the initial state, non-linear

integration of the CR3BP equations of motion may still lead to divergent behaviors.
Complete and detailed analyses on how to predict the evolution and stability of such
POs can be found in literature and are beyond the scope and the utility of this thesis
[36–39].

3.2 Differential Correction

The strategy pursued to find a specified path involves adjusting an initial state, X̃XX(τ0),
to achieve a desired final state X̃XX(X̃XX(τ0),τ f ), not blindly and randomly, but exploring
the interdependency between initial and terminal conditions along the trajectory,
falling within the classic framework of a Two-Point Boundary Value Problem (TP-
BVP). Essentially, the goal of the Differential Correction (DC) procedure is to
explore the sensitivity of initial and final conditions to changes in either, thereby
assessing how modifications in one condition can influence the outcomes in the other.
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The discrepancy, or perturbation state, i.e. the variation between the actual and
desired final states, can be described as

δ X̃XX(τ f ) = X̃XX
(
X̃XX(τ0),τ f

)
− X̃XX∗

(
X̃XX∗

(τ0),τ f

)
, (3.11)

where the asterisk is referred to the desired state. The implemented here differential
correction procedure is designed to eliminate the discrepancies between two states.
If one assumes that a specific correction δ X̃XX(τ0) produces the desired initial state,
namely

X̃XX∗
(τ0) = X̃XX (τ0)+δ X̃XX(τ0), (3.12)

then the equation (3.11) can be expanded and linearized as follows:

δ X̃XX(τ f ) = X̃XX
(
X̃XX(τ0),τ f

)
− X̃XX∗

(
X̃XX∗

(τ0),τ f

)
= X̃XX

(
X̃XX (τ0) ,τ f

)
− X̃XX∗ (X̃XX(τ0)+δ X̃XX(τ0),τ f

)
=

∂ X̃XX(τ f )

∂ X̃XX(τ0)
δ X̃XX(τ0),

δ X̃XX(τ f ) = Φ̃ΦΦ(τ f ,τ0)δ X̃XX(τ0). (3.13)

The symbol Φ̃ΦΦ(τ f ,τ0) in the right-hand side of eq. (3.13) denote the so-called
State Transition Matrix (STM), representing the partial derivative of all state quanti-
ties at a specified final time, τ f , wrt the same state quantities computed at the initial
time τ0. Such linear mapping, evaluated at a generic time τ > τ0, can be written
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explicitly in its general form as

Φ̃ΦΦ(τ,τ0) =



∂ξ

∂ξ0

∂ξ

∂η0

∂ξ

∂ζ0

∂ξ

∂ ξ̇0

∂ξ

∂ η̇0

∂ξ

∂ ζ̇0

∂η

∂ξ0

∂η

∂η0

∂η

∂ζ0

∂η

∂ ξ̇0

∂η

∂ η̇0

∂η

∂ ζ̇0

∂ζ

∂ξ0

∂ζ

∂η0

∂ζ

∂ζ0

∂ζ

∂ ξ̇0

∂ζ

∂ η̇0

∂ζ

∂ ζ̇0

∂ ξ̇

∂ξ0

∂ ξ̇

∂η0

∂ ξ̇

∂ζ0

∂ ξ̇

∂ ξ̇0

∂ ξ̇

∂ η̇0

∂ ξ̇

∂ ζ̇0

∂ η̇

∂ξ0

∂ η̇

∂η0

∂ η̇

∂ζ0

∂ η̇

∂ ξ̇0

∂ η̇

∂ η̇0

∂ η̇

∂ ζ̇0

∂ ζ̇

∂ξ0

∂ ζ̇

∂η0

∂ ζ̇

∂ζ0

∂ ζ̇

∂ ξ̇0

∂ ζ̇

∂ η̇0

∂ ζ̇

∂ ζ̇0



=

[
Φ̃ΦΦρρ Φ̃ΦΦρv

Φ̃ΦΦvρ Φ̃ΦΦvv

]
, (3.14)

where the subscript 0 stands for (τ0) and the generic τ is omitted at the numerator
to make the notation more legible. The above STM can be seen as formed by
four 3× 3 submatrices of partial derivatives: the subscripts ρ and v are used to
denote the variables in the numerator and the denominator of the partial derivatives,
according to the order in which they appear. Specifically, ρ corresponds to the vector
ρρρ containing the positional quantities, on the other hand v denotes the vector of
velocities VVV, encapsulating the velocity components. From now on, the following
shortenings are adopted to simplify the notation of the equations:

X̃XX0 ≜ X̃XX(τ0), (3.15a)

X̃XX ≜ X̃XX(X̃XX(τ0),τ). (3.15b)

The STM is frequently referred to as the sensitivity matrix because it quantifies
the extent to which variations in the final state are affected by perturbations and
modifications in the initial state. Consequently, the STM evolves alongside the
trajectory it describes, following the same dynamic path. Accordingly, the evolution
of the STM is governed by its own set of 36 ODEs. Hence,

˙̃
ΦΦΦ(τ,τ0) =

d
dτ

Φ̃ΦΦ =
d

dτ

(
∂ X̃XX
∂ X̃XX0

)
=

∂

∂ X̃XX0

(
dX̃XX
dτ

)
=

∂
˙̃XXX

∂ X̃XX
∂ X̃XX
∂ X̃XX0
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˙̃
ΦΦΦ(τ,τ0) = ÃAA(τ)Φ̃ΦΦ(τ,τ0), (3.16)

in which appears, again, the non-dimensional Jacobian Matrix, essential for com-
puting the evolution of the STM itself. Note that, considering the full CR3BP set of
state equations (3.1), ÃAA(τ) ∈ R6×6 has its complete form, composed by for square
3×3 submatrices

ÃAA(τ) =

[
000 III
UUU Ω

]
, (3.17)

explicitly expressed as

ÃAA(τ) =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

Uξ ξ Uξ η Uξ ζ 0 2 0
Uηξ Uηη Uηζ −2 0 0
Uζ ξ Uζ η Uζ ζ 0 0 0


. (3.18)

The explicit form of the terms in submatrix UUU , containing all the second partial
derivatives of the pseudopotential, are presented in Appendix A.

3.3 Single-Shooting Method

In a single-shooting method, the problem is approached by guessing initial conditions
and integrating the differential equations to see how closely the resulting trajectory
meets the specified boundary conditions at the endpoint and eventually restarting
with a new initial guess. The key to the here implemented single-shooting method
lies in the adjustment of the initial conditions based on the discrepancies observed
at the final boundary, via differential correction. This adjustment process typically
involves the use of iterative techniques which refines the initial conditions at each
r-th step by considering the sensitivity of the endpoint conditions to changes in the
initial state. However, it should be considered that not all values of the initial state
may be allowed to vary and, likewise, there could be final state values free to assume
any value. Hence, let X̃XX0 ∈ Rn×1 be the free-variable vector

X̃XX0 = {X1, X2, . . . , Xn}T , (3.19)
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it may contains positions, velocities and also integration times. On the other hand,
the constraint vector χχχ(X̃XX0) ∈ Rm×1 must be defined,

χχχ(X̃XX0) = {χ1, χ2, . . . , χm}T , (3.20)

targeting the desired final quantities. In the specific case of POs construction, the
complete free-variable vector and constraint vector are written as

X̃XX0 =



ξ

η

ζ

ξ̇

η̇

ζ̇

τ


, χχχ(X̃XX0) =



ξ −ξ ∗

η −η∗

ζ −ζ ∗

ξ̇ − ξ̇ ∗

η̇ − η̇∗

ζ̇ − ζ̇ ∗


, (3.21)

in which the integration time coincides with the period of the specific PO, namely
τ = τ f − τ0. The constraint vector instead contains the differences between actual
and desired final state. It should be noted that including the time constraint in this
vector is not needed, as it suffices to exclude it from the free-variable vector and
directly specify the period of the PO when it is known.

Essentially, the method aims at searching the specific intial state X̃XX∗
0 that satisfies

all the constraints, namely χχχ(X̃XX∗
0) = 000. To quantify how variations in the free-

variable vector influence the constraint vector, a first-order Taylor expansion is
applied, indicating with X̃XX a new generic initial free-variable vector:

χχχ(X̃XX) = χχχ(X̃XX0)+
∂ χχχ(X̃XX0)

∂ X̃XX

(
X̃XX − X̃XX0

)
. (3.22)
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Again, the partial derivatives of the constraints wrt the forward-in-time free-
variable vector quantities form a Jacobian matrix J̃JJ

(
χχχ(X̃XX0), X̃XX

)
∈ Rm×n:

∂ χχχ(X̃XX0)

∂ X̃XX
= J̃JJ

(
χχχ(X̃XX0), X̃XX

)
=



∂ χ1

∂ X̃1

∂ χ1

∂ X̃2
· · · ∂ χ1

∂ X̃n

∂ χ2

∂ X̃1

∂ χ2

∂ X̃2
· · · ∂ χ2

∂ X̃n

...
... . . . ...

