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Abstract

In this thesis will be analyzed a strategy of optimization of trajectories for missions to
near-Earth asteroids. Near-Earth Asteroids, also known as NEA, are a class of asteroids of
sizes ranging from meters to tens of kilometres that orbit the Sun and whose orbits come
close to that of Earth’s, and this aspect makes them interesting, firstly in order to monitor
their positions and predict eventual potential impacts with Earth. In addition, NEAs are
interesting both from the perspective of studying the genesis of the Solar System and the
life on our planet, and with the aim of a space economy also based on the extraction of
the minerals they contain. With the continuous discovery of new NEAs through sky obser-
vations, employing eletrical propulsion becomes advantageous. Unlike chemical propulsion,
it significantly reduces propellant consumption, leading to substantial savings in missions.

A technique known as optimal control theory, with indirect methods of resolution of
the fundamental equations, which are characterized by a significant numeric precision, with
a low number of parameters and limited time of calculation, is used to optimise trajectories:
through the definition of additional equations to be aggregated to the system of differential
equations governing the problem, it is possible to minimise a cost function representing
the parameter to be optimised, in this case the mass at the end of the journey. Using a
list of asteroids with a close passage to Earth in the next few years, an optimisation has
been carried out to find the optimal phase angle to maximise the final mass. Furthermore,
it was analysed how the variation of orbital parameters and phase angle impact trajectory
optimization, highlighting which asteroids may be easier to reach in terms of cost. The
objective was to optimize the trajectory in a way that required the least amount of pro-
pellant, showcasing the practical application of the research findings. This approach not
only emphasizes the efficiency of electric propulsion but also underscores its potential in
enabling cost-effective and environmentally sustainable space missions, including missions
to explore celestial bodies within our solar system.
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Chapter 1

Introduction

1.1 Thesis overview and objectives
The introductory chapter presents a general introduction to space trajectory optimisation,
low-thrust propulsion and the workflow followed. When speaking of optimal trajectories,
the link with low-thrust propulsion is very close, as it is the small forces that make the
trajectory continuous and optimisable.
The aim of the thesis work presented in this paper is to research the trajectories that
a probe will have to make in order to visit some asteroids that are near the Earth. To
achieve this, a low-thrust propulsion system will be used, which is inherently more complex
to analyse due to the weak forces and the long actuation times. On the other hand, these
characteristics allow great freedom in the choice of trajectory, allowing the implementation
of optimisation techniques to find the best one. After a brief reminder of the principles
of orbital mechanics, the preliminary selection of asteroids in the solar system will be
discussed, which excludes the most difficult bodies for a probe to reach, in order to focus
on missions to objects in near-earth space. The chapters that follow outline the theory
of space trajectory optimisation, reporting on high-level logic flows. The last chapters
focus on the calculations performed, in particular describing the algorithm that was
used, the analysis of asteroids trajectories and the results obtained from the implemented
optimisation processes.

1.2 Spacecraft trajectory Optimisation
Optimisation of space trajectories can be defined as the search for the control law for which
a particular parameter, known as the performance index, is optimised and the imposed
constraints are met. The control law describes the time evolution of the thrust in modulus
and direction. It is possible to apply this control law to a model of equations describing
the motion of the spacecraft, and the result is, after numerical integration, an optimal
trajectory that satisfies the boundary conditions, the initial conditions and those along the
trajectory itself, which may be integral functions over the mission time (or on the entire
trajectory) or values at a precise instant, very often the final one of the path.
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Optimisation of trajectories for space missions, especially long-distance ones, is of key
importance because it is closely linked to propellant consumption: following a non-optimal
trajectory means allocating more mass for the propellant, which leads to a greater vehicle
mass at departure with an increase in the overall cost of putting into orbit and mission
time. A non-optimal trajectory also means carrying less payload for the same cost, a
situation that is equally undesirable.
Optimisation of trajectories does not have an unambiguous path. There are different
mathematical models that can be used, each of which may correspond to a different
objective, hence a different performance index. Different approaches can also be used, in
which different methods, techniques and algorithms can be followed. It is clear that each
of these approaches has its own disadvantages and advantages, so it is necessary to make
an accurate choice that is justified by the desired result.

1.3 Fundamentals of space propulsion
There are two main energy sources for space propulsion: chemical and electrical. Chemical
propulsion is not very well suited to optimisation calculations because very often the thrust
involved is so great that manoeuvres can be regarded as impulses, that is, as abrupt changes
in the vehicle’s speed at a certain fixed position at a given time. An impulsive manoeuvre
can be optimised in terms of the direction and modulus of the thrust and by choosing
the right moment at which to execute it. Very often this does not require numerically
complex calculations, but it is also possible to arrive at the optimum analytically, take the
Hohmann’s transfer for example.
For optimal low-consumption trajectories, electric propulsion is used in its three forms:
electro-thermal propulsion, electrostatic propulsion and electromagnetic propulsion. The
most suitable propulsion for the mission analyzed in this thesis is electrostatic propulsion
due to the orders of magnitude of specific impulse, thrust and power used. The specific
impulse can be defined as:

Isp “
T

9mp ¨ g0
(1.1)

with T, thrust of the system, 9mp propellant flow rate and g0 acceleration of gravity at
sea level. If the flow rate is fixed, a propellant with a higher specific impulse is capable
of producing more thrust than one with a lower value, that means it has an higher
performance. A clear comparison of the different propulsion techniques can be seen in Fig.
1.1: it is evident that electric propulsion is the one with by far the greatest specific impulse,
but the accelerations produced are 3 to 8 orders of magnitude lower than those generated
by chemical propulsion. This is because chemical propulsion exploits the energy released
by a reaction, typically combustion, and accelerates the gases produced in a nozzle. This
implies a flow rate of expelled propellant on the order of hundreds of kg/s, which then
produces a considerable force, despite lower efficiencies. This allows achieve short but very
intense ignitions. Electric propulsion uses an external source of energy. This results in a
substantial independence between flow and power, so you can either increase one and have
lower specific energy, hence higher thrusts at low efficiencies, or increase the other and
have a very energetic propellant, which leads to high efficiencies and low thrusts. The first
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Figure 1.1: Specific impulse and specific thrust of different propulsion systems. [1]

case is unimportant for the purposes of this thesis, because it could be achieved more easily
and effectively with chemical propulsion, the second is the peculiarity of electric propulsion
that is exploited. This does not allow electric propulsion to be used for the manoeuvre of
ascension and exit from the atmosphere, but it proves to be of excellent use for missions
that require a large propulsive effort after insertion into orbit, i.e. interplanetary transfers
or to geostationary orbits, sample & return missions or multiple flybys.
The reduced propulsive force also becomes an advantage when trying to achieve an optimal
trajectory as it allows a very precise manoeuvre and allows the thrust to be shaped in the
most appropriate manner to achieve the desired objective.
However, there are many disadvantages associated with this technology: they arise from
the small control authority of the thruster, which could become critical at certain stages
of the mission as perturbations could be orders of magnitude equal to to the thrust, if
not larger. Furthermore, small thrusts give small accelerations, which in turn lead to
very long manoeuvre times compared to impulsive manoeuvres with chemical propulsion.
Considering that the mission time is directly proportional to the vehicle’s handling time
by a Mission Control Centre, this could increase mission costs considerably.
Mathematically, a manoeuvre with electric propulsion must be treated as a trajectory
in which not only the force of gravity but also the propulsive force acts a large part of
the time. The thrust varies from instant to instant generally in modulus (very often
discontinuously) and direction, so that the known term of the differential equations is
non-zero and generally time-dependent. Another mathematical complication arises from
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the small modulus of the thrust, which only slightly modifies the trajectory. Very small
time integration steps are therefore required, which increases the computational cost of the
problem. The continuity of the thrust, although it generates all the problems mentioned,
is precisely the characteristic that makes trajectory optimisation possible and drastically
decreases propellant consumption.

1.4 Workflow
The work process is basically divided into three steps:

1. Selection of asteroids;

2. Optimisation of a trajectory;

3. Analysis of results.

1.4.1 Pre-selection of asteroids
It is necessary, before carrying out any optimisation, to make a pre-selection of the asteroids
in order to find the most easily reachable ones and the points on their trajectory where
it is possible to arrive with the least possible expense. This makes it possible to choose
candidate asteroid classes for the mission under consideration.
In order not to have excessive propellant consumption, it is intuitive that the vehicle must
stay within the ecliptic, as changes in inclination are very costly due to the very high
orbital velocity of the Earth around the Sun. In addition, efforts must be made to reduce
displacements, both in terms of radius and right ascension relative to the Earth. The
chosen asteroids will therefore pass very close to the Earth and the vehicle will intercept
them at the ascending or descending node of its orbit. In the case of low inclination, any
point in the orbit is a good meeting point if close enough to the Earth, but it is preferred
to meet the asteroid at one of the apses to reduce the velocities relative to the passage.
The asteroid selection process will be explored in more detail in 3.3.

1.4.2 Optimisation of a trajectory
The optimisation process can be divided into four main sections, as described in fig. 1.2:

1. Definition of the mathematical model describing the system dynamics;

2. Definition of the appropriate objectives;

3. Development of an approach;

4. Achievement of the solution.

The first step is necessary not only for optimisation, but for every orbital mechanics
problem. It consists in understanding the dynamics of the system in which one is moving
and choosing the mathematical model that describes it. In other words, it consists in
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Figure 1.2: Steps for a space trajectory optimisation process [2]

defining the state vector, which unambiguously indicates the state of the system and the
respective differential equations of motion of the spacecraft, as well as the control vector
with which the thrust influences the dynamics.
The second step concerns the choice of mission objectives, in particular the objectives
according to which the vehicle’s trajectory is to be optimised. This is operationally done
by defining a cost function, which consists of a parameter or combination of parameters
that one wants to keep as low or as high as possible. We basically have two categories
for this step, one according to the type of objectives and a second one according to the
number of objectives.
The third step is represented by the methods and techniques employed to solve the
trajectory design problem. In this phase, two main ways are possible, which are the
analytical and numerical approaches. The analytical approach is mainly based on the
theory of optimal control, which will be central in this work. Optimal control theory, which
is the theory that determines the time-dependent control vector such that the constraints
are met and the cost is minimised, derives the equations underlying optimisation, although
the treatment in itself is fully analytical, this does not imply that the approach is analytical,
in fact indirect methods are based on numerical integration of these analytical equations.
The numerical approach does not involve analytical functions and is divided into methods:
direct methods, which find the minimum of the cost function directly by means of non-linear
programming, starting from the state and control vectors appropriately discretized in
time, and indirect methods, which involve analytically deriving the necessary conditions
for the optimum, from which other variables and equations emerge, known as ’additions’,
and transform the optimisation problem into an boundary condition problem solvable by
numerical integration that can be solved by numerical integration in time and Newton’s
method. The latter is based on Pontryagin’s principle.
The fourth and final step is to solve the problem formulated in the previous steps. If
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the developed approach is an analytical one, the solution will likely be a closed-form
analytical solution, otherwise, if the numerical approach is adopted, the problem will
be an optimisation problem, thus needing a numerical algorithm to get the solution.
However, most of the optimisation problems are solved by a numerical technique. The
numerical approach is the most used for space trajectories, because they are too complex
and inherently non-linear to present a solution in closed form. The analytical approach can
only be used if stringent assumptions are made or under specific conditions that severely
limit the conformity of the solution found with the real one. Which will be discussed in
more detail in Chapter 6.
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Chapter 2

Fundamentals of
Astrodynamics

This chapter presents a brief overview of the essential theoretical concepts on which the
physics of the problem analysed in the thesis is based. The fundamentals law governing
the motions of spacecrafts and planets and the main elements used in the definition of
orbits will be described. Finally, concepts related to propulsion will be introduced in order
to present the main characteristics of orbital manoeuvres. For the drafting of the chapter,
the following were used [3], [4].

In the following sections, the notation in bold will indicate a vector, while the same
non-bold symbol indicates its modulus, e.g. |r| “ r.

2.1 Introduction to astrodynamics

2.1.1 Kepler’s Law of planetary motion
First Law: The orbit of each planet is an ellipse, with the sun at a focus.
Second Law: The line joining the planet to the sun sweeps out equal areas in equal times.
Third Law: The square of the period of a planet is proportional to the cube of its mean
distance from the sun.

2.1.2 Universal law of gravitation
The starting point of mechanics of celestial bodies was given by Isaac Newton who
formulated the law of universal gravitation, which states that:

Given two material points M and m located at two distinct points in space and
separated by a distance r, they attract each other along their conjuction with a
force proportional to the product of their masses and inversely proportional to
the square of their distance:

F “ G
M ¨ m

r2 (2.1)
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where G = 6.673 ¨ 10´11m2kg´1s´2 is the universal gravitational constant.

The law can be written in vector terms defining the vector r as the distance between M
and m. The force exerted by M on m is:

F “ ´G
M ¨ m

|r|3
r (2.2)

The negative sign indicates that the gravitational force is attractive and it moves m towards
M, in an opposite direction to r.
In real cases the two masses are not point-like, nevertheless the law can be applied also
to bodies with spherical symmetry and bodies of any shape as long as their distance is
greater than their characteristic size.

2.1.3 The N-Body Problem
Given a spacecraft travelling in space, it is subject at each instant to N different gravitational
forces from N different bodies with different gravitational masses (fig. 2.1). Other forces
may be present on the spacecraft such as thrust, drag or pressure produced by solar
radiation, but they are neglected in the discussion.

Figure 2.1: The N-Body problem [2]

Considering a system, in an Euclidean space, of N-bodies (m1, m2, m3, ..., mn) one of
which is the body whose motion we wish to study, the following assumptions are made:

• The bodies are spherically symmetric. This allows to treat the bodies as though their
masses were concentrated at their centers.

• Masses are constant over time.

• There are no external nor internal forces acting on the system other than the
gravitational forces which act along the line joining the centers of the two bodies.
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Assuming an inertial reference frame centered at any point O, the force that body n exerts
on body i can be written as:

Fin “ ´G
mn ¨ mi

r3
ni

rni (2.3)

with n ‰ i and rni “ ri ´ rn. The resultant will be:

Fi “ ´
ÿ

G
mn ¨ mi

r3
ni

rni (2.4)

Merging the equation above with Newton’s second law and making the relative distances
explicit, the following formulation is found:

:rij “ ´G
pmi ` mjq

r3
ij

rij ´
ÿ

n‰i,m‰j

Gmnp
rnj

r3
nj

´
rni

r3
ni

q (2.5)

The first member of the equation indicates the force between two bodies and the other one
indicates the gravitational disturbances of the other bodies. It is possible to write n ´ 1
differential vector equations of this type. They are second order differential equations, all
coupled together. They can not be solved analytically but only numerically.

2.1.4 The two-body problem
The N-body problem can be simplified to a system consisting of only two bodies, in the case
in which two bodies are much closer to each other than to the rest of the bodies present in the
universe.
The result is the same equation of the N-body problem where the summation term
disappears.

:rij “ ´G
pmi ` mjq

r3
ij

rij (2.6)

If one of the two bodies is much smaller than the other, the two-body problem becomes a
restricted two-body problem. The force exerted by the small body on the large body is very
small and can be neglected. A reference frame centered in the larger body is inertial and
relative distance becomes absolute distance. The differential equation changes to:

:r “ ´G
M ` m

r3 r (2.7)

Considering M " m, the equation becomes:

:r “ ´G
M

r3 r (2.8)

It is possible to define the gravitational constant of the bigger body as µ “ GM .

2.1.5 Constants of the motion
The gravitational field is conservative and radial, so an object moving under the influence
of gravity alone does not lose or gain mechanical energy but only exchanges one form of
energy, kinetic, for another form called potential energy. Since the gravitational field is
radial, the angular momentum of the satellite about the center of the reference frame (the
large mass) does not change.
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Conservation of Mechanical Energy

The energy constant of motion can be derived with a scalar multiplication between the
motion equation and the velocity 9r:

9r ¨ :r `
u

r3 9rr “ 0 (2.9)

From which it is possible to obtain:

d

dt
p
V 2

2 ´
µ

r
q “ 0 (2.10)

If the derivative is equal to zero, that means the function to be derived is constant in time.
This function is the specific mechanical energy. The integration constant of the potential
energy is taken to be zero at infinite radius, so it is zero.

Conservation of angular momentum

The angular momentum constant of the motion can be obtained by cross multiplying the
motion equation with r:

r ˆ :r ` r ˆ
µ

r3 r “ 0 (2.11)

In general r ˆ r “ 0, the second term vanishes and using the product rule of differential
calculus it is possible to obtain the following equaion:

d

dt
pr ˆ 9rq “ 0 (2.12)

The expression r ˆ 9r is the vector h, called specific angular momentum. Since h is the
vector cross product of r and v it must always be perpendicular to the plane containing
r and v, but h is a constant vector so r and v must always remain in the same plane.
Therefore, it is possible to conclude that the satellite’s motion must be confined to a plane
which is fixed in space, called orbital plane.

2.1.6 The Trajectory Equation
It is possible to easily obtain a partial solution which will tell us the size and shape of the
orbit. The complete solution with an explicit time dependence is difficult to derive because it
requires a double integration.
By cross multiplying the equation of motion by the angular momentum h, we arrive
at the equation:

:r ˆ h “
µ

r3 (2.13)

In a few step, the equation becomes:

d

dt
p 9r ˆ hq “

d

dt
pµ

r
r

q (2.14)
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Integrating the above equation, appears a vector integrative constant B and deriving the
radius in modulus:

r “

h2

µ

1 ` B
µ cos ν

(2.15)

where ν is the angle between the vector B and the radius. B
µ shall be smaller than 1,

in order to guarantee the existance of the solution. It is important to notice that when
the angle ν is zero, the radius is minimal, when ν is equal to π, the radius is maximum.
Equation 2.15 is the trajectory equation expressed in polar coordinates. To determine the
type of curve it represents, is necessary to compare it to the general equation of a conic
section written in polar coordinates:

r “
p

1 ` e cos ν (2.16)

In the above equation, p is a geometrical constant of the conic called semilatus rectum, e
is the eccentricity and it determines the type of conic section represented by the equation.
It can be concluded that:

1. The family of curves called conic sections, i.e. circle, ellipse, parabola, hyperbola,
represents the only possible paths for an orbiting object in the two-body problem.

2. The focus of the conic orbit must be located at the center of the central body.

3. The mechanical energy of a satellite does not change as the satellite moves along its
conic orbit.

4. The orbital motion takes place in a plane which is fixed in inertial space.

5. The specific angular momentum of a satellite about the central attracting body
remains constant.

2.1.7 Types of orbits
The name conic derives from the fact that a conic section may be defined as the curve
of intersection of a plane and a right circular cone. All orbits have a symmetry and
two foci, for the circle the two foci are coincident in the centre, for ellipse and hy-
perbola, the two foci are separated and for the parabola one of the foci is at infinite
distance. The parabolic orbit represents a boundary between closed and open orbits
and it is the minimum energy orbit to escape the gravitazional influence of a body.
In an orbit is possible to define fundamental geometric quantities:

• Semilatus rectum p: half width of the curve at the focus.

• Semi-major axis a: half of the length of the chord passing through the foci.

• Focal distance c: distance between the two foci.

• Semi-minor axis b: half of the length of the chord passing through the center of the
curve.
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With the quantities above is possible to obtain other quantities:

e “
c

a
“

d

1 `
2Eh2

µ2

p “ ap1 ´ e2q

rmin “
p

1 ` e
“ ap1 ´ eq

rmax “
p

1 ´ e
“ ap1 ` eq

Elliptical orbit

The orbit of all planets in the solar system is elliptical, is a closed curve with a constant
period. An elliptical orbit has the following properties:

r ` r1 “ 2a

The sum of the radii of each point from the two foci is constant. In addition, the radii of
the apsides are so connected:

ra ´ rp “ 2c

e “
2c
2a “

ra ´ rp

ra ` rp

The period of an elliptical orbit is equal to:

T “ 2π

d

a3

µ

Circular orbit

In a circular orbit, the two foci are coincident and the eccentricity is zero. The above
equations for the elliptical orbit are valid also for the circular one, with the difference that
the radius is constant and equal to the semi-major axis of the orbit. The circular velocity
of the orbit is equal to:

Vc “

c

µ

rc

Parabolic orbit

The parabolic orbit is characterised by one of the two foci at infinite distance and eccentricity
equal to 1. It is a very rare orbit to find in nature. It is an open orbit with:

p “ 2rp

with rp periapsis radius. The parabolic orbit has a characteristc velocity that is the escape
velocity, which is the minimum velocity that a body must have at a given radius in order
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to escape the sphere of influence1 of the central body. When the radius tends to infinity,
the velocity tends to zero, so the overall energy of the parabolic orbit is zero.

