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Abstract

Nowadays, the available FEA software is a very efficient tool for solving FE
simulations. However, models can be large, as well as the associated computational
burden, and the larger the number of DOFs involved, the higher the computational
request. The RAM is still one of the main limitations, and the ability to accurately
predict the complete dynamics of the systems remains a main feat despite the
numerous developed mathematical techniques, such as cyclic symmetry and ROM
methods. Assuming we can correctly model boundaries and contact interactions,
we cannot yet praise the ability to solve mistuned nonlinear problems accounting for
all frictional contact conditions without reducing the number of DOFs, if sufficient.
It is especially true for geometrical mistuned nonlinear problems. Thanks to the
advancement of current technology and computers, step-by-step, we will eventually
overcome those challenges; yet, better modelling of the friction conditions is still
ongoing research. The work presented in this thesis has a double purpose: 1)
to analyze the free and forced responses of a modal stiffness and a geometrical
mistuned models by using the FEA software OrAgL-NOSTIA-ROCMAN and make
a comparison with test rig results; 2) to test the current abilities of HPC (High-
Performance Computing) computers. Different models are tested and presented
herein: a cyclic symmetric model, a modal stiffness mistuned model, and a geomet-
rical mistuned model. The first two use a CAD of the blade with a prepared mesh,
but for the last model, the CAD geometry is updated based on 60-BLS-scanned
blades, and a technique called Morphing allows moving the mesh over the new
geometries. Regarding the FEA analyses, CalculiX was used to run the static
and obtain the static displacements and the pressures at the contact interfaces
at the blade-root joints. OrAgL-NOSTIA-ROCMAN is an efficient and advanced
software developed by the collaboration of Novibtech and Stuttgart University
for research purposes, exploited to study the nonlinear dynamics of the systems
and employed by MTU Aero Engines to analyze bladed disk models with periodic
excitations, including aeroelastic effects. It can count on up-to-date mathematical
and numerical methods specifically applied to study the dynamics of bladed disks
FE models that commercial software doesn’t possess yet; for instance, OrAgL can
solve the periodic oscillations of a nonlinear problem with frictional joints in the
frequency domain by exploiting the Dynamic Lagrangian method instead of Penalty
Methods to model the contact interactions. Moreover, another advantage is the
imposition of contact conditions at the cyclic symmetric boundaries. Regarding
the simulation setting, the software requires the FE mesh of a sector and the
static matrixes obtained with a static analysis with a different FEA software (i.e.
CalculiX); the problem is then solved by using cyclic symmetry and applying ROM



techniques. The ROCMAN tool allows adding mistuning either statistically or
deterministically to a cyclic symmetric model through specific mistuning parame-
ters. However, the geometrical mistuning requires adding different substructures
(FE meshes) into the model, later individually reduced through a ROM technique
(i.e. Craig-Bampton). The secondary ROM may also be applied to the whole
wheel, further reducing the number of DOFs associated with the linear modes of
the systems. Solving the mistuning models with contact interactions at shrouds
and fir trees required the resolution of too many nonlinear equations, consequently
leading to unsustainable computational costs, even for a single job. It was possible
to simplify the problem by tying the surfaces at the blade-root joints, thus making
the resolution more feasible. Running simulations of cyclic symmetric models with
analogous contact conditions provided a basis for comparison. Unfortunately, the
results comparison of the free and forced responses with the test rig gathered data
highlighted deep inconsistencies for both the cyclic symmetric and mistuned models.
The reasons are not clear but attributable to a combination of factors, such as the
absence of contact mistuning, design inaccuracies (low Jacobian ratios of elements),
inaccuracies with boundary conditions, inaccuracy with friction contact modelling,
limited application of the contact model to a specific area and absence of microslip.
The presence of holes in the BLS, later filled with original CAD geometry, also
plays a role in the results of the geometrical mistuned model.
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Chapter 1

Introduction

In the context of aerospace propulsion, the gas turbine is the engine capable of
providing high trust and power for both short and long-range missions in the
lowest concentric layers of the atmosphere - troposphere and low stratosphere.
An illustrative picture in Fig. 1.1 shows a specific typology of a gas turbine -
High-bypass turbofan - used for aerospace propulsion purposes.

In general, the axial turbine rotor wheel is a bladed disk characterized by two
different solids in the socalled sector that go into contact in the contact area during
the operating conditions due to the centrifugal load. Furthermore, turbine wheels
show the presence of the "shroud" at the tip of each blade which go into contact
between each other directly during the assembling. The purpose of the shroud
is mainly structural intergrity, aerodynamic efficiency, thermal management and
tip clearance control to improve overall stability, reliability and efficiency. An
illustrative picture of the single sector is provided in Fig. ??.

The shroud provides an important function to the turbine, but it also adds
nonlinearities to the problem through the introduction of slip and separation that
further increase wear and influence the overall vibrational shape and behaviour.

It’s been decades since the research started the first efforts to understand
and predict the physics and the influence of nonlinearities and mistuning on the
vibration of rotating systems, and although great achievements have been reached,
also thanks to the technological advancement and potentiality of nowadays software
and tools, the prediction of the bladed-disk structural dynamics behaviour still
represent a major feat and research into numerical optimization is still needed.

The ability to predict the nonlinear behaviour through the software modelling
represents a great advantage but also a great feat.