∂ χm

∂ X̃1

∂ χm

∂ X̃2
· · · ∂ χm

∂ X̃n


. (3.23)

Specifically for this analysis, in the most general case the Jacobian becomes a
6×7 matrix:

J̃JJ
(
χχχ(X̃XX0), X̃XX

)
=



∂ξ f

∂ξ0

∂ξ f

∂η0

∂ξ f

∂ζ0

∂ξ f

∂ ξ̇0

∂ξ f

∂ η̇0

∂ξ f

∂ ζ̇0

∂ξ f

∂τ

∂η f

∂ξ0

∂η f

∂η0

∂η f

∂ζ0

∂η f

∂ ξ̇0

∂η f

∂ η̇0

∂η f

∂ ζ̇0

∂η f

∂τ

∂ζ f

∂ξ0

∂ζ f

∂η0

∂ζ f

∂ζ0

∂ζ f

∂ ξ̇0

∂ζ f

∂ η̇0

∂ζ f

∂ ζ̇0

∂ζ f

∂τ

∂ ξ̇ f

∂ξ0

∂ ξ̇ f

∂η0

∂ ξ̇ f

∂ζ0

∂ ξ̇ f

∂ ξ̇0

∂ ξ̇ f

∂ η̇0

∂ ξ̇ f

∂ ζ̇0

∂ ξ̇ f

∂τ

∂ η̇ f

∂ξ0

∂ η̇ f

∂η0

∂ η̇ f

∂ζ0

∂ η̇ f

∂ ξ̇0

∂ η̇ f

∂ η̇0

∂ η̇ f

∂ ζ̇0

∂ η̇ f

∂τ

∂ ζ̇ f

∂ξ0

∂ ζ̇ f

∂η0

∂ ζ̇ f

∂ζ0

∂ ζ̇ f

∂ ξ̇0

∂ ζ̇ f

∂ η̇0

∂ ζ̇ f

∂ ζ̇0

∂ ζ̇ f

∂τ



, (3.24)

coinciding with the definition of the STM in equation (3.14) with the addition of a
further column comprising the derivative of the state quantities, namely velocities
and accelerations. Denoting as ϕi j each element of the STM in equation (3.14), the
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(3.24) is rewritten in a more compact form:

J̃JJ
(
χχχ(X̃XX0), X̃XX

)
=



ϕ11 ϕ12 ϕ13 ϕ14 ϕ15 ϕ16 ξ̇ f

ϕ21 ϕ22 ϕ23 ϕ24 ϕ25 ϕ26 η̇ f

ϕ31 ϕ32 ϕ33 ϕ34 ϕ35 ϕ36 ζ̇ f

ϕ41 ϕ42 ϕ43 ϕ44 ϕ45 ϕ46 ξ̈ f

ϕ51 ϕ52 ϕ53 ϕ54 ϕ55 ϕ56 η̈ f

ϕ61 ϕ62 ϕ63 ϕ64 ϕ65 ϕ66 ζ̈ f


. (3.25)

Such a correction scheme is known as Variable-Time Differential Correction
(VTDC) and evaluates the influence of the integration time on the final state; other-
wise, if the integration time is not a free-variable quantity, then the Jacobian matrix
fully coincides with the STM and the correction method employed is referred to as
Fixed-Time Differential Correction (FTDC).

Now, in order to obtain an iterative form, the Taylor expansion in eq. (3.22) is
written by relating the subsequent step r+1 to the previous r-th, obtaining

χχχ(X̃XX r+1) = χχχ(X̃XX r)+
∂ χχχ(X̃XX r)

∂ X̃XX r+1

(
X̃XX r+1 − X̃XX r

)
. (3.26)

For the sake of clarity, the following shortenings are introduced:

χχχr ≜ χχχ(X̃XX r), (3.27a)

J̃JJ(χχχr)≜ J̃JJ
(
χχχ(X̃XX r), X̃XX r+1

)
. (3.27b)

If a solution exists, then χχχr+1 = 000 and the iterative form in equation (3.26)
becomes

χχχr +
[
J̃JJ(χχχr)

](
X̃XX r+1 − X̃XX r

)
= 000. (3.28)

Therefore, at each iteration, the updated values of the constraint vector χχχr can
be computed by integrating all the equations of motion from X̃XX r, allowing for the
updating of the design vector at the subsequent iteration as follows:

X̃XX r+1 = X̃XX r −
[
J̃JJ(χχχr)

]−1
χχχr. (3.29)
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If the number of variables exceeds the number of constraints (n > m), the mini-
mum norm update equation is employed instead of equation (3.29):

X̃XX r+1 = X̃XX r −
[
J̃JJ(χχχr)

]T [J̃JJ(χχχr)J̃JJ(χχχr)
T
]−1

χχχr, (3.30)

minimizing deviations and guiding the next solution to be as close as possible to
the initial guess X̃XX r. In addition, to help the convergence of the iterative process by
smoothing the corrections to be performed, a relaxation parameter κR is introduced
in equations (3.29) and (3.30), obtaining

X̃XX r+1 = X̃XX r −κR
[
J̃JJ(χχχr)

]−1
χχχr, if n = m, (3.31a)

X̃XX r+1 = X̃XX r −κR
[
J̃JJ(χχχr)

]T [J̃JJ(χχχr)J̃JJ(χχχr)
T
]−1

χχχr, if n > m. (3.31b)

Typical values for planar orbits, such as LOs, are κR ≈ 0.5. For three-dimensional
and more complex orbits, it is advisable to use a lower value to limit potential
numerical complications.

3.4 Lyapunov Orbits Computation

The algorithm in the previous Section is now used to obtain the family of Lyapunov
orbits (LOs) in the vicinity of EML2. These orbits are named after the Russian math-
ematician Aleksandr Mikhailovich Lyapunov, who made significant contributions
to the theory of stability [40]. Within the CR3BP framework, the LOs are a type
of periodic solution that exists in the plane of motion of the primaries (i.e., has no
out-of-plane component ζ and ζ̇ ), namely ξ̂ξξ S − η̂ηηS plane, and show symmetric prop-
erties with respect to the ξ̂ξξ S − ζ̂ζζ S one. Such considerations lead to the requirement
that when the LO crosses the ξ̂ξξ S − ζ̂ζζ S plane, it should not have velocities along the
ξ̂ξξ S direction, i.e. ξ̇0 = ξ̇τ f /2 = 0. Therefore, the constraint vector is

χχχ(X̃XX∗
0) =

{
η f

ξ̇ f

}
= 000. (3.32)

Regarding the free-variable vector, in this case, it contains the starting position
along the ξ̂ξξ S axis,the initial velocity along the -η̂ηηS direction (for initial positions
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ξ0 > ξL2) and, eventually, the integration time:

X̃XX0 =


ξ0

η̇0

τ

 . (3.33)

The specific Jacobian matrix, necessary for the iterative process, is obtained
by extracting the appropriate rows and columns from the complete one in (3.25),
becoming

J̃JJ =

[
ϕ21 ϕ25 η̇ f

ϕ41 ϕ45 ξ̈ f

]
, (3.34)

where rows {2, 4} indeed correspond to
{

η f , ξ̇ f

}
while columns {1, 5, 7} to

{ξ0, η̇0, τ}.

Fig. 3.1 Lyapunov Orbits family around EML2
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Having all the ingredients available, a complete LOs family around EML2
is computed by a continuation strategy: beginning with the computation of the
analytical LO described by eqs. (3.10) with Ay = 1×104 km and represented in
black in Figure 3.1, the initial position ξ0 is then incremented by a small finite step
dξ and is kept fixed throughout the DC process, permitting only variations in the
initial velocity along the η̂ηηS axis and the integration time τ . The color bar located
on the right in Figure 3.1 represents the values of the Jacobi Constant for the orbits
depicted in the plot which exhibit decreasing values of the JC as they move further
away from L2. This indicates that more energy is needed to navigate more complex
trajectories, which increasingly take on more pronounced cashew-like shapes.

3.5 Near-Rectilinear Halo Orbits Computation

Halo Orbits (HOs) compose a family of three-dimensional periodic orbits that emerge
from a pitchfork bifurcation of Lyapunov orbits in the CR3BP. As the amplitude of
the planar Lyapunov orbits increases, a critical orbit is eventually reached, leading to
a bifurcation. While the specific amplitude at which this bifurcation occurs cannot
yet be predicted analytically, it can be identified by monitoring the eigenvalues of
the monodromy matrix for each LO. These eigenvalues, or characteristic multipliers,
are crucial for evaluating the stability of the solutions and identifying intersections
with other families of orbits within the solution space [33, 41]. Such results derive
from the analysis of periodic solutions of ODEs in Floquet theory, please refer to
[42, 43] for a more comprehensive analysis.

The name halo refers to the shape and the way these orbits appear to hover or
"halo" around the Lagrange points. Among the HOs, the Near-Rectilinear Halo Orbits
(NRHOs) comprise a subset of the HOs family in the EM system, characterized by
close lunar passages and possessing stability indices all within some small bound
surrounding ±1 and with no stability index that is significantly larger in magnitude
than the others [44, 45]. The term near-rectilinear is due to their highly elongated,
almost straight-line shape when viewed in a rotating RF.

The orbit chosen as the reference one for the de-orbiting trajectories to be
optimized is the NRHO selected by NASA for the LOP-G, or more commonly
known as Lunar Gateway. This specific orbit belongs to the southern family of the
EML2 NRHOs and presents a 9 : 2 lunar synodic resonance (SR). The ratio x : y
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reflects the number, x, of completed revolutions by a SC along its PO per y synodic
cycles of the Moon, respectively. For example, the LOP-G in its 9 : 2 resonant NRHO
will complete nine orbits over the span of two lunar months. The lunar SR is an
attractive characteristic for eclipse avoidance applications. By phasing the spacecraft
within the NRHO such that perilune passages avoid alignment of the Sun and Earth,
long eclipses by the Earth’s shadow are avoided [44].