Vesc “

c

2µ
r

“
?

2Vc

Hyperbolic orbit

The hyperbolic orbits are characterised by positive energy, which means that at infinite
radius the velocity is not equal to zero, and the velocity is hyperbolic excess velocity. An
hyperbolic orbit has two arms, that are asymptotic to two intersecting straight lines (the
asymptotes). Only one of the two arms has physical significance. The semi-major axis, the
distance between the foci and the semi-minor axis have negative values: the semi-major
axis is the distance between the two periapses.

c2 “ a2 ` b2

In this case, the eccentricity is bigger than 1 and it determines the slope of the asymptotes
using the formula:

1
e2 “ cos2 ϕ

2.1.8 Position and velocity as a function of time
Knowledge of the shape of an orbit is not sufficient to study the motion of a body, because as
it may often be appropriate to know the position of the body at different time instants. To
do this, is necessary to solve the equation 2.8. For the conservation of angular momentum
it is possible to write:

9ν “
h

r2 (2.17)

From Kepler’s second law, we know that the areolar velocity is constant, and for a circle:

dA

dt
“
R

2 9ν “
h

2 (2.18)

For an ellipse we obtain the same result, so:

Tp “ 2Aellipse

h
(2.19)

From which, knowing the expression for the area of the ellipse, it is possible to derive the pe-
riod formula.
The time to travel a certain distance in an orbit from any initial point to any final point is
calculated by subtraction between the time to reach the final point from the periapsis and

1The sphere of influence of a planet is the oblate-spheroid-shaped region around a celestial body
where the primary gravitational influence on an orbiting object is that body.
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the time to reach the initial point from the periapsis, t12 “ t2 ´ t1 “ pt2 ´ tpq ´ pt1 ´ tpq.
From Kepler’s second law, we can write that:

ti “
Ai

Atot
Tp (2.20)

The resolution problem consists of determing Ai as a function of the true anomaly ν. An
auxiliary circle is employed to solve the problem, as reported in fig. 2.2. The angle E
between the radius from the center to the point Q on the circle and the major axis is
the eccentric anomaly. From analytical geometry, the equations of the curves in cartesian
coordinates are:

Ellipse: x
2

a2 `
y2

b2 “ 1 Circle: x
2

a2 `
y2

a2 “ 1 (2.21)

From which it is possible to arrive to yellipse “ b
aycircle

Figure 2.2: Eccentric Anomaly, E [3]

From figure 2.2 we note that the area swept out by the radius vector is Area PSV minus
the dotted area, A2.

A1 “ AreaPSV ´ A2 (2.22)

The area of triangle A2 can be calculated as:

A2 “
ab

2 pe sinE ´ cosE sinEq (2.23)

Area-PSV is the area under the ellipse; it is bounded by the dotted line and the major
axis. Area-QSV is the corresponding area under the auxiliary circle. From the relationship
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between circle and ellipse found above, it is possible to write:

AreaPSV “
b

a
pAreaQSV q (2.24)

The area QSV is the area of sector QOV minus the triangle. Hence

AreaPSV “
ab

2 pE ´ cosE sinEq (2.25)

Substituting into the expression for area A1 yields

A1 “
ab

2 pE ´ e sinEq (2.26)

The time ti can be written as:

ti “

d

a3

µ
pEi ´ e sinEiq

where M “ pEi ´ e sinEiq is called the mean anomaly. The time from the start point to
the final point is:

t21 “

d

a3

µ
pE2 ´ e sinE2 ´ E1 ` e sinE1q

In order to use the above equations is necessary to relate the eccentric anomaly, E, to its
corresponding true anomaly, ν.

cosE “
ae ` r cos ν

a
(2.27)

Introducing the radius equation, we obtain:

cosE “
e ` cos ν

1 ` e cos ν (2.28)

The correct quadrant for E is obtained by noting that ν and E are always in the same
half-plane; when ν is between 0 and π, so is E. The discussion just concluded can also be
generalised to circumferences, where true and eccentric anomaly are the same, and for
open orbits.
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2.2 Coordinate systems and time measurements

2.2.1 Coordinate systems
The first requirement for describing an orbit is a suitable inertial reference frame. In the
case of orbits around the sun such as planets, asteroids, comets and deep-space probes,
the heliocentric-ecliptic coordinate system is convenient. For satellites of the earth is used
the geocentric-equatorial system. To describe a reference frame we need:

• The origin of the reference frame;

• The orientation of the fundamental plane X-Y;

• The principal direction, which means the direction of the X axis;

• The direction of the Z-axis, perpendicular to the fundamental plane.

The Y-axis is always chosen so as to form a right-handed set of coordinate axes.

The Heliocentric-Ecliptic Coordinate System

The heliocentric-ecliptic system has its origin at the center of the sun. The fundamental
plane coincides with the ecliptic which is the plane of the earth’s revolution around the
sun. The line of intersection of the ecliptic plane and the earth’s equatorial plane defines
the direction of the γ axis as shown in figure 2.3. On the first day of spring a line joining
the center of the earth and the center of the sun points in the direction of the positive
γ axis. That is called the vernal equinox direction. The earth wobbles slightly and its
axis of rotation shifts in direction, about 50 arcseconds per year. This effect is known as
precession. As a result the heliocentric ecliptic system is not really an inertial reference
frame but in this thesis the duration of the missions will be a maximum of 2 or 3 years,
too short to be affected by the phenomenon just described.

Figure 2.3: Heliocentric-Ecliptic coordinate system [4]
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The Geocentric-Equatorial Coordinate System

The geocentric-equatorial system has its origin at the earth’s center. The fundamental
plane is the equator and the positive X-axis points in the vernal equinox direction. The
Z-axis points in the direction of the north pole. The system is not fixed to the earth and
turns with it; rather, the geocentric-equatorial frame is nonrotating with respect to the
stars and the earth turns relative to it.

Figure 2.4: Geocentric-equatorial coordinate system [4]

The Perifocal Coordinate System

The perifocal coordinate system is really useful for describing the motion of a satellite.
The fundamental plane is the plane of the satellite’s orbit. The p-axis points toward the
periapsis; the q-axis is rotated 90° in the direction of orbital motion and lies in the orbital
plane, the w-axis along h completes the right-handed perifocal system.

Figure 2.5: Perifocal Frame [4] Figure 2.6: Position and velocity relative
to the perifocal frame. [4]
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2.2.2 Time Measurements
In astrodynamics there are two measures of time: solar time and sidereal time. The time
between two successive upper transits of the sun across our local meridian is called an
apparent solar day. The earth has to turn through slightly more than one complete rotation
on its axis relative to the fixed stars during this interval. The reason is that the earth
travels about 1/365th of the way around its orbit in one day. A sidereal day consisting
of 24 sidereal hours is defined as the time required for the earth to rotate once on its
axis relative to the stars. This occurs in about 23 hours, 56 minutes and 4 seconds of
ordinary solar time. The two measures are reported in table 2.1. Two types of time can

Sidereal Time Solar Time
24 sidereal hours 24h 00m 00s 23h 56m 04s
1 sidereal day 1 day 0.997 days
24 solar hours 24h 03m 56s 24h 00m 00s
1 solar day 1.00274 days 1.00000 day

Table 2.1: Sidereal and solar time.

be distinguished on a revolution: tropical year and sidereal year. The sidereal year is
based on a complete rotation, the tropical year is based on the time between two vernal
equinoxes. This is because due to the precession of equinoxes, 50 fewer arcseconds are
travelled between two spring equinoxes, equivalent to 18 solar minutes, as reported in table
2.2. The difference between the tropical and sidereal year is the reason because there are

Sidereal Year Tropical Year
365dd 06h 09min 10s 365dd 05h 18min 46s

Table 2.2: Sidereal and tropical year.

two calendars: Julian calendar and Gregorian calendar. The Gregorian calendar is the one
used today, as it takes into account the 5 hours and 48 minutes deviation from the usual
365 days of the year. The main differences are reported in table 2.3.

Julian Calendar Gregorian Calendar
Cycle (years) 4 years 400 years
Cycle (days) 1461 days 146097 days
Deviation from Sidereal year 1 day / 128 years 1 day / 3323 years
Deviation from Tropical year 0.0278days / year 0.003days / year

Table 2.3: Julian and Gregorian Calendar.

An important moment in the time reference system is the J2000, defined at noon of
January 1, 2000. This date is the 2451545th day of the Julian calendar and at this moment
are defined the axis directions of the ECI J2000 reference frame. In order to reduce the
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order of magnitude of a Julian Date, the Modified Julian Date (MJD) is used. A Modified
Julian Date is a Julian Date decreased by 2400000.

2.3 Coordinate Transformations
In astrodynamics is useful to use a coordinate transformation to simplify some calculations,
transforming vector quantities from one coordinate system to another. Imagine we want to
rotate a triplet of versors (i, j, k) by an α angle along the k-axis. The resulting versors are:

»

–

u
v
w

fi

fl “

»

–

cosα sinα 0
´ sinα cosα 0

0 0 1

fi

fl

»

–

i
j
k

fi

fl (2.29)

The 3x3 matrix is the representation of the equations on the directions of the rotated
vectors and is called the rotation matrix. It is possible to write the rotations along the
other axes:

L1 “

»

–

1 0 0
0 cosα sinα
0 ´ sinα cosα

fi

fl L2 “

»

–

cosα 0 ´ sinα
0 1 0

sinα 0 cosα

fi

fl (2.30)

Matrices are orthogonal, so their inverse is equal to their transpose.
Note that for successive rotations around different axes, the matrices are simply multiplied
by replacing the input vector of one rotation with the output vector of the previous rotation.
It is important to remember that the order in which the matrices are multiplied is relevant
since matrix multiplication is not commutative. The angle through which one frame must
be rotated to bring its axes into coincidence with another frame are commonly referred to
as Euler angles. A maximum of three Euler angle rotations is sufficient to bring any two
frames into coincidence.

2.4 Classical Orbital Parameters
In astrodynamics, five indipendet quantities called orbital parameters are sufficient to
completely describe the size, shape and orientation of an orbit. A sixth element is required
to pinpoint the position of a satellite along the orbit at a particular time. The classical set
of six orbital elements, fig. 2.7, are defined as follows:

• a, semi-major axis: a constant defining the size of the conic orbit;

• e, eccentricity: a constant defining the shape of the conic orbit;

• i, inclination: angle between the K vector and the angular momentum, h;

• Ω, longitude of the ascending node: the angle between the I vector and the point
where the satellite crosses through the fundamental plane in a northerly direction
(ascending node);
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• ω, argument of periapsis: the angle between the ascending node and the periapsis
point, measured in the direction of the satellite’s motion;

• νptq, true anomaly: the angle between the radius of the orbiting mass at time t (r(t))
and the periapsis direction (θ in fig. 2.7).

Figure 2.7: Classical orbital parameters

The list of six orbital elements defined above is by no means exhaustive, there are situations
in which one or more parameters can be indeterminate:

• If the inclination is zero, Ω and ω can not be determined, an additional parameter Π
is used, called longitude of periapsis, angle from I to periapsis.

• If the eccentricity is zero, ω and ν can not be determined, an additional parameter u
is used, called Argument of latitude.

• If both eccentricity and inclination are zero, Ω, ω and ν can not be determined, an
additional parameter l is used, called True longitude at epoch.

2.4.1 Determining the orbital elements from r and v
Assuming that a ground station on the earth is able to provide the vectors r and v
representing the position and the velocity of a satellite relative to the geocentric-equatorial
reference frame ata a particular epoch, it is possible to obtain the eccentricity vector
through the formula:

B
µ

“
v ˆ h
µ

´
r
r

“ e (2.31)

From r and v, we can obtain the angular momentum and the specific energy of the orbit,
from which a and p can be derived. The other parameters can be obtained with the
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following equations:

Ω “ arccos p
I ¨ pK ˆ hq

|K ˆ h|
q ω “ arccos p

pK ˆ hq ¨ P
|K ˆ h|

q

i “ arccos p
K ¨ h

|h|
q ν “ arccos p

r
|r|

¨ Pq

with P direction of periapsis and I,J and K cartesian axes of the reference frame considered.

2.4.2 Determining r and v from the orbital elements
It is assumed that all six orbital parameters are known and we want to calculate the
position and velocity of the orbiting body. In the perifocal coordinate system, the position
can be written as:

r “ r cos νp ` r sin νq (2.32)
with the modulus of r equal to:

r “
p

1 ` e cos ν (2.33)

To obtain the velocity vector is necessary to differentiate the position vector, assuming the
perifocal system as inertial.

9r “ v “ p 9r cos ν ´ r 9ν sin νqp ` p 9r sin ν ` r 9ν cos νqq (2.34)

That can be written as:

v “

c

µ

p
p´ sin νp ` pe ` cos νqqq (2.35)

2.5 Orbital manoeuvres
Orbital manoeuvres are performed to change one or more orbital parameters. During
manoeuvres, propulsive forces are applied to the spacecraft, implying a change in vehicle
mass with the ejection of a mass 9mp. In this section, some impulsive manoeuvres will
be reported which, although not those performed by the spacecraft, are very important
because they explain in a simplistic way what happens when a thrust is applied in a certain
direction.

2.5.1 Manoeuvre cost and propulsion parameters
For an impulsive manoeuvre, using Tsiolkovsky’s rocket equation, it can be seen that the
input of the manoeuvre is a required change in velocity ∆V and the output for this to
occur is a certain energy expended by the thruster. For impulsive manoeuvres, it is possible
to approximate the position as constant during manoeuvring, which is not possible in the
case of continuous manoeuvre.
The cost of the manoeuvre is the energy required to achieve the desired change in ve-
locity, which will be directly proportional to the fuel consumption of the manoeuvre.
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Some fundamental quantities are now introduced: ejected propellant flow rate 9mp and
thrust T are related to the effective exhaust velocity c, which represents the velocity at
which the propellant is expelled from the nozzle under the assumption of zero external
pressure.

T “ 9mp ¨ c (2.36)
Another important parameter is the total impulse It, which takes into account all thrust
contributions during a time interval, typically from the initial instant of thruster ignition
t0 to the final instant tf :

It :“
ż tf

t0

T dt (2.37)

However, the total impulse is only related to the thrust obtained and does not take into
account the propellant consumption required to obtain it. In order to be able to make a
more balanced comparison, the specific impulse is defined:

Isp :“ It

mpg0
“

T

9mpg0
“

c

g0
rss (2.38)

with mp the available fuel mass.
It is possible now to write the Tsiolkovsky’s rocket equation:

mf

mi
“ exp p´

∆V
c

q (2.39)

This equation is of essential importance for the study of space propulsion: given a type of
propulsion and a certain amount of fuel, what is the achievable ∆V ? Or, given what is
the value of ∆V needed to perform a certain manoeuvre, how much propellant is needed
to perform it?
The second question is closely related to the work addressed in this thesis: knowing the
positions of the asteroids, a series of manoeuvres must be performed in order to encounter
them. Note that the ratio mf {mi depends exponentially on the reciprocal of the specific
impulse, which means that the greater this parameter, the less propellant will be needed
to achieve a certain ∆V , demonstrating how the choice of electric propulsion is ideal for
reducing fuel consumption.
Given a spacecraft with velocity V1, the ∆V is calculated as the velocity variation to be
imparted to the spacecraft to obtain a V2 appropriate to the desired orbit. Since velocities
and ∆V are vector quantities, it is necessary to use Carnot’s theorem to calculate the
modulus:

V 2
2 “ V 2

1 ` ∆V 2 ´ 2V1∆V cos pπ ´ βq (2.40)
with β the angle between the velocity vectors. Associated with it is a change in energy
that the satellite will be subjected to and this represents the cost of the manoeuvre as it is
linked to the propellant consumption:

∆Eg “
V 2

2
2 ´

V 2
1
2 “

1
2∆V p∆V ` 2V1 cos βq (2.41)

To achieve the greatest possible energy variation, the manoeuvre must be carried out when
the speed is maximum and when the angle β is zero (or equal to π). The lower the velocity,
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the more energy ends up in gravitational losses and the energy effect is low at the same
∆V . The non-zero β on the other hand, results in losses due to thrust misalignment.
Finally, it should be noted that the previous two relationships are valid under the assump-
tion that thrust occurs instantaneously, which is not the case with electric propulsion.
The considerations made, however, continue to apply in general.

2.5.2 Main impulsive manoeuvres
In this section, the main impulsive manoeuvres will be analyzed; three-pulse manoeuvres
or transfers between orbits at different inclinations will be omitted because they are not
useful for the trajectories analysed, which will remain at very low inclinations.

Adjustment of Periapsis and Apoapsis height

A very effective way to change the height of an apsis is to increase the speed in the opposite
one. This changes the major semi-axis (and eccentricity) without varying its direction. If
the increment is ∆z, then the change in major semi-axis will be:

∆a “
∆z
2 (2.42)

Knowing the required ∆a, it is possible to derive ∆z and from there derive the required
V2 and ∆V . Note that the ∆V at periapsis is very effective, while ∆V at apoapsis is
inconvenient due to gravitation losses.
It is possible to write:

V dV “
µ

2a2 da (2.43)

For a near-circular orbit:
dV

V
“
da

2a (2.44)

Apses line rotation

The apses line is determined in the orbital plane by the angle ω. To rotate such line by a
∆ω angle with a simple impulse, it is necessary that the point at which the impulse occurs
is common to the starting orbit and the ending orbit: one of the two intersections of the
ellipses.
The manoeuvring conditions will be:

r1 “ r2 ν2 “ ν1 ´ ∆ω (2.45)

Energy and angular momentum do not vary since the shape and size of the orbit remain
constant. Since the radius is constant, the tangential velocity also remains constant, as
does the modulus of the velocity.
To do this, it is necessary to vary the direction of the radial velocity:

∆V “ 2Vr “
2µe
h

sin ν (2.46)
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Figure 2.8: Apses line rotation [4]

Orbital plane change

The change of orbital plane requires a ∆V with a component perpendicular to the orbital
plane. The manoeuvre takes place with a single impulse at constant radius, energy and
angular momentum.
The moduli of V, Vr and Vt remain constant, only the direction of Vt varies in the plane
tangent to the two orbits at the manoeuvring point.
The cost of the manoeuvre is equal to:

∆V “ 2Vt sin ∆ψ
2 (2.47)

with ∆ψ the angle between the tangential velocity in the departure orbit and the tangential
velocity in the arrival orbit.
It should be noted that the cost is directly proportional to the orbital velocity, so the
change of orbital plane should be done at apoapsis or with a combined manoeuvre. A
graphic representation of the manoeuvre is shown in figure 2.9.

Phasing Manoeuvre

A phasing manoeuvre is a two-impulse manoeuvre from and then back to the same orbit,
as reported in fig. 2.10. This kind of manoeuvres are used to change the position of a
spacecraft in its orbit. If two spacecraft, destined to rendezvous, are at different locations
in the same orbit, then one of them may perform a phasing manoeuvre to catch the other
one. In fig. 2.10, phasing orbit 1 might be used to return to P in less than one period of
the main orbit. This would be appropriate if the target is ahead of the chasing vehicle. If
the chaser is ahead of the target, then phasing orbit 2 with its longer period, and bigger
major semi-axis, might be appropriate.
The phasing manoeuvre can be done also only with the phasing orbit 2, using a smaller ∆V
but waiting more than one orbital period. The whole thing is a compromise between cost
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Figure 2.9: (a) Two noncoplanar orbits around F. (b) Line of intersection between the
two orbital planes [4]

Figure 2.10: Example of phasing manoeuvre [4]

and manoeuvre time. In particular, it can be written that ∆T “ n∆Tp, with Tp “ 2π
b

a3

µ ,
whereby ∆T is uniquely tied to ∆a.
Note that if the required phasing is more than 180°, then it is better to phase in the
opposite direction. In this case, the orbit is called a catching orbit and has a semi-major
axis smaller than the starting orbit. The required impulses are performed at the same
point at different times, they have the same modulus, same direction but opposite verse,
as shown in fig. 2.10.

