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Sommario

The growing interest in exploiting extraterrestrial resources has spotlighted asteroid re-
trieval missions as a pivotal strategy for resource utilization and planetary defense. This
study proposes a non-destructive retrieval approach by rendezvousing with Near-Earth
Asteroids (NEA) and utilizing guided propulsion to move part of its mass closer to Earth
in order to allow in-orbit production of spacecraft components without launching them
from Earth making spacecraft construction less expensive.

From the JPL Small Bodies Database, a refined selection of asteroids is idendtified
through a Pareto front analysis that searches for bodies that have the best orbital pa-
rameters’ proximity to those matching the departure point, at the Sun-Earth Lagrange
Point L2. Optimal low-thrust trajectories via indirect methods based on the Optimal
Control Theory are determined for the spacecraft to rendezvous with the asteroids. Upon
attachment, a matching the retrieved asteroid’s mass is introduced, and the mission tran-
sitions to seeking the quickest maneuvre to retreive the highest possible amount of asteroid
mass back to strategic points in the Earth-Moon system such as the L4 or L5 Lagrangian
points. The desired trajectory is calculated using a single-shooting method relying on
the Pontryagin’s Minimum Principle (PmP) to reduce the propellant mass spent and an
autonomous switching function based on the bang-bang control to regulate the thrust wi-
thout having previously specified the thrust and coasting arcs, this being possible thanks
to the complexity of gravitational interactions among the considered celestial bodies.

The dynamic modeling of planetary bodies’ positions relies on JPL DE441 ephemeris
incorporating the gravitational influence of the Sun in a two-bodies system.
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Capitolo 1

Introduction

One of the most engaging enterprises ever attempted by human race, with its unique
ability to unify people from countries politically nearly unable to establish long-term
peaceful relations and to bring those countries to join their forces to build the most
amazing (and expensive) structure in the history of mankind, the International Space
Station (ISS), is space exploration.

After an initial ”golden age” culminated with the Apollo missions designed by National
Aeronautic and Space Agency (NASA) (1969-1972) and followed by some decades of
less celebrated activity, in the last decade space exploration has known a new growth in
interest from both the general public and private companies (this comes more as a novelty
considered the complete domain national agencies used to have on the subject of space
exploration) with the arise of new protagonist like Elon Musk and Jeff Bezos which have
started companies (Space X and Blue Origin respectively) that design vehicles capable to
reach space for commercial flights, and new challenges such as the attempt to land a man
on the surface of Mars (many mission like the most recent Curiosity and Perseverance
by NASA and the ExoMars designed by ESA involving automatic mechanical probes
and rovers have been successfully attempted or are currently under development) or the
attempt to establish once and for all the human presence on the surface of our only
natural satellite, the Moon, with the Artemis program alongside with the project of a
space station orbiting it (the Lunar Gateway).

In this context space trajectory optimization has always been crucial in bolstering the
feasibility of every mission. In fact, if we consider the arch-famous Tsiolkovski’s Rocket
equation [47],

mf = m0e
−∆V

c (1.1)

where m0 and mf are the initial and the final mass of the spacecraft, ∆V is the term
that indicates how much energy (in terms of kinetic energy) the spacecraft needs to be
given to perform the desired transfer and c is the effective exhaust velocity measuring the
performance provided by the propellant, assuming we want to launch a 1 kg spacecraft
to insert it into Low Earth Orbit (LEO) (for the characteristics of the given transfer
and the considered spacecraft see table 1.1) trough chemical propulsion, the only way we
know to generate the high amount of thrust necessary to defy gravitational pull exerted by
Earth [47], we get that more that 27 kg of propellant (excluding the engines and the tanks
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Introduction

themselves that would influence the actual result) are necessary and this value grows with
the ∆V of the maneuver and the inefficiencies of the propellant and the thruster itself.

∆V ≈ 10 km/s
c 2943 m/s
Isp 300 s
g0 9.81 m/s

desired mf 1 kg
necessary m0 28 kg

Tabella 1.1: Data for a generical launch from the Earth surface towards LEO, from [24]

This little example clarifies how crucial optimization in general, and space trajectory
optimization in particular, can be to reduce mission costs. In fact, when talking about
designing flying vehicles (so this is true for little airplanes and for space ships as well), we
do not want to bring on board what we do not really want or need because every kg of
mass brought has its cost, weather in terms of chemical propellant or in terms of Xenon,
the gaseous propellant used for electrical propulsion [24].

In fact, since the late sixties (when thrusters still happened to be called thrustors
in scientific literature and the Apollo space program was still in progress) electric pro-
pulsion was seen as a potential way to generate thrust for in-space maneuvers because
of their undisputed efficiency and endurance, especially for attitude corrections where
accelerations on the order of 10−5 to 10−4 g0 are sufficient, along (at that time) with
nuclear-heated, hydrogen-fueled engines [45]. However in the following decades those two
technologies diverged in their development path with electrical propulsion whose use has
become prominent also for deep-space missions [26] even though its potential has not been
fully expressed yet. The only downside of such technology is the longer mission time it
requires to complete it when using electric thrust because of the very low force produced.
In fact some groups of this family of thrusters, specifically the ion-thrusters, can produce
an amount of thrust in a range of [0.01, 500]mN, depending on the propellant, with a
80% efficiency and a durability in terms of years [47]. This makes them one of the best
options we have right now for long-time in-space maneuvers.

The goal of this thesis is building a Python code that is able to perform optimal
trajectories calculations inside a Two-Body Problem (TBP) with a focus in reducing the
needed propellant mass and validating it by applying it to the case study of an asteroid
retrieval mission with the task to find the optimal trajectory that enables the spacecraft
to reach the targeted NEA with the least amount of mass of propellant spent.

The code implements a differential correction that through a try-and-error single-
shooting process (described in chapter 3) applies the Optimal Control Theory (OCT) and
therefore the Pontryagin’s minimum Principle (PmP) in order to minimize the objective
function that depends on the variables that we want to minimize to achieve the desired
optimization (in our case it is the mass of propellant spent), as it is discussed in chapter
4, through an iterative correction of the initial guess made by the user of the code about
the initial state variables which are not constrained.

In the chapter 5 the case-study of the asteroid retrieval will be discussed while in
chapter 6 the results will be shown along with the notes about possible future research
that could improve the work done for this thesis.
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Capitolo 2

Dynamics of the system

In this chapter the dynamical model considered for this work will be described. Given
the nature of the gravitational system we operate in where the Sun is the central body
with all the planets and other celestial bodies orbiting it and exerting their gravitational
influences on each other the dynamical model of the n-body system is discussed. However,
for this work of thesis, all the gravitational influences besides the one of the central body
have been neglected so a particular case of n-body system, the two-body system, has been
implemented and therefore it will be discussed afterwards. The definition of the considered
reference frames are also given along with their description and with the Ephemerides
system, the Julian Day calendar used in this work as a reference for space-time coordinates
of the celestial bodies along their orbits and the Keplerian orbital parameters and all the
other characteristics of an orbit. Lastly, the equations of the dynamics are represented
along with some generic information about electric propulsion and Lagrange points (all
the trajectories discussed in chapter 6 have the L2 point of the Sun-Earth system as a
starting point, so some elements about the Restricted Three-Body Problem (RTBP) are
given).

2.1 The N-body problem

The n-body problem is the generalization of the two-body problem in describing the resul-
ting gravitational influence on a body generated by n other bodies according with the
following generic expression of the gravitational force Fi acting on the i-th body of the
system

F i = miR̈i =
N∑

j=1,j /=i

F ij = F 1 + F 2 + · · ·+ F j + · · ·+ FN (2.1)

Each gravitational force acting on the i-th body follows the equation of the Newton’s
Gravity Force

F ij = −G
mimj

rij2
rij

rij
(2.2)

where G = 6.67× 10−5 km3

s2kg
is the gravitational constant.
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If we want to refer all the distances implied in the equations 2.1 and 2.2 to the central
body of the system (this being the Sun, the Earth or whatever) we can describe the
distance between each j-th body and the i-th body as a difference of distances between
the two bodies and the central one as follows

rij = ||Ri −Rj|| (2.3)

so the Newton’s Gravity expression changes as follows.

F ij = −G
mimj

||Ri −Rj||2
Ri −Rj

||Ri −Rj||
(2.4)

If we sum together all the forces acting on the i-th body and we compare the equation
obtained in this way with the expression of the resultant force acting on the i-th body
written accordingly with the second Newton’s law of dynamics we get, dividing both sides
of the equation by the mass of the i-th body

R̈i =
N∑

j=1,j /=i

[
−G

mj

||Ri −Rj||2
Ri −Rj

||Ri −Rj||

]
(2.5)

that is the equation of the acceleration the i-th body feels because of the action of all
the other bodies in the system in relation with the inertial reference frame centered in the
central body of the system.

The equation 2.5 depends on the distances between each j-th body and the central
one so if we consider their motion we have to integrate this equation along with all the
second order differential equation describing the motion of each j-th body. However this
problem does not have any analytical solution so we have to take numerical methods into
consideration or to apply simplified methods such as the patched-conics method at least
in the early stage of the project of the desired trajectory.

2.2 The two-body problem

The two-body problem comes as a result of the integration of some simplifying assumptions
to the n-body model:

1. The bodies are spherically symmetric so their masses can be considered to be con-
centrated in their centers;

2. The only forces acting in the model are the gravitational forces that act along the
line joining the center of the planets involved;

2.2.1 The equation of the relative motion

All the evaluations discussed here are referred to an inertial reference frame even though
in reality the best we can define is a quasi-inertial reference frame [5].

If we consider two bodies, M and m, in a non-rotating reference frame defined by
three rectangular Cartesian coordinates (X’, Y’, Z’) having their origin in the M body
while we put the origin of a rotating reference frame defined by rectangular Cartesian
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Dynamics of the system

Figura 2.1: Gravitational interaction between two bodies m1 and m2

coordinates (X, Y, Z) in the m body we can define their distances in the (X’, Y’, Z’)
reference frame as

r = rm − rM (2.6)

where rM and rm are the distances of the M and the m bodies from the origin of the
(X’, Y’, Z’) reference frame.

If we apply the Newton second law to both the bodies we will get, because of the
assumptions previously made,

mr̈m = −GMm

r2
r

r
(2.7)

and

Mr̈M =
GMm

r2
r

r
(2.8)

so simplifying both the sides of both equations and adding them together we can find
the total acceleration applied on both bodies simultaneously

r̈ = −G(M +m)

r3
r (2.9)

that is the equation of the relative motion for the two-body problem.
If we want to study the motion of a satellite or a probe orbiting around a planet or a

moon we would be able to assume that the m body has a neglectable mass contribution
if compared with the one given by the M body so M + m ≃ M and the eq.2.9 can be
rewritten as follows
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r̈ +
µ

r3
r = 0 (2.10)

where µ = GM is the gravitational parameter and depends on the considered central
body of the system.

body µ
[
km3

s2

]
Earth 398600
Moon 4921
Sun 1.32712 1011

Mercury 22032
Venus 324859
Mars 42828
Jupiter 126686534
Saturn 37931187
Uranus 5793939
Neptune 6836529

Tabella 2.1: Gravitational parameter (µ) for the main bodies of the Solar Systems

2.2.2 Constants of motion

As it is more deeply discussed in [5] we can prove that in such a dynamical model there
are some physical properties that are associated with quantities that are constant along
the orbit. These quantities allow many calculation such as the ones regarding maneuvers
from an orbit to another to be made in order to solve eq.2.10 when we want to calculate
positions or velocities.

Along an orbit in the two-body model its mechanical energy is constant and can be
described through the following equation

E =
V 2

2
− µ

r
(2.11)

where the term V 2

2
stands for the kinetic energy per mass unit of the orbiting body

while the term µ
r
is the potential energy for mass unit term that, because of the convention

of setting the reference point for potential energy at the infinity (in order to nullify the
constant of integration c), will always be negative. It is important to point out that,
apart from circular orbits, the distance between the two bodies always changes and so
does the potential energy. Conservation of the total mechanical energy implies that in
such cases the loss of potential energy will result in a gain of kinetic energy and vice versa
and so therefore the modulus of the velocity vector will always change along the orbit (as
Kepler’s second law points out).

Another constant quantity along an orbit is the specific angular momentum, h (the
angular momentum for mass unit). It is defined as the cross product between the position
vector r and the velocity vector v

h = r ∧ v (2.12)
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Dynamics of the system

so h is always perpendicular to both r and v that define a plane and therefore we can
conclude that the orbital plane never changes because the direction of h itself never does.

These quantities, because of their being constant along the orbit, allow eq.2.10 to be
integrated in order to obtain the expression of the position of the orbital body in relation
to the central one that can be proven, as it is done in [5] and others, to be the following

r =
h2/µ

1 + (B/µ) cos ν
(2.13)

where B is the vector constant of integration.

2.3 The reference frame

Every trajectory of a body or spacecraft in space has to be described inside of a reference
frame that is defined through a point called center that is the origin of its axis and a
plane containing the x-axis and y-axis of the system (so therefore the z-axis is always
perpendicular to that). They can be assumed as quasi-inertial or non-inertial according
with the presence or the absence of any relative acceleration between the bodies present
inside the system (such as the Coriolis acceleration).

The system adopted for this thesis is the heliocentric-ecliptic with a Cartesian set of
coordinates for the calculations that with the proper rotation matrix can be converted
into a heliocentric-ecliptic perifocal system where information given by the Ephemerides
generated by NASA through the Horizon System that relies upon the J2000 reference
system. In particular the Ephemerides used for this thesis are from the DE431 series.

Here follows a more deep description of those two reference frames used along with an
analysis of the various sets of orbital parameters that can be used (noting that for the
calculations the Keplerian orbital parameters have been used thanks to the relationship
they have with the Cartesian set of coordinates).

2.3.1 The Heliocentric-Ecliptic reference frame

In this subsection we will describe the heliocentric reference frame used to describe all
the distances and velocities used in the calculations.

The Heliocentric reference frame has its center in the Sun, its fundamental plan in the
Ecliptic Plan and has the positive direction of its z-axis oriented towards the celestial
hemisphere containing the star Polaris. The x-axis is determined by a line joining the
center of the Sun and the center of the Earth during the first day of Spring (during the
Vernal Equinox when the Earth, seen from the Sun, is in the Aries constellation). It
is worth remembering that the equinox line is not aligned with the line of the absides
because of a perturbation process of this line, called precession of the equinox line caused
by the influence of the mass of the Moon and of the other planets on the Earth that causes
each equinox to be anticipated by one day each 71.63 years (and once every 13000 years
we have the inversion of the seasons).

For the motion of the Earth around the Sun in the Heliocentric-Ecliptic reference frame
we can define more than one revolution period:
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Figura 2.2: Heliocentric-Ecliptic reference frame (black axes) [20]

1. Sideral year: it is measured between two consecutive passages of the Earth in front
of one of the background stars and it is 365 days, 6 hours, 9 minutes and 9 seconds
long;

2. Tropic year: it is measured between two consecutive passages through the equinox
line and it is 365 days, 5 hours, 48 minutes and 46 seconds long;

2.3.2 The perifocal reference frame

The periofocal reference frame is defined as a reference frame centered into a focus of
the orbit we are studying in it (typically, in the case of a closed orbit, we choose the
focus where the central body is, so considering an heliocentric orbit the Sun will occupy
the center of the system) and has the x-axis and the y-axis oriented as the vectors p̂
and q̂ referred to the directions of the periaxis and of the semilatus rectum of the orbit
respectively while the third axis, called ŵ, follows the direction that is parallel to the
angular momentum h one.

Given the calculation operated in this thesis it is crucial to use the perifocal reference
frame as an intermediate one to switch from the Keplerian elements used to describe
the starting and the final orbit of the maneuver we want to optimize to the Cartesian
components of the position r and velocity v vectors of the Earth and the other bodies
orbiting the Sun (spacecraft included). The angle that determines the position of the
body along its orbit is the true anomaly, ν, that as a consequence determines also the
components of the position and velocity vectors in relation with the main directions p̂ and
q̂ inside of the orbital plane.

r = r cos νp̂+ r sin νq̂ (2.14)

v = (ṙ cos ν − rν̇ sin ν)p̂+ (ṙ sin ν + rν̇ cos ν)q̂ (2.15)

In this reference frame those vectors (eq.2.14 and 2.15) are linked through a relationship
regarding their internal product that can be proved (as in [5]) to be
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Figura 2.3: Perifocal plane [12]

r · v = rv sinϕ (2.16)

so their internal product depends on the azimuth angle and if the orbiting body is
moving towards its apoaxis it will be positive (negative if it is moving towards its periaxis
instead).

The rotation of a reference frame

It is possible to switch from a reference frame to another one through a sequence of
elementary rotations each one performed around the proper axis finding this way the
relationship between each defining vector of the axis of a reference frame with the ones
of the final one.

In this case we can rotate the heliocentric-ecliptic reference frame into the perifocal one
through a sequence of 3 elementary rotation around an axis according with the sequence
3-1-3 (the first and the last rotation are performed around the z-axis while the first one
is performed around the x-axis) called Eulerian rotation. We obtain a rotation matrix
Li from each rotation and their matricial product gets us the whole rotation matrix L
(in order to switch back from the perifocal to the heliocentric reference frame we have to
transpose the whole rotation matrix LT ).

Each rotation matrix has a 3x3 dimension and each term is the inner product of each
couple of defining vectors of each reference system that is equal (having the defining
vectors magnitude of 1) to the cosine of the rotation angle (the three angles of the se-
quence are the Right Ascension of the Ascending Node (RAAN), the inclination i and
the argument of periaxis ω)

LT
1 =

 Î · n̂ Ĵ · n̂ K̂ · n̂
Î · m̂ Ĵ · m̂ K̂ · m̂
Î · k̂ Ĵ · k̂ K̂ · k̂

 =

 cosΩ sinΩ 0
− sinΩ cosΩ 0

0 0 1

 (2.17)
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LT
2 =

n̂ · n̂ m̂ · n̂ k̂ · ŵ
n̂ · l̂ m̂ · l̂ k̂ · ŵ
n̂ · k̂ m̂ · k̂ k̂ · ŵ

 =

1 0 0
0 cos i sin i
0 − sin i cos i

 (2.18)

LT
3 =

 n̂ · p̂ l̂ · p̂ ŵ · p̂
n̂ · q̂ l̂ · q̂ ŵ · q̂
n̂ · ŵ l̂ · ŵ ŵ · ŵ

 =

 cosω sinω 0
− sinω cosω 0

0 0 1

 (2.19)

Figura 2.4: Rotation from Cartesian to perifocal reference frame [12]

As a result we can get the whole rotation matrix LT

rpqw = LT
3L

T
2L

T
1 rijk = LTrijk (2.20)

while the reverse rotation is the following

rijk = L1L2L3rpqw = Lrpqw (2.21)

2.3.3 Ephemerides and Julian Day

In order to calculate distances between bodies within the Solar System we used the Ephe-
merides that are tables that collect values referred to multiple astronomical variables,
such as orbital parameters and coordinates of every body inside the Solar System (and
distances between them and the Sun as well), as they can be measured throughout time
by observing the motion of planets, comets and asteroids. They are kept and updated
by NASA’s Jet Propulsion Laboratory (JPL) and they are referred to the quasi-inertial
J2000 system.

In order to describe and express positions of celestial bodies Ephemerides show the
following set of values for each celestial body for each day of the Gregorian Calendar:

� Julian Day at 00:00 of the considered day;
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� Sideral time at 00:00 GMT;

� the error between time calculations made by using the average Sun and the real Sun;

In particular the Julian Day (JD), as explained in [5], is a way to measure time ratio-
nalizing the keeping of calendar across multiple centuries and calendars. It is a separate
calendar that counts astronomical days numbering them consecutively form an epoch that
was chosen to be sufficiently far in the past to precede the current historical period. It
starts at 0 defined to be January 1st, 4713 b.C. @12:00 UTC. Its cycle lasts 7800 years
as a result of the sum of three different cycles:

� 15 years for the Indiction cycle (a cycle that was used especially during the Medieval
Era for taxation reasons);

� 19 years for the Metonic cycle (the cycle of the lunisolar calendar that is aimed at
keeping lunar and solar phases synchronized);

� 28 years for the repetition of week and month days cycle;

For each date (expressed in D, days, M, months, Y, years) we can calculate its Julian
Day using the proper equation (which equation to use depends on whether we are using
the Gregorian Calendar or the Julian one). In case we are using the Julian Calendar the
equation is:

JD = D + fl

[
153m+ 2

5

]
+ 365y + fl

[y
4

]
− 32083 (2.22)

while if we are using the Gregorian Calendar the equation is:

JD = D + fl

[
153m+ 2

5

]
+ 365y − fl

[ y

100

]
+ fl

[ y

400

]
+ fl

[y
4

]
− 32045 (2.23)

where the coefficients a, y and m are obtained through D, M and Y

a = fl

[
12−M

12

]
(2.24)

y = Y + 4800− a (2.25)

m = M + 12a− 3 (2.26)

We can also use the Modified Julian Day if we reduce the Julian Day by 2400000.5
removing all the days until November 16th 1858 @0:00 UTC.