Being 3D orbits, the third dimension must be included both in design vector
and in the constraint vector. Specifically, when the bifurcation occurs, the initial
position acquires a positive or negative out-of-plane component ζ0 for northern and
southern HOs respectively; meanwhile, given that the orbit maintains its symmetry
with respect to the ξ̂ξξ S − ζ̂ζζ S plane, the out-of-plane velocity is constrained to be null.
Hence, for the generic HO, the constraint vector is

χχχ(X̃XX∗
0) =


η f

ξ̇ f

ζ̇ f

= 000, (3.35)

while the design vector becomes

X̃XX0 =


ξ0

ζ0

η̇0

τ

 . (3.36)

The case-specific Jacobian results a 3×4 matrix, having added row 6 correspond-
ing to ζ̇ f and column 3 corresponding to ζ0 compared to LOs case in (3.34):

J̃JJ =

ϕ21 ϕ23 ϕ25 η̇

ϕ41 ϕ43 ϕ45 ξ̈

ϕ61 ϕ63 ϕ65 ζ̈

 . (3.37)

Starting from the initial LO that gives rise to the planar bifurcation [22, 33],
to compute the southern EML2 HOs family via continuation, in the initial phase
where variations in −ζ̂ζζ S direction prevail, the initial component ζ0 is gradually
incremented and kept fixed allowing the convergence with the other variables in the
design vector. Then, in regions where ξ changes more rapidly than ζ , it could be
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more convenient to increase and fix ξ0 allowing the VTDC to find the corresponding
other free variables.

Fig. 3.2 Halo Orbits family around EML2 [22]

Some orbits with their lunar SR values are highlighted in Figure 3.2. In this
case, the Jacobi Constant no longer shows a monotonically decreasing trend, but
decreases as the HOs evolve in their three-dimensional shape and reduce their
perilune, reaching a minimum approximately at the NRHO with SR = 3 : 1 and then
increases again.

As anticipated, the orbit of interest for this thesis work is the one with lunar
synodic resonance of SR = 9 : 2, depicted separately for clarity in Figure 3.3, whose
initial state, coinciding with the apolune, results

X̃XX0 = {1.022028, 0.000000, −0.182101, 0.000000, −0.103271, 0.000000}T ,

consistent with numerous references [13, 33, 46], with only minimal differences due
to the non-dimensionalization process and numerical precision.

40



Periodic Orbits

Given that the mean length of the Moon synodic month is Tsyn = 29.53059 days
[47], the orbit period in its dimensional and non-dimensional form is

T =
2
9
Tsyn = 6.562353 days, τ =

T

T ∗ = 1.511199 . (3.38)

The 9 : 2 NRHO is the lowest-altitude one that demonstrates a useful resonance
that accomplishes eclipse avoidance and is characterized by a perilune radius of
about 3,300 km, and an apolune radius of approximately 70,000 km.

(a) ξ̂ξξ S - ζ̂ζζ S view

(b) η̂ηηS - ζ̂ζζ S view
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(c) 3D view

Fig. 3.3 Southern 9:2 synodic resonant EML2 NRHO

It should be note that if such trajectory is transitioned in a higher fidelity model,
the concept of "periodicity" does not exist anymore, diverging from the expected
behavior. Instead, such orbits are referred to as Quasi-Periodic Orbits (QPOs).
However, as anticipated, the requirement for this thesis is to provide only the initial
conditions of the injection points on the NRHO. Therefore, investigations into the
long-term stability of the orbit and the transition to the NBP are not of interest and
can be explored in the existing literature [22, 45, 48, 49].
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Optimal Control Theory

Optimal Control Theory (OCT) stands as a fundamental field within both engineering
and mathematics, offering a rigorous framework for controlling complex systems in
which infinite solutions are possible, given a desired task or behavior. At its core,
OCT is concerned with finding a control law for a given system such that a certain
optimality criterion is achieved. Whether it’s minimizing the cost of transportation,
reducing energy consumption, or optimizing the path of a spacecraft, OCT provides
the tools to model and solve these problems with remarkable efficiency. Due to its
versatility, this theory is applied across a wide spectrum of scenarios, from guiding
aircraft via autopilot systems to shaping economic strategies with financial models,
from chemistry to political science.

Its history is closely interlaced with the development of the Calculus of Variations
(CoV), which itself began to take shape in the 17th century. The methods and
principles of CoV are essential to understand and solve Optimal Control Problems
(OCPs). The goal in the CoV is to find the function(s) that either minimize or
maximize a given functional. This often involves determining the path, surface, or
function that results in the least (or greatest) value of a certain integral. Pioneers
like Johann Bernoulli, who posed the famous Brachistochrone problem in 1696,
and Jakob Bernoulli, along with Euler and Lagrange in the 18th century, laid the
foundational work [50]. While the CoV provides the mathematical bases for dealing
with optimization problems involving functionals, OCT extends these concepts
to dynamic systems where control over time is a central element. The formal
development of OCT began in early 20th century, after Bellman’s contribution to
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Dynamic Programming and Pontryagin’s Maximum Principle [51], another important
optimality principle for control. The latter part of the 20th century and the early 21st
century have seen OCT expand its reach thanks to computational advancements and
increasing importance of computers.

In this thesis, the objective is to apply this theory in space trajectory optimiza-
tion, a field that combines the elegance of mathematics with the real-world aspects
of engineering, in order to showcase its ability to perform complex optimization
problems. A foundational figure in this field is D. F. Lawden, who first approached
a classical space engineering OCP with OCT in his pioneering work in 1963 [52],
then extended by Lion and Handelsman [53].

Chapter 4 is therefore divided in six section. The first section provides a swift
overview of numerical methods for OCPs, focusing on direct and indirect approaches.
The second and third sections introduce a general optimization problem and trans-
form it into a Two-Point Boundary Value Problem (TPBVP) through Optimal Control
Theory (OCT), outlining the pivotal results for the optimization process. In the fourth
section, the problem is expanded into Multi-point Boundary Value Problems (MP-
BVP) by introducing arcs and appropriately modifying the equations. The fifth
section details the implementation of a BVP and illustrates the application of the
single-shooting method for its iterative resolution. Finally, the last section applies
OCT to the domain of spacecraft trajectory optimization within the CR3BP, which
is the core subject of this thesis.

4.1 Numerical Methods for OCPs

At the heart of solving complex problems like OCPs lies the necessity for robust
numerical methods capable of transforming the original infinite-dimensional opti-
mization problem into one or more finite-dimensional sub-problems. Over the years,
a broad array of methods has been developed to challenge the complex nature of
OCPs, as documented in state of art literature [54–56]. The two types of numerical
approach most widely used today are direct and indirect methods, stemming from
two different philosophies.

On the one hand, the first class of direct methods is the most widely applied. It
involves the discretization of the state and/or control of OCP, transcribing the prob-
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lem to a non-linear optimization problem, or non-linear programming problem [54].
Therefore the trajectory is discretized, and state and control variables are typically
approximated by piecewise constant parameterization or polynomial functions for
each segment of trajectory. So the whole problem turns into a large-scale param-
eter optimization problem then solved by a non-linear software via Optimization
Algorithms. The direct method’s advantage lies in its ability to handle complex
problems with non-linear dynamics and constraints, not requiring explicit derivation
and construction of the necessary conditions, providing a powerful tool for designing
efficient and optimal trajectories in various fields. However, the method’s compu-
tational complexity can increase significantly with problem size, requiring careful
selection of discretization strategies and optimization algorithms. Moreover, direct
methods might encounter limitations in accuracy, and the numerical nature of the
solution often does not provide theoretical insights into the actual optimality of the
analytical approximation. Summing up in a few words, the direct approach is a "first
discretize, then optimize" method [57].

On the other hand, through the application of OCT, indirect methods allows the
transformation of an OCP into a BVP then discretized in time to obtain a numerical
solution, thus solving the problem "indirectly". Hence, the optimal solution is
determined by solving a system of differential equations that meets boundary and/or
interior point conditions. Indirect methods differ from direct methods in handling the
continuous forms of state and control variables. The primary unknowns are the initial
costates, which must be determined to fulfill all specified boundary conditions and
constraints (the process will be illustrated later). The appeal of the indirect approach
lies in its small problem size, requiring fewer parameters to delineate a trajectory and
generally demanding less computational time. As opposed to the first, this method is
noted for its high precision and for providing theoretical hints steering users towards
the optimal solution. However, it faces challenges with numerical stability because
it is highly sensitive to the initial guess values. Additionally, managing potential
discontinuities along the trajectory can present further complications, which can
partly mitigated by splitting it in constrained and unconstrained sub-arcs. Hence,
contrary to the former, the indirect approach is a "first optimize, then discretize"
method [57].

The choice for the development of this thesis fell on an indirect method. Despite
the challenges described earlier and further explored in Betts’ work [54], this method
demonstrates excellent potential in its application both in trajectory optimization
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and beyond, as evidenced by the notable heritage represented by several articles and
theses available in the literature [22, 31, 57–62].