Transfer between coplanar circular orbits

In low-thrust missions, it is very often possible to approximate the orbit at any given
time to a near-circular orbit, which is why this section will analyse transfers between
near-circular orbits, both in the impulsive case and in the case of continuous thrust.
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Wanting to move from an orbit with radius r1 to an orbit with a greater (or smaller) radius
r2 in the same orbital plane, the transfer orbit must intersect both orbits: the periapsis
shall be less than or equal to the radius of the departure orbit and the apoapsis shall be
greater than or equal to the final radius. These relationships can be expressed through the
following equations:

rpt “
pt

1 ` et
ď r1 rat “

pt

1 ´ et
ě rr2 (2.48)

The combinations of semilatus rectum and eccentricity are infinite and can lead to elliptical,
parabolic and hyperbolic transfers. It can be shown that the ellipse bitangent to the two
orbits is the one with the lowest energy. The ∆V for this type of two impulses transfer
is the lowest possible. If three impulses transfers are considered the argument does not
apply, a biparabolic or bielliptical transfer may be more convenient, as reported in [3].
The bitangent elliptical transfer is called the Hohmann transfer and has the following
characteristics:

rpt “ r1 rat “ r2

at “
r1 ` r2

2 Et “
´µ

r1 ` r2

∆V1 “ Vc1p

c

2r2

r1 ` r2
´ 1q ∆V2 “ Vc2p1 ´

c

2r1

r1 ` r2
q

∆Tt “
Tpt

2 “ π

d

a3
t

µ

A graphic representation is shown in figure 2.11. For transfers to smaller radii, the impulses
have the same magnitude but the opposite direction.

Figure 2.11: Hohmann Transfer [4]
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2.5.3 Continuous thrust manoeuvres
This section covers the analysis of a continuous manoeuvre, using the Edelbaum’s approxi-
mation. The assumptions introduced in the approximation are:

• Near-circular orbits (a « p « r; e « 0; E « M « ν).

• Low inclination orbits (i « 0).

• Small accelerations compared to circular speed V 2
c “

µ
r2

These three assumptions make it possible to simplify the Gauss’s equations for variations
in the classical orbital parameters, obtaining:

V 9a

a
“ 2Tt

m

V 9e “ 2 cos ν Tt

m
` sin ν Tr

m

V 9i “ cos pω ` νq
Tw

m

Thrust, in a generic direction, can be broken down into tangential (Tt), radial (Tr) and
normal (Tw).
By defining the α angle between the projection on the orbital plane of the thrust and the
tangential direction and the β angle between the thrust and the orbital plane, it is possible
to express these components as:

Tt “ T cos β cosα
Tr “ T cos β sinα
Tw “ T sin β

By integrating the simplified Gauss’s equations on an orbit, we obtain:

∆a “
2aT
nmV

ż 2π

0
cosα cos β dν

∆e “
T

nmV

ż 2π

0
p2 cos ν cosα ` sin ν sinαq cos β dν

∆i “
T

nmV

ż 2π

0
cos pω ` νq sin β dν

In the case of eccentricity change, the reference of the true anomaly is chosen so that that
the manoeuvre creates the major semi-axis in the direction of the chosen reference. Same
for changes of inclination, the chosen reference will become the line of nodes of the final
orbit.
In order to maximise the variation of semi-major axis a, it is trivial to have the thrust with
α “ β “ 0, so in the direction of the velocity, as in impulsive manoeuvres. To maximise
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the variation of eccentricity e is more complicated, taking the equation inside the integral,
deriving it and finding the optimum, one obtains an expression of the type:

tanα “
tan ν

2 ; β “ 0 (2.49)

This expression says that the direction of the thrust varies according to the true anomaly
of the point at which it is located. It is possible to simplify the expression by imposing
approximately ν “ α and thus have the thrust in the same direction in an inertial reference
system.
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Chapter 3

Mission definition

After providing a general introduction of the thesis, this chapter will aim to present the
context in which the mission will take place in terms of the probe design, boundary
conditions of the problem itself and the objectives to be achieved.

3.1 Near-Earth Objects
A Near-Earth Object, also known as NEO, is an object in the Solar system with an orbit
intersecting that of the Earth. All the NEOs have a perihelion smaller than 1.3 AU and
an aphelion bigger than 0.983 AU.
The Near-Earth objects can be divided in Near-Earth Asteroids (NEAs) and Near-Earth
Comets (NECs). Comets fall into NECs group only if they have an orbital period of less
than 200 years. Asteroids monitoring is important, as an impact of one of them with the
Earth can cause catastrophic damage but also for possible scientific implications as they
can be explored with low ∆V missions. NEAs are samples that make it possible to study
the astronomical and geochemical aspects of the solar system, its history and evolution.
With the New Space Economy NEAs are seen as a possible economic resource because of
the material that can be extracted and brought to Earth at a reduced cost.
Among the NEAs there is a particular category of asteroids called Potentially Hazardous
Asteroids (PHA). The asteroids in this category are constantly monitored for collision
danger in certain time windows. The PHAs have a minimum orbit intersection distance
(MOID) to the Earth’s orbit less than or equal to 0.05 AU (less than 7.5 millions of
kilometers) and a absolute magnitude smaller than 22, indicating a size bigger or equal to
150 meters. The magnitude is a measure of the brightness of an object, to calculate the
size of the object the following formula should be used:

D “
1329
?
A

¨ 10´ H
5

With the above equation is possible to obtain the diameter D of an asteroid by knowing
its albedo A, which is the percentage of reflected light compared to that received and the
absolute magnitude H. The absolute magnitude can be easily measured but the albedo
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depends on the chemical composition which can vary greatly. Albedo values are between
0.2 and 0.06. Taking into account a mean value of 0.15 for the albedo and a magnitude
of 22, we obtain the diameter of a PHA. In the Solar system there are 1 million known
asteroids and only 30000 of them can be classified as NEA. NEAs can be divided into the
following groups:

• Amors: Asteroids with an orbit outside the Earth’s, therefore not intersecting.

• Apollos: Asteroids with an orbit that intersects that of the Earth. Their semi-axis
is greater than that of the Earth, but their perihelion is smaller than the Earth’s
aphelion.

• Atens: Asteroids with an orbit that intersects that of the Earth. Their semi-major
axis is smaller than that of the Earth, but their aphelion is bigger than the Earth’s
perihelion.

• Atiras: Asteroids with an orbit inside the Earth’s orbit, therefore not intersecting.
They have a semi-major axis smaller than that of the Earth and an aphelion smaller
than the Earth’s perihelion.

NEAs are also divided into numbered and unnumbered: the former are object whose orbit
is known more as results of repeated observations, while the accuracy of orbital parameters
of the latter is less. When a new body is discovered, it is first added to the second category
and then moved to the first category after a series of observations and studies.

Figure 3.1: NEAs [5]
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With reference to fig. 3.1, following the same nomenclature, are reported the parameters
for Earth:

Semi-major axis: aC “ 1.0AU

Aphelion: QC “ 1.017AU

Perihelion: qC “ 0.983AU

3.1.1 Astronomical and scientific aspects of NEAs
Spaceguard project started in 1998 with the aim of cataloguing NEAs and preventing their
impacts with the Earth. At the beginning the monitoring was only for objects with a
diameter bigger than 1 km. The research was then extended through NASA NEOWISE
mission, with the aim of studying smaller bodies as well.
In fig. 3.2 is possible to observe all the NEOs discovered so far, divided by size. There are
more than 30000 NEAs discovered, 800 of them have a diameter bigger than 1 km and
2400 NEAs are classified as PHAs, with 152 of them with a diameter bigger than 1 km. It
is important to observe that the number of asteroids with a diameter bigger than 1 km is
roughly constant: this is because they are easy to find, so it is estimated that almost all of
them are now known.

Figure 3.2: Discovered NEAs (Updated at 05 March 2024) [5]

The first objective of the Spaceguard project was surveillance and prevention of future
impacts given the aforementioned energies involved, with consequent risks. Speaking of
which, test missions have been studied and carried out with the goal of findings solutions to
effectively deflect an asteroid from its collision course with Earth. Worth mentioning is the
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DART mission that was the first-ever mission dedicated to investigating and demonstrating
one method of asteroid deflection by changing an asteroid’s motion in space through kinetic
impact.
As mentioned before, NEAs are also important for the New Space Economy. In fact, they
show a very diverse chemical and physical composition: silicates, basaltic compounds,
carbonates and metals. This shows that their formation does not have a unique origin,
making them an excellent source of information about the history of the solar system [6].
NEAs have various composition, rotational and aggregation properties: during the forma-
tion of the Solar system, micrometer-sized dust, called chondrules, aggregated to form
centimeter-sized objects. They are subject to centrifugal accelerations that could be far
stronger than gravitational or viscous forces, and the chondrules cluster as a result, is no
longer able to grow. Once these aggregates have a size of a kilometer, the gravitational
forces are strong enough to capture other dust or smaller bodies and create a proto-planet
[7]. The transition from centimeter to kilometer has never been unambiguously clarified
because of the meter barrier. When the object size is around one meter, the accretion
becomes very difficult, because the energy holding the aggregate components together is
not very strong, while their relative velocity, which generates a centrifugal force, goes up:
neither gravity nor viscous forces can explain the change from centimeter to kilometer:
some simulation shows that in presence of intense turbulent vortexes, it is possible to
continue asteroid formation through the aggregation of dust [8].
The estimated lifetime of a NEA is only a few million years, they are usually eliminated
through orbital decays towards the Sun, collisions with inner planets or by ejection from
the solar system following a flyby with a large planet. This suggests that they did not
originated in the present orbit, but actually come mainly from the main asteroid belt
between Mars and Jupiter [9]. A proof has been provided by NASA OSIRIS-REx, the first
U.S. mission to collect a sample from an asteroid. The collected sample from the NEA
Bennu has the same composition of the asteroid Vesta from the main asteroid belt [10],
which has suffered two strong impacts in the past, releasing many fragments [11]. There
two main phenomena linked to the migration of asteroids towards more internal orbits:
the Kirkwood gaps and the Yarkovsky effect.

Kirkwood Gaps

The main asteroid belt has some gaps in the density distribution of asteroids in the
radial direction, this gaps are called Kirkwood Gaps. In fig. 3.3 is possible to see how for
some semi-major axis values there are no asteroids. This happens because an asteroid in
an orbit possessing a certain semi-major axis is in orbital resonance with Jupiter, that
means that the orbital period of the planet and of the asteroid itself are in an integer
ratio. This phenomenon is common with circular orbits, but it can happen also with
eccentric or inclined orbits. For these NEAs, Jupiter’s gravity generates considerable
orbital disturbances, causing them to migrate to other regions of space, giving origin
to these characteristic gaps named after the ratio of periods, for example 5:2 resonance.
According to [13], about 61% of NEOs come from the inner asteroid belt, with a semimajor
axis smaller than 2.5 AU, 24% of NEOs come from the central belt, with a semimajor axis
between 2.5 and 2.8 AU, and 8% come from the outer asteroid belt, with a semimajor axis
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Figure 3.3: Kirkwood gaps in the asteroid main belt distribution [12]

bigger than 2.8 AU and 6% from Jupiter’s comets.

Yarkovsky effect

Like any other object, an asteroid, when hit by solar radiation, will absorb energy and
radiate it following the Stefan-Boltzmann law. Due to the thermal inertia, there is a time
delay between the peak input and the peak output. If an asteroid possesses a rotation
around its axis, the absorption peak would occur at "noon" while the emission peak in
the afternoon, generating a non-zero and non-radial force. If, for example, the asteroid
rotates in a prograde manner, the resulting force produces an increase in the semi-axis, in
opposite if the spin is retrograde. If, on the other hand, the asteroid has no rotational
motion, during its revolutionary motion half the satellite will be illuminated and the other
half will not, following a ’seasonal’ cycle. Referring to fig. 3.4, the absorption peak occurs
at A and C, but the emission peak happens at B and D, generating a braking force that
reduces the semi-major axis. According to [14], the forces generated by the Yarkovsky
effect are very small, but they lead to significant variations over time, even to the extent of
moving asteroids smaller than 20 km towards regions affected by gravitational resonance.

3.1.2 Planetary protection
As mentioned above, since the 1990s the observation of NEAs has been carried out for
scientific reasons but above all for risk reasons. Indeed, the scientific community has
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Figure 3.4: Yarkovsky effect [14]

always been aware that even small bodies can create large impact craters, and that the
effect of such an impact can be recorded over even larger areas. With the ever-increasing
awareness of the need to study these bodies in order to map them and possibly mitigate
the risks of possible impacts, a number of organisations dealing with planetary protection
have sprung up over the years. The most important is the Planetary Defense Coordination
Office (PDCO), a planetary protection organisation founded by NASA in 2016. Its mission
is to catalogue NEAs and PHAs whose orbits pass within 5 million km of Earth and which
could strike it, and to help the US government coordinate efforts to mitigate or deflect
potential threats once found. Observation is carried out through a variety of telescopes
on the ground and in space. Nasa is currently developing NEO Surveyor Space Telescope,
a satellite optimised for the search characterisation of near-Earth bodies, in order to
accelerate the discovery of currently unknown asteroids [15].
There are other organisations involved in finding new NEOs, such as the SpaceGuard
Foundation (SGF), a private non-profit organisation based in Frascati (Italy), whose aim
is to protect the Earth from a possible impact threat.

Risks for the Earth

In recent years, episodes of small objects called fireballs have been documented: these
are small asteroids burning in the atmosphere, so called because they are very bright. A
famous example of fireball is the Chelyabinsk meteor, a NEO about 20 meters in diameter,
which entered the Earth’s atmosphere in the Ural region of Russia on 15 February 2013.
The object exploded at an altitude of about 30 kilometers, creating a shock wave with an
estimated kinetic energy equal to the energy of 30 atomic bombs dropped on Hiroshima
(400-500 kilotons). Another episode occurred in February 2018, when the asteroid 2008
TC3, 4 meters in diameter and 80 tonnes in weight, exploded about 37 km above the Sudan
desert. Most of it disintegrated, but about 11 kg of debris that survived the explosion
was collected on the ground. This was the first case of an asteroid impact that had been
predicted prior to entry the atmosphere. In case of larger bodies, the impact with the
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Figure 3.5: Fireballs entered the atmosphere between 1988 and 2024 [16]

Earth could have very serious consequences. In case of impact with a object with a size
bigger than 1 km, the impact, already catastrophic itself, could trigger a series of chain
effects such as tsunamis, earthquakes and, in the worst case scenario, climatic changes.
There are two main scales used to assess the hazard of a possible collision: Torino scale
and Palermo Scale.

Torino Scale

The Torino scale is a method for categorizing the impact hazard associated with near-Earth
objects (NEOs) such as asteroids and comets.The scale has integer values from 0 to 10,
where the individual risk value is a combination of the statistical probability of impact
and its kinetic energy. The value 0 indicates a negligible impact, for example a very small
asteroid that can’t enter the Earth’s atmosphere. The maximum value represents a definite
threat, an asteroid large enough to cause a planetary catastrophe. The threat level is
represented also by colours, as reported in fig 6.3:

• White: Asteroid too small to be a threat;

• Green: Current calculations show a collision is extremely unlikely. New telescopic
observations very likely will lead to reassignment to Level 0;

• Yellow: meriting attention by astronomers. Current calculations give a 1% or greater
chance of collision capable of localized destruction;

• Orange: Threatening. A close encounter by a large object posing a serious but still
uncertain threat of a global catastrophe. Critical attention by astronomers is needed
to determine conclusively whether a collision will occur;
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Figure 3.6: Torino Scale

• Red: Certain collision. The collision can cause localised destruction or a tsunami for
small asteroids (1 event every 50-10000 years), while large asteroids can cause a global
catastrophe (1 event every 100000 years). The asteroid that caused the Chicxulub
impact, which caused the extinction of non-volatile dinosaurs, was estimated to be
10 on the Torino scale.

To far no observed asteroid has had a value other than zero. The asteroid with the highest
value (4) is 2004 MN4 (Apophis), discovered on 24 December 2004, it has a size of 370
meters. The value 4 on the Torino scale translated into a probability of impact with the
Earth of Friday 13 April 2029 of 2.7%. Further observations and calculations on the orbit
led, on 28 December 2004, to the conclusion that the passage of 2029 would create no
danger to the Earth, bringing the impact risk down to 0.

Palermo Scale

The Palermo Technical Impact Hazard Scale is a logarithmic scale used by astronomers
to rate the potential hazard of impact of NEOs. The scale is used to assign a degree of
priority to events that are ranked at the same level on the Torino scale. The scale can have
both negative and positive values and compares the likelihood of the detected potential
impact with the average risk posed by objects of the same size or larger over the years
until the date of the potential impact. This average risk is known as background risk.
The values are defined using the following equation:

P “ log10p
pi

fB ¨ T
q

Where pi is the impact probability, T the time interval and fB is the background impact
frequency.
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Also for this scale the biggest value registered was for Apophis, with 1.10.

3.2 Multiple flyby missions

The use of spacecraft to study the physical properties of asteroids is very interesting from
a scientific point of view, as discussed in the previous section. The simplest mission for
this purpose is to send a probe into the asteroid belt and measure the effects of that
environment in microgravity, gradually studying all the bodies it encounters. Such a
mission has the advantage that it does not require a target object to arrive at, yet it would
only obtain information on the most populous bodies in that particular celestial zone.
Unfortunately, the largest asteroids are not so common in the belt, so they are not easily
analysed. What instead can be realised is a mission with multiple flybys, as it would allow
to test several NEAs with the same equipment, reducing costs.
For the target selection, different approaches may be used depending on the needs and
preferences of the mission:

• Mission to asteroids selected on the basis of their orbital parameters so that they
require low ∆V (subject of this thesis);

• missions that require the flyby of a particular asteroid for scientific purposes and can
perform other subsequent or previous flybys without excessive additional costs;

• missions to the major planets of the solar system in which they pass in the vicinity
of one or more asteroids (New Horizons mission [17])

This type of mission brings with it a non-negligible problem: it is necessary to know the
orbital parameters of NEAs very accurately in order to intercept them. In fact, since they
are small objects, even the smallest errors could jeopardise the success of the measurements.
In order to collect more data and increase the scientific value of the mission, the inclusion
of a final rendezvous may be considered: this manoeuvre adds greater complexity, but given
the low gravity of the NEAs, no excessively complex approach manoeuvres are required
and a slow close-in with the body under examination is sufficient.

3.3 Definition of Target Asteroids

The purpose of this thesis is to analyse the influence of asteroid orbital parameters and
the phase angle between earth and asteroids on the mass of propellant consumed. To
do this, fictitious asteroids are defined that require specific variations of certain orbital
parameters (sometimes single, sometimes with simultaneous variations of some of them),
choosing different phase angles with the earth, creating various possible combinations of
orbital parameters.
Below are the values for the asteroids under consideration:
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Designation Epoch [MJD] a [AU] e i [deg] ω Ω M
REF 61771 1.1 0.1 2 0 0 -35.36529
AM 61771 1.05 0.1 2 0 0 116.36661
AP 61771 1.15 0.1 2 0 0 -8.301583
EM 61771 1.1 0.05 2 0 0 -35.36529
EP 61771 1.1 0.15 2 0 0 -35.36529
IM 61771 1.1 0.1 1 0 0 -35.36529
IP 61771 1.1 0.1 3 0 0 -35.36529

The mean anomaly values were set arbitrarily as the objective of optimisation. The
epoch of each asteroid is expressed in Modified Julian Date and is equal to 01/01/2028.

3.4 Mission Features
The spacecraft used for this mission has an initial mass of 21 kg and is equipped with a
thruster that has a nominal thrust (i.e. at 1 au) of 1 mN and an assumed constant specific
impulse of 2100 s. This implies that the effective exhaust velocity c will also be constant
and consequently the thrust will vary with the flow rate, which depends on the available
electrical power, which in turn depends on the inverse of the square of the radius:

Pelec “
Pelec,1au

r2

PT “ ηPelec “
1
2 9mc2 “

Tc

2 Ñ Pelec “
Tc

2
where η is the propulsive efficiency assumed equal to 62.5% and r is measured in AU. With
these values, the nominal electric power is 16.475 W. In reality, the propulsive efficiency is
lower than assumed, so the nominal electrical power required will have to be higher.

3.5 Starting Assumptions
It is necessary to introduce some assumptions regarding the model used to study trajectories.
These assumptions serve to simplify the analysis and can be considered acceptable since
this is a preliminary feasibility study.