Over the last decade FEA software have been used quite avidly trying to analyze
and predict the response of an actual bladed disk. The two main challenges are
mistuning and nonlinearities. Both of them influence the dynamics of the system
in such a way the response can really become unpredictable. Therefore, the need
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Introduction

to define a set of assumptions simplifying the problem in the hope of being able to
predict the results with sufficient accuracy. To further generalize afterwords.

Figure 1.1: Illustration of High-bypass turbofan engine

An historical gaze

The purpose of the following brief historical review doesn’t want to esclude any
notorious pubblished research paper, but rather to cite some of the main research
pubblications about the topic in subject that are highlighted in the mian investiga-
tion of this thesis. Since this paragraph is not a thourough historical analysis and
the cited reasearch paper are included also based on the availability of the written
works itself, the redear is more than welcome to delve deeper into the bibliography
of the cited papers to gather more information.

It has been more than 50 years since the first research papers regarding mistuning
investigations. In the first 30-40 years the research was focused on the investigation
of the main mistuning effects based on simplified models both theretically and
experimentally. From an analysis of the publications, the research focused on the
analysis of the eigenvalue problem and the frequency response function (FRF). One
of the first effects of mistuning reported by the papers, which today is well known,
is the so-called "splitting effect" or "dual modes", identifying the eigenfrequencies
splitting of the same mode shapes. Secondly, it was concluded that the response
amplitude may reach a value 20 to 30 per cent higher than the average one registered
by the tuned system.

One of the firsts investigations of mistuning in bladed-disk assemblies date back
to the studies carried out between the late 50s to 70s by Tobias and Arnold [1],

2
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Whitehead [2] and Dye and Henry [3]. They noted the so-called "splitting effect"
or "dual modes" induced by mistuning, specifically the separation of the natural
frequencies of the two vibration configurations associated with n nodal diameters.

Following, with the studies of Ewins et al. [4, 5, 6, 7, 8] the phenomenon
of frequency splitting was further investigated. It was observed that the mode
localization caused the maximum amplitude to be localized on only some blades,
with an increase of around 20% above the average-tuned value. The worst-case
scenario occurred with the "resonance coincidence" caused by mistuning: two
different modes can experience a very close "critical speed". This can result
in a possible maximum resonance amplitude of 130% of the tuned value. The
experimental observations on the actual bladed disk showed the failure of so-called
rogue blades due to the maximum amplitudes exceeding expectations, leading to
their premature failure. Experimental investigations on the matter were carried
out by Strange, Macbain, Jay, Burns and Whaley [9, 10, 11, 12] the following
years. In a further study carried out around a decade later, Kruse and Pierre
[<empty citation>]

While beneficial effects of mistuning on flutter were noticed in some investigations
[13, 14, 15, 16], still confustion and diffuse contaddictions was permeating the
researchers of that time about how much mistuning could neagtively influence
the maximum resonant amplitudes on some blades on stationary free and excited
bladed disk assemblies, thus worsening fatigue life. Between the studies [2, 17, 3, 4,
6, 18, 19, 20, 21], the comparison of the results yealded conflicting conclustions
likely due to different models and parameter values used on those models. This is
well highlighted by Wei and Pierre [22, 23]. In their investigation, they refer to the
study of Hodges and Woodhouse [24] concerning the influence of coupling on the
forced responce of a chain of oscillators and in general to more complicated systems.
They concluded that the ratio of mistuning strength to internal coupling strength
strongly influence the sensitivity to small mistuning of the vibration modes. By
studying the free response of the system, the weak coupling was associated with
strong localization and eigenvalue loci veering. While strong coupling is associated
with little sensitivity. On the other hand, in the forced response of the system, the
strong coupling results in new peaks, some with amplitudes comparable to that of
the tuned system and some smaller, while with weak coupling some of the new peaks
show magnitudes that are much higher than the tuned values. Furthermore, they
noticed that in case of very weak coupling, if the engine order of excitation doesn?t
influence the magnitude of the resonant peak, than the maximum amplitude is
registered at the blade with the lowest natural frequency, while if the engine order
and the resonant peak vary together, then the maximum amplitudes are at natural
frequncies corresponding to these peaks. For strong couplin, the largest amplitude
vary with the engine order of excitation and the mistuning distribution, although
the magnitudes are comparable among the blades.