4.2 General Statement

As previously mentioned, the objective of OCT is to determine a control signals
that will cause a process to satisfy the physical constraints and at the same time
minimize (or maximize) some performance criterion [63]. First, it is essential to
model the dynamic problem (i.e. the trajectory) through a system of n Ordinary
Differential Equations (ODEs) describing the evolution of n state variables over time.
If xxx(t) ∈ Rn is the state vector, containing n state variables and uuu(t) ∈ Rm is the
control vector, containing m control variables, i.e. inputs into a system that can be
manipulated to influence the behavior of the state variables, then the ODE system
can be generally formulated as

ẋxx(t) = fff (xxx(t) ,uuu(t) , t) , (4.1)

being function of the state vector and the control vector over the interval from
initial to final time. To determine the optimal trajectory, it must adhere to certain
specific boundaries that can vary in nature; these might include constraints on
the state variables at the external boundaries and, eventually, time constraints. To
enable a more systematic incorporation of such Boundary Conditions (BCs) into
the optimization process, it’s worth to group them into a constraint vector and write
them as a set of homogeneous (even non-linear) algebraic equations:

χχχ
(
xxx0,xxx f , t0, t f

)
= 000, (4.2)

where χχχ : [Rn,Rn,R,R]→Rq collects the q imposed constraints. As will be detailed
later, even the control vector uuu can be subject to constraints as well (e.g. the limitation
of thrust level at any time). Consequently, it must fall within the set of permissible
controls denoted as UUU.
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Delving into the details of optimization, a merit index J has to be extremized. In
the Bolza form, it is defined as

J= ϕ
(
xxx0,xxx f , t0, t f

)
+
∫ t f

t0
[Φ(xxx(t),uuu(t), t)]dt. (4.3)

The two terms that compose the equation (4.3) represent respectively the terminal
cost and the running cost [64]. The first is a function evaluated at the extremal
state and time of the process. This cost function is crucial when specific terminal
conditions are desired. The second is a function that accumulates costs throughout
the duration of the control process. It is usually expressed as an integral over time
from the start to the end of the process. The function Φ quantifies the "cost" of
using a particular control uuu(t) while in state xxx(t) at time t. The decision to set
either the running cost or the terminal cost to zero, along with the introduction of
auxiliary variables, leads to two distinct formulations: the Mayer formulation and the
Lagrange formulation. The first is often preferred for certain problems because of
the simplicity it offers in both the problem formulation and the analytical derivation
of the first order necessary conditions which, as can be seen later, are crucial for
determining optimal controls.

4.3 Implementing the Indirect Method

The ongoing discussion shift towards the application of the IM’s principles which
OCT is based on. The derivation of the optimality condition begins by defining
an augmented merit index, J∗ , which incorporates a measure of the adherence to
constraints and state quantities in relation to the ODEs governing the dynamical
model. It requires the introduction of further two mathematical tools: the Lagrange
multipliers µµµ ∈Rm (related to boundary conditions) and the adjoint vector λλλ (t)∈Rn,
containing the adjoint (or co-state) variables (linked to the state variables). Hence,
the augmented merit index can be formulated as

J∗ = ϕ +µµµ
T

χχχ +
∫ t f

t0

[
Φ+λλλ

T ( fff − ẋxx)
]

dt, (4.4)

that is, exactly like J, function of t, xxx, ẋxx and uuu.
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It’s apparent that when both the BCs, specified as χχχ = 000, and the state equations,
denoted by ẋxx = fff , are fulfilled, there’s a direct equivalence between solving the
problem with the functional J or with its augmented counterpart J∗. To eliminate the
dependency on the time derivatives of the state variables, an integration by parts is
performed on the term −λλλ

T ẋxx at this point:∫ t f

t0

(
−λλλ

T ẋxx
)

dt =−
(

λλλ
T
f xxx f

)
+
(

λλλ
T
0 xxx0

)
+
∫ t f

t0

(
λ̇λλ

T
xxx
)

dt. (4.5)

Substituting the equation (4.5) into (4.4) the augmented merit index becomes:

J∗ = ϕ +µµµ
T

χχχ +
(

λλλ
T
0 xxx0 −λλλ

T
f xxx f

)
+
∫ t f

t0

(
Φ+λλλ

T fff + λ̇λλ
T

xxx
)

dt, (4.6)

in which a key function appears, the system’s Hamiltonian H:

H ≜ Φ+λλλ
T fff . (4.7)

The fundamental condition that guarantee the solution’s optimality is the sta-
tionarity of J∗. In other words, at the optimal solution, the augmented merit index
reaches a stationary value, indicating that a local extremum (either a minimum or a
maximum, depending on the problem formulation) has been achieved. This condition
implies that its first order variation must be equal to zero, therefore equation (4.6)
must be differentiate as follows:

δJ∗ =

(
∂ϕ

∂ t0
+µµµ

T ∂ χχχ

∂ t0
−H0

)
δ t0+ (4.8a)

+

(
∂ϕ

∂ t f
+µµµ

T ∂ χχχ

∂ t f
+H f

)
δ t f+ (4.8b)

+

(
∂ϕ

∂xxx0
+µµµ

T ∂ χχχ

∂xxx0
+λλλ

T
0

)
δxxx0+ (4.8c)

+

(
∂ϕ

∂xxx f
+µµµ

T ∂ χχχ

∂xxx f
−λλλ

T
f

)
δxxx f+ (4.8d)

+
∫ t f

t0

[(
∂H

∂xxx
+ λ̇λλ

T
)

δxxx+
∂H

∂uuu
δuuu
]

dt. (4.8e)
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A proper selection of the adjoint variables λλλ and Lagrange multipliers µµµ can
effectively nullify δJ∗ for any variation in δ t0, δ t f , δxxx0, δxxx f , δxxx and δuuu. This is
achieved by ensuring that the coefficients multiplying these variations are themselves
zero, thus satisfying the necessary condition for optimality by negating any potential
change in the augmented functional. From this, different sets of conditions must be
extrapolated, each linked to a specific term in the equations (4.8):

• transversality conditions: 2 algebraic equations (at t0 and t f ) obtained from
(4.8a) and (4.8b) by setting the two bracketed coefficients to zero;

• optimality conditions: 2n algebraic equations provided by zeroing out the
multiplying terms in (4.8c) and (4.8d), one per each state variable at both
starting and ending boundaries;

• Euler-Lagrange Equations: n ODEs for the adjoint variables, retrieved by
nullifying the coefficient of δxxx in (4.8e);

• equations for controls: m algebraic equations for the control variables, re-
trieved by nullifying the coefficient of δuuu in (4.8e).

4.3.1 Boundary Conditions for Optimality

The boundary conditions for optimality consist of a set of ODEs that govern how
times and states should be configured at the boundaries of the optimal trajectory.
Specifically, there are two transversality conditions for the times and 2n optimality
conditions for the states. As specified before, these conditions derive from nullifying
the multiplying coefficients of variations, resulting

∂ϕ

∂ t0
+µµµ

T ∂ χχχ

∂ t0
−H0 = 0 (4.9a)

∂ϕ

∂ t f
+µµµ

T ∂ χχχ

∂ t f
+H f = 0 (4.9b)

∂ϕ

∂xxx0
+µµµ

T ∂ χχχ

∂xxx0
+λλλ

T
0 = 000 (4.9c)

∂ϕ

∂xxx f
+µµµ

T ∂ χχχ

∂xxx f
−λλλ

T
f = 000. (4.9d)
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From the aforementioned equations arise some handy and pragmatic rules. Ob-
serving eqs. (4.9a) and (4.9b), it becomes apparent that if the initial time t0 (and/or
final time t f ) is not explicitly included in either the boundary conditions χχχ or the
function ϕ , then the Hamiltonian is zero at the initial time (and/or at the final time)
and the values for t0 and t f depend on the optimization. Otherwise, if the time
is constrained, i.e. appears in χχχ , then the corrisponding Hamiltonian is free and
depends on the optimization.

Analogously, as regards state variables and corresponding adjoint variables, eqs.
(4.9c) and (4.9d) state that if the generic i-th xi is neither constrained nor present in
ϕ , as a result the matching λi is null at the same point. Vice versa, the i-th adjoint
variable is free if the respective state variable is bound.

4.3.2 Euler-Lagrange and Control Variables Equations

The temporal evolution of the adjoint variables and controls can be derived by setting
the coefficients preceding δxxx and δuuu in eq. (4.8e) to zero, obtaining respectively n
Euler-Lagrange Equations

dλλλ

dt
=−

(
∂H

∂xxx

)T

, (4.10)

and m algebraic equations for the controls(
∂H

∂uuu

)T

= 0. (4.11)

As anticipated before, elements of control vector uuu can be subject to constraints.
When explicit admissibility constraints (e.g. Umin ≤ u ≥ Umax) are involved, the eq.
(4.11) might not yield the optimal controls. Searching for a solution that necessitates
a control u beyond these constraints would be impractical. At this point it is useful
to introduce the Pontryagin’s Maximum Principle PMP (or Pontryagin’s minimum
Problem PmP if the problem requires a minimization), which states that the optimal
control value in any point of the trajectory is the one that belongs to the admissibility
domain and maximize (if J has to be maximized) or minimize (in the opposite case)
the Hamiltonian in that point. Hence:

• if eq. (4.11) gives u j compliant with the admissible region, no control con-
straint is needed;
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• if the resulting u j is outside of the admissible region, the control is set to its
extremal allowed value (i.e. u j = U j,max or u j = U j,min).