1. The first hypothesis, and perhaps the most unrealistic one, is to consider the orbital
parameters of NEAs to be exact. In reality, these may be slightly different and may
vary over time, depending on the number of observations made.

2. It is assumed that the satellite, upon departure, is already outside the Earth’s
gravitational sphere of influence and has zero velocity with respect to the Earth. This
implies that the launch and escape phases from the sphere of influence are not taken
into account in the analysis.

3. The earth’s orbit was considered exactly circular, with a radius equal to one astro-
nomical unit, zero eccentricity and zero inclination of the ecliptic.
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Chapter 4

Mathematical Models

Before setting up the space trajectory optimisation problem, it is necessary to understand
and choose models that represent the dynamics of a spacecraft in motion in space.
A model is defined as a set of ordinary differential equations representing the evolution,
that is the time history, of the state of a system (Position and velocity). It can be written
in the general form:

9x “ fpxptq,uptq, tq

where t is the independent variable time, x is the state vector composed in general by
n components capable of completely describe the current state of the system and u is
the control vector, that is related to the input that can be implemented by the system to
change its behaviour. It is important to notice that the dimension of the state vector is
different from the dimension of the control vector because not all state variables can be
controlled directly. The function f can be a linear matrix function or, in case of complex
dynamics, a system of non-linear equations. In this thesis the state of the probe is well
described by its position and velocity.
The mathematical model is not unambiguous: it is typically possible to create one that
takes into account all the possible system-related phenomenologies, but is complex and
difficult to apply. Depending of the study case, the mathematical model of the problem is
usually derived by making specific simplifications from the general and complex model
mentioned above, where certain phenomena are negligible on the overall motion of the
spacecraft. For example, the action periods of the control vector can be orders of magnitude
smaller than the manoeuvre times, so that an impulsive control model can be implemented
without making major errors. As explained in Chapter 2, it is possible to move from the
n-body problem to the two-body problem by ignoring the gravitational action of some
bodies to that of other, closer or more massive bodies.
The mathematical model is therefore the first choice to make when defining an optimisation
problem because it greatly influences the resolution of the problem and the accuracy of
the results. Fig. 4.1 illustrates the various possibilities that can be encountered when
defining the mathematical model for a spacecraft trajectory optimisation problem. It is
necessary to select the type of transfer and the set of equation of motion involved, which
respectively influence the form of vector u⃗ and the form of equations fpx⃗ptq, u⃗ptq, tq.
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Figure 4.1: Mathematical model choice [18]

4.1 Transfer type
The type of travel largely influences the entire optimisation problem and especially its
resolution. Depending on the type of mission, one may assume that the trips are impulsive
if chemical propulsion is used, with the vector of the controls identically null throughout
the trip but with possible discontinuities in speed, or continuous if electric propulsion is
used, with a continuous trend of the u⃗ vector over time and no speed discontinuity, as the
activation times of the control devices are very large and the accelerations are very small.

4.1.1 Impulsive model
As mentioned before, the impulsive model is applied when using chemical propulsion,
characterised by a high level of thrust but low specific impulse which makes necessary only
short ignitions to achieve the desired result. The model can also be used for low-thrust
propulsion, as long as the ignition phases are short in relation to the overall mission
duration and the final results contains non-negligible approximation errors.
For the impulsive model it is assumed that the system inputs are null, u⃗ “ 0, and that any
action to vary the trajectory of the spacecraft can be regarded as an instantaneous change
in velocity ∆V , that will bring to an energy change. This increase is physically created by
actuating a propulsive force for a certain time, but if the force is very large, the action
times are very small and can be considered as zero (∆t “ 0). This last simplification leads
to a further assumption: the satellite’s position is constant during the ignition phase of the
thruster. This type of model is very simple and relatively accurate for the simulation of
trajectories characterised by large accelerations and very rapid responses of the propulsion
system to commanded manoeuvres. In such situations, variations in orbital parameters are
usually very large and occur in a very short time. An example of trajectory with impulsive
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thrust is shown in fig. 4.2.

Figure 4.2: Impulsive transfer [18]

When an impulsive model is used, each time segment between one impulse and the next
is simply calculated by propagating the Keplerian model, in which the body is subject
to gravitational forces (and possible perturbations) and therefore follows very precise
trajectories, which in the case of two body model, coincide with the family of conics. In
the latter case, it is not necessary to integrate any equation of motion, because knowing
the initial conditions of the segment it is possible to employ an analitycal solution in closed
form.
The optimisation problem in this case is therefore to find the optimal time instant, modulus
and direction of the different ∆V impulses to realise the mission by optimising the desired
parameters, for example mission duration or final mass. This leads, among the advantages
of the impulsive travel model, to a very low computational burden in the absence of
perturbations.
A concept between impulsive and continuous transfer is the impulsive thrusting: in this
model the trajectory is locally considered as continuous during the period in which the
thruster is active, while overall is treated as impulsive. In this model, the thrust phases are
usually very short compared to the mission times and are therefore modelled as isolated
arcs, so that optimisation can only be performed on these specific, discrete arcs. If the
required ∆V at the beginning of a segment is zero, the optimisation starts by keeping the
impulse value at zero.

4.1.2 Continuous model
Continuous models are generally more accurate than impulsive models with velocity
discontinuities, however they are very complex because in the differential equations system
the input (u⃗(t)) (the known term of the equations) is non-zero. This type of model shall
be used when thrust occurs over a time span that is not negligible compared to the mission
duration and therefore the impulsive model is no longer able to produce reliable results.
Thrust in a continuous model is extremely low, even lower than the gravitation force that
keeps the spacecraft in orbit, the transfer times are orders of magnitude greater than
those of high thrust propulsion. The combination of these two characteristics leads one to
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think that for most of the trajectory the thrusters are fired at a certain level of thrust and
variable direction, justifying the need for the continuous model.
The higher accuracy of continuous models is a characteristic that is always observed,
however, when thrust is very large, the computational disadvantage of the continuous
model can be very heavy to achieve a slightly better accuracy, so this model is not usually
employed. This is why comparing an impulsive model to a continuous one is the equivalent
to making a comparison between a high thrust mission and a low thrust mission. In the
general case of applying the n-body model, the problem will become an extended version
of the one presented in the previous chapter:

:r “ ´G
n

ÿ

i“1

mi

r3 r ` Γ (4.1)

where Γ is a vector containing accelerations other than gravitational ones, including the
thrust associated with the command vector u(t) or perturbations due to solar pressure or
atmospheric resistance. The r vector contained in the equation can be expressed as r ´ ri,
with r position of the spacecraft, ri is the position of the i-th body characterised by a
certain mass mi and G is the gravitational parameter. In this case the vector r0,ΓsT is
analogous to the controls vector, while the vector rr, 9rsT is the state vector. The equation
becomes:
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ȷ
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„
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It is important to notice that by setting the controls vector to 0 and considering velocity
discontinuities, the equation will be the one for the impulsive case, as the latter is a
simplification of the continuous model.
The above equation for a two-body problem is the equation used to propagate an orbit in
the heliocentric field. In the case where the orbit can be considered unperturbed and the
controls vector is zero, propagation is not necessary because it is sufficient to denote the
orbital parameters, which remain constant.

4.1.3 Choice of transfer type
Comparing the characteristics of the asteroids’ orbits discussed in Chapter 2 with the
characteristics of the transfer types reported here, the wisest choice is to employ a continuous
transfer model: in fact, the asteroids under analysis have orbits that require significant
variations in the satellite’s trajectory in order for them to be reached and, making use of a
low-thrust propulsion system, it is clear that long implementation times will be required.
This choice will certainly complicate the problem, but will also lead to a better optimisation
as one will have the possibility to act on the command vector by searching for an optimal
form for the chosen trajectory and increasing the flexibility of the solution.

4.2 Equations of motion
It is necessary to choose the equations of motion according to the simplifications considered
in the dynamics to which the spacecraft is subjected, in a mission, one can switch from one
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equation model to another depending on the relative position of the vehicle with respect
to other celestial bodies. There are many aspects that influence the choice and possible
simplifying assumptions that can be implemented; the main one being the choice of how
many bodies to consider for the realisation of the gravitational model, i.e. whether to opt
for a 2, 3 or n-body problem. For example, in an interplanetary trip, a restricted two-body
mathematical model is assumed for the planetocentric and heliocentric phases, but near
the beginning of the spheres of influence of the two planets, the gravitational interactions
of the latter are comparable with those due to the Sun, so a restricted three-body model or,
in the case of the Earth-Moon-Sun system, a restricted N-body model should be employed.
Another example concerns rendezvous, for which the equations of the restricted two-body
problem are used until the chaser vehicle is in the vicinity of the target vehicle, at which
point the Hill equations begin to be used.

4.2.1 Two body problem
The two-body problem describes the mutual gravitational interaction of two massive bodies
considered as material points. In this model, the mass of one of the two bodies (the
spacecraft) is much smaller than the mass of the other body, called the main body, around
which the former orbits. Usually,with this additional assumption, the model is referred
to as the restricted two-body problem. This is the case, for example, with a satellite
orbiting the Earth, or in a heliocentric field and sufficiently distant from other bodies. If
the mass of the vehicle is neglected, its force contribution on the larger body can also be
seen as zero; moreover, a reference system solid to the larger, non-rotating body can be
seen as inertial, which allows any quantity in this reference system to be derived without
considering relative motion.
Another possible approach to the problem is the solution using the orbital parameters
already presented in 2.4. This option is easy to understand physically and has the advantage
of having a clear position of the body without going through a state vector, but it is
complex to extend it to other shapes and reference systems.
In a two-body model, as in the N-body model, the most stringent assumption that leads
to errors is that only gravitational forces are considered, neglecting all others, including
thrust. Not omitting the other forces, which may be important (especially if derived from
the propulsion system), the two-body model can be expressed with the non-Keplerian
two-body equation:

:r “ ´
µ

r3 r ` γ

where r is the position of the secondary body with respect to a reference system fixed at
the centre of mass of the primary body, µ “ GM is the product of the universal gravitation
constant and the mass of the largest body and γ is the acceleration generated by the
thrusters plus disturbance accelerations. It is possible to write the above equation with
the state vector:
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These motion equations are used in trajectory optimisation problems, particurarly when
orbits are perturbed and a low-thrust propulsion is used. Usually the motion equations
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are written in Cartesian or cylindrical coordinates, or using classical or equinoctial orbital
parameters. Neglecting perturbations (which, if there were any, would simply add to the
propulsive forces), the equations of motion in terms of orbital parameters are the Gauss
equations:
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Where a, e, i, Ω, ω, M and p are respectively semi-major axis, eccentricity, inclination,
longitude of the ascending node, argument of periapsis, mean anomaly and semilatus
rectum of the osculating orbit of the trajectory at the considered point. n is the mean
motion, which is the angular velocity around the main body and θ is the angular velocity
(called ν in chapter 2). The γi parameters represent the radial, tangential and normal
accelerations.
The advantage of using these equations is that they derive the variations in orbital
parameters directly from the knowledge of accelerations, without needing the physical
variables of position and velocity. As already stated in chapter 2, one or more of the six
orbital parameters may not be defined and this leads to singularity in the Gauss equations.
To avoid singularities it is possible to use different parameterisations, for example the
modified equinoctial orbital parameters [19].
Although the classical orbital elements are often used for their intuitive physical meaning,
the physical parameters of the vehicle, i.e. position and velocity, are almost always used
in the trajectory optimisation problem. The physical parameters do not give immediate
information about the orbit under consideration, unlike the classical orbital elements,
but it is easy to extend them into other forms, they do not suffer from singularity and
have much simpler equations. By way of comparison, the pros and cons of each proposed
solution can be analysed in Table 4.1.

4.2.2 N-body problem
When the mission involves the probe’s stay in space subject to different gravitational forces
due to different masses, the most appropriate choice is the n-body model. This model
can be useful for missions to the Moon, or to Saturn and Jupiter, characterised by large
masses and many natural satellites.
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Inertial
Coordinates

Classical
Orbital Parameters

Modified Equinoctial
Orbital parameters

Physical significance Normal High Low
Coordinates transformation Easy Difficult Difficult

Singularities No Yes No
Equations complexity Low High Medium

Table 4.1: Comparison of three possible approaches to the restricted two-body problem
[18]

4.2.3 Choice of the equations set
The asteroids being considered are very small in size and their gravitational interaction with
the vehicle is completely negligible compared to that of the Sun. Furthermore, interaction
times between the bodies are negligible in the case of flybys (high relative velocities). The
trajectory is completely in the heliocentric field and no other interaction is present, so it is
possible to use the ordinary differential equations of the restricted two-body model, with
the addition of the known term given by the propulsive system, which is non-zero only in
the sections where the thrust is non-zero.
The general form of the problem is given for clarification:
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where Γ is the controls vector. The following are then defined: radius r, latitude θ,
longitude ϕ and the radial velocity u “ 9r, tangential velocity in East direction v and
tangential velocity in North direction w, all in relation to local reference. The flow equation
was then added, which is not specific to the model but is a characteristic of the propulsion
system. The differential equations system is:

B

Bt

»

—

—

—

—

—

—

—

—

–

r
θ
ϕ
u
v
w
m

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

–

u
v

r cos ϕ
w
r

´ 1
r2 ` v2

r ` w2

r
´uv

r ` vw
r tanϕ

´uw
r ` v2

r tanϕ
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

—

—

—

–

0
0
0

T
m sin γT

T
m cos γT cosψT
T
m cos γT sinψT

´T
c

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Where γT and ψT are the elevation angles (flight path angle) and heading angle (heading)
of the thrust vector T and determine its direction.
However, the problem is not yet complete: although through this set of equations a solution
can be found by imposing the appropriate boundary conditions, this will only be one of the
possible trajectories that the probe can follow and there is no information on its quality
in terms of consumption. It then becomes necessary to introduce mathematical elements
that allow us to understand whether the result found is optimal or not. The next step is
to define the appropriate mathematical optimisation tool and the choice of a procedure for
finding a solution, aspects that will be dealt with in the next two chapters.
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Chapter 5

Mission goals

After outlining the problem by defining a set of differential equations, its boundary
conditions must be defined in order to find a solution. This chapter will therefore deal with
the second macro-step that needs to be followed in order to optimise a space trajectory:
the choice of objective to be achieved. It is based on the requirements of the mission:
whether it is necessary to carry a certain mass of payload as far as possible, at the lowest
propulsive cost or in the shortest possible time, but also whether it is necessary that the
load factor (inertial, thermal or radiative) on the vehicle is always reasonable (in order
to avoid structural failure or malfunctioning) or that propulsion times do not exceed a
certain threshold.
Objectives are mathematically translated into objective functions, which are functions
(often scalar) with several variables that outline an important quantity of the mission. They
are also called cost functions, not because they represent an economic cost, but because
they represent something that is difficult to achieve and therefore one wants to minimise
the quantity. Usually in optimal control terminology we refer to cost functions, while in
computer language we speak of objective functions. In some cases, they are represented by
physical, tangible quantities (such as a mass, a value of ∆V , transfer time or acceleration)
and in order to achieve an optimum, they must be minimised or maximised. However,
this is not always true, as it is very common to have to optimise several aspects, such as
maximising the final mass while minimising the travel time or external loads. In this case,
the optimum of one parameter does not coincide with the optimum of the others and it
will be necessary to introduce an overall cost function to maximise/minimise that takes
into account the different physical quantities appropriately weighted; adding together a
term representing a time and one representing a mass yields absolutely nothing physical.
It is therefore obvious that the objective is not unique but varies from mission to mission.

5.1 Types of objective functions
The most general form of an objective function is the Bolza cost function, defined as:

Jpx,u, tq “ hpxptf q, tf q `

ż tf

t0

gpxptq,uptq, tq
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Where t0 and tf are the start time and stop time of the transfer, x is the state vector and
u is the controls vector. It can be seen that in general a cost function can be composed of
a part that depends only on the end conditions, also called the Mayer term and a piece
that depends on the entire path taken, called the Lagrange term. Usually only the Mayer

Figure 5.1: Taxonomy of objectives in trajectory optimisation [18]

term or the Lagrange term is present, depending on what is being optimised. It is not
uncommon to encounter problems that possess cost functions with both terms, but it is
much more common for only Mayer’s term to appear as it is often the ’end result’ that is
most important. The subdivision according to the type of objective is widely used, but it
is not the only one: it is also possible to categorise an objective function according to the
number of objectives to be achieved and how they are integrated with each other. If there
is only one objective, it is possible that the function is a physical parameter, if there are
several, this is rarely the case.
Although the objective functions can be very numerous, the space trajectory optimisation
problem can be basically reduced to two macro-cases: minimising mission time (expressed
in Mayer form), and minimising vehicle control (expressed in Lagrange form).

5.1.1 Mayer objective functions

This category includes all the objective functions connected to a characteristic variable
(typically state) related to the final instant of the trajectory.

Time

The simplest objective function is the transfer time. It can be written in a very general
way that if one wants to minimise time, the cost function takes the form:

J “ tf
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Velocity increase

The goal can also be to minimise the propulsive distance, which is the propulsive effort to
reach a given goal. In this case, it is common to express the cost function in terms of ∆V .
In fact, this objective can be seen as the sum of the speed increments ∆V given by the
single pulses (for the impulsive case), while in the case of a continuous model the form is
slightly different.

J “

N
ÿ

i“0
|∆Vi|

Note that such an objective function is closely linked to propellant consumption, since
obtaining a ∆V is the cause of the difference between final and initial mass. It is therefore
an excellent objective function when one wants to save propellant.

Start and End conditions

Typically, the initial and final conditions represent constraints on the boundary of the
problem, for example representing the starting point and destination of the trajectory.
However, in some cases it is possible to treat them as goals, for example if one wants to
cover the greatest distance with a certain amount of propellant. The cost function will
have the following form:

J “ ϕpxpt0q,xptf qq

where ϕ is the constraints function.

5.1.2 Lagrange objective functions
These types of functions are used when the parameters to be optimised are a variable
quantity during the mission and their evolution is the objective of the optimisation itself.
The cost here is expressed with an integral function over time, whose integrand function is
an appropriate combination of state variables and controls.

Acceleration

A function often used in space travel is the integral of the square modulus of acceleration
over the entire trajectory:

J “
1
2

ż tf

t0

γ2 dt

Acceleration is to be interpreted as that provided by the propulsion system, excluding
perturbative contributions. Minimising this integral corresponds to minimising the use of
thrust in the transfer.
Another very common formulation especially for low-thrust missions and continuous model
is the following:

J “ ∆V “

ż tf

t0

b

γ2
x ` γ2

y ` γ2
z dt
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Where γi is the acceleration along the i-axis. With this formulation, the modulus of
acceleration is integrated over time, thus obtaining an increase in velocity. It is therefore an
extension of the objective function for ∆V previously expressed with Mayer’s formulation
to the case with a continuous thrust model.
In some optimisation studies, this function has been equivalently written as:

J “

ż tf

t0

T

m
dt

Where T and m are the modulus of thrust and the mass of the spacecraft, respectively.
If the effective exhaust velocity is constant (c = cost), As already mentioned in Chapter 2,
the thrust is proportional to the mass flow rate:

T “ m 9c ñ T 9 9m

And considering an average mass mavg over the transfer, the objective function, being an
integral over the total duration, is proportional to:

J 9
mf ´ mo

mavg

Assuming the initial mass fixed, the objective function becomes dependent only on the
final mass, leading to a form similar to the Mayer function seen above.

Propellant mass

The mass of propellant is a function of the energy required for the transfer. There are
several objective functions concerning the propellant mass, both in Mayer’s form and in
Lagrange’s form, for the last case an example is:

J “

ż tf

t0

mp dt

where mp is the propellant mass. In such a function, there is a dependency with the type
of path and the time taken to travel it. If one were to use Mayer’s form (e.g. J “ mf )
this dependency would be lost, every optimal trajectory would have the same value as a
cost function, regardless of the time taken or the route taken.