3
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In 1979 Thomas [25] proposed a new technique to study the dynamics of
rotationally periodic structure by symplifying the calculation of the whole structure
by analyzing only one of the substructures. Knowning that with every natural
frequency there is a pair of orthogonal mode shapes (eigenvectors), He discovered
that the linear combination of these two eigenvectors into a complex vector was
still a solution of the equation of motion and represented a rotating normal mode.
Substantially the deflection amplitude of each substructure was related to each other
by a constant phase difference. The imposition of these "cyclic boundaries" lead to
the introduction of the "harmonic index" (or nodal diameter) for the definition of
the specific mode shape and the "interphase blade angol". Although the harmonic
index had a more general mathematical meaning, in the contex of structural
dynamics has a more pragmatic definition and depends on the number of the total
substructure of the systems. This discovery turned out to be a strong tool that
gave the opportuninty to study more complex bladed disk models with a greater
number of DOFs (FEM models), dependently on the computational feasibility of the
computers of that time. The need to study more complicate models with a greater
number of DOFs and to model statistical mistuning patterns by using Monte Carlo
simulations to predict the statistics of the forced response pushed the research into
deveolping the so-called ROMs (Reduced Order Models). These analytical methods
reduce the problem to different order less with respoect to the original one allowing
the analysis to be focalized only on a specific number of modes. One of the first
papers to focus on reduction of the mass and stiffness matrices was pubblished by
Guyan [26] in 1965. Two of the firsts research paper concerning component modes
methods were published in 1965 by Hurty [27] and in 1968 by Craig and Bampton
[28]. They provided a way to treat a complex structure by assembling different
substructures. Hurty developped a method where the structure is subdivided
into different interconnected components which displacements are expressed in
generalized coordinates, defined by displacement modes. There are three different
types of modes: rigid-body, constraints and normal modes. There also equations of
compatibility at the connections of the components. The equation are important
to operate a transformation from a component coordinates to system coordinates,
where the system’s equation of motions are solved. Craig and Bampton developped
a method that serves as a generalization of Hurty’s one. The method exploits the
mass and stiffness matrices of the substructures, and geometrical compatibility
conditions at the substructure boundaries, and employs two types of generalized
coordinates: constraint modes and normal modes. The formers are produced
by unit dispacement on each constraint (indeterminate-redundant constraints)
in turn, with all other contraints fixed and with all internal degrees of freedom
unconstrained. The latter modes describe the motion of the internal degrees of
freedom with fixed boundaries, thus the normal modes of free vibrations of the
substructure with all boundary DOFs fixed. The set of geometrical compatibility
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equations are subracted to the total number of the substructure boundary DOFs
to define the actual number of boundary generalized coordinates. The Rayleigh-
Ritz procedure is used to reduce the number of DOFs of the substructure while
maintaing the accuracy of the description of the dynamic behaviour. This method
is a tool to solve FEM complex-high-DOFs problems by making the resolution
more feasible. Although the benefits, back then the computational power to solve
complex matrix operations involving very large DOFs systems wasn’t available
and the research kept investigating simple problems modeled with a lumped-mass
formulation and focalized only on the interested modes. Other research papers
related to the previous approches were pubblished by Benfield and Hruda [29], and
Dowell [30] in 1971 and 1972 respectively.

Around 30 years later, the research started proposing analytical methods trying
to solve reduced Monte-Carlo-statistically-mistuned problems to predict the forced
response. Among the authors Castainer, Ottarson, Pierre, Bladh, Yang, Griffin,
Feiner, Lim [31, 32, 33, 34, 35, 36, 37, 38]. In these studies, the foregoing ROM
techniques are adapted and updated by combining the power of the DOFs reduction
along with the application of cyclic symmetric boundaries. The mistuning is model
through a modal parameter. The ROMs techniques are adapted to predict the
forced response of the system making the resolution of the problem feasible by using
Monte Carlo statistical mistuning pattern distributions, which it is a very expensive
procedure in terms of computational effort. In their proposal, Ottarson, Castainer
and Pierre [32, 33] provided a component-mode approach where the blade elastic
motion is described by the mode shapes of a blade fixed at the disk-blade interface.
The method uses cyclic symmetry to study only one sector, and the formulation
puts in evidence the modal stiffness parameter, which can be varied to model
mistuning. Differently from other methods, they focused on a broad reduction of
DOFs by eliminating constraint modes, which slightly jeopardize accuracy, although
more suitable for extensive Monte Carlo simulations. In 1996, their ROM technique
was validated by Kruse and Pierre [39, 40] with an unshrouded bladed disk. A
subsequent effort was carried out by Bladh, Castanier and Pierre in 1999 [34] with
a shrouded turbomachinery rotor.

In 1997 Yang and Griffin [41, 42] carried out two different investigations. In
the first one they propose a reduction order method LMCC that assumes rigid
body movements at the blade-disk interface so that the blade modes end up being
a combination of the disk modes and the blade bases modes. This yelds a suffient
accuracy close to the one of a FEM model and the computational efficienty of a
lumped mass-spring model. In the second paper they investigates the phenomenon
of the modal interaction cause by the closeness of natural frequencies , modeshapes
and the magnitude and distribution of the perturbation. Something that in the
past hadn’t been studied yet focalyzing only on systems with well-separeted natural
frequencies. First-order perturbation theory showed changes in natural frequencies
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and modeshapes are small with small variations. Being not unusual to find closely
spaced natural frequencies, they proposed a first-order perturbation solution for
a two-DOF system of a normalized eignevalue problem. The statistical approach
yelded the standard deviation in the interaction between two modes dependent on
the closeness of the eignefrequencies and the structural properties corresponding
to the modes in question. If the nominal structure shows closely-spaced natural
frequencies, even a perturbed structure will have the same feature in the same
frequency range. The closely-spaced modes of the altered system can be represented
as a sum of the closely-spaced nominal modes. This approximation is a reduction
of the problem where the number of DOFs is equal to the number of closely-spaced
modes, and is at the basis of the reduction-order method SNM (Subset of Nominal
Modes) proposed by Yang and Griffin in 2001 [35]. Since the a modal eigenvalue
problem is solved to obtain the mistuned system modes, the inclusion of the
aerodynamic forces allows the determination of the aerodynamic damping through
the eigenvalues of the system, hence the assessment of the aerodynamic stability.