A particular situation emerges when the Hamiltonian exhibits linear dependence
within the bounded control. Under such conditions, one has

∂H

∂u j
= ku j , (4.12)

in which ku j is a constant. The fulfillment of eq. (4.11) is only conditional if the
above constant is exactly zero, since the control disappears with the derivative. In
the case of linear dependency between H and u j, the strategy implemented is known
as bang-bang control, depending on the value assumed by the constant ku j :

• if ku j < 0 =⇒ u j = U j,min. This means that H is maximized if the control is
set to its minimum admissible value;

• if ku j > 0 =⇒ u j =U j,max. Giving the control its maximum admissible value,
the maximization of H is ensured.

In cases where ku j = 0, other strategies must be employed since this pertains to
singular arcs, a situation that does not occur in the case study and therefore omitted.

4.4 Multi-Point Optimal Control Problem

What has been described so far relates to a Two-Point Boundary Value Problem
(TPBVP), in which the trajectory is defined by initial and final conditions making
the problem clearer to describe. However, the choice is often made to divide the
trajectory into np sub-intervals (phases or arcs), thus transitioning to a Multi-Point
Boundary Value Problem (MPBVP). By segmenting the problem, one can apply more
tailored control strategies to each phase, potentially simplifying the computational
process and enhancing the effectiveness of the overall control solution.

It is possible to outline the subdivision as follows: j-th arc begins just after the
point t( j−1)+ and ends just before the point t j− . Correspondingly, the state variable
vectors at these points are represented as xxx( j−1)+ and xxx j− . The subscripts - and +
are used to indicate values assumed immediately before and after a specific point,
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respectively. This schematization facilitates the handling of possible discontinuities
in the state variables or in the timing and also accommodates internal constraints
that may occur at the junction points between each contiguous arc, referred to as
internal boundaries. The duration of each j-th arc, ∆t j, when unknown, is generally
subject to optimization and can vary among the phases to adapt to different dynamic
conditions and requirements. For this kind of problem, the constraint vector seen in
(4.2) becomes

χχχ
(
xxx( j−1)+,xxx j−, t( j−1)+, t j−

)
= 000, j = 1, . . . ,np, (4.13)

involving BCs at both internal and external boundaries.
In the same way, the generic form of the merit index introduced in eq. (4.3) can be
written as:

J= ϕ
(
xxx( j−1)+,xxx j−, t( j−1)+, t j−

)
+

np

∑
j=1

∫ t j−

t( j−1)+

[Φ(xxx(t),uuu(t), t)]dt. (4.14)

This time, ϕ depends on the values of variables and times at every boundary for
each arc, Φ serves the same task as before but taking into account how the solution
progresses through the arcs.
The generic form of the augmented merit index has the form

J∗ = ϕ +µµµ
T

χχχ +
np

∑
j=1

∫ t j−

t( j−1)+

[
Φ+λλλ

T ( fff − ẋxx)
]

dt. (4.15)

Following the same mathematical steps previously, i.e. integrating by parts and
substituting, one obtains

J∗ = ϕ +µµµ
T

χχχ +
np

∑
j=1

[
λλλ

T
( j−1)+xxx( j−1)+ −λλλ

T
j−xxx j−

]
+

np

∑
j=1

∫ t j−

t( j−1)+

[
Φ+λλλ

T fff + λ̇λλ
T

xxx
]

dt.

(4.16)
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By differentiating the eq. (4.16), δJ∗ per each arc results

δJ∗ =

(
∂ϕ

∂ t( j−1)+
+µµµ

T ∂ χχχ

∂ t( j−1)+
−H( j−1)+

)
δ t( j−1)++ (4.17a)

+

(
∂ϕ

∂ t j−
+µµµ

T ∂ χχχ

∂ t j−
+H j−

)
δ t j−+ (4.17b)

+

(
∂ϕ

∂xxx( j−1)+
+µµµ

T ∂ χχχ

∂xxx( j−1)+
+λλλ

T
( j−1)+

)
δxxx( j−1)++ (4.17c)

+

(
∂ϕ

∂xxx j−
+µµµ

T ∂ χχχ

∂xxx j−
−λλλ

T
j−

)
δxxx j−+ (4.17d)

+
np

∑
j=1

∫ t j−

t( j−1)+

[(
∂H

∂xxx
+ λ̇λλ

T
)

δxxx+
∂H

∂uuu
δuuu
]

dt, j = 1, . . . ,np (4.17e)

Considering a MPBVP, the aforementioned optimality and transversality condi-
tions are more effectively expressed in relation to the j-th boundary itself. Hence,
introducing subscripts j− and j+ (standing for positions immediately before and
after the j-th, respectively), the equations retrieved in Section 4.3.1 can be written as

∂ϕ

∂ t j+
+µµµ

T ∂ χχχ

∂ t j+
−H j+ = 0, j = 0, . . . ,np −1 (4.18a)

∂ϕ

∂ t j−
+µµµ

T ∂ χχχ

∂ t j−
+H j− = 0, j = 1, . . . ,np (4.18b)

∂ϕ

∂xxx j+
+µµµ

T ∂ χχχ

∂xxx j+
+λλλ

T
j+ = 000, j = 0, . . . ,np −1 (4.18c)

∂ϕ

∂xxx j−
+µµµ

T ∂ χχχ

∂xxx j−
−λλλ

T
j− = 000, j = 1, . . . ,np. (4.18d)

Meanwhile, the points discussed in Section 4.3.2 still hold for a MPBVP.

4.5 Boundary Value Problem Implementation

This section delves into the methods and challenges involved in implementing a
Boundary Value Problem (BVP), highlighting the adjustments required to address
the complexities introduced by OCT. Its application to dynamic systems typically
results in the formulation of a TPBVP (or MPBVP if there is subdivision in arcs).
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This transformation is a fundamental aspect of OCT, where the original BVP is
converted into an augmented version with new potential unknowns, resulting in
a more dimensionally complex problem. However, this approach allows for the
imposition of the conditions previously derived that ensure the optimality of the
solution.

Let yyy(t) be the vector composed by state and adjoint variables, function of time:

yyy(t) =
{

xxx(t)T , λλλ (t)T}T
. (4.19)

The main purpose is to find the optimal initial state vector yyy∗0 =
{

xxx∗T
0 , λλλ

∗T
0

}T

which, fulfilling all imposed and optimality BCs, leads to the desired final state
yyy∗f . A single-shooting numerical method via Differential Correction (DC) is chosen,
capable of updating initial state at each step depending on the final condition reached,
with the aim to limit undesired terminal deviation (refer to Section 3.3).

An exploration of the shooting method for the solution of a TPBVP is undertaken
with reference to a generic system

ẏyy = fff (yyy(t), t). (4.20)

Since this type of problem may also depend on some constant value, gathered in
the vector ccc , it is appropriate to define a new vector zzz(t) =

{
yyy(t)T , cccT}T . Therefore,

the set of ODEs in its general form is

żzz =
dzzz
dt

= fff (zzz(t), t), (4.21)

being

ċcc =
dccc
dt

= 000, (4.22)

while the set of BCs and BCs for optimality can be written as

χχχ(zzz) = 000. (4.23)

Note that the notation (t) is omitted henceforth.

In analogy to the approach taken for orbit construction in Chapter 3, the objective
now is to implement the single-shooting method combined with the DC procedure to
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find the optimal initial state zzz∗0 that leads to the desired final state while satisfying
BCs χχχ(zzz) = 000.

Assuming none of the initial values is known, the first iteration is started by
integrating the set of equations (4.20) with a guess initial vector qqqr = zzz0 and then the
process is carried on iteratively. This results at each r-th iteration in the computation
of the error on BCs. With a first order Taylor expansion, one can express the BCs at
the (r+1)-th iteration as a function of the BCs and the state vector at the previous
r-th one:

χχχ(qqqr+1) = χχχ(qqqr)+
∂ χχχ(qqqr)

∂qqqr+1
(qqqr+1 −qqqr). (4.24)

The term containing the partial derivatives represents the Jacobian matrix JJJ, which
provides both quantitative and qualitative insights into how small changes in qqqr

impact on the problem.

To simplify the notation two abbreviations are introduced:

χχχr ≜ χχχ(qqqr), (4.25a)

JJJ(χχχr)≜ JJJ(χχχ(qqqr),qqqr+1). (4.25b)

As it is defined, if a solution exists, leads to χχχr+1 = 000 and consequently to the
following iterative solution form:

χχχr +[JJJ(χχχr)]
(
qqqr+1 −qqqr

)
= 000. (4.26)

Therefore, from the above equation, the state of the updated design vector can be
computed, at each iteration, as follows:

qqqr+1 = qqqr − [JJJ(χχχr)]
−1

χχχr (4.27)

and used for the following iteration, allowing the updating of values of the constraint
vector until the wanted precision on the error norm is reached.

In the present work, the calculation of the Jacobian is approximated by means
of forward finite-differences method. Perturbing each variable element of qqqr by a
certain ∆,

qp
ir = qir +∆, (4.28)
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and integrating with the perturbed initial condition, the Jacobian matrix is obtained
as

JJJ(χχχr) =
χχχ

p
r −χχχr

qqqp
r −qqqr

=
χχχ

p
r −χχχr

∆
, (4.29)

where the superscript p stands for perturbed and χχχ
p
r ≜ χχχ(qqqp

r ).

Even though it involves an approximate calculation, this choice is made with the
aim of considering analyses with different constraints and BCs, thereby making the
code much faster and more versatile. Indeed, the Jacobian matrix should be exactly
computed with respect to the examined problem, introducing a new STM matrix for
linear mapping whose evolution would need to be tracked by an additional set of
ODEs, making the calculation process more cumbersome.