This can help to evaluate differences in positions using the J2000 system (so we need
to evaluate the days passed since January 1st 2000 @12:00 UTC in terms of Julian Day)
through the evaluation of αG

αG = αG0 + ωEarthd+ 0.0003875t2 (2.27)
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where ωEarth, the Earth angular velocity, is equal to 7.29 10−5 rad
s

(or 360.93564736629°
per day), t represents the number of centuries passed since January 1st 2000 @12:00 where
αG0 is evaluated (it being equal to 280.46061837°)

t =
d

365.2425 100
(2.28)

and d is the difference between JD evaluated at the time present and the one at January
1st 2000 @12:00 UTC.

2.3.4 Classical orbital parameters

Classical (or Keplerian) orbital parameters are useful to describe every orbit as sections
of conics. If we want to describe an orbit in a 3D reference frame as the one we previously
introduced we need 7 parameters that can be defined as in figure 2.5

Figura 2.5: Classical orbital parameters [34]

parameter name

a semi-major axis
p semilatus rectum
e eccentricity
ω argument of periaxis
ν true anomaly
Ω RAAN
i inclination of the orbital plane

Tabella 2.2: Keplerian orbital parameters
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In the table 2.2 there are some parameters (the last 4 of them) that are typical for
the description, if added to the 3 previously listed in it, of every 3D orbit. Those can be
defined as follows:

� ω: it is the angle formed by the line of the nodes and the direction of the periaxis;

� ν: it is the angle swept by the position vector in respect to the direction of the
periaxis during the revolution of the orbiting body around the central one;

� Ω: it is the angle formed by the x-axis of the reference frame we describe the orbit
in and by the line of the nodes ;

� i : it is the angle formed by the z-axis of the reference frame we describe the orbit in
and by the direction of the angular momentum of the orbiting body;

The other three parameters will be defined later on in this section.
According with its definition, a conic is the locus of the points on a plane whose frac-

tion calculated for their distance from a point called focus and a reference straight-line
called director is constant. This fraction is called eccentricity of the conic and therefore
of the orbit itself.

Figura 2.6: Structure of an elliptical orbit [54]

e =
r

d
(2.29)

Orbits can be open or closed depending on the value of the total mechanical ener-
gy that defines them (positive for open conics and negative for closed ones) and those
characteristics impact on the values of the orbital parameters themselves.
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If we consider the geometrical structure of an elliptical orbit we can define some
elements:

� a = semi-major axis of the orbit;

� b = semi-minor axis of the orbit;

� c = inter-focal distance of the orbit, describing the distance between the two points
called focus of the orbit;

It is possible to prove, as in [5], that the following expressions hold

e =
c

a
(2.30)

a2 = b2 + c2 (2.31)

and given the equation that geometrically describes an ellipse

x2

a2
+

y2

b2
= 1 (2.32)

we get expressions that relate the position of a body along its orbit with the orbital
parameters themselves

e =
ra − rp
ra + rp

(2.33)

p = a(1− e2) (2.34)

where ra and rp are the distances of the orbiting body from the central body at its
furthest point (the so called apoaxis) and at its closest (the so called periaxis) and p is the
semilatus rectum that represents the distance between the orbiting body when its true
anomaly is ν = 90° and the central one.

From those equations we can obtain the expression of the position of the body along
the elliptical orbit as a particular case of 2.13:

r =
p

1 + e cos ν
(2.35)

where

p =
h2

µ
(2.36)

and h being the angular momentum of the orbit represented by the following expression

h =
√
µa(1− e2) (2.37)

while the total mechanical energy of the orbit is represented by the following expression
that is valid for every type of orbit.

Eg = − µ

2a
(2.38)
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For elliptical orbit we can also evaluate the flight-path angle ϕ, the angle generated
by the velocity vector with the direction perpendicular to the position vector joining the
orbiting body with one of the two focuses of the orbit (the one containing the central
body) whose change at every point along the orbit allows the angular momentum vector
to be constant as for eq.2.12, that [5] proves to be described by the following expression

tanϕ =
e sin ν

1 + e cos ν
(2.39)

and proves also to be equal in every point of the orbit to ϕ
′
, the flight-path angle

measured with respect to the other focus of the elliptical orbit.
All of the aforementioned orbital parameters can be obtained through the position and

the velocity vectors (r and v):

� Eccentricity can be defined, comparing eq.2.13 with eq.2.35, as follows (where the B
vector can be defined isolating it from the eq.2.13)

e =
B

µ
=

v ∧ h

µ
− r

||r||
(2.40)

where h = r ∧ v;

� Argument of periaxis is the angle defined, as shown in figure 2.5, by the direction of
the line of the nodes and the direction of the periaxis so we can define it with the
following expression

n · p = ||n||||p|| cosω (2.41)

that can lead us to define ω more straightforwardly as

ω = arccos (n̂ · p̂) (2.42)

� True anomaly is defined by the direction of the line of the nodes and by the direction
of the position vector r of the orbiting body along its trajectory so knowing from
figure 2.5 that

p · r = ||p||||r|| cos ν (2.43)

we can get the new definition of ν

ν = arccos (r̂ · p̂) (2.44)

� The RAAN Ω is defined, as it is shown in figure 2.5, by the x-axis of the chosen
reference frame of coordinates and by the direction of the line of nodes so

Ω = arccos(Î · n̂) (2.45)

� Inclination i is defined by the z-axis of the chosen reference frame of coordinates and
by the angular momentum vector h so

i = arccos(k̂ · ĥ) (2.46)

where

ĥ =
h

||h||
(2.47)
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If we than consider circular orbits, a simplified kind of elliptical orbit where c = 0 (the
two focuses collapse in a single point called center), we can easily define some of their
main orbital parameters. In fact according with 2.30 we get that for these particular
orbits e = 0.

If we nullify the total mechanical energy of the orbit we get a parabolic orbit where,
by definition, the distances between the only focus of the orbit and the director line are
equal. This aspect, according with 2.29, shows how e = 1 while a = ∞ and e = ∞.

The last kind of orbits we examine in this section is the hyperbolic orbit that is
characterized by e > 1 and e = 1

cosϕ
where ϕ is the angle represented as ρ in fig. 2.7.

Those parameters can cause some issues for some particular orbits such as:

� i = 0: If an orbit lies on the fundamental plane of the reference frame it is studied
into we do not have a line of nodes anymore so we do not have any Ω angle that is
therefore non defined;

� e = 0: It consists of a circular orbit where periaxis and apoaxis are not defined and
so therefore ω is non defined;

� i = 0 and e = 0: For such orbits the angles Ω, ω and ν are not distinguishable so
they can only be summed together to obtain the true longitude angle l(t).

Figura 2.7: Hyperbolic orbit [21]

2.4 Equations of dynamics

In order to study the problem of space trajectories it is necessary to integrate over the
time span of duration of the performed maneuver a set of Ordinary Differential Equations
(ODEs) that describe the evolution of position, velocity and mass of the spacecraft as
they are influenced by the central body it is moving around and and by the performance
of the thruster and of the propellant used.
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dr

dt
= V

dV

dt
= g +

T

m
+

L

m
+

D

m
+ ap

dm

dt
= −T

c

(2.48)

where the vectors T , L and D represent the thrust generated, the lift and the drag
respectively (the last two of them are neglected being the studied orbits far from Earth
and its atmosphere) and the g term represents the gravitational acceleration generated
by the central body (in this case, the Sun) on the spacecraft itself and is described by the
relation obtained through isolating the acceleration term r̈ in eq.2.10.

2.4.1 Equations of dynamics in Cartesian coordinates

If we consider all the Cartesian components for the position and velocity vectors (r and
V ) we can write the equation of the dynamic for each of their component so the equations
have the following form (without considering any lift, drag or perturbation)

dx

dt
= V x

dy

dt
= V y

dz

dt
= V z

dV x

dt
= − µ

r3/2
x+

T

m

λvx

λV

dV y

dt
= − µ

r3/2
y +

T

m

λvy

λV

dV z

dt
= − µ

r3/2
z +

T

m

λvz

λV

dm

dt
= −T

c

(2.49)

where λV is the primer vector whose components are the velocity components costates

λV = {λvx , λvy , λvz}
T (2.50)

and λV is its magnitude

λV =
√

λvx
2 + λvy

2 + λvz
2 (2.51)

2.5 Electrical propulsion

Space propulsion is focused on generating a certain amount of power through one of
the available sources such as chemical reactions (like the one involving liquid chriogenic
Hydrogen and liquid chriogenic Oxygen that is used to push rockets into space defeating
the pull of gravity during the lift-off phase of every mission), electrical power or nuclear
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reactions (actually we do not have any thrusters ready-to-use that can rely on such source
of power, NASA is working on them but only at a conceptual design level [18]) to transform
it into kinetical power for a propellant that accelerates while it cools down flowing through
a nozzle generating thrust for the spacecraft as it slows down.

The choice of the source of power heavely depends on the type of mission we want to
accomplish. In this case of asteroid retrieval a very long-lasting source of thrust will be
required so we will need very high specific impulse, Isp,

Isp =
It

mpg0
=

T

ṁpg0
=

c

g0
= ∆t (2.52)

to get a thruster that is able to provide high effective exhaust velocity, c, for long time.
This means that the necessary total impulse, It, will be very high with the necessity of
keeping the propellant mass, mp, as low as possible. Considering that

T = mpg0 (2.53)

we can conclude that in order to have high Isp because of the high duration of the
mission we will have a limit on the maximum thrust we will be able to generate. This
means that the source of power we will need to use is the electrical one.

The electrical power can be generated through an external source (such as the power
radiated by a nearby star collected with panels) or an internal source (such as a battery) to
transform a fraction of it into internal energy for the propellant (the higher the efficiency
of the electrical power system, the higher the fraction of it that will be given to the
propellant as internal energy). We can easily show that the high internal power given to
the propellant brings to high velocity of the propellant at the nozzle exit, c, as it is stated
in the following equation

c =

√
2ηPE

ṁp

=
2ηPE

T
(2.54)

so once more we get that to generate high c and so therefore high Isp we need to limit
the thrust generated, T (this will implicitly help to reduce the necessary propellant mass
flow). This is why we cannot use them to launch rockets into Earth orbit, however these
characteristics make such propulsion ideal to perform orbital maneuvers.

A typical way to use electrical thrusters is pushing the spacecraft by performing long
continuous burns to change different orbital parameters (we will be able to change a
parameter or another depending mainly on the direction of the generated thrust in relation
to the direction of the actual velocity of the spacecraft) rather than performing quasi-
impulsive maneuvers typical for chemical thrusters. Because of the long duration of the
burns used for such maneuvers we cannot describe them through Hohmann or Lambert’s
formulation because of them being used specifically for impulsive maneuvers, so we need
to apply the Edelbaum’s formulation for single-revolution and for multiple-revolution
maneuvers in order to have an analytical formulation of the problem or alternatively we
can simply integrate the aforementioned equations of the dynamics using the value of the
given thrust inside of them.
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2.6 Lagrangian Points

Lagrangian points are places in space whose coordinates can be defined in the context of
a three-body system. By its own definition, if we consider a system composed of two main
bodies whose masses are m1 and m2 (we can define the µ factor as it follows

µ =
m1

M
(2.55)

where M is the sum ofm1 andm2) orbiting in circular orbits around the common center
of gravity (if we define a circular three-body system) we can introduce a third body
whose mass is neglectable (m << m1,m2, so therefore it can be considered restricted)
and describe its motion through the equation that equals the sum of all the mechanical
accelerations m is subjected to with the sum of the gravitational accelerations the two
bodies generate on it

r̈ + ω ∧ (ω ∧ r) + 2 ω ∧ ṙ =
1

m
(F 1 + F 2) (2.56)

where the first three terms of the left-hand side of the equation are the inertial term,
the centripetal term and the Coriolis term respectively, F 1 and F 2 are the gravitational
forces by m1 and m2 on m described by 2.2 and the distances between m and m1 and m2

respectively are given by

|r1| =
√

[x− µR]2 + y2 + z2 (2.57)

|r2| =
√
[x− (1− µ)R]2 + y2 + z2 (2.58)

where the coordinates [x, y, z]T are defined in the synodic reference frame centered in
the common center of gravity of the system as in fig. 2.8.

Figura 2.8: The synodical reference frame for a three body problem [42]

So knowing the three components for r, ṙ and ω we can calculate all the components
for the accelerations that play a role in eq.2.56 obtaining the equations of motion (one for
each main direction of the system)
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ξ′′ − ξ − 2η′ = −(1− µ) ξ+µ

ρ13
− µ ξ−(1−µ)

ρ23

η′′ − η + 2ξ′ = −(1− µ) η
ρ13

− µ η
ρ23

ζ ′′ = −(1− µ) ζ
ρ13

− µ ζ
ρ23

(2.59)

where [ξ, η, ζ]T are the adimensional coordinates (resulting from the division of [x, y, z]T

by R, the distance between them body and the center of gravity). These are 3 equations in
6 variables that can be turned into a system of 6 ODE in 6 variables ([ξ′, η′, ζ ′, ξ′′, η′′, ζ ′′]T )
for them to be numerically solved.

There are five points in the space of the system defined in fig. 2.8 where gravitational
and centrifugal forces reach a state of equilibrium generating no acceleration on the body
that orbits there so those are equilibrium points where all the components of the relative
velocity [ξ′, η′, ζ ′]T and of the relative acceleration [ξ′′, η′′, ζ ′′]T are equal to zero so that
every body that orbits there is motionless in respect with the reference frame. Those
points are called Lagrangian points of the system and it is mathematically proven [34]
that their position in relation with the two main bodies of the system is the one represented
in fig. 2.9.

Figura 2.9: Position of the five Lagrangian points in a gravitational system of two main
bodies m1 and m2 [15]

In order to find their coordinates in the synodic reference frame of the system we can
define the potential function that in the three-body system can be described as follows

U =
1− µ

ρ1
+

µ

ρ2
+

1

2

(
ξ2 + η2

)
(2.60)
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so if we derive it in respect to the non-dimensional coordinates [ξ′, η′, ζ ′]T and remem-
bering that derivatives for ρ1 and ρ2 in respect to [ξ, η, ζ]T are[

∂ρ1
∂ξ

∂ρ1
∂η

∂ρ1
∂ζ

∂ρ2
∂ξ

∂ρ2
∂η

∂ρ2
∂ζ

]
=

[
ξ+µ
ρ1

η
ρ1

ζ
ρ1

ξ−(1−µ)
ρ2

η
ρ2

ζ
ρ2

]
(2.61)

we get the following derivatives for U
∂U
∂ξ

= ξ − (1− µ) ξ+µ
ρ13

− µ ξ−(1−µ)
ρ23

∂U
∂η

= η − (1− µ) η
ρ13

− µ η
ρ23

∂U
∂ζ

= −(1− µ) ζ
ρ13

− µ ζ
ρ23

(2.62)

and if we move each linear term from the left to the right-hand side of (2.59) we can
point out that the left-hand side of those equations will be the same as for 2.62 so we can
equalize their respective right-hand sides obtaining what follows.

∂U
∂ξ

= ξ′′ − 2η′

∂U
∂η

= η′′ + 2ξ′

∂U
∂ζ

= ζ ′′
(2.63)

So if we nullify the right-hand side of the eqs.2.62 and 2.63 we are imposing the
derivatives of the potential being equal to zero and we can find the coordinates of the
Lagrangian points.

The first Lagrangian point is located along the line that links the centers of gravity
of both the main bodies of the system and is between them (so that the sum of the
non-dimensional distances of m1 and m2, ρ1 and ρ2, is equal to 1)

∂U
∂ξ

= ξ − (1− µ) ξ+µ
ρ13

− µ ξ−(1−µ)
ρ23

= 0
∂U
∂η

= η − (1− µ) η
ρ13

− µ η
ρ23

= 0

ρ1 + ρ2 = 1

(2.64)

so if we choose one derivative and we add to it the third equation of the set we obtain
the distance between the second main body and the first Lagrangian point (called L1).
We can do the same with the second Lagrangian point (L2) that, as shown in fig. 2.9 is
further from m1 than m2 so that ρ1 − ρ2 = 1, and with the third Lagrangian point (L3)
that is on the other side of m1 (L1, L2 and L3 are located along the same line so they
are called co-linear so that for all the three of them we have η =0) so that ρ2 − ρ1 = 1.
We can therefore obtain their distance ρ2 from m2 that in the context of the Heliocentric
ecliptic system is the Earth (while m1 represents the Sun), so the non-dimensional mass
it should be used is 1− µ. 

ρ2(L1) =
3

√
1−µ
3

ρ2(L2) =
3

√
1−µ
3

ρ2(L3) = 2

(2.65)

The last two Lagrangian points (L4 and L5) are called equatorial and are located at
the two intersections of the two circles centered in m1 and m2 respectively. They are both
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the upper apex of two equatorial triangles having at the other two apexes m1 and m2. If
we consider both the derivatives of the potential function in relation with ξ and η equaled
with zero (as in the first two equations of the set 2.64) we can calculate the expressions
of the coordinates ξ and η for L4 and L5.{

ξ(L4) =
1
2
− µ

η(L4) =
√
3
2

(2.66)

{
ξ(L5) =

1
2
− µ

η(L5) = −
√
3
2

(2.67)

As we mentioned earlier in those Lagrangian points the potential function U has a
minimum point, however the equilibrium at the three co-linear Lagrangian points (L1, L2

and L3) is not stable, in fact very little perturbations can push the m body towards m1 or
m2 because of their very deep potential hole (very close to m1 and m2 we have that U goes
to ∞ while the further we move from the main bodies of the system the more influence
the term (ξ2 + η2) from the (2.60) gets generating the circular level lines defining the lines
along which the potential function has the same value). On the other hand the shape
of the function U is more flat close to L4 and L5 such that their equilibrium is stable as
shown in fig. 2.10.

Figura 2.10: The potential function U close to the Lagrangian points [51]
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Capitolo 3

Implementation of the mathematics

In this thesis heliocentric orbits in a two-body system were generated to design interpla-
netary transfers to be performed by a spacecraft starting from the Lagrangian point L2

of the Sun-Earth system.
Both starting and arrival orbits around the Sun are elliptical as predicted by Keplerian

laws of planetary motion ([5]) and explained through the previously presented conservation
of mechanical energy ((2.11)) while the position of each NEA is referred to data taken
from NASA Ephemerides so the system built is time-dependent.

In this context low-thrust trajectories have been designed. This brings to elliptical
multi-revolution orbits that differentiate themselves from the classical impulsive maneu-
vers (such as the Lambert or Hohmann’s maneuvre), typical for the chemical propulsion
that is able to generate higher levels of thrust, which take less time to be completed
but have a much lower efficiency in terms of propellant consumed in comparison with
electrical propulsion and so therefore impose higher mass cost. As a downside, the lower
the thrust the greater the number of revolutions around the Sun needed along with more
computational difficulties linked with maneuvers performed in the closeness of a planet
because of the strength of its gravitational field. An example of this is depicted by [14]
regarding escape trajectories from the Earth-Moon system.

3.1 Differential corrector

The aim of this thesis is performing interplanetary trajectory optimization with low-thrust
in a two-body model whose central body is the Sun in order to rendez-vous with an asteroid
whose orbit is similar to the one of the Earth to get some of its mass and retrieve it back to
Earth to use that material to build components for spacecrafts already into Earth orbit, so
without any need for them to be launched from Earth with a consequent strong reduction
of launching costs. The goal is finding the best solution in order to save propellant during
the transfer knowing the departing and the arrival orbits using numerical methods that
can be applicable to the widest possible group of orbits rather than to quasi-circular orbits
only, as the Edelbaum’s approximation, that is applied to Gauss’s planetary equations,
does.

