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Abstract

Nowadays, the available FEA software is a very efficient tool for solving FE
simulations. However, models can be large, as well as the associated computational
burden, and the larger the number of DOFs involved, the higher the computational
request. The RAM is still one of the main limitations, and the ability to accurately
predict the complete dynamics of the systems remains a main feat despite the
numerous developed mathematical techniques, such as cyclic symmetry and ROM
methods. Assuming we can correctly model boundaries and contact interactions,
we cannot yet praise the ability to solve mistuned nonlinear problems accounting for
all frictional contact conditions without reducing the number of DOFs, if sufficient.
It is especially true for geometrical mistuned nonlinear problems. Thanks to the
advancement of current technology and computers, step-by-step, we will eventually
overcome those challenges; yet, better modelling of the friction conditions is still
ongoing research. The work presented in this thesis has a double purpose: 1)
to analyze the free and forced responses of a modal stiffness and a geometrical
mistuned models by using the FEA software OrAgL-NOSTIA-ROOCMAN and
make a comparison with test rig results; 2) to test the current abilities of HPC
(High-Performance Computing) computers. Different models are tested and pre-
sented herein: a cyclic symmetric model, a modal stiffness mistuned model, and a
geometrical mistuned model. The first two use a CAD of the blade with a prepared
mesh, but for the last model, the CAD geometry is updated based on 60-BLS-
scanned blades, and a technique called Morphing allows moving the mesh over the
new geometries. Regarding the FEA analyses, CalculiX was used to run the static
and obtain the static displacements and the pressures at the contact interfaces
at the blade-root joints. OrAgL-NOSTIA-ROCMAN is an efficient and advanced
software developed by the collaboration of Novibtech and Stuttgart University
for research purposes, exploited to study the nonlinear dynamics of the systems
and employed by MTU Aero Engines to analyze bladed disk models with periodic
excitations, including aeroelastic effects. It can count on up-to-date mathematical
and numerical methods specifically applied to study the dynamics of bladed disks
FE models that commercial software doesn’t possess yet; for instance, OrAgL can
solve the periodic oscillations of a nonlinear problem with frictional joints in the
frequency domain by exploiting the Dynamic Lagrangian method instead of Penalty
Methods to model the contact interactions. Moreover, another advantage is the
imposition of contact conditions at the cyclic symmetric boundaries. Regarding
the simulation setting, the software requires the FE mesh of a sector and the
static matrixes obtained with a static analysis with a different FEA software (i.e.
CalculiX); the problem is then solved by using cyclic symmetry and applying ROM



techniques. The ROOCMAN tool allows adding mistuning either statistically or
deterministically to a cyclic symmetric model through specific mistuning parame-
ters. However, the geometrical mistuning requires adding different substructures
(FE meshes) into the model, later individually reduced through a ROM technique
(i.e. Craig-Bampton). The secondary ROM may also be applied to the whole
wheel, further reducing the number of DOFs associated with the linear modes of
the systems. Solving the mistuning models with contact interactions at shrouds
and fir trees required the resolution of too many nonlinear equations, consequently
leading to unsustainable computational costs, even for a single job. It was possible
to simplify the problem by tying the surfaces at the blade-root joints, thus making
the resolution more feasible. Running simulations of cyclic symmetric models with
analogous contact conditions provided a basis for comparison. Unfortunately, the
results comparison of the free and forced responses with the test rig gathered data
highlighted deep inconsistencies for both the cyclic symmetric and mistuned models.
The reasons are not clear but attributable to a combination of factors, such as the
absence of contact mistuning, design inaccuracies (low Jacobian ratios of elements),
inaccuracies with boundary conditions, inaccuracy with friction contact modelling,
limited application of the contact model to a specific area and absence of microslip.
The presence of holes in the BLS, later filled with original CAD geometry, also
plays a role in the results of the geometrical mistuned model.
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Chapter 1

Introduction

In the aerospace propulsion context, the gas turbine is the engine capable of
providing high trust and power for both short and long-range missions in the
lowest concentric layers of the atmosphere - troposphere and low stratosphere.
An illustrative picture in Figure 1.2 shows a specific typology of a gas turbine -
High-bypass turbofan - used in aerospace propulsion.

In general, the axial turbine rotor wheel is a conventional bladed disk, in which
the sector consists of two different solids that go into contact in the contact area at
the dovetail during the operating conditions due to the centrifugal load. Turbine
wheels show the presence of the "shroud" at the tip of each blade, which interfaces of
adjacent sectors come into contact with each other directly during the assembling;
the shroud’s function is mainly structural integrity, aerodynamic efficiency, thermal
management and tip clearance control to improve overall stability, reliability and
efficiency. An illustrative picture of the single sector is provided in Fig. 1.1.

Although the shroud provides a significant function to the turbine, it also adds
nonlinearities to the problem due to slip and separation (or partial separation)
behaviour that further increases wear and influences the overall system’s vibrational
characteristic.

Disk dynamics is a field of structural mechanics that dates back decades that
researchers kept investigating to understand the vibrational behaviour of such
rotating systems comprehensively. The ultimate purpose is to optimize the actual
models, reducing the costs and environmental impact. Mistuning and nonlinearities
are the two main characteristics that complicate the dynamic, and prediction
techniques and modelling are still an open topic. The introduction of the finite
element (FE) method by a geometry discretization, specific resolution methods
for the equations of motion and the availability of numerical techniques have
led to the development of FEA software to compute the static and dynamic
problem of such systems. Over the years, with the advancement of research, these
techniques have been updated along with the introduction of reduced-order methods.
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Introduction

Figure 1.1: Illustration of a CAD of the turbine sector

Despite the increase in computational power, today, we are not able to predict
totally and accurately the dynamic of large-complicated models yet; mistuning
and nonlinearities both have an impact in that sense. Mistuning is caused by the
geometrical-inevitable differences within the bladed disk and affects the system’s
dynamic as long as its fatigue life. The inability to study complete-wheel models
has pushed the researchers to develop specific deterministic and statistic mistuning
methods along with ROM techniques with the objective of predicting the actual
dynamic of mistuned disks. The presence of nonlinearities also has a primary impact
on the dynamics of such systems, and the research is still trying to completely
understand how to model the nonlinear behaviour along with numerical techniques;
this is especially true for friction nonlinearities due to mechanical friction joints.

1.1 An historical gaze
The purpose of the following brief historical review is not to exclude any notorious
published research article but rather to cite some of the historic leading research
publications about the disk dynamic, ROM methods, mistuning and friction non-
linearities, which are relevant for the investigation of this thesis. Each publication
contains its bibliography, which can extend the cited articles herein.

1.1.1 Mistuning
It has been over 50 years since the first research articles regarding mistuning inves-
tigations. The first mistuning effects were registered in experimental investigations
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Figure 1.2: Illustration of High-bypass turbofan engine

on disks: registered amplitude resonant values higher than theoretically expected
and response localization on a few blades, affecting fatigue life. The first analyses
on mathematical models focused on the free and forced response of the system
and highlighted the presence of a "splitting effect" or "dual modes" along with
resonant amplitudes increases from 20 to 40 percent higher than the analogue
tuned system. Among these studies, we can cite Tobias and Arnold[1], Whitehead
[2], and Dye and Henry [3]. At that time, a direct mathematical tool wasn’t
available to analyze periodic structures as the one published by Thomas in 1979
[4]; however, Cambpell’s studies published in 1924 provided some analytical tools
to investigate the dynamics of stationary disks loaded with a stationary axial force.
Tobias and Arnold found that the introduction of balanced imperfection can lead
to the so-called splitting effect due to the natural frequencies separation associated
with "k" nodal diameters, converting part of the vibration into two separate modes.
Whitehead [2] and Dye and Henry [3] highlighted the maximum resonant amplitude
increase along with the improvement of intentional mistuning on the aeroelastic
flutter.

Following, Ewins et al. [5, 6, 7, 8, 9] investigated the effects on the system’s
forced response further, and finding that specific mistuning patterns and balance
were relevant in defining the worst-case scenarios. Furthermore, specific conditions
in the "resonance coincidence" could have originated, where two different modes
can experience a very close "critical speed", aggravating the maximum amplitude
value on a few blades, called "rogue" blades, and hence their fatigue life, leading to
premature failure. Further analytical and experimental investigations highlighting
the mistuning problem were carried out by Strange, Macbain, Jay, Burns, and
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Whaley [10, 11, 12, 13] in the following years. The forced excitation on the disk is
caused by the presence of stator vanes, struts, bleed manifold, rotating stall and
inlet configurations, and a Fourier analysis of these distortions helps subdivide the
excitation source through integer indexes. A specific exciting frequency harmonic
component is defined by the product of this index "eo" (engine order) and the
rotational speed, and its intersection with the natural frequency of a tuned disk
causes the resonant excitation. A disk with Ns blades can theoretically respond to
an excitation with an eo harmonic component as a function of the sum or difference
in multiples of Ns and eo. This excitation mechanism was verified by Jay, MacBain
and Burns [11] on integrally bladed disks experimentally.

Although some investigations reported beneficial effects of flutter [14, 15, 16, 17],
still confusion and diffuse contradictions were permeating the researchers of that
time about how much mistuning could negatively influence the maximum resonant
amplitudes on some blades on stationary free and excited bladed disk assemblies,
thus worsening fatigue life. Among the studies [2, 18, 3, 5, 7, 19, 20, 21, 22], the
comparison of the results yielded conflicting conclusions likely due to different
models and parameter values used on those models. Wei and Pierre underlined
this aspect in their two published articles [23, 24]. In their investigation, they refer
to the study of Hodges and Woodhouse [25] concerning the influence of coupling
on the forced response of a chain of oscillators and more complicated systems.
They concluded that the ratio of mistuning to internal coupling strength firmly
affects the sensitivity to small mistuning of the vibration modes. By studying
the free response of the system, the weak coupling was associated with severe
localization and eigenvalue loci veering, while strong coupling was associated with
low sensitivity. On the other hand, in the forced response of the system, the strong
coupling resulted in new peaks, some with amplitudes comparable to that of the
tuned system and some smaller; weak coupling also showed new peaks, some with
much higher amplitude magnitudes than the tuned values. Furthermore, in the
case of very weak coupling, if the engine order of excitation doesn’t influence the
magnitude of the resonant peak, then the maximum amplitude is registered at
the blade with the lowest natural frequency; if the engine order and the resonant
peak vary together, then the maximum amplitudes are at natural frequencies
corresponding to these peaks. In the case of strong coupling, the largest amplitude
varies with the engine order of excitation and the mistuning distribution, albeit
the magnitudes are comparable among the blades.

A different approach has been pursued to assess the effect of mistuning; it’s the
case of the material anisotropy orientation (Koscso et al. [26, 27, 28]).
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1.1.2 Cyclic symmetry and ROMs

In 1979, Thomas [4] proposed a technique to study the eigenvalue problem of
rotationally periodic structures without introducing any additional approximations
and applying it to only one substructure. Knowing that with every natural
frequency, there is a pair of orthogonal mode shapes (eigenvectors), He discovered
that the linear combination of these two eigenvectors into a complex vector was
still a solution of the equations of motion and represented a rotating normal mode.
Substantially, the deflection amplitude of each substructure was related to each
other by a constant phase difference. The imposition of these "cyclic boundaries" led
to the introduction of the "harmonic index" (or nodal diameter) into the formulation
for the definition of the dominant spatial modeshape and the "interphase blade
angle", which also depend on the total number of system’s cyclic sectors. Although
the harmonic index has a more general mathematical meaning, it has a more
pragmatic definition in the context of structural dynamics since it is associated
with the number of nodal diameters of the structure. The introduction of complex
algebra turned out to be a firm tool that gave the opportunity to study more
complicated bladed-disk models with a higher number of DOFs by simplifying the
analysis to a single substructure and with less computational effort. The need to
study more geometrically complicated models (FE models) with a higher number of
DOFs and to model statistical mistuning patterns by using Monte Carlo simulations
to predict the statistics of the forced response pushed the research into developing
the so-called ROMs (Reduced Order Methods). These analytical methods reduce
the problem to a different order less with respect to the original one, allowing
to focus the study on only a specific number of modes. One of the first articles
focusing on mass and stiffness matrix reduction was published by Guyan [29] in 1965:
static condensation. Two of the first research papers concerning component modes
methods were published in 1965 by Hurty [30] and in 1968 by Craig and Bampton
[31]. They provided a way to treat a complex structure by assembling different
substructures. Hurty developed a method where the structure is subdivided into
different interconnected components, and displacements are expressed in generalized
coordinates, defined by displacement modes. There are three different mode types:
rigid-body, constraints and normal modes. Equations of compatibility connect
the components and are essential to operate a transformation from component
coordinates to system coordinates, where the system’s equations of motion are
solved. Craig and Bampton developed a method that serves as a generalization
of Hurty’s. It exploits the mass and stiffness matrices of the substructures and
geometrical compatibility conditions at the substructure boundaries and employs
two types of generalized coordinates: constraint modes and normal modes. The
formers are produced by unit displacement on each constraint (indeterminate-
redundant constraints) singularly, keeping all other constraints fixed and all internal
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degrees of freedom unconstrained. The latter modes describe the motion of the
internal degrees of freedom with fixed boundaries, that is, the normal modes of free
vibrations of the substructure with all boundary DOFs fixed. The set of geometrical
compatibility equations is subtracted from the total number of the substructure
boundary DOFs to define the actual number of boundary generalized coordinates.
The CMS (Component Mode Synthesis) procedure is used to condense the number
of modes of the substructure while maintaining the accuracy of the description
of the dynamic behaviour. This method is a powerful tool to solve FE high-DOF
problems by making the resolution more feasible. Although the benefits, back then,
the computational power to solve complex matrix operations involving such systems
wasn’t available, and the research kept investigating simple problems modelled
with a lumped-mass formulation and focusing only on the interested modes. Other
research articles in which component mode substitution is employed are those
published by Benfield and Hruda [32], Goldman [33], Hou [34], and Bajan and Feng
[35]. Benfield and Hruda proposed a method suitable for structures with very high
numbers of interface coordinates, such as finite-element shell models. Goldman
and Hou proposed methods that use free-free component modes, while Bajan and
Feng presented a similar approach to Hurty’s.

A valuable method to compute the free vibrations of an arbitrary structure by
using Lagrange’s equations and Lagrange Multipliers was presented by Dowell [36]

1.1.3 ROMs and mistuning
Due to the mistuning issues, the research developed analytical methods to solve
reduced mistuned problems to predict the system’s free and forced response de-
terministically and statistically (Monte Carlo method). Among the authors there
are Castainer, Ottarson, Pierre, Bladh, Yang, Griffin, Feiner, Lim [37, 38, 39, 40,
41, 42, 43, 44]. In these studies, the previously presented ROM techniques are
adapted and updated by combining the power of the DOFs reduction and the
application of cyclic symmetric boundaries. In their proposal, Ottarson, Castainer
and Pierre [38, 39] provided a component-mode approach where the blade elastic
motion is described by the modeshapes of a blade fixed at the disk-blade interface.
The method uses cyclic symmetry to study only one sector, and the formulation
puts in evidence the modal stiffness parameter, which can be varied to model
mistuning. It focuses on a broad reduction of DOFs by eliminating constraint
modes, differently from other methods, which slightly affect accuracy, albeit more
suitable for extensive Monte Carlo simulations. In 1996, their ROM technique
was validated by Kruse and Pierre [45, 46] with an unshrouded bladed disk. A
subsequent effort was carried out by Bladh, Castanier and Pierre in 1999 [40] with
a shrouded turbomachinery rotor.

In 1997, Yang and Griffin [47, 48] carried out two different investigations. In
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the first one, they propose a reduction order method, LMCC, that assumes rigid
body movements at the blade-disk interface so that the blade modes end up being
a combination of the disk modes and the blade bases modes. It yields a sufficient
accuracy close to the one of an FE model and the computational efficiency of a
lumped mass-spring model. In the second article, they investigate the phenomenon
of the modal interaction caused by the closeness of natural frequencies, modeshapes
and the magnitude and distribution of the perturbation. They employed a first-
order perturbation theory, which showed that changes in natural frequencies and
modeshapes are kept small with small perturbations. The statistical approach
yielded the standard deviation in the interaction between two modes dependent on
the closeness of the eigenfrequencies and the structural properties corresponding
to the modes in question. If the nominal structure shows closely spaced natural
frequencies, even a perturbed structure will have the same feature in the same
frequency range. The closely spaced modes of the altered system can be represented
as a sum of the closely-spaced nominal modes. This approximation is a reduction
of the problem where the number of DOFs is equal to the number of closely-spaced
modes and is at the basis of the reduction-order method SNM (Subset of Nominal
Modes) proposed by Yang and Griffin in 2001 [41].

Feiner and Griffin [49], from the SNM method, developed a reduction-order tech-
nique, FMM (fundamental mistuning model), for mistuned bladed disk vibrations
to represent the response of an actual turbine model when only a single mode family
is excited. It is an SNM simplification since only a single family of the nominal
modes is used for the representation, which needs only two sets of parameters
to predict the system’s mistuned modes and natural frequencies: tuned natural
frequencies and deviations of the individual blade frequencies from the tuned value.
The tuned natural frequencies can be calculated by finite element analysis (FEA)
without requiring the system’s modeshapes and stiffness matrix: it is simple with
a computational cost similar to a mass-spring model. In the following studies
[42, 43], Feiner and Griffin investigate a new method of mistuning identification
through the measurements of the IBR’s vibration response 1. Based on the FMM
reduction technique to represent the vibrational response of an isolated family
of modes, they developed two types of identification methods, one more simple
and one more advanced, that require neither the mass nor the stiffness matrices,
making the calculation advantageous. The first FMM ID receives the tuned-system
natural frequencies as input and, based on the measurements of a given number of
mistuned modes and frequencies, yields the mistuned frequencies of each sector.
The second FMM ID requires some measurements of the mistuned modes and

1IBR stands for Integrally Bladed Rotors in which the blades and disk are a unique solid.
IBRs are typically used for compressors and don’t present any shroud for intercoupling between
sectors
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frequencies and yields all the parameters in the FMM, such as the tuned and
mistuned frequencies of each sector. In the second case, the mistuned frequencies
are measured experimentally without requiring a finite element model.

Bladh, Castanier and Pierre developed some techniques in the group of CMS
methods. Starting in 1999 [40], they presented a ROM that employs component
modes calculated from a FE model of a rotor. The reduced problem is two or three
orders of magnitude smaller than the original one, allowing the statistical prediction
of the forced response of a mistuned system by using Monte Carlo simulations.
Their method is an extension of Castanier’s [38, 39] proposed in 1994 and then 1997,
and validated by Kruse and Pierre [45, 46], to a shrouded assembly. It is based
on a mistuned natural-frequency projection of individual blades onto the cyclic
modes of the shrouded blade assembly. In 2001, with the following publications
[50, 51], the Craig-Bampton method was revised and reformulated specifically
for mistuned bladed disks, using a cyclic disk description. A secondary modal
analysis reduction technique (SMART) is applied based on CB, further reducing
the problem and improving efficiency and accuracy. Furthermore, they proposed a
non-CMS method where the blade mistuning is projected onto the tuned system
modes as a generalization of the method proposed in [40], and similar to Yang
and Griffin’s proposal [41]. In the SMART two-step reduction, the mistuning is
introduced in the modal domain, making the computations more efficient. In 2003,
Lim, Bladh, Castanier and Pierre [44] proposed a general reduced-order model for
a mistuned system. The mistuning is modelled with mass and stiffness deviations
from the tuned case, specifically of the interface DOFs. The general formulation
allows the implementation of both small and large mistuning, taking the distance
from previous ROM techniques. The specific application to small mistuning of the
general formulation produced the so-called ROM model CMM (Component mode
mistuning). In this approach, the mistuning projection developed by Bladh [40] is
further generalized, and the mistuning is not projected to the normal modes of a
cantilever beam differently from their previous studies. On the contrary, the modal
participation factors of the cantilever blade normal modes are used to describe the
tuned-system normal modes, and the mistuning projection to the cantilever blade
normal modes doesn’t require a component-based representation of the complete
system.

All the presented mistuning techniques and identification methods employ reduc-
tion order models to make the computation of the problem feasible. In the past, the
computational power wasn’t sufficient to study FE models by implementing single
substructures and simulating geometrical mistuning; consequently, the researchers
developed models to study the free and forced response of the mistuned system by
variating some modal parameters, from mass and stiffness to the eigenfrequencies,
focusing only on the interested modes. Identification of mistuning parameters is
essential so that the following investigation and simulation can yield accurate and
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satisfactory results. Most of the proposed techniques are developed for IBDs due to
the difficulties in identifying the mistuning parameters, as opposed to blade-to-blade
differences typical in mistuning identification in conventional bladed disks.

One of the first papers regarding mistuning identification was published by Griffin
and Hoosach [21] in 1984. They incorporated a hybrid deterministic-statistical
method to generate statistical results with the purpose of calculating the individual
blade response of a conventional bladed disk; the structural parameters were selected
from a random sampling of a given population. In their investigation, they came
across a numerical problem called ill-conditioning, typical of mistuning problems2

which is still an issue that can be encountered with nowadays software. Two primary
aspects resulted from the investigation are the tendency to have large-amplitude
vibrations of those blades whose "blade alone" frequencies are closer to the system’s
tuned resonant frequency and the adverse effect of mistuning on the fatigue life of
those blades. These results highlighted that the worst mistuning scenario is not
always the one with the maximum stress.

Mignolet and Lin [52] based their investigation on the previous study, underlin-
ing the need for structural identification techniques to provide estimation of the
tuned values of the structural parameters and their statistical distribution. They
focused on the parameter identification of a structural model, a lumped model with
stiffnesses and dampers interconnecting adjacent blades and blade and disk, using
the least square method and the maximum likelihood approach. They concluded
that the mixed least square - maximum likelihood technique provided the most
accurate system parameters, also based on the assumption that damping between
adjacent blades could be set to zero for the negligible effect on the forced response
of the system and for the difficulty of estimating that value.

In 2001, following mistuning identification, Mignolet, Rivas-Guerra and Delor
published a two-part investigation with a statistical mistuning identification ap-
proach [53, 54]. They tried to overcome the problems observed in [52] concerning
the need to have measurements of the forced response of the bladed disk, which
is time-demanding and expensive. The publication underlines the need to have a
methodology at our disposal that yields the mistuning properties of the blades from
the blade-alone free response data of the system. The new method required the
registration of the lowest natural frequencies experimentally by identifying them
with two different approaches: the imposition of as many constraints as needed to
obtain a unique solution to the problem by setting modeshapes and modal masses
to the tuned values and by varying the modal stiffness of each blade to match the
experimental values, or the exploitation of the maximum likelihood principle to

2In computational mathematics it refers to a problem with high sensitivity to small changes
in input data, leading to high variations in the output and numerical errors
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obtain the structural parameters through a specified cost function minimization.
Although the proposed methods cannot provide the blade-to-blade interaction
effects similarly for the test rig results, they can yield a close approximation of the
dynamic forced response characteristic of the structural model. The first approach,
the random modal stiffnesses (RMS) approach, resulted in a variable accuracy due
to the high sensitivity to blade-to-blade coupling, excitation characteristics, etc.
The insufficient reliability was caused by the inability to predict contemporarily
both the blade-alone and the entire bladed disk modal characteristic. On the
other hand, the second strategy, the maximum likelihood estimation strategy (ML),
exploits a statistically simple Gaussian distribution of the structural parameters
and an identification by minimizing a quadratic function; it turned out to have
higher reliability than the previous RMS method. A more thorough analysis of the
ML approach is carried out in [54] where the accuracy of the improved random
modal stiffness (IRMS) technique, obtained by bridging the RMS and ML methods,
was also assessed. With the studies of Lim and Kashangaki [55] in 1994 and
Lim [56] in 1995, a damage detection method for health monitoring based on the
best achievable eigenvector concept is investigated. While in the first study, the
assessment of the magnitude of damage is performed by using an efficient least
square solution, along with a modal strain energy (MSE) pre-detection technique, in
the second study, the magnitude of the damage is identified through a constrained
eigenstructure assignment.

In 2001, Pichot et al. [57] compare different identification methods for mis-
tuned parameters of blisks and concluded that the previous Lim method of the
best achievable eigenvector was the best to solve the studied problem. In 2006,
Pichot et al. [58] presented a mistuning identification method based on the best
achievable eigenvectors technique. In 2007, Laxade et al. [59] proposed a mis-
tuning identification technique to obtain the mistuning properties of blisks. It is
based on an updated reduced order model in the CMS method, which receives the
experimentally measured system modes as input.

In 2009, Judge et al. [60] presented two methods of mistuning identification
using measurements of the vibration response of blisks. In the first method, the
measurements are gathered from the free response of the system; in the second one,
from the steady-state forced response, making it more suited for problems with
high modal density or high damping, where resonant peaks overlap and merge,
thus causing difficulties in isolating the normal modes.
A way to mistune the eigenfrequencies of the structure is impact mistuning: the
mistuners, small masses placed at specific blade locations, can affect the eigenfre-
quencies through impulses or impacts. The energy dissipation is not much to cause
high dissipation as for friction-impact dampers, but enough to reduce the vibration
amplitude at resonance. An example is provided in [61].
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1.1.4 Nonlinearities and mistuning

The inclusion of nonlinearities points to simulate the actual characteristics of the
vibrational systems but, unfortunately, introduces further complications. These
nonlinearities consist of nonlinear kinematic relations due to large deformations,
nonlinear mathematical behaviour such as hyper-elasticity or plasticity, and non-
linear boundary conditions with frictional or unilateral contact interactions. The
frictional nonlinearities are introduced as a damping mechanism through contact
interfaces but also by adding mechanical dampers [62, 63, 64, 65, 66].