Finally, all the tools are available to solve the TPBVP introduced so far, governed
by the set of ODEs

żzz = fff (zzz(t), t), (4.30)

to be integrated iteratively in order to find the optimal initial state zzz∗0 which allows the
trajectory to lead to the desired final state zzz∗f while respecting the imposed constraints
χ . Such integration is performed in Python environment via the LSODA function
pre-compiled in C++ [65], implementing an implicit multistep numerical method
based on the Adams-Moulton formulations with variable step size and order [66].
Using a Python integrator precompiled in C++ offers significant advantages such as
improved performance and computational efficiency, due to C++’s faster execution
for intensive numerical operations due to machine-level compilation, while still
maintaining Python’s highly flexible and simple working environment.

The Jacobian computation within the iterative Differential Correction (DC) pro-
cess may introduce inaccuracies that potentially threaten the method’s convergence,
leading to divergences. To refine the process certain strategies are incorporated. One
such strategy is the application of a correction factor during the update step of the
iterative process:

zzzr+1 = zzzr −κ1 · [JJJ(χχχr)]
−1

χχχr, (4.31)

where appropriate values of the relaxation factor κ1 = 1× 10−3 ÷ 1× 10−5 are
beneficial to guarantee the convergence. In the initial stages of the iterative process,
when the unknown values are being approximated with rough guesses, it is prudent to
use lower values for k1. As the solution begins to approach the vicinity of the optimal
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value, higher values of can be employed depending on how sensitive the problem
is. Another strategy involves the control on the subsequent error with respect to the
error indicated by χχχ at the previous step:

Emax,r+1 < κ2Emax,r, (4.32)

where Emax = max(χi) and a value of κ2 = 2÷3 proves to be effective in supporting
the initial phase of the iterative process. This approach can encourage convergence
despite a possible initial increase in the maximum error, as it helps to establish the
appropriate direction towards optimality within the search space. If the equation
(4.32) is not satisfied, k1 is subject to a bisection method, which may be applied up
to five iterations to refine the solution.

4.6 OCT in CR3BP Trajectory Optimization

In light of the dynamic model employed, the spacecraft dynamics equations in
non-dimensional form, considering low-thrust propulsion, are more conveniently
described by the following set of ODEs [67, 68]:

dρρρ

dt
= VVV (4.33a)

dVVV
dt

= ggg(ρρρ)+hhh(VVV)+
TTT
m

(4.33b)

dm
dt

=−T
c
, (4.33c)

where
ρρρ = {ξ , η , ζ}T , VVV=

{
ξ̇ , η̇ , ζ̇

}T
,

while the equation (4.33c) represents the mass consumption of the propulsion system,
depending on the effective exhaust velocity c = Ispg0. The functions ggg(ρρρ) and hhh(VVV)

57



Optimal Control Theory

are introduced to compact the equations (2.24) and are defined respectively as

ggg(ρρρ) =



ξ − 1−µ

ρ
3
13

(ξ +µ)− µ

ρ
3
23

[ξ − (1−µ)]

η − 1−µ

ρ
3
13

η − µ

ρ
3
23

η

−1−µ

ρ
3
13

ζ − µ

ρ
3
23

ζ


,

hhh(VVV) =


2η̇

−2ξ̇

0

 . (4.34)

Note that the spacecraft mass m and the thrust magnitude T are non-dimensionalized
by using the initial spacecraft mass m0.

The application of the OCT to the above system aims at finding the optimal
control law, specifically the thrust vector TTT , that maximize the final mass of the SC
at the end of the trajectory. The state vector xxx(t) ∈ Rn has the form

xxx =
{

ξ , η , ζ , ξ̇ , η̇ , ζ̇ , m
}T

(4.35)

and introducing for each variable the corresponding adjoint one, the augmented state
vector yyy(t) ∈ R2n is obtained:

yyy =
{

ξ , η , ζ , ξ̇ , η̇ , ζ̇ , m, λξ , λη , λζ , λ
ξ̇
, λη̇ , λ

ζ̇
, λm

}T
. (4.36)

For this type of problem, the Mayer formulation is preferred. Being Φ = 0, the
merit index J to be maximized coincide with the value of SC mass at the end of the
trajectory:

J= ϕ = m f . (4.37)
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By expressing positions and velocities component by component and explaining
ggg(ρρρ) and hhh(VVV), the system of ODEs in eqs. (4.33) becomes

dξ

dt
= ξ̇ (4.38a)

dη

dt
= η̇ (4.38b)

dζ

dt
= ζ̇ (4.38c)

dξ̇

dt
= 2η̇ +ξ − 1−µ

ρ3
13

(ξ +µ)− µ

ρ3
23

[ξ − (1−µ)]+
Tξ

m
(4.38d)

dη̇

dt
=−2ξ̇ +η − 1−µ

ρ3
13

η − µ

ρ3
23

η +
Tη

m
(4.38e)

dζ̇

dt
=−1−µ

ρ3
13

ζ − µ

ρ3
23

ζ +
Tζ

m
(4.38f)

dm
dt

=−T
c
. (4.38g)

Therefore, the Hamiltonian defined in eq. (4.7) turns into

H = λλλ
T fff =

2n

∑
i=1

λi fi = λξ ξ̇ +λη η̇ +λζ ζ̇+

+λ
ξ̇

[
2η̇ +ξ − 1−µ

ρ3
13

(ξ +µ)− µ

ρ3
23

(ξ −1+µ)+
Tξ

m

]
+

+λη̇

[
−2ξ̇ +η − 1−µ

ρ3
13

η − µ

ρ3
23

η +
Tη

m

]
+

+λ
ζ̇

[
−1−µ

ρ3
13

ζ − µ

ρ3
23

ζ +
Tζ

m

]
+

−λm
T
c
,

(4.39)
or in compact form

H = λλλ
T
ρVVV+λλλ

T
V

[
ggg(ρρρ)+hhh(VVV)+

TTT
m

]
−λm

T
c
, (4.40)

where:
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• the vector λλλ ρ includes the three adjoint variables of the three synodic coordi-
nates, namely

λλλ ρ =


λξ

λη

λζ

 ; (4.41)

• the adjoint velocity vector, or primer vector, is defined as

λλλV =


λ

ξ̇

λη̇

λ
ζ̇

 . (4.42)

The equation (4.40) can be reformulated as follows, by collecting all terms that
multiply the thrust into the coefficient SF, named switching function:

H = λλλ
T
ρVVV+λλλ

T
V [ggg(ρρρ)+hhh(VVV)]+T SF, (4.43)

in which

SF =
λλλ

T
V

m
TTT
T
− λm

c
. (4.44)

In accordance with PMP introduced earlier, the optimal control is the one that
maximize the Hamiltonian in equation (4.43) and as a consequence the merit index
for the trajectory. Being the control vector uuu(t) composed by the thrust vector TTT
(defined by magnitude and direction), it turns out that H is linear with respect to the
control itself. Therefore, as evidenced in Section 4.3.2, the necessity of a bang-bang
control arises:

• when SF > 0 =⇒ T = Tmax;

• when SF < 0 =⇒ T = 0.

Now, thrust direction must be determined. The trust vector TTT can be expressed
in synodic components by means of two angles, αT and βT , shown in the Figure 4.1.
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ξ̂ξξ S

η̂ηηS

ζ̂ζζ S

ρρρ3

Tξ

Tη
Tζ

TTT

Tξ

Tη

Tζ

α

β

TTT

Fig. 4.1 Thrust angles and components in the synodic RS

Hence,

TTT =


Tξ

Tη

Tζ

= T


cosβT cosαT

cosβT sinαT

sinβT

 , (4.45)

with T = ∥TTT∥. The optimal thrust direction, in order to maximize SF and conse-
quently H, is parallel to the primer vector λλλV [52]. Indeed, the optimal values of
αT and βT can be retrieved by the derivatives of H in eq. (4.39) with respect to the
same angles, resulting in

∂H

∂αT
=−λ

ξ̇
sinαT +λη̇ cosαT = 0 (4.46a)

∂H

∂βT
= λ

ζ̇
cosβT −

(
λ

ξ̇
cosαT +λη̇ sinαT

)
sinβT = 0. (4.46b)

By appropriately manipulating the two above equations, one obtains the optimal
directions

cosβT cosαT =
λ

ξ̇

λV
(4.47a)

cosβT sinαT =
λη̇

λV
(4.47b)

sinβT =
λ

ζ̇

λV
(4.47c)

(4.47d)
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which coincide with the cosine directors of the primer vector itself and incidentally
match the components of the thrust vector in equation (4.45). Note that λV = ∥λλλV∥.

Therefore, equation (4.44) can be rewritten in its scalar form

SF =
λV

m
− λm

c
, (4.48)

For what concerns the adjoint values, they can be found integrating the Euler-
Lagrange equations, obtained in turn by deriving the Hamiltonian with respect to
the corresponding state variables, as seen in eq. (4.10) and computed in Appendix B,
allowing the problem to be completely defined.

However, as anticipated at the beginning of this chapter, indirect methods may
face challenges with numerical stability, especially in the handling of thrust dis-
continuity. In fact, it may happen that the switching function, which is crucial in
the bang-bang control of thrust, takes on fluctuating values around zero, causing
numerical issues in the evaluation of gradients, compromising the convergence of
the process. In such cases a pre-defined sequence of thrust and coast arcs could
be adopted, therefore specifying a switching function "a priori", transforming the
TPBVP into a MPBVP.

