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Abstract

The mission concept “16U4SBSP”, funded by the European Space Agency through
the Sysnova campaign “Innovative Missions Concepts enabled by Swarms of Cube-
Sats”, aims to demonstrate the feasibility of a swarm of 16U CubeSats for a scaled
demonstration of Space-Based Solar Power (SBSP). This demonstration mission can
provide wireless electric energy in kW-scale to space-to-ground or space-to-space
applications. The main objective of the mission is to validate the SBSP concept
and some of the involved technologies, in view of full-scale missions which could
serve users in remote areas with low power requirements (<MW) or/and emergency
operations in the blackout zones affected by natural or manmade hazards.

The focus of this master thesis is the study of the mission’s formation flying
orbital dynamics for the case of Heliotropic orbits and the study of the thermal
analysis and thermal design of the CubeSats. The dynamical model used accounts
for perturbations from Earth’s gravitational field up to the fourth degree, solar
radiation pressure, and atmospheric drag. The configuration of the swarm includes
seven CubeSats in a circular formation, with one CubeSat positioned at the center
and six CubeSats distributed in a hexagonal shape around it. Heliotropic orbits
are defined as sun-frozen orbits that enable extended periods of energy beaming
during nighttime. Initially, the long-term evolution of the orbit is characterized.
The analysis then focuses on the evolution of the relative distance variation of each
CubeSat with respect to the central one within the heliotropic formation. This
determines the frequency of formation control required to maintain the relative
positions of each CubeSat. The findings suggest that employing a formation in a
Heliotropic orbit is a suitable option for the mission, but not as cost-effective as
a Sun-Synchronous orbit. For the thermal analysis, it has been used a simplified
single-node steady-state lumped mass thermal analysis in order to define a baseline
understanding of the thermal loads and expected temperatures of the spacecraft. A
trade-off is conducted about the choice of materials to be used as passive coatings.
Additionally, crucial aspects of the CubeSat design have been studied, including an
illumination study for optimal star tracker placement.

The work presented in the thesis contributed to prove the feasibility of the
16U4SBSP mission’s objectives representing the first step towards GW-scale SBSP,
that would supply clean energy from space through wireless power transmission.
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Chapter 1

Introduction

The “16U4SBSP” mission concept is a fundamental technology demonstration step
for the realization of kW-/MW-/GW-scale Space-Based Solar Power (SBSP) based
on flight formation, a distrusted swarm of small satellites contrary to conventional
concepts of monolithic giant SBSP satellites. In this mission, a swarm of 16U
CubeSats collaboratively supply wireless power via Radio-Frequency waves to end-
users in different locations on the ground, for instance to provide backup power for
emergency situations, and also for space-to-space commercial use-cases.

The 16U4SBSP project, currently in phases 0 and A, is the outcome of a collab-
orative effort between Delft University of Technology, the University of Strathclyde,
and Sirin Orbital Systems AG. This innovative project was presented at ESA ES-
TEC as part of the Open Space Innovation Platform (OSIP) campaign, under the
theme "Innovative Mission Concepts Enabled by Swarms of CubeSats."

The scope of this thesis is to conduct a preliminary mission analysis study on the
stability of formation flying in the Heliotropic Orbit. Beginning with the dynamical
model of the orbit, the thesis explores the definition and characteristics of the
heliotropic orbit and examines the formation flying aspect in detail. Furthermore,
some aspects of the sub-system design are analyzed, including thermal analysis.
This analysis is conducted in a preliminary phase, considering a single-node steady-
state situation.

This chapter provides a comprehensive summary of the mission 16U4SBSP,
detailing the key elements of the final mission analysis and the various sub-system
design choices. It offers an overview of the critical aspects that were considered
during the mission planning and highlights the rationale behind the design decisions
made for each sub-system. At the end of this introduction, the final spacecraft
configuration is presented.
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Introduction

1.1 Mission Analysis

The 16U4SBSP mission aims to demonstrate Space-Based Solar Power (SBSP)
using a CubeSat (CS) swarm from Earth orbit. This demonstration employs seven
16U CSs to deliver 1 kW-scale wireless energy via Radio-Frequency (RF) beaming,
adaptable for both space-to-ground and space-to-space applications. The primary
goal is to validate SBSP provision using a satellite swarm and explore miniaturized
technologies for future large-scale missions that could benefit remote or emergency
areas. [24]

Firstly, the mission orbit is identified. A trade off is conducted between the
Sun-synchronous orbits and the Heliotropic orbits, which is presented in chapter 3.
The case of Sun-synchronous orbits (SSO) is selected. SSOs are a type of near-polar
orbit that enables a satellite to pass over a given point on Earth’s surface at the
same local solar time. This characteristic is achieved through a precise inclination
and altitude that causes the orbit’s Right Ascension of the Ascending Node Ω to
precess at the same rate Earth orbits around the Sun, effectively synchronizing with
the solar cycle. [12]

For missions where power is primarily needed at night to complement ground-
based solar arrays, a sun-synchronous orbit offers significant advantages. It max-
imizes illumination during operational periods and minimizes the energy storage
requirements, as the satellites are strategically positioned to efficiently leverage
sunlight.

The configuration of the swarm consists of seven CubeSats arranged in a circu-
lar formation, with one central chief CubeSat and six deputy CubeSats arranged
hexagonally around it as detailed explained in chapter 3.2.

The mission Concept of Operations includes: formation deployment and acqui-
sition phase, operative phase and end-of-life phase. The CubeSats are deployed into
a sun-synchronous orbit with a release cadence from the dispenser. The launch and
early orbit phase (LEOP) have a duration of one day for attitude acquisition, solar
array deployment, and subsystems check. Then, maneuvers for orbit circularization
and phase correction of each CubeSat are executed to ensure that the CubeSats
are correctly distributed in the along-track direction. An observation campaign is
conducted before the acquisition phase, which consists of the establishing of the
formation with 1000 m radius. Two following two days are reserved for verifying
formation control, assessing orbit/attitude perturbations, antenna pointing, and
time synchronization. [24]

After the first phase, the operative phase starts. The formation is adjusted
to decrease the radius to 100 m and is maintained for the first half of the mis-
sion’s duration (3 months). For the second half (3 months), the radius is further
reduced to 10 meters. Finally, the end-of-life phase occurs. For an initial altitude
of 500 km, the mission is projected to re-enter the Earth’s atmosphere within 1,5
years naturally. Therefore, no maneuver is required. [24]
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1.2 – Payload

1.2 Payload
The main payload in 16U4SBSP is Wireless Power Transfer (WPT) module con-
sisting of Tx antenna systems and circuit components (amplifier, convertor, etc.).
In addition, a Rx rectenna system is needed. The radio frequency energy spans
from a range of approximately 1–30 GHz and wavelengths from approximately 1 to
30 cm. [24]

For the design of the beamforming steering antenna, up to 4 calibration pilots
are considered as 3 are required to remove the location and electrical uncertainties,
while the fourth source is used to remove tapering uncertainty. On the ground
segment, the use of the pilot calibration strategy introduces the requirement to have
cooperative transmitters on the ground that would send pilot signals to calibrate
the array.

The Tx antenna configuration is a deployable membrane antenna, shown in Fig.
1.1. It has 1440 antenna elements, 240 for each triangle (Fig.1.3), each one with
a gain of 11 dBi, with each element separated half wavelength. The target total
mass is 3.5kg and the target stored volume of the HRM mechanism is 150 mm x
150 mm x 100 mm. [24]

Figure 1.1: Deployable membrane hexagonal antenna (on the left), visualization of de-
ployed membrane antenna (on the right). [24]

Figure 1.2: Fully deployed membrane hexagonal antenna 7N12B Model (on the left), Hold
& Release Mechanism HRM (on the right). [24]

For feeding the RF into the antenna elements in the membrane, we are consid-
ering Microstrip lines. In summary, it is planned to feed the power by mounting an
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Figure 1.3: Mechanism for deployable structure. [24]

oscillator on the bus side, from which the power will be transmitted by microstrip
lines to feed the antenna elements.

1.3 Propulsion

The presented propulsion sub-system refers to both the main propulsion system
and the reaction control system. For both the main propulsion system and the
reaction control system, some trade-offs are conducted. In particular one for the
choice of the type of propulsion, and one for the type of propulsor to be used.

Regarding the reaction control system, it is not strictly necessary, since the
attitude control can fully be accomplished by the reaction wheels, and wheels de-
saturation is performed by the magnetic torquers. However, a reaction control
system has been included in the spacecraft for additional 6DOF control authority
(for example, to support detumbling and reaction wheel desaturation if needed),
and as a higher-thrust system for emergency collision avoidance maneuvers. The
total impulse required for the RCS sub-system, as per requirement, is calculated
assuming a total of 8 emergency collision avoidance maneuvers per spacecraft dur-
ing the whole mission lifetime, this translates into a Delta-V per maneuver equal
to approximately 0.27 m/s which, combined with an assumed spacecraft mass of
32 kg, translates into a total impulse for all 8 maneuvers of approximately 70 Ns.
[24]

The selected main propulsion system is the Micro R3 from Enpulsion, shown
on the left in Fig. 1.4. It is a set of four electrospray thruster emitters using
Indium as propellant. The full emitter box volume is 140x120x98.6 mm, while the
PPU box volume is 140x120x34 mm. The nominal thrust is 1 mN at a nominal
power level of 105 W, but a wide range of thrust, specific impulse and input power
combinations are possible. The dry and wet mass are 2.6 kg and 3.9 kg respectively,
for an available total impulse of no less than 30 kNs. The required heat-up power is
between 20 and 40 W, and the standby power is between 10 and 15 W. The supply
voltage is 28 ±2 V.[24]

The selected component of the reaction control system is the IANUS system
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1.4 – Attitude Determination and Control and Navigation

Figure 1.4: the Micro R3 system from Enpulsion (on the left), and the IANUS system
from t4i single module (on the right).[24]

developed by t4i (Italy). It is based on cold gas thrusters using R134a refrigerant
as propellant. One single module, as shown on the right in Fig. 1.4, has 0.5U
volume and a dry and wet mass of respectively 0.5 kg and 0.6 kg; however, in order
to achieve full 6DOF control authority, two of these modules are required, which
will also be the configuration employed by 16U4SBSP. The total impulse is 38 Ns
per module (thus, 76 Ns in total for the two modules) and three possible thrust
levels can be selected: 6.8, 10.6 or 26.2 mN, with the latter two options compatible
with the requirements set for 16U4SBSP. The required power is 40 W while firing;
no specific power levels are declared by the company for standby and heat-up,
but these are expected to not exceed the values currently set by requirements.
The supply voltage is 12 V unregulated, which is currently not compatible with
requirement and will be left for further discussion in the next project phases to
check if this requirement and/or the supply voltage characteristics of the system
can be modified. [24]

1.4 Attitude Determination and Control and Nav-
igation

This part presents the design of two of the most crucial sub-systems of the 16U4SBSP
spacecraft: the Attitude Control and Determination System (ADCS) and the Nav-
igation sub-system.

Some trade-offs are conducted to select the best component of this sub-systems.
To simplify the integration process and allow for a more reliable design, the selec-
tion was limited to fully self-standing ADCS assemblies, not requiring additional
component in order to perform all required functions. The critical requirements for
the selection came from the capability of the system to cope with a 16U satellite
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bus with external appendages (solar panels and deployable antenna) and the size
to fit in the available volume onboard. [24]

The selected components are the EnduroSat 16U system including an attitude
control computer and three CW5000 reaction wheels, and the FUGRO SpaceStar
GNSS receiver (shown in Fig. 1.5). [24]

Figure 1.5: Skecht of the EnduroSat 16U platform, with ADCS components in the central
part of the bus.[24]

The selected EnduroSat system is not a separate ADCS assembly, but it is
designed as part of the full 16U platform available from the company. The system
consists of a full set of components including in particular three reaction wheels,
the ADCS control unit and two Star trackers. The total mass of the full set of
ADCS components is 3.9 kg, for a total volume of 2U. The momentum storage
capability of each wheel is 500 mNms, which allows to perform all de-tumbling
and slew maneuvers only by means of the reaction wheels, as better explained in
the following. The maximum wheel torque is 37 mNm, sufficient to meet with
large margin all torque requirements for ground tracking and for counter-acting
disturbance torques (the maximum expected disturbance torques are in the order
of 1 mNm or less). [24]

The FUGRO SpaceStar GNSS receiver, selected after the trade-off on the avail-
able GNSS options, has a mass of 0.45 kg and a volume of 0.4U. It allows for an
absolute positioning error of 10 cm RMS, which is already compatible with the
mission requirements and can be further improved to approximately 5 cm by em-
ploying a “relative” link with differential GNSS using the data available from the
inter-satellite link.[24]
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1.5 Power System
This part presents the full range of hardware components selected for the Electrical
Power System of the 16U4SBSP spacecraft, including the central Power Control
Unit, the solar array assembly and the batteries for power storage, and the moti-
vations and trade-offs that led to this final selection.

The batteries are considered the most critical EPS component in the 16U4SBSP
spacecraft, due to their heavy requirements in terms of power storage and power
peak/instantaneous power. Some trade-offs are conducted to select the best com-
ponents for the Power System.

The battery selected is the Kongsberg/NanoAvionics 8S1P battery. In addition,
for the EPS electronics (power conditioning and distribution unit) is selected the
Kongsberg/NanoAvionics EPS electronics, shown in Fig. 1.6, to ensure maximum
compatibility with the selected batteries. [24]

Figure 1.6: Pictures of the complete EPS box from Kongsberg/NanoAvionics. [24]

The selected components include a total of 4 stacked Li-ion battery units are
used, which allows for a total battery capacity of 340.8 Wh BOL. Each of these four
battery units has a volume of 0.4U. Each battery unit provides a peak power of 100
W, which allows to achieve a total of 400 W peak power with 4 units, thus meeting
requirement. The power conditioning and distribution electronics is compatible to
a wide range of solar panel input voltages (up to 42 V) and has a volume of 0.2U.
[24]

To optimize the power generation capabilities of the spacecraft in function of
the specific needs of the 16U4SBSP mission, the consortium has opted for a fully
customized design of the solar array wings, built upon the 30% Triple Junction
GaAs Solar Cell Assembly from AzurSpace, shown in Fig. 1.7. This solar cell
assembly has 30.18 cm2 area per cell, with a specific mass of 118 mg/cm2. The
maximum power point voltage is 2.409 V and the maximum power point current is
0.503 A, for a BOL efficiency higher than 29%. [24]

The final solar arrays configuration designed for the 16U4SBSP spacecraft con-
sists of 2 separate wings, each with a total of 60 cells; additionally, in one of the two
wings, 25 cells are present on the back side. With this configuration, a total power
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Figure 1.7: the Triple Junction GaAs Solar Cell Assembly from AzurSpace. [10]

generation capability of 144 W (72 W per wing) is available from the deployed
wings, while 30 W are available in folded position before deployment.

1.6 Communication System

This part presents the trade-off results for the communications sub-system. Note
that, given the specific characteristics of the 16U4SBSP and its Concept of Oper-
ations, two identical sets of radio and antenna need to be used by each spacecraft:
one for the inter-satellite link and one for ground communication. The two commu-
nication systems are expected for simplicity to be identical. Since the requirement
leaves the door open to two possible frequency bands (S band or X band), the main
trade-off performed for the communications sub-system was to decide between these
two frequency bands. It results that communicating in the S-band is a preferable
option. [24]

Figure 1.8: The Syrlinks EWC31 S-band radio (on the left) and the Anywaves S-band
TT&C antenna (on the right). [24]

The selected S-band radio is the Syrlinks EWC31 model, shown on the left
in Fig. 1.8. It is a flight-proven model, with integrated diplexer and capable of

8
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operating in the 2200-2290 MHz frequency range (transmission) and the 2025-2110
MHz range (while receiving). The data rate can be in the range from 8 to 512 kbps,
and the output power can be in the range from 27 to 36 dBm. The mass is 0.17
kg, the volume is 0.4U and the rated input power is 2 W. [24]

For what concerns the antenna, the Anywaves S-Band TT&C antenna has been
currently selected. It is a patch antenna with strong flight heritage, with full duplex
telemetry & telecommand capabilities. It can operate in a frequency range from
2025 to 2290 MHz, at a bandwidth higher than 265 MHz. It has a peak boresight
gain of 6.5 dBi and a size of 84.3x84.3x12.1 mm. The mass is 0.139 kg and it can
operate at temperatures between -120 and +120 ºC. [24]

1.7 Structures and Mechanisms
This part shortly elaborates on the design choices made for the structural elements,
the CubeSat deployer, and the spacecraft mechanisms.