Feiner and Griffin [43], from the SNM developed a reduction-order technique
FMM (fundamental mistuning model) for mistuned bladed disk vibration to rep-
resent the response of a real turbine geometry when only a single mode family is
excited. It is a semplification of the SNM since only a single family of the nominal
modes are used for the representation and needs only two sets of parameters to
predict the mistuned modes and natural frequencies of the system: tuned natural
frequencies and deviations of the individual blade frequencies from the tuned value.
The tuned natural frequencies can be obtained by the finite element analysis and no
other data such as mode shapes and stiffness matrix are necessary. For this reason
it is simple and has a compational cost similar to a mass spring model. In following
studies [36, 37], they investigates a new method of mistuning identification based
on the measuraments of the vibration of response of the system as a whole, and
specifically for integrally bladed rotors IBR, therefore more suited for compressors
rather than turbines. Based on the FMM reduction method to represents the
vibrational response of an isolated family of modes, they developed two types of
identification methods, one more simple and one more advance, that don’t require
neither the mass not the stiffness matrices making them advantageous wrt other
reduction and identification methods. The first FMM ID recives the tuned-system
natural frequencies as input and, based on the measuraments of a given number
of mistuned modes and frequencies, it gives the mistuned frequencies of each
sector. The second FMM requeires some measuraments of the mistuned modes
and frequencies and gives all the parameters in the FMM, such as the tuned and
mistuned frequencies of each sector. In this seconf case, the mistuned frequencies
are measured experimetally without the need of a finite element model.

In the group of component mode syntesys CMS methods are the techniques
developed by Bladh, Castanier and Pierre. Starting in 1999 [34], they deveoped
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a ROM that employes component modes calculated from a FEM of a rotor. The
reduced model is two or three orders of magnitude smaller from the original model
allowing the prediction of the statistical forced response of a mistuned bladed disk
by using Monte Carlo simulations. Their method is an extension of Castanier’s
[32, 33] proposed in 1994 and then 1997, and validated by Kruse and Pierre [39,
40], to a shrouded assembly. The method is based on a projection of the mistuned
natural frequencies of individual blade onto the cyclic modes of the shrouded
blade assembly. With the 2001 publications [44, 45], the Craig-Bampton method
is revised and riformulated specifically for mistuned bladed disks, using a cyclic
disk description. A secondary modal analysis reduction technique (SMART) is
applied based on CB allowing further reduction of the problem along with high
efficiency and accuracy. Besides, they proposed a non-CMS method where the
blade mistuning is projected onto the tuned system modes, as a generalization
of the method proposed in [34] and similar to Yang and Griffin’s [35]. In the
SMART two-step reduction, the mistuning is introduced in the modal domain
making the computations more efficient. In 2003, Lim, Bladh, Castanier and Pierre
[38] proposed a general reduced-order model for a mistuned system. The mistuning
is model in mass and stiffness deviations from the tuned case, specifically in the
interface DOFs. The general formulation allows the implementation of both small
and large mistuning, taking the distance from previous ROM techniques. The
specific application to small mistuning of the general formulation produced the
so-called ROM model CMM (Component mode mistuning). In this approach, the
mistuning projection developed by Bladh [34] is further generalized, and differently
from their previous studies the mistuning is not projected to the normal modes of a
cantilever beam. On the contrary, the modal partecipation factors of the cantilever
blade normal modes are used to describe the tuned-system normal modes, and
the mistuning projection to the cantilever blade normal modes doesn’t require a
component-based representation of the full system. Furthermore, aerodynamic
coupling effects can conviniently be implemented.

The importance of mistuning identification wasn’t estraneuos with the ROM
techniques. In fact, it is crucial for an accurate prediction of the free and forced
response of mistuned bladed disks. Furthermore, although for traditional bladed
disks where blade and disk are mechanically frictionaly joined at the dovetail or
firtree it is possible to define mistuning with a varational parameter from the tuned
cantilever blade naturla frequency, for blisks or IBD is not that simple and require
an analysis of the response of the whole system.

Probably, one of the first paper regarding mistuning identification was pubblished
by Griffin and Hoosach [20] in 1984. With the purpose of calculating the individual
blade response of a bladed turbine disk they incorporeted an hybrid deterministic-
statistical method to generate statistical results where the strucutral parameter
were selected from random sampling of a given population. In their investigation
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they came across a numerical problem called ill-conditioning typical while solving
problems involving mistuning1 which is still an issue that can be encounter with
nowadays software. Two important aspects that were registered are the tendency
to have larger vibrations of those blade whose "blade alone" frequencies are closer
to the system tuned resonant frequency, highlighting the fact that not always
the maximum stress is related to the worst mistuning condition, and the adverse
effect of mistuning on fatigue life of the blade. Mignolet and Lin [46] based their
investigation on the previous study, from the persepctive of emphatasing the need
of structural identification techniques to provide estimation on the tuned values
of the structural parameters and their statistical distribution. They focused on
the identification of the parameters of a strctural model, a lumped model with
stifnesses and dampers interconnecting adjacent blades and blade and disk, based
on the least square method and the maximum likelihood approach. They concluded
that the mixed least square - maximum likelihood technique provided the most
accurate system parameters, also based on the assumption that damping between
adjacent blades could be set to zero for the negligible effect on the forced response
of the system and for the difficulty to estimate the value.