In this thesis, the latter procedure was not necessary. However, it could prove
to be very useful when introducing perturbations which increase the fidelity of the
dynamic model, enhancing numerical accuracy, convergence speed, and overall
robustness of the code.
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Chapter 5

Computation of Optimal De-Orbiting
Trajectories

Established the mathematical foundations of the problem, this chapter provides a
detailed description of all necessary elements to fully define and solve the case study:
the optimization of low-thrust de-orbiting trajectories from the southern Earth-Moon
Lagrangian Point L2 (EML2) Near-Rectilinear Halo Orbit (NRHO) with a 9 : 2
synodic resonance with the Moon’s orbit around Earth. The primary objective is
to reach the lunar north pole, selected as the graveyard region for decommissioned
spacecrafts, with the lowest propellant consumption. The dynamic model, extensively
described in Chapter 2, considers the gravitational effects of both the Moon and the
Earth. The trajectory of the two primaries with respect to the center of mass of the
binary system is assumed to be circular, placing this study within the framework of
the Circular Restricted Three-Body Problem (CR3BP), offering a sufficiently precise
basis for preliminary analysis applicable to real-world scenarios.

First, the physical and propulsion characteristics of the spacecraft used in the
analysis must be specified and are summarized in Table 5.1, essential for evaluating
the propellant consumption using equation (4.33c). The reference values indicated
for the thruster pertain to a xenon Hall-effect currently undergoing testing [69].
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Quantity Unit Value

Initial mass m0 [kg] 600
Thrust T [N] 0.6
Specific Impulse Isp [s] 2800

Table 5.1 SC characteristic values

Once the optimal trajectory is determined, m f is obtained immediately, and
consequently, mp can be calculated as

mp = m0 −m f . (5.1)

Subsequently, the ∆V required to de-orbit the satellite can be derived using the
Tsiolkovsky equation:

∆V =−Isp g0 ln
(

m f

m0

)
(5.2)

The fundamental physical values used in the analyses to non-dimensionalize the
equations can be found in Table 5.2.

Physical constant Unit Value

Mass parameter µ 0.012150587
Length unit [km] 384400
Time unit [day] 4.342479846
Mass unit [kg] 600

Table 5.2 Non-dimensionalizing values

The fixed-time analyses are conducted by varying the starting point from the
NRHO, thereby determining the propellant consumption of the optimal trajectories
obtained by solving the TPBVP resulting from the application of OCT to the problem
by a single-shooting method via DC with appropriate boundary conditions.
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5.1 Boundary Conditions

5.1.1 Terminal Conditions

The final position target for the de-orbiting trajectories is a designated graveyard
region on the lunar surface at the lunar north pole identified by the synodic co-
ordinates ρρρ f =

{
1−µ, 0, 4.51873×10−3}T . In terms of velocities, as this is an

End-of-Life (EOL) disposal strategy, a soft landing is not required. Therefore, the
ξ̇ f and η̇ f velocities are not targeted; instead, an indicative ζ̇ f =−0.05 is imposed
to guide optimization towards trajectories reaching the north pole from above and
not intersecting the Moon’s body.

As a consequence of transversality and optimality conditions (refer to Section
4.3.1), the adjoint variables λξ f

, λη f , λζ f
, λ

ζ̇ f
and both H0 and H f are free, λ

ξ̇ f
and

λη̇ f at the final time must be null (since the corresponding variables are free) while
λm f is set to 1, as m f is the subject of maximization. In a concise form, the reduced

set of terminal boundary conditions χχχ f =
{

ξ f , η f , ζ f , ζ̇ f , λ
ξ̇ f
, λη̇ f , λm f , τ f

}T
is

χχχ f =
{

9.87849×10−1, 0, 4.51873×10−3,−5×10−2, 0, 0, 1, τ f
}T

. (5.3)

The iterative procedure described in Section 4.5 is stopped when the norm of the
errors on the final boundary conditions reaches a certain tolerance. In this case, a
tolerance of 1×10−7 has been set for errors on all BCs except for ξ f and η f , whose
tolerance is increased to 1×10−4 by characterizing a region around the north pole.

As anticipated, since in the implemented dynamic model the Hamiltonian is
extremely sensitive to differential corrections, fixed-time analyses have been opted
for, modifying τ f for each analysis according to the starting point in order to ac-
commodate mission times, spacing in a dimensional range of 5.475 days ÷ 9.740
days. Since a time constraint can lead to finding sub-optimal solutions (being op-
timal solutions for that specific time, but not in general), an attempt was made to
perform a sensitivity analysis on time, by appropriately varying the final time of first
convergence per each point and analyzing the behavior of SF and consequently mp.
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5.1.2 Initial Conditions

As previously mentioned, the analysis is conducted by optimizing various de-orbiting
trajectories that originate from different points of the selected NRHO. The initial
positions and velocities of the spacecraft have been calculated through the integration
performed in Section 3. Specifically, considering the reference starting point as the
furthest from the Moon, i.e., the apolune, the preceding and subsequent points of
the orbit are indicated in terms of the percentage of orbital period elapsed, with 0%
corresponding to the apolune. Negative and positive values indicate positions before
or after the apolune in the orbit, respectively. The analysis considers 28 starting
points, ranging from -35% to 32.5%, equally distributed in time along the NRHO.

Fig. 5.1 Equal time distribution of starting point near apolune

As shown in Figure 5.1, the points tend to cluster near apolune due to the SC’s
low velocity in that region.

The initial mass of the SC is set to 600 kg, corresponding to 1 mass unit, while for
each trajectory τ0 is set to 0. Having thus assigned all positions, velocities, and the
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initial mass in the initial state vector, it follows that the initial guesses needed to start
the iterative procedure refer to all the corresponding adjoint variables, encapsulated
in the adjoint vector

λλλ 0 =
{

λξ0
, λη0, λζ0

, λ
ξ̇0
, λη̇0, λ

ζ̇0
, λm0

}T
. (5.4)

To start the optimization procedure, reasonable initial guesses are essential.
One of the disadvantages of indirect methods is that adjoint variables lack direct
physical meaning, therefore their evolutions and influences could be more or less
predictable. Consequently, inappropriate initial guesses of adjoint variables can lead
to convergence issues because the problem is highly sensitive to these initial guesses.
This sensitivity makes it crucial to provide well-considered initial values to ensure
the optimization procedure converges effectively. For example, an interpretation
of the velocity adjoint variables is linked to the importance of the primer vector,
which dictates the optimal thrust direction. Indeed, the larger the adjoint in a velocity
direction, the more thrust will be emphasized in that direction. If the adjoint is
positive, the thrust will align with it; if negative, the thrust will oppose it. This
interpretation highlights how the magnitude and sign of velocity adjoints guide the
spacecraft’s acceleration and deceleration to achieve the desired trajectory. Less
intuitive, however, are the adjoints related to the synodic coordinates.

5.2 Results

Based on the procedure outlined in the previous sections, the single shooting method
via DC allowed for the computation of the various trajectories, each with its specific
initial conditions, and proceeding through continuity. The first convergence of
the iterative procedure led to the optimal de-orbiting trajectory starting from the
apolune of the NRHO. As already noted, to limit the risk of encountering sub-optimal
trajectories, the final time around the value of first convergence was varied delicately,
thus analyzing its influence on the shape and position of the switching function.
Figure 5.2 shows, for the first point analyzed, a lowering of SF as τ f increases. This
results in a reduction of propellant consumption considering the shape of SF, which,
when lowering, tends to enlarge the coasting arc.
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Fig. 5.2 τ f influence on SF

This type of investigation was conducted for each point chosen on the NRHO,
where permitted by the numerical sensitivity of the problem.

Thus, based on the results obtained from the first point, an exploration was carried
out on trajectories departing both before and after apolune position, resulting in the
set of trajectories depicted in Figure 5.3. It should be noted how the injection point
for the transfer has a considerable impact on the disposal cost in terms of propellant,
as indicated by the color map of mp. For clarity, Figure 5.4 represents only the
injection points on the NRHO, colored according to the propellant consumption of
the associated trajectory.
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Fig. 5.3 Optimal de-orbiting trajectories

Fig. 5.4 Optimal de-orbiting trajectories - Injection points
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Figure 5.5 shows the trend of the final time of each trajectory in days, demon-
strating a natural decreasing trend as one progresses along the NRHO and starting
from points that "facilitate" the trajectory for the disposal of the satellite into the
desired area, not necessitating major directional deviations to reach the graveyard
region.

Fig. 5.5 Fixed ∆T - Injection point position

Figure 5.6 presents the trend of propellant mass consumption and therefore
required ∆V as a function of the injection point. Trajectories starting from points
before the -35% of the orbit were not investigated due to their low interest given the
increasing trend in consumption. Conversely, points beyond 32.5% of the orbit, given
the satellite mass and thrust under consideration, do not allow for direct de-orbiting
trajectories and thus cannot be compared with those previously determined. Of all
the optimal de-orbiting trajectories obtained, those requiring the minimum propellant
consumption (in nuances of red in Figs. 5.3 and 5.4) depart from the portion of the
orbit immediately following the apolune, clearly identifying a minimum near the
point corresponding to 22.5% of the orbit, as can be seen in Figure 5.6.
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Fig. 5.6 Propellant consumption and required ∆V - Injection point position

The optimal minimum-propellant de-orbiting trajectory is depicted in Figure
5.7, where red and green colours indicate thrust and coasting arcs respectively. Its
initial conditions and the value of λλλ

∗
0 that allows solving of TPBVP are summarized

in Table 5.3. The final time that showed the best results within the convergence
limits of the code is t f = 5.6385 days. Figure 5.8 shows the time evolution of each
position and velocity component during such trajectory observing how the boundary
conditions imposed on ξ , η , ζ and ζ̇ are met at t f . Notice how slope variations
correspond to specific moments in the trajectory when the thruster is activated or
deactivated.