In 2011, a coupled static-dynamic HBM [66] was proposed to investigate the
influence of UPDs on the force response of the system. With this approach, the
static and dynamic balance equations are coupled with no need for preliminary
calculation of the normal preload acting on the damper sides. Similarly, in [67],
the same model had been used for the dynamic analysis of a shrouded bladed disk.
In 2012, the contact model developed in [68] was revisioned by Zucca, Firrone and
Gola in [69] and applied to the blade-root contact joint for a steady-state dynamic
response analysis. The resolution method is based on a coupled approach of the
system’s static and dynamic balance equations without the need for preliminary
static analysis to compute the contact static normal loads. Microslip is also
accounted for. In [70], an extension to MHBM of the "coupled approached" applied
to a lumped parameter model is provided, by which the static and dynamic analysis
is not to be calculated separately anymore, thus saving computational effort and
providing the uniqueness of the solution, firstly presented in [71], and applied to a
problem with HBM in [66, 72]. A reference with Direct Time Integration DTI is
used for comparison.

The coupled approach tries to reach two objectives: reducing the computational
effort and improving the alignment between the static and dynamic analysis.

The Harmonic Balance Method (HBM) is not a new technique to solve the
steady-state dynamic of systems in the frequency domain commonly used due to
its computational time efficiency with respect to Direct Time Integration (DTI) of
the equations of motion, which is inevitable for transient studies. The HBM theory
applied to nonlinear vibrating systems is gathered in an article [73] presented by
Krack and Gross.

Several methods describe the contact nonlinearities; among them are penalty
methods in which the normal contact stiffness exhibits as a penalty parameter
to define penetration constraints. Some examples are the following publications
[65, 74, 75]. Another technique is to use a Dynamic Lagrangian frequency-time
algorithm (DLFT) in which Coulomb’s law is introduced into the equations; it is
an evolution of the pioneered Alternating Frequency-Time scheme [76].

As long as the problem is linear and friction nonlinearities are absent, the Craig-
Bampton method (or others) is efficient and accurate in reducing the problem,
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where an OPS (Orthogonal Polynomial Series) [77] can also be exploited to reduce
the linear interface DOFs further. Unfortunately, CB doesn’t treat nonlinear
interfaces, which results in a high computational demand if friction contacts are
included.

In the context of ROM applied to systems with friction nonlinearities, we can
count on several recent publications that propose or update techniques to reduce
the computational effort associated with a high number of nonlinear equations.
The equations of motion are solved in the frequency domain with HBM or MHMB,
where an AFT scheme is employed to calculate the Fourier Coefficients of the
nonlinear contact forces. Two approaches have been proposed to address local
nonlinearities, such as intermittent contacts of cracked structures, and to solve
the nonlinear problem by applying a reduction method. The first [78] proposes a
standard CMS to reduce the internal DOFs of the problem and a bi-linear modal
representation by using bi-linear modes (BLM) to reduce the DOFs number at
the (nonlinear)intermittent contacts. The second approach [79] proposes a new
reduced-order model method for the forced response of structures with intermittent
contacts. It is grounded on the assumption of a so-called spatial correlation where
the system dynamic is dominated by the opened or sliding system modes concerning
the intermittent contact. In 2016, in [80], Mitra et al. presented a set of reduction
basis functions to reduce the DOFs at the interfaces where contact nonlinearities
are present. It employs the so-called adaptive microslip projection (AMP) applied
to the contact DOFs at the shrouds of a blisk model.

In a following study [81], Gastaldi et al. investigate a different way to address
the reduction of the internal and nonlinear interface DOFs; the method, Jacobian
Projection, is based on the Jacobian of partial derivatives of the contact forces
with respect to nodal displacements. In 2019, with [82], an upgrade of the Dual-
formulation method based on the dual Craig-Bampton is presented.

In [83, 84, 85, 86] the mistuning is added into the picture. In [83], a hybrid
approach of two techniques is developed: Mistuned-Dual-Formulation (M-Dual).
Specifically, it combines the CMM and Dual-model order reduction techniques. The
latter is a free-interface-based CMS with free-interface normal modes and residual
flexibility attachment modes of mistuned bladed disks. The method is ideal for
bladed disks with small blade-to-blade mistuning where frictional contacts (such as
in shrouds) are present. A different approach is developed in [84], still applicable
to nonlinear vibration analysis of mistuned bladed disks with shrouds with a
linear reduction based on a CB method and a modal synthesis based on loaded
interface (LI) modeshapes. This technique doesn’t need a secondary reduction,
making it advantageous. The blade frequency mistuning is inserted directly into
the reduced model. In [86], an RCCMS-based ROM (relative cycling component
mode synthesis) is developed to study the nonlinear dynamics of a mistuned bladed
disk with blade-root friction joints. The SNM method introduces blade or sector
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frequency mistuning into the linear partition of the RCCMS ROM. The reduction
basis is also invariant with respect to the random mistuning patterns. In [85], the
study switches towards IBD (or blisks) with UPDs where mistuning is identified
using FMM ID.

1.1.5 Fretting wear and test rig data
The presence of frictional joints, such as in blade-disk roots and shrouds, but
also with frictional UPDs or ring dampers, causes energy dissipation and wear.
Specifically, HCF causes fretting wear, and the changing of the surface conditions
deeply affects the system’s dynamic: changes in the contact areas, variation in
the preload distribution, and variation in the contact stiffness. For these reasons,
the research has focused on the study of the effect of fretting wear on the free
and forced response dynamics (frequency, vibration amplitudes and damping) of
such systems by developing novel test rig solutions [87]. The engine doesn’t always
work in a steady-state condition but has a wide frequency variability; this aspect
can influence the wear evolution and has been the topic of investigations where
methods are proposed to model and predict the effect of wear on the nonlinear
response of the system [88]. The main objective of the nonlinear FEA simulations
is to obtain accurate results of the forced response of the system within the
interested frequency range. The accuracy of these simulations also relies on the
input data they receive. Due to the not thorough understanding of the friction
mechanism between the vibrating contact interfaces, the reliability of the results
also depends on extracted data and for this reason, a comparison of data extracted
(i.e. contact parameters [89]) from different test rig set-ups might be necessary. The
Coulomb’s law determines when the contact is slipping or sticking. The intrinsic
uncertainty associated with the static friction forces during sticking conditions,
due to the infinite possible values the tangential forces can assume within the
range, is considered one of the main uncertainties, causing variability in the forced
response of the system during partial slipping. Therefore, tools able to predict this
variability with respect to the contact parameters and misalignments are the focus
of some investigations [90].

To conclude, extensive research has been carried out over the years to include
nonlinearities in bladed disk problems, and the documentation is immense. Thanks
to the researchers, all the knowledge is periodically gathered into books and articles
at our disposal. Among them, we can cite one of the first masterpieces [91]. Others
include [92, 93, 94, 95, 73], which cover nonlinear elasticity, the theory of Finite
Elements with the inclusion of nonlinearities, nonlinear dynamics and chaos, and
HBM applied to nonlinear FEA problems.

An important article covering nonlinear normal modes was published by Kershen
et al. [96]. It gives a perspective of the effect of a nonlinear cubic spring on
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the nonlinear dynamic of a two-DOF oscillator. In the study, the nonlinear
mode-frequency dependence is the causing factor of the energy transfer between
separate modes. Although it gives a general illustration of possible nonlinear effects
in nonlinear systems, the problem represents a simplification. The absence of
friction nonlinearities makes the system conservative, and the nonlinear modes can
be defined according to Rosemberg’s definition. However, friction nonlinearities
introduce energy dissipation, making the system nonconservative, and, in this case,
the nonlinear modes cannot be called nonlinear normal modes since they lose the
orthogonality properties. In special cases, nonconservative systems can be treated
similarly by introducing negative damping (Krack [97]).

Among publications concerning nonlinear validation of bladed disk vibrations
with mechanical friction joints, we can cite [98, 99].

1.1.6 Objective
In this thesis, I present a tentative to reproduce the test rig results of a bladed disk
rotor with friction joints both at the fir tree (blade-root joint) and at the shroud
(blate-to-blade joint) with an FEA software: OrAgl-NOSTIA-ROCMAN. The only
form of damping present in the model is aerodynamic damping for the only reason
to have the worst possible conditions of periodically excited steady-state vibrations
and to investigate the double influence of mistuning and frictional nonlinearities
in the system’s dynamics. This work will present one of the first efforts to study
the dynamics of a geometrically mistuned bladed disk model and, simultaneously,
the computational feasibility of the today-HPC (High-Performance Computing)
computers. To summarise, the objectives are subdivided as follows:

• Validation of simulation results carried out with software OrAgl-NOSTIA-
ROC;

• Investigate the dual effect of mistuning and frictional contacts in the dynamics
of the problems;

• Highlight numerical challenges and uncertainties in the parameter selection
and hypothesis.

Three different models are prepared and simulated using CalculiX and OrAgL-
NOSTIA-ROCMAN for preprocessing, solving the problem and postprocessing.
Hypermesh is also used for its preprocessing features. In particular:

• Cyclic symmetric model;

• Modal Stiffness mistuned model;

• Geometrical mistuned model.
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Being one of the most efficient ROMs to handle large FE conventional bladed
disk models by balancing accuracy and computational efficiency and the ability
to capture the blade-disk interactions, the CB method is employed. For the
mistuned models, it is applied to each substructure and after assembling the wheel
as secondary ROM.

Regarding the numerical side, a Newton-Like procedure and the Harmonic
Balance Method, HBM, are employed to solve the nonlinear dynamic problem in
the frequency domain. The nonlinear steady-state forced vibrations of a problem
with frictional mechanical joints in the frequency domain require the nonlinear
contact forces Fourier Coefficients to express a steady hysteretic cycle condition.
For this reason, the AFT scheme computes the contact forces in the time domain
as long as the values reach the steady-state hysteretic cycle, and then they are
transformed back to the frequency domain by means of the Fourier transform.
In the contact interaction treatment, a Dynamic Lagrangian formulation with
Lagrange multipliers is employed over conventional penalty methods. All the
numerical functionalities and algorithms are programmed in the software OrAgL-
NOSTIA-ROOCMAN, which will be exploited to compute the nonlinear solutions
in the frequency domain.
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Chapter 2

Description of the problem

At the basis of the FEA analysis is the resolution of the equations of motion,
included in all FEA software, which will try to solve the linear or nonlinear problem
through the solver.

In the appendix A, the problem is described from a mathematical point of view
with the purpose of illustration, thus avoiding rigorous mathematical formalism.
The cited publications concern the matter more deeply, and the readers can deepen
their knowledge of the subject.

The reader is informed that the description is the result of the combination
of the theory gathered from different sources [100], [4], [97], [101], [76] and [73].
The publications about the covered topics are way broader, but the concepts are
reviewed in the cited articles and documentation. Specific citations will further be
provided when needed.

The reader is advised to consult the appendix A to gather basic knowledge of
the topic.

Reference Model

Figure 2.1 shows an illustrative image of the CAD turbine rotor. Typical classical
bladed disks present both intra-sector and inter-sector joints. The former are
frictional joints generally coupling the blades with the disk, whereas the latter is a
blade-to-blade frictional coupling through the shrouds. Other forms of friction can
be dampers, but they won’t be discussed any further here. Differently, integrally
bladed disks (or blisks) don’t present intra-sector coupling, and the blades and the
disk are a single solid.

The disk is a single block, but imagine dividing it into identical sectors equal to
the number of blades. Each combination of a blade and a disk sector is a blade-disk
sector, independent of the presence of intra-sector joints. A structure with identical
sectors is rotationally periodic.
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Figure 2.1: CAD of the bladed disk

It is important to define the assumptions that simplify the resolution of the
mathematical problem:

• No mechanical contact between the bladed disk (rotating) and the casing
(fixed component);

• No coupling between stages;

• No rotor-dynamic effects: the dynamics of the bladed disk can influence the
shaft dynamics, and vice versa [97].

• No flutter.

• Presence of a synchronous aerodynamic load;

• No vibration mechanism such as vortex shedding and rotating instabilities;
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• No Coriolis Forces;

• No structural dampers (i.e. underpflatform dampers or else);

• No Spin softening 1;

• No stress stiffening 2

• No Contact mistuning;

• No Specific impact laws. Some impact effects can result intrinsically from the
FEA contact boundaries.

The synchronous aerodynamical excitation generates from a circumferentially
inhomogeneous pressure distribution that immerses the rotating bladed disk. Two
main factors cause these inhomogeneities: the interaction with the previous blade
row (nozzle-passing excitations) and the non-uniform inflow condition due to
asymmetries in the flow path (i.e. struts or casing ovality). In the test rig, the
synchronous aerodynamic excitation may be achieved by directing a controlled
airflow directly to the blades. A rotor works within a specific frequency range, and
the speed is generally variable. Depending on the purpose of the study, it may be
helpful to simplify the problem and assume a constant speed. In this condition,
the rotation is steady, and the rotor is time-invariant in its non-rotating reference
system with respect to the pressure distribution. With such a simplification, the
vibrations assume a travelling waveform. This discovery dates back to the studies
of Thomas [4] on disks; the assumptions lead to the definition of the so-called
"cyclic symmetry" hypothesis in which each sector is equal to the other in geometry,
material and load, thus allowing the exploitation of a "travelling-wave coordinate
system" used to represent the vibrations of the system, where the "nodal diameter"
concept assumes a fundamental meaning to identify the spatial frequency character
of the vibrational mode. It is important that also the excitation force has a
travelling-wave character (synchronous excitation), allowing the expression of the
aerodynamic loading in terms of multiple integers of the rotational frequency
(engine order). It is demonstratable that the excited mode necessarily has a nodal
diameter equal to the engine order of the excitation. The resonance conditions are
pinpointable in the Campbell diagram in honour of the first person to study the
phenomenon.

1It refers to the static deflections associated with a variable centrifugal load
2It is a geometric stiffening occurring in a structure with axial loads or pre-tension forces. The

axial forces of a tension or compression state can induce internal stresses, altering the stiffness
characteristics of the structure
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The synchronous excitation is not the only external source of vibrations. The
flutter is another aeroelastic phenomenon that originates due to unstable inter-
actions between the airflow within a blade row and the blade (cascade effect),
causing further vibrations. It is a self-exciting mechanism whereby blades gather
energy from the unsteady flow. In our problem, we will consider only synchronous
excitations.

The Coriolis Forces have a different nature and don’t originate from an external
exciting source. They generally depend on the level of compliance between blade
and disk and the rotational speed; they are tangential, originating when a not-small
component in the radial direction is present. In our problem they are assumed
equal to zero.

Campbell diagram

The Campbell diagram is a diagram that represents the system’s response spectrum
as a function of the oscillation regime. It showcases the system’s eigenfrequency
dependence of the rotational speed Ωrot. Considering the steady-state vibration
study with a synchronous external excitation, the system’s excited mode is identifi-
able by the intersection of the eigenfrequency curve and the straight line starting
from the origin with a slope depending on the engine order of the excitation. The
Campbell diagram of the actual engine turbine rotor in Figure 2.4 showcases the
simultaneous excitation of mode 1 with nodal diameter 6 (M1ND6) 3 and mode 2
with nodal diameter 18 (M2ND18). The initial suspicion was that the combination
of mistuning, including contact mistuning, and nonlinearities both played a role
in the registered dynamic of the system. To highlight the phenomenon, MTU
Aero Engines prepared a similar turbine rotor with minimum damping, removing
mechanical joints and leaving non-ideal contact conditions (to exacerbate nonlinear
effects). In the meantime, as an objective of the previous project, The development
of a CAD and an FE model provided the matter to run an FEA simulation and
obtain two different Cambel diagrams of the turbine rotor with a tied contact area.
The diagram in Figure 2.2 showcases the results for stiff contact conditions with the
tied-full contact areas. The diagram in Figure 2.3 showcases soft contact conditions
with a tied-full contact area at the fir tree but by tieng only one node for each
contact interface at the shroud.

The speed sensitivity refers to the rotational speed (and centrifugal load) influ-
ence on the system’s dynamic, particularly the natural frequencies. The variable
stiffness associated with the different static contact conditions affects the natural
frequency dependence on the rotational speed.

3The nodal diameter always refers to the ideal case for a rotational periodic system

20



Description of the problem

Figure 2.2: Campbell Diagram with stiff contact boundary conditions

Although mistuning and nonlinearities both affect the natural frequencies and
the amplitude of the forced responses of the system, they generally have different
effects. Mistuning causes a detuning of the natural frequencies, localization, reso-
nance coincidence, and an increase in the amplitudes of the responses. Nonlinear
systems also manifest a switching of the resonance frequencies, but the effects of
nonlinearities on the force response curve are different. The nonlinear resonances
may present bends, secondary branches, isolated branches and other nonlinear
behaviour caused by the dynamic state transition of the contact interfaces but
also a possible internal resonance. Other possible nonlinear effects manifest as
bifurcation points and superharmonic and subharmonic components. Internal
resonance is one of the nonlinear phenomena investigated in this thesis. The
nonlinear energy transfer between two inherently separated modes is the main
cause of the internal resonance, through which the modes’ nonlinear frequencies
become somehow commensurated due to the nonlinear effects. Nonlinear modes
are susceptible to the change in the systems’ total energy, and friction damping
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Figure 2.3: Campbell Diagram with soft contact boundary conditions

plays a role. In the Campbel diagram in Figure 2.4, the simultaneous excitation of
modes M1ND6 and M2ND18 is the result of an internal resonance of type 3:1 [96]
and for this reason "worth" studying.
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Figure 2.4: Campbell Diagram of an actual engine
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Chapter 3

General procedure to FEA

The Finite Element Analysis is an effective technique to analyze the structural
behaviour of complex geometrical problems, where the computation of analytical
solutions may be too complex or even impossible. These tools create an approxima-
tion of the main continuous structural component using small elements of simple
geometry, making the analysis possible. The number of elements in the mesh
improves the accuracy of the results but also affects the computational effort. It is
important to find the right balance. Different commercial and open-source software
for FEA are available nowadays, each with its interface. Commercial software
tends to be more advanced in terms of type of analysis and preprocessor. But, in
general, the FEA procedure is the same. The procedure is mainly divided into
preprocessing, solving and postprocessing. Each phase groups different steps, as
follows:

1. Preprocessing:

• Geometry Creation/Import: The geometry is created or imported from
CAD software.

• Mesh Generation: The geometry is divided into small elements to create
a mesh.

• Material, structural and thermal property assignment.
• Boundary Conditions: Boundary conditions and constraints are applied

to the structure. (SPCs, MPCs, Tieing conditions, cyclic symmetry
boundaries, contact models and more).

• Load definition: External loads are applied to the model as forces, pres-
sures or thermal loads. More generally, concentrated loads (applied to
points), distributed loads, centrifugal loads, etc.

• Definition of Analysis type (static, dynamic, thermal, and more)
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• Mesh quality check: Bad-quality elements can affect the accuracy of the
calculations.

• Substructures generation;
• ROM definition;
• Input file generation: All the necessary files are printed. Especially if the

solver software is separate from the preprocessor software.

2. Solving: The solver will perform the calculation based on the input files
describing the preprocessing.

3. Postprocessing:

• Results visualization: After the calculation, the result files are printed.
The visualization is performed through software. In this phase, it is
possible to visualize the deformed shape, stresses, etc.

• Extraction of the results: In this phase, the result data are extracted
(maximum stresses, displacements and so on).

• Validation: In this phase, the results are compared with experimental
data or known analytical data to validate the accuracy of the FEA

• Sensitivity Analisis: The sensitivity analysis aims to study how a change
of parameters affects the results or model response.

• Optimization: A change in the model might be necessary to optimize the
results.

The general procedure is similar for every software. When using commercial
software, the interface helps the user select the options. Other software, generally
open-source or industry-developed, might not have an advanced interface, and an
interaction with an input file is necessary.

The interface CalculiX GraphiX is not very advanced and is mainly used to
create the mesh and visualize the results. The command functions are controlled
through the interfaces but also by writing specific keywords in the console (i.e.
Linux console, command prompt in Windows) The rest of the preprocessing is
prepared by writing directly the input file. Specific keywords, parameters and
values are set in this phase.

OrAgL-NOSTIA-ROOCMAN is an FEA software specifically developed for
bladed disk dynamics analysis. The software doesn’t have its interface, but the
user interacts with input files for preprocessing and solving. The postprocessing
produces result files, and the visualization is realized with CalculiX software (or
others). The mesh in the preprocessing is prepared through CalculiX or other
software. The simulation starts by calling the executable file containing the source
code through the console, and the input file is loaded.
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Substructuring in FEA

The concept of substructuring in the context of Finite Element Analysis revolves
around the necessity of breaking down a model into smaller pieces, manageable
substructures. That is extremely useful while dealing with large models, simplifying
the analysis eventually.

The division of the component in substructures serves two purposes: to separate
one or more substructures from the entire model and to apply ROM techniques
to the substructures. In the first case, the model is analyzed independently from
the substructure, allowing parallelization. A second purpose is to apply ROM to
the single substructure to reduce the number of modes involved in the analysis.
Then, assemble each substructure and solve the equation of motion of the reduced
system. That is useful when the number of DOFs in the system is very high, leading
to computational effort. The concept of substructuring stemmed from the first
developed ROM techniques, so ROM and substrutures are intrisically related.

This last principle applies to the FEA of bladed disks. Industry models contain
a very high number of DOFs just for the single sector. When assembling all the
sectors, the number of elements and nodes is so high that a simple static calculation
wouldn’t be possible with the standard RAMs. For this reason, substructuring
and ROM techniques are used extensively to simplify the model and reduce the
computational effort while maintaining a high accuracy compared to the original
model.

In this context, a standard procedure that involves substructuring and ROM
applied to FEA models is the following:

1. Preparation of the Full-Order Model (FOM) (Paternal structure): Geometry
and mesh, node and elements sets, material properties and boundary conditions
must be defined;

2. Division of the paternal structure in smaller structures (substructures);

3. Application of the substructure ROM to the single substructures;

4. Assembly of the reduced substructures;

5. Application of the secondary ROM.

In the context of FEA, the most widely used ROM techniques are the ones that
are part of the set of CMS (Component Mode Synthesis) methods. Tendentially,
the choice falls for the Craig-Bampton method (CB). CB in FEA allows handling
large structures by significantly reducing the number of DOFs while retaining the
accuracy in the representation of their dynamic behaviour. Also, it allows the
flexible inclusion of boundary conditions at the substructures for a more accurate
system response.
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Preparation of the nonlinear coupling constraints and model reduction

After dividing the structural system into substructures, in order to apply ROM, it
is essential to separate coupling and remaining coordinates:

• coupling coordinates: the physical coordinates that characterize the description
of the contact interfaces. Generally, they are retained to produce an accurate
description of the kinematics of the interfaces, as opposed to the interior
coordinated, that are a reduced set of generalized coordinates to approximate
the interior dynamic of the system.

• remaining coordinates: the physical coordinates in the structure’s interior that
are not involved in the deformation of the contact interfaces.

The definition of the coupling coordinates presents two variants: nodal coordi-
nates and relative coordinates [97].

To explain the general feature of ROM techniques, let’s consider a structure
composed of different substructures (blade and disk). Whether the system’s
representation is in the physical coordinate or the travelling-wave system and
defined as nd the number of coordinates in the vector u of the substructure, the
application of Component Mode Synthesis reduction techniques (CMS) leads to
an approximation of the displacement vector in a reduced number of nr vectors of
component modes.

u ≈ T ru (3.1)
The component modes are assembled as columns in the matrix T and the general
coordinates in the vector ru. Since the basis vector in T is not dependent on the
displacement, the approximation is linear and correct as long as the nonlinearities
are local. The approximation will result in an error in the equations of motion.
Generally, this error is made orthogonal with respect to the base vectors. The
reduced equations of motions are:

rM rü(t) + rD ru̇(t) + rK ru(t) + rfc[ru(t)] = rfa(ru, ru̇, rü, t) (3.2)

Defined as A ∈ {M,D,K}, the reduced (projected) matrices are obtained by
multiplying on the left to the Hemirtian of the component modes matrix HT and
on the right to the component modes matrix T: HTAT . The forces are obtained
by left multiplication of the Hemirtian of the component modes matrix: rf

HTf ,
f ∈ {fc, fa}. The problem is hence reduced to a subspace of component modes
and unknown coordinate nr ≪ nd, contributing to saving computational effort.
There are different techniques within the CMS reduction methods that differ from
each other based on the selection of the component modes. The most common to
study bladed disk dynamic is CB or an updated version. It is important to select
a sufficient number of component modes within T , large enough to represent the
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system’s dynamic behaviour with sufficient accuracy but as small as possible to
reduce the model and make it feasible for analysis.
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Chapter 4

Introduction to the tools

The validation process requires comparing the test rig and simulation results, and
the tools are presented in this section accordingly.

4.1 Test rig
Figure 4.1 shows a picture of the new MTU’s test rig set-up.

Based on the information publicly available from MTU Aero Engines, the
measurement equipment has a modular structure for rugged and mobile use on
internal and external test facilities or flying test beds. It consists of the following
key systems:

• Dynamic Data System (DDS): for acquiring, monitoring and analyzing data
from strain gauges, accelerometers, pressure sensors and other probes which
require high scanning rates.

• Tip timing (BSSM): It uses capacitive and optical probes to measure real-time
rotor blade vibration up to 60th engine order and down to peak amplitudes
of 2 µm. It can analyze synchronous (resonances) vibrations, asynchronous
vibrations (blade flutter and surge loads), blade untwist and crack detection.

• Tip clearance: Min, max, average tip clearance, rotor orbiting and position,
and casing deformation with capacitive probes.

• High-speed video system;

• Infrared measurement system;

• Telemetry system.
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Figure 4.1: Test rig set-up

4.2 Software
The simulations and the preparation of the models required three different software:

1. Altair Hypermesh

2. CalculiX

3. OrAgL-NOSTIA-ROOCMAN

The reason to use three different software is to exploit their potentialities.