For the 16U CubeSat structure, it is selected the fully qualified 16U structure
provided by EnduroSat, previously shown in Fig. 1.5. This structure is fully built in
Aluminium 6082 with hard-anodized surface and offers lightweight characteristics,
with mass not higher than 3 kg. Some modifications to the available component
structure will likely need to be made, especially to accommodate the main propul-
sion unit and the deployable antenna payload in the bottom 4U of the structure.
[24]

The deployer selection will mainly depend on the finalized mass budget for
the 16U4SBSP spacecraft, as obtained from the more detailed spacecraft design
performed during Phases A and B. Two options are possible in this respect:

• final mass budget < 32 kg: the 16U QuadPack dispenser from ISISpace,
shown on the left in Fig. 1.9;

• final mass budget between 32 kg and 36 kg: EXOpod NOVA 16U S1 dispenser
from ExoLaunch, shown on the right in Fig. 1.9.

For the solar panel tracking mechanism, three main mechanisms are included
in the architecture.

• the solar arrays deployment mechanism

• the payload antenna deployment system

• the solar panel tracking mechanism (or SADA, Solar Array Drive Assembly).

Based on these requirements, the µSADA system produced by the company
IMT has been selected for the 16U4SBSP spacecraft. The IMT µSADA system is
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Figure 1.9: The ISISpace 16U QuadPack dispenser (on the left) and the EXOpod NOVA
16U S1 dispenser (on the right). [24]

based on a pointing mechanism with ± 0.3 deg pointing accuracy and full 180deg
rotation capabilities of both wings in both directions, with power consumption of 0.5
W when pointing and 0.1 W in standby. It also offers a simultaneous deployment
function for the two solar array wings, requiring a total power of 4.5 W during
deployment, and can therefore also be used as solar arrays deployment mechanism.
[24]

1.8 Thermal Control

A preliminary thermal analysis for the 16U4SBSP spacecraft is performed in chapter
5. The analysis is focused on a simplified single-node steady-state balance for the
whole spacecraft, to predict the range of temperatures expected during operation
and define a coating strategy on the external surface of the spacecraft for passive
thermal control. In addition, it is conducted the definition of a strategy and sub-
system design for dissipating the significant amount of heat produced by the payload
during the power beaming phase.

In chapter 5, the passive coating thermal control selected is described. In ad-
dition to the passive coating, 5 active heaters are included in the spacecraft to
be strategically placed to the most critical sub-systems and components for active
thermal control in emergency or non-ideal conditions. [24]

Regarding the payload heat management, the maximum heat energy to be dis-
sipated is equal to 22,06 Wh, and the total power of 132,4 W has to be dissipated.
After careful consideration, the option of using radiators has been discarded. Dis-
sipating such a large amount of power would require a deployable radiator, which
poses significant reliability risks.

Therefore, the final selected solution is the phase-change material. This ma-
terial stores the dissipated energy as latent heat, which is then gradually released
during the eclipse phase of the orbit. This approach not only manages the en-
ergy dissipation effectively but also helps mitigate the cold conditions experienced
during the eclipse. The material selected for a preliminary design is Tetracosane
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(C24H50), a paraffin characterized by a good compromise between melting tempera-
ture (50.6◦C) and latent heat for melting (255 kJ/kg). The amount of Tetracosane
required to dissipate the heat energy is 0,312 kg, which translate to a volume of
the payload heat management box equal to 0,584 U. The external part of the box
is assumed to be made of aluminium with 2 mm wall thickness; including also in
this case a 50% margin to take into account any additional aluminium elements,
including the internal fins/protrusions for better heat distribution, this leads to a
mass of 0.490 kg for the aluminium elements in the box, and a total mass of 0.802
kg for the full payload heat management box. [24]

1.9 Command and Data Handling

The selected onboard computer shown in Fig. 1.10, the FERMI from Argotec,
is originally designed for deep-space CubeSat missions, which allows for superior
properties in terms of radiation hardening. The rated power consumption is slightly
higher than 5 W, for a total mass of 534 g and 0.4U volume. The CPU features
a dual-core processor with a wide range of available data interfaces and supply
voltages. This onboard computer features a dedicated on-board software including,
among other features, a built-in support for FDIR functions. A total of 16 GB are
available as embedded mass memory. [24]

Figure 1.10: The Argotec FERMI onboard computer. [24]

1.10 Spacecraft Configuration

This part presents the final configuration of the 16U4SBSP spacecraft (as resulting
from the design choices presented in the previous parts). Figures from 1.11 to
1.17 present in detail the spacecraft configuration. The main highlights of this
configuration can be summarized as follows:

• One 4U side of the spacecraft (the side looking at nadir direction in power
beaming mode) is fully used by the payload (deployable antenna + payload
electronics at the center of the 4U unit), with the payload heat management
box based on phase change material placed on top of the payload electronics.
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• The opposite 4U side of the spacecraft (the side looking at zenith direction in
power beaming mode) is fully used by the main propulsion system, centered
with the nominal axis of the spacecraft, and the two RCS modules, on two
opposite sides of the main propulsion unit.

• The two star trackers are on two opposite lateral sides of the spacecraft,
placed in oblique direction with respect to the body-fixed reference frame to
minimize straylight effects from the Sun.

• The first S-band antenna (for ground communication) is placed on the space-
craft side looking at nadir direction in power beaming mode, immediately un-
derneath the payload electronics; the other S-band antenna (for inter-satellite
communication) is placed on one of the side faces of the spacecraft.

• The GNSS antenna is placed in a corner of the spacecraft side looking at
zenith direction.

Figure 1.11: 16U4SBSP spacecraft with cover panels, solar array wings deployed.[24]
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Figure 1.12: 16U4SBSP spacecraft without cover panels, solar array wings deployed.[24]

Figure 1.13: X-/Y- view of the 16U4SBSP spacecraft without cover panels and solar array
wings.[24]

Figure 1.14: X+/Y- view of the 16U4SBSP spacecraft without cover panels and solar
array wings.[24]
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Figure 1.15: X+/Y+ view of the 16U4SBSP spacecraft without cover panels and solar
array wings.[24]

Figure 1.16: X-/Y+ view of the 16U4SBSP spacecraft without cover panels and solar
array wings.[24]

Figure 1.17: Z- view of the 16U4SBSP spacecraft without cover panels and solar array
wings.[24]
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Chapter 2

Dynamical Model

In this chapter, we shall examine in some detail the motion of a spacecraft around a
celestial body. At any given time in its journey, the spacecraft is subject to several
masses and may be experiencing external perturbations other than gravitational
ones. The trajectory is described by the following differential equation: [6]

¨⃗r = −G(M +m)
r⃗

r3
+ p⃗ (2.1)

where G is the universal gravitational constant, M is the mass of the central
body, m is the mass of the spacecraft, r⃗ is the position vector of the spacecraft
relative to the central body, and p⃗ is the acceleration due to the perturbations. The
first term of equation (2.1) refers to the Keplerian Orbits, they are the close-form
solutions of the two-body equation of relative motion. Propagating the Keplerian
Orbits means assuming that there are only two objects in space and that their
spherically symmetric gravitational fields are the only source of interaction between
them. Since this equation will be used to analyze the motion of satellites orbiting
about the Sun, the mass of the orbiting body m will be much less than that of the
Sun M . Hence, it is convenient to define the parameter µ called the gravitational
parameter: [6]

µ = GM r̈ = −µ
r

r3
+ p (2.2)

In this chapter, we consider a few perturbation accelerations that cause the
motion to deviate from a Keplerian orbit. The most significant perturbations are
the ones due to non-spherical central body, atmospheric drag and solar radiation
pressure.
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2.1 Gravitational Perturbation
The Earth’s shape deviates from a perfect sphere and is better described as an
oblate ellipsoid, with greater mass concentrated around the equator rather than
the polar regions. This non-uniform mass distribution results in various orbit per-
turbations and precessions.[6] Additionally, the Earth’s non-homogeneous mass dis-
tribution leads to small irregular variations in the planet’s gravity field, contributing
to the complexities of gravitational interactions.

A typical starting point is to write the actual gravity potential as:[6]

V (r) = V0(r)−R(r) (2.3)

where V0(r) is the reference potential, typically the dominant point mass potential
and R(r) is the potential function due to all other variations from the spherical
homogenous idealization of the Earth’s mass distribution. [12]

Assuming that the Earth has an arbitrary shape and composition as shown in
the figure below

Figure 2.1: Gravity potential of an arbitrary body using cartesian coordinates
[12]

the coordinate system C : {̂iξ, îη, îζ} is fixed with the body. The coordinate
origin is not necessarily fixed to the center of mass at this point. The aim is
to determine the gravitational potential that a spacecraft would experience at an
arbitrary point P outside the body. [12]

The finite body can be considered as the sum of an infinite number of infinites-
imal mass components dm. Each component is infinitesimal and it produces an
elementary point differential mass gravitational field. The gravitation field dV at
point P due to the differential mass dm is then given by [12]

dV = −G dm

s
(2.4)

where s is the magnitude of the relative position vector between dm and P .
While using the relative position vector s to express the infinitesimal potential field
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2.1 – Gravitational Perturbation

of dm, it is necessary to integrate this result to obtain the total gravitational field.
This integration is simplified if we express all vectors in the body fixed frame C.
[12] Hence

s = r − ρ (2.5)

Note s2 = s · s = r2+ρ2−2ρ · r, leading to the law of cosines; the scalar relative
distance s is then expressed as

s = r

(
1 +

(ρ
r

)2
− 2

(ρ
r

)
cosγ

) 1
2

(2.6)

Substituting Eq.(2.6) into Eq.(2.4), the gravitational potential of dm is ex-
pressed as

dV (r, ρ, γ, dm) = − Gdm

r
(
1 +

(
ρ
r

)2 − 2
(
ρ
r

)
cosγ

) 1
2

(2.7)

The next step is to integrate the gravitational potential field of the entire body,
but we can simplify these calculations by using the Legendre polynomials Pk(ν)

which are a set of orthogonal polynomials. Taking (1−2νx−x2)−
1
2 , we can expand

it using the binomial theorem and then collect on xk. [12] It leads to

(1− 2νx− x2)−
1
2 =

∞∑
k=0

Pk(ν)x
k (2.8)

By Eq. (2.8) it is possible to deduce recursively the first four Legendre polyno-
mials, given by

P0(ν) = 1 (2.9a)

P1(ν) = ν (2.9b)

P2(ν) =
(3ν2 − 1)

2
(2.9c)

P3(ν) =
(5ν3 − 3ν)

2
(2.9d)

These polynomials satisfy the zero mean condition and the orthogonality condition.[12]
They had been obtained by applying the recursive formula[12]

Pn+1(ν) =
2n+ 1

n+ 1
νPn(ν)−

n

n+ 1
Pn−1(ν) (2.10)

Now it is easier to use the Legendre identity in Eq. (2.8) and to rewrite the
gravitational potential of dm as an infinite sum

dV (r, ρ, γ, dm) = −G dm

r

∞∑
k=0

(ρ
r

)k
Pk(cosγ) (2.11)
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It is assumed that the ratio ρ/r is less than one, which means that the point of
interest P is outside of the body.

Finally, it is possible to integrate over the entire body. By doing that, the
dependence on ρ, γ and dm is lost. We obtain a general solution of the gravitation
potential field of an arbitrary body B [12]

V (r) = −Gm

r
− G

r

∞∑
k=1

∫ ∫ ∫
B

(ρ
r

)k
Pk(cosγ)dm (2.12)

This approach applies to a body of any shape and density variation, with the
only limitation being that the coordinate system C is fixed within the body. It
is noticeable that using the Legendre polynomials in the infinite series expression
allows us to break down the gravity field components as a series of less relevant
contributions. Thanks to the condition ρ/r < 1, the contribution of the k-th
element, which is multiplied by (ρ/r)k, goes to zero as k grows infinitely large. As
r −→ ∞, in Eq. (2.12) the first term is the most relevant. Hence, as the distance
r increases, the potential of any arbitrary body converges towards that of a point
mass. [12]

There are various methods to model the gravitational potential field. For ex-
ample, MacCullagh’s approximation uses the body inertias. In this analysis, we
use the spherical harmonic gravity potential method which describes the gravity
potential field in terms of a spherical harmonic series. [17]

Given an arbitrary body, it is possible to express the gravity potential in terms
of spherical coordinates. The infinitesimal body mass position can be written as
ρ⃗ = ρ⃗(ρ, λ, β). In the same way, the position vector of the point P is written as
r⃗ = r⃗(r, θ, ϕ). The angle γ is the one between ρ⃗ and r⃗ position vectors. [12]

For the arbitrary body B, the general gravity potential field expression is:

V (r) = −Gm

r
− G

r

∞∑
k=1

∫ ∫ ∫
B

(ρ
r

)k
Pk(cosγ)dm (2.13)

It is possible to express the differential mass element dm using the body-fixed
spherical coordinates ρ, λ and β

dm = D(ρ, λ, β)ρ2cosβ dρ dβ dλ (2.14)

with D = D(ρ, λ, β) being the local density of the arbitrary body B. [12] We
can use the spherical trigonometric law of cosines

cosγ = sinϕ sinβ + cosϕ cosβ cos(θ − λ) (2.15)
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Making use of the associated Legendre Functions [2] will simplify the develop-
ment of the gravitational spherical harmonic series.

P j
k (ν) = (1− ν2)

1
2
j dj

dνj
(Pk(ν)) (2.16)

The parameter j is referred to as the order of the associated Legendre function,
while k is referred to as the degree. Note that zeroth-order associated Legendre
functions are the Legendre polynomials. [12]

P 0
k (ν) ≡ Pk(ν) (2.17)

Furthermore, since Pk(ν) is a polynomial expression of degree k, then it must
be true that

P j
k = 0 ∀j > k (2.18)

The associated Legendre functions for Legendre polynomials up to third degree
as explicitly given as:

P 1
1 (ν) =

√
1− ν2 P 1

2 (ν) = 3ν
√
1− ν2 P 1

3 (ν) =
3

2

√
1− ν2(5ν2−1) (2.19a)

P 2
2 (ν) = 3(1− ν2) P 2

3 (ν) = 15ν(1− ν2) (2.19b)

P 3
3 (ν) = 15(1− ν2)

3
2 (2.19c)

For our analysis, we set ν = sinα. Hence, the corresponding associated Legen-
dre functions up to the second degree are [12]

P 1
1 (sinα) = cos α (2.20a)

P 1
2 (sinα) = 3 sinα cos α (2.20b)

P 2
2 (sinα) = 3 cos2 α (2.20c)

Next step is to notice that the first Legendre polynomial can now be written in
terms of associated Legendre functions by making use of the spherical trigonometric
identity in Eq. (2.15).

By performing all the calculations, the following formula of the gravitational
potential field is obtained, expressed in terms of spherical coordinates as

V (r, ϕ, θ) = −Gm

r
−

∞∑
k=1

1

rk+1

(
AkPk (sinϕ)

+
k∑

j=1

P j
k (sinϕ)

(
Bj

kcos jθ + Cj
ksin jθ

)) (2.21)
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where the coefficients Ak are named zonal harmonics, Bj
k and Cj

k are named
sectorial harmonics. [12]

For the case of a body with rotational symmetry, the gravitational potential
field function V is expressed as the sum of the point mass contribution and the
zonal harmonics. [12]

V (r, ϕ) = −Gm

r
−

∞∑
k=2

1

rk+1
AkPk (sinϕ) (2.22)

Note that the mass distribution is not changed when a symmetric body rotates
about its symmetry axis, so the rotation of this body about the symmetry axis
does not affect the gravity field. Therefore, the Earth rotation does not change
the gravity field if rotational symmetry is assumed. This greatly simplified the
equations of motion. [12]

The conventional definition in orbital mechanics for the zonal gravitational har-
monics is [12]

Jk = −Ak

rkeq
(2.23)

with req is the equatorial radius of the body B. So now the gravity potential V
can be expressed as its most famous form:

V (r, ϕ) = −Gm

r

[
1−

∞∑
k=2

(req
r

)k
JkPk sinϕ

]
(2.24)

From this equation, it can be noted that as the point P moves away from the
body B (i.e. r → ∞), the effect of the zonal harmonics quickly lowers to zero. [12]

The value of Jk are tipically obtained by observing the motion of a satellite about
the body and then extracting these harmonics through an estimation method. It is
impossible to obtain values for Jk through integration of its analytical expression
due to the inaccurate knowledge of the Earth’s mass distribution D(ρ, λ, β). For
the Earth, the first six zonal harmonics are: [17]

J2 = 0.00108263

J3 = −2.33936(10−3)J2

J4 = −1.49601(10−3)J2

J5 = −0.20995(10−3)J2

J6 = 0.49941(10−3)J2

The J2 harmonic refers to the oblateness perturbation and it is the dominant
harmonic.It is the cause of a highly noticeable precession of the near-Earth satellite
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orbits. In this analysis it is considered the perturbations from J2 to J4. At this
point, we can set µ = Gm.