5.1.3 Other objective functions

The above cost functions are the most commonly used in space trajectory optimisation, but
they are not the only ones. For example, more complex functions are used to obtain more
regular trajectories, to manage constellations of satellites (where it is necessary to include
collisions, path length, travel time and consumed propellant in the objective function).
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5.2 – Scalarisation of the objective function

5.2 Scalarisation of the objective function
As mentioned earlier, it is possible that there are multiple objectives and it is necessary
to introduce multiple terms within the cost function. A trade-off therefore occurs, as the
optimum of one aspect is generally not coincident with the optimum of another and, indeed,
very often they are conflicting, for example if one wanted to minimise both consumption
and mission duration.
Objective functions are therefore also categorised according to the number of objectives.
The concept behind these trade-offs is similar to the increase in the cost function that is
made in the case of constrained optimisation (A): constraints are added to the objective
function and multiplied by a weighting coefficient, resulting in an augmented function.
Also in this case, the various objective functions are scaled into a single objective function
by summing them with certain weights.
Scaling of the objective functions is the most difficult process in creating an appropriate
total objective function, as there are infinite combinations of the weights of the individual
functions. A general objective function that has both a Mayer term and a Lagrange term
is the following:

Jpx,u, tq “ hpxptf q, tf q ` α

ż tf

t0

gpxptq,uptq, tq

Where α is the weight determining the relative importance between the two terms. Usually
α is chosen in order to bring the two terms on the same order of magnitude (they often
differ, and by a lot) and also to choose which one should be more important than the
other. In the case of having several objective functions in the Mayer form and in the
Lagrange form, the process of scalarisation becomes more labour-intensive. In the event
that functions are not weighted:

J “

n
ÿ

i“1
Ji

It is possible to sum them with weights:

J “

n
ÿ

i“1
αiJi

Or using the weights to normalize the functions:

J “

n
ÿ

i“1

Ji

αi

There is no single deterministic method for choosing the weights of individual functions.
A lot of research has been done to obtain some specific criteria, such as that for choosing
the maximum possible time step and so on.

5.3 Choice of the objective function
For the problem under study, it was decided to choose a simple Mayer formulation of the
objective function:

J “ mf
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Mission goals

The aim of the thesis is to find the optimal phase angle between earth and asteroid that
maximises the objective function, which is the final mass. To do this, we started from a
list of asteroids defined in 3.3, which have an arbitrary phasing value. After determining
the final mass values for the asteroids, the next step is to optimise the mission by focusing
on the phase angle. Optimisation will be carried out using the fortran code esatstar.for,
which requires an input attempt solution and parameters passed via the command line,
including the iteration number, the integration step, the starting asteroid (in this case the
Earth), the arrival asteroid, the duration of the transfer, the initial mass (as a percentage
of the reference mass of 21 kg) and the start time.
The main feature of this script is the tstar value that can be set in the attempt solution.
There are two possibilities:

• If tstar is equal to zero, the script optimises the trajectory considering the orbital
input parameters;

• Setting a non-zero value of tstar in the attempt solution, the code goes for a solution
that can be defined as ’time free’, moving the asteroid to the most favourable position,
that means, to the most favourable phase angle.

The tstar value obtained at the end of the convergence, can be used to calculate the ∆M
that must be applied to the current mean anomaly to move the asteroid to the optimum
position. In fact, the value of ∆M in radians can be expressed as:

∆M “
?
a3 ¨ tstar

As final analysis, the relationship between variations in mean anomaly and propellant
consumption will be explored. This analysis is carried out by locking the tstar value to
the optimal value and applying the desired variations to the mean anomaly value chosen
arbitrarily in the definition of asteroids.
Referring to the final mass equation derived from the Tsiolkovsky equation, the final mass
is a function of c, m0 and ∆V . In this case, the effective exhaust velocity and initial mass
are fixed, so the final mass is uniquely related to the propulsive effort of the trajectory. By
maximising the final mass, we are therefore minimising ∆V .
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Chapter 6

Solving methods and theory of
optimal control

In this chapter, the solution aspects of the trajectory optimisation process will be analysed,
so how to find the optimal control that minimises the objective function while respecting
the objectives and equations of motion.
Before delving into resolution approaches, it is convenient to distinguish two terms that
are usually used synonymously: trajectory optimisation and optimal control. Trajectories
optimisation occurs when the system’s inputs are static parameters and it is necessary to
find those that optimise the objective function, while optimal control occurs when these
inputs are functions and it is necessary to find those that optimise the objective function.
In the previous chapters, the mathematical tools necessary for the solution of the problem
were introduced, in particular in Chap. 4, the set of equations describing the satellite’s
dynamics in its trajectory was defined, while in Chap. 5, the cost function used to define the
optimisation parameters and boundary conditions was introduced, even though expressed
in a qualitative rather than quantitative manner. In particular, boundary conditions can
be derived from the start and end points, while constraints can be written from physical,
path or time limits (e.g. thrust between a minimum and a maximum value, there is no
point in looking for solutions that require higher levels of thrust than can be achieved).
Schematically, the problem can be represented as in figure 6.1: the aim is to find the
control evolution that minimises a certain cost function along a trajectory that follows
laws of dynamics, with certain initial and final conditions and respecting a set of path
constraints.
In general, there are two types of approaches to solving optimisation problems: the
analytical approach and the numerical approach. Numerical approaches are divided into
direct and indirect methods, in which various techniques can be used.

6.1 Optimal Control Theory
Optimal control theory is based on the writing of auxiliary equations, called Lagrange
multipliers, related to both the physical variables of the problem and the optimal condition.
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Solving methods and theory of optimal control

Figure 6.1: Mathematical representation of a spacecraft trajectory optimisation problem
[18]

The generic system to which optimal control theory applies is described by a vector of
state variables x. The differential equations describing the evolution between the initial
and final instants (boundary conditions) are functions of x, the controls vector u and the
independent time variable t, and have this form:

dx
dt

“ fpx,u, tq

It is convenient to divide the trajectory into a number n of sub-intervals, called arcs, within
which the variables are continuous. The j-th interval begins at tpj´1q`

and ends at time
tpjq´

, and the values that the variables assume at its extremes are xpj´1q`
and xpjq´

, where
the signs - and + indicate the values assumed immediately before and immediately after
the point considered. The system is also subject to mixed boundary conditions, meaning
that it involves the values of the state variables and the independent variable at both
external and internal boundaries.

x “ pxpj´1q`
,xpjq´

, tpj´1q`
, tpjq´

q “ 0

It is useful to rewrite the functional by introducing Lagrange multipliers, constants µ
related to boundary conditions and variables λ, associated to state equation:

J˚ “ ϕ ` µTx `
ÿ

j

ż tpjq´

tpj´1q`

pΦ ` λT pf ´ 9xqq dt j “ 1, ..., n

The two functionals J and J˚ depend on time, state variables x and their derivative 9x and
from controls vector u. Lagrange multipliers for discrete constraints (boundary conditions),
are not functions of time, whereas those within the integral have a time dependency
and are true additional variables. If the boundary conditions and equations of state are
met, it holds that J “ J˚. Integrating by parts to eliminate the dependence on 9x and
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6.1 – Optimal Control Theory

differentiating is possible to obtain the variation of the functional δJ˚.

δJ˚ “ p´Hpj´1q`
`

Bϕ

Btpj´1q`

` µT Bx
Btpj´1q`

qδtpj´1q`

` pHpjq´
`

Bϕ

Btpjq´

` µT Bx
Btpjq´

qδtpjq´

` p´λT
pj´1q`

`
Bϕ

Bxpj´1q`

` µT Bx
Btpj´1q`

qδxpj´1q`

` p´λT
pjq´

`
Bϕ

Bxpjq´

` µT Bx
Btpjq´

qδxpjq´

`
ÿ

j

ż tpjq´

tpj´1q`

pp
BH

Bx
` 9λT q `

BH

Bu
δuq dt j “ 1, ..., n

Where H is the Hamiltonian.
H “ Φ ` λT f

The necessary condition of optimum requires the stationarity of the potential, and thus the
cancellation of its derivative for any choice of variations δx, δu, δxpj´1q`

, δxpjq´
, δtpj´1q`

,
δtpjq´

compatible with the differential equations and boundary conditions. By setting the
variation of the functional equal to 0, the relations known as the Euler-Lagrange equations
for the added variables are derived:

9λ “ ´
BH

Bx

and those for the controls:
0 “ ´

BH

Bu
With this last equation, it is possible to determine the optimal value of control γT and ψT ,
it is sufficient to derive the Hamiltonian with respect to γT and ψT and set them equal to
zero.

BH

BγT
“ 0

BH

BψT
“ 0

Optimum values for thrust angles can be obtained from these:

sin γT “
λu

λV

cos γT cosψT “
λv

λV

cos γT sinψT “
λw

λV
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Where λV “
a

λ2
u ` λ2

v ` λ2
w.

The first set of equations is called the set of added equations because they concern co-state
variables. The second set is called the set of control equations. Then there are other
time-independent parameters for which additional sets of equations must be written,
including transversality conditions. These conditions concern the time window that is
considered, if parameters such as time or initial and final position are taken into account
in the optimisation.
It is important to note that the control laws are independent of the search for the optimum
of the functional J*. If one of the controls is subject to a constraint, it must belong to a
given domain of allowability. In the presence of such a constraint, the optimal value of
the control at each point of the trajectory is the one that, belonging to the admissibility
domain, makes the Hamiltonian maximal, if maxima of J are sought, and vice versa. This
principle is called Pontryagin’s Maximum Principle. There are two possibilities:

• The optimum control value is given by the Euler-Lagrange equations for the controls if
it falls within the domain of eligibility and therefore the constraint does not intervene
there;

• The optimal value is at the extremes of the domain, meaning that the control assumes
the maximum or minimum value if the value provided by the previous equation is
outside the domain of admissibility.

There is a special case if the Hamiltonian is linear with respect to one of the controls
subject to constraints, since in the Euler Lagrange equation for the controls, the control
does not appear explicitly and therefore cannot be determined. If J is to be maximised,
there are two possibilities:

• If in the Hamiltonian equation the coefficient of the control in question is non-zero,
H is maximised by the maximum value of the control if the coefficient is positive and
minimum if negative (bang-bang control), in accordance with Pontryagin’s principle;

• If in the same equation the coefficient of the control in question is identically zero
during a finite interval of time (singular arc), then it is necessary to impose the
cancellation of all successive derivatives of the coefficient with respect to time, until
the control appears explicitly in one of them. The optimal control is then determined
by setting this last derivative equal to zero.

6.2 Solving approaches

6.2.1 Analytical approach
The analytical approach consists of finding an analytical solution for the optimal trajectory.
Obviously, an analytical solution is always desirable, because it does not inconvenience
computational power to solve the problem and because they are exact, error-free solutions.
Such solutions are only obtainable in very special and simple cases (e.g. in the case of
increasing the semi-axis major with low thrust) and very often without considering the
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perturbative effects. The complexities that the analytical solution cannot overcome are
mathematical (of the dynamics model) or concern the complexity of the objective functions.
An example of an analytical solution concerns the impulsive Hohmann manoeuvre, the
result is exact but for an extremely simple problem. An example on the continuum concerns
the Edelbaum manoeuvre, which requires many very particular and heavy assumptions to
be maintained in a slightly more general case. In the case of the continuous domain, the
optimisation process generally consists of the application of optimal control theory and
Pontryagin’s principle, as with indirect numerical methods. In the process, the presence of
the additional variables further complicates the problem, which becomes difficult to solve
analytically.

6.2.2 Numerical approach
Numerical approaches have now become widely used in the field of optimisation, as the
computational power installed in the latest ordinary computers is now sufficient to solve
even rather complex cases. Two major categories of methods can be distinguished: direct
methods and indirect methods. Fig. 6.2 shows the division.

Figure 6.2: Solving approaches [18]

6.3 Solving algorithms
Solving algorithms consist of programming that allows to obtain numerically what one
wants to obtain. Apart from analytical approaches, for which no iteration is required to
obtain the solution, which is derived directly from the problem and is exact, numerical
approaches require thousands of iterations following certain algorithms. A solving method
for optimal control problems, whether indirect or direct, must consist of three basic
elements:

1. An algorithm for solving differential equations and integrating functions;

2. An algorithm for solving non-linear systems of algebraic equations;

3. A solving algorithm for non-linear optimisation problems.
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In an indirect method, the numerical solution of differential equations is combined with the
solution of non-linear systems of algebraic equations derived from an boundary condition
problem, whereas in a direct method, the solution of the problem is combined with
programming and non-linear optimisation.
In this section the three basic elements of a solving method will be analysed.

6.3.1 Solving differential equations
Consider a problem like:

9x “ fpxptq, tq

with xptiq “ xi. Consider a time span rti, ti`1s over which the solution is to be found. By
integrating, it is possible to obtain:

xi`1 “ xi `

ż ti`1

ti

fpxpt1q, t1q dt1

Numerically, this expression can be solved in several ways. The solution of the differential
equation at each step tk is obtained sequentially from the solution information at the
previous and current steps. This family of methods is called time marching. Depending on
the number and type of previous steps required to determine the value of the next step,
these methods are divided into multiple-step and multiple-stage.
In the first category, the solution is obtained from a predefined number of previous steps.
The simplest multi-step method is Euler’s method, with the explicit form:

xk`1 “ xk ` hkrfks

or implicit:
xk`1 “ xk ` hkrfk`1s

Other more complex and accurate methods use more than one time step in the calculation,
for example the Adams-Moulton method, an implicit method, which was chosen for the
realisation of the algorithm in this thesis in a variable step and order form. Expressions
up to fourth order are given:

j “ ´1 : xk`1 “ xk ` h ¨ fk`1

j “ 0 : xk`1 “ xk `
h

2 ¨ pfk`1 ` fkq

j “ 1 : xk`1 “ xk ` h ¨ p
5
12 fk`1 `

2
3 fk ´

1
12 fk´1q

j “ 2 : xk`1 “ xk ` h ¨ p
3
8 fk`1 `

19
24 fk ´

5
24 fk´1 `

1
24 fk´2q

In the second category, sub-intervals rτj , τj`1s are considered, the overall integral can then
be approximated in quadrature on the sub-intervals using the most appropriate quadrature
method, from a simple trapezium method to the Cavalieri-Simpson method.

ż ti`1

ti

fpxpsq, sq ds » hi

K
ÿ

j“1
βjfpxj , τjq
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In this method, however, it is necessary to know the intermediate values of the function at
each interval; these values can be obtained as:

xpτjq “ xptiq ` hi

K
ÿ

l“1
γlfpxl, τlq

where γ is a coefficient determined by the method.
In the generic case where the objective function is a Bolza function, the integral term
will also have to be discretized. The objective function, in particular, will have to be
discretized using the same method that was used for the equations of motion for reasons of
consistency. Each Bolza function can thus be converted into a Mayer function by adding
the state xn`1 and the respective differential equation:

9xn`1 “ Lpxptq,uptq, t,pq

with the initial condition xn`1pt0q “ ´. The Mayer’s function will be of the type:

J “ Φpxpt0q, t0,xptf q, tf ,pq ` xn`1ptf q

Translating the optimal control problem into algorithms (Indirect Methods)

Optimum control theory can be transformed into a programming problem, in particular the
trajectory is not discretised, but the point solution is the result of numerical integration of
the necessary conditions of the optimum.
First of all, an overall variable is denoted:

y “ ru0, x1, u1, x2, ..., ..., xM , uM s

The time step, generally variable, is in this case considered constant and equal to h “
tf

M .
The generic derivative at the k-th point can be discretely evaluated as:

9x “
xk ´ xk´1

h

Substituting this approximation into the equations of dynamics, a non-linear discrete
system of the type is found:

ckpyq “ xk ´ xk´1 ´ hfpxk´1,uk´1q “ 0

for each k from 1 to M.
The augmented Lagrangian function is writable as:

Lpy, λq “ ϕpxMq ´

M
ÿ

k“1
λk

T
rxk ´ xk´1 ´ hfpxk´1,uk´1qs
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So the necessary conditions (control equations and added equations), the equations of
motion and transversality in the discrete case can be derived:

λk`1 ´ λ ` hλT
k`1

Bf
Bxk

“ 0

hλT
k`1

Bf
Buk

“ 0

xk`1 ´ x ´ hλT
k`1

Bf
Bλk

“ 0

´λM `
Bϕ

BxM
“ 0

6.3.2 Solving non-linear algebraic systems
Non-linear programming algorithms are based on gradient methods, and use line search
strategies to increase the global convergence domain.
The most widely used and intuitive non-linear programming algorithms are based on
Newton’s method or its derivatives. Although at first sight it appears that such algorithms
are very convenient, several problems arise: an initial estimate of all the parameters of the
problem is required. In direct methods, the state vector and the vector of controls at each
node are parameters and it is necessary to guess them all. An initial estimate that is far
from the optimal solution may lead to non-convergence of the trajectory or convergence to
a solution that is not globally optimal.
The basic algorithm for solving a non-linear programming problem is the one proposed by
Newton centuries ago. There is a non-linear algebraic equation of the type:

apxq “ 0

And a root is to be found x˚. The first step is to give an initial estimate of the root, x. It
is possible to find a better estimate of the root via an expression of the type:

x̃ “ x ` αp

Where p is a pointing vector, calculated by solving the linear equation:

rAspxqp “ ´apxq

Where A is the derivative matrix of the non-linear equations, that is ∇a.
In Newton’s original method α “ 1, as a is replaced by its Taylor series expansion stopped
at first order (a linear term is obtained), however, it is possible to vary this value to
stabilise iterations and avoid divergence for values of x too far from the root. In practice,
it varies to reduce the length of the step that is taken, a procedure known as line search,
which in the thesis work is taken to α “ 0.01.
Of course, this is only valid if the matrix A is non-singular and thus if it is possible to
invert it and if the initial estimate of the solution is close enough to the true root. If these
two assumptions are correct and the method works, it can be shown to have quadratic
convergence.
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6.3.3 Solving non-linear optimisation problems
The last fundamental element consists of algorithms for solving non-linear optimisation
problems. They consist in determining the vector x that can minimise a function fpxq

subject to equality or inequality constraints. The algorithms fall into two macro-categories:
those based on gradient methods and heuristic algorithms.
In a gradient method, an initial estimate of the vector x is made, from which, for each
iteration, a search direction is defined in the space of dimension n and a step length to
find the next iteration. Basically, αk and pk are searched for such that:

fpxk`1q ď fpxkq ` Kαk∇fT pxkqpk

The search direction is calculated by solving the quadratic programming problem of type:

min
p

1
e

pT rW sp ` ∇fT pxkqp

Such that the constraints ci:

∇cT
i pxkqp ´ cipxkq “ 0

Where i is the generic active or inactive constraint. rW s is the semi-definite positive matrix
representing the Hessian matrix approximation of the Lagrangian function L “ fpxq ´λT c.
The best known algorithm for solving such a problem is the Broyden-Fletcher-Goldfarb-
Shanno algorithm.
A gradient-based optimisation method is a local method that finds optimal solutions that
tend to be local. A heuristic method, on the other hand, is a global method: the search
for trajectories is done stochastically and not deterministically. In the class of heuristic
algorithms are all genetic algorithms, that is, those that have an evolutionary approach:
an initial population of possible solutions is drawn up, each solution in the group having
a particular fitness, reflecting the quality of a certain gene. Genes are recombined and
mutated (as genes are recombined in successive generations of the population), until only
the genes with the best fitnesses survive, finding the best solution to the optimisation
problem.

6.4 Resolution methods
This section will describe the direct and indirect methods in more detail, outlining their
advantages and disadvantages.
Indirect methods are based on variational calculus, which allows first-order optimal
conditions to be found. They lead to an boundary condition problem that has optimal
trajectories as its solution, each of which is then analysed to see whether it respects the
constraints and boundary conditions and whether there is a maximum, minimum or saddle,
after which the one with the lowest cost is selected.
Direct methods discretise the state vector and the control vector to obtain a non-linear
optimisation problem.
The reason for the choice of names can be seen from this definition: indirect optimisation

61



Solving methods and theory of optimal control

solves the optimal problem by transforming it into a problem with equivalent boundary
conditions, the solution of which is obtained by integration, whereas direct optimisation
simply discretises the infinite-dimensional problem into a finite-dimensional one in which
the unknowns involved are the discretisations of the trajectory and the vector of controls,
and derives the optimal control directly by non-linear programming.

6.4.1 Direct methods
In direct methods, the solution is found in an approximate manner by parameterisation
of state and control variables. If only the control vector is approximated, this is referred
to as the parameterised control method, whereas if both the control vector and the state
vector are approximated, this is referred to as the parameterised state and control method.
In either case, the problem is solved as a non-linear optimisation. The parameterisation is
carried out by means of a time discretization, which means that the trajectory is divided
into a finite number of points, each of which is an optimisation parameter. Between
the points into which the trajectory is divided, consistency with the equations of motion
is ensured by numerically integrating them from one point to the next. This leads to
the generation of constraint expressions (the end point of one integration must coincide
with the start point of the next) of a non-linear type. This category of methods has its
advantages: they are very easy to implement and have a very large convergence domain.
Compared to indirect methods, Lagrange multipliers are not involved, so the size of the
problem is reduced.