4.2.1 Altair HyperMesh
HyperMesh is a high-performance finite element pre-processor developed by Altair
Engineering. HyperMesh provides a comprehensive set of tools and functionalities
for meshing, geometry editing, and model assembly.

MTU Aero Engines exploits Hyermesh for its advanced pre-processing capabili-
ties:

• Geometry import (Different input file types of other software) and cleanup;
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• Mesh generation, mesh editing and mesh quality check;

• Possibility to use advanced functionalities: creation of surfaces from FE mesh,
creation of 2D mesh from 3D mesh, "morphing" technique, etc.

• Possibility to create an Abaqus (Analysis Solver) input deck file, compatible
with CalculiX.

Thanks to these functionalities, HyperMesh has been useful for the geometry
preparation for the geometrical mistuned model as explained in section 5, specifically
the possibility to import STL geometries and create a surface from them. The
possibility to create an input deck file in Abaqus format facilitated the passage to
CalculiX software, mainly used by MTU Aero Engine and the main FEA software
that efficiently interfaces with Oragl-NOSTIA-ROCMAN.

CalculiX

CalculiX is an open-source FEA software used to simulate the behaviour of me-
chanical structures and systems under specific loading conditions, to make thermal
simulations and coupled multiphysics 1 simulations. It is used to make linear and
nonlinear static and dynamic analyses and provides insight into stresses, strain and
deformations. It can also provide additional information. It allows the inclusion of
different material properties, nonlinearities and loading scenarios. It is a complete
FEA software that offers several functionalities for mesh generation, pre-processing,
solver and post-processing. These tools make it a powerful and versatile open-source
FEA software.

This software is used extensively by MTU Aero Engines 2 to perform basic
standard calculations that don’t require specific functionalities. Another advantage
is that it can offer a direct interface to Abaqus solver, Nastran, Ansys (all commercial
software) and other software.

CalculiX also provides a direct interface to the software Oragl-NOSTIA-ROCMAN.
Figure 4.2 showcases a simple scheme of how standard FEA software works.

OrAgL-NOSTIA-ROOCMAN

OrAgL-NOSTIA-ROCMAN is an FEA software (Matlab code) originally separated
into three parts: OrAgL, NOSTIA and ROOCMAN. Their functionalities have

1Multiphysics refers to the simulation and analysis of physical phenomena where different
physical processes or fields interact (i.e. interaction between structural mechanics, fluid dynamics,
heat transfer and so on

2The engineer developers of CalculiX are employees of MTU Aero Engines. The company can
count on a more advanced version of the software.
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joined together over the years into a unique software:

• OrAgL: Solves the equations of motion in the frequency domain;

• NOSTIA: Solves the equation of motion in the time-domain;

• ROCMAN: To introduce mistuning in the equations of motion.

NOSTIA was not used to run the simulations since the problem is in the
frequency domain. The potentiality of OrAgL resides in the modelling and solving
of the periodic nonlinear vibration in the frequency domain.

The presence of nonlinearity brings about complications to the prediction
and computation of the solution, firstly because the superposition principle is
not applicable and secondly due to the possible existence of multiple solutions.
Furthermore, the nonlinearities can cause:

• change of the resonance frequency;

• variation of the damping;

• variation of the mode shape and shape of the forced response curve;

• presence of additional frequencies in the vibration response.

Figure 4.3 shows a schematic illustration of how FEA works with OrAgL.
OrAgL exploits dynamic substructuring and Reduction-Order techniques to

make the nonlinear analysis feasible. Furthermore, it computes the nonlinear
forced response with a nonlinear solver (Newton solver) in the frequency domain,
also using the numerical path continuation with an adaptive step. The contact
forces are calculated using an alternating frequency-time scheme passing from the
time to the frequency domain. That’s important to obtain the starting value of
the Fourier Coefficient of the contact forces at the steady-state hysteresis cycle.
The nonlinear Newton solver calculates the first solution point, and the path-
continuation technique finds the next predicted point from the first one using a
predictor scheme. The parametrization scheme requires a parametric constraint
imposition (i.e. the frequency) to find the next point on the solution branch. More
advanced techniques are also implemented or projected to be implemented (i.e.
isolation branches computation, bifurcation and stability analysis).

OrAgL receives information about mass and stiffness properties and geometry
DOFs from an FEA software and works independently to execute both linear and
nonlinear (local nonlinearities) analysis. In conclusion, the advantages of Oragl are:

• implementation of cyclic symmetry constraints

• Using CMS reduction-order techniques to reduce the number of vibrating
linear modes: substructure ROM and secondary ROM;
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• Resolution of the problem in the frequency domain by using HBM or MHBM;

• Implementation of the continuation procedure to find the points on the solution
branch and AFT scheme for the contact forces calculation.

The static analysis is necessary to obtain the large deformation, pre-stresses and
the starting contact pressures. It is required to set:

• centrifugal load;

• mean fluid forces (not necessarily);

• thermal load;

• contact and clamping conditions;

• cyclic symmetry boundary conditions.

With the assumption of small vibrations, the internal forces are linearized around the
equilibrium configuration. When large deformations are involved, the assumption
of small vibrations falls, and the equations of motion cannot rely anymore on the
linear description of the mechanical elastic forces.

fs = Ku + Mü. (4.1)

fs denotes the structural stiffness inertia forces and material damping. The material
dissipation is generally identified by measurements and expressed as modal damping.
The material damping forces are at least one order of magnitude smaller than the
other internal forces.

The application of the CMS is to approximate the dynamics in terms of compo-
nent modes. The objective is to have:

• a good representation of contact interactions;

• and a good representation of the dynamic compliance and the natural dynamics
in the relevant frequency range.

With the CB method, the component modes are a collection of:

• static deflections for unit displacement at each interface degree of freedom;

• fixed interface normal modes.

All the DOFs at the interfaces are retained within the formulation to represent
better the nonlinear behaviour associated with the contacts.
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Considering the equations of motion of a time-invariant mechanical system with
periodic forcing:

Mü + Du̇ + Ku + fnl(u, u̇) = fae(t) (4.2)

u, fnl, fae ∈ Rsfe×1 are the displacements vector, the nonlinear forces vector and
the synchronous aerodynamical external forces vector respectively with fae(t) =
fae(t + T ). T = 2π/Ω denotes a period. M,D,K ∈ Rsfe×sfe are mass, damping
and stiffness matrixes respectively, with M = MT > 0. With periodic vibrations,
the generalized coordinates u(t) = u(t+ T ):

u(t) = U0 +
nhØ
n=1

(Uc,kcos(nΩt) + Us,ksin(nΩt)) U0,Uc,k,Us,k ∈ Rsfe×1 (4.3)

It is a mathematical equivalent representation of the truncated Fourier Series.
However, it will be a complex representation that makes the calculations in the
frequency domain easier:

u = R

I
nhØ
n=0

Rne
inΩt

J
, u̇ = R

I
nhØ
n=0

inΩUke
inΩt

J
, ü = R

I
nhØ
n=0

−(nΩ)2Uke
inΩt

J
(4.4)

Where Un ∈ Csfe×1, ∀n /= 0.
The dynamic for equilibrium in the frequency domain is:

S(nΩ)ú ýü û
[(−nΩ)2M + inΩD + K]Unü ûú ý

linear internal forces
+ Fnl,nü ûú ý

nonlinear internal forces
− Fae,nü ûú ý

external forces
= 0

(4.5)
Solving the equation leads to obtaining the Fourier Coefficients of the displacements
considering that Fnl,n(U0, ..., Unh

). The nonlinear force in the frequency domain is
calculated via:

1
π

Ú 2π

0
fnl(u, u̇)e−inΩtdt =

I
2Fnl n = 0
Fnl,n n = 1, .., nh

(4.6)

Depending on the form of the nonlinear forces, different formulations can be
used:

• Polynomial forces: closed formulation via Convolution theorem;

• Piecewise Polynomial (incl. piecewise linear) forces: transition time must
be determined;

• Generic nonlinear forces: Alternating-Frequency-Time (AFT) scheme A.
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In the case of AFT, the nonlinear forces are calculated by alternating from frequency
to time domain and vice versa, as follows:

Fnl,k = FFT [fnl(iFFT [Uk]] (4.7)

In the time domain, the number of samples per period is chosen considering:

• the Nyquist-Shannon theorem for the theoretical lower limit (to avoid aliasing
effect);

• oversampling is possible in the case of non-smooth forces.

To find the first solution point, the Newton-like solver is used. For the harmonic
balance, be x = [U0,R(U1), I(U1), ...,I(Unh

)]T the vector of unknown of the dis-
placement Fourier Coefficient and R = [R0,R(R1), I(R1), ...,I(Rnh

)]T the residual,
the idea of Newton is to linearize the residual:

R(x(j+1)) ≈ R(x(j)) + ∂R
∂x

----
x(j)

(x(j+1) − x(j)) = 0 (4.8)

j is the iteration index. The iteration procedure is applied to find the next solution
point:

x(j+1) = x(j) − ∂R
∂x

----−1

x(j)
R(x(j)) (4.9)

The advantages are:

• Fast convergence near solution;

• For global convergence, some adjustments are required;

• The analytical gradients reduce the computational time.

The nonlinear forced response is computed within a defined frequency range, and
the first frequency point should correspond to a point where the system behaves
linearly to assure convergence. From the first point, the numerical continuation
procedure allows computing the solution branch. The predictor-corrector is the
generally chosen technique. The numerical continuation tries to solve the equations
to obtain R(X) = 0, where X = [x ,Ω, with R,x ∈ Rn(2nh+1)×1, in the interval
Ω(m) ≤ Ω ≤ Ω(e). It generates a sequence of suitably spaced solution points within
the given parameter range. The advantage of the continuation is that it can pass
turning and bifurcation points. The convergence stability of the method also
depends on the nonlinear behaviour of the system. The predictor, generally a
tangent, predicts the next solution point, which doesn’t stand on the actual brand.
Therefore, the corrector uses a parametrization technique, generally arc-length,
by imposing a constraint (additional equation) of a parameter (the frequency)
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as an additional unknown and finding the next solution point on the solution
branch through the solver. The parameter is an unknown. The step size in the
continuation procedure should be as small as possible to ensure convergence and not
overlook essential characteristics of the solution, but as big as possible to avoid an
unnecessary computational effort. The adaptation of the step size within a specified
range is also applicable. Apart from the nonlinear forced response computation,
other analyses are possible with OrAgL:

• self-exited limit cycles analysis;

• nonlinear modal analysis;

• resonance tracking;

• bifurcation points tracking.

The forced response study of a bladed-disk model in Oragl-NOSTIA-ROOCMAN
can be of mainly three types:

1. Cyclic Symmetry analysis with phase-lag boundary conditions;

2. FWM (Full-Wheel Model) cyclic-chain formulation by sector expansion;

3. FWM (Full-Whell Model) by using different substructures (i.e. geometrical
mistuned model).

In case 1) it is sufficient to have only one substructure for each sector. The sector
displacement vector u and the structural matrices A are partitioned to highlight
the internal, left and right boundary DOFs:

u =

 ul
ui
ur

 A =

 All Ali Alr

Ail Aii Air

Arl Ari Arr

 (4.10)

An equation is required to set the displacement congruence between the left and
right boundaries of adjacent sectors:

ul · Isb
eiθk = ur (4.11)

Isb
is an identity matrix of size sb × sb, with sb the number of DOFs at the left and

right cyclic boundaries. The angle Θk defined the IBPA (Inter-Blade Phase Angle)
that depends on the wave number k (Refer to subsection A for the explanation
of travelling-wave type vibrations). Thanks to the relationship, the displacement
vector is compacted:

u = Pk · åuk (4.12)
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It is a spatial Fourier transform, which is exact if all wave numbers are considered.
The matrix Pk has the same form in Eq. A.23, and the displacement:

åuk =
C åucåui

D
(4.13)

The vector åuc denotes the displacement vector of the cyclic DOFs.
The advantages of using the phase-lag formulations are the computational effi-
ciency, the travelling-wave type mode shapes, the aerodynamic modal coefficients
that can be applied directly to the system modes, and it is optimal for nonlinear
frequency-domain analysis. However, it is not suitable for mistuning applications
and for time-domain analysis. Mistuning is caused by differences between substruc-
tures breaking the periodicity of the vibrations, and a travelling-wave reference
system is not applicable. Time-domain analysis is not convenient for steady-state vi-
brations for computational reasons, but it is inevitable to study transient conditions.

In the second case 2), the objective is to obtain a Full-Wheel (FWM) by ex-
panding the coordinates of the cyclic sector to a number of sectors ns. The new
displacement vector and structural matrices form are:

u = Ins ⊗

 ul
ui
ur

 A = Ins ⊗ A (4.14)

Then, the boundary constraints are applied:

...
u(l−1)
r

u(l)
l

u(l)
i
...


=



. . . ... ... ...
· · · Isb

0 · · ·
· · · Isb

0 · · ·
· · · 0 Isi

· · ·
... ... ... . . .




...

u(l)
c

u(l)
i
...

 (4.15)

The cyclic-chain formulation is computationally demanding, and the mode
shapes are standing waves, so they are not identifiable with wave numbers (It is
possible to associate somehow an artificial wave number to identify the modes).
Also, the aerodynamic coupling application is non-trivial in the time domain. With
this formulation, it is possible to apply arbitrary mistuning and to implement
time-domain analysis; in the frequency domain, the aerodynamic modal influence
coefficients are applied in the system mode.

It is also possible to have a third hybrid formulation where both the cyclic
symmetry and cyclic chain formulations are used. In this case, a single sector
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is divided into two main substructures: blade and disk. In general, this hybrid
formulation is suitable for modelling mistuning. Since the objective is to analyze
the blades’ dynamic, then the mistuning is applied to the blades only. The disk is
modelled by imposing phase-lag boundary conditions, while the blade is cyclicly
expanded in a cyclic-chain formulation. Eventually, the model is then assembled.
With this formulation, the vibrational dynamic is characterized by a standing wave
type of vibrations since the mistuning applied to the blades breaks the periodic-
ity of the system. The advantages are increased efficiency due to the reduction
of the disk component modes, the possibility to apply the aerodynamic modal
influence coefficients directly to the system modes or at the blade components
in the frequency domain and to apply mistuning directly to the individual blade
substructures. However, nonlinear time-domain analysis is not possible.

A system’s reduction through ROM is essential to reduce the computational
effort. But, since the hybrid formulation involves many more DOFs than the cyclic
symmetric one, it is possible to set a secondary reduction of the assembled system.

The CMS methods approximate the FE deformations u in terms of component
modes assembled in the transformation matrix T:

u ≈ Tq (4.16)

T is the transformation matrix (or Modal Matrix) that contains the modes. If all
the modes are retained, then the transformation is not an approximation but exact.
q is the modal vector associated with the transformation matrix. In the CMS, the
relevant component modes are the following:

• Normal modes Φi;

• Constraints modes Ψb.

In the Craig-Bampton method (CB), the component modes are a collection of:

• Constraint modes: Static deflection per unit displacement at each boundary
degree of freedom;

• fixed interface normal modes.

The interface DOFs are retained to facilitate the linear and nonlinear coupling and
give an exact response representation to static coupling forces.

Let’s consider the substructure (s), the equations of motions are:

M(s)ü(s) + K(s)u(s) = p(s)(t) + r(s)(t) (4.17)

Where p(s) are the external excitation forces and r(s)(t) are the coupling forces.

Assuming a partition of displacement vector u(s) =
C

ub
ui

D
, where the subscripts b
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denote the boundary DOFs and i the internal ones, the equation of motions is as
follows:C

Mbb Mbi

Mib Mii

D(s) C
üb
üi

D(s)

+
C

Kbb Kbi

Kib Kii

D(s) C
ub
ui

D(s)

=
C

pb
pi

D(s)

+
C

rb
0

D(s)

(4.18)

The fixed interface normal modes are computed by solving the eigenvalue
problem:

(−ω2
jMii + Kii){Φii}j = 0, j = 1, ..., Ni (4.19)

Therefore:
Φ =

C
0bi
Φii

D
. (4.20)

The static constraint modes are obtained by static deflection of the interface
DOFs:

Ψc ≡
C
Ibb
Ψib

D
=

C
Ibb

−K−1
ii Kib

D
. (4.21)

An optimal ROM involves a number of retained modes on the basis of the
actual relevant modes for the dynamic. The number of retained normal modes
corresponds to the lowest eigenfrequencies number Nm ≪ Ni within the frequency
range of interest. The DOFs associated with the nonlinear contact interactions are
all retained.

A Galerkin-type method is used for the reduction:

M(s)TCBq̈(s) + K(s)TCBq(s) − p(s) − r(s) = ϵ(s) /= 0 (4.22)

By multiplying on the left by the transposed of the transformation matrix, the
error is orthogonalized and brought equal to zero:

TT
CBM(s)TT

CBq̈(s) + TT
CBK(s)TCB + TT

CBq(s) − TT
CBp(s) − TT

CBr(s) = TT
CBϵ(s) = 0

(4.23)
The problem becomes:

M(s)
CBq̈(s) + K(s)

CBq(s) − p(s)
CB − r(s)

CB = 0 (4.24)

The number of retained DOFs for the nonlinear contact interface can still be
unmanageable, and the computation may require a long time. It is possible to do
a further reduction to the retained constraint modes Φ in T(s)

CB:

T(s)
CB =

C
I 0
Ψ Φ

D(s)

. (4.25)
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A priori interface reduction by Orthogonal Polynomials Series (OPS) [77] asso-
ciated with linear coupling can improve efficiency. The idea is to approximate the
linear interface deflection ub as a superposition of generalized DOFs ηb:

ub ≈ Θ · ηb, Nηb
≪ Nub

(4.26)

In general, arbitrary ansatz functions Θ can be used for the interface deflections
but require a priori definition to have the functions available for the computation,
realized with respect to ηb. The new transformation matrix is:

T
∗(s)
CB =

C
I 0
Θ Φ

D(s)

. (4.27)

The three main properties of this reduction are that:

• the ansatz functions Θ depend on the geometry only and not the discretization.
It also applies to non-conforming meshes, but the interface-pair geometry has
to be identical.

• the number of generalized DOFs Nηb
depends on the maximum degree of the

polynomial polDeg: Nηb
= 3 · (1

2polDeg
2 + 3 · polDeg + 1).

• The interface coupling is performed via η(s)
b

The interface deflections are approximated by Netab
2D polynomials of maximum

polynomial degree polDeg.
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Chapter 5

Model preparation

As explained in the objective in Chapter 1, the work focuses on three FE analyses:

1. FEA of the model in cyclic symmetry;

2. FEA of the modal stiffness mistuned model;

3. FEA of the geometrical mistuned model by importing the different blade
substructures.

The preparation and calculation required three different FEA software types:

• Hypermesh;

• CalculiX;

• OrAgL-NOSTIA-ROCMAN.

Figures 5.4, 5.2, and 5.1 show a schematic illustration of the preparation of the
three different models.

The mesh information regarding the cyclic symmetric and modal-stiffness mis-
tuned model is provided in Table 5.1 1. A significant feature of the mesh that may
affect the results of the simulations is its quality. In the mesh applied to the CAD
models, some elements presented low quality, specifically regarding the Jacobian
Ratio 2. The need for fewer elements to privilege the computational time played a
role in choosing a simplified mesh. The Jacobian ratio has to be over 0 to compute

1Pictures of the mesh are not provided inasmuch they are the intellectual property of MTU
Aero Engines

2The Jacobian ratio defines the element deviation from its perfect shape. This value ranges
from 0.0 to 1.0. The calculation is implemented considering the integration points of the elements
(Gauss points). The Jacobian determinant is calculated at each integration point, and the ratio
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Type Number
Elements C3D10 107525

Nodes 171079

Table 5.1: 3D mesh data for cyclic symmetric model and modal stiffness mistuned
model

the solution. For some types of calculations, the lowest acceptable value is in the
range of 0.6-0.7. MTU’s engineers cured the mesh preparation, and no time for
improvement was available. In this way, the investigation could focus on the only
simulations. The mesh used for the cyclic symmetric and modal-stiffness mistuned
model differs from the one used in the geometrical mistuned model. The main
reason is a reduction of elements and nodes for the last case, making the resolution
of the FEA problem more feasible. The mesh information is provided in the Table
5.2.

Type Number Position
Elements C3D10 26885 Disk + Blade fir tree
Elements C3D20 13422 Rest of the blade

Nodes 109226

Table 5.2: 3D mesh data for geometrical mistuned model

5.1 Model in Cyclic symmetry
Chapter 3 explains the FEA general procedure, which is divided into three main
phases: preprocessing, solving and postprocessing. Each software covers the
different phases separately depending on the model to prepare.

Figure 5.1 shows the schematic FEA procedure for the cyclic symmetric model.
The software used for the model preparation and analysis is CalculiX and OrAgL-
NOSTIA-ROOCMAN.

is obtained by dividing the minimum and maximum values. In the case of 2D elements, the
Jacobian determinant is computed by projecting the element onto a plane; in the case of 3D
elements, by direct calculation. The Jacobian determinant can assume negative values for high
degrees of distortion, and the problem is not solvable. In this case, the mesh has to be improved.
Jacobian ratios above 0.7 are generally accepted.
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5.1 – Model in Cyclic symmetry

5.1.1 CalculiX
The preparation starts from CalculiX. The input file includes the mesh definition
applied to the CAD geometry (elements and nodes are assigned based on the
coordinates), already prepared by the MTU’s engineers. The preprocessing phase
in CalculiX is the following:

• Definition of nodes, elements and surfaces sets (already provided with the FE
mesh file, except for new necessary sets);

• Definition of the material cards: Elastic Modulus, Thermal Expansion Co-
efficient, Density, Conductivity, etc. (already provided with the FE mesh
file).

• Definition of the initial temperature (already provided with the FE mesh file);

• Definition of the Boundary Conditions: Cyclic Symmetry boundaries, SPCs,
MPCs, and tie boundaries (already provided with the FE mesh file).

• Definition of the Centrifugal Load (definition of the constant rotational speed);

• Definition of the contact parameters (i.e. constant friction coefficient) for the
dovetail interfaces.

OrAgL-NOSTIA-ROOCMAN fundamentally uses an uncoupled static-dynamic
analysis approach. It requires performing the static analysis with a different FEA
software. CalculiX serves this purpose and requires the definition of the rotational
speed to set the centrifugal load on the model (cyclic symmetric model). Each
node undergoes large static deformations until an equilibrium configuration, and
the contact interfaces at the fir tree are subjected to a static pressure distribution.
Since the contact interfaces at the shrouds are tied together, the only considered
friction nonlinearities are present at the dovetail. Another type of nonlinearity is
the geometrical one, which is added for the static analysis. As explained in the
previous chapter 4 and appendix A, the equations of motion cannot be expressed
with the hypothesis of small vibrations since the mechanical elastic forces exhibit
geometrical nonlinear behaviour. These geometrical nonlinearities are included
in the elastic forces, requiring an iteration of the equations of motion during the
computation to reach the static equilibrium. After the computation, the system’s
structural matrixes are saved in separate files along with the system’s DOFs data.

5.1.2 OrAgL-NOSTIA-ROOCMAN
The structural matrixes and DOFs data are provided to OrAgL-NOSTIA-ROOCMAN
by importing the files. OrAgL-NOSTIA-ROOCMAN focuses on solving the disk
dynamic problem. The preprocessing phase consists of these main steps:
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• Definition of nodes, elements and surfaces sets (Can be different from CalculiX);

• Definition of the Boundary Conditions: Cyclic Symmetry boundaries, SPCs,
MPCs, contact, and tie boundaries.

• Definition of the concentrated load at the interested node (External aerody-
namic static or periodic force);

• Definition of the response node: it corresponds to the node where the maximum
amplitude is measured.

• Definition of ROM: The method and the retained normal modes number
(linear modes).

Following the preprocessing is the computation phase and numerical and specific
model data needs to be specified:

• Definition of the damping: Rayleigh, Hysteretic or modal damping (in our
case, aerodynamic damping is included in the model as a simplification in
hysteretic damping).

• Definition of contact data: friction coefficient, contact pressure or force,
nonlinear contact forces computation algorithm, tangential direction coupling
specification, algorithm parameter specification.

• Definition of HBM parameters: formulation, temporal-harmonics number,
time-samples number for the computation of the nonlinear contact forces in
the AFT.

• Definition of the parameters for the numerical continuation method: stepsize
and adaptive stepsize.

• Definition of the linear modal analysis: Number of eigenfrequencies, treatment
of the contact areas - fixed or linearized.

• Definition of the linear forced response parameters: Frequency range, equidis-
tant frequency points number, treatment of contact areas - fixed or linearized.

After the computation, OrAgL-NOSTIA-ROOCMAN prints some output files
containing results and other information. In a forced response calculation, the
result files will contain data regarding the frequencies, amplitudes and contact
areas’ statuses based on the computed solution points. In the postprocessing phase,
it may be requested to print some output files containing specific information about
the results. For instance, participation factors shed light on the exciting modes
contributing to the solution (intrinsic for the nonlinear behaviour). Gnuplot can be
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used for the visualization, but also Python or else. OrAgL-NOSTIA-ROOCMAN
can provide specific output files in CalculiX format to visualize the vibrational
modes or do other investigations. In conclusion, different options are available.

Some information regarding the parameters set in Oragl is provided in Table
5.3 3.