The gravitational perturbation function R(r) is given by [12]

R(r⃗) =− J2
2

µ

r

(req
r

)2
(3sin2ϕ− 1)

− J3
2

µ

r

(req
r

)3
(5sin3ϕ− 3sinϕ)

− J4
8

µ

r

(req
r

)4
(35sin4ϕ− 30sin2ϕ+ 3)

(2.25)

Then, the gradient of R(r⃗) is computed to obtain the perturbing acceleration
a⃗ji due to Ji, in terms of inertial cartesian coordinates a⃗ = −∇R(r⃗). It is used
z/r = sinϕ :

a⃗J2 = −3

2
J2

( µ

r2

)(req
r

)2

(
1− 5

(
z
r

)2) x
r(

1− 5
(
z
r

)2) y
r(

3− 5
(
z
r

)2) z
r

 (2.26)

a⃗J3 = −1

2
J3

( µ

r2

)(req
r

)3


5
(
7
(
z
r

)3 − 3
(
z
r

))
x
r

5
(
7
(
z
r

)3 − 3
(
z
r

))
y
r

3
(
10
(
z
r

)2 − 35
5

(
z
r

)4 − 1
)
 (2.27)

a⃗J4 = −5

8
J4

( µ

r2

)(req
r

)4

(
3− 42

(
z
r

)2
+ 63

(
z
r

)4) x
r(

3− 42
(
z
r

)2
+ 63

(
z
r

)4) y
r

−
(
15− 70

(
z
r

)2
+ 63

(
z
r

)4) z
r

 (2.28)

[12]

2.2 Atmospheric Drag
The atmospheric drag poses a significant challenge to spacecraft trajectories, partic-
ularly at lower altitudes. On Earth, a 99.9999% of the atmosphere is concentrated
below an altitude of 100 km. [6] This dense lower atmosphere exerts a substan-
tial drag on spacecraft, necessitating careful trajectory and thermal management
strategies.

The effects of atmospheric drag are manifold. Not only does it reduce the space-
craft’s velocity and altitude, but it also generates intense heat through aerodynamic
heating. This phenomenon can lead to temperatures exceeding 2000◦C [6], posing
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a grave risk of thermal damage and even complete incineration if the spacecraft
lacks adequate thermal protection systems. Therefore, mitigating the impact of
atmospheric drag is paramount for the safety and success of space missions.

The atmosphere has been modelized by various numerical models, describing
how the temperature, pressure and density change across different ranges of alti-
tude. In this analysis, it has been taken into account the USSA76, US Standard
Atmospherere 1976 (NOAA/NASA/USAF, 1976) [1]. This model provides the at-
mospheric density profile from sea level to an altitude of 1000 km, as shown in Fig.
2.2.

Figure 2.2: USSA76 Atmospheric density versus altitude

This figure is obtained by selecting the density ρi at 28 altitudes zi in the
USSA76 table. Then, these values are interpolated with the exponential functions:[6]

ρ(z) = ρi · e−
(z−zi)

Hi (2.29)

where zi ≤ z < zi+1 and Hi = (zi+1 − zi)/ln(ρi+1/ρi).
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2.3 – Solar Radiation Pressure

According to USSA76, the atmosphere is conceptualized as a spherically sym-
metrical gaseous envelope spanning 1000 kilometers around the Earth. Its charac-
teristics remain constant and reflect a state of moderate solar activity. The hypo-
thetical changes in properties with altitude approximate the year-round conditions
at mid-latitudes, averaged over multiple years. While the model offers realistic at-
mospheric density values, they may not precisely align with actual observations at
specific locations or times.

In order to evaluate the effect of this perturbation, it is necessary to start with
the calculation of the spacecraft velocity relative to the atmosphere [6]

v⃗rel = v⃗ − v⃗atm (2.30)

where v⃗ is the inertial velocity of the spacecraft and v⃗atm is the velocity of
the atmosphere in that point. [6] The atmosphere rotates with the Earth with an
angular velocity ωE relative to the geocentric equatorial frame. Therefore v⃗atm =
ω⃗E × r⃗.

v⃗rel = v⃗ − ω⃗E × r⃗ (2.31)

Keeping in mind that the drag acts in the opposite direction to the relative
velocity of the object, it is possible to say that:

D⃗ = −Dv̂rel (2.32)

where v̂rel is the unit vector in the direction of the relative velocity, and

D =
1

2
ρv2relCDA (2.33)

where A is the frontal area of the spacecraft (the area normal to the relative
velocity vector) and CD is the dimensionless drag coefficient.

It is easy to find the perturbing acceleration from the drag force as p⃗ = D⃗/m
with m the spacecraft’s mass

p⃗ = −1

2
ρvrel

(
CDA

m

)
v⃗rel (2.34)

2.3 Solar Radiation Pressure
The solar radiation is composed of photons, which are elementary particles made
of waves of electromagnetic radiation. The photons are massless and they travel at
the speed of light (c = 2.998 · 108m/s)[18]. They have an energy and a momentum
that are not equal to zero, even though their mass is zero. The energy (in Joules)
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of a photon is hf , where f is the frequency of its electromagnetic wave (in Hertz),
and h is the Planck constant (h = 6.626 · 10−34J · s). The momentum of a photon
is hf/c, its energy divided by the speed of light.

The light that illuminates the spacecraft is the one coming from the visible
surface of the Sun, the photosphere. It acts like a blackbody emitting radiation,
spanning from low-energy radio waves on up the visible spectrum and beyond to
high-energy ultraviolet light and X-rays. For studying the intensity of the radiation,
it is useful to consider the Stefan-Boltzmann law [6]

S = σT 4 (2.35)

where σ = 5.670 · 10−8 W/m2K4 is the Stefan-Boltzmann constant, T is the
temperature of the blackbody. The photosphere has a temperature of T = 5777K,
so the intensity radiated from the Sun is :

S0 = 5.670 · 10−8(5777)4 = 63.15 · 106 W/m2 (2.36)

To evaluate the intensity of solar radiation that reaches the satellite it is neces-
sary to consider the radius of photosphere R0 and the distance of the Sun’s center
from the satellite Rsat [6]

S = S0

(
R0

Rsat

)2

(2.37)

The distance from the satellite to the center of the Sun changes over time. In
order to calculate Rsat, it is essential to know the exact position of the Sun, as
explained in section 2.3.1.

The photosphere’s radius is R0 = 696000 km. Rsat can be calculated by

R⃗sat = R⃗sun − R⃗ (2.38)

where Rsun and R are the positions of the Sun and the satellite in the geocentric
equatorial frame.

S is the energy flux (energy per unit time per unit area) transported by photons
across a surface normal to the radiation direction. In order to find the momentum
flux, which is the solar radiation pressure PSR, it is necessary to divide S by the
speed of light [6]

PSR =
S

c
(2.39)

Let’s assume that the spacecraft is a sphere of radius R, adopting the cannonball
model. Then the perturbing force F⃗ on the satellite due to the radiation pressure
S
c

is

F⃗ = −µ
S

c
CRASC û (2.40)
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where û is the unit vector pointing from the satellite toward the Sun. [6] The
negative sign indicates that the solar radiation force is directed outward from the
Sun. ASC is the absorbing area of the spacecraft, which is πR2 for the cannonball
model. ν is the shadow function, which has the value 0 if the satellite is in the
Earth’s shadow; otherwise ν = 1. CR is the radiation pressure coefficient, which lies
between 1 and 2. When the surface acts as a blackbody, absorbing all momentum
from the incident photon stream, the value of CR is 1 and it raises the pressure
described in Eq. (2.39). When CR equals 2, all incident radiation is reflected,
reversing the direction of incoming photon momentum and thereby doubling the
force exerted on the satellite. [6]

Being m the mass of the satellite, then the perturbing acceleration p⃗ due to
solar radiation di F⃗ /m or

p⃗ = −pSRû (2.41)

where the magnitude of the perturbation is

pSR = ν
S

c

CRASC

m
(2.42)

As shown in Eq.(2.42) the magnitude of solar radiation pressure perturbation
depends on the satellite’s area-to-mass ratio ASC/m. This mean that satellite that
are very large but with very low mass (such as solar sails) are the most affected by
solar radiation pressure. The solar radiation pressure influences the most at higher
orbital altitudes, where the atmospheric drag is comparatively negligible. [6]

2.3.1 Solar Position

As previously discussed, it is fundamental to know the solar position at which the
analysis is performed. This helps us to evaluate the distance satellite-sun and to
estimate the shadow factor ν. The date of the analysis can be translated to a
Julian Day number. The Julian Day number is the number of days since noon
UT on January 1, 4713 BCE. The origin of this timescale is placed in ancient
times so we need not deal with positive and negative dates, except for prehistoric
events. The Julian day count is a continuous and uniform count of days, without
any consideration for leap years or different numbers of days in different months.
The number of days between two events is found by simply subtracting the Julian
day of one from that of the other. [6]

J0 is the symbol for the Julian day number at 0h UT (that is halfway into the
Julian day), at any other UT the Julian day is given by [23]

JD = J0 +
UT

24
(2.43)
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There exist many different algorithms and tables for obtaining the value of J0
from the ordinary year (y), month (m) and day (d). The one used in this analysis
can be found in Boulet (1991) [3], it consists of the formula:

J0 = 367 y−INT

{
7
[
y + INT

(
m+9
12

)]
4

}
+INT

(
275 m

9

)
+d+1 721 013,5 (2.44)

where y, m and d are integers lying in the following ranges:

1901 ≤ y ≤ 2099

1 ≤ m ≤ 12

1 ≤ d ≤ 31

INT (x) means retaining only the integer portion of x, without rounding. [23]
From the number JD corresponding to the date of the analysis, it is possible

to calculate the Solar position. To do that, let’s start with the evaluation of the
obliquity ε and solar ecliptic longitude λ, both of them appear into the expression
for the unit vector pointing at the position of the Sun û. [23]

According to the The Astronomical Almanac [25] the apparent solar ecliptic
longitude (in degrees) is given by the formula

λ = L+ 1.915◦sinM + 0.0200◦sin2M (0◦ ≤ λ ≤ 360◦) (2.45)

where L and M are, respectively, the mean longitude and the mean anomaly of
the Sun, both in degrees

L = 280.459◦ + 0.98564736◦ n (0◦ ≤ L ≤ 360◦) (2.46)

M = 357.529◦ + 0.98560023◦ n (0◦ ≤ M ≤ 360◦) (2.47)

n is the number of days since JD2000,

n = JD − 2 451 545.0 (2.48)

The above formulas for L, M and λ may deliver angles outside the range 0◦ to
360◦. In those cases, the angle has to be reduced by appropriate multiples of 360◦
. [25]

The obliquity in degrees is

ε = 23.439◦ − 3.56(10−7)n (2.49)

Finally, the distance rs from the Earth to the Sun is

rs = (1.00014− 0.01671 cosM − 0.000140 cos2M)AU (2.50)

where AU is the astronomical unit (1 AU = 149 597 870.691km).
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2.3.2 Shadow Function

In the formula of the solar radiation pressure’s vector, it appears the shadow func-
tion. It has the value of ν = 0 if the satellite is in the Earth’s shadow; otherwise
ν = 1. [6]

Therefore, it is necessary to evaluate the shadow function at every time of the
orbit propagation. It is noticeable, indeed, that if the satellite is not receiving solar
illumination then it will not be vulnerable to perturbations due to solar radiation
pressure. [6]

To estimate when the satellite condition of illumination, we can use the following
simple procedure. [29]

Figure 2.3: a) Situation of satellite in shadow. b) Situation of satellite in light. [6]

Let’s consider two object A and B, orbiting around a central body of radius R.
In this case, A and B will be the satellite and the Sun, while the central body will
be the Earth. The two position vectors r⃗A and r⃗B define a plane, represented in
Fig.2.3. The angle θ between the two position vectors may be found from the dot
product operation. [29]

θ = cos−1

(
r⃗A · r⃗B
rArB

)
(2.51)
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In the Fig.2.3 two points of tangency to the Earth’s circumference are displayed,
T1 and T2. The radii OT1 and OT2 along with the tangent lines AT1 and BT2 and
the position vectors r⃗A and r⃗B comprise the two right triangles OAT1 and OBT2.
The angles at the vertex O of these two triangles are obtained from [29]

θ1 = cos−1

(
R

rA

)
θ2 = cos−1

(
R

rB

)
(2.52)

Therefore, if the line AB intersects the central body (as in Fig.2.3-a), it means
there is no line of sight and that the satellite is not illuminated. [29]

θ1 + θ2 < θ → ν = 0 (2.53)

Meanwhile, if the line does not intersect the central body, it means that the
satellite is illuminated by the Sun. [29]

θ1 + θ2 ≥ θ → ν = 1 (2.54)
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Chapter 3

Satellite Formation in Heliotropic
Orbit

The scope of the 16U4SBSP mission is to demonstrate the feasibility of Space-
Based Solar Power (SBSP) using CubeSats in a distributed swarm configuration
from Earth orbit. The mission aims to validate with a small-scale mission the
beamforming power transmission model developed by the consortium and, in this
way, confirm that it is feasible and convenient to provide SBSP by means of a larger
constellation of spacecraft (larger both in terms of number and size). This concept
uses seven 16U CubeSats in order to deliver 1kW-scale wireless energy via radio-
frequency (RF) beaming. The transmission can be utilized for both space-to-ground
and space-to-space applications.

Using the technology of SBSP can be a fundamental key in time of crisis. More
frequent critical events had forced us to search for emergency backup power sources.
Industries, household and hospitals may be forced to go out of service at any time,
leading to economic and social losses. Space-based emergency supply systems, as
aimed by the intended mission concept, shall in the short-term provide a sustain-
able, flexible and redundant solution to the above mentioned problems.

Therefore, for this application the power supply is primarily needed at night,
in order to complement ground-based solar arrays. Indeed the types of orbit which
offer significant advantages for this case are the ones that have a fixed orientation
with respect to the Sun. The types of orbit that have been taken into account are:
Sun-synchronous and Heliotropic orbit.

The Sun-synchronous orbit is a near-polar orbit type that allows a satellite to fly
over a specific point on Earth’s surface at the same local solar time. [7] This trait is
attained by maintaining a precise inclination and altitude, causing the orbit’s Right
Ascension of the Ascending Node (Ω) to precess at the same rate as Earth orbits
around the Sun, thereby synchronizing with the solar cycle. The choice of this
type of orbit for the mission can maximizes illumination during operational periods
and minimizes the energy storage requirements, as the satellites are strategically
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positioned to efficiently leverage sunlight.
In the following section, an analysis of the stability of CubeSat formations in

a heliotropic orbit will be presented to determine if this orbit could be a better
solution than a Sun-synchronous orbit.

3.1 Heliotropic Orbit

Solar radiation pressure (SRP) and the uneven distribution of gravitational forces
from the central body are among the most significant disturbances affecting the
orbital dynamics of spacecraft. Various strategies have been devised to maintain
stable spacecraft orbits, depending on whether SRP or gravitational irregularities
predominate at the given altitude. In cases where solar radiation pressure is the
primary factor, potential orbit options include terminator orbits, equatorial Sun-
frozen orbits, and quasi-terminator orbits.[8] Conversely, when the central body’s
gravitational irregularities are more influential, Sun-synchronous orbits and pre-
cessing orbits are among the solutions of interest.[8] Additionally, for situations
where an irregular gravity field dominates, frozen orbits and body-fixed periodic
orbits become particularly relevant.[8]

Sun-frozen and Heliotropic orbits are two orbital categories that can take advan-
tage of strong solar radiation pressure and body oblateness perturbations. These
two groups of orbit overlap: Heliotropic orbit situated in the equatorial plane are
Sun-frozen. [8]

Commonly, a frozen-eccentricity orbit requires that the eccentricity vector be
constant in time. [29] At the same way, a Sun-frozen orbit requires that the eccen-
tricity vector is constant with respect to the Sun line.

Heliotropic orbits typically display eccentricity, with their periapsis positioned
on the opposite side of the Sun from the body. Conversely, Antiheliotropic orbits
have their periapsis directed toward the Sun. These orbits are characterized by an
eccentricity selected to ensure that the combined effects of solar radiation pressure
and oblateness perturbations result in the average alignment of the orbit’s apoapsis
toward the Sun. The fundamental characteristics of a Heliotropic orbit are repre-
sented in Fig.3.1. Heliotropic orbits belong to a category of orbits that was initially
identified during the examination of the dynamics of planetary dust orbits, with
the term coined specifically within the study of Saturnian ring dynamics. [8]

The analysis of the Heliotropic solution begins by examining the secular varia-
tion of the line of nodes and the line of apsides due to Earth’s oblateness. In this
chapter, the identification of Heliotropic orbits is limited to gravitational effects,
considering only the J2 term. [30] However, a comprehensive analysis would require
including higher harmonic terms and solar pressure. Thus, this analysis provides
an initial indication of potential solutions for identifying Heliotropic orbits.
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3.1 – Heliotropic Orbit

Figure 3.1: Heliotropic orbit definition
[8]

The secular variations of the right ascension of the ascension of the ascending
node and the argument of the perigee due to J2 can be written as: [29]

Ω̇ = −3nR2
EJ2

2p2
cos i (3.1)

ω̇ =
3nR2

EJ2
4p2

(
4− 5sin2i

)
(3.2)

By combining Eqs. 3.1 and 3.2 it is found the simple Sun-Synchronous condition:

∆SS =
3nR2

EJ2
4p2

(
4− 5sin2i

)
− 3nR2

EJ2
2p2

cos i− 2π

PE

= 0 (3.3)

Eq. 3.3 is valid for prograde orbits, i.e. with an inclination from 0◦ to 90◦. For
retrograde orbits, the helio-synchronicity condition reads:

∆SS = −3nR2
EJ2

4p2
(
4− 5sin2i

)
− 3nR2

EJ2
2p2

cos i− 2π

PE

= 0 (3.4)

In the following, the term heliotropic will be used to identify orbits that satisfy
conditions 3.3 or 3.4.