In order to do this a single-shooting procedure has been implemented in order to im-
prove an initial guess regarding the variables of the initial state of the maneuver x̃(t0)
that, after the integration over the chosen time-span ∆t of the equations being performed,

23



Implementation of the mathematics

leads to a final state x̃(x̃(t0),tf ) we want to be as similar as possible to the desired final
state xf . As it is described in [34] it is a try-and-error process that does not allow to get
which effect any change on the initial guess can generate on the potential convergence.
This method has been implemented in the context of a Two-Point Boundary Value Pro-
blem (TPBVP) that strictly relies on the comprehension of the relation the problem has
with the starting conditions.

The aforementioned improvement of the initial guess is obtained through the differen-
tial correction process that is applied once the integration of the ODEs of this iteration
has been performed. This starts from the initial state guess (composed of constrained
values and free values such as the adjoint variables values) and brings to a final state that
usually happens to have a discrepancy form the desired. The differential corrector relies
on the calculation of this discrepancy

δx̃(τf ) = x̃(x̃(τ0), τf )− x̃∗(x̃(τ0), τf ) (3.1)

we want to nullify (or to reduce until it goes under a certain threshold when we stop
calculations and establish that the convergence has been reached) through the production
of a new guess from the correction of the previous one.

x̃∗(τ0) = x̃(τ0) + δx̃(t0) (3.2)

If we substitute (3.2) in (3.1) we get the equation that allows to calculate the correction
we want to apply on the previous initial guess based upon the discrepancy obtained over
the final state

δ(̃τf ) =x̃(x(τ0), τf )− x̃∗(x̃∗(τ0), τf )

=x̃(x̃(τ0) + δx̃(t0), tf )− x̃∗(x̃∗(τ0), τf )

=
∂x̃(τf )

∂x̃(τ0)
δx̃(t0)

=Φ̃(τf , τ0)δx̃(t0)

(3.3)

where Φ̃(τf , τ0) is the State Transition Matrix (STM), in non-dimensional form, that
mediates the relationship between the partial derivatives of the state variables of the final
state x̃f and the partial derivatives of the initial state x̃0. In the two-body system this
matrix assumes the following form

Φ̃ij(τf , τ0) =
∂x̃i(τf )

∂x̃j(τ0)
(3.4)

where the vector x̃ has the following structure

x̃ = {x, y, z, ẋ, ẏ, ż,m, λx, λy, λz, λẋ, λẏ, λż, λm}T (3.5)

so this matrix can be considered as the sum of 4 sub-matrixes containing the partial
derivatives of variables of position and velocity computed at the final state in relation
with both variables of position and velocity of the initial state guess. This means that the
STM works as a sensitivity matrix because it evaluates how final state discrepancies with
the desired one vary accordingly with the variations imposed on the initial state guess.
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This matrix evolves over time along the trajectory of the spacecraft so we can describe
how it variates through 36 ODEs that follow the expression below

˙̃Φ(τ, τ0) =
d

dτ
Φ̃(τ, τ0) =

d

dτ

(
∂χ̃

∂χ̃0

)
=

∂

∂χ̃0

(
dχ̃

dτ

)
=

˙̃χ

χ̃0

=
∂ ˙̃χ

∂χ̃

∂χ̃

∂χ̃0

= Ã(τ)Φ̃(τ, τ0) (3.6)

so if we know the initial state STM we can get STM variations at the non-dimensional
time τ thanks to the Jacobian matrix Ã(τ) that establishes the relationship between
the second derivatives of the state variables with their underived values. However, if we
consider a model defined through a set of first-order ODEs (they have to be integrated
only once) we get that the STM will coincide with the Jacobian matrix.

3.2 Single-shooting procedure

The single-shooting procedure is based on the choice of an initial state guess to be used to
integrate the ODEs of the system getting a final state result x̃(τf ) that has to be as close
as possible to the desired final state xf . In this thesis it has been applied to a TPBVP in
which at every iteration the discrepancy between the obtained x̃k(τf ) and the desired xf

is calculated and this result is therefore used to correct the initial guess obtaining a new
initial guess that will be used to integrate the equations during the following iteration.

If we consider the initial conditions first guess

x̃0 = {x̃1, x̃2, x̃3, . . . , x̃n}T (3.7)

and the constraints vector containing the desired final values for the state variables we
want the final result to respect

x̃f = {x̃1f , x̃2f , x̃3f , . . . , x̃nf
}T (3.8)

so that the discrepancy between the desired final state xf and the obtained one x̃k(τf )
can be collected in the χ vector.

χ(x̃f ) =


χ1

χ2

. . .
χm

 =



x− x∗
y − y∗
z − z∗
ẋ− ẋ∗

ẏ − ẏ∗

ż − ż∗


(3.9)

The whole process is aimed at finding the optimal initial state x̃0 that brings us to get
χ(x̃f ) = 0. In order to do that we apply the first-order Taylor expansion of the constraint
vector as it follows:

χ(x̃) = χ(x̃0) +
∂χ(x̃0)

∂x̃
(x̃− x̃0) (3.10)

where the partial derivatives of each constraint component are computed with the fini-
te differences method (that can be computed forward or backward-in-time indifferently)
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using the results for χ obtained by integrating ODEs starting from x0 and the same quan-
tities obtained by the integration of the same equations starting from a perturbed initial
state x∗

0 obtained by perturbing the initial state adding a constant δ = δ{1, 0, 0, . . . , 0}T
to one of its components whose value has been imposed in 10−7

x∗
0 = x0 + δ (3.11)

so the obtained perturbed solution is used to calculate its own discrepancy in relation
with xf in order to calculate a column of the Jacobian matrix (every column is obtai-
ned through this same procedure with the only difference that the δ vector used has its
only non-zero term in a different position referred to the only perturbed state variable)
according with the following equation

∂χ(x̃0)

∂x̃
= J̃(χ(x̃0), x̃) =


∂χ1

∂x̃1

∂χ1

∂x̃2
. . . ∂χ1

∂x̃n
∂χ2

∂x̃1

∂χ2

∂x̃2
. . . ∂χ2

∂x̃n
...

...
. . .

...
∂χm

∂x̃1

∂χm

∂x̃2
. . . ∂χm

∂x̃n

 (3.12)

where each term is computed with the finite difference method

∂χ

∂x̃∗
j

=
χ− χ∗

δ
(3.13)

So the Jacobian matrix will be J̃ ∈ Rm×n where m is the number of the constrained
quantities in the χ vector and n is the number of the state variables contained in the
state vector x̃.

If we apply this procedure to each iteration we can find the initial state guess to use
in the following iteration as a correction of the previous iteration’s one following that

χ(x̃r+1) = χ(x̃r) +
∂χ(x̃r)

∂x̃r+1

(x̃r+1 − x̃r) (3.14)

so if we assume that the solution found at the iteration r+1 exists we get χr+1 = 0
and so from the inverse expression of (3.14) we get the expression of the new iteration
initial state guess

χ(x̃r) + J̃(x̃r+1 − x̃r) = 0 (3.15)

so isolating x̃r+1 at the left-hand-side of the 3.15 we get

x̃r+1 = x̃r −
[
J̃(χr)

]−1

χ(x̃r) (3.16)

this being always true in this case because the number of variables constrained m is
equal to the number of state variables n (m = n = 9 if Time of Flight (TOF) and ν are
both fixed as it will be discussed in the next subsection). In the calculations for this thesis
we used a relaxation factor k1 equal to 0.1 in order to reduce the corrections induced at
every iteration so the (3.16) changes as follows

x̃r+1 = x̃r − k1

[
J̃(χr)

]−1

χ(x̃r) (3.17)
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3.2.1 Single-shooting procedure for free-TOF and free-ν vs fixed-
TOF and fixed-ν calculations

Calculations have been made in both the cases considering the arrival time, called TOF,
and the true anomaly ν free or fixed.

Every calculation has always been conducted with targeting a single orbit through its
Keplerian parameters ({a, e, i,Ω, ω, ν}T ) as they have been defined in table 2.2, however
with keeping ν free we can target an orbit without aiming precisely at any of its points
(as we will discuss more in depth in the next chapter the goal of every optimization
calculation in this thesis is to maximize the final mass of the spacecraft so as a result
the calculation will target the least expensive point of the orbit to reach) while with
keeping TOF free we can leave the code free to reach convergence for the trajectory with
the duration that maximizes mf of the spacecraft (if then we set T = Tmax without any
relation with the values of the switching function we will have a least-time problem in
which we will calculate the quickest trajectory to reach the targeted orbit where weather
its arrival point is fixed or not will depend on ν being kept fixed or free).

If ν or TOF or both are free an initial guess will have to be made also about them so
the x̃ at every iteration has to contain also TOF or ν or both. In a similar fashion also J
will have different dimensions.

If both are fixed χ will have 9 elements while x̃ will have 7 so J ∈ R9×7. Otherwise,
if both are free J ∈ R7×9 with χ having 7 elements and x̃ having 9 instead. If one of the
two is free J ∈ R8×8.

The introduction of the reduced transversality

In order to target an orbit without putting any constraint on ν that for non-circular
orbits is linked to all the velocity components it is possible to introduce an alternative
transversality condition, an reduced transversality condition that has been defined and
successfully applied to space trajectories optimization by [38] and follows the expression
below [

r2f
hf

V⃗f − µ

r3f
r⃗f

r2f
hf

]{
λrf

λVf

}
= 0 (3.18)

Conditions from (3.18) have to be added to χ as an additive constraints. We compute
the norm of the vector containing the results of the six equations contained in (3.18) and
we reach the optimal solution whenever it gets to zero (or below the minimal threshold
established for optimality) so when calculating the norm of χ we have to consider this
term too.

Free-time calculation

If free-time calculation are conducted in order to find the mission-time (TOF) that mini-
mizes the cost of the maneuver in terms of propellant mass a condition has to be added to
the χ vector as a transversality condition regarding the value of the Hamiltonian function
as it will be discussed in chapter 4, so in this case the following condition evaluated on
the final state has to be imposed.
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Hf = 0 (3.19)

3.3 Non-dimensionalizing values adopted

In order to avoid numerical problems due to the big difference in greatness-order between
all the variables involved in the problem (length in an heliocentric maneuver problem is in
the order of 108 km while for mass is about 103 kg and for velocity is about 101 km/s) that
would occur, for instance, when perturbing the initial state guess by the chosen δ (we want
to use the same value for δ for every variable of the problem, but a 10−7 perturbation can
cause heavily different perturbing effects on the various variables) so it is very beneficial in
order to have a more robust code to switch to non-dimensional variables dividing each of
them by a characteristic value for that variable so that all the values of the state variables
used in the calculations will have a similar order of magnitude (around 100).

The non-dimensionalizing length has been chosen equal to the astronomical unit (1.496
108 km), the mean Sun-Earth distance while for the mass it has been chosen the starting
mass of the spacecraft (assumed to be 5000 kg). Also gravitational effects have been made
non-dimensional using the gravitational parameter of the sun µSUN (equal to 1.327122 1011

km3/s2). All the other non-dimensionalizing quantities have been indirectly defined, using
the defining expressions of the various state variables involved and the aforementioned
values chosen for the fundamental variables, as it follows

Vadim =

√
µadim

ladim

tadim =
ladim
Vadim

(3.20)

An exception has been made for the length along the z-axis because of the very low
values of inclination of the targeted orbits that bring the recurrent values used for the z
variables to always be much lower (even by 6 orders of magnitude) than the average value
of the other two position coordinates so the value ladim sin 2 has been used (given that 2°
is the maximum inclination for the orbits of the asteroids considered in this thesis).

3.4 Implementation of the code

The aforementioned methods have been implemented in a similar fashion or used by
many authors in literature. In particular [17] uses MIN-PACK-1, a package of Fortran,
as optimizer while others (such as [49], [50] and others) decided to opt for the MATLAB
function fmincon together with the genetic optimization method NSGA-II to select the
most suitable solutions among a population of trajectories given the problem to solve.

For this work, unlike for all the papers previously cited, a Python code has been
implemented with a differential correction optimizer paired with a C++ precompiled
integrator using the library Numbalsoda [2] because of its higher computational velocity
in comparison with the Python integrator njit.

The code has been implemented on a computer using a Intel Core i7 with a frequency
of 4.60 GHz and a memory of 8 GB and the consequent performances during computation
are reported by table 3.1.

28



Implementation of the mathematics

Free TOF Free ν Calculation time [s] Tterations Avg. iteration rate [iter/s]
Yes No 86 1690 19.65
No No 60 1218 20.3

Tabella 3.1: Average iteration rate given one random calculation for each possible archi-
tecture (both TOF and ν fixed or only ν fixed)
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Capitolo 4

The Optimal Control Problem

(OCP)

The goal of Optimal Control Problem (OCP) is the maximization of a merit index to get
the desired optimial solution through an optimal control law. In this work calculations
are aimed at obtaining the optimal trajectory that minimizes the cost parameter repre-
sented by the propellant mass used by the spacecraft. Many sources in literature, such as
[27] show how much the Optimal Control Theory has been applied to a great variety of
problems such as space trajectory optimization [40], optimization of therapeutic protocols
[6], quantum computing [36], dynamic reconstruction problems [46], pulse sequence design
optimization in Nuclear Magnetic Resonance (NMR) [44] and other problems.

4.1 Direct vs Indirect Numerical Methods

Optimal Control Problems can be solved implying various possible numerical methods to
simplify the more complex problem into by turning it into a group of more simple pro-
blems. Those can be divided into two groups of methods that are both widely represented
in the literature such as [32], [34], [39] and others

1. Direct Methods

2. Indirect Methods

In particular [34] and [39] point out advantages and disadvantages that the preference
for a family of methods rather than for the other leads to.

In fact direct methods, thanks to a discretization of the calculation domain (if the
problem is time-dependant this is discretized paying attention to make the mesh as more
dense as possible) that sets a finite limit to the number of its dimensions, have a more
straightforward implementation, show more robustness and can be applied also to very
complex problems. As a downside they can lack of accuracy requiring for the solution to
be refined.

On the other hand indirect methods are more accurate and less expensive both computational-
wise and time-wise, but they are also more difficult to bring to convergence and to imple-
ment in the context of the problem itself given the presence of variables strongly linked
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to the particular problem. Another element of complexity in their implementation that
is worth noting is their high sensitivity towards initial conditions (their selection has
to be carefully made and requires a deep understanding of the problem such method is
applied to). Difficulties in finding solutions in different basins of the solution domain
can arise especially when used in sinergy with single-shooting methods (so switching to
multiple-shooting methods can be beneficial to increase robustness of such methods).

4.2 The Optimal Control Theory

It is applied to a system of differential equations that can be described by the following
form

ẋ (t) = f (x (t),u(t), t) (4.1)

where the vector x , called the state vector of the problem, contains the n real-valued
state variables of the problem and the vector u contains the m control variables, so
being m-dimensional, and all of those can be defined, accordingly with the problem, as
time-dependent.

Optimal Control Problems can have constraints applied to some of its state variables
to either (or both) ends of the time interval the calculation is made on. Those constraints
are called Boundary Conditions (BCs) and can be described by equations collected in the
vector χ defined as follows

χ(x 0,x f , t0, tf ) = 0 (4.2)

where χ : [Rn,Rn,R,R] → R.
Also the vector u can be constrained through an admissibility range defined by maxi-

mum or minimum values the control variable can assume. The criterion is defined with
the expression u ∈ U

J = ϕ(x 0,x f , t0, tf ) +

∫ tf

t0

[Φ(x (t),u(t), t)]dt (4.3)

The goal of OCP is finding stationary points (maximum or minimum) for a function J
that is the cost functional (a real-valued function defined through an integral expression)
of the problem. It is used to associate a cost with each possible state and each admissible
control and for this reason the goal is to maximize or minimize it finding the optimality of
the problem (with the optimal state vector x∗ and the optimal control vector λ∗ associated
with it).

The function ϕ represents the contribution to the whole cost coming from the state
variables for the values they assume at the extremes of the considered time domain. If we
nullify it (ϕ = 0) we get the Lagrange’s form of the problem. The function Φ represents
how the cost function varies over time. If we nullify it (Φ = 0) we get the Mayer’s form
of the problem. For the sake of brevity we can adopt the following expressions.

ϕ = ϕ(x 0,x f , t0, tf ) (4.4)

χ = χ(x 0,x f , t0, tf ) (4.5)
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If we consider an OCP with BCs we get the augmented form of the cost functional (J∗)
that contains the term µTχ where µ contains the Lagrange multipliers related to each
BC in the context of the first-order necessary condition for optimality in n-dimensional
constrained problems that states that it can be proven, if the hypothesis reported by [27]
are fulfilled, that in order to get the optimality it is necessary to have

δJ* = 0 (4.6)

that translates into an expression that [27] shows to be the definition of the linear
dependence between the gradient of the function to optimize and a linear combination
of the gradients of the constraint functions whose coefficient are the Lagrange multipliers
collected into µ

∇J* =
n∑

j=1

µi
T∇χi (4.7)

so integrating the equation we find the definition of the augmented cost as the sum of
the ϕ and the µTχ terms. Moreover, the integral term contains the influence played on
the cost by the closeness of the results of the equations of the problem to optimality (it
is achieved if (4.1) is satisfied) and it is obtained in similar fashion as already done with
the µTχ because of the application of the first order necessary condition for optimality
to the integral term for the OCP with constraints.

So the augmented cost is

J* = ϕ+ µTχ+

∫ tf

t0

[Φ+ λT (f − ẋ )]dt (4.8)

and so, because of (4.6), we get m more constraint equations that can be added to the
aforementioned n BC equations.

If we apply the integration by parts on the integral term it follows∫ tf

t0

−[λT ẋ ]dt = −(λf
Tx f ) + (λ0

Tx 0) +

∫ tf

t0

[λ̇
T
x ]dt (4.9)

so the augmented cost functional expression gets the following form

J* = ϕ+ µTχ+ (λ0
Tx 0 − λf

Tx f ) +

∫ tf

t0

[Φ+ λT ḟ − λ̇
T
x ]dt (4.10)

where we can underline the presence of a very important term, the Hamiltonian, defined
as follows.

H = Φ+ λT f (4.11)

For the aforementioned first-order necessary condition for optimality we have to find
a stationary point for the augmented cost function so we calculate its derivatives with
respect to the variables it depends on, those being t0, tf , x0, xf so the obtained expression
is the following
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δJ∗ =

(
∂ϕ

∂t0
+ µT ∂χ

∂t0
−H0

)
δt0 +

(
∂ϕ

∂tf
+ µT ∂χ

∂tf
−Hf

)
δtf+

+

(
∂ϕ

∂x0

+ µT ∂χ

∂x0

− λ0
T

)
δx0 +

(
∂ϕ

∂xf

+ µT ∂χ

∂xf

− λf
T

)
δxf+

+

∫ tf

t0

[(
∂H
∂x

+ λ̇
T
)
δx+

∂H
∂u

δu

]
dt

(4.12)

so applying the statement (4.6) as a result it is possible to get two sets of equations.
The first is obtained by nullifying the expressions multiplied by the variations of the

t0, tf , x0 and xf variables among which we have two equations, obtained by nullifying
the t0 and tf , called transversality conditions which are useful to impose the necessary
perpendicularity between the optimal adjoint variables vector in the final state, λ∗(tf ),
and the tangent space to the surface determined by the constraint equations and so
determining the optimal t0 and tf (if they are not constrained)

∂ϕ

∂t0
+ µT ∂χ

∂t0
−H0 = 0 (4.13)

∂ϕ

∂tf
+ µT ∂χ

∂tf
−Hf = 0 (4.14)

and a pair of sets composed of n equations each, obtained by nullifying the x0 and
xf terms of δJ* , called optimality conditions that allow to determine the optimal initial
and final state (x∗(t0) and x∗(tf )) with their optimal adjoint variables vectors (λ∗(t0) and
λ∗(tf )) if they are not constrained.

∂ϕ

∂x 0

+ µT ∂χ

∂x 0

− λ0
T = 0 (4.15)

∂ϕ

∂x f

+ µT ∂χ

∂x f

− λf
T = 0 (4.16)

so those 2n+2 equations represent how time and state variables (along with the adjoint
state variables and the Hamiltonian that ”plays the role” of the adjoint variable for the
time variable). It is worth noticing that if t0 or tf are neither constrained (so there are no
equations involving them in the χ vector) nor present in ϕ (so both ∂ϕ

∂t0
and ∂χ

∂t0
or ∂ϕ

∂tf
and

∂χ
∂tf

are equal to 0) as a consequence H0 = 0 or Hf = 0 meaning that t0 or tf are subject

to optimization. On the other hand if t0 or tf are constrained H0 and Hf are free. In
the same fashion it is possible to point out this sort of relationship existing also between
each state variable (x0i and xf i) and its adjoint variable (λ0i and λf i). If the state is free
and subject to optimization its costate is 0, if the state is fixed its costate is subject to
optimization.