Parameter Value/Specification
EOs of interest 6 - 18
Order Reduction Method Craig-Bampton
N° of retained normal modes for substructure 50
N° of temporal harmonics n 7
Numerical Continuation method Predictor-corrector
Numerical continuation parametrization Arch-length
Regularization strategy for contact models Dynamic Lagrangian

Table 5.3: Numerical data setting

5.2 Modal-stiffness mistuned model
Figure 5.2 shows a schematic illustration of the modal stiffness mistuned model
preparation. The procedure from CalculiX to OrAgL-NOSTIA-ROOCMAN is
similar to the previous case (cyclic symmetry) since the sector’s (blade and disk
substructures) and DOFs matrixes are imported as files. However, the way the
model is prepared in OrAgL-NOSTIA-ROOCMAN is different. As explained in
Chapter 4, the modal-stiffness mistuned model requires cyclically expanding the
wheel. Consequently, the preprocessing is set differently for some parts. Mistuning
is something that’s intrinsically related to the geometry of the system. Over the
years, due to the inability to analyze large FE models, the research has developed
different techniques to simulate the effects of mistuning. One of these techniques is
the so-called modal stiffness mistuning, achieved by altering the eigenfrequencies
of the interested modes. In our case, the interested modes belong to the blade
substructures, and consequently, cyclic symmetry can be applied to the disk sector.
The mistuning introduction requires the equations of motion in a modal reference
system. Originally, mistuning methods were developed along with ROM techniques
to meet the double objective of reducing the system and introducing mistuning.
Modal stiffness falls in this category of methods, but the mathematical formulation

3Data such as Material Data, Initial Conditions, Boundary Conditions, Contact pressure
distribution and friction coefficient are the intellectual property of MTU Aero Engines
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won’t be reported herein, referring the reader to the following scientific articles
[103]. This type of mistuning requires the definition of a variational parameter
that directly affects the eigenfrequencies of the system in the reduced-order modal
formulation and is applied singularly to each blade. The bladed disk vibrations occur
in families, and each mode is characterized by its modeshape. The small mistuning
may affect these modeshapes (flexure, torsion, etc.), therefore the convenience of
defining the mistuning pattern for each mode separately. The reduced-order model
is formulated by explicitly expressing each blade modal stiffness (the dominant
blade mode). For the reduction, the Craig-Bampton method can be used. The
model can be reduced further using secondary reduction, applied to the whole
model.

Let’s define the mistuning variational parameter δn. The relationship between
the blade mistuned eigenvalue λmistn and the tuned one λbm is:

λmistn = (1 + δn)λbm (5.1)

Frequency pattern identification is a sensible topic, and many techniques have
been proposed over the years. Unfortunately, these methods don’t suit the con-
sidered case since we have only the linear frequency distribution of the blades at
our disposal. For this reason, it was decided to obtain the variational parameter
by considering the linear frequency registered in the test rig for the interested
mode in λmistn and their average-linear natural frequency in λbm. The identifica-
tion’s accuracy is essentially enclosed in the assumption of λbm. The values for
OrAgL-NOSTIA-ROOCMAN is (1 + δn) that multiplicates λbm.

5.2.1 CalculiX
The procedure performed in CalculiX is the same as explained in subsection 5.1.1
for preprocessing, static analysis and postprocessing.

5.2.2 OrAgL-NOSTIA-ROOCMAN
Provided a general explanation of modal stiffness mistuning (frequency mistuning),
the procedure in OrAgL-NOSTIA-ROOCMAN requires the creation of the sub-
structures in the preprocessing phase and the definition of the mistuning pattern
in the solving file. Figure 5.2 provides a schematic illustration of the geometrical
mistuned model preparation. In the preprocessing phase, the preparation procedure
is the following:

• Definition of the nodes, elements and surfaces sets;

• Definition of the boundary conditions: SPCs, MPCs, Cyclic symmetry bound-
aries;

50



5.3 – Geometrical mistuned model

• Definition of the concentrated load: static or periodic aerodynamic force.

• Definition of the response node: the node where the maximum amplitude is
registered and analyzed;

• Definition of the substructures (i.e. blade and disk);

• Definition of the boundaries between substructures: contact and tie boundaries
- Nodes sets specification;

• Definition of the substructure ROM: the method and retained normal modes
number for each substructure;

• Expansion of the cyclic sector around the rotational axis;

• Definition of the secondary order reduction applied to the expanded wheel.

Since the mistuning is applied only to specific blade modes, the model requires
the definition of two different substructures within a sector: blade and disk. With
this subdivision, all the nodes, elements and surfaces sets are moved to the specific
substructures, along with the concentrated loads (i.e. exciting forces), response
nodes and boundary conditions previously assigned to the particular nodes within
the sector. Boundaries such as contact interactions and tie constraints are imposed
with relationships between adjacent substructures. The substructure ROM is set
before cyclicly expanding the sector substructures to the total sectors number, after
which the secondary reduction ROM is imposed.

Concluded the preprocessing phase, the preparation of the solving section requires
adding the mistuning pattern distribution based on the mode to be mistuned and
setting the computational parameters as in Table 5.3. The only difference is
the assignment of the contact parameters to each contact substructure interface
separately.

The file containing the parameters for the solver also requires the definition
of the mistuning pattern. The parameters (1 + δn) are provided by defining the
precise mode to be mistuned. The mistuning patterns reflect the linear frequency
distributions registered in the test rig. Figures 5.3a, 5.3b and 5.3c showcase the
modal stiffness parameter distributions.

5.3 Geometrical mistuned model
The geometrical mistuning refers to the geometrical differences between similar
substructures, i.e. the blades. A geometrical mistuning analysis requires having
each substructure of the model and assembling them into a wheel. The application
of ROM techniques is inevitable for the successful completion of the simulations.
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Figure 5.4 illustrates the steps for the preparation of the model. The process
requires Hypermesh and CalculiX for the geometrical model preparation and the
static analysis, respectively, and OrAgL-NOSTIA-ROCMAN to prepare the model
for the forced responses calculations.

5.3.1 Hypermesh
The different geometries of the blade are collected in STL files with a random
2D refined mesh after the Blue Light Scanning (BLS) technique has been used to
scan the actual blades and collect the geometries. These STL files are imported
singularly into Hypermesh along with a CAD model of the sector (blade and disk)
where a 3D mesh is already applied. The information about the mesh used for this
model is specified in Table 5.2.

Hypermesh allows the user to exploit a "morphing" technique to adapt the new
geometry derived from the STL file to the CAD geometry, keeping the base-FE
mesh of the model. The steps are summarized as follows:

• Creation of a surface from the STL file;

• Creation of a 2D mesh from the base-3D mesh;

• Apply "morphing" defining which nodes are "moved" to the new surface and
which ones are not;

• The 3D FE mesh is automatically updated.

One of the main problems was related to the condition of the STL mesh. The
bad-quality scans of the blades with holes in the geometries created complications
in the creation of the surfaces from the STL meshes. Furthermore, due to the
holes, it was chosen to "morph" only the blades’ airfoils and the fillets, excluding
those elements not covered by the surfaces. The exclusion of the contact areas
from the morphing led to the inability to catch any contact mistuning effect 4. The
possibility of maintaining the 2D mesh after the morphing and updating it to a
3D mesh helped avoid further distortion and conserve the node numbering, which
is significant for the application of the aerodynamical load and the identification
of the response node. Once the operation is completed, the file with the mesh is
saved. This procedure is repeated for all 60 blades.

4For contact mistuning is intended the inevitable differences between contact areas of the
interacting surfaces of the involved substructure, but also the differences between contact areas
belonging to the substructure that don’t interact but are arranged cyclically around the rotational
axes (i.e. contact areas of two different blades around the rotational axes that do not interact
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5.3.2 CalculiX
Once the 60 mesh Hypermesh files are ready, they are transformed into CalculiX
format. In CalculiX, a similar procedure, as explained for the previous models, is
followed (refer to subsection 5.1.1) for each sector geometry.

The static analysis is implemented for all 60 sectors, storing the matrices for
OrAgL-NOSTIA-ROCMAN.

5.3.3 OrAgL-NOSTIA-ROOCMAN
The preparation in OrAgL-NOSTIA-ROOCMAN is similar to the previous modal-
stiffness mistuned model but with a few differences. The blade substructure is not
expanded cyclically, but each sector geometry and mesh is imported along with
its matrixes and DOFs data after analyzing them individually in CalculiX with a
static calculation. The preprocessing phase is summarized with the following steps:

• Definition of nodes, elements and surfaces sets for each mesh.

• Definition of the boundary conditions for each mesh: SPCs, MPCs, Cyclic
Symmetry boundaries.

• Definition of the concentrated load for each mesh;

• Definition of the response node for each mesh;

• Definition of the substructures;

• Definition of the boundaries between substructure: tie constraints and contact
constraints;

• Definition of substructure ROM;

• Full model construction.

• Definition of secondary ROM.
Each sector geometry is imported in the preprocessing phase, but only the blades
substructures contribute to the full-wheel construction with the actual geometries.
The disk never underwent any morphing and mesh adaptation since mistuning was
not applied. For this reason, the disk substructure is imported once, and then the
cyclic boundaries are imposed. The substructure ROM is defined by specifying the
number of linear normal modes to be retained and the method (CB). Then, The
model is assembled, and the secondary order reduction is applied by selecting the
number of linear retained modes of the whole wheel. Each substructure required
the predefinition of tie and contact relationships.

The contact data is specified for each substructure inside the file containing the
computational parameters. The rest is similar to the cyclic symmetric model.
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Model preparation

(a) Illustration of the modal stiffness pa-
rameter distribution for the M1ND6 dur-
ing acceleration

(b) Illustration of the modal stiffness pa-
rameter distribution for the M2ND18 dur-
ing acceleration

(c) Illustration of the modal stiffness pa-
rameter distribution for the M1ND6 dur-
ing deceleration

Figure 5.3: Modal stiffness parameter distributions
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Chapter 6

Results

6.1 Test rig

6.1.1 Free-undamped-system frequency distribution
The knowledge about the presence of the resonance coincidence comes from pre-
viously obtained data of the actual turbine Campell’s Diagram 2 over an ampler
rotational frequency range. The system is then tested over a closer-more-precise
frequency range to confirm the situation. The results are displayed in figures 6.1a
and 6.1b. These Campbell’s diagrams are constructed for two distinctive conditions:
acceleration and deceleration. The reason stemmed from the fact that measures
taken at a constant speed (steady-state condition) in the test rig wouldn’t allow
gathering information about the resonance frequencies of all the blades. Therefore,
the system had to be accelerated or decelerated to cover the whole frequency range.
As long as the magnitudes of the acceleration and deceleration are kept sufficiently
low, the system is in a steady-state condition, as an assumption. However, transient
effects are observed during experimentations as well. Based on the diagrams in
figures 6.1a and 6.1b, the system behaves slightly differently during the acceleration
and deceleration phases. In fact, the resonance coincidence with both excitations
of M1ND6 and M2ND18 (red circles) modes is registered during acceleration, while
only the M1ND6 mode during the deceleration 1. For this reason, in the case of
FEA with modal stiffness mistuning, three different patterns 6.2 were chosen to
represent the inevitable blade-to-blade deviations based on the linear frequency
distributions:

1The "nodal diameter" is used in this context to have a more direct identification of the
interested modes for mistuned systems. In general, the designation has an actual meaning for
cyclic symmetry where vibrations are expressed in a travelling wave coordinate system
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• M1ND6 during acceleration (Figure 6.2b);

• M1ND6 during deceleration (Figure 6.2a);

• M2ND18 during acceleration (Figure 6.2c).

(a) Campbell Diagram obtain from the
test rig with very small acceleration and
absent aerodynamic exciting force

(b) Campbell Diagram obtain from the
test rig with very small deceleration and
absent aerodynamic exciting force

Figure 6.1: Campbel linear test rig

6.1.2 Aerodynamically excited system
Campbell diagrams

Figure 6.3 and 6.4 report Campbell’s diagrams of the periodically excited system,
where the black dots highlight the excited resonances. The bigger the dot, the
higher the energy involved. In Figure 6.3, Campbell’s diagrams with excitation of
M1EO6 during acceleration and deceleration show the presence of the resonance
coincidence of M1ND6 and M2ND18 (Count the straight lines from bottom to top
to identify the relevant modes), specifically the black dots on the 6th and 18th
straight lines starting counting from the bottom (the nodal diameter identifies the
slope of the lines). Both the acceleration-deceleration regime and the excitation
level influence the actual dynamics of the system. For the lowest excitation level, in
the acceleration, it appears the presence of an independent excited mode M1ND1
(yellow dot). At medium-high excitation level and in the acceleration case of high
excitation level, the M1ND7 resonance appears. Both these resonances are excited
in the transient during the acceleration-deceleration of the system and thus will
not be considered any further in this study. Figure 6.4 reports Campbell’s diagram
of the M1EO18 excited system. Independently from the acceleration-deceleration
regime and excitation level, no sign of resonance coincidence and independent
modes are observable. Based on the previous experimental results, the presence
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6.1 – Test rig

(a) Blade frequency distribution registered
for the mode equivalent to M1ND6 during
the deceleration

(b) Blade frequency distribution regis-
tered for the mode equivalent to M1ND6
during the acceleration

(c) Blade frequency distribution registered
for the mode equivalent to M2ND18 dur-
ing the acceleration

Figure 6.2: Linear Frequency Distribution

of resonance coincidence (internal resonance) of the type 3:1 [96] due to energy
transfer is confirmed.

Amplitude distributions

Figure 6.5 and 6.6 report the test-rig amplitude distributions of the main excited
resonances, whereas in Figure 6.7 the ones of the second resonances obtained thanks
to a Fourier decomposition. The distributions differ based on the accelerating-
decelerating regime and the excitation level. The absolute values on the reference
axes are normalized with respect to the average magnitude depending on the
excitation level. Interestingly, these results underline the randomness of the
influence of the mistuning on the forced response of the system, thus the efforts to
effectively simulate the inevitable differences within the system.
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(a) Campbell Diagram - Low excit-
ing force - acceleration

(b) Campbell Diagram - Low excit-
ing airflow and 5rpm/s deceleration

(c) Campbell Diagram - Medium-
High exciting force - acceleration

(d) Campbell Diagram - Medium-
High exciting force - deceleration

(e) Campbell Diagram - High excit-
ing force - acceleration

(f) Campbell Diagram - High excit-
ing force - deceleration

Figure 6.3: Campell diagrams - aerodynamic excitation M1EO6

6.1.3 Brief description of results order

It is the case of the present work that the chronological order of the simulations
doesn’t match the logical order. In general, this type of situation can happen when
analysing the results of an investigation certain behaviours are observed, and a
further assessment is needed, ultimately leading to an increase in the number of
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6.1 – Test rig

(a) Campbell Diagram - Low excit-
ingforce - acceleration

(b) Campbell Diagram - Low excit-
ing force - deceleration

(c) Campbell Diagram - Medium-
High exciting force - acceleration

(d) Campbell Diagram - Medium-
High exciting force - deceleration

(e) Campbell Diagram - High excit-
ing force - acceleration

(f) Campbell Diagram- High excit-
ing force - deceleration

Figure 6.4: Campell diagrams - aerodynamic excitation of M2EO18

simulations, changing the values of some parameters or changing the direction
of the study objective. Our scenario required changing the values of the friction
coefficients and increasing the number of simulations to make a parametric study
to understand the influence of those changes. The friction coefficient is a significant
parameter affecting the system’s dynamics due to its association with the nonlinear
behaviour (stick-slip) of the system’s contact interfaces, the contact stiffness and
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(a) Amplitude distribution - acceleration
- Low excitation

(b) Amplitude distribution - decelera-
tion - Low excitation

(c) Amplitude distribution - acceleration
- Medium-High excitation

(d) Amplitude distribution - decelera-
tion - Medium-High excitation

(e) Amplitude distribution - acceleration
- High excitation

(f) Amplitude distribution - deceleration
- High excitation

Figure 6.5: Amplitude distributions - M1EO6 excitation - Main Resonances

friction damping. The tribology team (specifically in MTU Aero Engines) provides
their value based on the contact pressure magnitudes. In the present work, the
friction coefficient is set for shroud (blade-to-blade interface) and fir tree contact
interfaces (blade-to-disk interface).
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6.1 – Test rig

(a) Amplitude distribution - acceleration
- Low excitation

(b) Amplitude distribution - decelera-
tion - Low excitation

(c) Amplitude distribution - acceleration
- Medium-High excitation

(d) Amplitude distribution - decelera-
tion - Medium-High excitation

(e) Amplitude distribution - acceleration
- High excitation

(f) Amplitude distribution - deceleration
- High excitation

Figure 6.6: Amplitude distributions - M2EO18 excitation

It is listed here the chronological order of the analysis related to the contact-area
parametric study:

• Nonlinear forced response analysis with only high-level excitations for both
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(a) Amplitude distribution - acceleration
- Low excitation

(b) Amplitude distribution - decelera-
tion - Low excitation

(c) Amplitude distribution - acceleration
- Medium-High excitation

(d) Amplitude distribution - decelera-
tion - Medium-High excitation

(e) Amplitude distribution - acceleration
- High excitation

(f) Amplitude distribution - deceleration
- High excitation

Figure 6.7: Amplitude distribution - M1EO6 excitation - Secondary Resonance
M2ND18

M1EO6 and M2EO18 and by considering contact interactions at both shroud
(full contact area) and fir tree with reference friction coefficients;
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6.1 – Test rig

• Parametric study and selection of different reduced contact areas based on
alignment of the eigenfrequencies of the free-linear-system with the free-linear-
system test rig frequencies 2

• Nonlinear forced response analysis with different excitation levels for both
M1EO6 and M2EO18 excitations by using reduced contact area at the shroud
(closest frequency alignment with the test rig results) with reference friction
coefficient;

• Nonlinear forced response analysis with different excitation levels for both
M1EO6 and M2EO18 excitations by considering central reduced contact area
at the shroud (no closest linear frequencies alignment with test rig results)
and reference friction coefficients;

• Nonlinear forced response friction coefficients parametric study by considering
central reduced contact area (no closest linear frequencies alignment with test
rig results) at the shroud and full contact area at the fir-tree;

• Nonlinear forced response friction coefficients parametric study by considering
central reduced contact area at the shroud (no closest linear frequencies
alignment with test rig results) and tied fir tree;

• Nonlinear forced response friction coefficients parametric study by considering
full contact area at the shroud and full contact area at the fir tree;

• Nonlinear forced response analysis of the modal stiffness mistuned model
by considering central reduced contact area (no closest linear frequencies
alignment with test rig results) with the non-reference friction coefficient and
tied fir tree;

• Nonlinear forced response analysis of the geometrical mistuned model by
considering central reduced contact area (no closest linear frequencies alignment
with test rig results) with the non-reference friction coefficient and tied fir
tree;

It is evident that the chronological order is not the logical one. Naturally, the
friction coefficient analysis should be at the beginning. In the present work, the
awareness of its influence on the forced response was clear through an assessment
of the ambiguous results. Generally, a homogeneous friction coefficient is assumed
based on tribology data (especially contact pressure) for all the simulations with

2This parametric study was useful for the selection of the best shroud contact area, but since
it would be necessary to present sensible data the results won’t be displayed in the present work
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similar pressure values. There is always partial uncertainty about the correct values
of the friction coefficient for the following reasons:

• Non-uniform pressure at the fir tree (depends on the static results after the
application of the centrifugal load);

• The tribology team doesn’t provide friction coefficients for all pressure values,
and an interpolation is needed.

The results of the simulations are presented herein in the following order:

• Comparison of the linear eigenfrequencies with test rig results and display of
nonlinear forced response plots of the models with cyclic symmetry assumptions
and full contact area at the shroud and the fir tree;

• Comparison of the linear eigenfrequencies with test rig results and display of
nonlinear forced response plots of the models with cyclic symmetry assumption
with reduced central contact area at the shroud and full contact area at the
fir tree;

• Comparison of the linear eigenfrequencies with test rig results and display of
nonlinear forced response plots of the models with cyclic symmetry assumptions
with reduced central contact area at the shroud and tied fir tree;

• Comparison of the linear eigenfrequencies with test rig results and display of
nonlinear forced response plots of the modal stiffness mistuned models with
reduced central contact area at the shroud and tied fir tree;

• Comparison of the linear eigenfrequencies with test rig results and display of
nonlinear forced response plots of the modal stiffness mistuned models with
reduced central contact area at the shroud and tied fir tree;

The computational effort is far from negligible, and introducing contact interfaces
in an FE model means introducing nonlinear equations to be solved. The higher
the number of nonlinear DOFs involved, the higher the computational burden. It’s
especially true for mistuned models, which adopt the complete model without the
cyclic symmetry assumption. In cyclic symmetry, the analyses focused on models
with contact interfaces at the shrouds and the fir trees and with contact interfaces
only at the shrouds. In this way, the influence of the nonlinearities is better assessed
and accounted for in the mistuned model simulation results, which are inevitably
obtained by introducing the contact model only at the shrouds and tieng the fir
tree for computational reasons.

All the plots and tables presented herein don’t display absolute values, and the
normalization applies with respect to the linear-natural-frequency average value

68



6.2 – Results of the simulations with the model in cyclic symmetry

registered in the test rig concerning the frequencies and with respect to the average
amplitude value registered in the test rig measured during the acceleration regime
concerning the forced response.

6.2 Results of the simulations with the model in
cyclic symmetry

The cyclic symmetry is an idealization, and mathematically, the assumption im-
plements the so-called cyclic symmetry boundary conditions. Similarly to ROMs,
the DOFs differentiate between dependant (slave DOFs) and independent (masters
DOFs) sides. As briefly explained in A, these boundaries’ introduction allows
operating a matrix transformation to the travelling wave coordinate system, by
which it is possible to express the vibrational dynamics of the system.

Figures 6.8a and 6.8b display the complete and central-reduced contact areas at
the dependent side of the blade shroud.

(a) Full contact area (b) Central-reduced contact area

Figure 6.8: Contact areas at the dependent side of the shroud

The nodes, specifically the DOFs, in these regions are involved in the contact
model and the modes retained when the CB-ROM is applied.

6.2.1 Results with full contact area at the shroud and fir
tree

Starting with the results concerning the FE model with complete contact areas at
the shrouds and fir trees, the following scheme is presented:

• Free-undamped system vibrations;

• Nonlinear forced response;

• Participation Factor Study;

• Friction Coefficient parametric Study.
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Free-undamped-system linear frequency comparison

The resolution of the free-undamped-linear system requires solving the following
equations of motion in the frequency domain:

([K] − λ[M ]){ϕ} = {0} (6.1)

Where [K] is the stiffness matrix, [M ] the mass matrix, and λ = ω2 and {ϕ} are
the eigenvalues and eigenvectors respectively.

Table 6.1 displays the results of the free-undamped system, focused on a com-
parison of the linear vibrational natural frequencies with the test rig values, thus
underlying (in red) the discrepancy rather than providing the absolute frequencies.

Mode Free-undamped-system Damping Nodal Discrepancy [%]
linear normalized frequency ratio Diameter

1 1.2144 0 6 21.44
2 1.6875 0 18 68.75

Table 6.1: Comparison of linear-frequencies discrepancy between simulations and
test-rig values

By reading the table, the actual discrepancies are 21.44% and 68.75% for the
M1ND6 and M2ND18 modes, respectively. These values are considered high,
especially knowing that validation would require to stand below 5%.

Since the FE model has been used for other investigations with cyclic symmetry
boundary conditions within MTU Aero Engines but for different lower frequency
regimes 3 resulting in a satisfying frequency alignment, the reason of the discrepancy
may be ascribed to the effect of mistuning and specifically contact mistuning on the
overall dynamics of the system. Errors in the definition of boundary conditions or
with the geometry are unlikely since there was good alignment in a lower frequency
range, albeit in a region of Campbel’s diagram where the dynamics looked less
complicated.

Based on this analysis, a common direction to take is to reduce the contact area
at the shroud, which inevitably influences the system stiffness. Assuming a static
equilibrium defined by a constant normal force orthogonal to the contact surfaces
at the shroud, a reduction of the contact area is associated with a higher contact
pressure. The force value defines the normal friction force limits within which the
interfaces maintain a linear behaviour. From a dynamic point of view, sliding and
partial separation are associated with a softening behaviour, causing the forced

3These works are internal non-published investigations and therefore not cited herein
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6.2 – Results of the simulations with the model in cyclic symmetry

response curve to bend towards lower frequencies. However, from a static point
of view, the whole wheel would have a lower overall stiffness, thus leading to a
forced response curve shifted at a lower frequency range (see Campbell’s diagrams
in Figure 2.2 and 2.3).

Consequently, a parametric study with different reduced contact areas helped
to highlight the conditions with the best frequency alignment. Specifically, by
analyzing the results of a free-undamped system vibration of a model in cyclic
symmetry with a reduced contact area, it was observed a discrepancy of the natural
frequencies with respect to the test rig values of 5.299% and 5.84% for mode
M1ND6 and M2ND18 respectively. Unfortunately, these results were unacceptable
for the following two reasons: Too-reduced contact area; Contact area location.
A too-reduced contact area is associated with a stiff contact interface, mainly
driven by sticking dynamics with an overall linear behaviour, which is considerably
different from what was observed by the camera pointed at the shrouds in the test
rig. Furthermore, the location of the contact area was far from the centre, localized
at the vertex of the complete contact area used for the previous analyses.

For these reasons, a central-not-too-reduced contact area at the shrouds resulted
in a better option thanks to a better position matching the reality with the presence
of nonlinear behaviour of the contact interfaces. At the same time, we accept a
bigger frequency misalignment. The results for this case are presented in section
6.2.2.

Nonlinear forced response

Figure 6.9 showcases the plots of the nonlinear forced response with a parametric
study by changing the friction coefficients in alignment with the inhomogeneous
contact pressure (defined by the static analysis) at the fir tree and a homogeneous
pressure preload at the shroud contact area. The friction coefficient reference
value is commonly a general benchmark for standard simulations. However, as
already explained, the parametric analysis highlighted the influence of the friction
coefficients on the forced response amplitude level, leading to a different choice in
its values for the mistuned models.

The two main factors assessed from the plots in Figure 6.9 are: 1) the maximum
amplitude alignment of the forced response curves within the test-rig magnitude
amplitude range (defined by the green continuous lines and red dashed straight
lines); 2) and the friction coefficient influence on the forced response curve.