Figure 3.2 shows the level curves of ∆SS. It has been assumed a constant perigee
at an altitude of 500 km, the graph represents curves for different inclinations and
altitudes of the apogee. The red curves, corresponding to ∆SS = 0, signify the
Heliotropic orbits.

Initially, the analysis focuses on a Heliotropic orbit with a perigee altitude of
500 km. This selection facilitates a more convenient comparison and allows for a
trade-off with the 500 km circular Sun-synchronous orbit.

31



Satellite Formation in Heliotropic Orbit

Figure 3.2: Heliotropic resonant solutions for a perigee altitude of 500 km

Using Figure 3.2 as a reference, it has been possible to select a specific combi-
nation of inclination and apogee’s altitude within the family group of Heliotropic
orbits (red line in the graph) that fulfills the conditions outlined Eqs. 3.3 or 3.4.

The possible range of inclinations spans from about 0◦ to 40◦ and from 90◦

to 130◦. The equatorial plane has been discarded because of the lack of Ground
Station in those areas. Indeed, it is more convenient to select a polar inclination,
because there are more Ground Stations available and because this choice leads to
an easier comparison to the other candidate orbit. Therefore, the classical orbital
elements, described in Tab.3.1, were selected to define the chosen Heliotropic orbit.

Perigee radius rp 6 878 km
Apogee radius ra 16 903,20 km
Semimajor axis a 11 890,6 km
Inclination i 97,4014 ◦

RAAN Ω 0 ◦

omega ω 0 ◦

theta θ 0 ◦

Table 3.1: Classical orbital parameters defining the chosen Heliotropic orbit
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Defining the spacecraft’s characteristics is crucial for propagating the dynamical
model. In this analysis, the spacecraft’s shape is approximated using the "Can-
nonball Model"[19] . This simplification offers the easiest way to estimate solar
radiation pressure and drag perturbations. Widely adopted in preliminary mission
analysis (Phase 0/A), this model provides a first-order estimation of these per-
turbations’ impact. It treats the spacecraft’s shape as a sphere with a constant
reflectivity coefficient and drag coefficient along its surface.

In Tab. 3.2, the main characteristics of the spacecraft are summarized.

Drag Coefficient CD 2,2
Reflectivity Coefficient CR 1,2
Area/mass ratio A/m 0,02 m2/kg

Table 3.2: Characteristics of the approximated sphere-shaped spacecraft

The orbit can be represented in the ECI frame as shown in Fig. 3.3, the Earth-
Centered Inertial reference frame. This reference frame does not rotate with the
Earth but maintains a fixed orientation relative to distant stars. [14] The origin
of the ECI frame is located at the Earth’s center of mass and is composed of
three orthogonal axes. The x-axis is aligned with the vernal equinox, providing
a fixed direction in space that intersects both the Earth’s equatorial plane and
the ecliptic plane. The y-axis extends perpendicularly from the x-axis within the
equatorial plane, pointing east. The z-axis is perpendicular to the Earth’s equatorial
plane, extending towards the North Pole, thus completing a right-handed coordinate
system.

At this point, it is crucial to determine whether this orbit is stable or if it will
decay within the mission’s duration (approximately 180 days). To assess this, we
utilize the dynamical model described in Chapter 2, which accounts for perturba-
tions due to atmospheric drag, solar radiation pressure, and Earth’s oblateness.
Running the analysis for 180 days, the resulting graph shown in Fig. 3.4 illustrates
the evolution of the perigee and apogee’s altitudes. From Fig. 3.4, it is evident
that the altitudes of both the perigee and apogee remain quite constant and do not
decay. This provides valuable insight into the stability of the orbit for a generic
spacecraft.

Furthermore, it is useful to have a basic understanding of the magnitude of
the perturbations that act upon the spacecraft in the selected Heliotropic orbit. In
Fig.3.5 is shown how the three main perturbations analyzed act in each of the three
directions of the RTN frame [4]. The Radial-Tangential-Normal (RTN) reference
frame offers a localized view of object motion in orbit around the Earth. This frame
is used for describing the relative motion of satellites; its axes are oriented based on
the instantaneous position and velocity of a reference satellite or object. The Radial
axis points from the center of the Earth directly towards the object. The Tangential
(or Along-Track) axis lies in the plane of the object’s orbit, pointing in the direction
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Figure 3.3: Heliotropic polar orbit of 500 km perigee altitude

Figure 3.4: Perigee and Apogee’s altitude over the mission’s duration time.
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3.2 – Spacecraft Formation Flying

of its velocity vector. The Normal (or Cross-Track) axis is perpendicular to the
orbital plane, pointing in the direction of the orbital angular momentum vector.

It is noticeable that, in each direction, the major perturbation is the one due
to the gravitational field. In the radial direction, the spacecraft is affected by
gravitational perturbation and the solar radiation pressure. In the along-track
direction, the effect of the drag is added to the perturbations. In the cross-track
direction, the spacecraft is affected by the drag component due to the atmosphere
rotation.

Figure 3.5: Orbital perturbations [km/s2] affecting the evolution of the formation over
6 months. The gravitational, drag and SRP perturbations are in red, blue and green
respectively.

3.2 Spacecraft Formation Flying
In addition to analyzing the evolution of the perigee and apogee over time, it is
also important to evaluate the variations in key classical orbital elements: semi-
major axis, eccentricity and inclination. The swarm configuration comprises seven
CubeSats arranged in a circular formation, with one central chief CubeSat and six
deputy CubeSats arranged hexagonally around it. [24]

The Hill-Clohessy-Wiltshire model, utilized in the relative motion problem for
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Figure 3.6: Evolution of the main Classical Orbital Elements (eccentricity, inclination and
semimajor axis) over the mission’s duration time.

Figure 3.7: Illustration of a leader-follower type of a two-spacecraft formation. [12]

artificial satellites, is recognized for offering a valuable set of equations to address
challenges related to rendezvous and formation-flying, particularly optimal control
problems. [21] These equations presuppose that the chief spacecraft is in a cir-
cular orbit and that the deputy spacecraft maintains small relative distances and
velocities in relation to the chief.

In Fig. 3.7, the inertial chief position is expressed through the vector rc(t), while
the deputy satellite position is given by rd(t). Utilizing the Hill coordinate frame
proves advantageous for depicting how the relative orbit geometry appears from the
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perspective of the chief spacecraft. Its origin is at the chief satellite position and its
orientation is given by the vector triad {Ôr, Ôθ, Ôh} shown in Fig. 3.7 and Fig.3.8.
The vector Ôr is in the orbit radius direction, while Ôh is parallel to the orbit
momentum vector in the orbit normal direction. The vector Ôθ then completes
the right-hand coordinates system. [12] Mathematically, these O frame orientation
vectors are expressed as

Ôr =
r⃗c
rc

(3.5a)

Ôθ = Ôh × Ôr (3.5b)

Ôh =
h⃗

h
(3.5c)

with h⃗ = r⃗c × ˙⃗rc.
For the formation flying aspect of this mission, the model is more intricate

than a simple leader-follower setup. As shown in Fig. 3.8, the spacecrafts are on
slightly different orbits that satisfy specific constraints. These constraints ensure
the relative orbit is bounded and prevent the spacecraft from drifting apart. In
this arrangement, the chief satellite acts as the central focal point around which all
deputy satellites revolve.

Figure 3.8: Illustration of a general type of spacecraft formation with out-of-orbit plane
relative motion.[12]

3.2.1 Clohessy - Wiltshire Equations

In this subsection, the relative orbit is described using the Cartesian coordinate
vector ρ⃗ = (x, y, z)T . The vector components are taken in the rotating chief Hill
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frame. The benefit of employing Hill frame coordinates lies in the immediate clarity
they provide regarding the physical dimensions of the relative orbit. The (x, y) co-
ordinates define the relative orbit motion in the chief orbit plane. The z coordinate
defines any motion out of the chief orbit plane. [12]

To derive the relative equations of motion using Cartesian coordinates in the
rotating Hill frame, it’s necessary to express the deputy satellite’s position vector
in the following manner:

r⃗d = r⃗c + ρ⃗ = (rc + x)Ôr + y Ôtheta + z Ôh (3.6)

where the rc is the current orbit radius of the chief satellite. The angular velocity
vector of the rotating Hill frame O relative to the inertial frame N is given by

ω⃗O/N = ḟ Ôh (3.7)

with f being the chief frame true anomaly. The deputy satellite acceleration
vector can be expressed using two derivatives with respect to the inertial frame:

¨⃗rd = (¨⃗rc + ¨⃗x− 2 ˙⃗y
˙⃗
f − ¨⃗

fy − ḟ 2(rc + x))Ôr

+(¨⃗y + 2
˙⃗
f( ˙⃗rc + ˙⃗x) +

¨⃗
f(rc + x)− ˙⃗

f 2y)Ôθ + ¨⃗zÔh

(3.8)

This kinematic expression can be simplified by making use of the following
identities. The chief orbit angular momentum magnitude is given by h = r2c ḟ .
Because h is constant for Keplerian motion, taking the first time derivate of h
yields

˙⃗
h = 0 = 2rc ˙⃗rc

˙⃗
f + r2c

¨⃗
f (3.9)

This orbit element constraint can be used to solve for the true anomaly accel-
eration:

¨⃗
f = −2

˙⃗rc
rc

˙⃗
f (3.10)

Further, the chief satellite position can be written as r⃗c = rcÔr. Taking two
time derivatives with respect to the inertial frame and using the orbit equations of
motion, the chief acceleration vector is expressed as

¨⃗rc = (¨⃗rc − rc
˙⃗
f 2)Ôr = − µ

r3c
r⃗c = − µ

r2c
Ôr (3.11)

Equating vector components in Eq.3.11, the chief orbit radius acceleration is
expressed as:

¨⃗rc = rc
⃗̇f 2 − µ

r2c
= rc

⃗̇f 2

(
1− rc

p

)
(3.12)
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Substituting Eqs. 3.10 and 3.12 into Eq. 3.18, the deputy acceleration vector
expression is reduced to

¨⃗rd =

(
¨⃗x− 2

˙⃗
f

(
˙⃗y − y

˙⃗rc
rc

)
− x

˙⃗
f 2 − µ

r2c

)
Ôr

+

(
¨⃗y + 2

˙⃗
f

(
˙⃗x− x

˙⃗rc
rc

)
− y

˙⃗
f 2

)
Ôθ + ¨⃗zÔh

(3.13)

Next, we substitute the kinematic acceleration expression in Eq. 3.13 into the
orbit equations of motion. The deputy satellite orbital equations of motion are
given by

¨⃗rd = − µ

r3d
r⃗d = − µ

r3d

rc + x
y
z


O

(3.14)

with rd =
√

(rc + x)2 + y2 + z2. Equating Eqs. 3.13 and 3.14 , the exact
nonlinear relative equations of motion are given by

¨⃗x− 2
˙⃗
f

(
˙⃗y − y

˙⃗rc
rc

)
− x

˙⃗
f 2 − µ

r2c
= − µ

r3d
(rc + x) (3.15a)

¨⃗y + 2
˙⃗
f

(
˙⃗x− x

˙⃗rc
rc

)
− y

˙⃗
f 2 = − µ

r3d
y (3.15b)

¨⃗z = − µ

r3d
z (3.15c)

The only assumption made is that no disturbances affect the satellite, hence the
validity of the Keplerian motion assumption in the orbital equations of motion (Eq.
3.14). The relative equations of motion (Eq. 3.15) hold true for arbitrarily large rel-
ative orbits, even if the chief orbit is eccentric. Should the relative orbit coordinates
(x, y, z) be significantly smaller than the chief orbit radius rc, further simplification
of Eq. 3.15 is possible. [12] The deputy orbit radius rd is approximated as

rd = rc

√
1 + 2

x

rc
+

x2 + y2 + z2

r2c
≈ rc

√
1 + 2

x

rc
(3.16)

This allows us to write

µ

r3d
≈ µ

r3c

(
1− 3

x

rc

)
(3.17)
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The term µ/r3c can also be written in the following useful forms:

µ

r3c
=

rc
p

˙⃗
f 2 =

˙⃗
f 2

1 + e cosf
(3.18)

Note that the orbit elements shown in Eq.3.18 are chief orbit elements. Ne-
glecting higher order terms, we are able to simplify the right-hand side of Eq.3.14
to

− µ

r3d

rc + x
y
z


O

≈ − µ

r3c

(
1− 3

x

rc

)rc + x
y
z


O

≈ − µ

r3c

rc − 2x
y
z


O

(3.19)

By substituting Eq. 3.19 into Eq. 3.15 and subsequently simplifying, we obtain
the relative orbit equations of motion, under the assumption that x, y, and z are
negligible compared to the chief orbit radius rc: [12]

¨⃗x− x
˙⃗
f 2

(
1 + 2

rc
p

)
− 2

˙⃗
f

(
˙⃗y − y

˙⃗rc
rc

)
= 0 (3.20a)

¨⃗y − 2
˙⃗
f

(
˙⃗x− x

˙⃗rc
rc

)
− y

˙⃗
f 2

(
1− rc

p

)
= 0 (3.20b)

¨⃗z +
rc
p

˙⃗
f 2z = 0 (3.20c)

Using Eqs. 3.20 and 3.18, along with the true latitude θ = ω + f , the general
relative equations of motion are rewritten in the common form [22]:

¨⃗x− x

(
˙⃗
θ2 + 2

µ

r3c

)
− y

¨⃗
θ − 2 ˙⃗y

˙⃗
θ = 0 (3.21a)

¨⃗y + x
¨⃗
θ + 2 ˙⃗x

˙⃗
θ − y

(
˙⃗
θ2 − µ

r3c

)
= 0 (3.21b)

¨⃗z +
µ

r3c
z = 0 (3.21c)

If the chief satellite orbit is assumed to be circular, then e = 0, p = rc, and the
chief orbit radius rc is constant. Because for a circular orbit the mean orbital rate
n is equal to the true anomaly rate ˙⃗

f , the relative equations of motion reduce to
the simple form known as the Clohessy-Wiltshire (CW) equations [13] [31]:

¨⃗x− 2n ˙⃗y − 3n2x = 0 (3.22a)
¨⃗y + 2n ˙⃗x = 0 (3.22b)
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¨⃗z + n2z = 0 (3.22c)

It’s important to note that these equations of motion hold true only under the
conditions where the chief orbit is circular and the relative orbit coordinates (x, y, z)
are significantly smaller than the chief orbit radius rc. The simplified form of the
differential equations in Eq. 3.22 facilitates analytical integration, enabling closed-
form solutions to the relative equations of motion. For instance, the differential
equations governing the out-of-plane motion of the relative orbit, as depicted in Eq.
3.20, resemble those of a simple spring-mass system, for which a known solution
exists.[12]

3.2.2 Orbit Element Difference Description

While employing Hill frame coordinates (x, y, z) is a widely adopted approach to
describe a relative orbit, it bears the notable drawback that, for a non-circular orbit,
solving their differential equations is necessary to determine the exact relative orbit
geometry. [12] The relative orbit is determined through the chief orbit motion and
the relative orbit initial conditions:

X = (x0, y0, z0, ˙⃗x0, ˙⃗y0, ˙⃗z0, )
T (3.23)

To predict the position of a deputy satellite at a given time t, the corresponding
differential equations in either Eq. 3.20 or Eq. 3.22 must be integrated forward
to time t. Consequently, the six initial conditions outlined in Eq. 3.23 serve as
six invariant quantities governing the motion of the relative orbit. However, they
are not conducive to determining the instantaneous geometry of the relative or-
bit motion. Nevertheless, if the chief orbit is circular and the relative motion is
linearized, then the CW equations possess an analytical solution. This holds true
only under the conditions where the relative orbit dimension is negligible compared
to the chief orbit radius (validating the linearization assumption), and if the chief
orbit is circular. [12]