The second set of equations obtained from the condition (4.6) comes from nullifying
the integral term of δJ* ∫ tf

t0

[(
∂H
∂x

+ λ̇
T
)
δx +

∂H
∂u

δu

]
dt = 0 (4.17)
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so by nullifying both the terms contained in it (the δx and δu term) we get two more
equations, the Hamilton’s canonical equations (the first is called Euler-Lagrange equation)
that have to be added to the already defined 2n+2 equations

dλ

dt
= −

(
∂H
∂x

)T

(4.18)

(
∂H
∂u

)T

= 0 (4.19)

From the equation (4.19) it is possible to point out that in order to extremize the
augmented cost function it is also necessary to extremize the Hamiltonian point-by-point
along the trajectory with respect to the command vector u . This is what is stated by the
Pontryagin’s Maximum Principle (PMP). The result of these equations depends on the
relationship between the Hamiltonian and the vector of the control variables. In fact, if
this relationship is linear it follows that the derivative is constant, otherwise it will depend
on ui itself

∂H
∂ui

=

{
kui if H is affine wrt ui

f(ui) otherwise
(4.20)

so in order to maximize the Hamiltonian we can impose ui = Umax if kui>0 while ui

= Umin if kui<0. This control is called bang-bang control . The only exception is referred
to the case of kui=0 that is due to the fact that the Hamiltonian has no dependance on
the command variable. The kui<0 term is called switching function so we associate to it
being positive the maximum admissible value for the control variable while we associate
to it being negative the minimum admissible value for the control variable.

As a consequence the OCP is mathematically defined by two transversality equations
(4.13 and 4.14), 2n optimality equations (4.15 and 4.16) and m control equations (4.19)
while the n Euler-Lagrange equations (4.18) have to be added to the defining equations of
the problem itself (4.1) to determine the optimal values of the adjoint variables through
the computation of their time derivatives.

4.3 Multi-Point Optimal Control Theory

A way to increase robustness of the code and to avoid any issue related with discontinuities
of one or more variables along the trajectory (also potentially due to local constraints
throughout the transfer) is to divide the time domain of integration of the equations into
arcs cleverly chosen to eventually set their borders exactly where such discontinuities or
constraints are supposed to be. This tool is useful to have continuous variables along each
arc and the goal of the OCP (that becomes so a Multi-Point Optimal Control Problem,
MPOCP)

As a consequence of this choice the vector of BCs equations have to be determined on
each border between a pair of consecutive arcs as it follows through their values of time
and state variables.

χ

(
x (j−1)+ ,x j− , t(j−1)+ , tj−

)
= 0 (4.21)
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Figura 4.1: Schematic representation of the MPBVP arc discretization of its domain and
its trajectory [34]

The same thing happens with the definition of the cost functional and its augmented
form

J = ϕ

(
x (j−1)+ ,x j− , t(j−1)+ , tj−

)
+

np∑
j=1

∫ tj−

t(j−1)+

[Φ(x (t),u(t), t)]dt (4.22)

J* = ϕ+ µTχ+

np∑
j=1

∫ tj−

t(j−1)+

[Φ+ λT (f − ẋ )]dt (4.23)

where both the non integral and the integral terms have to be calculated on each arc,
each of them having their own ϕ and Φ functions defined along.

The original OCP has now been turned into a series of smaller OCPs we have to solve
each along every arc in order to obtain the optimal solution through the sum of many
optimal arcs of trajectory. It is a sort of generalization of the problem where the global
optimal solution is obtained through a sum of optimal segments of solution. For this
reason the goal is to extremize J* through the application of the first-order necessary
condition for optimality (equation 4.6)

δJ* =

(
∂ϕ

∂t(j−1)+

+ µT ∂χ

∂t(j−1)+

−H(j−1)+

)
δt(j−1)+

+

+

(
∂ϕ

∂tj−
+ µT ∂χ

∂tj−
−Hj−

)
δtj−+

+

(
∂ϕ

∂x (j−1)+

+ µT ∂χ

∂x (j−1)+

− λ(j−1)+
T

)
δx (j−1)+

+

+

(
∂ϕ

∂x j−
+ µT ∂χ

∂x j−
− λj−

T

)
δx j− +

∫ tj−

t(j−1)+

[(
∂H
∂x

+ λ̇
T
)
δx 0 +

∂H
∂u

δu

]
dt

(4.24)

If we nullify δJ* we get the two transversality equations, the 2n optimality equations
that have to be imposed on each arc to find the optimal solution on each of them and
the two sets of Hamilton’s canonical equations, the Euler-Lagrange equations and the
equations stating the relationship between the Hamiltonian and the control variables
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∂ϕ

∂t(j−1)+

+ µT ∂χ

∂t(j−1)+

−H(j−1)+
= 0, j = 0, . . . , np − 1 (4.25)

∂ϕ

∂tj−
+ µT ∂χ

∂tj−
−Hj− = 0, j = 1, . . . , np (4.26)

∂ϕ

∂x (j−1)+

+ µT ∂χ

∂x (j−1)+

− λ(j−1)+
T = 0, j = 0, . . . , np − 1 (4.27)

∂ϕ

∂x j−
+ µT ∂χ

∂x j−
− λj−

T = 0, j = 1, . . . , np (4.28)

∂H
∂x

+ λ̇
T
= 0 (4.29)

∂H
∂u

= 0 (4.30)

4.4 The implemented Boundary Value Problem

In order to solve the aforementioned OCP we implement a Boundary Value Problem
(BVP) using an indirect single-shooting method depending on the initial values (typical
feature for indirect methods) we have to generate a guess about at every iteration, starting
from an initial guess whose structure should be coherent with the following expression.

y0
∗ =

{
(x 0

∗)T (λ0)
T

}T

(4.31)

The result can heavily depend on the initial guess because it is the basis to generate all
the subsequent guesses so therefore it is necessary to guide the convergence of the problem
to the solution to avoid it to converge to a different one. The correctness of the obtained
solution is checked by calculating the difference between the resulting final state y r(tf )
and the desired one yf

∗. If it is below a certain established treshold we can conclude that
the intial guess used to start the integration of the differential equations of the problem
for that iteration, ỹ∗

0, is the optimal intial state for the manoeuvre.
The considered problem has a strong time-dependance so it is possible to normalize

the time-span of integration given the fact that we do not know the time-length of each
arc. As a consequence we can have that ∆tj = 1 for each j ∈ (1, np). This implies that
t (that is therefore normalized into tϵ) will span from j - 1 to j, independently from its
effective time duration that is not known at the beginning of the calculation, accordingly
with the following expression.

tϵ = (j − 1) +
t− tj−1

tj − tj−1

= (j − 1) +
t− tj−1

∆tj
∆tj = tj − tj−1 (4.32)

Changing the time variable transforms the equations of the problem bringing them to
the following time-adimensional form that can be used to generalize the notation in this
chapter
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˙̌y = f (y̌(tϵ), tϵ) (4.33)

˙̌z = f (ž(tϵ), tϵ) (4.34)

where ˙̌z is composed of the time derivatives of the state variables ˇ̇y of the constants
vector ˇ̇c

˙̌z =

[
ˇ̇y
ˇ̇c

]
=

[
∆tj

dy(t)
dt

0

]
(4.35)

At every iteration we check the difference between the obtained final state and the
desired one (the results are collected in the boundary conditions vector χ̌(š)) to verify if
the following relation holds

χ(š) = 0 (4.36)

where š according with the general notation is the matrix containing at each column
the vector of the conditions at the boundaries at each arc if the discretion of the time
interval of the integration is implemented.

š =
{
y̌T0 y̌T1 . . . y̌Tnp−1 y̌Tnp

č
}

(4.37)

At every iteration after the integration of the equations and the evaluation of the χ̌(š)
vector containing the boundary conditions we perturb the initial conditions by a delta
that we assumed as 10−7 in order to integrate the equations again and evaluate the ˇ̃χ(š)
of the perturbed problem and to use them to calculate the Jacobian matrix that guides
the calculation of the new initial conditions guess for the next iteration according with
the following equation (and its indirect form where the guess for the next iteration is
explicitly calculated)

χ(q̌r+1) = χ(q̌r) +
∂χ(q̌r)

∂q̌r+1

(q̌r+1 − q̌r) (4.38)

q̌r+1 = q̌r −
[
J̌(χ̌r)

]−1
χ(q̌r) (4.39)

while the convergence is obtained when the following relationship holds true.

0 = χ(q̌r) +
[
J̌(χ̌r)

]
(q̌r+1 − q̌r) (4.40)

The Jacobian matrix is the result of the variations in the results of the border conditions
vector caused by a variation in the initial conditions

J̌ =



∂χ1

∂x01

∂χ1

∂x02

∂χ1

∂x03

∂χ1

∂x04

∂χ1

∂x05

∂χ1

∂x06

∂χ1

∂x07
∂χ2

∂x01

∂χ2

∂x02

∂χ2

∂x03

∂χ2

∂x04

∂χ2

∂x05

∂χ2

∂x06

∂χ2

∂x07
∂χ3

∂x01

∂χ3

∂x02

∂χ3

∂x03

∂χ3

∂x04

∂χ3

∂x05

∂χ3

∂x06

∂χ3

∂x07
∂χ4

∂x01

∂χ4

∂x02

∂χ4

∂x03

∂χ4

∂x04

∂χ4

∂x05

∂χ4

∂x06

∂χ4

∂x07
∂χ5

∂x01

∂χ5

∂x02

∂χ5

∂x03

∂χ5

∂x04

∂χ5

∂x05

∂χ5

∂x06

∂χ5

∂x07
∂χ6

∂x01

∂χ6

∂x02

∂χ6

∂x03

∂χ6

∂x04

∂χ6

∂x05

∂χ6

∂x06

∂χ6

∂x07
∂χ7

∂x01

∂χ7

∂x02

∂χ7

∂x03

∂χ7

∂x04

∂χ7

∂x05

∂χ7

∂x06

∂χ7

∂x07


(4.41)
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where every single term of the matrix is defined as follows

J̌ij =
∂χ(q̌r)

∂q̌r+1

=
χ̃i − χi

∆x0j

(4.42)

The inversion of the Jacobian matrix is crucial in order to calculate the correction of
the initial condition guess used and so to obtain the guess to use for the following iteration
as in eq.4.39.

Also the Jacobian matrix is subjected to an evolution that can be tracked by calculating
a matrix multiplication

J̌(χ̌r) =
∂χ(q̌r)

∂q̌r+1

(4.43)

Such formulation allows also the introduction of discontinuities in the state variables at
the boundaries of each arc that can be eventually used if we want to use the Multi-Point
Boundary Value Problem (MPBVP) as described in [34].

The use of linear mapping through a STM induces errors during the iterative process
of differential correction inducing divergences so in order to avoid that two correction
factors have been introduced:

� k1 is introduced as a relaxation parameter during the correction process of the new
initial conditions guess as shown in the eq.4.39:

q̌r+1 = q̌r − k1
[
J̌(χ̌r)

]−1
χ(q̌r) (4.44)

where lower values for k1 (close to its minimum assumed to be 0.1) are useful for the
first raw attempts only to increase it when we are getting closer to convergence;

� k2 is used on a control over the relationship between the error calculated at two
successive iterations to check if the successive iteration has a greater error than the
previous one (if it is the case k2 can be halved up to five times)

Emaxr+1 < k2Emaxr (4.45)

4.5 OCP for spacecraft trajectory optimization

In this work the OCT has been applied to the integration of a set of ODEs describing the
dynamics of a spacecraft in a two-body system without any considered perturbation.

dr

dt
= V (4.46)

dV

dt
= g +

T

m
(4.47)

dm

dt
= −T

c
(4.48)

The goal of their integration combined with the application of the optimal control
theory is finding the optimal control law u∗(t) that maximizes the final mass of the
spacecraft at the end of the maneuver.
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The variables of the problem are the state vector that as an input is described through
keplerian orbital parameters

xkepl = {a, e, i,Ω, ω, ν}T (4.49)

and can be converted into Cartesian parameters.

xcart = {x, y, z, Vx, Vy, Vz}T (4.50)

If we add also their adjoint variables we get the state vector containing 2n terms

xcart = {x, y, z, Vx, Vy, Vz, λx, λy, λz, λVx , λVy , λVz ,m, λm}T (4.51)

while the merit index (being Φ=0 as for the Mayer formulation) is the final mass of
the spacecraft.

The Hamiltonian function H, as following eq.4.11, assumes the following expression

H =λ∗f =
2n∑
i=1

λifi = λxVx + λyVy + λzVz+

+ λVx

[
− µ

r3/2
x+

T

m

λVx

λV

]
+ λVy

[
− µ

r3/2
y +

T

m

λVy

λV

]
+

+ λVz

[
− µ

r3/2
x+

T

m

λVz

λV

]
− λm

T

c

(4.52)

that, after grouping all the terms multiplying the thrust-to-mass ratio in the so called
switching function that defines weather the thruster is pushing and when not, assumes
the following more compact form

H = λxVx + λyVy + λzVz −
µ

r3/2
(
xλVx + yλVy + zλVz

)
+ TSF (4.53)

where the switching function has the following expression

SF =
λV

m
− λm

c
(4.54)

so it is possible to notice how the components of the primer vector λV , collecting the
adjoint variables of the three components of velocity

λV =
{
λVx , λVy , λVz

}T
(4.55)

so that λV = ||λV ||, influences SF so that if the costates on the velocity components are
high enough to make it positive they will lead the thrusters to push more in the simulation.
As we can se from the ODEs of the costates in appendix A they are influenced by the
costates on the position vector components (λx, λy and λz) so these are responsible for
the SF to be positive. If SF > 0 holds true for the whole ∆t of integration we will
have that the thruster will push along the whole manoeuvre so that the code will have
many difficulties to converge to any solution because given the time and state constraints
assumed it is impossible for the spacecraft performing the manoeuvre to fulfill it even
by always pushing. The same goes for λx, λy and λz too low so that λV makes SF < 0
because the spacecraft would always be on costing mode.
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The control vector u(t) is defined by the magnitude and the direction of the trust
vector T that are determined by the maximum value of the thrust provided by the th-
rusters (being the control a bang-bang because the hamiltonian has a linear relationship
with the Thrust so only Tmax can maximize the hamiltonian) and the thrust angles αT ,
that describes the direction of the thrust into the orbital plane, and βT that defines its
component along the perpendicular direction to the plane. In order to evaluate the αT

and βT values that can maximize the hamiltonian we have to nullify the derivatives of the
hamiltonian in relation with both of the thrust angles respectively given the expression
of the thrust vector T

T =

Tu

Tv

Tw

 = T

sinαT cos βT

cosαT cos βT

sin βT

 (4.56)

So if we want to maximize the Hamiltonian through the proper values for αT and βT

we get

∂H
∂αT

= 0 = cosαTλvx − sinαTλvy (4.57)

∂H
∂βT

= 0 = − sin βT (sinαTλvx + cosαTλvy) + cos βTλvz (4.58)

and after a proper mathematical manipulation of eqs. 4.57 and 4.58 that also involves
prostapheresis equations we get both the expressions for the optimal values of αT and βT

αT = arctan
λvx

λvy

(4.59)

βT = arctan
λvz

cosαTλvy(1 + tan2 αt)
= arcsin

λvz

λV

(4.60)

and the equations that give the components of the primer vector in relation with thrust
angles

λvx

λV

=sinαT cos βT

λvy

λV

=cosαT cos βT

λvz

λV

=sin βT

(4.61)

4.5.1 The reduced transversality conditions

Whenever we want to solve a problem of Space Trajectory Optimization targeting an
orbit without specifying one or more of its Keplerian parameters (because we want to find
their optimal value in order to minimize the propellant mass spent) we have to consider a
different type of transversality conditions, the reduced transversality conditions that are
built in order to work properly in an optimization problem without any use of the Lagrange
multipliers which heavily decrease the robustness of the code in finding convergences.
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This relies on the fact that it is systematically possible to set constrains on Keplerian
orbital parameters rather than on certain components of position and velocity (this is
possible anyway because targeting some Keplerian parameters of an orbit automatically
fixes values for components of position and velocity). In particular [38] shows conditions
linked with each Keplerian parameter being set free that can be added to the already
defined constraints vector χ.

These being transverality conditions are applied to the final state xf and they follow
the expression

yT
i (xf )λf = 0 i = 1, . . . ,6− k (4.62)

where k is the number of constrained variables and yi is a set of linearly independent
solutions of the proceding system (each yi is a function of xf , yi(xf )). It is worth pointing
out the necessity for λf involved in (4.62) to satisfy the condition

λf =

(
∂χ

∂xf

)T

µp (4.63)

where µ is the unknown vector that contains one element for each unconstrained state
variable.

In [38] it is shown a sample of the width of cases where such conditions can be applied
in addition to the χ constrain equations, with the chosen set of conditions depending
on which parameters are set free. However, some exception are pointed out. In fact if
the target orbit has no inclination (i = 0°) therefore the reduced transversality condition
equation for both ω and Ω set free are not linearly independent so they cannot be used
simultaneously (in fact it is not possible to define ether ω or Ω for an orbit with inclination
angle null). In a similar fashion conditions for both ω and ν set free are not linearly
independent for orbits without any eccentricity (in fact it is not possible to define any
periaxis in an orbit with e = 0 and therefore there is no reference to count the ν angle
from) so they cannot be used simultaneously. For this thesis only reduced transversality
equations for ν free have been used.
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Capitolo 5

Case study: Near-Earth Asteroids

(NEA) targeting and retrieval

mission

During the last decade the increasing number of dedicated observation programs [43]
(especially thanks to the improved IR observation technology along with the ground-
based optical telescopes [3]) has brought to the discovery of an always higher number of
asteroids whose orbital parameters are similar to the ones of the Earth that are called
Near-Earth Asteroids (NEA) or Near-Earth Objects (NEO). The discussion about their
exact definition will be faced in the section 5.1. The number of asteroids yearly spotted
for their first time has continuously grown since 1995 when many of the actual observation
programs have begun their activity (in the only year 2020 nearly 3000 new NEA were
discovered) [43] and now, according with the last update made by NASA to its NEA
database [37] on the 12/7/24, 35266 objects (864 with a diameter above 1 km and 10932
above 140 m) are reported, 58 more than the previous update made on the 1/7/24. The
vast majority of the newly discovered bodies have a diameter in a range of [10, 140]m,
but the vast majority of them is yet to be spotted (even among the bodies longer than 1
km, that are the easiest to spot because of their dimensions, it has been estimated that
only 16% of the actual D > 1km NEA have been discovered [7]).

There are many reasons of interest towards NEA.

From a scientific perspective they are seen as the specimen of the early stages of the
life of the Solar System with their non-corrupted material that still has the composition
and the characteristics of the early Solar System along with their being the remnants of
ancient impacts between proto-planetary bodies [4]. They are also seen as the potential
source, thanks to the frequent impacts (billions of years ago, luckily for us) of ancient
fellows of theirs on the surface of other rocky planets like the Earth, of many of the
chemical elements and compounds (like the organic ones and water) that are responsible
for the formation of life on our planet ([4], [10] and [53]).

From an industrial point of view, asteroids are seen as a source of material that are very
rare on the surface of the Earth’s crust such as gold [55] along with platinum, iridium and
palladium that are listed among the Platinum Group Materials (PGMs) [7]. In fact, in
the early stages of the life of the Solar System the larger bodies that had a strong enough
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gravitational pull were able to attract heavier materials towards the center of the planet
when their mass was still not solid while smaller objects and other bodies that used to
orbit further from the Sun (in what it is the actually known as the Outer Solar System)
cooled down too quickly getting frozen and did not have the time to do that. For this
reason those very dense and very important materials in various industrial applications,
being rare on the surface of the more massive bodies like the planets while abundant in
their core, are rare on Earth above a certain depth in the ground. By the way, some of
those proto-planets with their materials already gravitationally differentiated happened
to collide between them fragmenting themselves in hundreds of smaller bodies so that now
it is possible to discover asteroids made mainly of metals (the M-type asteroids) coming
from the nuclei of one of those once planetary bodies already fully formed at the time of
their destructive collision. On more, they are already into space so they can eventually be
mined ([13] reviews some safe methods for both on Earth and in Space mining) to build
components for spacecraft into space without launching them from the Earth so saving
on the cost of the whole business.