A good alignment is observed in the forced response curve relative to the M1N6
resonance. It is especially true when the friction coefficients assume the reference
values. The forced response falls within the normalized test rig amplitude range
0.8 ÷ 1.3. That’s different from what is observable with the second resonance
M2N18, where the test rig amplitude range is around 0.2 ÷ 2.4, showing high
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(a) M1EO6 (b) M2EO18

(c) M1EO6 - test-rig reference - acceler-
ation

(d) M2EO18 - test-rig reference - decel-
eration

(e) M1EO6 - test-rig reference - acceler-
ation

(f) M2EO18 - test-rig reference - decel-
eration

Figure 6.9: Nonlinear forced response - friction-coefficient parametric study - Full
contact at shroud and fir tree - High excitation levels
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variability, and the friction coefficient seems to affect only the nonlinear behaviour
(curve shape).

Participation Factor Study

The "modal participation factor study" refers to the analysis of the contribution of
the excited modes to the overall amplitude level. Such an investigation requires
selecting a specific solution point on the forced response curve, and thanks to the
Fourier Series, the different modal contributions are separated.

Assuming to be in the frequency domain, according to the Fourier Series, the
solution is:

u(t) = R

I ∞Ø
n=0

Une
inΩext

J
= R

I ∞Ø
n=0

(An cos(nΩext) + iBn sin(nΩext))
J
. (6.2)

The oscillation frequency Ωosc,n is proportional to the excitation frequency by
the temporal harmonic "n":

Ωosc,n = nΩex. (6.3)
The excitation frequency Ωex is proportional to the rotational frequency by the
nodal diameter ND:

Ωex = NDΩrot = EOΩrot. (6.4)
In the ideal case, where the cyclic symmetry assumption is adopted, it is demon-
strable that necessarily ND = EO A, other modes are not excited.

After the separation of the Fourier Coefficients, to select the interested temporal
harmonics, it is possible to refer to the "congruence rule":

k = nm0 modns (6.5)

k is the wave number (spacial harmonic), and m0 is the fundamental wave number.
The operator mod denotes the modular mathematics. In short, the number of
sectors ns divides the product n∗m0, and the remainder of the division corresponds
to the result. In the resonance M1ND6, we are looking for internal resonances
determined by M2ND18. Consequently, if the wave number is k = 18 and the
fundamental wave number is m0 = 6 (Maximum Common Divisor), then the 3rd
temporal harmonic is the interested one.

Figure 6.10 showcases the selected nonlinear forced responses (orange curves in
Figure 6.9) with the analysed solution points colour-marked.

Tables 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 6.10 summerize the important infor-
mation about the participation factor study.

Regarding the M1ND6 resonance, from the analysis of the first three solution
points, contributions come from the 1st, 2nd and 3rd temporal harmonic, thus
nodal diameters 6, 12 and 18, respectively. A contribution from nodal diameter 12
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Resonance Excitation
level Solution Point

Normalized
Oscillation
Frequency
Ωosc,n

Normalized
Amplitude

M1EO6 High Blue 1.176 0.343

Temporal Har-
monic n 1st

Normalized
Oscillation
Frequency
Ωosc,n

1.176

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 6 1.214 10−7 10−4

2 6 / 10−6 10−6

Temporal Har-
monic n 2nd

Normalized
Oscillation
Frequency
Ωosc,n

/

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 12 / 10−6 10−5

Temporal Har-
monic n 3rd

Normalized
Oscillation
Frequency
Ωosc,n

1.186

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 18 / 10−6 10−8

2 18 1.68 10−7 10−7

Table 6.2: M1EO6 - High excitation level - Solution Point study
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Resonance Excitation
level Solution Point

Normalized
Oscillation
Frequency
Ωosc,n

Normalized
Amplitude

M1EO6 High Orange 1.14 0.529

Temporal Har-
monic n 1st

Normalized
Oscillation
Frequency
Ωosc,n

1.114

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 6 1.214 10−5 10−4

2 6 / 10−6 10−6

Temporal Har-
monic n 2nd

Normalized
Oscillation
Frequency
Ωosc,n

/

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 12 / 10−5 10−5

Temporal Har-
monic n 3rd

Normalized
Oscillation
Frequency
Ωosc,n

1.155

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 18 / 10−6 10−6

2 18 1.68 10−6 10−6

Table 6.3: M1EO6 - High excitation level - Solution Point study
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(a) M1EO6 (b) M2EO18

Figure 6.10: Nonlinear forced responses - High excitation level - Solution Points
study - full contact at the shroud and the fir tree

wasn’t between the expectations, but it is ascribable to the frequency discrepancy.
It means that in that frequency range, an energy transfer comes about between
nodal diameters 6 and 12 in an internal resonance 2:1 with the magnitude of the
contribution not negligible: see the branch on the left that sticks out from the main
resonance curve associated with a strong nonlinear behaviour (stick-slip-partial
separation 4. The third solution point showcases a new contribution of nodal
diameter 36 (24), likely caused by the frequency discrepancy and suggesting an
energy transfer of type 4:1. The energy transfer is a complicated effect of the
nonlinearities (friction damping in this case) that comes about when the resonant
frequencies become commensurate, leading to an internal resonance and a possible
increase in the magnitude of the response amplitude. At the last solution point
on the curve (maximum amplitude), only contributions from nodal diameters 6
and 18 are observable. Interestingly, the nodal diameter 18 is excited in the first
(M1ND18) and second modes (M2ND18), corresponding to another discrepancy
with the test rig results and Campbel’s diagram, considering that only the second
mode (M2ND18) should be excited. It is also probably induced by the frequency
misalignment.

Regarding the M2ND18 resonance, five solution points were selected. By their
analysis, it turned out that there were more contributions than the only one expected.
The resonance branch should have been dominated by the only excitation of the
second mode of nodal diameter (M2ND18) without any energy transfer to other

4It won’t be displayed any precise data of the contact interfaces conditions to avoid showing
software information and to lengthen the thesis any further, but short information will be provided
by whenever necessary
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modes. However, significant contributions from the first mode of the nodal diameter
18 (M1ND18) influence the dynamics along with excitations of the modes 1 and 6
of nodal diameter 54 (6), suggesting an energy transfer of type 1:3. Furthermore,
at the second solution point has been found a contribution of the first mode of
nodal diameter 108 (12) suggesting an energy transfer of type 2:3. All these results
outline a strong inaccuracy, which won’t considered any further, most likely caused
by the frequency misalignment.

Following these results, the study kept in the direction of sufficiently reducing
the contact area, trying to improve the frequency alignment, and at the same time
maintaining a reasonable nonlinear behaviour of the contact interfaces.

6.2.2 Contact model at the shroud (Reduced contact area)
and fir tree

For the following study, the friction contact model is adopted at both shrouds and
fir tree, but with a reduced central contact area at the former and maintaining
the complete contact area at the latter. Figure 6.8b displays the central reduced
contact area at the dependent side of the shroud.

Free-Undamped-system linear frequency comparison

Table 6.11 showcases the discrepancy of the linear natural frequencies of the
free-undamped system between the test rig and simulations.

The central reduced contact area at the shroud guarantees a better frequency
alignment, where the frequency discrepancy is even below 10% for the mode M1ND6.
For the mode M2ND18, the relative difference is still above that value. In both
cases, they don’t meet the 5% limit for validation.

Nonlinear forced response comparison with different excitation levels

In the plots showcased in Figure 6.11, a comparison for the different excitation level
of the interested mode is presented. On the left plots both axes are normalized
and on the right only the frequency axis is normalized. This was necessary to
visually preserve the amplitude scaling. In fact, for the lowest excitation level the
amplitude discrepancy is such that the maximum amplitude is almost 9 times the
average registered amplitude in the test rig with the system in acceleration. This
is better visible in Figure 6.12 and 6.13.

In Figure 6.11, the left plots display the amplitudes of the forced response
curves normalized with respect to the average maximum excitation-level-test-rig
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(a) M1EO6 - Normalized amplitudes
and frequencies

(b) M1EO6 - Absolute amplitudes and
normalized frequencies

(c) M2EO18 -Normalized amplitudes
and frequencies

(d) M2EO18 - Absolute amplitudes and
normalized frequencies

Figure 6.11: Nonlinear forced response - Central reduce contact area at shroud
and full contact at the fir tree - Comparison between excitation levels
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amplitudes, while the plots on the right their absolute values 5. It is significant to
highlight the total inconsistency of the amplitudes for the lowest excitation levels
for the excited mode M1ND6, whereas, for higher excitation levels, the values are
slightly above the test rig ones. Differently, for the second excited mode M2ND18,
the lowest excitation has the maximum amplitude above the average maximum
test rig value, whereas the highest excitations stand below. The discrepancy is
nevertheless analogue.

It is hard to pinpoint the actual cause, but it might be due to some imprecisions
associated with the contact conditions definition in the contact model. The
introduction of miscroslip and the effect of non-planar contact might improve
catching the nonlinear behaviour and simultaneously adjust the friction energy
dissipation. However, it is not completely clear.

Nonlinear forced response comparison with test rig acceleration ampli-
tude values

In this section, the results showcased in Figure 6.12 and 6.13 display forced response
curves with a comparison between the amplitudes obtained with the simulations
and the maximum amplitude values registered in the test rig with the system
both in acceleration and deceleration. The dashed red line represents the average
maximum values, while the green continuous lines are the maximum of maximum
amplitudes and the minimum of the maximum values.

The plots confirm the comments expressed in the previous subsection.

Participation factor study

Similar to what was presented in the previous participation study subsection,
different solution points are selected on the forced response curve obtained with
reference friction coefficients and analyzed. Figure 6.14 reports the interested plots.

Tables 6.12, 6.13, 6.14, 6.15, 6.16, 6.17 showcase the modal contribution in the
respectives resonances.

Regarding the first two solution points on the excited M1ND6 resonance, the
reduction of the contact area also gave a better alignment with the contributions.
The internal resonance of type 3:1 due to energy transfer from M2ND18 is confirmed.
However, it is still participant a contribution from the M1ND18, likely caused by
the frequency misalignment.

Regarding the excited second resonance M2ND18, there is better alignment
concerning the contribution due to the absence of energy transfer from modes with

5The absolute values are not displayed
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(a) High excitation level - acceleration (b) High excitation level - deceleration

(c) Medium-High excitation level - ac-
celeration

(d) Medium-High excitation level - de-
celeration

(e) High excitation level - acceleration (f) High excitation level - deceleration

Figure 6.12: Nonlinear forced responses - M1EO6 - comparison with test rig
values - central reduced contact area at the shroud and full contact at the fir tree
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(a) Low excitation level - acceleration (b) Low excitation level - deceleration

(c) Medium-High excitation level - ac-
celeration

(d) Medium-High excitation level - de-
celeration

(e) High excitation level - acceleration (f) High excitation level - deceleration

Figure 6.13: Nonlinear forced responses - M2EO18 - comparison with test rig
values - central reduced contact area at the shroud and full contact at the fir tree
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(a) M1EO6 (b) M2EO18

Figure 6.14: Nonlinear forced responses - Solution points study - central reduced
contact at the shroud and full contact at the fir tree

different nodal diameters. However, the presence of energy transfer from mode 1 is
still a possible consequence of the frequency misalignment.

Friction coefficient comparison

This subsection presents a parametric study to assess the influence of the friction
coefficients on the forced response curves. Figure 6.15 displays the resonances.

(a) M1EO6 (b) M2EO18

Figure 6.15: Nonlinear forced responses - Friction coefficient parametric study -
central reduced contact at the shroud and full contact at the fir tree

The plots exhibit the friction coefficient influence on the resonance amplitudes
and slightly on the nonlinear behaviour (curve shape). Based on the results, it was
decided to adopt a friction coefficient of 1.5 ∗ µref at the shroud for the subsequent
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studies. For computational reasons (see section 6.4.3), the mistuning simulations
require tying the contact interfaces at the fir tree.

6.2.3 Contact model at the shroud (Central reduced contact
area) and tied fir tree

As shortly disclosed in the previous sections and will be thoroughly explained in a
later chapter 6.4.3, the computational burden associated with combining mistuning
and nonlinearities in an FEA is particularly heavy. Even the introduction of ROM
by selecting a sufficient number of retain modes to not affect the accuracy and
the introduction of the OPS for the contact interfaces is not enough to permit a
feasible analysis of the FE problem. A solution is to reduce the number of nonlinear
equations involved in the mathematical problem. Considering the importance of
the shrouds over the fir trees’ contact interfaces on the nonlinear dynamics, it was
decided to tie the dovetails’ surfaces.

In this section, the plots provide the results of the FEA of models with the
assumption of cyclic symmetry to have material to compare with the results later
presented of the FEA nonlinear mistuned model.

Figure 6.16 displays the nonlinear forced response. Similarly to the previous
section, the plots amplitudes are normalized on the left and kept with their absolute
values on the right.

Similarly to the case where contact models are implemented both at the shroud
and fir trees’ interfaces, there is a strong inaccuracy with the amplitude level,
especially for the lowest excitations. For the excited mode M1ND6 and the
lowest excited resonance, the maximum amplitude is almost 13 times the average
maximum value registered in the test rig. At the higher excitation levels, the
maximum amplitudes are only around 2.5 times higher than the test rig value. In
the same way, for the excited mode M2ND18, the disproportion is kept but with
different ratios.

Figures 6.17 and 6.18 display the plots of the resonances separately, so that it
is easier to compare the amplitudes and frequencies with respect to the test rig
values.

Figure 6.19 showcases the plots of all the resonances together. In this way, the
influence of friction at the fir tree is assessed over the nonlinear behaviour (shape
of the curve) and the maximum amplitude level (friction damping).

The forced responses of the excited mode M1ND6 are more affected by the tying
of the fir trees’ contact surfaces in both shape and friction damping. For the lowest
excitation, the maximum amplitudes pass from being around 9 times than the
test rig reference value to 13 times. At higher excitation levels, the ratio changes
from 1.5 to around 2.5. The forced responses for the excited mode M2ND18 seem
unaffected concerning friction damping.

83



Results

(a) M1EO6 - normalized frequencies and
absolute amplitudes

(b) M1EO6 - normalized frequencies and
amplitudes

(c) M2EO18 - normalized frequencies
and absolute amplitudes

(d) M2EO18 - normalized frequencies
and amplitudes

Figure 6.16: Nonlinear forced response - central reduced contact area at the
shroud and tied fir tree - comparison of different excitation levels
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6.2 – Results of the simulations with the model in cyclic symmetry

(a) Low excitation level - acceleration (b) Low excitation level - deceleration

(c) Medium-High excitation level - ac-
celeration

(d) Medium-High excitation level - de-
celeration

(e) High excitation level - acceleration (f) High excitation level - deceleration

Figure 6.17: Nonlinear forced responses - M1EO6 - central reduced contact area
at shroud and tied fir tree
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(a) Low excitation level - acceleration (b) Low excitation level - deceleration

(c) Medium-High excitation level - ac-
celeration

(d) Medium-High excitation level - ac-
celeration

(e) Medium-High excitation level - ac-
celeration

(f) Medium-High excitation level - accel-
eration

Figure 6.18: M2EO18 - Nonlinear forced responses - normalized plots - central
reduced contact area at shroud and tied fir tree
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6.2 – Results of the simulations with the model in cyclic symmetry

(a) M1EO6 - normalized frequencies and
amplitudes

(b) M1EO6 - normalized frequencies and
absolute amplitudes

(c) M2EO18 - normalized frequencies
and amplitudes

(d) M2EO18 normalized frequencies and
absolute amplitudes

Figure 6.19: Nonlinear forced responses comparison
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Results

6.3 Results of the simulations with modal stiff-
ness mistuned model

This section presents the results of the nonlinear modal stiffness mistuned FE
model where only contact interactions at the shroud (central reduced contact area)
have been implemented mathematically.

As explained before, for the study have been used three different modal stiffness
mistuning patterns based on the linear frequency distribution of the blades registered
in the test rig 6.2.

6.3.1 Linear eigenfrequencies of the free-undamped system
Tables 6.18, 6.19 and 6.20 show the results of the free-undamped system analysis by
adopting the three different mistuning distributions (Figure 6.2). When mistuning
is involved, the "nodal diameter" notation relative to the travelling wave coordinate
system loses significance since the complete system has to be solved. However, the
software Oragl-NOSTIA-ROCMAN can fictitiously match the frequencies with the
corresponding modes to help the engineer identify them.

Interestingly, using the frequency distribution of the registered mode M1ND6
in both acceleration and deceleration, the software identified three different eigen-
frequencies associated with the mode M2ND18. It may be a mistake since the
eigenfrequencies present in couple, but the importance is relative. It may suggest
the presence of a modal density region with close linear frequencies. For the mode
M1ND6, the frequency discrepancy is around 8.7% with respect to the test rig
value, whereas for the mode M2ND18 is around 12%.

Using the frequency distribution registered for the mode M2ND18, the software
did a better identification, and the frequency alignment improved as well, with a
discrepancy setting to around 6.3% for both modes.

6.3.2 Nonlinear forced response
The following plots report the results of the modal-stiffness-mistuned nonlinear
forced responses of the system. For computational reasons, each simulation had to
run two times, starting from the left and the right of the resonance. The starting
frequency point needs to fall in an area where the system behaves linearly, or the
software doesn’t find convergence easily.

• Excited mode M1ND6 at a low excitation level with M1ND6 frequency distri-
bution registered during acceleration: Figure 6.20;

• Excited mode M1ND6 at a low excitation level with M1ND6 frequency distri-
bution registered during deceleration: Figure 6.21;
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6.3 – Results of the simulations with modal stiffness mistuned model

• Excited mode M1ND6 at a low excitation level with M2ND18 frequency
distribution registered during acceleration: Figure 6.22;

• Excited mode M1ND6 at a Medium-High excitation level with M1ND6 fre-
quency distribution registered during acceleration: Figure 6.23;

• Excited mode M1ND6 at a Medium-High excitation level with M1ND6 fre-
quency distribution registered during deceleration: Figure 6.24;

• Excited mode M1ND6 at a Medium-High excitation level with M2ND18
frequency distribution registered during acceleration: Figure 6.25;

• Excited mode M1ND6 at a High excitation level with M1ND6 frequency
distribution registered during acceleration: Figure 6.26;

• Excited mode M1ND6 at a High excitation level with M1ND6 frequency
distribution registered during deceleration: Figure 6.27;

• Excited mode M1ND6 at a High excitation level with M2ND18 frequency
distribution registered during acceleration: Figure 6.28;

• Excited mode M2ND18 at a low excitation level with M2ND18 frequency
distribution registered during acceleration: Figure 6.29;

• Excited mode M2ND18 at a Medium-High excitation level with M2ND18
frequency distribution registered during acceleration: Figure 6.30;

• Excited mode M2ND18 at a High excitation level with M2ND18 frequency
distribution registered during acceleration: Figure 6.29;

M1EO6 excited forced responses

Figures 6.20a and 6.20b showcases the results of the forced response of the system
with the mode M1ND6 mistuning pattern distribution registered during acceleration.
The curves exhibit a slight softening behaviour due to the condition of the contact
surfaces (stick-slip-partial separation). A particular nonlinear behaviour stands
out with a small closed branch on the left sides of the curves. Figures 6.20c
and 6.20d display the amplitude distribution obtained by selecting the maximum
amplitude value for each resonance. This distribution suggests a strong localization
of the amplitudes between blades 46 and 60, including blade 1. The other blades
show a periodic alternation. The distribution is completely different from the one
registered in the test rig: see Figures 6.20e and 6.20f. Interestingly, the maximum
amplitude values reached are around 13 times higher than the average maximum
value registered in the test rig, similar to the models in cyclic symmetry.
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In the same way, Figures 6.21 and 6.22 for low excited resonances and mistuning
distributions of M1ND6 registered during deceleration and M2ND18 registered
during acceleration. For these cases, the amplitude localization phenomenon and
the maximum value are analogous to the previous one. The only difference is in
the nonlinear behaviour. In Figure 6.21, the system behaves more linearly, whereas,
for the other mistuning distribution, the nonlinearity tends to localize at the root
of the resonances and at the top (not easily noticeable from the plots, but there are
turning points for both left and right branches with the curve going downward).

Figures 6.23, 6.24 and 6.25 showcase forced responses and maximum amplitude
distributions for the three chosen mistuning patterns with a medium-high excitation
level. In the same way, Figure 6.26, 6.27 and 6.28. Interestingly, the localization
of the amplitudes is similar independently from the mistuning pattern with a
concentration from the blade 49 to 60, including the first one, and a periodic
distribution for the others. In any case, they don’t correspond with the actual
amplitude distribution. Furthermore, it seems that mistuning tends to influence the
nonlinear dynamics. To be more specific, by choosing the mistuning distribution
associated with the mode M1ND6, which is more pertinent for these cases considered
the excitation M1EO6, the forced responses (see Figures 6.23, 6.24, 6.26 and 6.27)
presents just a slight bent toward lower frequencies, suggesting softening. On
the other hand, the forced responses (see Figures 6.25 6.28) obtained with the
mistuning pattern associated with the mode M2ND18 display a strong nonlinear
behaviour with secondary peaks, turning points and also strong variation of the
dynamic contact equilibrium. In fact, on the left branches, it seems to present a
bifurcation point (completely absent in the test rig for stationary conditions but
present during the transient) where the solutions completely change direction and
proceed downward on the left while keeping a strong nonlinear behaviour due to
the fast-changing of the contract states. A similar trend of the curves is present on
the right branches.

The entity of the amplitude level cannot be assessed for these forced responses
as the curves are uncompleted.

M2EO18 excited forced responses

Figures 6.29, 6.30 and 6.32 display the forced responses and the maximum ampli-
tude distributions of the excited mode M2ND18 with different excitation levels.
Differently from the other mode, all the force responses presents a strong softening.
For the lowest excitation level 6.29, the force responses showcases unusual thinness
very different from what was obtained for the cyclic symmetric model. The under-
astimation of the friciton damping. It may be possible that some improvements in
the definition of the contact model should be done. Accounting for example for
phenomena that at low excitation level tend to be predominant as microslip.
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6.3 – Results of the simulations with modal stiffness mistuned model

(a) M1EO6 - Nonlinear forced responses
- normalized axes

(b) M1EO6 - Nonlinear forced responses
- test rig reference - normalized axes

(c) M1EO6 - Amplitude Distribution -
Left branch

(d) M1EO6 - Amplitude Distribution -
Right branch

(e) M1EO6. - Test rig Amplitude Dis-
tribution - Main Resonance M1ND6

(f) M1EO6 - Test rig Amplitude Distri-
bution - Secondary Resonance M2ND18

Figure 6.20: Modal Stiffness Mistuned Model results - Low Ex. - Acceleration -
Reduced contact at the shrouds and tied fir trees
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(a) M1EO6 - Nonlinear Forced Re-
sponses - normalized axes

(b) M1EO6 - Nonlinear forced responses
- test rig reference - normalized axes

(c) M1EO6 - Amplitude Distribution -
Left branch

(d) M1EO6 - Amplitude Distribution -
Right branch

(e) M1EO6 - Test rig Amplitude Distri-
bution - Main Resonance M1ND6

(f) M1EO6 - Test rig Amplitude Distri-
bution - Secondary Resonance M2ND18

Figure 6.21: Modal Stiffness Mistuned Model - Low Ex. - Deceleration - Reduced
contact at the shrouds and tied fir trees
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6.3 – Results of the simulations with modal stiffness mistuned model

(a) M1EO6 - Nonlinear Forced Re-
sponses - normalized axes

(b) M1EO6 - Nonlinear forced responses
- test rig reference - normalized axes

(c) M1EO6 - Low Ex. - Nonlinear Am-
plitude Distribution - Left branch

(d) M1EO6 - Nonlinear Amplitude Dis-
tribution - Right branch

(e) M1EO6 - Test rig Amplitude Distri-
bution - Main Resonance M1ND6

(f) M1EO6 - Test rig Amplitude Distri-
bution - Secondary Resonance M2ND18

Figure 6.22: Modal Stiffness Mistuned Model - Low Ex. - Acceleration Second
Distribution - Reduced contact at the shrouds and tied fir trees
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(a) M1EO6 - Nonlinear Forced Re-
sponses - normalized axes

(b) M1EO6 - Nonlinear forced responses
- test rig reference - normalized axes

(c) M1EO6 - Amplitude Distribution -
Left branch

(d) M1EO6 - Amplitude Distribution -
Right branch

(e) M1EO6 - Test rig Amplitude Distri-
bution - Main Resonance M1ND6

(f) M1EO6 - Test rig Amplitude Distri-
bution - Secondary Resonance M2ND18

Figure 6.23: Modal Stiffness Mistuned Model - Medium-High Ex. - Acceleration
- Reduced contact at the shrouds and tied fir trees
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6.3 – Results of the simulations with modal stiffness mistuned model

(a) M1EO6 - Nonlinear Forced Re-
sponses - normalized axes

(b) M1EO6 - Nonlinear forced responses
- test rig reference - normalized axes

(c) M1EO6 - Amplitude Distribution -
Left branch

(d) M1EO6 - Amplitude Distribution -
Right branch

(e) M1EO6 - Test rig Amplitude Distri-
bution - Main Resonance M1ND6

(f) M1EO6 - Test rig Amplitude Distri-
bution - Secondary Resonance M2ND18

Figure 6.24: Modal Stiffness Mistuned Model - Medium-High Ex. - deceleration -
Reduced contact at the shrouds and tied fir trees

95



Results

(a) M1EO6 - Nonlinear forced responses
- normalized axes

(b) M1EO6 - Nonlinear forced response
- test rig reference - normalized axes

(c) M1EO6 - Amplitude Distribution -
Left branch

(d) M1EO6 - Amplitude Distribution -
Right branch

(e) M1EO6 - Test rig Amplitude Distri-
bution - Main Resonance M1ND6

(f) M1EO6 - Test rig Amplitude Distri-
bution - Secondary Resonance M2ND18

Figure 6.25: Modal Stiffness MIstuned Model - Medium-High Ex. - Acceleration
Second Distribution - Reduced contact at the shrouds and tied fir trees
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6.3 – Results of the simulations with modal stiffness mistuned model

(a) M1EO6 - Nonlinear forced responses
- normalized axes

(b) M1EO6 - Nonlinear forced responses
- test rig reference - normalized axes

(c) M1EO6 - Nonlinear Amplitude Dis-
tribution - Left branch

(d) M1EO6 - Amplitude Distribution -
Right branch

(e) M1EO6 - Test rig Amplitude Distri-
bution - Main Resonance M1ND6

(f) M1EO6 - Test rig Amplitude Distri-
bution - Secondary Resonance M2ND18

Figure 6.26: Modal Stiffness Mistuned Model - High Ex. - Acceleration - Reduced
contact at the shrouds and tied fir trees
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(a) M1EO6 - Nonlinear forced responses
- normalized axes

(b) M1EO6 - Nonlinear forced responses
- test rig reference - normalized axes

(c) M1EO6 - Nonlinear Amplitude Dis-
tribution - Left branch

(d) M1EO6 - Nonlinear Amplitude Dis-
tribution - Right branch

(e) M1EO6 - Test rig Amplitude Distri-
bution - Main Resonance M1ND6

(f) M1EO6 - Test rig Amplitude Distri-
bution - Secondary Resonance M2ND18

Figure 6.27: Modal Stiffness Mistuned Model - High Ex. - deceleration - Reduced
contact at the shrouds and tied fir trees
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6.3 – Results of the simulations with modal stiffness mistuned model

(a) M1EO6 - Nonlinear forced responses
- normalized axes

(b) M1EO6 - Nonlinear forced responses
- test rig reference - normalized axes

(c) M1EO6 - Nonlinear Amplitude Dis-
tribution - Left branch

(d) M1EO6 - Nonlinear Amplitude Dis-
tribution - Right branch

(e) M1EO6 - Test rig Amplitude Distri-
bution - Main Resonance M1ND6

(f) M1EO6 - Test rig Amplitude Distri-
bution - Secondary Resonance M2ND18

Figure 6.28: Modal Stiffness Mistuned Model - High Ex. - Acceleration Second
Distribution - Reduced contact at the shrouds and tied fir trees
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For higher excitation levels (see Figures 6.30 and 6.32), the forced responses are
more bulk and similar. But at medium-high excitation level (see Figure 6.30), the
left branches of the curves don’t match the right ones. It means that the software
found different solutions. Figure 6.31 displays the plots better and can be compared
with Figure 6.33 of the higher excitation level. The question comes rather naturally:
How did it happen, and which is the most stable one? It seems that the starting
frequency point also had an influence. However, MTU Aero Engines will carry out
further investigations in this regard.