6.4.2 Indirect methods
For indirect methods, essentially the same techniques are used as for direct methods, but
the resolution philosophy is fundamentally different. The problem is solved by writing
and solving in time the first-order mathematical conditions required for the optimum.
Such conditions make it possible to derive equations in which state variables and added
variables (called co-state variables) appear with apparently no physical meaning. The
necessary conditions are based on Pontryagin’s principle, explained above. The problem
with indirect methods is that it is very often difficult to find an initial estimate of the
solution (required for the calculation), especially since it is not possible to work out the
values (or at least the orders of magnitude) of the Lagrange multipliers to be used.

6.5 Numerical solving techniques
Numerical techniques consist of the numerical procedures that can be used to solve the
optimum problem. They can be used indiscriminately for direct methods and indirect
methods, although some techniques are peculiar to one of the two methods.

6.5.1 Shooting Technique
Shooting techniques are used to calculate the time history of state variables once the time
history of the control vector is known. The advantage of using these techniques is to use
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a very small number of optimisation variables. Shooting techniques can be divided into
single-shooting and multi-shooting techniques.
In direct shooting techniques, the vector of controls is temporally parameterised using
specific functions:

uptq »

m
ÿ

i“1
aiψiptq

Where ψiptq are known functions, whereas the parameters a are the one to be determined
in the optimisation process. Once these parameters have been found, the equations of
dynamics are verified by direct integration with time-marching algorithms. In the previous
writing, the single-shooting technique was used, where the controls were interpolated
throughout the domain. This technique can be extended to multi-shooting: the problem
is subdivided into M ` 1 subintervals where controls are approximated with the same
formulation as above. However, continuity conditions must be introduced at the various
interfaces:

xptj´
q ´ xptj`

q “ 0

This extension increases the size of the problem, as the states at the beginning of each
interval are variables in the problem.
For a direct single-shooting method, the resolution procedure is rather simple to apply:

1. Input: initial estimation of the parameters of the vector of controls

2. While the objective function is not minimal and the constraints are not satisfied:

(a) Integration of the trajectory from t0 to tf
(b) Calculation of error on target conditions
(c) Recalculation of initial conditions by shifting the objective function to a lower

value;

3. End While

4. Output: Optimum parameter values and optimal trajectory

The technique can also be implemented for indirect methods, just introduce the added
variables. First, an initial estimate of the variables is made at one end of the time interval,
often the initial one, after which the system of equations of optimal control theory is
integrated to the other end. Upon arrival, the conditions at the other extreme are compared
with the conditions at that edge, if they differ by an amount greater than the imposed
limit, the calculation is repeated by changing the conditions at the other extreme until
convergence.
A key advantage of shooting techniques is that the equations of motion are imposed
automatically by numerical integration and do not appear as constraints. This effectively
reduces the calculation time due to the reduction in the number of constraints applied.
An indirect method with simple shooting techniques is very easy to implement, however
it presents some major numerical difficulties due to the malconditioning of Hamiltonian
dynamics. This leads to an easy amplification of the errors made on the initial estimation
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of the variables at the starting boundary, making the convergence domain very small and
thus leading to serious difficulties in convergence to the optimal solution. The problem of
malconditioning is particularly acute when the optimal control problem is hyper-sensitive,
i.e. when the integration interval is very long compared to the time scale of the Hamiltonian
system in the vicinity of the optimal solution.
To overcome these computational problems and make convergence less sensitive, a multi-
shooting indirect method can be implemented: the integration time interval is divided into
sub-intervals and the indirect method is applied to each of them using simple shooting
techniques. In this case, it is necessary to satisfy continuity by imposing the following
conditions:

yptj´
q “ yptj`

q

Where y is:
yptq “

„

xptq
λptq

ȷ

where λptq are the Lagrange multipliers associated with the state variables, also known as
co-state variables. The problem with indirect multi-shooting methods is the increase in
problem size and the increase in variables for which an initial estimate must be found.
A simple shooting algorithm for indirect methods is the following:

1. Input Initial estimation of unknown initial conditions

2. While Error at end conditions is larger than a certain tolerance:

(a) Integration of the trajectory from t0 to tf
(b) Calculation of error on target conditions
(c) Modification of unknown initial conditions;

3. End While

4. Output: Optimal trajectory

For indirect methods with shooting techniques, it is useful to note that:

• When a variable is assigned to an extreme, the corresponding added variable is
unbound;

• When an extreme variable does not appear in the boundary conditions, the corre-
sponding co-state is null;

• When a variable is continuous and unconstrained at any point, the corresponding
co-state variable is also continuous and unconstrained at that point;

• When a variable is continuous and assigned at any point, the corresponding added
variable has a discontinuity and is unbound at that point;

• If the time at one end is free, the Hamiltonian is zero at that point;

• If the time at one end is assigned, the Hamiltonian is unbound at that point;
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• If time at an intermediate point is assigned, the Hamiltonian has a discontinuity and
is unbound at that point.

Figure 6.3: Shooting technique for a direct and indirect case[18]

6.6 Choice of solving method
In the light of what has been presented so far, the use of an analytical approach for
finding the solution can be ruled out with certainty as it does not exist, given that for
the trajectories considered, it is impossible to trace back to simple cases. Comparing the
merits and demerits of direct and indirect methods, the question arises as to whether a
less precise (and potentially sub-optimal) solution typical of direct methods is preferable
to a solution with high precision but difficult to achieve due to the small convergence
domain, i.e. an indirect method. Given the limited amount of fuel and the low thrust of
the propulsion system, the aim is to obtain as correct a trajectory as possible in order
to minimise subsequent corrections and minimise propellant usage, so it is clear that the
indirect method is preferable. The techniques used are shooting techniques because of the
simplicity of application to the case under consideration. In the present case, a simple
shooting technique is used for trajectories, in which only the variables at the beginning of
the arc need to be estimated. A code with an Adams-Moulton step and variable order
integrator for solving ordinary differential equations and Newton’s method for solving
systems of non-linear equations was used for the calculation. The Hamiltonian has the
following form:

H “ λT f ` µT g ` TSF
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Where SF is the switching function and is equal to:

SF “
λT

v T
mT

´
λm

c

With λm being the Lagrange coefficient of mass, λv being the added variables that compete
with the last three equations of dynamics, those of velocities (u, v, w), g is the vector of
boundary conditions to which are associated Lagrange multipliers (constant over time) µ.
Considering the equation defined in chapter 4, it is possible to write the Hamiltonian as:

H “ λru ` λθ
v

r cosϕ ` λϕ
w

r

` λup´
µ

r2 `
v2

2 `
w2

2 `
T

m
sin γT q

` λvp´
uv

r
`
vw

r
tanϕ `

T

m
cos γT cosψT q

` λwp´
uw

r
`
v2

r
tanϕ `

T

m
cos γT sinψT q ´ λm

T

c

The direction of the thrust and its modulus are typically the control variables, which must
maximise H in accordance with Pontryagin’s Maximum Principle. The optimal direction
of the thrust is obviously parallel to the added velocity vector λV . The thrust module, on
the other hand, is derived from a bang-bang control mode:

• maximum if SF > 0;

• minimum(null) if SF < 0;

• Singular arch is SF = 0.

Since a constant effective exhaust velocity has been implemented, the modulus of the
thrust is directly proportional to the flow rate and thus to the thrust power.

6.7 Boundary conditions
After obtaining the differential equations, it is necessary to impose the boundary conditions.
In the case of rendezvous-only missions such as the one dealt with in this thesis, the
spacecraft (S/C) at time t0 will have the same position and speed as the Earth and a
certain initial mass:

rS{Cpt0q “ rEarthpt0q

VS{Cpt0q “ VEarthpt0q

m0pt0q “ 21kg

When the asteroid is reached at time tf , the position and speed of the aircraft must be
equal to that of the object just reached:

rS{Cptf q “ rAsteroidptf q

VS{Cptf q “ VAsteroidptf q
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6.8 Initial Conditions
Initial conditions are required to carry out the integration of the differential equations.
These values are contained inside the vector p:

p “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

t0
tf
r0
θ0
ϕ0
u0
v0
w0
λr0

λθ0

λϕ0

λu0

λv0

λw0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

In the vector p:

• t0 and tf are the departure time from Earth and the arrival time at the asteroid;

• r0, θ0 and ϕ0 represent the initial position of the spacecraft;

• u0, v0 and w0 represent the initial velocity of the spacecraft;

• λr0 , λθ0 , λϕ0 , λu0 , λv0 and λw0 represent the initial added variables.

As mentioned above, the added variables are indispensable for obtaining the optimal thrust
direction:

T sin γT “ T
λu

λV

T cos γT cosϕT “ T
λv

λV

T cos γT sinϕT “ T
λw

λV

The thrust obtained is parallel to the primer vector λV .
The quantities contained in the vector p are not all known a priori, so the problem goes
from being a boundary condition problem (BVP) to an initial condition problem (IVP).
The problem is solved with a shooting method, i.e. an initial solution of attempt p
is assumed and the system of differential equations is integrated. The results are then
compared with the boundary conditions: if the error is less than a certain tolerance, the
initial values chosen are correct, otherwise a new set of initial parameters must be chosen.
When the initial values are found, the optimal solution of the trajectory is also found, and
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consequently also all information on how the quantities vary over time.
Before delving into the results, it’s important to highlight that the script works with
dimensionless parameters, in particular:

• The distances become dimensionless using the Sun-Earth mean distance:

rconv “ 1.4959 ˚ 108km

• The velocities become dimensionless using the Earth circular velocity:

Vconv “

c

µd

rconv
“ 29.784km/s

• The accelerations become dimensionless using the Earth acceleration around the sun:

aconv “
µd

rconv

2
“ 5.93 ¨ 10´6km/s2

• The time become dimensionless using the relation:

tconv “
Vconv

aconv ˚ 86400 “ 58.1324days

• The dates are dimensionless and start from 1/1/2000 with a value of 0, to continue
with the time tconv.
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Chapter 7

Results

After defining the mission, its purposes and characteristics, and after delving into the
physical and mathematical models and strategies applied to optimise the trajectory, it is
now possible to present and analyse the results obtained.
For ease of reading, the orbital parameters of the asteroids under consideration are given
below, the choice of which was discussed in Chapter 3.3.

Designation Epoch [MJD] a [AU] e [AU] i [deg] ω Ω M [deg]
REF 61771 1.1 0.1 2 0 0 -35.36529
AM 61771 1.05 0.1 2 0 0 116.36661
AP 61771 1.15 0.1 2 0 0 -8.301583
EM 61771 1.1 0.05 2 0 0 -35.36529
EP 61771 1.1 0.15 2 0 0 -35.36529
IM 61771 1.1 0.1 1 0 0 -35.36529
IP 61771 1.1 0.1 3 0 0 -35.36529

Table 7.1: Main asteroids in analysis

Designation Epoch [MJD] a [AU] e [AU] i [deg] ω Ω M [deg]
REF 61771 1.1 0.1 2 0 0 -35.36529
AM1 61771 1.075 0.1 2 0 0 124.81543
AP1 61771 1.125 0.1 2 0 0 -12.49047
EM1 61771 1.1 0.075 2 0 0 -35.36529
EP1 61771 1.1 0.125 2 0 0 -35.36529
IM1 61771 1.1 0.1 1.5 0 0 -35.36529
IP1 61771 1.1 0.1 2.5 0 0 -35.36529

Table 7.2: Intermediate Asteroids

Intermediate asteroids will only be used to verify that the code is working correctly and
that the chosen initial conditions do not cause the problem to converge to incorrect values.

69



Results

Three Fortran codes were used to carry out the trajectory analyses, which were developed
to solve the optimal problem through an iterative procedure, the aim of which is to find
a thrust strategy that allows the mission to be completed with the highest possible final
mass.

7.1 Initial case
The first analysis was carried out by studying the trajectories to the various asteroids,
using the orbital parameters defined during the asteroid selection phase, and looking for
the minimum mission duration for each asteroid.
The minimum duration for each trajectory to converge is 988.25 days, which corresponds
to approximately 2.7 years. This duration will be used in every discussion from now on.
The attempt solution required for the code to run was completed by using as the arrival
time the time returned by the scanesa.for script with which the asteroids were classified
and as the departure time, the arrival time from which the desired mission duration was
subtracted. The objective of this initial analysis phase was to obtain the departure and
arrival dates of the trips and the final optimised mass values, the value of which was
obtained by passing the script a value of t0 equal to zero,which triggers the search for the
optimal departure date.
At the end of this analysis, the optimal final mass and consumed propellant values were
collected and are reported below. From the values of consumed propellant mass, it can

DES DEPARTURE ARRIVAL FINAL MASS (kg) FUEL MASS (kg)
REF 8/ 5/2031 21/ 1/2034 18.7536 2.2464
AM 13/ 3/2026 25/11/2028 18.9454 2.0546
AM1 14/ 4/2027 27/12/2029 18.8716 2.1284
AP1 8/ 5/2030 21/ 1/2033 18.3887 2.6113
AP 20/ 6/2030 4/ 3/2033 18.3387 2.6613
EM 30/ 4/2031 13/ 1/2034 19.1905 1.8095
EM1 6/ 5/2031 18/ 1/2034 19.0386 1.9614
EP1 12/ 5/2031 24/ 1/2034 18.3679 2.6321
EP 29/ 3/2030 11/12/2032 17.2994 3.7006
IM 4/ 5/2031 17/ 1/2034 19.1226 1.8774
IM1 6/ 5/2031 19/ 1/2034 18.9597 2.0403
IP1 12/ 5/2031 24/ 1/2034 18.5067 2.4933
IP 16/ 5/2031 28/ 1/2034 18.2031 2.7969

be deduced that the most difficult asteroids to reach, in other words those requiring
greater propulsive effort and fuel consumption, are those with increased orbital parameters
compared to the reference case, while the easiest asteroids to reach are those with smaller
orbital parameters compared to the reference case. It should be noted that the easiest
asteroid and the hardest to reach asteroid both fall into the group of asteroids with a
varied eccentricity. The graphs containing the final mass and the propellant mass trends
for the various asteroids under consideration are shown below.
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7.1 – Initial case

Figure 7.1: Relationship between semimajor-axis and final mass

Figure 7.2: Relationship between semimajor-axis and propellant mass
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Figure 7.3: Relationship between eccentricity and final mass

Figure 7.4: Relationship between eccentricity and propellant mass
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Figure 7.5: Relationship between inclination and final mass

Figure 7.6: Relationship between inclination and propellant mass
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7.2 Finding the optimal mean anomaly
After determining the final mass values for the asteroids under examination, the next step
is to optimise the mission by focusing on another crucial aspect: the mean anomaly. The
objective of this section is to identify the optimal mean anomaly value for the asteroids
that, while keeping the mission duration constant and equal to 988.25 days, maximizes
the final mass of the spacecraft. This optimisation is essential because an increase in the
final mass corresponds to a reduction in the amount of propellant required to reach the
target asteroid. Changing the mean anomaly of asteroids obviously also changes the phase
angle between asteroid and earth, so optimising the mean anomaly results in optimising
the phase angle between earth and asteroid at t0. The new optimised final mass values are
shown in the tables below:

DES DEPARTURE ARRIVAL FINAL MASS (kg) FUEL MASS (kg)
REF 15/ 5/2031 27/ 1/2034 18.8353 2.1647
AM 19/ 3/2030 1/12/2032 19.0411 1.9589
AM1 13/ 4/2027 26/12/2029 18.8781 2.1219
AP1 3/ 6/2030 15/ 2/2033 18.5941 2.4059
AP 3/ 7/2030 18/ 3/2033 18.4405 2.5595
EM 6/ 5/2031 19/ 1/2034 19.2187 1.7813
EM1 6/ 5/2031 18/ 1/2034 19.0422 1.9578
EP1 12/ 5/2031 25/ 1/2034 18.3840 2.6160
EP 20/ 5/2030 1/ 2/2033 18.0189 2.9810
IM 10/ 5/2031 23/ 1/2034 19.2124 1.7876
IM1 7/ 5/2031 19/ 1/2034 18.9662 2.0338
IP1 11/ 5/2031 24/ 1/2034 18.5147 2.4853
IP 20/ 5/2031 1/ 2/2034 18.2840 2.7160

Table 7.3: Final mass relative to optimum M
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DES FUEL MASS (kg)
(MOP T ) FUEL MASS (kg) ∆ Fuel Mass

REF 2.1647 2.2464 -3.6369
AM 1.9589 2.0546 -4.6578
AM1 2.1219 2.1284 -0.3054
AP1 2.4059 2.6113 -7.8658
AP 2.5595 2.6613 -3.8252
EM 1.7813 1.8095 -1.5584
EM1 1.9578 1.9614 -0.1835
EP1 2.6160 2.6321 -0.6117
EP 2.9810 3.7006 -19.4455
IM 1.7876 1.8774 -4.7832
IM1 2.0338 2.0403 -0.3186
IP1 2.4853 2.4933 -0.3209
IP 2.7160 2.7969 -2.8925

Table 7.4: Final mass with optimum M VS Final mass

As can be seen from table 7.4, lower propellant consumption is achieved if the "time
free" solution is used and the code calculates the optimal position of the asteroid at the
time of departure.
Before delving into the trajectories to reach the various asteroids, please note that from
this point on, only the main asteroids will be used for the analyses and how the mean
anomalies of these have been changed by applying the ∆M calculated using the tstar
value.

Designation Epoch [MJD] a [AU] e [AU] i [deg] ω Ω M [deg]
REF 61771 1.1 0.1 2 0 0 -29.35517
AM 61771 1.05 0.1 2 0 0 125.42800
AP 61771 1.15 0.1 2 0 0 6.31658
EM 61771 1.1 0.05 2 0 0 -31.46614
EP 61771 1.1 0.15 2 0 0 -87.71435
IM 61771 1.1 0.1 1 0 0 -29.89938
IP 61771 1.1 0.1 3 0 0 -28.95264

Table 7.5: Main asteroids in analysis with the optimal mean anomaly

7.2.1 REF

The first trajectory analysed is that directed towards the reference asteroid REF, whose
orbital parameters are given below:
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a e i Ω ω M
1.1 AU 0.1 2° 0 0 -29.355°

Table 7.6: Orbital parameters of REF at epoch 61771 MJD

As explained above, this is the optimal starting position for this asteroid while the
optimal departure date is shown in the following table:

Asteroid Departure Date Arrival Date ∆V
REF 15/05/2031 27/01/2034 2.240325 km/s

The duration of the mission is approximately 2 years and 8 months.

Figure 7.7: 2D and 3D Trajectories in a heliocentric reference frame

Figure 7.8: Trends of inclination, eccentricity, energy, velocity and radius

From the eccentricity and inclination graphs 7.8, it can be deduced that the engines are
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on for most of the transfer, with short periods of non-propelled coasting. The semi-axis
change is carried out mainly in the final part, in fact the graphs show how the speed
decreases and the radius increases before reaching the asteroid under examination.
The final mass of the spacecraft is 18.83 kg, so the propellant consumption is about 2.1647
kg, with the trend reported in 7.9.

Figure 7.9: Total Mass versus Time

At the moment of departure the spacecraft has its engines switched off and the thrust
strategy consists of five distinct moments of thrust. It can be seen that there are longer
thrust moments interspersed with shorter ones and that thrust always occurs on all three
axes.

Figure 7.10: Components and magnitude of thrust T

7.2.2 AM
The second asteroid under analysis is AM, whose orbital parameters are given below:
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a e i Ω ω M
1.05 AU 0.1 2° 0 0 125.428°

Table 7.7: Orbital parameters of AM at epoch 61771 MJD

As explained above, this is the optimal starting position for this asteroid while the
optimal departure date is shown in the following table:

Asteroid Departure Date Arrival Date ∆V
AM 19/03/2030 1/12/2032 2.016587 km/s

The duration of the mission is approximately 2 years and 8 months.

Figure 7.11: 2D and 3D Trajectories in a heliocentric reference frame

Figure 7.12: Trends of inclination, eccentricity, energy, velocity and radius

From the eccentricity and inclination graphs 7.12, it can be deduced that the engines are

78



7.2 – Finding the optimal mean anomaly

on for most of the transfer, with short periods of non-propelled coasting. The semi-axis
change is carried out mainly in the final part, in fact the graphs show how the speed
increases and the radius decreases before reaching the asteroid under examination.
The final mass of the spacecraft is 19.04 kg, so the propellant consumption is about 1.9589
kg, with the trend reported in 7.13.