Lastly, every asteroid that orbits the sun too closely to the Earth constitutes a danger
for the planetary safety by itself. As [43] reports, when falling on the Earth an asteroid
with D ≈ 15m can cause many damages to structures and people. In that regard it
references to the famous example of the Chelyabinsk town in Russia were a 19-meters
asteroid fell exploding in the air (before the impact on the ground) on February 15, 2013
and generating a shock-wave that shattered windows of buildings on a vast area around
the origin of the explosion with nearly 1500 people injured (in prevalence with superficial
wounds at their face because of the explosion of the glass they were facing, attracted by
the bright glow they saw in the sky caused by the explosion itself that was the forerunner
of the shock-wave). And this happened to be a very small body. Consequently, the bigger
the asteroid, the more damages it can cause. This makes the planetary defense a major
issue that has been addressed (mainly theoretically, up to now) through many possible
solutions. Disruption techniques have been taken into account during the years, as [30]
sums up, in order to face imminent threats (the use of waves of 100 or 250 penetrators,
each one with a mass of 100 kg and 40 kg respectively with an expected 50% ratio of the
total energy of the impactors going into the disruption of the asteroid, is described) along
with deflection techniques through kinetic impactor (already tested with the AIDA DART
mission, conducted by NASA, that in October 2022 successfully deflected the asteroid
Didymos from its original orbit to another stable orbit through a spacecraft designed
to impact its surface, [11]) that are able to preserve the integrity of the asteroid itself
for potential future exploitation [35]. For small porous asteroids the disruption through
nuclear weapons is also considered [3].

Many different space agencies have successfully attempted to reach NEA with dedicated
missions, expecially with sample return missions, such as OSIRIS-REx [33] (a sample
return mission conducted by NASA focused on collecting 60g of material from the surface
of the asteroid 101955 Bennu, also known as 1999RQ36, and on bringing it on the Earth
for further analysis), the aforementioned AIDA-DART and the two missions Hayabusa-1
[25] (a mission sample return targeting the asteroid Itokawa, conducted by the Japanese
Aerospace Exploration Agency (JAXA), in 2005) and Hayabusa-2 [22] (another mission
sample return conducted by JAXA that landed successfully in June 2018 on the asteroid
Ryugu to bring the collected material home on November 2019).

Also private investors (like the B612 Foundation [41]) are promoting studies aimed at
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developing technologies and mission structures that can enable space agencies to intercept
those asteroids from their own orbit to move them towards Earth Orbit (EO).

All the mathematical and computational tools so far described or developed have been
applied to the resolution of a trajectory optimization problem aimed at designing an
asteroid retrieval mission. Many redirection methods exist as they are collected by [3] in
its overview: they can be perturbed gravitationally along their orbit as they are attracted
by the mass of a spacecraft (the gravity tractor method) [29], pushed by the stream jet
emitted by the ion-thruster of a spacecraft directed straight towards them (the ion-beam
method) [8] or alternatively by one or more gimballed thrusters that can detumble and
push it after having landed on it (the tugboat method, ideal for small diameter asteroids
with ∆V < 200 m/s) [41] while other methods that require provoking mass expulsion
from the asteroid (the mass driver method) or sublimation of part of its constituent
material through a focused beam of light (the ablation or sublimation method) [31] are
also discussed there.

Also with regard to potential mission structures two main different approaches are
presented in literature. In particular [23] describes and compares the strength and the
weaknesses of a first potentially applicable mission structure that relies on one single
spacecraft, the most represented one in literature ([1], [28] and others) that performs the
whole mission, both the retrieval maneuver and the insertion in its final orbit closer to the
Earth, and the second that relies on a two-spacecraft structure where the first one, the
pitcher, deflects asteroids from their orbit through impulsive maneuvers that provide them
the necessary ∆V to reach the orbit of the Earth, and a second spacecraft, the catcher,
collects it and provides the required ∆V to stop it on the final orbit. In other words,
the two spacecrafts provide to the asteroid the first and the second burn of a Hohmann’s
maneuver respectively.

For this thesis the transfer from Earth (specifically from the Sun-Earth L2 point) to
the orbit of an asteroid (2013BS45, see table 6.3) has been analyzed through optimal
trajectory calculations and comparing all the obtained families of potential solutions (and
evaluating the feasibility of the lowest-TOF of them) to find the optimal maneuver to
reach it. In the following section a potential mission structure made by a combination of
the tugboat mission advantages (the use of an ion-thruster to provide slow but continuous
push that guarantees the integrity of the asteroid to be kept rather than an impulsive
maneuver that can disrupt it [41]) and the ones of the two-spacecraft mission structure
proposed by [23] (two spacecraft can allow the pitcher to retrieve more mass because
it does not have to perform the second burn of the mission) to complete the retrieval
maneuver has been analyzed with the goal to maximize the amount of mass retrieved
from the asteroid and delivered back to EO.

All the data about the position of the asteroid have been taken from NASA Ephemeris
that are set into the J2000 system.

5.1 Asteroids selection process

In the recent years a great number of new asteroids has been discovered expecially close
to the Earth. For this reason a new cathegory of bodies that orbit the Sun close to the
Earth, the Near-Earth Asteroids, NEA. Many articles and other sources in literature, such
as [3], [23], [28] and [52], define NEAs as those bodies which have orbital characteristics
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similar to Earth. In particular [16] collects various categorizations already present in
literature between NEA such as their distinction into four families, the Atens and Apollos
whose orbits cross the orbit of the Earth, the Amors that always orbit around the Sun
being outside of the Earth orbit and the Atira that orbit always inside of the Earth orbit.
In order to make a selection of the bodies collected into the JPL Small-Body Database
[37], as it was at the time of consultation (30th April 2024) we selected some parameters,
given what has already been used in literature (such as the Brasser and Wiegert one, as
reported by [16]), to isolate the closest bodies to the Earth:

� eccentricity less than 0.1, so their orbits can be considered as quasi-circular ;

� semiaxis major in a range between 0.97 and 1.03 a.u.;

� inclination less than 2°, so their orbits should be as close as possible at being coplanar
with the ecliptic plane;

while no distinction was made between numbered and non-numbered asteroids. Accor-
ding with those parameters 36 asteroids were selected.

The second selection phase was conducted to rank them by the necessary ∆V to reach
it with a spacecraft from Earth. This pruning phase was conducted as in many works in
literature ([16], [48] and others) where the two-impulse Hohmann’s manoeuver was used
as a reference. The change of inclination of the orbital plane was considered combined
with the variation of the semi-major axis according with the following equation (assuming
that the plane change is performed starting from 0° of Latitude so therefore no rotation
of the line of the nodes is generated and that all the orbits are circular)

∆V =

√
∆V1

2 +∆V2
2 − 2V1V2 cos (α∆i) (5.1)

where ∆i is the variation of inclination of the orbital plane and α is the fraction of
the overall ∆i that is performed inside the first burn of the whole Hohmann’s manoeuvre
(the remaining 1-α is performed with the second one so its cost is reduced because it is
performed further from the central body). A difference between bodies closer to the Sun
and further from it than Earth was made because a penalty for bodies whose semi-major
axis was less than the Earth’s one would have been created so α=0.1 was used for asteroids
further from the Sun than Earth while α=0.9 was employed for the ones closer in order
to always perform 90% of the variation of i further from the Sun.

As a result, twenty asteroids with ∆V below 1 km/s were selected for further calcula-
tion. The complete list of the selected asteroids has been reported in appendix B while
their orbits in comparison with the one of the Earth are shown in fig. 5.1.

It is worth noticing that even using similar parameters to [16] the list of the selected
asteroids is much longer (only 10 NEA were selected) with only few of them in common
with the list of asteroids selected for this thesis. This is because that study was made in
2013 so many NEA considered for this thesis were yet to be spotted (in tables B.1, B.2
and B.3 it is possible to notice by their recording name how many of those NEA have
been discovered in the last 10 years).
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Figura 5.1: Orbits of the selected NEA

5.1.1 The estimation of the asteroid mass and diameter

In order to define the asteroid mass, given the difficulties in spotting NEA because of
their rocky and so therefore light-absorbing nature that leads to a general lack of physical
data, the following equations found in literature ([16], [19], [28], [48] and others) were
used to estimate their mass and diameter.

mast =
π

6
ρ

(
1.329 106

√
pv

10−
H
5

)3

(5.2)

D = 1329km×H−1/5p−1/2
v (5.3)

where H is the apparent magnitude of the observed NEA (taken from JPL’s NEA
database), pv is its albedo and ρ is the density of the asteroid (that [48] assumes in a
range between 1300 kg/m3 for porous objects called S-class asteroids and 5300 kg/m3

for metallic objects called M-class asteroids, so that for every asteroid a minimum and a
maximum mass are reported).

The aim of those calculations is not only to evaluate how much mass composes them
and therefore how much material we can retrieve from them, but also to understand, as
[16] points out, how heavily they can be gravitationally perturbed by the Earth itself
during a close encounter that can occur when they reach an alignment in relation with
the sun during their orbit (it should happen when their orbits are at one of their closest

46



Case study: Near-Earth Asteroids (NEA) targeting and retrieval mission

points but considering the overall general proximity between the orbit of every NEA and
the orbit of the Earth we can assume it as a possibility that limits the theoretical feasibility
of the mission, with this limit that should be studied more in depth in future studies).

All those results are collected in appendix B and show how, with an albedo chosen in
a range between 0.05 (very dark object) and 0.50 (very bright object), all the considered
bodies from the JPL small-bodies database have a very small diameter in a range [1− 50]m
showing how high Earth gravitational influence can be on their orbital parameters and
therefore how important considering maneuvers that can take a TOF that is shorter than
the ∆t to the next close encounter can be.
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Capitolo 6

Results

6.1 Trajectories from Earth to 2013BS45

In order to validate the mathematical Python code written to perform these optimization
calculations the asteroid 2013BS45 has been chosen among the selected NEA (after the
pruning process discussed in section 5.1). The goal of the calculations presented in this
section is to find the optimal trajectory (in order to minimize the mass of propellant
utilized) to reach the asteroid orbit targeting the TOF and the true anomaly that allow
to reach the asteroid itself (so those parameters are both fixed).

In order to make these calculations some assumptions were made. The dynamical
system used is a two-bodies system where all the gravitational influences from third-bodies
were neglected while the launch has been assumed to be performed from the Sun-Earth
L2 point, so the initial values of the velocity components in relation with the Sun in
the Heliocentric-Ecliptic reference frame have to be obtained from the ones of the Earth
through a proportion considered the increased distance from the Sun as in (6.1) (this
because L2 is a point in space that is always perfectly aligned with the Sun and the
Earth so it is not orbiting on its own independent orbit) where the distance between the
Sun-Earth L2 point and the Sun is given by summing 1 to the result of (2.65) and then
multiplying it by the Sun-Earth distance (1.496× 108 km) and so it is 1.511× 108 km.

xL2 = xEarth

(
rL2

rEarth

)
(6.1)

The spacecraft is assumed to have an initial wet mass of 5000 kg (2000kg of dry mass,
according with the example of mass distribution presented by [16], without any payload
given the absence of any in-situ scientific purpose beside the collection of the most possible
mass from the targeted asteroid) and is pushed by 35 ion-thrusters producing 25mN each
(with a total thrust of 785mN) and Isp = 2000s (see [9] and [24]). However, considering
that the average life of a ion-thruster is less then 10000 hours (less than 1.5 years) a
set of back-up thrusters must be considered to be able to rely on the maximum level of
thrust in every moment of the mission. All these values are collected by table 6.1. The
choice of using such a small spacecraft if compared to the one considered for analogous
missions ([23]) has been made to allow multiple similar missions to be launched in sequence
towards the same asteroid with the possibility to use electrical propulsion and less powerful
launcher at the beginning of the mission.
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mwet0 [kg] mdry [kg] mp [kg] nion thrusters Thrust [N] Isp [s]
5000 2000 3000 35 0.875 2000

Tabella 6.1: Spacecraft characteristics at the beginning of the transfer towards 2013BS45

All the optimal trajectories in this section are referred to the launch date of September
the 1st, 2024 that has been arbitrarily chosen as the starting date (see table 6.2) and have
the Near-Earth Asteroid 2013BS45 as their final destination.

date a [AU] e i [°] Ω [°] ω [°] ν [°]
1/9/2024 1 0.017 0 348.74 114.21 237.54

Tabella 6.2: Keplerian parameters of the starting point of all the trajectories described
in this chapter

The calculations for an optimal trajectory towards 2013BS45 have led towards the
finding of two separate families of solutions where the first is called principal family
because its solutions are related with a minor amount of propellant mass consumed and
the second is called secondary family because their mass of propellant consumed is higher
than the principal family.

Each family is composed of a sequence of solutions (each one targeting a different value
of true anomaly on 2013BS45 orbit) that show the amount of propellant mass spent to
get to the targeted orbit for ν values that are progressively further than the one that can
be reached at the moment of the rendez-vous with the asteroid through a transfer whose
switching function is completely positive (so therefore it is impossible to target a lower
ν because even with always active thrusters it would be impossible for the spacecraft to
reach it fulfilling the imposed time constraint). All the other solutions progressively rely
on coasting for a greater portion of their mission time the further away the targeted point
of the orbit is in front of the ν of the least-TOF rendez-vous (with a consequently greater
saving of propellant).

Calculations have been conducted in both cases through a procedure of guessing to
elaborate a set of initial conditions for the spacecraft (given the Keplerian parameters for
the starting and arrival point), especially regarding the set of initial costates for the state
variables, and then launching the calculations in order to guide it towards convergence
to a solution through many attempts to improve the set of initial condition trying to
understand how the initial adjoint variables influence the resulting optimal trajectory. As
a result, it can be noticed that the adjoint variables of the position coordinates (λx, λy

and λz), being the only variables influencing the differential equation for the components
of the primer vector (λvx , λvy and λvz , as shown in appendix A), have a strong influence
on λV and therefore also on the switching function values. In fact, the higher λx, λy and
λz, the higher the values of the switching function (and the length of the traits along
the time dominion of the SF itself where it is positive) are and so therefore the tendency
of the solution is to converge towards a maneuver with longer thrust arcs. On the other
hand, higher initial values for the adjoint variables of velocity components lead to a higher
tendency for the thrust to be directed with greater angles from the direction tangential
to the followed trajectory (given the dependence of the thrust angles α and β with λvx ,
λvy and λvz as shown in (4.59) and 4.60). As an example, if we choose to launch towards
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name H e a [AU] i [°] Ω [°] ω [°]
2013BS45 25.9 0.0838 0.9915 0.77 83.4 150.74

Tabella 6.3: Characteristics of 2013BS45, part 1

name rp [AU] ra [AU] vc [km/s] ∆V [km/s] Mmax [kg] T [days] dmax [m]
2013BS45 0.9084 1.0746 29.89 0.44 1.50E07 361 39.27

Tabella 6.4: Characteristics of 2013BS45, part 2

2013BS45 using too low values for λx, λy and λz and too high values for λvx , λvy and
λvz we have that the code tries to converge towards a trajectory that will not manage to
reach the desired point of the targeted orbit because of the strong steering tendency of the
thrust, brought by the high values of the adjoint variables of the components of velocity
(with errors in the order of 108 or more in non-dimensional terms), that will result in
a trajectory that will spiral towards the Sun as shown in fig. 6.1 obtained through the
following set of initial costates.

λ0 = {λx, λy, λz, λvx , λvy , λvz , λm} = {0.2, 0.2, 0.2, 0.8, 0.8, 0.8, 1}T0 (6.2)

On the contrary, if initial λx, λy and λz are too high and λvx , λvy and λvz are too low
we have very long thrust arcs with little steering so the vast majority of the thrust is
directed along the tangential direction to the orbit and so the resulting trajectory tends
to diverge towards the outer solar system as in fig. 6.2 obtained through the following set
of initial costates.

λ0 = {λx, λy, λz, λvx , λvy , λvz , λm} = {0.6, 0.6, 0.6, 0.2, 0.2, 0.2, 1}T0 (6.3)

So finding the right guess becomes a matter of finding the right balance between length
of the thrust arcs and thrust steering. In this case the chosen target (in fixed-TOF and
fixed-ν conditions) for the so far attempted maneuver was ν = 86° for TOF = 633 days,
in other words we targeted the rendez-vous with 2013BS45 on the 27th of May 2026 with
the launch supposed to happen on the 1st of September 2024. So we were aiming at
a transfer that relies on a complete revolution around the Sun that therefore requires
more direction control than thrust-time. As a consequence, a set of guesses that finally
successfully brings the solution to a convergence in 2457 iterations (see table 6.20) is the
following.

λ0 = {λx, λy, λz, λvx , λvy , λvz , λm}T0 = {0.37, 0.37, 0.37, 0.75, 0.75, 0.75, 1}T0 (6.4)

where the velocity components costates are higher than the position ones (but are only
2 times higher so they create a more balanced guess than the one described in (6.2)) and
the solution is represented in figs. 6.3, 6.4 and 6.5.

A recurrent feature of all the sets of initial costates that lead to a convergence is the
value chosen for λm that is always set to 1. In fact, the goal of those calculation is to
optimize the mass at the end of every integration arc to obtain the optimal final mass at
the end of the whole integration so it is preferable to set its initial guess value to 1 and

50



Results

Figura 6.1: Trajectory resulting from a failed convergence process with too high initial
costates on velocity components

then let the optimizer to find its optimal value according with the constraint over the
mission TOF. In fact, the more time is available to complete the transfer, the less time
will be necessary for the thrusters to push so consuming mass of propellant and so the
higher the optimization will be possible since the earliest stages of the transfer (therefore,
the resulting optimal initial λm will tend to be closer to 1).

Once the first convergence has been reached it is straightforward to find many other
converging solutions using the optimal initial costates vector λ∗

0 just obtained as an initial
guess for targeting slightly different values for TOF and ν from the ones targeted with
the solution just converged.

The principal family is composed of solutions about rendez-vous maneuvers with
2013BS45 which span from November 16th, 2025 to January 27th, 2027 while the se-
condary one spans from November 4th, 2026 to September 26th, 2027. So we have an
over-lap between their time-spans that allows a better comparison between the two of
them in a following subsection.

6.1.1 Principal family of solutions for 2013BS45 rendez-vous

The first family of solutions was found starting from the already presented 633-days long
transfer to rendez-vous 2013BS45 on the 27th of May 2026. By progressively diminishing
the targeted ν (and targeting the TOF obtained by considering the lanuch happening on
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Figura 6.2: Trajectory resulting from a failed convergence process with too high initial
costates on position components

the 1st of September 2024 and the arrival on the day of the transit of the asteroid at
the targeted value of true anomaly as indicated by the NASA Ephemeris for 2013BS45
consulted on the 7th of June 2024 on [37]) it was possible to find solutions for shorter-TOF
transfers (with also longer thrust arcs and therefore higher mass of propellant spent) until
the solution for the transfer targeting the rendez-vous on the 16th of November 2025 (a
441-days long transfer) that, as it is shown in fig. 6.8, has SF > 0 for the whole duration
of the maneuver so being the shortest-TOF one among the maneuvers of this family that
lead to a rendez-vous with the asteroid (see also figg. 6.6 and 6.7).

If we increase the targeted ν and therefore the necessary TOF to rendez-vous 2013BS45
we can continue the sequence of solutions that reach convergence until a region of the
asteroid orbit where the code does not manage to reach convergence. The last solution
obtained is the transfer towards ν = 122.82° in a TOF = 671 days represented in figg.
6.10, 6.11 and 6.12 shows how the 3D representation really looks like if we use the same
scale on all three axes while for sake of visualization the scale on the z-axis is 2 orders of
magnitude smaller than the one used for the x and y-axis). From that solution to the next
one that successfully converges (the transfer that targets ν = 170.14° and has TOF = 693
days) there is a region of nearly 48° of the targeted orbit where the optimizer does not
find any convergence. This is a problem that can be related with the starting point of the
maneuver. In fact this region of the targeted orbit (see fig. 6.9) has similar coordinates
in the x,y-plane to the Sun-Earth L2 point at the moment of the launch (as shown in figs.
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Figura 6.3: 3D optimal transfer towards 2013BS45 with rendez-vous on May 27th, 2026

6.10 and 6.11) so this makes the maneuver itself impossible.

Targeting the same ν of the orbit of 2013BS45 with a maneuver starting from Sun-
Earth L2 on another day (on the 4th of January 2025 whose coordinates on the x,y-plane
are far from the ones of the targeted point, as in figs. 6.21 and 6.22) is the way to
demonstrate how the issue causing the lack of convergence is the relation between the
coordinates of the starting and the final point of the transfer.