6.4 Results of the simulations with geometrical
mistuned model

This section focuses on the results of the geometrical mistuned model. They will
be presented as follows:

• Excited mode M1ND6 at a low excitation level: Figure 6.34;

• Excited mode M1ND6 at a Medium-High excitation level: Figure 6.35;

• Excited mode M1ND6 at a High excitation level: Figure 6.36;

• Excited mode M2ND18 at a low excitation level: Figure 6.37;

• Excited mode M2ND18 at a Medium-High excitation: Figure 6.38;

• Excited mode M2ND18 at a High excitation level: Figure 6.39;

6.4.1 Linear eignefrequencies of the free-undamped system
Table 6.21 showcases linear eigenfrequencies of the geometrical mistuned system.
The software identified the linear frequencies associated with the respective modes
by assigning the fictitious nodal diameter. Based on that assignment, the frequency
discrepancy with respect to the test rig reference value is around 9% for mode
M1ND6 and 12% for mode M2ND18.

6.4.2 Nonlinear forced response
The nonlinear geometrical mistuned forced responses are showcased in Figures 6.34,
6.35 and 6.36 for the excited mode M1ND6, and 6.37, 6.38 and 6.39 for the excited
mode M2ND18.

Regarding the forced responses of the excited mode M1ND6, independently from
the excitation level, the curves exhibit strong nonlinear behaviour with many turning
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6.4 – Results of the simulations with geometrical mistuned model

(a) M2EO18 - Nonlinear forced re-
sponses - normalized axes

(b) M2EO18 - Nonlinear forced re-
sponses - test rig reference - normalized
axes

(c) M2EO18 - Amplitude Distribution -
Left branch

(d) M2EO18 - Nonlinear Amplitude Dis-
tribution - Right branch

(e) M2EO18 - Test rig Amplitude Dis-
tribution - Main Resonance M1ND6

(f) M2EO18 - Test rig Amplitude Distri-
bution - Secondary Resonance M2ND18

Figure 6.29: Modal Stiffness Mistuned Model - Low Ex. - Acceleration - Reduced
contact at the shrouds and tied fir trees
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(a) M2EO18 - Nonlinear forced re-
sponses - normalized axes

(b) M2EO18 - Nonlinear forced re-
sponses - test rig reference - normalized
axes

(c) M2EO18 - Amplitude Distribution -
Left branch

(d) M2EO18 - Amplitude Distribution -
Right branch

(e) M2EO18 - Test rig Amplitude Dis-
tribution - Main Resonance M1ND6

(f) M2EO18 - Test rig Amplitude Distri-
bution - Secondary Resonance M2ND18

Figure 6.30: Modal Stiffness Mistuned Model - Low Ex. - Acceleration - Reduced
contact at the shrouds and tied fir trees
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6.4 – Results of the simulations with geometrical mistuned model

(a) M2EO18 - Nonlinear forced re-
sponses - Left Branch

(b) M2EO18 - Nonlinear Forced Re-
sponses - Right branch

(c) M2EO18 - Nonlinear Forced Re-
sponses

Figure 6.31: M2EO18 - Modal Stiffness Mistuned Model - Medium-High Ex. -
Analysis
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(a) M2EO18 - Nonlinear forced re-
sponses - normalized axes

(b) M2EO18 - Nonlinear forced re-
sponses - test rig reference - normalized
axes

(c) M2EO18 - Amplitude Distribution -
Left branch

(d) M2EO18 - Amplitude Distribution -
Right branch

(e) M2EO18 - Test rig Amplitude Dis-
tribution - Main Resonance M1ND6

(f) M2EO18 - Test rig Amplitude Distri-
bution - Secondary Resonance M2ND18

Figure 6.32: Modal Stiffness Mistuned Model - High Ex. - Reduced contact at
the shrouds and tied fir trees
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6.4 – Results of the simulations with geometrical mistuned model

(a) M2EO18 - Nonlinear forced re-
sponses - Left Branch

(b) M2EO18 - Nonlinear forced re-
sponses - Right branch

(c) M2EO18 - Nonlinear forced re-
sponses

Figure 6.33: M2EO18 - Nonlinear forced responses - High Ex. - Analysis
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points. They suggest the presence of a very complicated dynamic exacerbated by
both mistuning and nonlinearities. The curves obtained by low excitations display
low friction damping, causing the maximum amplitude to reach almost 20 times
the test rig value. It means that the mistuning causes an increase in the response
for some blades with respect to the cyclic symmetric model. The curves obtained
by medium-high and high excitation levels still display a complicated dynamic, but
the maximum amplitudes are unknown due to the incompleteness of the forced
responses. In general, the distributions are overall similar for all excitation levels,
and the localization is analogous to the previous results obtained for the modal
stiffness mistuned models. Furthermore, interestingly, it is noticeable a secondary
peak on the right of the curves.

Regarding the forced responses of the excited mode M2ND18, the plots display a
different mistuning distribution than the previous results. Overall, the localization
shows a concentration of the maximum amplitudes between the 46th and the 60th
blades, including the 1st one. However, for the other blades, the distribution
doesn’t look as periodic as in the previous cases. In any case, the results don’t
match the test rig ones. At the lowest excitation level, the amplitudes stay within
the limits marked by the test rig registered amplitude range. Unfortunately, this
cannot be verified for the other excitation levels since the curves are uncompleted.

6.4.3 Computational Burden
In this section, the computational information is showcased to give an idea of the
necessary RAM and time required to run the simulations.

Tables 6.22, 6.23 and 6.24 display the computational data for the models with
cyclic symmetric boundaries.

Tables 6.25 and 6.26 display the computational data for the modal stiffness
mistuned models and 6.27 of the geometrical mistuned model.
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6.4 – Results of the simulations with geometrical mistuned model

(a) M1EO6 - Nonlinear forced responses
- normalized axes

(b) M1EO6 - Nonlinear forced responses
- acceleration test rig reference - normal-
ized axes

(c) M1EO6 - Amplitude Distribution -
Left branch

(d) M1EO6 - Amplitude Distribution -
Right branch

(e) M1EO6 - Test rig Amplitude Dis-
tribution - Main Resonance M1ND6 -
Acceleration

(f) M1EO6 - Test rig Amplitude Dis-
tribution - Main Resonance M1ND6 -
Deceleration

Figure 6.34: Geometrical Mistuned Model - Low Ex. - Reduced contact at the
shrouds and tied fir trees
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(a) M1EO6 - Nonlinear forced responses
- normalized axes

(b) M1EO6 - Nonlinear forced responses
- acceleration test rig reference - normal-
ized axes

(c) M1EO6 - Amplitude Distribution -
Left branch

(d) M1EO6 - Amplitude Distribution -
Right branch

(e) M1EO6 - Test rig Amplitude Dis-
tribution - Main Resonance M1ND6 -
acceleration

(f) M1EO6 - Test rig Amplitude Dis-
tribution - Main Resonance M1ND6 -
deceleration

Figure 6.35: Geometrical Mistuned Model - Medium-High Ex. - Reduced contact
at the shrouds and tied fir trees
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6.4 – Results of the simulations with geometrical mistuned model

(a) M1EO6 - Nonlinear forced responses
- normalized axes

(b) M1EO6 - Nonlinear forced responses
- acceleration test rig reference - normal-
ized axes

(c) M1EO6 - Amplitude Distribution -
Left branch

(d) M1EO6 - Amplitude Distribution -
Right branch

(e) M1EO6 - Test rig Amplitude Dis-
tribution - Main Resonance M1ND6 -
acceleration

(f) M1EO6 - Test rig Amplitude Dis-
tribution - Main Resonance M1ND6 -
deceleration

Figure 6.36: Geometrical Mistuned Model - High Ex. - Reduced contact at the
shrouds and tied fir trees
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(a) M2EO18 - Nonlinear forced re-
sponses - normalized axes

(b) M2EO18 - Nonlinear forced re-
sponses - acceleration test rig reference -
normalized axes

(c) M2EO18 - Amplitude Distribution -
Left branch

(d) M2EO18 - Amplitude Distribution -
Right branch

(e) M2EO18 - Test rig Amplitude Dis-
tribution - Main Resonance M2ND18 -
acceleration

(f) M2EO18 - Test rig Amplitude Dis-
tribution - Main Resonance M2ND18 -
deceleration

Figure 6.37: Geometrical Mistuned Model - Low Ex. - Reduced contact at the
shrouds and tied fir trees
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6.4 – Results of the simulations with geometrical mistuned model

(a) M2EO18 - Nonlinear forced re-
sponses - normalized axes

(b) M2EO18 - Nonlinear forced re-
sponses - acceleration test rig reference -
normalized axes

(c) M2EO18 - Amplitude Distribution -
Left branch

(d) M2EO18 - Amplitude Distribution -
Right branch

(e) M2EO18 - Test rig Amplitude Dis-
tribution - Main Resonance M2ND18 -
acceleration

(f) M2EO18 - Test rig Amplitude Dis-
tribution - Main Resonance M2ND18 -
deceleration

Figure 6.38: Geometrical Mistuned Model - Medium-High Ex. - Reduced contact
at the shrouds and tied fir trees
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(a) M2EO18 - Geometrical Mistuned
Model - normalized axes

(b) M2EO18 - Geometrical Mistuned
Model - acceleration test rig reference -
normalized axes

(c) M2EO18 - Amplitude Distribution -
Left branch

(d) M2EO18 - Amplitude Distribution -
Right branch

(e) M2EO18 - Test rig Amplitude Dis-
tribution - Main Resonance M2ND18 -
acceleration

(f) M2EO18 - Test rig Amplitude Dis-
tribution - Main Resonance M2ND18 -
deceleration

Figure 6.39: Geometrical Mistuned Model - High Ex. - Reduced contact at the
shrouds and tied fir trees
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6.4 – Results of the simulations with geometrical mistuned model

Resonance Excitation
level Solution Point

Normalized
Oscillation
Frequency
Ωosc,n

Normalized
Amplitude

M1EO6 High Green 1.117 0.58

Temporal Har-
monic n 1st

Normalized
Oscillation
Frequency
Ωosc,n

1.117

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 6 1.214 10−5 10−4

2 6 / 10−6 10−6

Temporal Har-
monic n 2nd

Normalized
Oscillation
Frequency
Ωosc,n

/

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 12 / 10−5 10−5

Temporal Har-
monic n 3rd

Normalized
Oscillation
Frequency
Ωosc,n

1.127

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 18 / 10−5 10−6

2 18 1.68 10−6 10−6

Temporal Har-
monic n 6th

Normalized
Oscillation
Frequency
Ωosc,n

/

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

2 36(24) / 10−5 10−7

Table 6.4: M1EO6 - High excitation level - Solution Point study
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Results

Resonance Excitation
level Solution Point

Normalized
Oscillation
Frequency
Ωosc,n

Normalized
Amplitude

M1EO6 High Red 1.1576 1.235

Temporal Har-
monic n 1st

Normalized
Oscillation
Frequency
Ωosc,n

1.235

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 6 1.214 10−4 10−5

Temporal Har-
monic n 3rd

Normalized
Oscillation
Frequency
Ωosc,n

1.168

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 18 / 10−6 10−5

2 18 1.68 10−6 10−5

Table 6.5: M1EO6 - High excitation level - Solution Point study

Resonance Excitation
level Solution Point

Normalized
Oscillation
Frequency
Ωosc,n

Normalized
Amplitude

M2EO18 High Blue 1.5 0.255

Temporal Har-
monic n 1st

Normalized
Oscillation
Frequency
Ωosc,n

1.5

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 18 / 10−6 10−7

2 18 1.687 10−5 10−5

Table 6.6: M2EO18 - High excitation level - Solution Point study
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6.4 – Results of the simulations with geometrical mistuned model

Resonance Excitation
level Solution Point

Normalized
Oscillation
Frequency
Ωosc,n

Normalized
Amplitude

M2EO18 High Orange 1.42 0.348

Temporal Har-
monic n 1st

Normalized
Oscillation
Frequency
Ωosc,n

1.42

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 18 / 10−5 10−5

2 18 1.687 10−5 10−5

Temporal Har-
monic n 3rd

Normalized
Oscillation
Frequency
Ωosc,n

1.42

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 108 (12) / 10−5 10−6

Table 6.7: M2EO18 - High excitation level - Solution Point study
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Results

Resonance Excitation
level Solution Point

Normalized
Oscillation
Frequency
Ωosc,n

Normalized
Amplitude

M2EO18 High Green 1.42 0.356

Temporal Har-
monic n 1st

Normalized
Oscillation
Frequency
Ωosc,n

1.42

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 18 / 10−6 10−5

2 18 1.687 10−5 10−5

Temporal Har-
monic n 3rd

Normalized
Oscillation
Frequency
Ωosc,n

/

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 54(6) 1.214 10−6 10−5

6 54(6) / 10−5 10−5

Table 6.8: M2EO18 - High excitation level - Solution Point study
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6.4 – Results of the simulations with geometrical mistuned model

Resonance Excitation
level Solution Point

Normalized
Oscillation
Frequency
Ωosc,n

Normalized
Amplitude

M2EO18 High Red 1.424 0.401

Temporal Har-
monic n 1st

Normalized
Oscillation
Frequency
Ωosc,n

1.424

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 18 / 10−5 10−5

2 18 1.687 10−6 10−5

Temporal Har-
monic n 3rd

Normalized
Oscillation
Frequency
Ωosc,n

/

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 54(6) 1.214 10−6 10−5

6 54(6) / 10−5 10−5

Table 6.9: M2EO18 - High excitation level - Solution Point study
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Results

Resonance Excitation
level Solution Point

Normalized
Oscillation
Frequency
Ωosc,n

Normalized
Amplitude

M2EO18 High Violet 1.625 0.1505

Temporal Har-
monic n 1st

Normalized
Oscillation
Frequency
Ωosc,n

1.625

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 18 / 10−6 10−6

2 18 1.687 10−5 10−5

Temporal Har-
monic n 3rd

Normalized
Oscillation
Frequency
Ωosc,n

/

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 54(6) 1.214 10−6 10−5

6 54(6) / 10−5 10−5

Table 6.10: M2EO18 - High excitation level - Solution Point study

Mode Free-undamped-system Damping Nodal Discrepancy [%]
linear normalized frequency ratio Diameter

1 1.0858 0 6 8.58
2 1.1276 0 18 12.76

Table 6.11: Comparison of linear-frequencies discrepancy between simulations
and test-rig values
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6.4 – Results of the simulations with geometrical mistuned model

Resonance Solution Point

Normalized
Oscillation
Frequency
Ωosc,n

Normalized
Amplitude

M1EO6 Blue 1.092 1.0827

Temporal Har-
monic n 1st

Normalized
Oscillation
Frequency
Ωosc,n

1.092

Mode
Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 1.086 10−4 10−4

Temporal Har-
monic n 3rd

Normalized
Oscillation
Frequency
Ωosc,n

1.112

Mode
Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 / 10−6 10−6

2 1.139 10−5 10−5

Table 6.12: Comparison of linear-frequencies discrepancy between simulations
and test-rig values
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Resonance Solution Point

Normalized
Oscillation
Frequency
Ωosc,n

Normalized
Amplitude

M1EO6 Orange 1.076 1.3555

Temporal Har-
monic n 1st

Normalized
Oscillation
Frequency
Ωosc,n

1.076

Mode
Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 1.086 10−4 10−5

Temporal Har-
monic n 3rd

Normalized
Oscillation
Frequency
Ωosc,n

1.112

Mode
Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 / 10−6 10−6

2 1.139 10−5 10−5

Table 6.13: Comparison of linear-frequencies discrepancy between simulations
and test-rig values

Resonance Solution Point

Normalized
Oscillation
Frequency
Ωosc,n

Normalized
Amplitude

M2EO18 Blue 1.0905 0.485

Temporal Har-
monic n 1st

Normalized
Oscillation
Frequency
Ωosc,n

1.0905

Mode
Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 / 10−5 10−6

2 1.127 10−5 10−4

Table 6.14: Comparison of linear-frequencies discrepancy between simulations
and test-rig values
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6.4 – Results of the simulations with geometrical mistuned model

Resonance Solution Point

Normalized
Oscillation
Frequency
Ωosc,n

Normalized
Amplitude

M2EO18 Orange 1.087 0.5

Temporal Har-
monic n 1st

Normalized
Oscillation
Frequency
Ωosc,n

1.087

Mode
Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 / 10−5 10−6

2 1.127 10−5 10−4

Table 6.15: Comparison of linear-frequencies discrepancy between simulations
and test-rig values

Resonance Solution Point

Normalized
Oscillation
Frequency
Ωosc,n

Normalized
Amplitude

M2EO18 Green 1.093 0.494

Temporal Har-
monic n 1st

Normalized
Oscillation
Frequency
Ωosc,n

1.093

Mode
Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 / 10−5 10−6

2 1.127 10−5 10−4

Table 6.16: Comparison of linear-frequencies discrepancy between simulations
and test-rig values
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Results

Resonance Solution Point

Normalized
Oscillation
Frequency
Ωosc,n

Normalized
Amplitude

M2EO18 red 1.109 0.442

Temporal Har-
monic n 1st

Normalized
Oscillation
Frequency
Ωosc,n

1.109

Mode
Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 / 10−6 10−5

2 1.127 10−5 10−5

Table 6.17: Comparison of linear-frequencies discrepancy between simulations
and test-rig values

Mode Free-undamped system linear nor-
malized frequencies Reference Nodal Diameter

1 1.087418 6
1 1.087429 6
2 1.121675 18
2 1.122121 18
2 1.123329 18

Table 6.18: Linear free-undamped-system frequencies for modal stiffness mistuned
model with register test-rig linear frequency distribution pattern of M1ND6 excited
mode in deceleration

Mode Free-undamped system linear nor-
malized frequencies Reference Nodal Diameter

1 1.087415 6
1 1.087443 6
2 1.1217 18
2 1.1222 18
2 1.1232 18

Table 6.19: Linear free-undamped-system frequencies for modal stiffness mistuned
model with register test-rig linear frequency distribution pattern of M1ND6 excited
mode in acceleration

122



6.4 – Results of the simulations with geometrical mistuned model

Mode Free-undamped system linear nor-
malized frequencies Reference Nodal Diameter

1 0.93996 6
1 0.93674 6
2 0.936931 18
2 0.936943 18

Table 6.20: Linear free-undamped-system frequencies for modal stiffness mistuned
model with register test-rig linear frequency distribution pattern of M2ND18 excited
mode in acceleration

Mode Free-undamped-system linear nor-
malized frequencies Reference Nodal Diameter

1 1.09139 6
1 1.09399 6
2 1.12074 18
2 1.12453 18

Table 6.21: Linear free-undamped-system normalized frequencies for geometrical
mistuned model

Type cyclic symmetry (1 sector needed)
Substructure division no
Contact at shroud yes (49 nodes)
Contact at fir tree yes (332 nodes)
PRE

N° of retained linear modes for
substructure

50

RAM requested ≈ 24 GB
Computational time ≈ 5.5 hrs
SOLVE

RAM requested < 10 GB
Computational time 50 ÷ 250 hrs

Table 6.22: Computational data for cyclic symmetric model - full contact at
shroud and fir tree
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Results

Type cyclic symmetry (1 sector needed)
Substructure division no
Contact at shroud yes (9 nodes)
Contact at fir tree yes (332 nodes)
PRE

N° of retained linear modes for
substructure

50

RAM requested ≈ 24 GB
Computational time 5 ÷ 10 hrs
SOLVE

RAM requested < 10 GB
Computational time 30 ÷ 110 hrs

Table 6.23: Computational data for cyclic symmetric model - reduced contact at
shroud and full contact at fir tree

Type cyclic symmetry (1 sector needed)
Substructure division no
Contact at shroud yes (9 nodes)
Contact at fir tree no
PRE

N° of retained linear modes for
substructure

50

RAM requested ≈ 20 GB
Computational time ≈ 4 hrs
SOLVE

RAM requested < 10 GB
Computational time < 1 hr

Table 6.24: Computational data for cyclic symmetric model - reduced contact at
shroud and tied fir tree
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6.4 – Results of the simulations with geometrical mistuned model

Type modal-stiffness mistuning (60 sectors)
Substructure division yes (blade and disk)
Contact at shroud yes (6 nodes*60)
Contact at fir tree yes (332 nodes*60)
PRE

N° of retained linear modes for
substructure

20

N° of retained linear modes for
secondary ROM

150

RAM requested ≈ 1.3 TB
Computational time ≈ 100 hrs
SOLVE

RAM requested > 2 TB (Likely 3TB)
Computational time < Unknown (Weeks)

Table 6.25: Computational data for modal stiffness mistuned model - reduced
contact at shroud and full contact at fir tree

Type modal stiffness mistuning (60 sectors)
Substructure division yes (sectorial)
Contact at shroud yes (9 nodes*60)
Contact at fir tree no
PRE

N° of retained linear modes for
substructure

20

N° of retained linear modes for
secondary ROM

150

RAM requested < 200Gb
Computational time ≈ 3 hrs
SOLVE

RAM requested < 150 GB
Computational time < Unknown (> 600 hrs)

Table 6.26: Computational data for modal stiffness mistuned model - reduced
contact at shroud and tied fir tree
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Results

Type modal stiffness mistuning (60 sectors)
Substructure division yes (blade and disk substructures)
Contact at shroud yes (9 nodes*60)
Contact at fir tree no
PRE

N° of retained linear modes for
substructure

20

N° of retained linear modes for
secondary ROM

150

RAM requested < 200Gb
Computational time ≈ 3 hrs
SOLVE

RAM requested < 150 GB
Computational time < Unknown (> 600 hrs)

Table 6.27: Computational data for geometrical mistuned model - reduced contact
at shroud and tied fir tree
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Chapter 7

Conclusions

OrAgL-NOSTIA-ROOCMAN software condenses the most up-to-date techniques
to accomplish FEA of bladed disk problems, giving us the possibility to analyze
complicated dense mistuned nonlinear models by using HBM in the frequency do-
main, the Dynamic Lagrangian method to model the contact interactions and the
continuation procedure to build the nonlinear resonant branch. The obtained free
and forced response results were unsatisfying overall but shed light on issues regard-
ing optimization, opening the question of possible room for numerical improvement,
a topic that the researcher developers of the software and engineers in MTU Aero
Engines will further investigate for the next period. An important discovered
numerical factor is the influence of the nonlinear solver initial frequency point on
the stability of the continuation method, causing many convergence problems when
associated with severe nonlinear behaviour. Other possible improvements of the
software that may help from a computational perspective can be the introduction of
new ROM techniques such as the one in [86] or the introduction of a static-coupled
approach as published in [70], however, expertise on the possible implementation is
needed and the efficiency tested against the actual techniques.