Figure 7.13: Total Mass versus Time

At the moment of departure the spacecraft has its engines switched on and the thrust
strategy consists of six distinct moments of thrust. It can be seen that there are longer
thrust moments interspersed with shorter ones. Note also how the spacecraft arrives at
the rendezvous with the asteroid with the thrusters still on.

Figure 7.14: Components and magnitude of thrust T

7.2.3 AP
The next asteroid under analysis is AP, whose orbital parameters are given below:
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a e i Ω ω M
1.15 AU 0.1 2° 0 0 6.316°

Table 7.8: Orbital parameters of AP at epoch 61771 MJD

As explained above, this is the optimal starting position for this asteroid while the
optimal departure date is shown in the following table:

Asteroid Departure Date Arrival Date ∆V
AP 03/07/2030 18/03/2033 2.676608 km/s

The duration of the mission is approximately 2 years and 8 months.

Figure 7.15: 2D and 3D Trajectories in a heliocentric reference frame

Figure 7.16: Trends of inclination, eccentricity, energy, velocity and radius

From the eccentricity and inclination graphs 7.16, it can be deduced that the engines are
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on for most of the transfer, with short periods of non-propelled coasting. The semi-axis
change is carried out mainly in the final part, in fact the graphs show how the speed
decreases and the radius increases before reaching the asteroid under examination.
The final mass of the spacecraft is 18.44 kg, so the propellant consumption is about 2.5595
kg, with the trend reported in 7.17.

Figure 7.17: Total Mass versus Time

At the moment of departure the spacecraft has its engines switched on and the thrust
strategy consists of 5 distinct moments of thrust. It can be seen that there are longer
thrust moments interspersed with shorter ones. Note also how the spacecraft arrives at
the rendezvous with the asteroid with the thrusters still on.

Figure 7.18: Components and magnitude of thrust T

7.2.4 EM
Now the family of asteroids with a variation in eccentricity value with respect to the
reference asteroid is analysed. The first asteroid analysed is EM, whose orbital parameters
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are given below:

a e i Ω ω M
1.1 AU 0.05 2° 0 0 -31.466°

Table 7.9: Orbital parameters of EM at epoch 61771 MJD

As explained above, this is the optimal starting position for this asteroid while the
optimal departure date is shown in the following table:

Asteroid Departure Date Arrival Date ∆V
EM 06/05/2031 19/01/2034 1.825364 km/s

The duration of the mission is approximately 2 years and 8 months.

Figure 7.19: 2D and 3D Trajectories in a heliocentric reference frame

From the eccentricity and inclination graphs 7.20, it can be deduced that the engines are
on for most of the transfer, with short periods of non-propelled coasting.
The final mass of the spacecraft is 19.22 kg, so the propellant consumption is about 1.7813
kg, with the trend reported in 7.21.
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Figure 7.20: Trends of inclination, eccentricity, energy, velocity and radius

Figure 7.21: Total Mass versus Time

At the moment of departure the spacecraft has its engines switched off and it does a
short period of coasting and the thrust strategy consists of 5 distinct moments of thrust.
It can be seen that there are longer thrust moments interspersed with shorter ones. Note
also how the spacecraft arrives at the rendezvous with the asteroid with the thrusters off
and how the thruster when is on has always the three components different from zero.

7.2.5 EP
In the family of asteroids with a variation in eccentricity value with respect to the reference
asteroid there is EP, whose orbital parameters are given below:

a e i Ω ω M
1.1 AU 0.15 2° 0 0 -87.714°

Table 7.10: Orbital parameters of EP at epoch 61771 MJD
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Figure 7.22: Components and magnitude of thrust T

This is the optimal starting position for this asteroid while the optimal departure date
is shown in the following table:

Asteroid Departure Date Arrival Date ∆V
EP 20/05/2030 01/02/2033 3.152850 km/s

The duration of the mission is approximately 2 years and 8 months.

Figure 7.23: 2D and 3D Trajectories in a heliocentric reference frame

From the eccentricity and inclination graphs 7.24, it can be deduced that the engines are
on for most of the transfer, with short periods of non-propelled coasting.
The final mass of the spacecraft is 18.01 kg, so the propellant consumption is about 2.9810
kg, with the trend reported in 7.25. Consequently, EP is the most onerous asteroid to
reach in terms of consumption.
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Figure 7.24: Trends of inclination, eccentricity, energy, velocity and radius

Figure 7.25: Total Mass versus Time

At the moment of departure the spacecraft has its engines switched on and the thrust
strategy consists of 6 distinct moments of thrust. It can be seen that there are longer
thrust moments interspersed with shorter ones. Note also how the spacecraft arrives at
the rendezvous with the asteroid with the thrusters on and how the thruster when is on
has always the three components different from zero.

7.2.6 IM

Now the family of asteroids with a variation in inclination value with respect to the
reference asteroid is analysed. The first asteroid analysed is IM, whose orbital parameters
are given below:

85



Results

Figure 7.26: Components and magnitude of thrust T

a e i Ω ω M
1.1 AU 0.1 1° 0 0 -29.890°

Table 7.11: Orbital parameters of IM at epoch 61771 MJD

This is the optimal starting position for this asteroid while the optimal departure date
is shown in the following table:

Asteroid Departure Date Arrival Date ∆V
IM 10/05/2031 23/01/2034 1.832147 km/s

The duration of the mission is approximately 2 years and 8 months.

Figure 7.27: 2D and 3D Trajectories in a heliocentric reference frame

From the eccentricity and inclination graphs 7.28, it can be deduced that the engines are
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Figure 7.28: Trends of inclination, eccentricity, energy, velocity and radius

on for most of the transfer, with short periods of non-propelled coasting.
The final mass of the spacecraft is 19.21 kg, so the propellant consumption is about 1.7876
kg, with the trend reported in 7.29.

Figure 7.29: Total Mass versus Time

At the moment of departure the spacecraft has its engines switched off and the thrust
strategy consists of 5 distinct moments of thrust. It can be seen that there are longer
thrust moments interspersed with shorter ones. Note also how the spacecraft arrives at
the rendezvous with the asteroid with the thrusters off and how, when the thruster is on,
has always the three components different from zero.

7.2.7 IP

The last asteroid analysed is IP, whose orbital parameters are given below:
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Figure 7.30: Components and magnitude of thrust T

a e i Ω ω M
1.1 AU 0.1 3° 0 0 -28.952°

Table 7.12: Orbital parameters of IP at epoch 61771 MJD

This is the optimal starting position for this asteroid while the optimal departure date
is shown in the following table:

Asteroid Departure Date Arrival Date ∆V
IP 20/05/2031 01/02/2034 2.852169 km/s

The duration of the mission is approximately 2 years and 8 months.

Figure 7.31: 2D and 3D Trajectories in a heliocentric reference frame

From the eccentricity and inclination graphs 7.32, it can be deduced that the engines are
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Figure 7.32: Trends of inclination, eccentricity, energy, velocity and radius

on for most of the transfer, with short periods of non-propelled coasting. The semi-axis
change is carried out mainly in the final part, in fact the graphs show how the speed
decreases and the radius increases before reaching the asteroid under examination.
The final mass of the spacecraft is 18.28 kg, so the propellant consumption is about 2.7160
kg, with the trend reported in 7.33.

Figure 7.33: Total Mass versus Time

At the moment of departure the spacecraft has its engines switched on and the thrust
strategy consists of 6 distinct moments of thrust. It can be seen that there are longer
thrust moments interspersed with shorter ones. Note also how the spacecraft arrives at
the rendezvous with the asteroid with the thrusters still on and how, when the thruster is
on, has always the three components different from zero.
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Figure 7.34: Components and magnitude of thrust T

7.3 Impact of Mean Anomaly Variations on Propel-
lant Consumption

This section explores the relationship between variations in mean anomaly and propellant
consumption. The subsequent analysis will explore several scenarios, each characterized by
a different deviation from the mean anomaly optimum values found in the previous section.
It will be evaluated the corresponding changes in propellant consumption, identifying
patterns and quantifying the effects of these variations and understand whether the change
in propellant mass is symmetrical, so if moving the asteroid forward by a ∆M or backward
by the same amount generates the same effect.
This investigation aims to provide a comprehensive understanding of how maintaining
or deviating from the optimum mean anomaly value affects propellant requirements,
ultimately contributing to more efficient space missions and better propellant management,
which allows the mass of transportable payload to be increased.
A total of six cases per asteroid will be analysed:

∆M “
“

´20˝, ´10˝, ´5˝, `5˝, `10˝, `20˝
‰

After obtaining all the trajectories for each case under consideration, the results were
analysed and plotted, which will be reported and discussed below.
The first thing analysed is the deviation of the final mass of the individual cases from the
optimum case, the graph of which is shown in 7.35. It can be seen from the graph that the
variations with respect to the reference case are not symmetrical, and in some cases they
show a considerable difference, the causes of which will be investigated later. It should
also be noted that the trajectories that are most affected by the shift from optimal M
are those to reach the AP and EP asteroids, a phenomenon that is also confirmed by the
graph 7.36, containing the trend in the mass of propellant consumed for various ∆M . The
exact values of the final and consumed propellant masses are given in the appendix B.
The following table shows the percentage increase in propellant mass compared to the
optimum case:
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Figure 7.35: Final masses normalised to optimal case

DES ∆M = -20 ∆M = -10 ∆M = -5 ∆M = 5 ∆M = 10 ∆M = 20
REF 6.4258 1.6492 0.4158 0.4342 1.7739 7.1788
AM 5.0682 1.2456 0.3114 0.3165 1.2711 5.2529
AP 8.3102 1.8871 0.4571 0.5040 2.2153 8.2164
EM 4.1655 1.0217 0.2526 0.2695 1.1396 5.5184
EP 5.7397 1.4156 0.3522 0.3489 1.3854 5.4814
IM 7.2891 1.6614 0.5370 0.3972 1.6335 7.5744
IP 4.6171 1.2445 0.3203 0.3277 1.3218 5.2025

Table 7.13: Percentage increase in consumed propellant mass

The data in the table confirm what was stated earlier, namely that the most critical
cases are in the AP and EP trajectories and that the trends are not symmetrical.
Possible reasons for an asymmetrical mass trend and why for some asteroids the shift from
the optimal M has a greater impact than for others will now be reported.

7.3.1 AM & AP
Analysing the graphs of the REF asteroid, it is possible to see the presence of 5 propelled
arcs and in all 5 there is a change in inclination. During the first, third and fifth arcs,
apoapsis variation occurs with almost constant periapsis, except for small variations due

91



Results

Figure 7.36: Propellant mass trend

Figure 7.37: AM Periapsis Figure 7.38: REF Periapsis Figure 7.39: AP Periapsis

to the effect of applying a ∆V on an arc of finite length.In contrast, the periapsis is varied
during the second and fourth arcs, phases in which the apoapsis is constant. Comparing
the extreme cases ∆M “ ´20 and ∆M “ 20, it can be seen that the latter is the more
disadvantageous of the two, since it immediately goes to lower altitudes, in fact the
periapsis decreases while the apoapsis remains constant and the spacecraft thus goes to
orbits with an higher orbital velocity.
The case with ∆M “ ´20 instead follows the optimal case ∆M “ 0 by initially increasing
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Figure 7.40: AM Apoapsis Figure 7.41: REF Apoapsis Figure 7.42: AP Apoapsis

Figure 7.43: AM Inclination Figure 7.44: REF Inclina-
tion Figure 7.45: AP Inclination

the spacecraft’s altitude. In fact, the apoapsis increases and the periapsis also has a slight
increase. Determining factor for the higher cost of the case ∆M “ `20 is also the last
propelled arc which has a very long duration compared to the previous ones.
The trajectory to reach asteroids AM and AP is different from that followed to reach
asteroid REF and this is also reflected in the trends of apoapsis and periapsis. Regarding
AM, it can be seen that it has 6 very short propulsive arcs, three (1, 3, 5) which modify
the periapsis while keeping the apoapsis constant and three (2, 4, 6) which modify the
apoapsis while maintaining the periapsis constant.
Comparing the ∆M “ ´20 and ∆M “ `20 cases, it can be seen, as also in REF, that
the ∆M “ `20 case presents an initial periapsis variation, with the spacecraft moving to
orbits at lower altitudes, as the periapsis decreases and the apoapsis remains constant, and
higher velocities, which penalises the mass of propellant consumed. The opposite case, on
the other hand, decreases the periapsis slightly at first, resulting in a greater variation in
the fifth propelled arc. With regard to the apoapsis variation, it can be seen that the case
∆M “ `20 has the last propelled arc very long compared to the others cases, a factor
that increases the cost of the trajectory.
For AP, the trend of apoapsis and periapsis is different from the cases seen previously. The
apoapsis has an increasing monotonic trend, while the periapsis shows different behaviour
for the case ∆M “ ´20 and ∆M “ `20. The second case is the most convenient for
AP, with reduced propellant consumption. The case ∆M “ ´20 is penalised by the fact
that the spacecraft has to rise very high right from the start in order to decrease its
angular velocity. It must therefore increase both periapsis and apoapsis and this leads
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to an excessive increase in periapsis which must then be reduced in the final part of the
trajectory. Concerning the case∆M “ `20 where an increase in elevation is required, we
see how the trends of periapsis and apoapsis are opposite. The apoapsis is increased at
constant periapsis in the first arc in a way that is not as significant as in ∆M “ ´20.
Afterwards, the periapsis is raised to values slightly lower than the starting value. In fact,
the periapsis lowering required to cope with the increase in apoapsis is less than that
required in ∆M “ ´20, which has a positive impact on fuel consumption. In general, it
can be seen that for REF and AP, larger apoapsis variations and longer arcs are required
and this is a disadvantage from a propulsive and propellant consumption point of view.
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7.3.2 EM & EP

Figure 7.46: EM Periapsis Figure 7.47: REF Periapsis Figure 7.48: EP Periapsis

Figure 7.49: EM Apoapsis Figure 7.50: REF Apoapsis Figure 7.51: EP Apoapsis

Figure 7.52: EM Inclination Figure 7.53: REF Inclina-
tion Figure 7.54: EP Inclination

The trajectory for EM shows an increasing monotonic pattern for both apoapsis and
periapsis. The case ∆M “ ´20 features an initial increase in apoapsis along with a
slight increase in periapsis, rising in altitude at orbits with lower angular velocities. The
difference between ∆M “ ´20 and ∆M “ `20 lies in the slope of the propulsive arcs,
in ∆M “ ´20 there are shorter propulsive arcs, while in ∆M “ `20 there are longer
propulsive arcs and, for the periapsis, concentrated in the final part of the trajectory.
This is because ∆M “ `20 requires staying at low radii to increase angular velocity and
inefficiently concentrate the increase in periapsis and apoapsis at the end. In fact, it has a

95



Results

higher propellant consumption than the opposite case.
It should be noted that EP requires much greater apoapsis variations than in the other
cases, which makes it necessary to decrease in periapsis.
EP has an increasing monotonic trend only for the apoapsis, while the periapsis has two
different trends depending on the case. ∆M “ ´20 follows the trend of the optimal case
∆M “ 0, increasing the altitude of the spacecraft, while the ∆M “ `20 case presents
an initial decrease in periapsis, with the spacecraft going to lower altitudes and higher
velocities.
Note the duration of the propulsive arcs, ∆M “ ´20 has longer propulsive arcs than the
opposite case, especially in the last arc due to the decrease in periapsis, caused by the
excessive increase in apoapsis. In the case of ∆M “ ´20, the periapsis is maintained at
high values compared to the final value, while in the case of ∆M “ `20, it is reduced to
values below the final value, so a shorter manoeuvre is required to reach the final value.
This makes the case ∆M “ ´20 more disadvantageous in terms of consumption. It should
also be noted that the inclination varies in each propelled arc and the presence of small
variations of periapsis together with apoapsis are due to the application of a ∆V on an
arc of finite length.
In general, we can see that EP and REF have longer propelled arcs than EM, which
makes the trajectory less effective and results in greater propellant consumption.
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7.3.3 IM & IP

Figure 7.55: IM Periapsis Figure 7.56: REF Periapsis Figure 7.57: IP Periapsis

Figure 7.58: IM Apoapsis Figure 7.59: REF Apoapsis Figure 7.60: IP Apoapsis

Figure 7.61: IM Inclination Figure 7.62: REF Inclina-
tion Figure 7.63: IP Inclination

The trajectory for IM has an increasing monotonous apoapsis pattern. With regard
to periapsis, a distinction must be made between the cases ∆M “ ´20 and ∆M “ `20.
In fact, in the former case we see an initial increase in apoapsis at constant periapsis, a
manoeuvre that causes the satellite to climb to altitude with lower speeds, while in the case
of ∆M “ `20 we see an initial decrease in periapsis at constant apoapsis, a manoeuvre
that causes the spacecraft to descend to altitude with higher speeds. This makes this case
less convenient, as it has a higher propellant consumption than the case ∆M “ ´20.
The trajectory for IP presents an increasing monotonic apoapsis pattern. The same

97



Results

considerations made for IM apply to the periapsis, in fact also for IP the most convenient
case is ∆M “ ´20, which presents a lower propellant consumption than the case ∆M “

`20.
In general, we can see that for IP and REF we have propelled arcs for periapsis variation,
of longer duration than for IM, which makes the trajectory less effective and leads to
greater propellant consumption.
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Chapter 8

Conclusions

In this thesis work, a set of fictitious asteroids, which fall into the category of near-earth
objects, was created to study and analyse the influence of orbital parameters and phase
angle on propellant consumption. The asteroids were chosen to ensure the feasibility of
the mission with electric propulsion.
The optimal ∆V found and the mass of propellant consumed to reach each asteroid are
now reported.

DES FUEL MASS (kg)
(MOP T )

∆V (km/s)
(MOP T )

REF 2.1647 2.2403
AM 1.9589 2.0165
AP 2.5595 2.6766
EM 1.7813 1.8253
EP 2.9810 3.1528
IM 1.7876 1.8321
IP 2.7160 2.8521

Table 8.1: Consumed propellant mass and ∆V generated

All trajectories have a ∆V of less than 3.5 km/s, which is a good result as these values are
fully compatible with those achievable with electric propulsion. It is obvious that the more
asteroids have orbital parameters different from those of the earth, the higher the ∆V .
It should be noted that reaching asteroids that have orbits with greater eccentricity and
inclination than those of the earth are the most onerous to reach in terms of consumption.
Moreover, as ∆V increases, at fixed initial mass and specific impulse, more propellant will
be required, which reduces the amount of payload the probe carries. A compromise or
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trade-off is therefore required between the scientific return of the mission and the propulsive
expenditure to carry it out. With regard to the optimal departure time, it should be noted
that in order to reach the AP and EP asteroids, one must be very punctual, as a deviation
from the optimal phase angle results in a sharp increase in the amount of propellant
consumed. It should be noted that the indirect method has a limited convergence domain:
it is possible that small variations in the tentative solution can determine a different final
mass.
Furthermore, it must also be remembered that this is an initial feasibility study, so these
trajectories represent preliminary mission solutions, which need to be studied in depth to
validate them and make them achievable in all respects and that assumptions have been
made as a starting point which should fall away when it is decided to delve into the study
of these trajectories.
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Appendix A

Optimisation problem

The optimum coincides, as required, with the minimum or maximum of a function with
one or more variables, representing the cost or performance of a given phenomenon. Free
optimisation will be discussed first, followed by the introduction of constraints, then moving
on to constrained optimisation. Constraints can be either equality or inequality. The
optimum is always sought (indistinctly maximum and minimum) with the exception of
the problem with inequality constraints where the optimality conditions are not the same
between minimum and maximum problems. One deals with the maximisation problem
and then leads back to the minimum problem through simple considerations.

A.1 Maxima and minima of a scalar function
Theorem 1 Let f : D Ď R2 Ñ R be a scalar function dependent on n real variables and
x0 a point inside the domain. Then:

• x0 is a point of global maximum (or global minimum) for f if:

fpx0q ě fpxq pfpx0q ď fpxqq @x P D

• x0 is a local maximum point (local minimum point) if:

Dδ ě 0 : @x P Iδpx0q X D ñ fpx0q ě fpxq pfpx0q ď fpxqq

The difference between a global optimum point and a local optimum point is that the
latter is exclusively so in its vicinity Iδ whereas the former is so over the entire domain D.
Theorem 2 If x0 is a local maximum (or minimum) for the function f , then:

• if f is convex (concave), x0 is a global maximum (minimum) for f ;

• if f is strictly convex (strictly concave), x0 is the only point of global maximum
(minimum) for f .