However, the Keplerian motion of a satellite can also be defined through six
orbit elements:

(a, e, i,Ω, ω, ν0)
T (3.24)

where a is the semi-major axis, e is the eccentricity, i is the orbit inclination
angle, Ω is the longitude of the ascending node, ω is the argument of the pericen-
ter, and ν is the true anomaly. Nevertheless when describing a relative orbit by
differences in orbital elements, expressing the anomaly difference using δν can be
inconvenient. To overcome this, the desired anomaly difference between two orbits
is often represented as the mean anomaly difference δM .[12]

Rather than resolving a differential equation for determining the present satel-
lite states, one must resort to numerically solving Kepler’s equation to establish the
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current mean anomaly angle. Consequently, only one state M essentially requires
resolution to determine the satellite position. This stands in contrast to the utiliza-
tion of the X state vector, where all six states function as fast variables, exhibiting
variability throughout the orbit. Hence, employing orbital elements simplifies both
the orbit depiction and the computation of satellite position.[12] Therefore, from
now on, the relative orbit will be define in terms of the orbit element difference
vector:

(ad − ac, ed − ec, id − ic,Ωd − Ωc, ωd − ωc,M0d −M0c)
T = (δa, δe, δi, δΩ, δω, δν0)

T

(3.25)
where ·d is referred to the deputy satellite orbit vector, and ·c is referred to the

chief orbit element vector. Utilizing the orbit element difference vector and the
chief orbit element vector, the deputy satellite’s position can be determined at any
given time by resolving Kepler’s equation. It’s worth mentioning that the relative
orbit description in Eq.3.25 imposes no assumptions regarding the relative orbit’s
size in comparison to the chief orbit radius, nor does it mandate that the chief orbit
be circular.[12]

Describing the relative orbit in terms of differences in orbit elements enables
us to draw specific conclusions regarding the geometry of the relative orbit. This
concept is illustrated in Fig. 3.9. Both the inclination angle and the differences in
the ascending node will influence the extent of the out-of-plane motion of the rela-
tive orbit. The inclination angle difference δi indicates the amount of out-of-plane
motion that the relative orbit will exhibit as the satellite traverses the northern
or southernmost regions. The ascending node difference reveals the expected out-
of-plane motion as the satellite crosses the equator. For instance, if the computed
orbit element differences for a given relative orbit yield δi as zero, it can be deduced
immediately that the relative orbit will feature zero out-of-plane motion as the chief
satellite passes the outer latitude extremes.[12]

3.2.3 Linearized Relative Orbit Motion for General Elliptic
Orbit

The local Cartesian Hill frame coordinates x, y, and z are expressed in terms of
the orbit element differences as

x = δr (3.26a)

y = r(δθ + cos i δΩ) (3.26b)

z = r(sin θ δi− cos θ sin i δΩ) (3.26c)

These equations establish a straightforward linear relationship between differ-
ences in orbit elements and the Cartesian coordinate vector ρ⃗ in the Hill frame.
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Figure 3.9: Relative orbit effect of having specific orbit element differences. [12]

The sole linearizing assumption made is that the relative orbit radius ρ is signifi-
cantly smaller than the inertial chief orbit radius r. However, since this relationship
must remain valid at all times, these linearized equations also serve as an approx-
imation for the relative orbit motion ρ⃗ in terms of the true anomaly angle f . To
correlate time with the true anomaly, Kepler’s equations must be resolved. Yet,
for delineating the relative orbit geometry using Hill frame Cartesian coordinates,
a solution in terms of the true anomaly f is favored. This preference arises from
the fact that by traversing f over a full revolution, the (x, y, z) coordinates de-
rived from these equations will produce the linearized approximation of the relative
orbit, dictated by a predetermined set of constant orbit element differences. It’s
important to highlight that no differential equations are employed in determining
the motion of the relative orbit here. Additionally, the primary relative orbit radial
(x direction), along-track (y direction), and out-of-plane (z direction) motions can
be easily identified. [12]

When describing a relative orbit through orbit element differences, it is not
convenient to describe the anomaly difference through δθ or δf . In elliptical chief
orbits, the difference in true anomaly between two orbits fluctuates over the course
of the orbit. To circumvent this variability, the desired anomaly difference between
two orbits is usually stated in terms of a mean anomaly difference δM .[12]

To express the mean anomaly differences in terms of other anomaly differences,
we make use of the mean anomaly definition

M = E − e sinE (3.27)
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and take its first variation to yield

δM =
δM

δE
δE +

δM

δe
δe = (1− e cosE)δE + sinE δe (3.28)

Using the mapping between eccentric anomaly E and true anomaly f

tan
f

2
=

√
1 + e

1− e
tan

E

2
(3.29)

and taking its first variation, differences in E are then expressed as differences
in f and e through

δE =
η

1 + e cosf
δf − sin f

1 + e cosf

δe

η
(3.30)

with η =
√
1− e2. Substituting Eq. 3.30 into Eq. 3.28 and solving for δM

using the orbit identities yields

δM =
η

(1 + e cosf)2
(η2δf − sin f(2 + e cosf)δe) (3.31)

Now, using Eq. 3.31, differences in true anomaly are written in terms of differ-
ences in mean anomaly and differences in eccentricity

δf =
(1 + e cosf)2

η3
δM +

sinf

η2
(2 + e cosf)δe (3.32)

Let’s define the orbit element difference vector δe⃗ to consist of

δe⃗ = (δa, δe, δi, δΩ, δω, δM)T (3.33)

It’s worth noting that all these differences in orbit elements remain constant
for Keplerian two-body motion. Moreover, in the subsequent discussion on relative
orbit geometry, no singularities will arise; however, they may occur in the case of
near-circular orbits.[12]

At this point, it is possible to substitute Eq. 3.32 into the linear mapping
provided in Eq. 3.26 and simplify the result, we are now able to express the relative
position coordinates (x, y, z) in terms of the orbit element differences in Eq. 3.33
through

x(f) ≈ r

a
δa+

ae sinf

η
δM − a cosfδe (3.34a)

y(f) ≈ r

η3
(1 + e cosf)2δM + rδω +

r sinf

η2
(2 + e cosf)δ e+ r cosi δΩ (3.34b)

z(f) ≈ r(sinθ δi− cosθ sin i δΩ) (3.34c)
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It’s important to recognize that in this linearized mapping, the difference in the
argument of perigee δω does not manifest in the expression for x(f). Additionally,
these equations remain valid for both circular and elliptic orbits. Only the δM
and δe terms introduce periodic elements to the radial x solution. Due to the
dependency of r on the true anomaly f , all differences in orbit elements contribute
both static offsets and periodic elements to the along-track y motion. In the case
of the out-of-plane z motion, both the δi and δΩ terms govern the oscillations.[12]

To minimize the relative drift effect, all satellites must experience the same rates
of change in Ω and ω. Consequently, the differences in inclination, semimajor axis,
and eccentricity must be null: δi, δa, δe = 0. Under these conditions, and assuming
a close formation with relative distances ranging from a few meters to a few tens
of meters, the linear relative motion equations (Eq. 3.34) can be simplified as: [30]

x =
a e sin(ν + ω)δM

η
(3.35a)

y =
r(1 + e cos ν)2δM

η3
+ rδω + r cos i δΩ (3.35b)

z = −r cos(ν + ω) sin i δΩ (3.35c)

where r = a(a−e2)
1+e cos ν

and η =
√
1− e2.

In this analysis, it has been considered and studied a formation in the cross-track
direction, with near-polar inclination. So, the initial position of each CubeSat, of
the six around the central one, within the RTN frame are given by

x = 0 (3.36a)

y = r sinθ (3.36b)
z = r cosθ (3.36c)

where x0, y0, z0 are the initial positions of the central satellite, r is the formation
radius and θ is the phase of the i-th satellite on the circular formation. The values of
θ are 60◦, 120◦, 180◦, 240◦, 300◦, 360◦. So, the first step is to evaluate the position of
the satellites through Eqs. 3.36. Then, it is possible to substitute the results into the
Eqs. 3.35. As already said before, every CubeSat, both the chief and the deputies,
has identical semimajor axes, eccentricities and inclinations. Furthermore, being
the formation in cross-track direction, the δM that governs the radial variations is
0. It is clear that the resulting simplification leads to

δM = 0 (3.37a)

δω =
δy

r
− cos iδΩ (3.37b)

δΩ = − δz

r cos(θ + ω)sin i
(3.37c)
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3.3 Analysis

In this chapter, we delve into the stability analysis of formation flying in Heliotropic
orbits, building on the dynamic model established in the previous chapter. By
applying this model, we aim to understand the evolution of the distances between
spacecraft throughout the mission. Our focus is on identifying the factors that
influence formation stability.

To evaluate the stability of the CubeSats’ formation flying in the selected He-
liotropic orbit, some graphs are displayed. The classical orbital elements of the
chief CubeSat are visualized in Tab. 3.3.

Perigee Radius rp 6 878 km
Apogee radius ra 16 903,20 km
Semimajor axis a 11 890,6 km
Inclination i 97,4014◦

RAAN Ω 0◦

omega ω 90◦

True anomaly θ 90◦

Table 3.3: Classical orbital elements of the chief spacecraft in the formation geometry.

Starting from the position of the chief CubeSat, the position of the six deputies
satellites around it are calculated using the Eqs. 3.36 and 3.37. The orbit element
difference vector is displayed in Tab. 3.4, as explained in the previous chapter the
value of a, i, e,M are the same as the chief satellite’s. The formation is represented
in a Geocentric Equatorial frame, it has a radius of 100m as shown in Fig.3.10.

Satellite
Index

δω δΩ

1 0.9522 · 10−5 0.0516 · 10−4

2 0.8193 · 10−5 −0.0516 · 10−4

3 −0.1329 · 10−5 −0.1031 · 10−4

4 −0.9522 · 10−5 −0.0516 · 10−4

5 −0.8193 · 10−5 0.0516 · 10−4

6 0.1329 · 10−5 0.1031 · 10−4

Table 3.4: Relative orbits of the six deputies CubeSats defined by the orbit element
difference vector, with δM = 0, δa = 0, δe = 0 and δi = 0.

To evaluate the stability of the formation, it is necessary to define the relative
distance variation of each deputy CubeSat with respect to the chief CubeSat as [24]

RDV =
d(t)− d(0)

d(0)
× 100 (3.38)
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Figure 3.10: Formation geometry represented in the Geocentric Equatorial Frame.

where d = |rD − rC |, rD and rC are the norm of the deputy and the chief
CubeSats. The RDV interval between [−100%, 100%] is subdivided in three regions:
|RDVmax| < 10% in green; 10% < |RDVmax| < 50% in yellow; |RDVmax| > 50% in
red. For assumption, in this analysis two scenarios will be considered: the collision
case considers the eventuality in which one of the deputy CubeSat is too close
(−75% RDV) to the chief CubeSat; the divergence case considered the eventuality
in which one of the deputy CubeSat is too far (+50% RDV) from the chief CubeSat.

Fig.3.11 shows the Relative Distance Variation evolution of the selected He-
liotropic orbit. It is observable that within a few days the formation diverges up to
−100%.

Furthermore, it is possible to observe the instability of the formation from Fig.
3.12, that shows the evolution of the drifts of semi-major axis, eccentricity and incli-
nation. Indeed, the semi-major axis’ drift is up to 0.025 km, which is not acceptable
for a formation of 100m radius. These results indicate that the formation in the
selected orbits will collide within a few hours if not controlled with propulsion.

It is useful to have an idea of the magnitude of the differential perturbations
that act upon the CubeSats. In Fig. 3.13 are displayed the maximum differential
drag and the maximum differential solar radiation pressure for each CubeSat.

It is possible to compare the previous results with the analysis conducted on
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Figure 3.11: Relative distance variation evolution for the spacecraft formation in 500 km
heliotropic orbit. Each color represents a CubeSat.

Figure 3.12: Semi-major axis, Eccentricity and Inclination drifts

a circular Sun Synchronous orbit. This type of orbit is a near-polar orbit, with
same inclination of the case previously analyzed of Heliotropic orbit, and with an
altitude of 500 km and the same formation’s radius 100 m. As shown in Fig.3.14,
the Sun-Synchronous orbit results to be a more stable solution than the Heliotropic
one. Indeed, for the initial 20 days, the formation remains stable without encounter
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Figure 3.13: Differential Perturbations, maximum differential drag and maximum differ-
ential solar radiation pressure

Figure 3.14: Relative distance variation evolution for the spacecraft formation in 500 km
sun-synchronous orbit. Each color represents a CubeSat.

neither case of collision or divergence. Furthermore, the semi-major axis drift in
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the case of Sun-Synchronous orbit is up to 0.01 km, which is an acceptable value for
the studied formation. In this analysis, it is assumed that the attitude is perfectly
known, implying an offset of zero.

3.3.1 Influence of ω on the Formation’s Stability

As explained in Chapter 3.1, both Heliotropic and Anti-Heliotropic orbits exist.
The heliotropic orbits typically have their periapsis positioned on the opposite side
of the Sun from the body. Conversely, Anti-Heliotropic orbits have their periapsis
directed toward the Sun. Therefore, it is useful to examine the stability for different
orientations toward the Sun, which means running the analysis with different values
of ω and Ω. By doing this, we want to investigate the cause of the instability of
the formation.

Perigee Radius rp 6 878 km
Apogee radius ra 16 903,20 km
Semimajor axis a 11 890,6 km
Inclination i 97,4014◦

RAAN Ω 0◦

omega ω 18◦ - 45◦ - 90◦ - 135◦ - 162◦ - 225◦ - 270◦ -
315◦

True anomaly θ 90◦

Table 3.5: Classical orbital elements of the chief spacecraft in the formation geometry

As done in Chapter 3.3, the position of the formation has been evaluate starting
from the chief satellite’s position (Tab. 3.5).
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Analysis with ω = 18◦ and Ω = 0◦

Figure 3.15: Relative distance variation evolution for the spacecraft formation in 500 km
heliotropic orbit ω = 18◦. Each color represents a CubeSat.

Figure 3.16: Semi-major axis, Eccentricity and Inclination drifts, ω = 18◦.
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Analysis with ω = 45◦ and Ω = 0◦

Figure 3.17: Relative distance variation evolution for the spacecraft formation in 500 km
heliotropic orbit ω = 45◦. Each color represents a CubeSat.

Figure 3.18: Semi-major axis, Eccentricity and Inclination drifts, ω = 45◦.
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Analysis with ω = 135◦ and Ω = 0◦

Figure 3.19: Relative distance variation evolution for the spacecraft formation in 500 km
heliotropic orbit ω = 135◦. Each color represents a CubeSat.

Figure 3.20: Semi-major axis, Eccentricity and Inclination drifts, ω = 135◦.
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Analysis with ω = 162◦ and Ω = 0◦

Figure 3.21: Relative distance variation evolution for the spacecraft formation in 500 km
heliotropic orbit ω = 162◦. Each color represents a CubeSat.

Figure 3.22: Semi-major axis, Eccentricity and Inclination drifts, ω = 162◦.
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Analysis with ω = 225◦ and Ω = 0◦

Figure 3.23: Relative distance variation evolution for the spacecraft formation in 500 km
heliotropic orbit ω = 225◦. Each color represents a CubeSat.

Figure 3.24: Semi-major axis, Eccentricity and Inclination drifts, ω = 225◦.
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Analysis with ω = 270◦ and Ω = 0◦

Figure 3.25: Relative distance variation evolution for the spacecraft formation in 500 km
heliotropic orbit ω = 270◦. Each color represents a CubeSat.

Figure 3.26: Semi-major axis, Eccentricity and Inclination drifts, ω = 270◦.
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Analysis with ω = 315◦ and Ω = 0◦

Figure 3.27: Relative distance variation evolution for the spacecraft formation in 500 km
heliotropic orbit ω = 315◦. Each color represents a CubeSat.

Figure 3.28: Semi-major axis, Eccentricity and Inclination drifts, ω = 315◦.
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Looking at the previous graphs, it is clear that there is not a strong correlation
between the instability and the changes of ω. In each case analyzed, the satellites
diverge or collide within a few days. The more stable seems to be the case with
ω = 270◦.

3.3.2 Influence of Ω on the Formation’s Stability

In this Chapter, it is analyzed the influence of Ω on the formation’s stability. As
done in Chapter 3.3, the position of the formation has been evaluated starting from
the chief satellite’s position (Tab. 3.5), considering the value of ω = 270◦, because
it resulted to be the more stable in the study conducted in the previous chapter
3.3.1.

Perigee Radius rp 6 878 km
Apogee radius ra 16 903,20 km
Semimajor axis a 11 890,6 km
Inclination i 97,4014◦

RAAN Ω 0◦ - 20◦ - 45◦ - 80◦ - 90◦ - 120◦ - 180◦ - 220◦
- 275◦ - 290◦ - 300◦ - 310◦ - 320◦ - 360◦

omega ω 270◦

True anomaly θ 90◦

Table 3.6: Classical orbital elements of the chief spacecraft in the formation geometry
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Analysis with ω = 270◦ and Ω = 20◦

Figure 3.29: Relative distance variation evolution for the spacecraft formation in 500 km
heliotropic orbit Ω = 20◦. Each color represents a CubeSat.