Extremely important in the design, often overlooked, is the mesh quality. In our
models, some elements had very low Jacobian Ratios close to zero and may have
influenced the accuracy of both static and dynamic results: natural frequencies,
mode shapes, stresses and displacements. Regarding the geometrical mistuned
model, the geometries were adapted to the BLS scan blades only at the airfoil,
excluding some holes, likely influencing the accuracy of the results. Employing
a better quality of the BLS scanned blades and adapting the geometries to the
shrouds (including the contact areas) and the blade roots would definitely improve
the results. Regarding the nonlinear contact conditions, some improvements can
be the addition of a microslip model and the possibility of accounting for non-flat
contact surfaces, as well as contact mistuning. The contact mistuning requires
an effective identification method from a deterministic standpoint for correct
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Conclusions

results. Statistical models provide an alternative solution. Regarding the blade-to-
blade mistuning, the discrepancy between the modal stiffness mistuned and the
geometrical mistuned model free and forced response results suggested that the
identification technique used to select the modal stiffness mistuning pattern by
using the linear eigenfrequency distribution may not be the most effective way,
especially since more mistuning distributions were available. However, by studying
the results globally from the maximum amplitude distributions, it looks like a
similar pattern of localization is registered between the different mistuned-model-
forced-response results. This factor may suggest a possible alignment between
them. If both models caught the main mistuning effectively, then the airfoil is
sufficient to represent the mistuning effect in terms of the combination of mass and
stiffness. In the geometrical mistuned model, the BLS scans of the blade shrouds
and dovetails would have likely improved the alignment with the test rig results
by adding the effect of contact mistuning and non-planarity of the contact areas.
These claims need to be verified with a more comprehensive analysis, which MTU
will probably carry out in the future.

Regarding the contact parameters, the friction coefficient uncertainty still re-
mains at the centre of the discussion, and adding a variable value based on the
contact pressure may represent a possible improvement despite the increase in
computational effort. More generally, the knowledge of the nonlinear frictional
behaviour is still partly limited [90] and particularly the value assumed by the
static friction forces. Despite the hurdles, the research keeps putting effort into
shedding more light on the development of identification and modelling techniques.
In general, the assumption of a constant friction coefficient may be a sufficient
hypothesis if the purpose is to study the main dynamic effects of a system. Indeed,
as we noticed from the results, it affected both amplitude and nonlinear behaviour,
but it wasn’t correlated to a major friction dissipation that would have aligned the
results better.

In conclusion, in front of us, there is still a long way before we can analyze a
complete system by accounting comprehensively for all parameters and factors.
However, thanks to the efficiency and efficacy of the research, we will get there
eventually. By watching what we have done in the last 50 years, we can only
imagine what we’ll be able to do after the next 50.

To paraphrase a citation of Dr. Andreas Hartung during a conference: "Despite
the new technologies for more environmentally sustainable engines, it looks like
we’ll keep talking about bladed disk dynamic for a while".
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Appendix A

Description and governing
equations

Nowadays, geometrical complicated bladed disks are modelled and discretized by
finite elements, and the resolution of the static or dynamic equations requires finding
the unknown, namely the values of the nodal displacements. Studying the system’s
steady-state vibrations requires the imposition of the static condition (centrifugal,
thermal and fluid pressure loads) by fixing the rotational speed. The centrifugal
load involves large deformation and causes the closure of the contact interfaces of
the mechanical joints, and the contact pressures define the normal-static preload
at the interfaces. The nonlinear behaviour depends on these pressures. The
governing equations of motion are written on the assumption of small vibrations,
thus having a linear description of the mechanical elastic and inertia forces. The
only nonlinearities are in the contact mechanical joints and are local. However,
large deformations require accounting for geometrical nonlinearities, losing the
linearar description of the elastic forces. The vibrational motion of the structure
is defined from the static reference condition by the vector of nodal displacement
feu. The vector is sector-wise organized. If Ns is the total number of sectors
and l refers to the specific sector, the nodal displacement associated with the
sector l is (l)

feu. Considered that 0 ≤ l ≤ Ns − 1, the nodal displacement vector is
organized as

è(0)
feuT · · · (Ns−1)

feuT
é
. Each structural element within the sector (blade,

disk, dampers and so on) can be separated, and the vector displacements can be
arranged consistently to the separation.

The governing equations of motion are :

feM feü(t) + feD feu̇(t) + feK feu(t) + fefc [feu] = fefa (feü, feu̇, feu, t) (A.1)

The equations described are second-order ODE in feu. The differentiation with
respect to time t is denoted with the dot. The mass, damping and stiffness matrices
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Description and governing equations

are denoted with the symbols feM, feD, feK respectively. The nonlinear contact
forces acting on intra and inter sectors are denoted as fefc. The square brackets [·]
indicate the hysteretic behaviour of the nonlinear contact forces due to dry friction
(generally Coulomb model). It means that they are not an explicit function of the
displacements and velocities at the instant time, but they depend on the history
of those variables. The insertion of these forces characterizes the problem within
the non-smooth dynamics problems due to the non-smooth characteristic of the
nonlinear contact forces. The aerodynamical forces are denoted as fefa.

The forces fefc and fefa are organized accordingly to the displacement vector.
If nfe,n is the number of degrees of freedom within each sector, the total number of
degrees of freedom is sfe = ql=Ns−1

l=0 sfe,l. The dimension of the displacement and
force vectors is sfe × 1.

The mass matrix feM describes the inertia of the system and hence is associated
with the acceleration vector. It is symmetric and positive-definite. The stiffness
matrix feK describes the elastic behaviour of the system. The elastic forces
are proportional to the displacement vector. Similar to the mass matrix, it is
symmetric but positive-semidefinite 1 (possible rigid body modes associated with
zero eigenvalues). The damping behaviour of the system is contained in the
damping matrix feD and is associated with velocity proportional forces. More
generally, the matrix may contain a symmetric part related to the damping of the
system and a skew-symmetric part related to the Coriolis forces. For the problem
studied, the matrix contains only damping terms. The damping is associated with
the dissipative behaviour of the system and cannot be derived from conventional
FEA, like the mass and stiffness matrix. In general, material damping is weak
with respect to other damping mechanisms but not neglectable if the only present
damping. Due to their weakness, the material damping forces are modelled linearly
in the constant damping matrix. For this reason, the matrix is symmetric and
positive-semidefinite. Another type of linear damping is linear-hysteretic damping,
associated with the hysteretic character of the dissipative forces obtained from
free-decay experiments in terms of logarithmic decrements. More generally the
damping forces can have a non-viscous (velocity-proportional) character.

When referring to bladed disks but more generally to periodic structure, if all
sectors have identical aerodynamical, material, geometrical and contact properties,
they have cyclic symmetry and ideal rotational periodicity [4]. The structural
matrices are block circulant.

1A matrix is positive semi-definite when is squared with a mix of positive and zero eigenvalues

130



Description and governing equations

Travelling-wave reference system

It is typical to use complex arithmetic to study periodic vibrations due to the
benefits and available methods to simplify and solve the problem in the frequency
domain by exploiting the properties of complex exponential representation. That
said, it is assumed a periodic vibration with fundamental frequency Ω in the
physical coordinate system,

u(t) = ℜ
I ∞Ø
n=0

U ne
inΩt

J
= u(t) = ℜ

I ∞Ø
n=0

U n [cos (nΩt) + i sin (nΩt)]
J

(A.2)

Un denotes the complex-valued amplitudes of the displacement vector in the
complex Fourier series representation. The integer n ∈ N denotes the tempo-
ral harmonics or temporal wave numbers and defines multiple of the oscillation
frequency.

Let’s assume having a linear free-undamped system in the frequency domain
(We are still referring to the generalized coordinate with respect to the FE DOFs,
so the subscript fe is omitted):

([K] − ω2[M ]){U}eiω t = {0} (A.3)

The Fourier representation is simplified for the harmonic case. The problem is
analogous to:

([K] − ω2
N [M ]){Φ}eiω t = {0} (A.4)

where the mass matrix [M ] is a block-diagonal matrix, the stiffness matrix [K] is
a block-circuit matrix [4], ω2

N are the eigenvalues with ωN the system’s natural
frequency and Φ are the eigenvectors which represent the mode shapes of the system.
A system with identical sectors (cyclic symmetric solid) has different modeshape
types. By rigidly rotating the system’s normal mode of a sector angle ϕ = 2π/Ns,
the modeshape should remain the same. This is obvious for two real types of
modeshapes with Φ(l) = Φ(l+1) or Φ(l) = −Φ(l+1). However, there is another type
of normal mode. Let’s assume having a modeshape Φ′ obtained through a rigid
rotation of Φ of a sector angle amplitude. These two eigenvectors are associated
with the same eigenvalue and are not necessarily orthogonal to each other 2. So
that Φ′ is an eigenvector, there must be exist another one âΦ that is orthogonal to
Φ such as is true Φ′ = a{Φ} + b{âΦ}. It means that {Φ′} is a linear combination of
the two other orthogonal eigenvectors. Assuming the eigenvectors normalized3, it
must be that {Φ′}T{Φ′} = 1, from which a2 + b2 = 1. Automatically, we can assign

2The internal product of the eigenvector is equal to zero.
3The modul is equal to 1
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Description and governing equations

a = cos(ϕ) and b = sin(ϕ). It is also true that will exist another eigenvector such
that is true the relationship {âΦ′} = −b{Φ} + a{âΦ}. In fact:

{âΦ′}T{Φ′} = 0 (A.5)

. In conclusion:I
Φ′âΦ′

J
=

C
INJcos(ϕ) INJsin(ϕ)

−INJsin(ϕ) INJcos(ϕ)

D I
ΦâΦ

J
= [Rϕ]

I
ΦâΦ

J
. (A.6)

Where INJ is the identity matrix of dimensions sfe × sfe. The matrix [Rϕ] is the
rotational matrix. Each sector displacement vector is obtainable through a rigid
rotation from the adjacent displacement vector. Essentially,I

Φ(Ns)âΦ(Ns)

J
= [Rϕ]

I
Φ(1)âΦ(1)

J
(A.7)

, and I
Φ(1)âΦ(1)

J
=

NsÙ
l=1

[Rϕ]
I

Φ(1)âΦ(1)

J
. (A.8)

If we introduce the complex numbers, and we define a = 1 and b = i, the linear
combination of the real eigenvectors is a complex eigenvector, from which we can
write {Θ} = {Φ} + i{âΦ} and {Θ′} = {Φ′} + i{âΦ′}. With complex algebra, the
rotation involves the complex exponential:

{Θ′} = Θe−iϕ (A.9)

. It is demonstratable that a substitution leads to the rotational relationship in
A.6. With real modeshapes, each system’s points vibrate in phase between each
other, reaching together the maximum amplitude and then zero. With complex
modeshapes, the physical displacements are associated with the real part of the
normal mode, and the displacement homologous points on the Ns identical sector
reach an amplitude depending on the phase shift ϕ, defining a travelling wave
behaviour. To conclude, real eigenvectors are associated with single eigenvalues,
whereas complex eigenvectors show in couples and are associated with the same
eigenvalue. After Ns rotations, we need to obtain the same eigenvector, and
therefore:

Nϕ = 2πk (A.10)
From which:

ϕ = k
2π
Ns

(A.11)

. The phase ϕ is called the Inter-Blade Phase Angle (IBPA), and the parameter k
is the harmonic index (nodal diameter or spatial wave number). The relationship
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Description and governing equations

A.11 says that the phase shift, and therefore the dephasing of the amplitudes of
homologous points of adjacent sectors, depend on the index k. Let’s assume that the
main oscillation is along the rotational axis with the direction entering the screen
or paper (clockwise rotation), and each sector point will oscillate mainly along this
direction. If we consider the sector numbering going counterclockwise (opposed
to the rotation), a point in the first sector can have the identical amplitude of a
homologous point in the Nsth sector. Otherwise, it can have the same amplitude
of a homologous point in the (Ns − 1)th sector or the (Ns − 2)th sector, and so on.
These are different modeshapes associated with complex eigenvectors, which depend
on the harmonic index. A practical approach to understanding the harmonic index
is to divide the structure into a number of diameters (that’s why it is also called
nodal diameter) equal to the number of sectors Ns at the most. At each diameter,
the amplitude at a homologous point is zero. So, the number of possibilities depends
on whether the number of sectors is even or odd. If Ns is even, then:

k = 0,1,2, ..., Ns/2−2, Ns/2+1, Ns/2, Ns/2+1, Ns/2+2, ..., Ns−2, Ns−1 (A.12)

or

k = −Ns/2 + 1,−Ns/2 + 2, ...,2,−1,0,1,2, ..., Ns/2 − 2, Ns/2 − 1, Ns (A.13)

If Ns is odd, then:

k = 0,1,2, ..., (Ns−1)/2−1, (Ns−1)/2, (Ns−1)/2+1, Ns/2+2, ..., Ns−1 (A.14)

or

k = −(Ns − 1)/2,−(Ns − 1)/2 + 1, ...,−2,−1,0,1,2, ...(Ns − 1)/2 − 1, (Ns − 1)/2
(A.15)

When IBPA is zero ϕ = 0, the harmonic index is also zero k = 0, and the
eigenvector is real, corresponding to a standing wave. In this case, homologous
points of adjacent sectors have the same amplitude value. If the IBPA is ϕ = π, the
harmonic index is k = Ns/2, and the eigenvector is real, corresponding to a standing
wave. In this case, homologous points of adjacent sectors have opposite values. In
all other cases, the eigenvectors show in couples corresponding to a travelling wave.
Interestingly, two modeshapes associated with two opposed identical harmonic
indexes are identical travelling waves but with an opposite rotation. For this reason,
it is sufficient to calculate the modeshapes associated with positive harmonic indexes
or until k = N2 or k = (Ns − 1)/2.

The relationships are shortly displayed in Table A.1. BTW stands for backward
travelling wave, FTW for forward travelling wave and SW for standing wave.

The values of the parameters c−
NS

and c+
NS

depend on whether the number of
sectors is even or odd:

c−
Ns

=
I

Ns

2 − 1 Ns even
Ns−1

2 Ns odd (A.16)

133



Description and governing equations

k ϕk Wave Form
{0} {0} SW
[1, c−

Ns
] ]0, π[ BTW

Ns

2 for even Ns {π} SW
[c+
Ns
, Ns − 1] ]π,2π[ FTW

Table A.1: Cyclic symmetry parameters (Krack [97])

and
c+
Ns

=
I

Ns

2 + 1 Ns even
Ns+1

2 Ns odd (A.17)

The relationship between complex eigenvectors is the following:

{Θ(l)} = {Θ(l−1)}eih
2π
Ns , (A.18)

In the same way for the complex displacement amplitudes:

{U (l)} = {U (l−1)}eik
2π
Ns {U (l−1)} = {U (l)}e−ik 2π

Ns . (A.19)

The equations of motion of the fundamental sector are expressable as follows:

(−ω2[M (k)
tw ] + [K(k)

tw ]){U (l)
tw )} = 0. (A.20)

The subscript tw stands for "Travelling Wave Coordinate System". By solving
the equations in A.20 and by using the relationship A.19, we can calculate the
eigenfrequencies and eigenvector of the complete system.

Our objective is to obtain the equations of a single sector in A.20. Considering
the sector l, the DOFs at the interfaces with the adjacent sectors are the DOFs
involved in the cyclic transformation. The equations of motion of the sector l are:

(−ω2[M ](l) + [K](l)){U}(l) = 0, (A.21)

and the complex amplitude vector is:

{U (l)} =


U (l)
r

U
(l)
i

U
(l)
l

 =


U (l)
r

U
(l)
i

U (l+1)
r

 . (A.22)

Figure A.1 is a simple illustration of the left and right sector’s boundaries. The left
boundaries of the sector l correspond to the right boundaries of the sector l + 1.
The relationship allows the substitution of the left boundaries. The procedure leads
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Figure A.1: Simple illustration of left and right sector’s boundaries (Krack [97])

to the transformation matrix [Pk]:

{U (l)} =


U (l)
r

U
(l)
i

U (l+1)
r

 =

 Isr 0
0 Isi

Isre
ih 2π

Ns 0

 I
U (l)
r

U
(l)
i

J
= [Pk]{U (l)

tw }. (A.23)

The matrixes in A.20 are obtained as:

[M (k)
tw ] = [Pk]T [M (k)][Pk] [K(k)

tw ] = [Pk]T [K(k)][Pk]. (A.24)

Conditions to have the travelling-wave type of vibrations are [97]:

• rotational periodicity of the system: mistuning effects must remain negligible;

• No coupling between travelling waveforms due to aeroelastic effects;

• the exciting force is of travelling wave type: i.e. synchronous aeroelastic
excitation of different EOs.

• no strong nonlinear effects: they can disrupt the travelling-wave characteristic
of the vibration (dry-friction contacts introduce nonlinearities that generally
don’t cause this problem).

Both vectors and matrixes undergo the transformation to the travelling-wave
coordinate system.

In physical coordinates, the mass, stiffness and damping matrices (i.e. for the
zeroth sector) have the following structure:

A =

 All Ali 0
ATli Aii ATri
0 Ari Arr

 , A ∈ {(0)
feK,

(0)
feD,

(0)
feM} (A.25)

The subscript ll and rr account for the coupling within each boundary, and the ii
within the inner volume. The subscripts li and ri account for the coupling between
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inner volume and boundaries. It is assumed that there is no coupling between
left and right boundaries because they are disjunct. Based on the considered
wavenumber k, hence IBPA ϕk, the transformation for conformed meshes 4 between
boundaries is the following:

twAk = PH
k

(0)
feAPk, A ∈ {K,D,M} (A.26)

The superscript H indicates that the matrix is Hermitian 5. The matrix twAk has
a size sfe,l × sfe,l. For non-conforming meshes, a more general formulation has to
be applied.

The matrices in A generally are made of two components: a block circulant A
and a deviation ∆A.

A = A + ∆A (A.27)

The transformation of the equations of motion A.1 in the travelling-wave coordinate
system leads to:

twM twü(t) + twD twu̇(t) + twK twu(t) + twfc [twu] = twfa (twü, twu̇, twu, t)
− tw∆M twü(t) − tw∆D twu̇(t) − tw∆K twu(t)

(A.28)

Krack [97] with the above description Eq. A.28 represents the problem in the
travelling wave coordinate system, providing a more general representation suitable
for both frequency and time domains. The frequency domain is useful for studying
periodic solutions (discretization of the displacement with complex Fourier series)
in stationary conditions and counts on effective methods such as HBM and MHBM.
However, the time domain requires direct time integration (such as the shooting
method) and is suitable for studying transients (such as run-ups and run-downs).
The forces in the travelling wave coordinate system have the following form twf =
[twfT0 ··· twfTns−1]T , f ∈ {fefc, fefa}. In the travelling-wave coordinate system the block
circulant matrix A (block circulant in the physical coordinate system) will assume
a block diagonal form twA = bdiag{twAk}, the perturbation matrices tw∆Ak will
be instead fully populated. The block circulant matrices twMk, twDk, twKk can be
obtained from the matrices of the reference sector by applying cyclic boundary
condition of the type u(0)

l = u(0)
r eiθk . These matrices are assumed symmetric in

the physical coordinates; in the travelling-wave coordinates, they are hermitian

4the mesh that defines the left cyclic boundaries needs to perfectly match the mesh of the
right boundaries of the adjacent sector

5A complex vector is Hemirtian if the transpose of its conjugate is equal to the original vector
itself
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(twAk = twA
H
k ). They are real-valued, and, in the travelling-wave form, they present

in complex conjugate pairs twAk = twA
∗
j for corresponding IBPAs (θk = 2π − θj).

It is possible to divide the problem into decoupled subproblems based on the
"k-th" wave component if:

• Each sector has identical structural properties (fe∆M = fe∆D = fe∆K = 0)

• The aerodynamic and nonlinear forces are linear with respect to feu and feu̇
and functionally identical in the form for each sector.

The exciting force will excite specific travelling wave components, inducing a
non-trivial response.

In case of mistuning and strong nonlinearities, the subproblems cannot be
decoupled for individual wavenumber k. With mistuning, the periodicity of the
vibrations breaks, and there is localization of the vibration. With small perturba-
tions |∆A| ≪ |A|, the problem representation expressed in A.28 can be exploited
to introduce sector-to-sector deviations.

In general, nonlinearities may cause coupling between wave components, specifi-
cally higher harmonics both in time and space can be excited, leading to energy
transfer and energy localization in the nonlinear internal resonance [97]. For strong
linearities, the nature of the response can also change from the travelling wave type
to the standing wave type. In general, for weakly nonlinear cases and tuned systems,
the periodicity of the excitation is propagated to the response. The nonlinear force
term in this way will allow the reduction of the model to the reference sector with
the boundary conditions.

Aerodynamical synchronous exciting force

The turbine bladed disk is subjected to a pressure field as an external exciting force.
Assuming that the pressure field is fixed in space and constant in time (uniform
and stationary), the presence of upstream disuniformity and instability, nozzles
rows, casing ovality and asymmetries of inlet and outlet distorts the axisymmetric
property of the pressure field. We can assume that these excitations are symmetric
around the circumference. A generic point in the system rotating at speed ωrot
feels a pressure that changes with time but reaches the initial value at the end of
a cycle. If the pressure field is stationary, then the exciting force is periodic, and
all sectors are equally excited with time lag ∆t between two adjacent sectors. In
general, if the rotational speed is constant and we define the spaced angle α, the
exciting force by using the Fourier Series is:

F (l)(α) = F0 +
Ø
EO

F (EO)cos(EOα+ δ) (A.29)
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Where EO (EO ∈ N+) represents the engine order of the excitation or the generic
component of the excitation. Since α = Ωrott, the pulsation of the exciting force ω
depends on the EO of the excitation such as ω = EOΩrot. The time lag will be
∆t = 2π/(ΩrotNs). A force at the adjacent sector will be felt after the time lag so
(t− ∆t), and therefore:

F (l+1) = F (EO)cos(ωt− ψ + δ) (A.30)

Where ψ = ω∆t = EO 2π
Ns

. By using the complex notation, the force on the l-th
sector is:

F (l) = F (EO)eiω te(iδ) = F
EO
eiω t (A.31)

Between two adjacent sectors:

F
(l+1) = F

(l)
e−iψ (A.32)

In general:

{FEO
tw } =


IJ

IJe
−iΨ

...
IJe

−i(Ns−1)Ψ

 {FEO} (A.33)

The excitation can be represented on the Campbell diagram as in 2.4 through
a straight line starting from the origin with a slope depending on the EO. Let’s
consider the problem in the frequency domain:

(−ω2[M ] + iω[D] + [K]){U} = F (A.34)

It is demonstrated that in a cyclic symmetric system, the only possible excited
modes are those such as EO = k.

The steady fluid pressure field is associated with the zeroth engine order, already
accounted for in the static analysis.

In the case of multi-EO excitation, the force with a complex truncated Fourier
series discretization has the following form:

fefae(t) =
Ø

EO∈M
feF

EO
ae eiEOΩrott (A.35)

In this representation, feFae,eo defines the aerodynamic complex force amplitudes
applied to the full-bladed disk. Among the engine orders EO ∈ M, the fundamental
engine order EO0 is defined as the greatest common divisor EO0 : gcdM. If there
is single-EO, with EO = 5 then m0 = 5, if there is multi-EO, with EO = 5 and
EO = 6, then EO0 = 1. This is especially useful for the nonlinear predictions.
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If the pressure field is known, the Fourier transform is exploited to obtain the
different engine order components of (0)

feFae:

(0)
feF

EO
ae = 1

2π

Ú
2π

Ú
(0)Sb

ηS(x)p(x, t)dA eiEOΩrott d(Ωrott). (A.36)

The time-dependent fluid pressure field is p(x, t) and the blade surface Sb. Between
the other symbols, ηS(x) is the vector of finite element shape functions associated
with the vector of nodal displacements (0)

feu, restricted to the surface normal
direction. Here, we avoid the details about the implementation for the purpose of
computation.

Contact interactions

Bladed disks present mechanical dry contact interactions at shrouds, dovetails
and friction dampers. Actual accurate contact behaviour is not yet possible, and
research is still working on it; for this reason, the modelling of the contact behaviour
requires a set of assumptions:

• No material transportation (i.e. due to wear or diffusion);

• No effect on the temperature field.

Based on the direction, the contact interactions are divided between:

• normal contact: related to unilateral interactions;

• tangential contact: related to frictional interactions.

The modelling of these interactions requires the analysis of different aspects:

• distinction between static and dynamic contact problems;

• contact discretization (kinematics, kinetics);

• contact laws;

• solution approaches.

The distinction between static and dynamic contact problems is related to the
deformation and behaviour of the interfaces. The blades subjected to static forces
such as centrifugal load undergo large deformations, and from the static analysis,
we can gather information about:

• the deformed shape;

• the active contact regions;
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• the contact situation (pressure and clearance distribution)

The active contact region will change their behaviour during the vibrations
(dynamic condition): sticking, slipping and lift-off. If the pressure is very high, the
contact areas will remain in a sticking condition, leading chiefly to a linear dynamic
behaviour in the forced response. The change in the operational rotational speed
will affect the static equilibrium, requiring an update of the information obtained
from the static analysis (such as contact pressure at the dovetail).

The discretization of the contact problem is necessary to represent the contact
behaviour of the discretized contact area of the FE model. There are different
types of discretization techniques. The more generalized is the Mortar-Like method
used to describe the contact behaviour with non-conforming meshes. The simplest
formulation is a lumped formulation where the displacement of the interacting FE
surfaces is constrained to certain rigid body movements. A highly refined mesh
discretization may not necessarily lead to a better contact behaviour representation
[97], but a more accurate stress calculation. The discretization level tries to meet
both numerical computational efficiency and sufficient convergence. Krack [97]
provides a simple explanation of the contact laws, which will be presented herein.
Examples of the application of contact laws and kinematics are provided in [65]
and [102].