After this ”hole” with absence of converging solutions that ends with the rendez-vous
on the 26th of August 2026 (ν = 170.14°and TOF = 725 days, see figs. 6.13, 6.14 and
6.15) from that another wide group of converging solutions can be found for the various
true anomaly values until ν = 300.12° (where the convergence is there obtained for TOF
= 865 days with the rendez-vous happening on the 14th of January 2027, see figs. 6.16,
6.17 and 6.18) after that no convergence can be reached once again. Those regions of
2013BS45 orbit that cause those issues are the ones with the highest vertical distance
(along the z-axis) from the ecliptic plane and therefore from the plane of the orbit of
the Earth around the Sun (that is the plane the spacecraft has to be launched from).
This means that those regions are the most demanding ones in terms of thrust along the
vertical direction of the heliocentric-ecliptic reference frame so this may bring difficulties
in defining the necessary switching function. For future research more calculation about
transfers that target further ν values that belong to this family of solutions can impact
positively on the comprehension of this numerical phenomenon.

The second group of solutions has been found starting from the rendez-vous found for
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Figura 6.4: 2D optimal transfer towards 2013BS45 with rendez-vous on May 27th, 2026

Figura 6.5: Orbital, angular and thrust data from maneuver for rendez-vous with
2013BS45 on May 27th, 2026

ν = 228.77 (happening on the 3rd of November 2026 after TOF = 793 days) thanks to
the following set of initial costates
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Figura 6.6: 3D optimal transfer towards 2013BS45 with rendez-vous on November 16th,
2025

Figura 6.7: 2D optimal transfer towards 2013BS45 with rendez-vous on November 16th,
2025
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Figura 6.8: Orbital, angular and thrust data from maneuver for rendez-vous with
2013BS45 on November 16th, 2025

Figura 6.9: Arc of the 2013BS45 orbit where no convergence has been found

λ0 = {λx, λy, λz, λvx , λvy , λvz , λm}T0 = {0.42, 0.42, 0.42, 0.75, 0.75, 0.75, 1}T0 (6.5)
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Figura 6.10: 3D optimal transfer towards 2013BS45 with rendez-vous on July 4th, 2026

Figura 6.11: 2D optimal transfer towards 2013BS45 with rendez-vous on July 4th, 2026

that has higher position costates than the ones in (6.4) meaning that from the initial
condition we are pushing the optimizer towards solutions with a higher portion of the
TOF with SF > 0 and that can help to find convergences more easily if, compared with
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Figura 6.12: Orbital, angular and thrust data from maneuver for rendez-vous with
2013BS45 on July 4th, 2026

Figura 6.13: 3D optimal transfer towards 2013BS45 with rendez-vous on August 27th,
2026

6.4, the targeted ν is further than the previously targeted one with a higher TOF that
has received a smaller increment if compared with the one on ν. In facts, if we try to go
further in space but with a smaller increment of time allowed to get the rendez-vous we
are forced to push more and so therefore we need higher portions of the SF being positive.
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Figura 6.14: 2D optimal transfer towards 2013BS45 with rendez-vous on August 27th,
2026

Figura 6.15: Orbital, angular and thrust data from maneuver for rendez-vous with
2013BS45 on August 27th, 2026

For all the obtained solutions the fraction of the initial mass of the spacecraft that
reaches the rendez-vous has been calcualted and recorded and give the fact that the
solutions of the second group follow the trend established by the solutions of the first
group can justify the conclusion that those two groups of solutions, even though they
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Figura 6.16: 3D optimal transfer towards 2013BS45 with rendez-vous on January 14th,
2027

Figura 6.17: 2D optimal transfer towards 2013BS45 with rendez-vous on January 14th,
2027
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Figura 6.18: Orbital, angular and thrust data from maneuver for rendez-vous with
2013BS45 on January 14th, 2027

have been found separately, are part of the same family.

Figura 6.19: Values for mf over TOF for trajectories among the primary family of solu-
tions
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νf [°] arrival TOF [d] mf (%m0) [kg] mp (%mp0) [kg] day with SF > 0 figure
236.61 16/11/25 441 3286.5 (65.73%) 1286.5 (42.88%) 435 (98.6%) 6.6
86.00 27/5/26 633 4187.5 (83.75%) 2187.5 (72.92%) 246 (38.8%) 6.3
122.82 4/7/26 671 4216.0 (84.32%) 2216.0 (73.87%) 200 (29.8%) 6.10
170.14 27/8/26 725 4261.5 (85.24%) 2261.5 (75.38%) 188.5 (26.0%) 6.13
300.12 14/1/27 865 4361.5 (87.23%) 2361.5 (78.72%) 166.1 (19.2%) 6.16

Figura 6.20: Primary family maneuvers

When looking at figs. 6.8, 6.12, 6.15 and 6.18 it is possible to notice how generally all
the solutions belonging to this family have a long first trait of their TOF (initially about
100 days long, its length decreases the further the targeted ν is from the one targeted
by the quickest maneuver of this family) where the switching function is positive and
decreasing so indicating the convenience the optimizer finds in pushing for the whole first
part of the transfer to begin the plane change maneuver as soon as possible. After that,
we can observe a plateau that, progressing with the increment of the targeted ν (fig.
6.33), begins to turn into a succession of a new peak and a subsequent valley. This adds
a new thrust arc that is then followed by another one forming by deformation of the
subsequent plateau (see fig. 6.36 where the remnants of the third arc that is part of the
SF of the failed convergences of the region ν = [122.82 170.14]° are visible) while another
omnipresent feature in switching functions for solutions in this family is the thrust arc on
the final trait.

The first thrust arc is the crucial one for the necessary plane change because 2013BS45
has a closer orbit to the Sun so the optimal maneuver in that regard is the one performed
the furthest possible from the Sun itself. In fact, this first thrust-arc contributes to
reduce the semi-major axis of the orbit (α = -180° at the beginning of the transfer so
the spacecraft is breaking to reduce the semi-major axis) so making the plane change
maneuver more expensive ∆V wise. In the following stages of the transfer the in-plane
direction of the thrust changes pointing towards the outside, then in front and then inside
the trajectory in the attempt to vary the eccentricity of the orbit while generally the final
thrust arc sees α close to 0° to make the necessary final correction of the semi-major axis
to finally reach the targeted orbit.

The arc of absence of convergent solutions

As previously said, there is an arc of the orbit of the asteroid 2013BS45 where the code
does not manage to find any convergent solution for maneuvers that start from Sun-Earth
L2 point on the 1st September 2024 (see fig. 6.9.

The issue has been investigated in the context of this thesis in order to formulate an
hypothesis about the causes of this behavior of the code.

In order to determine weather the issue is related to the starting point of the trajectory
or not, the rendez-vous with 2013BS45 on the 26th July 2026 is targeted with a maneuver
starting from Sun-Earth L2 point on another date. In this case the 4th of January 2025
has been chosen and the code manages to successfully bring a solution to convergence as
shown in figs. 6.21 and 6.22.

If we repeat the process trying with the 1st of September 2024 we get no convergent
solution, so the issue has to be related not with the starting point or with the arrival point
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Figura 6.21: 3D optimal transfer towards 2013BS45 starting on January the 4th, 2025
with rendez-vous on July 26th, 2026

Figura 6.22: Orbital, angular and thrust data from maneuver starting on January the 4th,
2025 for a rendez-vous with 2013BS45 on July 26th, 2026
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alone but with the relation existing between them. If we analyze the relation between the
starting and the arrival point in the maneuver from Earth Orbit (on the 1st of September
2024) to 2013BS45 orbit (on the 26th of July 2026) it is possible to notice that the targeted
point in the final orbit has a quadratic phase with the line of the nodes of the targeted
orbit and also the starting point of the maneuver on the orbit of the Earth has a quadratic
phase with it. So targeting that arc of 2013BS45 orbit from an Earth position around
the one at 1st of September 2024 means that the spacecraft has to reach the zone of the
targeted orbit with the highest vertical distance from the ecliptic plane where the orbit
of the Earth fully lies, so that it can seem problematic for the optimizer to conjugate the
need to have a greater vertical component for the thrust with the necessity to minimize
the mp spent. On more, we can notice from fig. 6.11 how the targeted position is in a
region that, on the x-y plane, is slightly in front of the starting position of the spacecraft.
For this geometrical reason the optimizer finds the direct maneuver as a potential solution
that because of its minor TOF and therefore because of its mp spent seems to be the best.
However, how it will be shown in section 6.1.3, the minimum-TOF maneuver (obtained
setting TOF free and so without targeting an actual rendez-vous with the asteroid but
targeting the 2013BS45 orbit alone at the nearest ν possible) allows to target values for
ν that are much further than the one where the asteroid will be on the 26th of July 2026,
even by having SF > 0 for the whole maneuver, so that the optimizer will never be able
to find a convergence for a solution on that maneuver, that if possible would be the most
convenient, and will get to a singular jacobian matrix because of the huge discrepancies
which will be generated because of this process.

Figura 6.23: Data from the diverging solution for the transfer towards 2013BS45 (at-
tempted rendez-vous on 26th July 2026) before the first use of the pseudo-inverse of the
Jacobian matrix

If we consider data from the state variables and the obtained functions (such as SF and
the thrust angles) we can notice that the first attempt made by the optimizer is to reduce
the length of the thrust arcs minimizing themp as shown in fig. 6.23 (it is possible to notice
the similarities between data for this solution and the one for the transfer toward the 4th of
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Figura 6.24: Data from the diverging solution for the transfer towards 2013BS45 (attemp-
ted rendez-vous on 26th July 2026) at the first use of the pseudo-inverse of the Jacobian
matrix

Figura 6.25: Data from the diverging solution for the transfer towards 2013BS45 (attemp-
ted rendez-vous on 26th July 2026) at the 5th and last use of the pseudo-inverse of the
Jacobian matrix

July 2026 in fig. 6.8), so the optimizer is trying to converge to a solution that belongs to the
already discussed primary family of solutions for transfers from Earth to 2013BS45. We
can notice from the variations over time of α how the corrections on semi-major axis and
eccentricity are continually made and timed to optimize their variations with the thrust
arcs established by the shape of the SF . This works until the discrepancy drops below
2× 10−6 when suddenly the quickest maneuver, the one without any revolution around
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the Sun that as discussed before is more convenient from an optimization standpoint
but is dynamically and therefore practically impossible, happens to be considered as the
favorite option by the optimizer. This can only be achieved through an always positive
SF and so the optimizer gets to very high values of SF in order to reach the targeted
point directly (as it is possible to see in figs. 6.24 and 6.25). However, the thrust is
not sufficient to reach the targeted point with such maneuver (also given the fact that
TOF is fixed, so the spacecraft will push for the whole time of the maneuver) that will
end after the imposed time (693 days) on a completely different point of the space from
the desired one. This brings the terms of the Jacobian matrix to have big numbers at
the numerator, with order of magnitude even greater than 108 when working with non-
dimensional quantities (see (3.13)), while at their denominator δ is always in the order of
10−7 so the values i the Jacobian matrix become too big and so its inverse matrix becomes
singular with a consequent divergence of the solution. The hypothesis is therefore that
when considering transfers that require more than one complete revolution around the
Sun and that target a point on the final orbit that is far from the starting point along
the z-direction the optimizer tries to converge towards solutions that aim at reaching the
targeted point directly without any revolution around the Sun in between. However, this
surely brings to divergence because those calculations are operated with fixed TOF and
its value is referenced to a transfer that is meant to have multiple revolutions around the
Sun, so therefore the resulting wrong switching functions (such as the one in fig. 6.24) will
bring to too long thrust arcs that will send the spacecraft far from the desired destination.

6.1.2 Secondary family of solutions for 2013BS45 rendez-vous

The secondary family of solutions was found when trying to find a solution that could
converge for a transfer towards 2013BS45 orbit for a rendez-vous on the 25th of December
2026 in ν = 278.82°. The set of costates that constitutes the initial conditions guess that
led to convergence is the following

λ0 = {λx, λy, λz, λvx , λvy , λvz , λm}T0 = {0.19, 0.19, 0.3, 0.34, 0.34, 0.4, 1}T0 (6.6)

When looking to figs. 6.26, 6.27, 6.31, 6.32, 6.34, 6.35, 6.37, 6.38 it is possible to notice
how different this family of transfers is, especially given that the lowest-TOF transfer is
the one for the rendez-vous on the 4th of November 2026 (so it requires the thruster to push
continuously for 794 days compared with the 441 days of single thrust arc of the quickest
maneuver of the primary family), with a consequent greater cost in terms of propellant
mass used. They take more time (and at least nearly two complete revolutions around the
Sun) and therefore it is necessary to have lower initial guess values for position costates
(the ones influencing heavily the SF shape) in order to target the same ν value but with
a one year longer transfer. The difference between the values for x- and y-components
for both position and velocity costates is due to the greater control needed on the thrust,
after the previous failed attempts with all the three components being equal, to push
more towards the z-axis direction and to allow an easier convergence.

The reason for those great differences in comparison with the primary family of so-
lutions is principally due to the tendency of the optimizer to increment the semi-major
axis so that the following plane change has a reduced impact on the final mass of the
spacecraft because of its being performed further from the Sun (it is split between the
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first and the second leg of the transfer). However moving further from the Sun has a
cost that negatively compensates the propellant mass saved performing the plane change
further from the Sun, also because the available time to complete the transfer, in both
cases, is 794 days and so the initial increment of the semi-major axis (that, how figs. 6.26,
6.27 help to point out, can bring the spacecraft to a distance from the Sun very close
to Mars orbit, so it is a very long distance to close up during the ”second leg” of the
transfer) forces the thruster to push for the whole 794 days to reach the rendez-vous on
the 4th of November 2026 as expected. This maneuver leaves the spacecraft with only the
37.90% of the initial mass, so given the fact that the dry mass of the spacecraft is the
40% of its whole initial wet mass we get that this maneuver is impossible to be performed
by our spacecraft (so by choosing the maneuver from the primary family it is possible to
virtually save nearly 2.5 tonnes of propellant).

A clear difference is noticed if we instead consider the maneuver taken from the first
family of solutions targeting the same rendez-vous on the 4th of November 2026. During
the same TOF (as shown by figs 6.29 and 6.30) the spacecraft performs three thrust arcs,
the first to adjust mainly inclination, the second and the third to change semi-major axis
(it is reduced, instead of incrementing it, by less than 10% with massive propellant saving
and less time necessary to complete a revolution around the Sun) and eccentricity so the
time length of those arcs (117, 24 and 33 days respectively) is 174 days on aggregate with
620 days of no-propellant consuming coasting (the final mass that is equal to the 86.22%
as shown in table 6.5 of the initial wet mass) that contribute to increase the amount of
mass from the asteroid itself the spacecraft can collect.

mf [kg] final mp [kg] thrust days (% over TOF)
Primary family 4311 2311 174 (21.9%)
Secondary family 1895 -105 794 (100.0%)

Tabella 6.5: Comparison between transfers towards ν = 229.67°(rendez-vous on 4th of
November 2026, TOF = 794 days) from Primary and Secondary Family

If we increase the targeted ν and TOF we get that the increment in semi-major axis
is less evident and so the duration of the thrust arcs decreases. The SF is shaped around
a structure with two thrust arcs, one at the beginning of the maneuver to increase the
semi-major axis and the other at the end to reduce it with the plane change that is split
between the two arcs (figs. 6.33 and 6.36), that gets to turn into a 4-thrust arcs structure
for longer maneuvers (see fig. 6.39) with reduced increments in the first stages of the
transfer and so therefore a reduced quantity of propellant consumed (the rendez-vous on
the 26th of September 2027, shown in figs. 6.37, 6.38 and 6.39, leaves the spacecraft with
the 69.82% of the initial wet mass).

These calculations made clear how less convenient the secondary family is in compari-
son with the first. In facts the excessive increment in semi-major axis brings to a greater
propellant consumption without any time advantage. In fact, the primary family allows
to reach a rendez-vous with the asteroid using less propellant and less time (see fig. 6.41).

However this family of solutions was useful to better understand how the optimizer
works and to see the concept of ”family” of solutions in full display and how important
the work of the engineer is in critically analyze the results obtained through computation.
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Figura 6.26: 3D optimal transfer towards 2013BS45 with rendez-vous on November 4th,
2026

Looking at solutions from both families it is possible to notice (see fig. 6.41) how the
longer is the duration of the transfer the less is the mass of propellant consumed. This is
true only if the destinations targeted are on the same orbit. In fact, as shown by (2.11),
the mechanical energy is constant along each orbit so the variation of energy given to
the spacecraft through the thrust is the same for all the considered maneuvers because
they are performed from and to the same couple of orbits. The difference among all the
trajectories lies in the different ν targeted and therefore the TOF fixed for the mission.
The same ∆v has to be generated by the thrusters in a different amount of time available
and so we need to accelerate the spacecraft more if it has less time to reach the final orbit
(so therefore we will have maneuvers with generally higher SF values and longer thrust
arcs with higher mass of propellant consumed) and vice versa.

6.1.3 Solutions TOF-free for transfers towards 2013BS45 orbit

In sections 6.1.1 and 6.1.2 solutions for optimal maneuvers aimed at reaching 2013BS45
orbit for a rendez-vous with the asteroid itself (so targeting all the Keplerian orbital
parameters and the TOF given the launch of the spacecraft from the L2 point of the
Sun-Earth system assumed to be scheduled for the 1st of September 2024). In this section
the goal is finding the optimal transfer to reach 2013BS45 orbit targeting only the ν of
its point we want to reach. So therefore we want to make calculations that leave TOF
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Figura 6.27: 2D optimal transfer towards 2013BS45 with rendez-vous on November 4th,
2026

Figura 6.28: Orbital, angular and thrust data from maneuver for rendez-vous with
2013BS45 on November 4th, 2026
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Figura 6.29: 3D optimal transfer towards 2013BS45 with rendez-vous on November 4th,
2026 (from primary family)

Figura 6.30: Orbital, angular and thrust data from maneuver for rendez-vous with
2013BS45 on November 4th, 2026 (from primary family)
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Figura 6.31: 3D optimal transfer towards 2013BS45 with rendez-vous on January 20th,
2027

free and therefore influenced by the ongoing process for the optimization of the mass of
propellant used. In other words, the TOF of the following group of solutions is the one
that brings the least expense in terms of mp among all the possible transfer targeting
2013BS45 orbit at that particular value of true anomaly.

The first convergence has been obtained by targeting ν = 258.33°on the final orbit with
a resulting optimal transfer requiring 163 days to be completed and a final wet mass mf

of 4374 kg (the 87.48% of the initial wet mass) and 2374 kg of residual mass of propellant
(the 79.13% of the mass of the initial propellant). The set of initial costates used to reach
convergence is the following one

λ0 = {λx, λy, λz, λvx , λvy , λvz , λm}T0 = {0.6, 0.6, 0.6, 0.4, 0.4, 0.4, 1}T0 (6.7)

where the higher values for position components costates (if compared with the ones
in eqs. 6.4, 6.5 and 6.6) indicates how this group of solutions privileges higher values
for the SF because of the shorter TOF obtained by calculations. As figs. from 6.42 to
6.50 point out, the optimizer prefers to converge towards trajectories that tend to slightly
increase the semi-major axis during the initial stages of the transfer to reduce the cost of
the plane change maneuver (β is always positive during the whole transfer as in figs. 6.44,
6.47 and 6.50, also because the lowest-TOF possible transfer, with always SF > 0, is the
one targeting ν = 256.1° that is in the most vertically distant region of the orbit from the
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Figura 6.32: 2D optimal transfer towards 2013BS45 with rendez-vous on January 20th,
2027

Figura 6.33: Orbital, angular and thrust data from maneuver for rendez-vous with
2013BS45 on January 20th, 2027
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Figura 6.34: 3D optimal transfer towards 2013BS45 with rendez-vous on February 3rd,
2027

ecliptic plane, as shown in 6.42) and then to push towards the center of the orbit (with
negative values for α) and towards the opposite verse along the longitudinal direction to
decrease the semi-major axis and so to reach the asteroid orbit.

By increasing the targeted ν, as already observed for the solutions discussed in sections
6.1.1 and 6.1.2, a decrease in SF values comes as a consequence. However in this particular
group of solutions it is possible to notice (see both figs. 6.45 and 6.48) that the 4-arcs
structure (even 6-arcs as in fig. 6.48) tends to begin with a coasting arc whose length
is greater the further the targeted ν is. This brings the effective launching date to be
postponed according with the calculation of the optimizer (the launch now happens at
the beginning of the first thrust arc of the mission). However, as already observed for the
primary family rendez-vous maneuvers for the 4th of July 2026 and the 16th of August
2026, also in the maneuver targeting ν = 185.0° it is possible to point out how the point
in Earth Orbit where the SF begins positive for the first time in the whole transfer gets
to be very close in the x,y-plane to the targeted point of the desired final orbit bringing
the same feasibility issue for the mission that made impossible to find any convergence in
the primary family for ν ∈ [122.82, 170.14]°.