Figure 3.30: Semi-major axis, Eccentricity and Inclination drifts, Ω = 20◦.
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Analysis with ω = 270◦ and Ω = 45◦

Figure 3.31: Relative distance variation evolution for the spacecraft formation in 500 km
heliotropic orbit Ω = 45◦. Each color represents a CubeSat.

Figure 3.32: Semi-major axis, Eccentricity and Inclination drifts, Ω = 45◦.
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Analysis with ω = 270◦ and Ω = 80◦

Figure 3.33: Relative distance variation evolution for the spacecraft formation in 500 km
heliotropic orbit Ω = 80◦. Each color represents a CubeSat.

Figure 3.34: Semi-major axis, Eccentricity and Inclination drifts, Ω = 80◦.
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Analysis with ω = 270◦ and Ω = 90◦

Figure 3.35: Relative distance variation evolution for the spacecraft formation in 500 km
heliotropic orbit Ω = 90◦. Each color represents a CubeSat.

Figure 3.36: Semi-major axis, Eccentricity and Inclination drifts, Ω = 90◦.
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Analysis with ω = 270◦ and Ω = 120◦

Figure 3.37: Relative distance variation evolution for the spacecraft formation in 500 km
heliotropic orbit Ω = 120◦. Each color represents a CubeSat.

Figure 3.38: Semi-major axis, Eccentricity and Inclination drifts, Ω = 120◦.
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Analysis with ω = 270◦ and Ω = 180◦

Figure 3.39: Relative distance variation evolution for the spacecraft formation in 500 km
heliotropic orbit Ω = 180◦. Each color represents a CubeSat.

Figure 3.40: Semi-major axis, Eccentricity and Inclination drifts, Ω = 180◦.
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Analysis with ω = 270◦ and Ω = 220◦

Figure 3.41: Relative distance variation evolution for the spacecraft formation in 500 km
heliotropic orbit Ω = 220◦. Each color represents a CubeSat.

Figure 3.42: Semi-major axis, Eccentricity and Inclination drifts, Ω = 220◦.
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Analysis with ω = 270◦ and Ω = 275◦

Figure 3.43: Relative distance variation evolution for the spacecraft formation in 500 km
heliotropic orbit Ω = 275◦. Each color represents a CubeSat.

Figure 3.44: Semi-major axis, Eccentricity and Inclination drifts, Ω = 275◦.
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Analysis with ω = 270◦ and Ω = 290◦

Figure 3.45: Relative distance variation evolution for the spacecraft formation in 500 km
heliotropic orbit Ω = 290◦. Each color represents a CubeSat.

Figure 3.46: Semi-major axis, Eccentricity and Inclination drifts, Ω = 290◦.
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Analysis with ω = 270◦ and Ω = 300◦

Figure 3.47: Relative distance variation evolution for the spacecraft formation in 500 km
heliotropic orbit Ω = 300◦. Each color represents a CubeSat.

Figure 3.48: Semi-major axis, Eccentricity and Inclination drifts, Ω = 300◦.
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Analysis with ω = 270◦ and Ω = 310◦

Figure 3.49: Relative distance variation evolution for the spacecraft formation in 500 km
heliotropic orbit Ω = 310◦. Each color represents a CubeSat.

Figure 3.50: Semi-major axis, Eccentricity and Inclination drifts, Ω = 310◦.
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Analysis with ω = 270◦ and Ω = 320◦

Figure 3.51: Relative distance variation evolution for the spacecraft formation in 500 km
heliotropic orbit Ω = 320◦. Each color represents a CubeSat.

Figure 3.52: Semi-major axis, Eccentricity and Inclination drifts, Ω = 320◦.

v
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Looking at the previous graphs, as it resulted in chapter 3.3.1, it is clear that
there is not a strong correlation between the instability and the changes of Ω. In
each case analyzed, the satellites diverge or collide within a few days. The more
stable seems to be the case with Ω = 300◦. In particular, looking at the graphs of
the relative distance variation, for each case two satellites (pink and green ones)
seem to change the evolution, instead the evolution of the other four satellites
remain the same.

3.3.3 Influence of the Formation’s Radius on the Formation’s
Stability

In this Chapter, it is analyzed the stability of the formation depending on the
radius of the formation. As done in Chapter 3.3, the position of the formation has
been evaluated starting from the chief satellite’s position (Tab. 3.7), considering
the value of ω = 270◦ and Ω = 300◦ , because it resulted to be the more stable in
the study conducted in the previous chapters 3.3.1 and 3.3.2.

Perigee Radius rp 6 878 km
Apogee radius ra 16 903,20 km
Semimajor axis a 11 890,6 km
Inclination i 97,4014◦

RAAN Ω 300◦

omega ω 270◦

True anomaly θ 90◦

Formation’s radius r 10m - 100m - 1000m
Table 3.7: Classical orbital elements of the chief spacecraft in the formation geometry.

Examining the graphs from 3.53 to 3.58, it is evident that instability is present
in all three cases studied. This indicates that the formation’s radius is not a deter-
mining factor for stability, as stability does not depend on it.
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Analysis with r = 10m

Figure 3.53: Relative distance variation evolution for the spacecraft formation in 500 km
heliotropic orbit, formation’s radius r = 10m. Each color represents a CubeSat.

Figure 3.54: Semi-major axis, Eccentricity and Inclination drifts, formation’s radius r =
10m.
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Analysis with r = 100m

Figure 3.55: Relative distance variation evolution for the spacecraft formation in 500 km
heliotropic orbit, formation’s radius r = 100m. Each color represents a CubeSat.

Figure 3.56: Semi-major axis, Eccentricity and Inclination drifts, formation’s radius r =
100m.
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Analysis with r = 1000m

Figure 3.57: Relative distance variation evolution for the spacecraft formation in 500 km
heliotropic orbit, formation’s radius r = 1000m. Each color represents a CubeSat.

Figure 3.58: Semi-major axis, Eccentricity and Inclination drifts, formation’s radius r =
1000m.
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3.3.4 Effect of Single Perturbations

This chapter analyzes the effect of single perturbations on the stability of the for-
mation flying. The studies conducted are considering the chief satellite’s orbit
described in Tab. 3.8, from which all the six deputy satellites’ positions are evalu-
ated.

Perigee Radius rp 6 878 km
Apogee radius ra 16 903,20 km
Semimajor axis a 11 890,6 km
Inclination i 97,4014◦

RAAN Ω 300◦

omega ω 270◦

True anomaly θ 90◦

Formation’s radius r 100m

Table 3.8: Classical orbital elements of the chief spacecraft in the formation geometry.

Keplerian Problem

Starting from the dynamical model described in chapter 2, the analysis is conducted
considering one perturbation at a time. Firstly, only the Keplerian problem is
considered, without the perturbations. The results are displayed in graphs 3.59
and 3.60. The instability is visible, the satellites will collide because they all are in
the region of RDVmax < −75%.

Figure 3.59: Relative distance variation evolution for the spacecraft formation in 500 km
Heliotropic orbit, considering only the Keplerian problem. Each color represents a Cube-
Sat.
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Figure 3.60: Semi-major axis, Eccentricity and Inclination drifts for the spacecraft for-
mation in 500 km Heliotropic orbit, considering only the Keplerian problem.

Drag Perturbation

In this case, the drag perturbation effect is considered in addition to the Keplerian
problem. The results are displayed in graphs 3.61 and 3.62.

Figure 3.61: Relative distance variation evolution for the spacecraft formation in 500 km
Heliotropic orbit, considering only the drag perturbation (in addition to the Keplerian
problem). Each color represents a CubeSat.
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Figure 3.62: Semi-major axis, Eccentricity and Inclination drifts for the spacecraft for-
mation in 500 km Heliotropic orbit, considering only the drag perturbation (in addition
to the Keplerian problem).

Solar Radiation Pressure Perturbation

In this case, the solar radiation pressure perturbation effect is considered in addition
to the Keplerian problem. The results are displayed in graphs 3.63 and 3.64.

Figure 3.63: Relative distance variation evolution for the spacecraft formation in 500 km
Heliotropic orbit, considering only the solar radiation pressure perturbation (in addition
to the Keplerian problem). Each color represents a CubeSat.
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Figure 3.64: Semi-major axis, Eccentricity and Inclination drifts for the spacecraft forma-
tion in 500 km Heliotropic orbit, considering only the solar radiation pressure perturbation
(in addition to the Keplerian problem).

Gravitational J2 Perturbation

In this case, the gravitational perturbation J2 effect is considered in addition to the
Keplerian problem. The results are displayed in graphs 3.65 and 3.66.

Figure 3.65: Relative distance variation evolution for the spacecraft formation in 500 km
Heliotropic orbit, considering only the gravitational J2 perturbation (in addition to the
Keplerian problem). Each color represents a CubeSat.
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Figure 3.66: Semi-major axis, Eccentricity and Inclination drifts for the spacecraft for-
mation in 500 km Heliotropic orbit, considering only the gravitational J2 perturbation (in
addition to the Keplerian problem).

Gravitational J3 Perturbation

In this case, the gravitational perturbation J3 effect is considered in addition to the
Keplerian problem. The results are displayed in graphs 3.67 and 3.68.

Figure 3.67: Relative distance variation evolution for the spacecraft formation in 500 km
Heliotropic orbit, considering only the gravitational J3 perturbation (in addition to the
Keplerian problem). Each color represents a CubeSat.
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Figure 3.68: Semi-major axis, Eccentricity and Inclination drifts for the spacecraft for-
mation in 500 km Heliotropic orbit, considering only the gravitational J3 perturbation (in
addition to the Keplerian problem).

Gravitational J4 Perturbation

In this case, the gravitational perturbation J4 effect is considered in addition to the
Keplerian problem. The results are displayed in graphs 3.69 and 3.70.

Figure 3.69: Relative distance variation evolution for the spacecraft formation in 500 km
Heliotropic orbit, considering only the gravitational J4 perturbation (in addition to the
Keplerian problem). Each color represents a CubeSat.

80



3.3 – Analysis

Figure 3.70: Semi-major axis, Eccentricity and Inclination drifts for the spacecraft for-
mation in 500 km Heliotropic orbit, considering only the gravitational J4 perturbation (in
addition to the Keplerian problem).

From the results in chapter 3.3.4, it is possible to deduce that the formation
flying is unstable even in the case without the perturbation effects. The most
effective perturbations on the instability are the solar radiation pressure and the
gravitational perturbations. Indeed, in the graphs 3.67 and 3.69, which study the
gravitational effects considering up to the J3 and J4 gravitational harmonics, it is
noticeable that some satellites tend to collide at the beginning of the analysis, while
others remain stable for some time before eventually diverging.
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3.4 Satellite-to-Site Visibility Analysis

The satellite-to-site visibility problem involves determining the opportunities for
a satellite to observe or communicate with an object on Earth’s surface. This is
crucial for analyzing the coverage of satellite orbits and constellations. [27] The
satellite-to-site visibility periods are usually determined by the conventional brute
force method, where the satellite’s trajectory is tracked, and its access to the site
is checked at each moment. The downside of this approach is that orbital positions
must be calculated hundreds of times per orbit, leading to significant execution
time, especially when considering perturbation effects. Even though the computa-
tion load is tolerable for ground facilities, it is undesirable for onboard real-time
mission planning. Therefore, developing fast algorithms for visibility computation
is essential for both ground-based constellation design and onboard spacecraft au-
tonomy.

For this analysis, it has been used a mathematical model of the satellite-to-site
visibility problem and generalize it as a multiple hump function rooting problem.
[11]

A satellite cannot see a ground target until it rises above a minimum elevation
angle. Let θ denote the elevation angle of the satellite at the current position, and
θ0 denote the predefined minimum elevation. As displayed in Fig. 3.71 , π/2 − θ
equals the angle between the position vector of the ground target and the relative
position vector from the ground target to the satellite. The visibility criterion is
thus given as follows.[11]

Figure 3.71: Geometric illustration of the satellite-to-site visibility.[11]

The visibility criterion is thus given as follows:
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∆r⃗ · r⃗0site
||∆r⃗ ||

≥ sin θ0 (3.39)

where ∆r⃗ = r⃗sat− r⃗site, r⃗0site = r⃗site/|| r⃗site ||, r⃗sat and r⃗sat are the position vectors
of the satellite and the ground target, respectively, and || · || denotes the magnitude
of a vector.

The term of on the left side of Eq. 3.39 is defined as the visibility function
denoted by V (t), and varies with time. While the term on the right side is a
constant and is defined as the visibility threshold, denoted by λ. The rise and set
times are the solutions of the following nonlinear equation

V (t)− λ = 0 (3.40)

The satellite sees the ground target only when the visibility function value is
above the threshold line. The visibility analysis has been conducted for the orbit
that had been analyzed in chapter 3.3, considering the classical orbital elements in
Tab. 3.3. In Fig. 3.72 the orbit is represented in a geocentric equatorial frame.
For the ground facilities, two cases have been selected: the first one is assumed
to be located right under the orbit’s perigee, the second one is assumed to be
located under the orbit’s apogee. These are represented in Fig. 3.73 in a geocentric
equatorial frame.

Figure 3.72: Heliotropic orbit with altitude of 500 km and inclination 97,4014◦

The visibility function is calculated for the case of Ground Station under the
perigee, using a minimum elevation angle of θ = 0◦. As depicted in Fig. 3.74, the
visibility function is a multiple hump function. In order to have a better under-
standing of the timing of visibility, the graph has been transformed. In Fig.3.75,
the visibility function is displayed as being equal to 0 when the function is below
the threshold, and equal to 1 when the function intersects or exceeds the threshold.
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Figure 3.73: Ground stations’ position over time. They are assumed to be located under
the orbit’s perigee and apogee.

Figure 3.74: The visibility function in blue, the threshold in red.

Figure 3.75: The visibility function is represented as being 0 or 1.
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This representation simplifies the evaluation of the timing. For this case, the
timing of visibility is Tperigee = 11592− 10894 = 698 sec.

The same analysis is conducted for the case of the Ground Station being under
the orbit’s apogee, the result displayed in Fig. 3.76 and 3.77 indicates that the
visibility time is Tapogee = 8594− 1037 = 7557 sec.

Figure 3.76: The visibility function in blue, the threshold in red.

Figure 3.77: The visibility function is represented as being 0 or 1.
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Chapter 4

Sun Position Analysis

In the following chapter, a detailed analysis of the relative position of the Sun con-
cerning a spacecraft will be conducted using the Systems Tool Kit (STK) software.
This analysis is crucial for determining the optimal placement of star trackers on
a CubeSat. Understanding the dynamics of solar exposure is essential for ensuring
that the star trackers, which rely on clear visibility of stars for accurate navigation,
are positioned to avoid interference from sunlight. By modeling and simulating the
spacecraft’s orbit and its orientation with respect to the Sun, we aim to provide
valuable insights for the effective design and operational planning of the CubeSat’s
attitude determination system.

Star trackers are critical components in a spacecraft’s attitude determination
system, providing precise orientation data by capturing images of star fields and
comparing them to an onboard star catalog. To function effectively, star trackers
must have an unobstructed view of the stars and avoid interference from bright
light sources such as the Sun, Moon, and Earth. Proper placement of star trackers
is essential to ensure accurate and reliable data. Typically, they are mounted on
surfaces of the spacecraft that minimize the likelihood of direct sunlight or reflected
light entering the optical path. Additionally, their positioning should consider the
spacecraft’s operational modes and potential obstructions from other structures or
instruments. [20]

First, the CAD model of the CubeSat structure with the solar panel must be
imported into the STK software. Next, the analysis is conducted using the local
coordinate system, specifically the VVLH CBI (Vehicle Velocity Local Horizontal,
Central Body Inertial) reference frame. In this coordinate system, the X-axis is
aligned with the velocity vector, the Y-axis is perpendicular to both the X and
Z axes, and the Z-axis points towards the geocentric nadir. The local coordinate
system is illustrated in Fig. 4.1.

In the VVLH (CBI) reference frame, the angles analyzed are the azimuth and
the elevation angles. The azimuth is the angle measured from the X-axis, with
positive values oriented towards the Y-axis. The elevation is the angle measured

87



Sun Position Analysis

Figure 4.1: Representation on STK of the VVLH (CBI) reference frame.

from the X-Y plane, with positive values directed along the negative Z-axis. A
resulting value of the analysis is also the evolution of the Range, which is the
distance between the Sun and the CubeSat.

Figure 4.2: Representation on STK of the azimuth and elevation angles (in red the azimuth
angle and in light-blue the elevation angle).