Some accessible investigations regarding mistuning identification were pubblished
by different authors. In 2001 [47, 48], Mignolet, Rivas-Guerra and Delor pubblished
a two-part investigation with a statistical mistuning identification approach. They
tried to overcome the problems observed in [46] concerning the need to have
measuraments of the forced response of the bladed disk which is time-demanding
and expensive. The pubblication revolves aroud the idea of having to our disposal
a methodology that yelds the mistuning properties of the blades by the blade-
alone free response data of the system. Therfore, the new method required the
registration of the lowest natural frequencies experimentally. The indentification
was based on two different approaches: imposition of as many constraints as needed
to obtain a unique solution to the problem by setting mode shapes and modal
masses to the tuned values and by varing the modal stiffness of each blade to
match the experimental values, or the exploitation of the maximum likelihood
principle to obtain the structural parameters by the minimization of a specified
cost function. Although the method cannot provide the blade-to-blade interaction
effects, it can yeald a close approximation of the force response characteristicsof
the structural dynamic model to the test rig values, where the blade-to-blade
interaction is present. The first approach, defined as random modal stiffnesses
(RMS) approach, resulted with a variable accuracy due to the high sensitivity to
blade-to-blade coupling, excitation characteristic, etc. The unsufficient relibility

1In computational mathematics it refers to a problem highly sensitive to small changes in
input data, leading to large variation in the output and numerical errors
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was pointed to the inability to predict contemporarily both the blade-alone and the
entire bladed disk modal characteristic. On the other hand, the second strategy,
dubbed as maximmum likelihood estimation strategy (ML), exploits a statistical
simple Gaussian distribution of the structural parameters and an identification
based on the minimization of a quadratic funciton, turned out to have a higher
reliability than the previous RMS method. A more thorough analysis of the ML
apporach is carried out in [48] where the accuracy of the improved random modal
stiffness (IRMS) technique to bridge the RMS and ML methods was also assessed.
With the studies of Lim and Kashangaki [49] in 1994 and Lim [50] in 1995 a damage
detection method for health monitoring based on the best achievable eigenvector
concept is investigated. While in the first study the assessment of the magnitude
damage is performed by using an efficient least square solution, along with a modal
strain energy (MSE) predetection technique, in the second study the magnitude of
the damage is identified through a constrained eigenstructure assignment.

In 2001, Pichot et all. [51] compare different identification methods for mistuned
parameters of blisks and concluded that the previous Lim method of the best
achievable eigenvector was the best to solve the specific problem analyzed in the
paper. In 2006, Pichot et al. [52] present a mistuning identification method based
on the best achievable eigenvectors technique. In 2007, Laxade et al. [53] propose a
mistuning indentification technique of mistuning properties of blisks. It was based
on an updated reduced order model in CMS method which receives as input the
experimentally measured system modes.

In 2009, Judge et al. [54] presented two methods of mistuning identification by
using measuraments of the vibration response of the bladed disk and specifically
suited for blisks. The first method uses measuraments of the free response of the
system while the second also uses steady-state force response measuraments and
it is more suited for problems with high modal density or high damping where
resonant peaks overlap and merges, thus causing difficulties in isolating the normal
modes.

Another aspect that interest bladed disks is nonlinerities. In mechanical systems
they take form as nonlinear kinematic relations due to large deformations, nonlinear
mathematical behaviour as for example hyper-elasticity or plasticity and nonlinear
boundary conditions with frictional or unilateral contact interactions. Extensive
research have been carried out over the years in the analysis of bladed disks with
nonlinearities. Thanks to the researchers all the knowledge is periodically tidily
gathered into books and articles reviews at our disposal. Between them we can cite
one of the firsts masterpieces [55]. Others include [56, 57, 58, 59, 60], which cover
nonlinear elasticiy, the theory of Finite Elemnts with the inclusion of nonlinearities,

The research team in Polytechnic of Turin is active in the study of bladed disk
dynamics with friction contact joints and frictional unperplatform dampers (UPD)
both theoretical and experimentally with the objective not only to investigate
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mathematical models to correctly simulate the problems in FEA, but also to
accuratly gather the technical information and data from test rigs. In the last
decade the studies have focused on the dynamic analysis FEA of bladed disks
with UPDs and therefore focusing on the nonlinear vibrations, reduction order
model techniques and fretting and wear investigions due to HCF. Between the
pubblications, in 2011 [61] a coupled static/dynamic HBM is proposed to investigate
the influence of UPDs to the force response of the system. With this approach
the static and the dynamic balance equations are coupled so there is no need of
preliminary calculation of the normal pre-load acting on the damper sides. Similarly,
in [62] the same model had been used for the dynamic analysis of a shrouded bladed
disk. In 2012, the contact model developed in [63] is revisioned by Zucca, Firrone
and Gola in [64] and it is applied to the blade-root contact joint for a steady-state
dynamic response analysis. The method of resolution is based on a coupled solution
of the static and dynamic balance equations of the system without the need of
preliminary static analysis to compute the contact static normal loads. Microslip
is also accounted for. In [65] an extention to MHBM of the "coupled apprached"
applied to a lumped parameter model is provided, by which the static and dynamic
analysis are not to be calculated separately anymore thus saving computational
effort and providing uniqueness of the solution, firstly presented in [66], and applied
to problem with HBM in [61, 67]. A reference with Direct Time Integration DTI is
used for comparison.