The contact points are those points where the contact laws are applied (nodes
for simpler models and integration points for more complex ones), while the contact
gaps, cgq, are the relative displacements between two contact points Pq1 and Pq2

referred to contact pair q (interacting surfaces). In a three-dimensional contact
model, the contact gap has the following formulation:

cgq =
C
gn,q
gt,q

D
, cg =


cg1
·
·
·

cgnc

 (A.37)

Considering the small-vibrations assumption, the relationship between the contact
gap and the coordinates u (either travelling wave or physical) is liner:

cg = BTu. (A.38)

In a bladed disk, the inter-sector coupling defines a pair q. Based on the symmetry
assumptions, the phase-lag boundary conditions are applicable, passing into a
travelling-wave coordinate system.

The contact force is obtained by integration of the local contact pressure distri-
bution p(x) = [pn pTt ]T . The left subscript C denotes the union of contact surfaces.
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The contact force will be:

fc =
Ú
C

b(x) p(x)dA

≈
ncØ
k=1

b(xk) p(xk)∆Ak = Bλ
(A.39)

Where λq = p(xq)∆Aq and b(x) is the union of shape function restricted to
C. It relates the nodal coordinates in u with the relative displacement field
g(x) = bT (x)u. The contact laws define a relationship between p and g and their
derivatives.

The contact laws define a relationship between the local contact kinetics (pressure
and force) and the local kinematics (gap and gap velocity). The study is divided
into:

• Normal contact;

• Tangential contact.

In normal contact, the unilateral contact law is assumed. With this assumption,
the interpenetration between the surfaces is not allowed. During the vibration, the
normal load influences the friction limit load, thus the tangential contact interactions.
Furthermore, the dynamic contact behaviour will be affected depending on the
static starting condition (open contact or close contact). In the case of open contact,
the oscillation may lead to interaction between the surfaces, while in the case of
close contact, the oscillation may lead to lift-off. Rigid and linear-elastic contact
laws may both express the contact kinematic. From a mathematical point of view,
the rigid formulation is as follows:I

pn = 0 ∧ gn − gn,0 ≥ 0 separation
pn ≤ 0 ∧ gn − gn,0 = 0 contact (A.40)

In the elastic formulation, the contract law is regular:

pn =
I

0 gn − gn,0 ≥ 0 separation
kn(gn − gn,0) gn − gn,0 < 0 contact (A.41)

kn is the normal stiffness per area value. The subscript "n" denotes the normal
direction.

The tangential contact is characterizable by the sticking and slipping conditions.
The friction is dissipative and is the primary source of damping in mechanical
joints.

The characteristic of the common friction law with constant normal load and
harmonic one-dimensional tangential motion is the steady-state hysteresis. However,
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generally, the normal load is not a constant value and is one-dimensional, while
the tangential motion is two-dimensional, and the decoupling is needed.

A common law to model the behaviour of the contact motion in bladed disks is
the Coulomb law (rigid or elastic). Both the variants distinguish between sliding
and sticking states but neglect the microslip regime, typically present in the case of
compliant bodies subjected to high normal loads. The mathematical formulation
of the rigid Coulomb law is the following:I

ġt = 0 ∧ ∥pt∥ < µ|pn| sticking
ġt /= 0 ∧ pt = µ|pn| ġt

∥ġt∥ sliding (A.42)

Since pn ≤ 0, pt points into the direction of −ġt during slipping. In the context
of blade vibration, to simplify the calculations, there is no distinction between
the static and dynamic friction coefficients, while in tribology, the two values are
distinct.

The elastic Coulomb is a regular law, different from the set-value law for rigid
contact. The hysteretic character of pt follows the differential equation:

dpt =
I
ktdgt ∥pt + ktdgt∥ ≤ µ|pn| sticking

0 ∥pt + ktdgt∥ > µ|pn| sliding (A.43)

kt is the scalar tangential stiffness per area value and is isotropic. Anisotropic
friction will require kt to be a two-dimensional matrix.

In general, it is possible to choose a rigid or compliant contact law model. The
finite element discretization accounts for the macroscopic geometry and does not
capture the surface roughness. By using a rigid contact law, it is possible to
account for compliance by adding an artificial stiffness (normal and tangential)
in the model. In this way, it is easier to neglect compliance by neglecting the
artificial stiffness. The lumped discretization, typical of penalty contact methods,
follows this philosophy. It considers the contact interface as rigid in the model
of the underlying bodies and accounts for compliance in the contact model. The
parameters kn and kt represent the added structural stiffness.

The solution approach to resolve the contact problem depends on the chosen
contract law. In the elastic formulation, the contact law is regular, and the problem
is a set of ODEs solvable by standard methods. If contact stiffness is of order
higher than that of the underlying structure, the ODEs become "stiff", leading to
ill-conditioning and requiring a finer time discretization.

In the rigid formulation, however, the problem is that set-valued ODEs must be
solved by accounting for the complementary inequalities typical of penalty methods.
A constraint optimization problem arises, leading to an approximate solution.
With a linear penalty term, the problem is equivalent to the elastic formulation.
In the elastic formulation, the normal and tangential stiffness have a physical
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interpretation, while in the penalty rigid formulation, the penalty coefficients are
just a mathematical parameter. This coefficient must be high enough to guarantee
a non-violation of the contact constraints, leading to numerical stiffness. Therefore,
for rigid contact laws for non-smooth problems, more robust numerical methods
are available, i.e. the augmented Lagrangian method. The reformulation of the
problem into non-smooth thanks to massless supplementary nodes attached to
contact points can help to overcome the numerical difficulties associated with
high-stiffness compliant models.

To summarize, the reguarized and non-smooth formulations are available for
rigid and compliant models. For the rigid contact model, penalty methods offer
regularization, resulting in stiff ODEs, whereas the non-smooth formulation requires
a standard approach. The complaint model is already regular, and the stiffness
depends on the model itself. The non-smooth formulation requires a reformulation
by using supplementary nodes.

Computation of the problem

The nonlinear equations of motion of bladed disk models with frictional joints are
not solvable using analytical or semi-analytical techniques exactly. Although with
piecewise linear contact law, it is possible to solve the equations with piecewise
integration, the transition times between the contact states are not at priori known,
and their determination from the transition conditions requires the solving of
transcendental equations. These are not solvable exactly. It means that approximate
solutions are required by exploiting numerical methods.

There are two ways to solve this kind of problem:
• time integration methods based on quadrature rules: initial values are defined,

and the unknowns evolve accordingly with the differential equation. For contact
problems, the methods are divided between event-driven and time-stepping.

• frequency methods: generally spectral methods where the generalized coordi-
nates are approximated with base functions.

Contact problems generally carry numerically stiff ODEs and a tiny time-
integration step size may be required to compute the solution, leading to high
computational demands. Therefore, time integration methods are not ideal for
studying the nonlinear bladed disk dynamics. Frequency methods are preferred
in this context, helping save computational cost and time. There are different
available methods to compute the periodic vibrations of bladed disks. They are
computationally efficient since they transform the initial value problem into a
two-point boundary value problem. Between these methods:

• Shooting methods: A set of nonlinear algebraic equations is solved with respect
to the unknown initial values (generalized coordinates and velocities). The
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time integration method is applied to solve the problem and find the values
at the end of the period. The initial values need to satisfy the periodicity
conditions.

• Spectral methods: The generalized coordinates and velocities are approximated
by base functions, which must be periodic. The approximation leads to an
error that is made orthogonal with respect to selected weights (test) functions.
The projection leads to a set of nonlinear equations in the unknown coefficients.

Soothing methods, different from direct-time integration, don’t consider the
transient regime, making it advantageous for the computation of their weak damping.
This property makes it suitable to study problems with non-smooth contacts, albeit
these methods are rarely implemented to study the nonlinear dynamics of blade
disks with frictional contact.

Spectral methods don’t generally rely on time integration and exploit the base
weight functions to approximate the generalized coordinates. A careful selection
of these functions may help reach high efficiency and accuracy. Between these
methods, there are the Galerkin methods. The most popular is the Harmonic
Balance Method with harmonic base functions.

Harmonic Balance Method

The harmonic Balance method is a frequency method used to compute periodic
solutions of ODEs. The generalized coordinates u(t) are approximated with a
truncated complex Fourier Series with a maximum number nh of temporal harmonic:

u(t) ≈ ℜ
I Ø
n∈H

Une
inΩt

J
(A.44)

n is the temporal harmonic, H = {0, ..., nh} is the set of harmonics, Ω is the
fundamental vibration frequency and Un are the complex valued amplitudes. The
substitution of this approximation in the equations of motion will produce an error
term, then made orthogonal to the base functions. That is possible by ensuring
that the Fourier components of the residual term are zero according to the Fourier-
Galerkin projection. For each temporal harmonic, a set of nonlinear algebraic
equations has to be solved in the unknowns un. The equations of motion in A.1
are expressed as follows:è

−(nΩ)2Mn + inΩDn + Kn + Gai,n(nΩ)
é

ü ûú ý
Sn(Ω)

Un

+Fc,n(U0, ...,Unh
,Ω) = Fae,n ∀n ∈ H

(A.45)
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The matrix Sn is called dynamic stiffness (or impedance), the matrices Mn, Kn, Dn

are the structural matrices, the matrix Gai,n is the aeroelastic transfer matrix, and
Fc,n and Fae,n are the complex-valued amplitudes of the forces. In the travelling
wave coordinate system the matrices depend on the wave number k: twMk, twKk,
twDk, twGai,k. The wave number k depends on the temporal harmonic n and
the fundamental wave number k0 by the congruence rule: k = n k0 modns. The
complex-valued amplitudes of the forces are related to the time-domain counterparts.

The fundamental wave number k0 and the fundamental oscillation frequency
depend on the engine order EO. For a single-EO excitation, the fundamental wave
number corresponds to EO. The oscillation frequency is determined by Ωosc = k0Ωrot.
Depending on the notation, if the temporal harmonic n is different from 1, then
the oscillation frequency is also multiplied by this value.

Rewriting the Eq. A.45 using the dynamic stiffness,

S(Ω)U + Fc(U,Ω) = Fae (A.46)

Another version is:
U + H(Ω)Fc(U,Ω) = Uae (A.47)

H = S−1 is the dynamic compliance (or receptance, or FRF) matrix. Eq. A.46
is a balance of generalized forces, whereas Eq. A.47 is a balance of generalized
displacements.

The harmonic balance methods can also suffer from convergence problems, and
its application to solve non-smooth problems can raise contradictions since the
approximation of the generalized coordinates has a C∞ class of differentiability,
whereas for a non-smooth problem that is limited [97]. However, for the global
behaviour analysis of the nonlinear non-smooth system, the Harmonic Balance
Method can predict the response with sufficient accuracy.

The number of harmonics in the truncation of the Fourier Series must be enough
to represent the solution with sufficient accuracy. The number of harmonics also
depends on the level of excitation.

In the case of multi-EO excitation, it may be necessary to consider at least
harmonic k1 = EO1 and K2 = EO2 to capture accurately the excitation but also
their multiples, and in general, the combination of harmonics z1 k1 + z2 k2 with
z1, z2 ∈ Z. The smallest set H should capture the dynamic behaviour with sufficient
accuracy. The consideration of high-order contributions is a useful practice for
predicting precisely the nonlinear (local stick, slip and lift-off) behaviour of the
contact interfaces in the forced response. For contact problems, the static balance
(zeroth harmonic) defines the initial contact conditions to describe accurately the
settling and realigning of the contact interface and the static deflection typical for
breathing contact, which involves dynamic opening and closing of the interfaces.
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Treatment of nonlinear forces in Harmonic Balance method

Krack [97] offers a simple but simultaneously accurate review of the treatment of
the nonlinear contact forces within the HBM method. So, we will mainly refer to
its article for the description.

A common technique within the harmonic balance formulation is to express
the nonlinear forces as a function of the generalized coordinates, treating them
implicitly and not explicitly as unknowns. The harmonics of the nonlinear contact
forces Fc need to be expressed as a function of U. It is also possible to have
a formulation with the Fc as the only unknown. Since the nonlinear forces are
less smooth than the generalized coordinates, a higher number of harmonics for
higher accuracy is preferable. However, treating them as an implicit function of
the generalized coordinates requires less harmonics with equal accuracy. One of
the main challenges is the numerical evaluation of the relationship Fc(U). Three
aspects complicate the computation:

• the relationship is set-valued: it is advantageous to use the Dynamic Lagrangian
formulation;

• presence of different contact states stick, slip and liftoff;

• hysteretic behaviour of the friction force.

A Dynamic Lagrangian representation allows the implementation of an alternat-
ing frequency-time scheme Alternating frequency-time AFT scheme to compute the
contact forces Fc in the analysis. Essentially, the nonlinear forces are calculated in
the time domain at discrete time steps, and there is a conversion to the frequency
domain for the computation of the complex Fourier amplitude of the generalized
coordinates, according to the mathematical formulation:

Fc = DFT [fc(iDFT [U0, ...,Unh
])]. (A.48)

The DFT and (i)DFT symbols denote the Discrete Fourier Transform and its
inverse, respectively. Computationally, the DFT is the Fast Fourier Transform
(FFT) that requires a defined set H of n harmonics for Un. And only the amplitude
Fc related to these harmonics will be computed. The AFT has an inherent
discretization error, and the accuracy and computational effort depend on the
number of time steps per period.

The hysteretic behaviour of the contact forces fc cannot be expressed as a
function of the generalized coordinates u and velocities u̇, but depends on the
elastic Coulomb law. Since the purpose is to study the steady-state vibration, it
is important to determine the steady-state hysteresis cycle for the given periodic
input u(t) achieved by letting the fc evolve from a starting point on the initial
loading curve to the final steady-state cycle.
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Both normal and tangential conditions are implemented depending on the
formulation, which can be:

• an elastic formulation: elastic Coulomb law for friction and elastic unilateral
contact law for normal contact;

• a rigid formulation: set-valued Coulomb law for friction and set-valued unilat-
eral contact law for normal contact.

In the case of elastic formulation, the term fc[u] is regular and has a simpler
evaluation. In the case of rigid formulation, the term leads to an optimization
problem due to the set-valued force laws. For this reason, a suitable algorithm is
the Dynamic Lagrangian method [101]. In the Augmented Lagrangian method,
the contact forces are evaluated only as a function of the primary displacement
variable.

The difference between the elastic and rigid formulation is in the definition of the
predicted sticking force (input variable of the force computation algorithm). This
force is defined by its harmonic components. For the normal contact, the sticking
force Λst,n in the elastic formulation is equal to kngn, while in the DL formulation
is equal to −Rlin,n + ϵDL,ngn. Rlin corresponds to the linear residual. Instead, the
tangential contact force Λst,t can be displacement-based or velocity-based. In the
displacement-based, elastic formulation, the force is equal to ktgt, while in the DL
formulation to −Rlin,t + ϵDL,tgt. For the velocity-based formulaiton only the DL
form exists: Rlin,t + ϵDL,t ▽ gt. The formulations are presented by considering the
force and not the pressure.

Even the lagrangian formulation presents penalty coefficients (ϵDL,n and ϵDL,t),
but, differently from the penalty-based method, they don’t influence the convergence
behaviour but rather the mathematical conditioning.

In the DL formulation, the linear part of the residual is obtained as follows:
Rlin := SU − Fae (A.49)

In the rigid formulation (DL included), all the non-contact terms (inertia, damping,
elastic and excitation forces) enter the contact forces computation differently from
the elastic formulation, where only the contact deformation enters the contact force
computation.

In the DL formulation, in the case of the sticking condition, the contact gaps
are zero (gn = 0 and gt = 0). Therefore, Λst,n = −Rlin,n and Λst,t = −Rlin,t.

With the AFT method, the frequency domain quantities Λst,n and Λst,t are
transformed in the time domain via iFFT as λst,n,i and λst,t,i, where i denotes the
instant time. These are the time samples of the predicted sticking forces.

In the case of normal contact, the actual contact force is:

λn,i =
I

0 if N0 + λst,n,i < 0 (separation)
λst,n,i if N0 + λst,n,i ≥ 0 (contact) (A.50)
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N0 denotes the normal preload. The normal gap gn,0 has a negative value, and
therefore the preload must be defined with a minus sign: N0 = −kngn,0 for the
elastic formulation, or N0 = −ϵDL,ngn,0.

In the displacement-based formulation for both elastic and DL variants, the
tangential contact force is computed as follows:

λt,i =


λpre,t,iú ýü û

λt,i−1 + λst,t,i − λst,i,i−1 if ∥λpre,t,i∥ < µ|N0 + λn,i| (sticking)
µ|N0 + λn,i| λpre,t,i

∥λpre,t,i∥ if ∥λpre,t,i∥ ≥ µ|N0 + λn,i| (sliding)
0 if N0 + λn,i = 0 (separation)

(A.51)
The computation requires knowing the normal contact force. The tangential contact
force at the instant i depends on the tangential force at the previous instant i− 1,
leading to an interactive scheme. The iteration stops at the steady-state hysteresis
cycle.

In the velocity-based formulation (only for the DL variant):

λt,i =


λst,t,i if ∥λst,t,i∥ < µ|N0 + λn,i| (sticking)

µ|N0 + λn,i| λst,t,i

∥λst,t,i∥ if ∥λpre,t,i∥ ≥ µ|N0 + λn,i| (sliding)
0 if N0 + λn,i = 0 (separation)

(A.52)

In this case an iteration is not needed.
Known the steady-state time history values of λn,i and λt,i, the DFT is applied

to obtain the harmonic components of the contact forces in the frequency domain.
For the elastic variant, the contact laws are commonly formulated directly as a

function of gaps rather than the predicted sticking force.

Newton method

The application of the Harmonic Balance method results in a nonlinear algebraic
problem. The resolution of the periodic motion of nonlinear dynamical systems
requires the application of a specific solver. The purpose is to obtain:

R(X) = 0 (A.53)

Where X is the vector of unknown and R is the residual vector function, which is
different from zero if X is not the exact solution.

Many methods require real arithmetic for X; in the frequency domain, the
unknowns are complex-valued, specifically complex amplitudes U that can be split
into real and imaginary parts and gathered in the vector X.

Most nonlinear problems are not solvable with exact analytical solutions and
require an approximation. Global methods allow computing all problem solutions,
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while local methods find only single solutions near an initial guess. Between local
methods, there is the Newton method and the group of pseudo-time solvers. The
latter group are typical for CFD and fluid-structure interaction problems.

The Newton method involves the solution of a linear set of equations:
∂R
∂XT |X=Xm(Xm+1 − Xm) = −R(Xm). (A.54)

m denotes the current iteration number. The current guess is Xm, and the objective
is to obtain the new guess Xk+1. Defined the initial guess X0, a series of iterations
is performed as long as the norm of the residual (Jacobian matrix) is below a
specified tolerance: ∥R(Xm)∥ < ϵ.

The Newton method is gradient-based and requires the computation of the
gradient of the residual with respect to the vector of the unknown. The associated
computational effort may be high since the solution is retained at each iteration but
praises good convergence behaviour in the neighbourhood of the solution. However,
convergence is not always guaranteed. Some new methods have been developed to
reduce the computational cost. They bypass the calculation of the residual like the
Jacobian-Free-Newton-Krylov, based on the Newton-Like method that exploits the
Krylov subspace to compute the equation A.54.

There is another group of methods, quasi-Newton methods, that calculate an
approximation of the Jacobian without updating at each iteration. That reduces
the iteration computational effort, guaranteeing also reduced convergence and
iterations. An alternative is the approximation of the inverse of the Jacobian,
necessary to calculate the next correction of the vector of unknowns. It updates at
each iteration based on the available quantities but without a recalculation at each
step.

An alternative to these methods within the gradient-based is to calculate the
Jacobian analytically simultaneously with the evaluation of the residual R, thus
accelerating the calculation. The challenging part is represented by the derivation
of the nonlinear forces Fc with respect to the unknowns. The AFT scheme is
applied and involves the FFT and iFFT:

∂Fc

∂x
= FFT

C
∂fc(u, u̇)

∂x
+ ∂fc(u, u̇)

∂uT
· IFFT

C
∂U
∂x

D
+ ∂fc(u, u̇)

∂uT
· IFFT

C
∂∇U
∂x

DD
.

(A.55)
x is an arbitrary real-valued variable.

In friction-damped systems with local nonlinearities, the friction forces fc act and
depend on only a subset cg of the generalized coordinates u (cg ∈ u). Therefore,
the nonlinear term Λ and associate gradients are sparse, a property exploited by
the exact condensation procedure, not further treated herein.

When studying the nonlinear vibrational behaviour of bladed disks coupled by
friction joints, it is commonly of interest to analyze the influence of the variation of

149



Description and governing equations

a certain parameter, for example, the oscillation frequency. The problem to solve
is:

R(X, ρ) = 0, ρ ∈ [ρmin, ρmax]. (A.56)

ρ = Ωosc if the oscillation frequency is the interested parameter. A set of connected
solutions X(ρ) is denoted solution branch. A common technique to compute
the solution branch is to exploit numerical (path) continuation methods, which
facilitate the iterating computation by accounting for the known solution points.
The advantage of continuation is to allow passing the turning points, where the
nonlinear dynamic is more complicated and in the presence of bifurcation (the
existence of multiple solutions for the same value of ρ). However, the detection of
separated branches requires a different approach (global approach).

Two possible continuation methods are:

• Predictor-Corrector Method;

• Asymptotic Numerical method.

We will focus only on the first method since the second one has a limitation: it
cannot be applied to systems with dry friction and unilateral contact nonlinearities.
It is necessary to regularize the nonlinearities analytically.

The predictor-corrector method obtains the next predicted solution point starting
from a defined previous solution point and goes forward in a step ∆s into a specified
direction. This direction can be a tangent of the previous solution point or a secant
(of two previous solution points). Since the predicted step doesn’t lie on the solution
branch, a correction is required to find the solution point. Newton’s method is
used for this purpose. Herein, the parameter ρ is considered unknown, making the
problem in Eq. A.56 underdetermined. Consequently, it requires the imposition
of a constraint. There are three possible ways. The first way uses arc length
parametrization to ensure the next solution point has the specified distance ∆s
from the current solution point. The second requires forcing the point to lie in
the hyperplane through the predicted point, orthogonal to the tangent. The third
uses local parametrization to fix the unknown to its previously predicted value.
In general, the tangent predictor step scheme and the arc-length parametrization
scheme are used in combination in the procedure. It is also possible to adapt the
step size ∆s, automatically reducing the computational effort in case of too-small
steps and ensuring fast convergence by avoiding too-large steps.

The first solution point is necessary to start the continuation procedure and
is computed through local methods, which also require an initial guess for the
iteration process. The success and rapidity of the convergence depends on how
distant is the initial guess from the solution. In some cases, the exact solution
is known for a certain parameter ρ. In a frequency response analysis, the upper
and lower frequencies in the considered range are most likely in a linear regime
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where the contact points are either sticking or separating. Within that range, the
convergence is generally guaranteed.

Another important aspect is the scaling of the unknowns. In fact, considering
the equation Eq. A.53, the unknown can assume a numerically different order
of magnitude, especially if different physical quantities are treated as unknown
variables (i.e. oscillation frequency Ω and generalized coordinates). If the distance
in the order of magnitude is too high, then convergence problems may arise. Hence,
linear scaling can be applied to the unknowns so that they assume a matching
order of magnitudes, improving the rate of convergence and behaviour.

Nonlinear modes concept

The nonlinear modes represent the autonomous behaviour of nonlinear systems
in the absence of excitation forces and self-excitations typical of operative condi-
tions. In general, they describe the periodic motions of the autonomous system.
Nonlinearities can present in different ways. When associated with friction, the
associated damping causes the autonomous vibrations to be aperiodic, decaying
with time. In this case, nonlinear modes are more appropriate since they represent
a generalization of the motion. The nonlinear normal modes suggest modes that are
orthogonal between each other, according to Rosenberg’s definition [96], property
appliable only to symmetric conservative systems. With friction damping, the
system is nonconservative. Krack [97] proposes that nonlinear conservative systems
have nonlinear periodic modes induced by a negative damping term large enough
to compensate for the inherent dissipation (periodic motion concept). This concept
allows the exploitation of standard methods for the computation and stability
analysis of the periodic motion, including the harmonic balance method and the
shooting method.

The nonlinear modal analysis (free system) calculates the vibrational modes of
the system. An important aspect of such systems is the dependence of the modal
properties (modes, deflection shapes, natural frequencies, damping ratio) on the
vibrational level. In the case of external excitation, the resonance is characterized by
frequency shift, change in the effective damping and localization due to nonlinear
effects. Another aspect is the nonlinear modal interactions induced by energy
exchanges between two or more modes induced internally by the nonlinear forces.
That can influence the system’s dynamic with secondary maxima and isolated
branches. High harmonic content can lead to detrimental effects on effective
damping.

Mistuning

When the system’s rotational periodicity is perturbed due to sector variation of
aerodynamical, geometrical, material and contact (also contact surface conditions)
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properties, then the system is said mistuned (or detuned). There are two types of
mistuning:

• small mistuning: material inhomogeneities, wear and small variations in
stiffness properties;

• large mistuning: FOD and some cases of fatigue cracks.

During the operation, wear and tear can cause mistuning to increase or decrease.
Also, assembling and disassembling the bladed disk wheel will change the wear
contact state of the contact areas, affecting the so-called contact mistuning. These
deviations affect the structural and aerodynamical behaviour of the system. A
common phenomenon associated with mistuning is the localization and mistuning
magnification. It disrupts the periodic character (typical of tuned systems) of
the vibrations - travelling-wave character - in near-resonant conditions (quasi-
periodic vibrations). It causes a magnification of the response amplitude in only a
few sectors, which reaches a maximum and becomes insensitive after additional
mistuning. Mistuning can be exploited intentionally to increase the system’s
robustness but also to reduce the effects caused by the aeroelastic flutter. In
general, determinist and stochastic methods (based on the Monte Carlo method)
have been developed over the years to model mistuning and predict its effect on
the system’s dynamic.
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