Figure 4.3 displays the graphs generated from the STK analysis, covering a
duration of one and a half days. The azimuth angle is depicted in blue, the range
in red, and the elevation angle in green.

Since the CubeSat will experience both periods of eclipse and sunlight, Figure
4.4 displays the resulting graph specifically for the sunlight condition. This graph
illustrates the CubeSat’s behavior and parameters during periods when it is exposed
to sunlight.

From these results, it is clear that the Sun radiation is always on one side of the
CubeSat, specifically on the side with negative Y.
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Figure 4.3: Evolution over time of the Elevation, Azimuth angle, and Range during the
operational orbit.

Figure 4.4: Evolution over time of the Elevation, Azimuth angle, and Range during the
operational orbit in sunlight conditions.
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Chapter 5

Thermal Analysis

A preliminary thermal analysis for the 16U4SBSP spacecraft has been performed
and is presented in this chapter. The analysis has focused on one important aspect:
a simplified single-node steady-state balance for the whole spacecraft, to predict the
range of temperatures expected during operation and define a coating strategy on
the external surface of the spacecraft for passive thermal control.

In order to develop a baseline understanding of the thermal loads and expected
temperatures on the 16U4SBSP spacecraft, a single-node steady-state lumped mass
analysis has been performed. The external dimensions of the 16U CubeSat structure
(226 x 226 x 454 mm) are illustrated in Fig. 5.1. For the purpose of the analysis,
this structure is represented using a simplified model as detailed in the subsequent
chapter.

Figure 5.1: 16U4SBSP spacecraft with cover panels, solar array wings deployed. [24]
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The thermal analysis is conducted considering the selected orbit in the Mission
Design study, which is the Sun-Synchronous one with an altitude of 500 km and
inclination i = 97,4014◦. One of the main factors of this study is the so-called "beta
angle", represented in Fig. 5.10, which is the angle between a satellite’s orbital plane
around Earth and the geocentric position of the Sun. The beta angle is crucial
for understanding the percentage of time the satellite spends in direct sunlight,
absorbing solar radiation. Two different options are considered: one corresponding
to a beta angle of 0°, the other one corresponding to a beta angle of 70°, each
leading to their own duration of the portion of a single orbit in eclipse. These two
options have been chosen to identify two ideal conditions of worst thermal loads:
the case with a beta angle of 0° represents the case of maximum time in eclipse;
the case with a beta angle of 70° represents the case of maximum time in sunlight.

Figure 5.2: Geometric definition of Beta angle. [5]

Starting from the values of beta angle, it is possible to evaluate the percentage
of eclipse duration as follows: [9]

fe =

{
1

180◦
cos−1

(√
h2+2Re h

(Re+h)cosβ

)
, |β| < β∗

0, |β| ≥ β∗
(5.1)

where h is the value of orbit altitude, Re is the Radius of the Earth, and β∗ is
the critical beta angle, defined as: [9]

β∗ = sin−1

(
Re

Re+ h

)
(5.2)

By substituting the orbit altitude, the critical beta angle can be evaluated as
68◦. So, the eclipse factors are:

fe =

{
0,3778 = 38%, β = 0◦

0%, β = 70◦
(5.3)
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Another critical factor for the thermal analysis is the season during which the
satellite is considered to be operating. Indeed, in the Winter season the intensity of
solar radiation is lower than in the Summer season. [15] For this reason, two cases
are considered: Winter season with incident solar energy flux S = 1317 W/m2 and
Summer season with S = 1419 W/m2. From now on, the two cases of ideal extreme
conditions (described in Tab. 5.1) are called Case 1 and Case 2.

h i β Season Illumination
Case 1.A 500 km 97,4014◦ 0◦ Winter Sunlight
Case 1.B 500 km 97,4014◦ 0◦ Winter Eclipse
Case 2 500 km 97,4014◦ 70◦ Summer Sunlight

Table 5.1: Conditions of Case 1.A, Case 1.B and Case 2.

These two cases were selected to represent the most extreme conditions. Case
1 combines the winter season, when the Earth is farthest from the Sun, with a β
angle of 0◦, resulting in the longest eclipse period. Case 2 combines the summer
season, when the Earth is nearest to the Sun, with a β angle of 70◦, resulting in
the longest period of sunlight.

5.1 Heat Transfer Model

In this chapter, the Heat transfer model used for the analysis is described. Due
to the high vacuum environment of space, an orbiting spacecraft can interact with
their environment primarily through radiation. Internal heat dissipation can occur
partially via conduction. Therefore, as shown in Fig. 5.3, for an Earth-orbiting
spacecraft this interaction can be characterized by four means: [15]

• direct solar radiation;

• solar radiation reflected from the Earth (albedo radiation);

• planetary infrared radiation from the Earth;

• thermal radiation of energy from the external surfaces of the spacecraft to
deep space.

As a result of this interaction, the spacecraft achieves thermal equilibrium when
the heat gained from the first three sources, along with internal thermal dissipation,
equals the energy radiated into deep space. By leveraging this phenomenon, it is
possible to select surface properties to balance energy transfer across the desired
spacecraft temperature range. This is achievable because the radiant energy ab-
sorbed from the environment is independent of the surface temperature, whereas
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Figure 5.3: Spacecraft thermal environment. [28]

the energy radiated from the surface is highly dependent on its temperature. [15]
The balance equation is:

Qin = Qout (5.4)

Qsolar +Qalbedo +QIR + Pinternally dissipated = Qout (5.5)

Qout = Ar · ε · σ · T 4 (5.6)

where Ar is the radiating surface area of the CubeSat, ε is the emissivity of the
surface, σ is the Stefan-Boltzmann constant (σ = 5,67051 · 10−8W/m2K4) and T is
the absolute temperature in Kelvin. [15] It is now necessary to examine the sources
of radiant energy in space one by one.

5.1.1 Direct Solar Energy

The direct solar energy flux varies with the distance from the Sun and is typically
the primary heat source in spacecraft thermal management. The Sun emits energy
uniformly in all directions, but from Earth’s perspective, it appears as a small disc
with an angular diameter of just 1/2 degree. This configuration causes the Sun’s
rays to strike a surface perpendicular to the Sun as parallel rays. [15]

There are two important characteristics of the Sun’s radiant energy for space-
craft thermal control. These are the total energy density, or flux, incident on a
surface, and the spectral content of that flux. The flux at 1 AU is called the So-
lar Constant and is calculated at the Earth’s average distance from the Sun. The
spectral composition of the solar flux mimics the black body radiation spectrum of
an emitter at a temperature of 5 780K. [15]
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As previously explained, to account for variability in solar heat load through
the seasons, the model is run separately in two different cases: S = 1419W/m2

corresponding to the Summer season; S = 1317W/m2 corresponding to the Winter
season. [28]

The direct solar energy flux can be calculated as follows:

Qsolar = S · Ap · [%Solar time] · αAV G (5.7)

where Ap is the projected area toward the Sun, αAV G is the average absorptivity
of the external surface of the CubeSat. [15] The percentage of Solar time can be
evaluated starting from the value of the beta angle, as previously explained in Eq.
5.1.

5.1.2 Albedo Energy (Reflected Solar Radiation)

Albedo radiation is the measure of the diffuse reflection of solar radiation received
from Earth. In other words, it is the fraction of solar radiation that is reflected by
the surface of a planet. It is measured on a scale ranging from 0, which corresponds
to a theoretical black body, to 1, for a body that reflects all incident radiation. The
measurement of albedo depends on several factors, including the weather and the
spacecraft’s orbit. [28]

The solar energy reflected by a planet becomes a significant source of radiant
energy when a spacecraft is in close proximity to the planet. However, from higher
altitudes, such as geosynchronous orbits, the albedo effect is negligible. Earth
reflects between 25% and 55% of the incoming solar energy, depending on the
properties of its surface. Different surfaces such as land, sea, clouds, and ice exhibit
varying levels of reflectance. Therefore, on the sunlit side of the Earth, surfaces
oriented towards the planet can receive incident energy amounting to 25% to 55%
of the direct solar flux. The spectral composition of this reflected solar energy is
nearly identical to that of direct sunlight. However, it reaches these surfaces as
diffuse energy rather than parallel rays directly from the Sun. [15]

Calculating the albedo incident on different surfaces necessitates an understand-
ing of the spacecraft’s orientation and position in relation to the sunlit side of the
Earth. Surfaces that are oriented away from the Earth will not receive any solar
energy reflected from the planet.

The equation evaluating the energy heat flux is :

Qalbedo = Qincident albedo · AIR · αAV G (5.8)

where AIR is the area exposed to the infrared albedo energy, reflected by the
planet. Table 5.4 summarizes the incident energy values for several orbit conditions
of altitude and β angle considering the accepted range of variation for solar and
Earth physical properties, to produce the "hot and cold" range of incident fluxes.
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Figure 5.4: Orbit Average Incident Radiant Fluxes on Surfaces of an Earth-Oriented Cube
for 500 km Circular Orbits. β is the angle of the Sun out of the orbit plane. The two
cases analyzed are the Cold Case and the Hot Case.[15]

5.1.3 Planetary Radiation

Planetary infrared energy refers to the energy emitted by nearby planets. It depends
on the planet’s temperature and the spacecraft’s orientation relative to the planet.
The amount of heat incident on a surface is determined by the temperature of the
source and the geometric relationship between the surface and the source. A surface
that remains perpendicular to the source throughout its orbit will receive a constant
infrared flux. A surface facing away from the source will receive none. [15] Although
all planets in the solar system have non-zero temperatures and consequently radiate
heat, Earth’s planetary radiation will be considered the primary radiation from a
planet affecting our analyzed spacecraft. [15] The equation evaluating the energy
heat flux is :

QIR = Qincident IR · AIR · εAV G (5.9)

where the emissivity is used instead of absorptance, and the reason for this is
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explained at the beginning of the following section 5.1.4.

5.1.4 Absorbed Energy

The energy incident on a surface can either be absorbed or reflected. The surface
characteristics that determine the absorbed energy are absorptance (α for solar en-
ergy) and emissivity (ε for infrared energy). Absorptance (α) defines the percentage
of incident solar energy absorbed by the surface. Solar energy, which is primarily in
the visible part of the electromagnetic spectrum, is absorbed differently compared
to infrared energy. Emissivity (ε) represents the percentage of energy absorbed
or emitted at infrared wavelengths. It is used to assess both the incident infrared
energy absorbed by the surface and the infrared energy emitted from the surface
at its temperature. [15] Tabs. 5.2 and 5.3 list some properties of typical surface
finishes and coatings.

Material Absorptance,
α

Emittance,
ε

Absortion co-
efficient, α/ε

Optical Solar Reflectors
Silvered fused silica 0,07 0,8 0,0875
Indium - Tin - Oxide (ITO) 0,07 0,76 0,0921
Aluminized Teflon (0,5 mm) 0,14 0,4 0,35
Aluminized Teflon (10 mm) 0,15 0,85 0,1765
Silvered Teflon (2 mm) 0,08 0,68 0,1176
Silvered Teflon (10 mm) 0,09 0,88 0,1023
Black Coatings
Catalac black paint 0,96 0,88 1,091
Delrin black plastic 0,96 0,87 1,1034
Martin black velvet paint 0,91 0,94 0,9681
Parsons black paint 0,98 0,91 1,0769
Vel-black 0,99 0,95 1,0421
White Coatings
Barium sulphate with
polyvinyl alcohol

0,06 0,91 0,0659

Catalac white plastic 0,24 0,9 0,267
NASA/GSFC NS-74 white
paint

0,17 0,92 0,267

Magnesium oxide aluminum
oxide paint

0,09 0,92 0,0978

White polyurethane paint 0,27 0,84 0,3214
Table 5.2: Spacecrafts’ coating materials. [16]
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Material Absorptance,
α

Emittance,
ε

Absortion co-
efficient, α/ε

Anodized aluminium
samples
Anodized aluminium black 0,76 0,88 0,8636
Anodized aluminium blue 0,60 0,88 0,6816
Anodized aluminium
chromic

0,44 0,56 0,7857

Anodized aluminium gold 0,48 0,82 0,5854
Anodized aluminium red 0,57 0,88 0,6477
Anodized aluminium yellow 0,47 0,87 0,5402
Film and tapes
Aluminium tape 0,21 0,04 5,25
Aluminized aclar film (1
mm)

0,12 0,54 0,22

Aluminized kapton (alu-
minium outside)

0,14 0,05 2,8

Goldized kapton (gold out-
side)

0,25 0,02 12,5

Metals
Buffled aluminium 0,16 0,03 5,33
Buffles copper 0,30 0,03 10
Polished aluminium 0,24 0,08 3
Polished Beryllium 0,44 0,01 44
Polished Gold 0,30 0,05 6
Polished Silver 0,04 0,02 2
Polished Stainless steel 0,42 0,11 3,818
Polished Tungsten 0,44 0,03 14,67
Vapor-deposited coat-
ings
Aluminium 0,08 0,02 4
Gold 0,19 0,02 9,5
Silver 0,04 0,02 2
Titanium 0,51 0,12 4,33
Tungsten 0,60 0,27 2,22
Polished Silver 0,04 0,02 2

Table 5.3: Spacecrafts’ coating materials. [16]
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5.2 Analysis

In this chapter, the thermal analysis of the 16U4SBSP CubeSat is presented. The
CubeSat is treated as an approximately lumped mass, with the analysis conducted
as a single-node evaluation. Separate thermal assessments are performed for the
CubeSat’s body and its solar panels, assuming that there is no contact between
them. The CubeSat’s body is modeled as a sphere with the same volume as the
CubeSat’s body. This assumption is often made when studying a spacecraft that
is either inertially fixed or oriented toward a planet. [15] A sphere has isotropic
properties, meaning thermal properties like absorption and emission of radiation
are equal in all directions. This simplifies calculations and simulations. Results
obtained from a spherical simplification are useful in this case, because is a prelim-
inary analysis and initial estimate, but may not be sufficiently precise for detailed
design and final thermal optimization. Indeed, the spherical shape does not accu-
rately represent the flat surfaces, edges, and details of the real satellite’s structure,
which can lead to differences in calculations of thermal radiation absorption and
emission. Real surfaces can have directional thermal properties that a sphere can-
not represent. Future development of this analysis will require refining simulations
and calculations using the satellite’s actual geometry to achieve more accurate and
reliable results.

5.2.1 Dissipated Power

Several assumptions have been made to estimate the power dissipated internally
by the satellite, based on the figures provided in the power budget. Firstly, since
the total power budget of the spacecraft is required to include an ESA system-level
power margin, the nominal power requirements of the spacecraft were increased by
20%. [26] In addition, it is assumed that approximately 50% of the energy con-
sumed by all subsystems (both in sunlight and in eclipse) is converted into heat and
dissipated internally. The average dissipated power is then calculated by dividing
this dissipated energy by the duration of the sunlight and eclipse portions of the
orbit, respectively. Note that the energy dissipated by the payload is not included
in this analysis, as it is managed by a dedicated heat dissipation system. For the
solar arrays, it is assumed that the internally dissipated power is the difference
between the incident solar flux and the power actually generated by the solar cells.
The power budget of the 16U4SBSP mission is shown below in Fig. 5.10.

During the Sunlight time, the average energy consumed by the systems is
86,18 Wh. Including the ESA margin policy, the total margined energy is 86,18 ·
(1+20%) = 103,42 Wh. Therefore, as previously explained, the average dissipated
energy as heat is: 103,42 Wh ·50% = 51,71 Wh. To obtain the power dissipated, it
is necessary to divide this amount of energy by the duration of the sunlight time.
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For the Case 1.A :

Pdissipated sunlight =
51,71 Wh

62% · T
= 52,89 W (5.10)

On the other hand, during the Eclipse time, the average energy consumed by
the systems is 25,26 Wh (note that, as previously explained, this amount does not
account for the energy used by the transmission system, as this system dissipates
heat independently). The total margined energy is 25,26 · (1 + 20%) = 30,31 Wh.
Thus, the average dissipated energy as heat is 30,31 Wh · 50% = 15,15 Wh. For
the Case 1.B :

Pdissipated eclipse =
15,15 Wh

38% · T
= 25,28 W (5.11)

Regarding the Solar Panels, as mentioned before, the power dissipated internally
as heat is the difference between the incident flux of solar radiant and the power
generated by the solar cells. Both of these values depend on the inclination of
the solar flux relative to the Solar Panel surface, that is beta angle. The case of
β = 0◦ is the situation of optimal conditions for the solar cells, because the solar
flux is perpendicular to the surface. Therefore, the incident solar flux is maximum,
as well as the generated power. Using the STK - Systems Tool Kit, it has been
evaluated that the total amount of power generated by the 8 solar panels is 242,2 W .
Therefore:

Pincident flux = S · Asolar cells ·Nsolar cells = 1317
W

m2
· (0,003018 · 25)m2 = 99,37 W

(5.12)

Pgenerated =
242,2 W

8
= 30,3 W (5.13)

Pdissipated = Pincident flux − Pgenerated = 69,07 W (5.14)

The case of β = 70◦ has to be analyzed considering the inclination of the solar
arrays. Using the software STK, it has been evaluated that the total amount of
power generated by 8 Solar Panels is 84,8 W . Thus:

Pincident flux = S·Asolar cells·Nsolar cells = 1419
W

m2
·(0,003018·25)m2·cos(70◦) = 36,62 W

(5.15)

Pgenerated =
84,8 W

8
= 10,6 W (5.16)

Pdissipated = Pincident flux − Pgenerated = 26,02 W (5.17)
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Figure 5.5: Power budget for 16U4SBSP mission. [24]
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5.2.2 Materials

The materials for the passive external coatings have been selected by a trade-off be-
tween four different combinations of materials, provided in Tab. 5.6. The materials
were chosen from the Tabs. 5.2 and 5.3. The combinations of materials are selected
to achieve a very low value of αAV G and a low value of εAV G. This is because the
absorbed energy needs to be minimal to prevent high temperatures during sun-
light periods, while the emitted energy also needs to be low to avoid extremely low
temperatures during eclipse periods. For each combination, the thermal analysis
is conducted following the heat transfer model’s equations explained in detail in
chapter 5.1. The resulting temperatures are displayed in Tab. 5.7. The final step is
a trade-off, for which the criteria used to select the optimal combination are based
on ensuring temperature ranges within which the subsystems and solar panels can
operate without complications. This involves maintaining temperatures ranging
from approximately 0°C at the coldest to around the ambient temperature, which
typically ranges between 5°C and 40°C.