In the context of ROM applied to systems with friction nonlinearities, we can
count on several publications that propose or update techniques and try to address
local nonlinearities (such as frictional contacts), providing a reduction scheme, thus
reducing the computational effort associated with a large number of nonlinear
equations. The equations are solved in the frequency domain with HBM or MHMB,
where an AFT (Alternate Frequency-time) scheme is employed to calculate the
Fourier Coefficients of the nonlinear contact forces. To address local nonlinearities,
such as intermittent contacts of cracked structures, two different approaches have
been proposed to solve the nonlinear problem by applying a reduction method. In
[68], a standard CMS is applied to reduce the internal DOFs of the problem and
a bi-linear modal representation by using bi-linear modes (BLM) is employed to
reduce the DOFs at the (nonlinear)intermittent contacts. In [69], a new reduced-
order model method for the forced response of structures with intermittent contacts
is proposed. The approach is based on the assumption of a so-called spatial
correlation where the system dynamic is dominated by the opened or sliding system
modes concerning the intermittent contact. In 2016, in [70], Mitra et al. proposed
a set of reduction basis functions to reduce the DOFs at the interfaces where
contact nonlinearities are present. This need stemmed from the fact that methods
such as Craig-Bampton CB-CMS only reduce DOFs where local nonlinearities are
absent. The method employs the so-called adaptive micro slip projection (AMP)
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applied to the contact DOFs at the shrouds of a blisk model. In a following study
[71], Gastaldi et al. investigate a different way to address the reduction of the
internal and nonlinear interface DOFs; the method, Jacobian Projection, is based
on the Jacobian of partial derivatives of the contact forces with respect to nodal
displacements. In 2019 [72] an upgraded of the Dual formualtion method based on
the dual Craig-Bampton is presented.

In [73, 74, 75, 76] the mistuning is added into the picture. In [73] an hybrid
approach of two techniques is developed: Mistuned-Dual-Formulation (M-Dual).
Specifically it is a combination of the CMM and a Dual model order reduction
technique. The second one is a free interface based CMS that includes free interface
normal modes and residual flexibility attachment modes of mistuned bladed disk.
The method is ideal for bladed disk with small blade-to-blade mistuning where
frictional contacts (such as in shrouds) are present. A different approached is
developed in [74], still applicable to nonlinear vibration analysis of mistuend bladed
disks with shrouds, but based on a CB method and a modal synthesis based on
loaded interface (LI) modeshapes. This technique is useful since it doesn’t need
a secondary reduction. The blade frequency mistuning is inserted directly into
the reduced model. In [76] a RCCMS-based ROM (relative cycling component
mode synthesis) is developed to study the nonlinear dynamics of a mistuned
bladed disk with blade-root fricition joints. The SNM method is used to introduce
blade or sector frequency mistuning into the linear partition of the RCCMS ROM.
The reduction basis is also invariant wrt the random mistuning patterns. In [75]
the study switches towards IBD (or blisks) with UPD where mistuning is firstly
identified by means of FMM ID.

The presence of frictional joints such as in blade-disk roots and shrouds, but
also with frictional UPDs or ring dampers bring about energy dissipation and wear.
Specifically, HCF causes fretting wear, and the changing in the surface conditions
deeply affects the dynamics of the system: changings in the contact areas; variation
in the preload distribution; variation in the contact stiffness. For these reasons,
the research has focused on the study of the effect of fretting wear on the forced
response dynamics (frequency, vibration amplitudes and damping) of such systems
by developing novel test rig solutions [77]. The engine doesn’t always works in a
steady-state condition, but quite the opposite it has a wide frequency variability,
therefore efforts have put into the study of the wear evolution with methods to
model and predict the effect of wear on the nonlinear response of the system [78].
The main objective of the nonlinear FEA simulations is to obtain accurate result
of the forced response of the system within the interested frequency range. The
accuracy of this simulations also rely on the input data they receive. Due to the not
thorough understanding of the friction mechanicsm between the vibrating contact
interfaces, the reliability of the results also depends on extracted data and for this
reason comparison of data extracted (i.e. contact parameters [79]) from different
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test rig set-ups might be necessary. The Coulomb’s law determine when the contact
is slipping or sticking. The intrinsic uncertainty associated with the static friciton
forces during sticking condition, due to the fact that tangential forces can assume
infinite values within the range, is considered one of the main uncertainty causing a
variability in the forced response of the system during partial splipping. Therefore,
tools able to predict this variability wrt the contact parameters and misalignments
are the focus of some investigations [80].

Objective

In this thesis, I present a tentative to reproduce the test rig results of bladed disk
rotor with friction joints both at fir tree (blade-root joint) and at the shroud (blate-
to-blade joint) with a FEA software: OrAgl-NOSTIA-ROCMAN. The only form of
damping present in the model is the aerodynamic damping for the only reason to
have the worst possible conditions of periodically excited steady-state vibrations
and to investigate the double influence of mistuning and frictional nonlinearities in
the system’s dynamics. In this thesis, it will be tested probably one of the first
efforts to analyze the dynamics of a geometrically mistuned bladed disk model
and at the same time the computationally feasibility of the today HPC (High-
Performance Computing) computers. To summarise the objective are subdivided
as follows:

• Validation of simulation results carried out with software OrAgl-NOSTIA-
ROC;

• Investigate the dual effect of mistuning and frictional contacts in the dynamics
of the problems;

• Highlight numerical challanges and uncertainties in the parameter selection
and hypothesis.
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Chapter 2

Description of the problem

At the basis of the FEA analysis is the resolution of the equations of motion. These
equations are implemented in all FEA software, which will try to solve the linear
or nonlinear problem through the solver.

In this section, the problem will be described from a mathematical point of view
with the purpose of illustration, thus avoiding rigorous mathematical formalism.
The cited publications concern the matter more deeply, and the readers can deepen
their knowledge of the subject.

The reader is informed that the following description is the result of the combi-
nation of the theory gathered from different sources [81], [25], [82], [83], [84] and
[60]. The publications about the covered topics are way broader, but the concepts
are reviewed in the cited articles and documentation. Specific citations will further
be provided when needed.