Theorem 3 Weierstrass: Let f : D Ď Rn Ñ R be a function of class C1 and D a compact
space of Rn. Then, f admists at least one point of global maximum and one point of global
minimum.
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A.2 Optimisation problem
Let f : D Ď Rn Ñ R be a class C2 function and β a property (constraining relationship)
verified in the points x P K with K “ tx P Rn : βpxqu. The function f is called objective
function and β in the constraint condition. The set K is called binding set because it
constrains the solution to be in the set V “ D X K.

A.2.1 Maximisation problem
Let f : D Ď Rn Ñ R be a class C2 function submitted to the β constraint. A search is
made for a point x0 of global maximum for the function f in the admissible region.

x0 P D X K : fpx0q ě fpxq@x P D X K

Or:
x0 “ max

xPV
rfpxqs

A.2.2 Minimisation problem
Let f : D Ď Rn Ñ R be a class C2 function submitted to the β constraint. A search is
made for a point x0 of global minimum for the function f in the admissible region.

x0 P D X K : fpx0q ď fpxq@x P D X K

Or:
x0 “ min

xPV
rfpxqs

It is useful to note that finding the maximum of a function f is equivalent to finding the
minimum of the function -f .
If x0 P V is optimum for f in V, the fpx0q is optimum valore of f . x0 is then a local
(global) optimum if it meets the local (global) optimum condition of the problem. If the
global (local) optimum in unique, then x P V is a point of strong optimum (or weak
optimum).

A.3 Free optimisation
Free optimisation exists when no constraint is present, or more generally when:

K “ D “ V

The admissible set coincides with the domain of the function f , so the problem of
maximisation or minimisation becomes the search for the point of maximum or minimum
of the function f on its domain. To solve such a problem, differential calculus will be used,
assuming that the function f : D Ď Rn Ñ R and of C2 class in Rn.
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Theorem 4 The point x0 P D is called stationary point for f if its gradient evaluated in
x0 is the null vector. Otherwise x0 is said to be a regular point. In equations:

∇fpx0q “ 0

Theorem 5 Every local maximum or minimum point is a stationary point

Note that the last theorem is not invertible, it is a necessary condition for the existence of
maximum or minimum points, but it is not a sufficient condition.
Theorem 6 Let f : D Ď Rn Ñ R of class C2 in Rn and x0 P D a stationary point. Then
the following propositions apply:

• If x0 is a weak local minimum (or maximum) for f then the quadratic form associated
to Hf px0q is semidefinite positive (or negative);

• If the quadratic form associated to Hf px0q is defined positive (or negative) then x0 is
a strong minimum (or maximum) point to f .

A.4 Constrained optimisation

A.4.1 Optimisation with equality constraints
Let V “ K X D Ă D and β an equality vector relation that serves as a constraint. The
latter can also be written in the form:

gpxq “ 0

then the eligible region can be defined as:

V “ tx P D X K : gpxq “ 0u

This optimization problem can be solved using two types of methods (under specific
conditions): the substitution method and the method of Lagrange multipliers.

Substitution method

The constraint relations are h and can be specified as:

gpxq “ 0 ô

$

’

’

’

&

’

’

’

%

g1px1, x2, ..., xnq “ 0
g2px1, x2, ..., xnq “ 0
. . .

ghpx1, x2, ..., xnq “ 0

If each equation in the n variables x is explicable according to only one variable, they can
be rewritten as:

$

’

’

’

&

’

’

’

%

x1 “ ϕ1px2, ..., xnq

x2 “ ϕ2px1, ..., xnq

. . .

xh “ ϕhpx1, x2, ..., xh´1, xh`1, xnq

103



Optimisation problem

And solving the system by substitution, it can be written:
$

’

’

’

&

’

’

’

%

x1 “ Φ1pxh`1, ..., xnq

x2 “ Φ2pxh`1, ..., xnq

. . .

xh “ Φhph ` 1, ..., xh´1, xh`1, xnq

The function to be optimised will be:

fpxq “ fpx1, x2, ..., xnq “ fpΦ1,Φ2, ...,Φh, xh`1, xh`2, ..., xnq

That is:
fpxq “ Φpxh`1, xh`2, ..., xnq

a function with n´ h variables. The optimisation from this point is a free optimisation
with xh`1, xh`2, ..., xn variables.
It can be seen that this resolution procedure involves direct explication of some variables
as a function of others, which turns out to be analytically possible only if the expression
of the constraint relation is known and if it is solvable in the variable of interest. In most
cases this is not possible, so the method of Lagrange multipliers is used.

Method of Lagrange multipliers

Let f : D Ď Rn Ñ R of class C2 be an objective function and g : D Ď Rn Ñ Rh of class
C1 a constraint function. The admissible region defined as V “ tx P R : gpxq “ 0u. The
Lagrangian of f is defined as the scalar function L : D ˆ Rh Ñ R written in the form:

Lpx, λq “ fpxq ` λ ¨ gpxq

with λ “ pλ1, λ2, ..., λhq the vector of size h of Lagrange multipliers.

BL

Bλi
“ gipxq

BL

Bxi
“

Bf

Bxi
` λ ¨

Bg

Bxi

B2L

BxiBλj
“

Bgj

Bxi

BL

Bλiλj
“ 0

B2L

BxiBxj
“

B2f

BxiBxj
` λ ¨

B2g

BxiBxj

Hf is defined as the matrix of the second derivatives of L with respect to the variables xi,
and G is defined as the matrix of mixed second derivatives with respect to the variables xi

and λj , it is possible to write:
G “ ∇g
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and the Hessian matrix of L is composed of the following blocks:
„

Hf GT

G 0

ȷ

Definition 1 The constraint is said to be qualified if the function g is regular throughout
the admissible region, that is:

∇gpxq ‰ 0@x P V

Theorem 7 If g is regular at every point in the admissible region and the vector px, λq is
a local solution to the problem:

max
x,λ

Lpx, λq

Then x is a local solution to constrained maximum problem for the function f .

Theorem 8 Let x be the local solution to the constrained maximum problem and Gpxq the
matrix ∇gipxq,i “ 1,2, ..., h. If G(x) is of maximum rank, then exists a unique vector λ
such that the vector px, λq is local solution of the problem:

max
x,λ

Lpx, λq

The theorem just expressed is a necessary but not sufficient condition for determining the
point of maximum (or minimum) bound of the function f . A second-order condition must
be written:

Theorem 9 Let the vector px, λq such that Lpx, λq “ 0, then:

• If x is a point of local maximum (or minimum) for the function f in the admissible
region and λ its Lagrange multiplier, then the Hessian of L is semidefinite negative
(or positive);

• If the Hessian of L is defined as negative (or positive) on the core of Gpxq, then x is
a point of local maximum (or minimum) of the function f in the admissible region V.

A.4.2 Optimisation with inequality constraints
The optimisation problem does not always have constraint relations expressed through
equations, but sometimes they can be unequalities. In this case it is not possible to find a
general formulation of the problem and its resolution, since the optimum conditions are
not the same in the case of the maximisation and minimisation problem.

Maximum problem with non-positive constraints

Let f : D Ď Rn Ñ R the objective function of class C2 and g : K Ď Rn Ñ Rh a set of
constraint functions of class C1. Let b P R a vector with h real components, the constraints
are written in the following form:

gipxq ď bi
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The admissible region can be defined as V “ tx P D X K : gpxq ď bu. Inequalities for
which equality holds are called active (saturated, stringent) constraints, while those for
which inequality holds are called non-active constraints.
The problem of maximisation of the function f with h non-positivity constraints is
formulated as:

max
f

fpxq : gpxq ´ b ď 0

Note that if the constraint is of non-negativity, simply multiply both members to the left
by -1.
At this point h Lagrange multipliers can be defined for each inequality contraint, writing a
Lagrangian function L : D ˆ Rn Ñ Rh, defined as:

Lpx, λq “ fpxq ´ λ ¨ pgpxq ´ bq

Theorem 10 Let x be the local solution of the maximum problem and g such for which
the gradients of the active constraints in x are linearly independent. Then there exists a λ
such that the following properties are satisfied:

∇xLpx, λq “ 0
∇λLpx, λq ^ λ ¨ ∇λLpx, λq “ 0
λ ě 0

Theorem 11 Let f be a function of class C2 weakly concave and g a function of class C1

weakly convex for each i “ 1, ...h. If λ and x exist such that the three previous relations
are satisfied, if ∇fpxq ‰ 0, then x is solution of the maximum problem.

If the constraints are non-negativity for some variables, for example , expression such as
x ą 0 are added to the constraints. In this case the Lagrangian function does not change,
but the condition becomes:

∇xLpx, λq ď 0 ^ x∇xLpx, λq “ 0
∇λLpx, λq ě 0 ^ λ∇λLpx, λq “ 0
x, λ ě 0

For minimum problems, it is still necessary to solve a maximum problem, but where the
objective function is denoted as hpxq “ ´fpxq.
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Appendix B

Numerical Results

DES ∆M = -20 ∆M = -10 ∆M = -5 ∆M = 0 ∆M = 5 ∆M = 10 ∆M = 20
REF 18.6962 18.7996 18.8263 18.8353 18.8259 18.7969 18.6799
AM 18.9418 19.0167 19.0350 19.0411 19.0349 19.0162 18.9382
AP 18.2278 18.3922 18.4288 18.4405 18.4276 18.3838 18.2302
EM 19.1445 19.2005 19.2142 19.2187 19.2139 19.1984 19.1204
EP 17.8479 17.9768 18.0085 18.0190 18.0086 17.9777 17.8556
IM 19.0821 19.1827 19.2028 19.2124 19.2053 19.1832 19.0770
IP 18.1586 18.2502 18.2753 18.2840 18.2751 18.2481 18.1427

Table B.1: Values of final mass in kg

DES ∆M = -20 ∆M = -10 ∆M = -5 ∆M = 0 ∆M = 5 ∆M = 10 ∆M = 20
REF 2.3038 2.2004 2.1737 2.1647 2.1741 2.2031 2.3201
AM 2.0582 1.9833 1.9650 1.9589 1.9651 1.9838 2.0618
AP 2.7722 2.6078 2.5712 2.5595 2.5724 2.6162 2.7698
EM 1.8555 1.7995 1.7858 1.7813 1.7861 1.8016 1.8796
EP 3.1521 3.0232 2.9915 2.9810 2.9914 3.0223 3.1444
IM 1.9179 1.8173 1.7972 1.7876 1.7947 1.8168 1.9230
IP 2.8414 2.7498 2.7247 2.7160 2.7249 2.7519 2.8573

Table B.2: Values of propellant mass in kg

107



108



Bibliography

[1] Ulrich Walter. «Rocket Fundamentals». In: Astronautics: The Physics of Space Flight.
Cham: Springer International Publishing, 2018, pp. 1–35. isbn: 978-3-319-74373-8.
doi: 10.1007/978-3-319-74373-8_1. url: https://doi.org/10.1007/978-3-
319-74373-8_1 (cit. on p. 3).

[2] Benjamin Stahl and Robert Braun. «Low-Thrust Trajectory Optimization Tool to
Assess Options for Near-Earth Asteroid Deflection». In: AIAA/AAS Astrodynamics
Specialist Conference and Exhibit (Aug. 2008). doi: 10.2514/6.2008-6255 (cit. on
pp. 5, 8).

[3] Roger R. Bate, Donald D. Mueller, and Jerry E. White. Fundamentals of Astrody-
namics. New York: Dover Publications, 1971 (cit. on pp. 7, 14, 26).

[4] Howard D Curtis. Orbital mechanics for engineering students / Howard D. Curtis. eng.
2nd ed. Elsevier aerospace engineering series. Kidlington, Oxford, UK ; Burlington,
MA: Butterworth-Heinemann, 2010. isbn: 9780123747785 (cit. on pp. 7, 16, 17,
24–26).

[5] url: https://cneos.jpl.nasa.gov/about/neo_groups.html (cit. on pp. 30, 31).
[6] Shane D. Ross. «Near-Earth Asteroid Mining». In: 2002. url: https : / / api .

semanticscholar.org/CorpusID:52220910 (cit. on p. 32).
[7] Jürgen Blum and Gerhard Wurm. «The Growth Mechanisms of Macroscopic Bodies

in Protoplanetary Disks». In: Annual Review of Astronomy and Astrophysics 46.1
(2008), pp. 21–56. doi: 10 . 1146 / annurev . astro . 46 . 060407 . 145152. eprint:
https://doi.org/10.1146/annurev.astro.46.060407.145152. url: https:
//doi.org/10.1146/annurev.astro.46.060407.145152 (cit. on p. 32).

[8] Anders Johansen, Emmanuel Jacquet, Jeffrey N. Cuzzi, Alessandro Morbidelli, and
Matthieu Gounelle. «New Paradigms for Asteroid Formation». In: Asteroids IV.
University of Arizona Press, 2015, pp. 471–492. isbn: 9780816532131. url: http:
//www.jstor.org/stable/j.ctt18gzdvc.31 (visited on 03/08/2024) (cit. on
p. 32).

[9] Tom Gehrels. Asteroids III. University of Arizona Press, 2002. isbn: 9780816522811.
url: http://www.jstor.org/stable/j.ctv1v7zdn4 (visited on 03/08/2024)
(cit. on p. 32).

109

https://doi.org/10.1007/978-3-319-74373-8_1
https://doi.org/10.1007/978-3-319-74373-8_1
https://doi.org/10.1007/978-3-319-74373-8_1
https://doi.org/10.2514/6.2008-6255
https://cneos.jpl.nasa.gov/about/neo_groups.html
https://api.semanticscholar.org/CorpusID:52220910
https://api.semanticscholar.org/CorpusID:52220910
https://doi.org/10.1146/annurev.astro.46.060407.145152
https://doi.org/10.1146/annurev.astro.46.060407.145152
https://doi.org/10.1146/annurev.astro.46.060407.145152
https://doi.org/10.1146/annurev.astro.46.060407.145152
http://www.jstor.org/stable/j.ctt18gzdvc.31
http://www.jstor.org/stable/j.ctt18gzdvc.31
http://www.jstor.org/stable/j.ctv1v7zdn4


BIBLIOGRAPHY

[10] D. Dellagiustina et al. «Exogenic basalt on asteroid (101955) Bennu». In: Nature
Astronomy (Sept. 2020). doi: 10.1038/s41550-020-1195-z. url: https://hal.
science/hal-03038593 (cit. on p. 32).

[11] Paul Schenk et al. «The Geologically Recent Giant Impact Basins at Vesta’s South
Pole». In: Science 336.6082 (2012), pp. 694–697. doi: 10.1126/science.1223272.
eprint: https://www.science.org/doi/pdf/10.1126/science.1223272. url:
https://www.science.org/doi/abs/10.1126/science.1223272 (cit. on p. 32).

[12] url: https://ssd.jpl.nasa.gov/diagrams/mb_hist.html (cit. on p. 33).
[13] William F. Bottke, Alessandro Morbidelli, Robert Jedicke, Jean-Marc Petit, Harold F.

Levison, Patrick Michel, and Travis S. Metcalfe. «Debiased Orbital and Absolute
Magnitude Distribution of the Near-Earth Objects». In: Icarus 156.2 (2002), pp. 399–
433. issn: 0019-1035. doi: https://doi.org/10.1006/icar.2001.6788. url:
https://www.sciencedirect.com/science/article/pii/S0019103501967880
(cit. on p. 32).

[14] William Jr, David Rubincam, and Miroslav Brož. «The Effect of Yarkovsky Thermal
Forces on the Dynamical Evolution of Asteroids and Meteoroids». In: () (cit. on
pp. 33, 34).

[15] url: https://www.jpl.nasa.gov/missions/near- earth- object- surveyor
(cit. on p. 34).

[16] url: https://cneos.jpl.nasa.gov/fireballs/ (cit. on p. 35).
[17] url: https://science.nasa.gov/mission/new-horizons (cit. on p. 37).
[18] Abolfazl Shirazi, Josu Ceberio, and Jose Lozano. «Spacecraft trajectory optimization:

A review of models, objectives, approaches and solutions». In: Progress in Aerospace
Sciences 102 (Aug. 2018). doi: 10.1016/j.paerosci.2018.07.007 (cit. on pp. 40,
41, 45, 48, 54, 57, 65).

[19] John T. Betts. Practical Methods for Optimal Control and Estimation Using Non-
linear Programming, Second Edition. Second. Society for Industrial and Applied
Mathematics, 2010. doi: 10.1137/1.9780898718577. eprint: https://epubs.siam.
org/doi/pdf/10.1137/1.9780898718577. url: https://epubs.siam.org/doi/
abs/10.1137/1.9780898718577 (cit. on p. 44).

110

https://doi.org/10.1038/s41550-020-1195-z
https://hal.science/hal-03038593
https://hal.science/hal-03038593
https://doi.org/10.1126/science.1223272
https://www.science.org/doi/pdf/10.1126/science.1223272
https://www.science.org/doi/abs/10.1126/science.1223272
https://ssd.jpl.nasa.gov/diagrams/mb_hist.html
https://doi.org/https://doi.org/10.1006/icar.2001.6788
https://www.sciencedirect.com/science/article/pii/S0019103501967880
https://www.jpl.nasa.gov/missions/near-earth-object-surveyor
https://cneos.jpl.nasa.gov/fireballs/
https://science.nasa.gov/mission/new-horizons
https://doi.org/10.1016/j.paerosci.2018.07.007
https://doi.org/10.1137/1.9780898718577
https://epubs.siam.org/doi/pdf/10.1137/1.9780898718577
https://epubs.siam.org/doi/pdf/10.1137/1.9780898718577
https://epubs.siam.org/doi/abs/10.1137/1.9780898718577
https://epubs.siam.org/doi/abs/10.1137/1.9780898718577

	List of Tables
	List of Figures
	Introduction
	Thesis overview and objectives
	Spacecraft trajectory Optimisation
	Fundamentals of space propulsion
	Workflow
	Pre-selection of asteroids
	Optimisation of a trajectory


	Fundamentals of Astrodynamics
	Introduction to astrodynamics
	Kepler's Law of planetary motion
	Universal law of gravitation
	The N-Body Problem
	The two-body problem
	Constants of the motion
	The Trajectory Equation
	Types of orbits
	Position and velocity as a function of time

	Coordinate systems and time measurements
	Coordinate systems
	Time Measurements

	Coordinate Transformations
	Classical Orbital Parameters
	Determining the orbital elements from r and v
	Determining r and v from the orbital elements

	Orbital manoeuvres
	Manoeuvre cost and propulsion parameters
	Main impulsive manoeuvres
	Continuous thrust manoeuvres


	Mission definition
	Near-Earth Objects
	Astronomical and scientific aspects of NEAs
	Planetary protection

	Multiple flyby missions
	Definition of Target Asteroids
	Mission Features
	Starting Assumptions

	Mathematical Models
	Transfer type
	Impulsive model
	Continuous model
	Choice of transfer type

	Equations of motion
	Two body problem
	N-body problem
	Choice of the equations set


	Mission goals
	Types of objective functions
	Mayer objective functions
	Lagrange objective functions
	Other objective functions

	Scalarisation of the objective function
	Choice of the objective function

	Solving methods and theory of optimal control
	Optimal Control Theory
	Solving approaches
	Analytical approach
	Numerical approach

	Solving algorithms
	Solving differential equations
	Solving non-linear algebraic systems
	Solving non-linear optimisation problems

	Resolution methods
	Direct methods
	Indirect methods

	Numerical solving techniques
	Shooting Technique

	Choice of solving method
	Boundary conditions
	Initial Conditions

	Results
	Initial case
	Finding the optimal mean anomaly
	REF
	AM
	AP
	EM
	EP
	IM
	IP

	Impact of Mean Anomaly Variations on Propellant Consumption
	AM & AP
	EM & EP
	IM & IP


	Conclusions
	Optimisation problem
	Maxima and minima of a scalar function
	Optimisation problem
	Maximisation problem
	Minimisation problem

	Free optimisation
	Constrained optimisation
	Optimisation with equality constraints
	Optimisation with inequality constraints


	Numerical Results
	Bibliography