If compared with the two already discussed families of solutions for rendez-vous ma-
neuvers in terms of final mass of the spacecraft we get that being nearly 1 year shorter
in terms of TOF these maneuvers end up being way more preferable because of the huge
time and propellant saving advantages (as summed up by fig. 6.52) so that it would be
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Figura 6.35: 2D optimal transfer towards 2013BS45 with rendez-vous on February 3rd,
2027

Figura 6.36: Orbital, angular and thrust data from maneuver for rendez-vous with
2013BS45 on February 3rd, 2027
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Figura 6.37: 3D optimal transfer towards 2013BS45 with rendez-vous on September 26th,
2027

possible to retrieve, under the hypothesis of a multiple spacecraft mission, more asteroid
mass in the least amount of time. However this kind of maneuver is not always possible,
in fact its feasibility, as it will be discussed later on, is subjected to previous evalua-
tions about the reciprocal position between the Earth and the asteroid at the moment
of the launch in order to be able to turn the TOF-free maneuver calculated in an actual
rendez-vous-targeting one.

6.1.4 Optimal adjoint variables values and their dependence
with time of flight and true anomaly

In subsections 6.1.1, 6.1.2 and 6.1.3 the results of the search for converging solutions was
discussed. In this subsection the goal is to analyze and to compare the obtained results
for each family of solutions regarding the set of optimal initial costates that result from
the optimal control calculations made.

If we take a look to eqs. 2.49 and 4.54 we get that the costates can deeply influence
the behavior of the SF and therefore of the distribution of mission-time between thrust
and coasting arcs. In fact, as previously said, higher values for λx, λy and λz bring to
higher values for λvx , λvy and λvz over time and if the primer vector gets to higher values
also the switching function does (being linearly dependent on the primer vector λV ).
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Figura 6.38: 2D optimal transfer towards 2013BS45 with rendez-vous on September 26th,
2027

Figura 6.39: Orbital, angular and thrust data from maneuver for rendez-vous with
2013BS45 on September 26th, 2027
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νf [°] date of arrival TOF [d] mf (%m0) [kg] mp (%mp0) day with SF > 0 figure
229.67 4/11/26 794 1895 (37.90%) -105 (-0.04%) 788 (99.2%) 6.26
306.74 20/1/27 871 3008 (60.15%) 1008 (33.58%) 507 (58.2%) 6.31
322.56 3/2/27 885 3013 (60.25%) 1013 (33.75%) 506 (57.4%) 6.34
199.29 26/9/27 1120 3491 (69.82%) 1491 (49.7%) 385 (34.4%) 6.37

Figura 6.40: Secondary family maneuvers

Figura 6.41: Comparison between mf for maneuvers from primary and secondary family

On the other hand also λvx , λvy and λvz have a strong influence over observable quan-
tities such as the thrust angles α and β as shown in eqs. 4.59 and 4.60. In fact, if
the velocity components costates have high values the thrust angles will be far from the
neutral position so that the resulting direction of the thrust will not be aligned with the
velocity vector V⃗ and will highly probably have a component outside of the plane of the
orbit.

Lastly, λm plays a role in defining the SF (the higher λm is, the lower the SF ) because
of its presence in the negative term of the switching function itself. In fact its value
influences the tendency of the code to privilege the optimization of the mass over the
TOF (the closer it is to 1, the more the mass is optimized) so if the code has to privilege
the mass saving over the thrust-time it will end up keeping the SF limited to lower values
that will make it negative for a greater fraction of the total TOF.

From a general perspective (looking at figs. from 6.53 to 6.58) it is possible to notice
that, with the only exceptions of λz and λvz , all the various λ evolve monotonously and
asymptotically towards a certain value the longer the considered transfer is. This is
caused by the progressive increasing of the available TOF that allows lower values for
α, β and SF to be used (in facts the more TOF is available, the shorter the thrust arcs
need to be and so the faster the SF needs to go back to negative values once it became
positive and this is possible only by converging towards a shape for SF whose peaks are
not so higher above the x-axis). In this context we can interpret the general behavior
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Figura 6.42: 3D optimal transfer towards 2013BS45 at ν = 256.1°

of λx and λvx among all the analyzed groups of solutions (they tend asymptotically to
zero when considering higher TOF transfers) as the reducing need to push with a great
lateral component of thrust (as shown in (4.59), if λvx tends to zero α tends to zero as
well) from the very early stages of the transfer. Also λy and λvy have a similar behavior
tending asymptotically to -1 (of course they cannot tend towards 0 to avoid Inf values for
α because of the aforementioned tendency of λx and λvx to tend to zero).

On the other hand λz and λvz constitute an exception. In fact the optimizer tends to
chose their optimal initial values taking into account its necessity to start pushing towards
the positive or the negative direction of the z-axis so, being β determined by (4.60),

βT = arctan
λvz

cosαTλvy(1 + tan2 αt)
= arcsin

λvz

λV

we have that if α gives the thrust a positive component towards the direction of motion
of the spacecraft (so α ∈ [−90, 90]° and cos(α) > 0), with λvy being always negative and
tan2 αt positive, λz > 0 and λvz > 0 bring to negative values for β with the thrust being
pointed from the early stages of the transfer towards the space below the ecliptic plane
(and vice versa for negative values of λz and λvz). The only exception is the secondary
family of solutions that tend to postpone the push towards the vertical axis to start with
pushing inside the plane of the orbit to change the semi-major axis and the eccentricity
instead so having much greater values for position and velocity costates along the x- and
y-axis while λz and λvz are very close to 0 (see fig. 6.59 where it is also possible to notice
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Figura 6.43: 2D optimal transfer (zoom) towards 2013BS45 at ν = 256.1°

Figura 6.44: Orbital, angular and thrust data from maneuver towards 2013BS45 orbit at
ν = 256.1°

that the secondary family solutions have grater differences in terms of optimal initial
costates between them than the primary family ones because they are the solutions among
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Figura 6.45: 3D optimal transfer towards 2013BS45 at ν = 320.3°

their family with the higher portions of SF > 0 while solutions with similar TOF values
and very long coasting arcs tend to have very small differences between their respective
components of the set of optimal initial costates).

The behavior of the optimal initial λm follows the principle of optimizing the mass of
the spacecraft at the end of every integration step so the longer the transfer is the closer
λ∗
m0

is to 1 because the longer is the transfer the sooner the mass of the spacecraft needs to
be optimized. On the other hand, it is possible to notice (see fig. 6.54, 6.56 and 6.58) how
for shorter missions where the targeted asteroid has less time to be reached successfully
the values for the optimal initial λm drops significantly from the benchmark value of 1.
The more explicit case of this tendency is represented by the least-TOF transfers among
the secondary family of solutions whose values for optimal initial λm drop below 0 as a
sign of the complete loss of importance in the context of that calculation for the concept of
”mass optimization” itself to complete the transfer respecting the time constraint imposed
(in fact, as shown in table 6.40, the least-TOF maneuver of the secondary family requires
more mass of propellant than the one present on board).
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Figura 6.46: 2D optimal transfer (zoom) towards 2013BS45 at ν = 320.3°

Figura 6.47: Orbital, angular and thrust data from maneuver towards 2013BS45 orbit at
ν = 320.3°

6.2 Feasibility conditions for a rendez-vous through
a TOF-free maneuver

In subsection 6.1.3 it was demonstrated how it can be preferable to target the orbit of
an asteroid following an optimal TOF-free maneuver. However, such transfer is available
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Figura 6.48: 3D optimal transfer towards 2013BS45 at ν = 185.0°

only if the proper alignment between the Earth and the asteroid itself is achieved. In fact,
as shown in table 6.6, the orbit of 2013BS45 can be reached from L2 of the Sun-Earth
system with a 161 days-long transfer destined to reach ν = 256.1° on the 9th of February
2025. By the way, the transit of the asteroid via ν = 256.1° is expected to happen on the
30th of November 2024 so launching on the 1st of September we will not be able to reach
the asteroid with that maneuver.

For this reason analyzing when such maneuver can be feasible to actually meet the
targeted asteroid for a subsequent rendez-vous can be useful.

With the code written in Python all the quickest TOF-free maneuvers starting on the
1st of September 2024 and targeting some of the selected asteroids have been calculated
(the transfer with SF > 0 throughout the entire transfer so being the least-TOF transfer
of each group of solutions targeting every single asteroids). In the table 6.6 values for the
targeted ν and the ν of the actual position of the asteroid at the date of the arrival of the
spacecraft (and their discrepancy ∆ν) are collected.

In the same table negative ∆ν are referred to asteroids that are behind the Earth (and
therefore positive ∆ν are referred to asteroids that are in front of the Earth) in their
revolution around the Sun.

However, given the fact that the closer to the Sun a body is, the higher its angular
velocity around the Sun is, we get that a body will reach the optimal ν in only a few years
if it is behind the position for the ideal rendez-vous and its semi-major axis is smaller
than Earth’s one (i) or if it is in front of the ideal rendez-vous ν and its semi-major
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Figura 6.49: 2D optimal transfer (zoom) towards 2013BS45 at ν = 185.0°

Figura 6.50: Orbital, angular and thrust data from maneuver towards 2013BS45 orbit at
ν = 185.0°

axis is greater than Earth’s (o). In facts, in the first case the inner asteroid will close
the gap with the optimal alignment with Earth while in the second case the Earth itself
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νf [°] arrival TOF [d] mf (%m0) [kg] mp (%mp0) day with SF > 0 figure
256.1 9/2/25 161 4366 (87.32%) 2366 (78.87%) 161 (100.0%) 6.42
320.3 27/4/25 218 4520 (90.39%) 2520 (83.98%) 123 (56.2%) 6.45
185.0 14/12/25 469 4540 (90.80%) 2540 (84.67%) 116 (24.8%) 6.48

Figura 6.51: Optimal maneuvers towards 2013BS45 obtained leaving TOF free

Figura 6.52: Final mass comparison between TOF-free, primary family and secondary
family of solutions

will close that gap. Otherwise, it will be possible to launch anyway towards an asteroid
if the proper alignment with the Earth with the only condition to be forced to choose
a slightly longer maneuver than the least-tTOF one (even if it will be better in terms
of mf ) with this being possible only if asteroids with aast < aEarth are still behind the
necessary starting position (the ideal νast at the day of the launch) to be reached with
the least-TOF maneuver. On the other hand, if a inner asteroid is already in front of the
desired position or an outer one is already behind the optimal ν for the direct rendez-vous
it will be impossible to reach it with a time-wise suboptimal maneuver (a higher TOF
one) because in space its is necessary a longer thrust time to enter an orbit at a closer
ν to the starting point so it would not be sufficient pushing for the 100% of the TOF
of the transfer to reach the asteroid (the more demanding low-TOF maneuver is the one
towards a closer destination). As a consequence, in such cases it will be necessary to rely
on a longer maneuver that requires one or more complete revolutions around the Sun in
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Figura 6.53: Variations of λx, λy and λz over TOF and ν of the mission for free-TOF
optimal maneuver for 2013BS45

Figura 6.54: Variations of λvx , λvy , λvz and λm over TOF and ν of the mission for free-
TOF optimal maneuver for 2013BS45

order to reach and rendez-vous it as in the case of 2013BS45 (an inner asteroid in relation
with Earth that, considered the date of the launch being Semptembe the 1st 2024, is in
front of the ideal ν so it cannot be reached with the optimal-time maneuver) that have
been already discussed in subsections 6.1.1 and 6.1.2.

So it is possible to estimate how much time it is necessary to wait for the optimal-TOF
transfer to be available and the results of those calculations, knowing the difference in
angular velocity, ∆n, between the Earth (n = 1.139448918E-05 °/s) and every considered
asteroid, and the phasing error ∆ν we want to be nullified, according with the equation
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Figura 6.55: Variations of λx, λy and λz over TOF and ν of the mission for primary family
of rendez-vous solutions for 2013BS45

Figura 6.56: Variations of λvx , λvy , λvz and λm over TOF and ν of the mission for primary
family of rendez-vous solutions for 2013BS45

∆tphasing =
∆νto optimality

∆n
(6.8)

are collected in the table 6.7. The results listed there show how in the near future (∆t <
5 years from now) 2000SG344 is the only asteroid, among the few here analyzed) that can
be reached through a least-TOF-free maneuver (like the ones discussed in subsection 6.1.3)
for a rendez-vous launching from L2 of the Sun-Earth system on the 1st of September 2024.
For all the other asteroids the more time-consuming one-revolution maneuver (as the ones
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Figura 6.57: Variations of λx, λy and λz over TOF and ν of the mission for secondary
family of rendez-vous solution for 2013BS45

Figura 6.58: Variations of λvx , λvy , λvz and λm over TOF and ν of the mission for
secondary family of rendez-vous solutions for 2013BS45

discussed in 6.1.1) should be taken into account if the designer of a potential mission does
not find preferable to wait until the least-TOF-free maneuver becomes available once
again.
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Figura 6.59: Comparison over variations of adjoint variables λ and final mass mf between
the primary family (blue) and the secondary family (orange) of solutions

Opt rv rv νast cart rv νast act νast actl cart νast ∆ν from rv
2013BS45 (i) 9/2/25 256.1° 119.84° 319.38° 183.12° 63.28°
2000SG344 (i) 29/5/25 136.57° 243.72° 103.70° 210.97° -32.75°
2021LD6 (i) 28/4/25 172.75° 202.11° 212.21° 241.57° 39.46°
2020CD3 (o) 15/2/25 299.52° 72.77° 6.75° 139.00° -66.23°
2022NX1 (o) 18/3/25 84.00° 169.72° 62.10° 147.82° -21.90°
2021GM1 (i) 18/4/25 158.00° 220.39° 210.32° 272.71° 52.32°
2006JY26 (o) 25/1/25 159.00° 116.11° 87.17° 44.28° -71.83°
2023RX1 (i) 29/3/25 333.00° 180.38° 357.61° 204.99° 24.61°
2010VQ98 (o) 7/3/25 129.00° 156.88° 319.38° 347.26° 190.38°

Tabella 6.6: ∆ν between asteroids and their ideal position to be reached in a rendez-vous
after the quickest TOF-free optimal transfer from Earth

6.3 Retrieval maneuver

As the last phase of the mission, in this thesis some calculations about the retrieval
maneuver have been done. The goal of those calculations was to estimate the amount of
asteroid mass that the spacecraft is able to collect from the asteroid itself after having
performed the first leg of the mission (the results are shown in section 6.1) to bring it
back to the Earth orbit and the total TOF of the mission until it reaches Earth.

After the first leg maneuver the spacecraft has successfully landed on the asteroid and
is orbiting the Sun on it while it is collecting material from it, so in simulating the whole
mission the material collection time has been arbitrarily assumed in 5 months. Secondly,
the first-leg maneuver had to be chosen from the pool of successfully convergent solution
previously got. The maneuver with rendez-vous (the analysis of the rendez-vous was
outside the goals of this thesis) with 2013BS45 on the 4th July 2026 was chosen because
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∆ν from opt rv ∆ν to next opt rv ∆n with Earth [°/s] ∆t to rv [y]
2013BS45 (i) 63.28° 296.72° 1.155408457E-05 58.95
2000SG344 (i) -32.75° 32.75° 1.180619182E-05 2.52
2021LD6 (i) 39.46° 320.54° 1.161065459E-05 47.02
2020CD3 (o) -66.23° 293.77° 1.092753566E-05 19.95
2022NX1 (o) -21.90° 339.10° 1.101447075E-05 28.30
2021GM1 (i) 52.32° 307.68° 1.179405481E-05 24.42
2006JY26 (o) -71.83° 288.17° 1.123419235E-05 57.00
2023RX1 (i) 24.61° 333.39° 1.151611337E-05 86.92
2010VQ98 (o) 190.38° 190.38° 1.102461193E-05 16.32

Tabella 6.7: Time to the next availability for the least-TOF free-TOF maneuver

of its balance between TOF and mass consumption, assuming the goal of the mission
being to retrieve the most possible mass from the asteroid in the least possible time. So
table 6.8 summes up the characteristics of the chosen mission up to the beginning of the
retrieval maneuver.

departure arrival TOF [days] mf (%) [kg] mp left (%) [kg]
1/9/24 4/7/26 671 4216 (84.32%) 2216 (73.86%)

Tabella 6.8: Mass data about the spacecraft after the rendez-vous with the asteroid

In order to help the code to converge for those maneuvers where the total initial mass
of the complex spacecraft-retrieved mass (with the mass taken from the asteroid that now
acts as the payload of the spacecraft) gets much greater values than the initial wet mass
of the spacecraft a nondimensionalizing value of 22000 kg has been used.

6.3.1 Transfer towards the waiting orbit

Having fixed the time for collection of asteroid mass in 6 moths it is possible to assume
the date of lift-off from the asteroid to begin the second leg of the journey to be on
January the 4th, 2027. Using the python code for optimal transfers calculations iterative
computations through a process of try-and error were made to find solutions that enable
the spacecraft to move from the orbit of 2013BS45 (whose ν is 289.32° as shown by NASA
Ephemeris [37]) to an intermediate parking orbit where it has to wait until a second
spacecraft, with same initial characteristics of the first one (see table 6.1), will perform a
rendez-vous with the first spacecraft to bring it at the orbit of the Earth as in the mission
structure suggested by [23] where the final retrieved mass is maximized through the use of
two spacecrafts (a pitcher that deflects the entire asteroid from its initial orbit to send it
towards the orbit of the Earth where the catcher intercepts it and slows it down to bring
it into an Earth orbit) even though there is suggested the use of impulsive maneuvers
to deflect the whole asteroid. In this case, electrical propulsion is considered and given
the very low accelerations provided (from data in table 6.1 it is possible to establish
the average initial acceleration provided by the thrusters to be 1.75 µN) it is considered
T=Tmax for the whole TOF of the maneuver. The waiting orbit has to have awo > aEarth

because the goal of reaching an outer orbit is to close the gap with the needed alignment
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with the Earth to return to Earth with a least-TOF-free maneuver (the kind of transfer
analyzed in subsection 6.1.3).

The problem can therefore be defined as a matter of balancing the amount of retrieved
mass with the distance between the chosen waiting orbit and the orbit of 2013BS45 and
with how far is the point of the waiting orbit where the spacecraft manages to enter it
(that is the point where the second spacecraft will have a rendez-vous with the first one
to push it back to Earth). In facts, the heavier the retrieved mass is, the further the enter
point in the waiting orbit is and this makes longer the time the spacecraft needs to spend
on it to reach the optimal alignment (the Earth is now on a closer orbit to the Sun so the
spacecraft needs to stay slightly in front of the Earth to be able to reach it with a direct
maneuver).

As a result of this iterative process the following maneuver has been found: a 427-days
transfer (arrival on March the 6th, 2028, JD = 2461836) towards the orbit (final ν =
350°) described by table 6.9 to bring 15000 kg of retrieved material. The final state of
the spacecraft is described in table 6.10, where about 500 kg of propellant were left to
face potential corrections during the mission, while the whole maneuver is depicted in fig.
6.60.

semi-major axis [AU] eccentricity inclination RAAN Arg of perihelion final ν
1.04 0.017 0.77° 83.4° 150.74° 350°

Tabella 6.9: Keplerian parameters of the waiting orbit

departure arrival TOF [days] mf (%m0) [kg] mpf (%mp0) [kg]
4/1/27 6/3/28 427 2537.15 (50.74%) 537.15 (17.91%)

Tabella 6.10: Mass data about the spacecraft after reaching the waiting orbit (retrieved
asteroid mass = 15000 kg)

It would be possible to target further values of ν on the waiting orbit to be able to
increase the amount of the retrieved asteroid mass, however this would come with an
increased TOF that would translate into a higher time spent on the waiting orbit so the-
refore delaying the moment of the final return to Earth orbit. The potential convenience
of this choice should be evaluated from an economical perspective in terms of Return On
Investments (ROI) but this is beyond the intent of this thesis.

6.3.2 Transfer towards Earth orbit

The final goal of this thesis is to find a maneuver the spacecraft can perform to bring the
asteroid back to Earth orbit and therefore to estimate the waiting time of the complex
spacecraft-asteroid, or in other words the time the spacecraft carrying the retrieved mass
from the asteroid 2013BS45 has to spend on its waiting orbit (described in subsection
6.3.1) to reach the necessary position in relation with the Earth to be able to perform the
desired maneuver.