Reference Model

Figure 2.1 shows an illustrative image of the CAD turbine rotor. Typical classical
bladed disks present both intra-sector and inter-sector joints. The former are
frictional joints generally coupling the blades with the disk, whereas the latter is a
blade-to-blade frictional coupling through the shrouds. Other forms of friction can
be dampers, but they won’t be discussed any further here. Differently, integrally
bladed disks (or blisks) don’t present intra-sector coupling, and the blades and the
disk are a single solid.

The disk is a single block, but imagine dividing it into identical sectors equal to
the number of blades. Each combination of a blade and a disk sector is a blade-disk
sector, independent of the presence of intra-sector joints. A structure with identical
sectors is rotationally periodic.

It is important to define the assumptions that simplify the resolution of the
mathematical problem:
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Figure 2.1: CAD of the bladed disk

• No mechanical contact between the bladed disk (rotating) and the casing
(fixed component);

• No coupling between stages;

• No rotor-dynamic effects: the dynamics of the bladed disk can influence the
shaft dynamics, and vice versa [82].

• No flutter.

• Presence of a synchronous aerodynamic load;

• No vibration mechanism such as vortex shedding and rotating instabilities;

• No Coriolis Forces;

• No structural dampers (i.e. underpflatform dampers or else);
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• No Spin softening 1;

• No stress stiffening 2

• No Contact mistuning;

• No Specific impact laws. Some impact effects can result intrinsically from the
FEA contact boundaries.

The synchronous aerodynamical excitation generates from a circumferentially
inhomogeneous pressure distribution that immerses the rotating bladed disk. Two
main factors cause these inhomogeneities: the interaction with the previous blade
row (nozzle-passing excitations) and the non-uniform inflow condition due to
asymmetries in the flow path (i.e. struts or casing ovality). In the test rig, the
synchronous aerodynamic excitation may be achieved by directing a controlled
airflow directly to the blades. A rotor works within a specific frequency range, and
the speed is generally variable. Depending on the purpose of the study, it may be
helpful to simplify the problem and assume a constant speed. In this condition,
the rotation is steady, and the rotor is time-invariant in its non-rotating reference
system with respect to the pressure distribution. With such a simplification,
the vibrations assume a travelling waveform. This discovery dates back to the
studies of Thomas [25] on disks; the assumptions lead to the definition of the
so-called "cyclic symmetry" hypothesis in which each sector is equal to the other in
geometry, material and load, thus allowing the exploitation of a "travelling-wave
coordinate system" used to represent the vibrations of the system, where the "nodal
diameter" concept assumes a fundamental meaning to identify the spatial frequency
character of the vibrational mode. It is important that also the excitation force
has a travelling-wave character (synchronous excitation), allowing the expression of
the aerodynamic loading in terms of multiple integers of the rotational frequency
(engine order). It is demonstratable that the excited mode necessarily has a nodal
diameter equal to the engine order of the excitation. The resonance conditions are
pinpointable in the Campbell diagram in honour of the first person to study the
phenomenon.

The synchronous excitation is not the only external source of vibrations. The
flutter is another aeroelastic phenomenon that originates due to unstable inter-
actions between the airflow within a blade row and the blade (cascade effect),
causing further vibrations. It is a self-exciting mechanism whereby blades gather

1It refers to the static deflections associated with a variable centrifugal load
2It is a geometric stiffening occurring in a structure with axial loads or pre-tension forces. The

axial forces of a tension or compression state can induce internal stresses, altering the stiffness
characteristics of the structure
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energy from the unsteady flow. In our problem, we will consider only synchronous
excitations.

The Coriolis Forces have a different nature and don’t originate from an external
exciting source. They generally depend on the level of compliance between blade
and disk and the rotational speed; they are tangential, originating when a not-small
component in the radial direction is present. In our problem they are assumed
equal to zero.

Campbell diagram

The Campbell diagram is a diagram that represents the system’s response spectrum
as a function of the oscillation regime. It showcases the system’s eigenfrequency
dependence of the rotational speed Ωrot. Considering the steady-state vibration
study with a synchronous external excitation, the system’s excited mode is identifi-
able by the intersection of the eigenfrequency curve and the straight line starting
from the origin with a slope depending on the engine order of the excitation. The
Campbell diagram of the actual engine turbine rotor in Figure 2.4 showcases the
simultaneous excitation of mode 1 with nodal diameter 6 (M1ND6) 3 and mode 2
with nodal diameter 18 (M2ND18). The initial suspicion was that the combination
of mistuning, including contact mistuning, and nonlinearities both played a role
in the registered dynamic of the system. To highlight the phenomenon, MTU
Aero Engines prepared a similar turbine rotor with minimum damping, removing
mechanical joints and leaving non-ideal contact conditions (to exacerbate nonlinear
effects). In the meantime, as an objective of the previous project, The development
of a CAD and an FE model provided the matter to run an FEA simulation and
obtain two different Cambel diagrams of the turbine rotor with a tied contact area.
The diagram in Figure 2.2 showcases the results for stiff contact conditions with the
tied-full contact areas. The diagram in Figure 2.3 showcases soft contact conditions
with a tied-full contact area at the fir tree but by tieng only one node for each
contact interface at the shroud.

The speed sensitivity refers to the rotational speed (and centrifugal load) influ-
ence on the system’s dynamic, particularly the natural frequencies. The variable
stiffness associated with the different static contact conditions affects the natural
frequency dependence on the rotational speed.