Figure 5.9 presents the switching function and mass profile for the entire minimum-
propellant trajectory. The bang-bang control, derived from Pontryagin’s Maximum
Principle (PMP), dictates that the thrust is activated whenever SF is positive, thus
defining the thrust arcs of the trajectory. The percentage of time during which the
switching function assumes negative values, effectively constituting the coasting
phases, amounts to 32% of t f . In such time intervals the SC mass remains constant.
On the contrary, as expected from equation 4.33c, during the the time intervals when
the switching function is positive, depicted in red in Figure 5.7, there is a reduction
in mass because propellant is being consumed. The final mass of the SC turns out to
be m f = 592.7496 kg, which corresponds to mp = 7.2504 kg and ∆V = 333.5484
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m/s. This reduction in propellant required for de-orbiting of up to 60% allows the
mission to allocate more fuel for earlier operational phases, effectively extending the
mission’s operational lifespan.

Fig. 5.7 Minimum-propellant optimal de-orbiting trajectory

Parameter Value

ρρρ0 {1.014447,−0.032061,−0.152135}T

VVV0 {−0.044099,−0.074989, 0.181507}T

m0 1
λλλ
∗
ρ0

{0.020814, 0.027155, 0.030372}T

λλλ
∗
V0

{0.030307, 0.015413,−0.016221}T

λ ∗
m0

0.987661

Table 5.3 Initial state and costate for the minimum-propellant solution
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(a) ξ vs τ (b) η vs τ

(c) ζ vs τ (d) ξ̇ vs τ

(e) η̇ vs τ (f) ζ̇ vs τ

Fig. 5.8 Evolution in time of synodic positions and velocities
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(a) SF vs τ

(b) m vs τ

Fig. 5.9 Evolution in time of switching function and mass

To interpret what happens from a dynamic perspective, it is useful to observe
the trends of αT and βT , which are the angles in the ξ̂ξξ S − η̂ηηS plane and out of the
plane (refer to Fig. 4.1) respectively. From Figure 5.10a, it can be observed that αT

starts from a positive value of about 25◦ and increases monotonically. Initial values
are indicative of a deviation from the dotted NRHO in the first red arc in which the
thrust has a dominant braking effect on the negative ξ̇ , as outlined by the positive
λ

ξ̇0
value, greater than the other adjoint velocity variables. Then, in the second thrust

arc an increasingly predominant thrust in the positive η̂ηηS and negative ζ̂ζζ S directions
is observed, which causes the trajectory to close to curve and reach the designated
point. Indeed, as shown in Figure 5.10b, βT starts from a negative value of −25◦ and
decreases monotonically, indicating a braking action against the positive ζ̇ , reaching
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values of −80◦÷−85◦ in the second thrust arc, contributing to the curvature of the
trajectory and its subsequent closure towards the lunar north pole.

(a) αT vs τ (b) βT vs τ

Fig. 5.10 Evolution in time of thrust angles

An interesting result is shown in Figure 5.11, which displays the behaviors of the
different switching functions. These functions pertain to each optimal trajectories
departing from points with relative positions to apolune in the range of 0% to 32.5%.
For clarity, the ranges are divided into 0% to 20% and 20% to 32.5%. These intervals
correspond to the orbital arc that demonstrates clear advantages in terms of propellant
burned (refer to Fig. 5.6). At the last point of each curve, the duration of the coasting
phase is indicated as a percentage of the total trajectory duration.

Figure 5.11a focuses on the first range, corresponding to the descending phase of
the mp trend. The switching functions belong to the same family (thrust-coast-thrust,
or T-C-T phases) but tend to decrease their slope at the initial and final segments,
flattening along the zero ordinate as the injection point progresses along the NRHO.
Consequently, this tends to extend the coasting phase, thereby progressively reducing
the mp. Note that a higher coasting percentage does not necessarily imply lower
propellant consumption, as the duration of each trajectory varies, still potentially
resulting in a longer phase with the thruster active, and vice versa. In Figure 5.11b, a
transition is observed from switching functions of the T-C-T type to T-C-T-C (like
the minimum consumption one shown in Fig. 5.7) and C-T-C types, with a slight
increasing trend in mp, due to longer durations of thrust arcs. Indeed, the switching
functions tend to bulge towards positive values, activating the thrust for a longer
duration.
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(a) Focus on SF of 0% ÷ 20% departing point trajectories

(b) Focus on SF of 20% ÷ 32.5% departing point trajectories

Fig. 5.11 Behavior of SF under different analysis conditions
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Conclusion

In this thesis, the formulation of low-thrust minimum-propellant trajectories in the
Circular Restricted Three-Body Problem using indirect optimal control is discussed,
with applications to de-orbiting trajectories from a Earth-Moon Near-Rectilinear
Halo Orbit about L2 into a graveyard region around the lunar north pole.

The choice of this scenario aligns with the growing interest in cislunar space
in recent years, as evidenced by the increasing number of space missions focusing
on periodic and quasi-periodic orbits around the Earth-Moon Lagrangian points.
Additionally, with the advancement of the Artemis program, these specific orbits
may become prime staging areas for efforts to colonize the Moon and the near-Earth
space. The chosen representative orbit for this case study is the Near-Rectilinear
Halo Orbit where the construction of the Lunar Orbital Platform-Gateway is planned.
This orbiting station will play a crucial role in humanity’s return to the Moon, with
the ultimate goal of exploring Mars. Within the CR3BP framework, its periodic
motion around L2 has been computed by means of single shooting and differential
correction strategies.

The NASA-led ambitious program, along with many other planned space mis-
sions, will increasingly attract stakeholder interest in cislunar space. Consequently,
there will be a growing need to implement appropriate end-of-life strategies to reduce
space debris. This proactive approach is essential for ensuring sustainable and safe
operations in the cislunar environment, as the number of missions and activities in
this region is expected to rise significantly. As a result, it has become interesting
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to explore a direct disposal strategy involving the de-orbiting of a satellite into a
designated graveyard region near the lunar north pole.

As the central core of this thesis, the problem has been formulated as an Optimal
Control Problem. The optimization was carried out using an indirect approach based
on Optimal Control Theory, that transformed the OCP into a Two-Point Boundary
Value Problem, solved employing a single-shooting method via Differential Cor-
rection. Different initial conditions on the NRHO were considered, conducting a
parametric study of the propellant mass consumed relative to the injection point.
Necessary and optimality conditions were derived and the bang-bang control was
defined in accordance with the Pontryagin’s Maximum Principle. The implemented
indirect method has proven to be very precise and suitable for complex optimization
problems, with dynamics that are far from simple and straightforward. Despite typi-
cal numerical issues of non-convergence, these were mitigated by specific strategies
aimed at strengthening the code.

Results showed a strong influence of the position of the injection point on the
propellant consumption, identifying a specific post-apolune orbital arc on the NRHO
deemed ideal for de-orbiting the satellite, enabling significant propellant savings
which can be utilized for earlier operational phases, thereby extending the satellite’s
operational life. Finally, a focus on the two-burn optimal minimum-propellant
trajectory was provided, showing how all the BCs are met with high accuracy.

6.1 Future Research

Although the dynamic model used in this work, the Circular Restricted Three-Body
Problem, contains some simplifications and does not accurately reflect the complex-
ities of the solar system, it serves as a robust foundation for future developments.
Furthermore, the strong numerical sensitivity of the Hamiltonian did not allow for
variable time analyses, which constitutes a limitation of this work, although it is
significantly mitigated by the analyses performed on different final times.

Several future developments and improvements can be considered, including but
not limited to:

• implementing strategies to dampen the numerical behavior of the Hamiltonian
in order to perform variable time analyses;
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• employing the N-Body Problem as dynamic model with the use of JPL’s
ephemerides for precise planetary positional data;

• including perturbations such as Solar Radiation Pressure or Moon and/or Earth
asphericity;

• transforming the Two-Point Boundary Value Problem into a Multi-Point
Boundary Value Problem by the adoption of predefined sequences of thrust and
coast arcs that simplify the computational process and enhance the robustness
of the code;

• implementing of a multiple-shooting strategy in order to better guide the
iterative process;

• imposing inequality constraints on final velocities;

• investigating multi-revolution de-orbiting trajectories.
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Appendix A

Jacobian Matrix in the CR3BP

Ã =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

Uξ ξ Uξ η Uξ ζ 0 2 0
Uηξ Uηη Uηζ −2 0 0
Uζ ξ Uζ η Uζ ζ 0 0 0


(A.1)

∂U

∂ξ
=

∂

∂ξ


1
2
(ξ 2 +η
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Uξ ξ = 1− (1−µ)
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Appendix B

Euler-Lagrange Equations

λ̇λλ =−∂H
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