Examining the temperatures shown in Tab. 5.7, it is evident that some com-
binations reach high temperatures, approaching 50◦C. This is unsuitable for the
CubeSat design as it negatively impacts the operation of the sub-systems. Con-
versely, the temperatures in Cases 1.B are consistently acceptable. Consequently,
combination number 4 has been selected, because it is the only one that has the
temperature of Case 1.A near 40◦C.

Figure 5.6: Different combinations of materials used for a trade-off about thermal passive
coating.

Indeed, for the CubeSat’s body, combination 4 has been selected, utilizing the
following materials in varying percentages:

• 65% of vapor-deposited coating made of Silver : α = 0,04, ε = 0,02
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Figure 5.7: Average temperature obtained from the thermal analysis conducted on differ-
ent options of passive coating materials.

• 30% of Silvered fused silica (Optical solar reflector) : α = 0,07, ε = 0,8

• 5% of Aluminized aclar film (1 mm) : α = 0,12, ε = 0,54.

Therefore, the average values of absorptivity and emissivity for the body of the
CubeSat are:

αAV G = (65% · 0,04) + (30% · 0,07) + (5% · 0,12) = 0,053 (5.18)

εAV G = (65% · 0,02) + (30% · 0,8) + (5% · 0,54) = 0,280 (5.19)

For the solar panels, the range of acceptable temperatures is different than the
one for the CubeSat’s body. Indeed, it is more wide and it generally goes from
−100◦ to 200◦. The solar cells cover 49,4% of the external surface of the solar
panel; 50% is the surface facing the Earth; 0,6% is the surface facing the zenith
without the solar cells. [24] The values of α and ε for the solar cells are specified in
the datasheet of the chosen solar cells from AzurSpace Gmbh "30% Triple Junction
GaAs Solar Cell Assembly". [10] The materials for the other surfaces of the solar
panels are selected by looking at the general trend of the passive coating used in
solar panels. The materials chosen for the Solar Panels are:

• Surface in nadir direction, without cells : black paint "Martin black velvet
paint" α = 0,91, ε = 0,94

• Surface in zenith direction:

– Galium arsenide-based solar cells : α = 0,91, ε = 0,80
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– Aluminium vapor deposited coating: α = 0,08, ε = 0,02.

Therefore, the average values of absorptivity and emissivity for the solar panels
are:

αAV G = (50% · 0,91) + (49,4% · 0,91) + (0,6% · 0,08) = 0,905 (5.20)

εAV G = (50% · 0,94) + (49,4% · 0,80) + (0,6% · 0,02) = 0,865 (5.21)

5.2.3 Models and Areas

Modeling the body of the CubeSat as a sphere simplifies the calculations of the
areas. Since the real measurements of the spacecraft are 22,6 cm × 22,6 cm ×
45,4 cm, the sphere representative of the structure has the radius of r = 17,69 cm,
since it is assumed to have the same volume as the spacecraft. Concerning the solar
panels, each CubeSat has 2 wings, which are equipped with 4 solar panels each.
Each solar panel is composed of 25 solar cells with an area of 30,18 cm2 each. The
model used to represent the solar panels in this thermal analysis is a parallelepiped
of real dimensions 21 cm × 44 cm × 0,16 cm. Both the projected area toward the
Sun and the area facing the Earth will be the same for any Case analyzed (Tab.
5.1). The solar panel always points to the Earth’s center, so the area facing the
Earth is the same. Instead, the area projected toward the Sun changes between the
Cases due to the different β angle values.

Here are summarized the values of the areas needed for the equations’ analysis:

• CubeSat’s body - Case 1.A and Case 1.B: Ap = 0,0983 m2 ; AIR = 0,0983 m2

; Ar = 0,3932 m2

• CubeSat’s body - Case 2: Ap = 0,0983 m2 ; AIR = 0,0983 m2 ; Ar =
0,3932 m2

• CubeSat’s solar panels - Case 1.A and Case 1.B: Ap = 0,0924 m2 ; AIR =
0,0924 m2 ; Ar = 0,1869 m2

• CubeSat’s solar panels - Case 2: Ap = 0,0316 m2 ; AIR = 0,0924 m2 ;
Ar = 0,1869 m2

Now, all the factors needed for the analysis have been explained.

5.2.4 CubeSat’s body

In Tab. 5.8 are displayed the results of the thermal analysis equations, considering
the material selected in chapter 5.2.2. Additionally, the solved equations for each
case are provided below.

104



5.2 – Analysis

Figure 5.8: Heat energy flux and temperature of the thermal analysis conducted of the
CubeSat’s 16U4SBSP mission.

CASE 1.A

Qsolar = S · Ap · [% Solar T ime] · αAV G = 1317 · 0,0983 · 0,622 · 0,053 = 4,2691 W
(5.22)

Qalbedo = q̇incident albedo · AIR · αAV G = 79,1 · 0,0983 · 0,053 = 0,4122 W (5.23)

QIR = q̇incident IR · AIR · εAV G = 186,8 · 0,0983 · 0,280 = 5,1421 W (5.24)

Pdissipated sunlight =
51,71Wh

62% · T
= 52,89 W (5.25)

Qin + Pdissipated internally = Qout (5.26)

Qout = Ar ·ε·σ ·T 4 = 0,3932·0,280·5,67051·10−8 ·T 4 = (6,2438·10−9)·T 4 W (5.27)

T = 43,54◦C (5.28)

CASE 1.B

Qsolar = 0 W (5.29)

Qalbedo = 0 W (5.30)

QIR = q̇incident IR · AIR · εAV G = 186,8 · 0,0983 · 0,280 = 5,1421 W (5.31)
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Pdissipated eclipse =
15,15Wh

38% · T
= 25,28 W (5.32)

Qin + Pdissipated internally = Qout (5.33)

Qout = Ar ·ε·σ ·T 4 = 0,3932·0,280·5,67051·10−8 ·T 4 = (6,2438·10−9)·T 4 W (5.34)

T = −8,95◦C (5.35)

CASE 2

Qsolar = S ·Ap · [% Solar T ime] ·αAV G = 1419 · 0,0983 · 1 · 0,053 = 7,394 W (5.36)

Qalbedo = q̇incident albedo · AIR · αAV G = 59,6 · 0,0983 · 0,053 = 0,3105 W (5.37)

QIR = q̇incident IR · AIR · εAV G = 224,6 · 0,0983 · 0,280 = 6,183 W (5.38)

Pdissipated eclipse =
51,71Wh

100% · T
= 32,79 W (5.39)

Qin + Pdissipated internally = Qout (5.40)

Qout = Ar ·ε·σ ·T 4 = 0,3932·0,280·5,67051·10−8 ·T 4 = (6,2438·10−9)·T 4 W (5.41)

T = 20,90◦C (5.42)

5.2.5 CubeSat’s Solar Panels

In Tab. 5.9 are displayed the results of the thermal analysis equations, considering
the material selected in chapter 5.2.2. Additionally, the solved equations for each
case are provided below.
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Figure 5.9: Heat energy flux and temperature of the thermal analysis conducted for the
Solar Panel of the CubeSat’s 16U4SBSP mission.

CASE 1.A

Qsolar = S·Ap·[% Solar T ime]·αAV G = 1317·0,0924·0,622·0,905 = 68,52 W (5.43)

Qalbedo = q̇incident albedo · AIR · αAV G = 79,1 · 0,0924 · 0,905 = 6,615 W (5.44)

QIR = q̇incident IR · AIR · εAV G = 186,8 · 0,0924 · 0,8653 = 14,936 W (5.45)

Pdissipated sunlight = 99,37− 30,3 = 69,07 W (5.46)

Qin + Pdissipated internally = Qout (5.47)

Qout = Ar ·ε·σ·T 4 = 0,1869·0,8653·5,67051·10−8·T 4 = (9,1698·10−9)·T 4 W (5.48)

T = 89,8◦C (5.49)

CASE 1.B

Qsolar = 0 W (5.50)

Qalbedo = 0 W (5.51)

QIR = q̇incident IR · AIR · εAV G = 186,8 · 0,0924 · 0,8653 = 14,936 W (5.52)

Pdissipated sunlight = 0 W (5.53)
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Qin + Pdissipated internally = Qout (5.54)

Qout = Ar ·ε·σ·T 4 = 0,1869·0,8653·5,67051·10−8·T 4 = (9,1698·10−9)·T 4 W (5.55)

T = −72,26◦C (5.56)

CASE 2

Qsolar = S ·Ap · [% Solar T ime] ·αAV G = 1419 · 0,0316 · 1 · 0,905 = 40,58 W (5.57)

Qalbedo = q̇incident albedo · AIR · αAV G = 59,6 · 0,0924 · 0,905 = 4,984 W (5.58)

QIR = q̇incident IR · AIR · εAV G = 224,6 · 0,0924 · 0,8653 = 17,96 W (5.59)

Pdissipated sunlight = 36,62− 10,6 = 26,02 W (5.60)

Qin + Pdissipated internally = Qout (5.61)

Qout = Ar ·ε·σ·T 4 = 0,1869·0,8653·5,67051·10−8·T 4 = (9,1698·10−9)·T 4 W (5.62)

T = 41,2◦C (5.63)

Figure 5.10: Average temperature for the CubeSat’s 16U4SBSP mission, using passive
external coating (Body: Vapor-deposited coating made of Silver, Silvered fused silica,
Aluminized aclar film – Solar Panel: black paint "Martin black velvet paint", Galium
arsenide-based solar cells, Aluminium vapor deposited coating)
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5.2 – Analysis

5.2.6 Discussion of the Results

The results are obtained assuming a spherical shape for the spacecraft. This as-
sumption leads to a discrepancy between the temperatures obtained from the anal-
ysis and the actual temperatures. A preliminary simplified analysis performed con-
sidering the actual parallelepiped shape for the spacecraft showed that the results
are expected to diverge by no more than ±5 ◦ compared to the results obtained for
a spherical spacecraft shape; it has therefore been decided to use the results from
the spherical spacecraft assumption as a sufficiently accurate first-order assumption
for the cold and hot temperatures expected in the spacecraft.

From the temperatures obtained in the previous chapter, it is evident that they
are suitable for the spacecraft of the 16U4SBSP mission. This conclusion can be
drawn by comparing these temperatures with the accepted temperature ranges for
the sub-systems and components, as reported in Table 5.4. The table shows the
operational and non-operational temperature ranges, using the usual color code to
indicate their compliance with the predicted spacecraft temperatures in orbit.

While the predicted thermal conditions are generally acceptable for most sub-
systems and components, there are potential criticalities for some components,
namely the batteries, propulsion system/RCS, and star trackers, especially under
cold/eclipse conditions. Consequently, the current spacecraft design includes a total
of 5 active heaters, each with a heating power of 5 W. These heaters are strategically
placed near the most critical sub-systems and components to provide active thermal
control in emergency or non-ideal conditions.
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Thermal Analysis

Sub-
system/Component

Operating
Min

Operating
Max

Non-
Operating
Min

Non-
Operating
Max

Solar Cells -150 250 N/A N/A

Batteries -5 45 -20 20

Power Control Unit -40 85 N/A N/A

SADA -20 50 N/A N/A

Main Propulsion 0 50 -10 60

RCS Propulsion 0 50 -10 60

Reaction Wheels -20 70 -40 80

IMU -40 85 N/A N/A

Sun Sensors -30 85 N/A N/A

Star Trackers -20 40 -20 60

S-band radio -20 60 N/A N/A

GNSS receiver -20 60 N/A N/A

On-Board Com-
puter

-30 60 N/A N/A

16U structure -40 80 N/A N/A

Payload -20 60 N/A N/A
Table 5.4: Accepted temperature ranges for 16U4SBSP sub-systems and components, and
compliance to the predicted spacecraft temperatures in orbit (green = compliant; yellow
= correctable deficiencies; red = not compliant).
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Chapter 6

Conclusion

This chapter presents the conclusions drawn from the research conducted on a
preliminary mission analysis and sub-system design for the 16U4SBSP CubeSat
mission. The primary aims of this study were to investigate the stability of the
formation of CubeSats in a Heliotropic orbit and to conduct a thermal analysis to
have a basic understanding of the range of operational temperatures. Throughout
the investigation, several key findings have emerged, which are summarized and dis-
cussed in this chapter. Additionally, the limitations of the study are acknowledged,
and recommendations for future research are proposed.

6.1 Summary of Key Findings

The research findings regarding the stability of CubeSats’ formation flying indi-
cate that the Heliotropic orbit is not a suitable choice for the Mission Analysis
of the 16U4SBSP mission. Specifically, it was observed that the formation begins
to diverge from the very first days of the mission in the absence of propulsion
control. This divergence underscores the inherent instability of the initial orbit
selected. In contrast, the Sun-Synchronous orbit emerges as a more suitable al-
ternative for achieving the mission’s objectives. In this orbit type, the formation
maintains stability for the first 20 days without requiring any propulsion adjust-
ments. These findings offer valuable insights into the trade-offs associated with
selecting the operational orbit. The instability of the initially chosen orbit neces-
sitates frequent propulsion adjustments, which consequently significantly increase
maintenance costs. In contrast, the stability of the Sun-Synchronous orbit during
the critical initial period suggests that it could be a more cost-effective option, re-
ducing the need for constant propulsion interventions and thereby lowering overall
mission expenses.

The study conducted reveals that there isn’t a straightforward correlation be-
tween the instability of the formation and the orbital geometry. This suggests that
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Conclusion

factors other than the orbit’s geometry may play significant roles in influencing
formation stability.

The thermal analysis indicates that the selected materials for passive thermal
control are suitable for the 16U4SBSP mission. Indeed, the temperatures reached
by the CubeSat under the two extreme conditions studied fall within the operational
temperature ranges permitted for all spacecraft subsystems and components. While
the predicted thermal conditions are generally acceptable for most subsystems and
components, some critical issues may arise for specific components, particularly
the batteries, propulsion system/RCS, and star trackers, especially during cold or
eclipse conditions. Therefore, the current spacecraft architecture includes a total
of 5 active heaters, each with a 5 W heating capacity, strategically positioned near
the most critical subsystems and components for emergency or non-ideal thermal
control.

6.2 Recommendations for Future Research
Based on the findings and limitations identified in this study, several recommenda-
tions for future research can be proposed. These suggestions aim to address the gaps
and challenges encountered, as well as to explore new avenues that could further
enhance the understanding of the formation stability and the thermal analysis.

For the preliminary Mission Analysis study, future research should investigate
more deeply the reasons behind the instability of the formation in the Heliotropic
orbit. Additionally, one potential enhancement in the dynamic model is to replace
the cannonball model with the actual shape of the satellite and to consider the solar
cycle, as it primarily affects atmospheric density. Exploring the impact of propul-
sion systems on the stability and cost-efficiency of formations in the Heliotropic
Orbit is another area that warrants further investigation.

For the thermal analysis study, future research should aim to enhance the ac-
curacy of the analysis by employing a multi-node approach or utilizing advanced
thermal simulation software. These methods can provide more precise temperature
readings and a deeper understanding of thermal behavior. Furthermore, it is ad-
visable to include a broader range of extreme scenarios, particularly by considering
different conditions of the β angle. This comprehensive approach will ensure that
the thermal analysis is robust and accounts for a variety of potential situations.
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