Considering the mission structure proposed by [23] (with the only difference in the use
of electrical propulsion for continuous-thrust maneuvers instead of the impulsive one) we
assume that a second spacecraft with the same characteristics of the one that performed
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Figura 6.60: 3D transfer towards waiting orbit starting on January the 4th, 2027 from
2013BS45 orbit with arrival on March the 6th, 2028

Figura 6.61: Orbital, angular and thrust data from maneuver towards waiting orbit star-
ting on January the 4th, 2027 from 2013BS45 orbit with arrival on March the 6th, 2028
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all the maneuvers so far described is already on the waiting orbit ready to rendez-vous
with the first one carrying the retrieved mass. According with the results of subsection
6.3.1 the rendez-vous has to happen on the 6th of March 2028.

Given that the target orbit for this maneuver is the orbit of the Earth the least-TOF
maneuver that allowed the whole SF to be positive (so to obtain the quickest possible
maneuver) was searched considering staring and target orbital parameters in table 6.11

a [AU] e i Ω ω ν
Waiting orbit 1.04 0.017 0.77° 83.4° 150.74° 350°
Earth orbit 1.00 0.017 0° 348.73936° 114.20783° ?

Tabella 6.11: Keplerian parameters for starting orbit and target orbit for the last maneu-
ver of the mission

The calculations were made with free-TOF through a try-and-error process that in-
volved the guess of the value of the final ν that the spacecraft was able to reach with a
single thrust arc and the so obtained maneuver is described in table 6.12 and in figures
6.62 and 6.63.

TOF [days] νf mf (%m0) [kg] mpf (%mp0) [kg]
329 80.54° 4257.5 (85.15%) 2257.5 (75.25%)

Tabella 6.12: Mass data about the second spacecraft carrying the first spacecraft(2537.15
kg) and the asteroid mass retrieved (15000 kg) back to Earth orbit

The last question to answer to define the last maneuver of the mission was to estimate
when it would be possible given the date of arrival on the waiting orbit where the space-
craft carrying the asteroid was moved to have the rendez-vous with the second spacecraft
(the equivalent of the catcher in the work of Ionescu, Ceriotti and McInnes [23]) and to
wait for the ideal alignment with Earth.

The obtained maneuver, as in table 6.12, has a TOF of 329 days so assuming it to
begin in the exact day (and from the exact ν) of the rendez-vous between the second
spacecraft and the first one (the 6th of March 2028, when νstart = 350°) and to end in
νf = 80.54° on the Earth orbit and assuming that the Earth would be exactly there where
it is needed to be to have actually have a rendez-vous we get that the transfer would end
on the 29th of January 2029 but on that date Earth is at ν = 27.13° so it is 53.41°behind
the necessary position along its orbit. This means that the spacecraft has to wait on the
waiting orbit until the misalignment between the Earth and the spacecraft is naturally
corrected. In fact, semi-major axis of Earth orbit is smaller than the one of the waiting
orbit and therefore its angular velocity in its revolution around the Sun is higher than
the one of the spacecraft, so the spacecraft will orbit the Sun staying on the waiting orbit
until the moment that the Earth reaches the right position. Given the difference between
angular velocities of Earth and Waiting orbit and the ∆ν the Earth has to recover we get
the time the spacecraft has to wait on the waiting orbit (see table 6.13).

So the spacecraft has to wait 948 days from its rendez-vous on the waiting orbit (6th

of March 2028), until the 9th of October 2030 (for more than 2 years and a half), for
the beginning of its final transfer that, as table 6.13 indicates, will require a TOF of 329

92



Results

Figura 6.62: 3D minimum-TOF transfer towards Earth orbit at ν = 80.54°

Figura 6.63: Data for the minimum-TOF transfer towards Earth orbit at ν = 80.54°

days with arrival at Earth orbit on September the 3rd, 2031, 7 years and 2 days after the
launch of the mission (on September the 1st, 2024).
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nEarth [°/s] nwo [°/s] ∆n [°/s] ∆ν [°] ∆t on wo [d]
1.1407 10−5 1.0755 10−5 6.5174 10−7 53.41 948.49

Tabella 6.13: Waiting time for the spacecraft on the waiting orbit (wo) before the begin-
ning of the maneuver to reach Earth orbit

Influence of the retrieved mass increment over the date of the final arrival to
Earth orbit

Besides every possible economical evaluation, the impact of an increment of the desired
retrieved mass on the date of the return to Earth orbit for the spacecraft has been ana-
lyzed. Acting in the same way as for the calculations regarding the maneuver towards
the waiting orbit discussed in subsection 6.3.1, an attempt to increase the mass retrieved
from the asteroid 2013BS45 always keeping SF > 0 throughout the whole maneuver was
made. The results of the transfer to move 16000 kg of mass from 2013BS45 orbit to the
waiting orbit are collected in table 6.14

mast [kg] TOF [days] νf [°] mf (%m0) [kg] mpf (%mp0) [kg]
15000 427 350 2537.15 (50.74%) 537.15 (17.91%)
16000 496 50 2353.28 (47.06%) 353.28 (11.78%)

Tabella 6.14: Comparison between maneuvers between 2013BS45 orbit and the waiting
orbit

So retrieving 1000 kg more from the asteroid makes the transfer towards the waiting
orbit (with SF > 0 for 100% of TOF) 69 days longer in order to target a point in the
waiting orbit that in terms of ν is 60°further. Given the analysis previously made in this
subsection about the ideal position of the spacecraft and the planet Earth in relation
with the Sun for this maneuver to happen (this is also a minimum free-TOF maneuver)
we can affirm that because of this ”angular delay” in reaching the waiting orbit and in
operating the rendez-vous with the second spacecraft the complex of the two spacecrafts
and the retrieved asteroid mass will have to wait more on the waiting orbit for the Earth
to recover a greater angle of misalignment. In fact if the maneuver towards Earth has to
start from the ν along the waiting orbit were the two spacecrafts made the rendez-vous in
the very moment they perform it it would take 349 days (so 20 days more than the case
where the retrieved mass is 15000 kg, see table 6.15) so the spacecraft would reach the
Earth orbit on the 18th of February 2029 (considering as before the 6th of March 2028 as a
starting date) when the νEarth = 44.37°, so the misalignment would be ∆ν = 111.17° and
knowing the ∆n between the two orbits we get that the time the spacecraft has to wait
on the waiting orbit before the beginning of the transfer back to Earth orbit is 1974.24
days (nearly 1026 days more then the case of 15000 kg of retrieved asteroid mass, see
table 6.16).

In conclusion, those estimations show how trying to exploit all the residual propellant
on the first spacecraft to maximize the retrieved asteroid mass during the maneuver
towards the waiting orbit can backfire if the goal is to get the retrieved mass to Earth
orbit as soon as possible.
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mast [kg] TOF [days] ν0 [°] νf [°] mf (%m0) [kg] mpf (%mp0) [kg]
15000 329 350 80.54 4257.5 (85.15%) 2257.5 (75.25%)
16000 349 50 155.54 3695.12 (73.90%) 1695.12 (56.50%)

Tabella 6.15: Comparison between maneuvers between the waiting orbit and Earth orbit

mast [kg] ∆ν [°] ∆t on wo [d] date of arrival on EO
15000 53.41 948.49 3/09/2031
16000 111.17 1974.24 22/09/2034

Tabella 6.16: Comparison between waiting time for the spacecraft on the waiting orbit
(wo) before the beginning of the maneuver to reach Earth orbit between the two cases of
retrieved mass considered (15000 kg vs 16000 kg), ∆n = 6.5174 10−7

°/s

In fact, as tables 6.14 and 6.16 testify, retrieving 1000 kg more in terms of asteroid
mass costs an increment in mass of propellant spent from the first spacecraft of 180 kg but
extends the global duration of the mission by 3 years. By the same criteria, we can assume
(assuming the phenomenon has a linear progression with the retrieved mast) that in order
to maximize the mast retrieved (and bring the first spacecraft as close as possible to run
out of propellant) we could retrieve more than 18000 kg of asteroid mass but we should
not expect that to be delivered home before October 2040. Weather this is convenient or
not, it depends on the evaluation of the committer of the mission and on the value of the
material composing the asteroids (however, such evaluations are beyond the intent of this
thesis).

Comparison with the results of other works

The two-spacecraft mission structure was considered following the work of Ionescu, Ce-
riotti and McInnes [23]. In that paper impulsive maneuvers were considered in order to
allow to the same couple of spacecraft to deflect asteroids from their orbit and then to
slow them down when reaching the orbit of the Earth without moving themselves along
the trajectory of the deflected asteroid. This strategy, thanks to the impulsive maneuver,
allows the pitcher to deflect more than one single asteroid moving from the orbit of an
asteroid to another one while the catcher slows them down as they reach the orbit of the
Earth. This forces the comparison to be made, in order for it to be meaningful, with
the case from the paper where only 1 asteroid is retrieved. As a result it is possible to
notice from fig. 6.64 how the retrieved mass in terms of retrieved mass to initial wet mass
ratio for the two-spacecraft strategy is the same of the two-spacecraft mission structure
considered for this thesis (with an intial wet mass of 5000 kg the retrieved mass of 15000
kg is exactly 3 times greater than it). The only difference lies in the global TOF of the
mission. In fact the impulsive strategy does not require any phasing time to wait on a
waiting orbit given that the catcher can move itself towards another point of the orbit
of the Earth in order for the impulsive Hohmann transfer to be feasible in any moment
while electric propulsion requires the optimal alignment with the Earth to be achieved
and so this makes the strategy applied for this thesis less convenient time-wise. In fact in
the paper [23] missions no longer than 2.5 years are considered and so in the best case the
time mission for the retrieval is half of the time necessary for the whole retrieval maneuver
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here analyzed to be completed. However, the advantage linked with the absence of any
risk of involuntary asteroid disruption through impulsive maneuver guaranteed by electric
propulsion [41] along its easier trajectory control has to be considered.

Figura 6.64: Retrieved mass over initial mass ratio over the number of retrieved asteroids
from the paper by Ionescu, Ceriotti, McInnes (results and image from [23])

6.4 Conclusions

With the present work of thesis the implemented Python code has been successfully
validated through its application to a problem of trajectory optimization aimed at finding
the minimummp solution for a transfer from the L2 point of the Sun-Earth system towards
one of the few selected NEA (from the NASA database considering both numbered and
unnumbered candidates). Various families have been obtained, considered and compared
in terms of both feasibility and convenience seen the mf of the spacecraft and the TOF
estimated by the optimizer for each of them. Among the so called Primary family an
incremental trend for mf of the spacecraft was noted for higher values for TOF. A similar
trend was noticed also for the Secondary family and the minimum-TOF family of solutions
(as shown in fig. 6.52) with different values of mf that shown to be higher for the lower-
TOF ones. In a separate section it was shown that because of misalignment between
Earth and the vast majority of the asteroids (the considered asteroid 2013BS45 included)
those both cost-wise and time-wise very convenient kind of transfer was not feasible in
the foreseeable future (given the 1st of September as the arbitrarily chosen date for the
launch of the mission). After a choice was made about the transfer towards the EO to
consider for the mission, a mission strategy to balance the maximization of the retrieved
mass and the TOF was implemented and two scenarios (in terms of both retrieved mass
and TOF) have been considered and compared. The conclusion is that the more mass it is
retrieved, the more time it will cost in terms of delay in delivering it back home were the
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investors (both public and private) are waiting to see the results of the mission in terms
of ROI, so if there is any time constraint the best option is not to retrieve the most of
the mass according with the maximum propellant on board of the first spacecraft (whose
mp consumption determines the real upper limit for the result of the mission in terms of
retrieved mass) but to find the optimal balance between retrieved mass and TOF of the
whole mission. In last instance, a comparison between the obtained results in terms of
retrieved mass in respect to the initial mass of the spacecraft and the ones shown by [23]
has been made so getting to the conclusion that besides the differences in the propulsive
choices the results in the case of one single asteroid retrieved can be considered equivalent
in terms of retrieved mass while a reduced flexibility imposes higher TOF in the case of
the use of electric propulsion.

6.5 Future Research

It is possible to study more in depth the possibility of a deflection of a NEA, as [16]
points out (with a consequent variation of orbital parameters of each NEA), after a close
encounter with Earth given the periodical alignments between Earth and NEA and the
difference in mass between each asteroid and the Earth which can lead to such pertur-
bations to happen, also given the proximity between their orbits (as from the already
discussed definition of NEA) and.

In the context of close encounters, given the potential proximity between earth and
the targeted asteroid for the minimum-TOF maneuver to be feasible, it is necessary to
understand in each case if the considered alignment in relation with the Sun in terms of
true anomaly can lead to a perturbing gravitational interaction for the NEA (with the
consequent change of its orbital parameters making impossible for a previously designed
mission to reach the targeted asteroid because its movement towards another orbit).

In the context of this thesis gravitational perturbation form third bodies on the space-
craft trajectory were not taken into consideration so a very interesting future work could
be implementing perturbation from Earth, Moon and other planetary bodies to reach a
high-fidelity model as the one defined by [34].

Because of a lack of robustness of the code in converging to a solution when targeting
certain regions of the targeted orbit implementing the MPBVP through an a-priori di-
scretization of the time domain of the solution can improve the possibilities of finding a
solution towards those values of true anomaly.

As a consequence of the implementation of the MPBVP the implementation of the
equations of the TBP can guarantee a boost in flexibility for the code because of the
increased group of cases and problems it could be applied to. In the context of the
case study considered for this thesis the implementation of the TBP would allow to
consider families of trajectories called invariant manifolds ([48], [55] and others) that
are mathematically proven to be able to drive a spacecraft retrieving asteroids towards
periodical orbits around Lagrange points of the Sun-Earth or Earth-Moon system with
very low ∆V cost so making less expensive, from a mass budget standpoint, the mission of
pushing an asteroid towards an orbit around the Earth. In a similar fashion it is possible
to introduce the flyby with the Moon [17] or with the Earth ([49], [50] and others) to
make every capture maneuver of this kind even less expensive.
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In order to improve our understanding of the problem of the lack of convergence on
certain regions of the targeted orbit, finding solutions belonging to the primary families of
solutions targeting rendez-vous beyond the one on the 14th of January 2027 can be useful
to gain more information about the size of that region where no convergent solutions can
be found.
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Equations for the adjoint variables
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Appendice B

List of the selected asteroids

In this appendix are collected the tables showing orbital and physical data regarding the
selected asteroids for this thesis. As previously discussed in these are the 20 asteroids
from the NEA database from NASA Jet propulsion laboratory [37], JPL, fulfilling all the
selected criteria as in section 5.1.

Many of them have been discovered only in the last 5 years (as shown by their recorded
name) so they are not present in many of the works in literature (for esample see [16]).

Table B.1 collects all the keplerian parameters of the orbits these asteroids are currently
orbiting the Sun on and that have been used for optimal trajectory calculation to target
them as destination of the desired maneuver In the second column it is also reported the
apparent magnitude, H, that is useful for the estimation of their mass as for eqs. 5.2 and
5.3 .

Table B.2 collects other orbital characteristics as the perihelion and aphelion of their
orbits along with their orbital period (in days) and their circular velocity around the Sun.
Lastly, for all the selected asteroids the value of the necessary ∆V from Earth considering
a Hohmann’s maneuver to reach them has been reported.

Table B.3 collects the results of the estimation procedures for mass and diameter of
every considered asteroid (given that the albedo pv of each asteroid is considered in a
range of [0.05, 0.5]).
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List of the selected asteroids

name H e a [AU] i [°] Ω [°] ω [°]
2000SG344 24.7 0.0668 0.9773 0.11 191.76 275.51
2013BS45 25.9 0.0838 0.9915 0.77 83.4 150.74
2021LD6 27.2 0.0999 0.9885 0.77 100.66 288.7
2020CD3 31.74 0.0123 1.029 0.63 82.23 50.02
2019GF1 27.5 0.0484 0.9899 1.24 4.15 326.09
2011UD21 28.5 0.0304 0.9786 1.06 22.35 209.76
2022NX1 28.07 0.0246 1.024 1.07 274.46 171.26
2018PK21 25.88 0.0809 0.9833 1.22 302.63 227.42
2021VH2 28.82 0.0792 1.013 1.31 222.9 260.65
2021GM1 30.4 0.0254 0.9781 1.18 176.24 226.15
2006JY26 28.4 0.0831 1.01 1.44 43.46 273.65
2007VU6 26.59 0.0906 0.9762 1.22 220.24 34.87

2014WU200 29.1 0.0715 1.028 1.27 265.65 226.54
2023RX1 30.25 0.0282 0.9968 1.6 168.82 38.56
2023HM4 27.69 0.0494 1.012 1.54 68 34.66
2006BZ147 25.4 0.0987 1.023 1.41 139.83 94.83
2010VQ98 28.2 0.0271 1.023 1.48 46.17 341.71
2021RZ3 27.33 0.0533 1.014 1.67 343.02 243.38
2020UO4 28.64 0.0916 0.9737 1.46 210.45 64.04
2020WY 26.2 0.0286 1.02 1.7 107.1 180.41

Tabella B.1: Keplerian parameters of the selected asteroids
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List of the selected asteroids

name aphelion [AU] perihelion [AU] vc [m/s] ∆V fr. Earth [m/s] T [days]
2000SG344 0.91201636 1.04258364 30.10427642 0.351239338 353
2013BS45 0.9084123 1.0745877 29.88792626 0.440491415 361
2021LD6 0.88974885 1.08725115 29.93324536 0.464980894 359
2020CD3 1.0163433 1.0416567 29.33826689 0.572174194 382
2019GF1 0.94198884 1.03781116 29.91207081 0.683592276 360
2011UD21 0.94885056 1.00834944 30.08427408 0.691442655 354
2022NX1 0.9988096 1.0491904 29.40980629 0.707484924 379
2018PK21 0.90375103 1.06284897 30.01228921 0.724219514 356
2021VH2 0.9327704 1.0932296 29.56905327 0.73262731 373
2021GM1 0.95325626 1.00294374 30.09196257 0.751718061 354
2006JY26 0.926069 1.093931 29.61293514 0.778273592 371
2007VU6 0.88775628 1.06464372 30.12123266 0.788265069 353

2014WU200 0.954498 1.101502 29.352533 0.833106515 381
2023RX1 0.96869024 1.02490976 29.80836309 0.834656237 364
2023HM4 0.9620072 1.0619928 29.58365888 0.839451113 372
2006BZ147 0.9220299 1.1239701 29.42417708 0.855115633 378
2010VQ98 0.9952767 1.0507233 29.42417708 0.887882758 378
2021RZ3 0.9599538 1.0680462 29.55446927 0.915674901 373
2020 UO4 0.88450908 1.06289092 30.1598764 0.923325366 351
2020WY 0.990828 1.049172 29.46741616 0.969979491 377

Tabella B.2: Orbital characteristics of the selected asteroids
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List of the selected asteroids

name mmax [kg] mmin [kg] dmax [m] dmin [m]
2000SG344 78875008.99 19346700.32 68.24015094 21.57943048
2013BS45 15029323.13 3686437.748 39.26810818 12.41766613
2021LD6 2494246.789 611796.3821 21.57943048 6.824015094
2020CD3 4709.116359 1155.066277 2.667104172 0.843412394
2019GF1 1647932.511 404209.8612 18.79489824 5.943468684
2011UD21 413941.9314 101532.9266 11.85877909 3.750075218
2022NX1 749789.6164 183910.6606 14.45572836 4.571302686
2018PK21 15450389.12 3789718.087 39.63145151 12.53256538
2021VH2 266035.395 65253.96481 10.23387195 3.236234466
2021GM1 29987.44205 7355.410314 4.943561926 1.563291544
2006JY26 475268.9277 116575.3974 12.41766613 3.926810818
2007VU6 5793478.795 1421041.969 28.5785361 9.037326626

2014WU200 180692.2067 44320.72994 8.995803882 2.844722965
2023RX1 36892.61347 9049.131606 5.297122041 1.675097069
2023HM4 1267475.058 310890.1085 17.22027088 5.445527791
2006BZ147 29987442.05 7355410.314 49.43561926 15.63291544
2010VQ98 626526.4665 153676.3031 13.61570015 4.305662442
2021RZ3 2084200.145 511218.9034 20.32544107 6.427468824
2020UO4 341145.3231 83677.15472 11.11834072 3.515928047
2020WY 9929775.317 2435605.266 34.20109247 10.81533507

Tabella B.3: Physical characteristics of the selected asteroids
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