Although mistuning and nonlinearities both affect the natural frequencies and
the amplitude of the forced responses of the system, they generally have different
effects. Mistuning causes a detuning of the natural frequencies, localization, reso-
nance coincidence, and an increase in the amplitudes of the responses. Nonlinear
systems also manifest a switching of the resonance frequencies, but the effects of

3The nodal diameter always refers to the ideal case for a rotational periodic system
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Figure 2.2: Campbell Diagram with stiff contact boundary conditions

nonlinearities on the force response curve are different. The nonlinear resonances
may present bends, secondary branches, isolated branches and other nonlinear
behaviour caused by the dynamic state transition of the contact interfaces but
also a possible internal resonance. Other possible nonlinear effects manifest as
bifurcation points and superharmonic and subharmonic components. Internal
resonance is one of the nonlinear phenomena investigated in this thesis. The
nonlinear energy transfer between two inherently separated modes is the main
cause of the internal resonance, through which the modes’ nonlinear frequencies
become somehow commensurated due to the nonlinear effects. Nonlinear modes
are susceptible to the change in the systems’ total energy, and friction damping
plays a role. In the Campbel diagram in Figure 2.4, the simultaneous excitation of
modes M1ND6 and M2ND18 is the result of an internal resonance of type 3:1 C
and for this reason "worth" studying.
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Figure 2.3: Campbell Diagram with soft contact boundary conditions

Description and governing equations

Nowadays, geometrical complicated bladed disks are modelled and discretized by
finite elements, and the resolution of the static or dynamic equations requires finding
the unknown, namely the values of the nodal displacements. Studying the system’s
steady-state vibrations requires the imposition of the static condition (centrifugal,
thermal and fluid pressure loads) by fixing the rotational speed. The centrifugal
load involves large deformation and causes the closure of the contact interfaces of
the mechanical joints, and the contact pressures define the normal-static preload
at the interfaces. The nonlinear behaviour depends on these pressures. The
governing equations of motion are written on the assumption of small vibrations,
thus having a linear description of the mechanical elastic and inertia forces. The
only nonlinearities are in the contact mechanical joints and are local. However,
large deformations require accounting for geometrical nonlinearities, losing the
linearar description of the elastic forces. The vibrational motion of the structure
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Figure 2.4: Campbell Diagram of an actual engine

is defined from the static reference condition by the vector of nodal displacement
feu. The vector is sector-wise organized. If Ns is the total number of sectors
and l refers to the specific sector, the nodal displacement associated with the
sector l is (l)

feu. Considered that 0 ≤ l ≤ Ns − 1, the nodal displacement vector is
organized as

è(0)
feuT · · · (Ns−1)

feuT
é
. Each structural element within the sector (blade,

disk, dampers and so on) can be separated, and the vector displacements can be
arranged consistently to the separation.

The governing equations of motion are :

feM feü(t) + feD feu̇(t) + feK feu(t) + fefc [feu] = fefa (feü, feu̇, feu, t) (2.1)

The equations described are second-order ODE in feu. The differentiation with
respect to time t is denoted with the dot. The mass, damping and stiffness matrices
are denoted with the symbols feM, feD, feK respectively. The nonlinear contact
forces acting on intra and inter sectors are denoted as fefc. The square brackets [·]
indicate the hysteretic behaviour of the nonlinear contact forces due to dry friction
(generally Coulomb model). It means that they are not an explicit function of the
displacements and velocities at the instant time, but they depend on the history
of those variables. The insertion of these forces characterizes the problem within
the non-smooth dynamics problems due to the non-smooth characteristic of the
nonlinear contact forces. The aerodynamical forces are denoted as fefa.

The forces fefc and fefa are organized accordingly to the displacement vector.
If nfe,n is the number of degrees of freedom within each sector, the total number of
degrees of freedom is sfe = ql=Ns−1

l=0 sfe,l. The dimension of the displacement and
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force vectors is sfe × 1.
The mass matrix feM describes the inertia of the system and hence is associated

with the acceleration vector. It is symmetric and positive-definite. The stiffness
matrix feK describes the elastic behaviour of the system. The elastic forces
are proportional to the displacement vector. Similar to the mass matrix, it is
symmetric but positive-semidefinite 4 (possible rigid body modes associated with
zero eigenvalues). The damping behaviour of the system is contained in the
damping matrix feD and is associated with velocity proportional forces. More
generally, the matrix may contain a symmetric part related to the damping of the
system and a skew-symmetric part related to the Coriolis forces. For the problem
studied, the matrix contains only damping terms. The damping is associated with
the dissipative behaviour of the system and cannot be derived from conventional
FEA, like the mass and stiffness matrix. In general, material damping is weak
with respect to other damping mechanisms but not neglectable if the only present
damping. Due to their weakness, the material damping forces are modelled linearly
in the constant damping matrix. For this reason, the matrix is symmetric and
positive-semidefinite. Another type of linear damping is linear-hysteretic damping,
associated with the hysteretic character of the dissipative forces obtained from
free-decay experiments in terms of logarithmic decrements. More generally the
damping forces can have a non-viscous (velocity-proportional) character.

When referring to bladed disks but more generally to periodic structure, if all
sectors have identical aerodynamical, material, geometrical and contact properties,
they have cyclic symmetry and ideal rotational periodicity [25]. The structural
matrices are block circulant.

Travelling-wave reference system

It is typical to use complex arithmetic to study periodic vibrations due to the
benefits and available methods to simplify and solve the problem in the frequency
domain by exploiting the properties of complex exponential representation. That
said, it is assumed a periodic vibration with fundamental frequency Ω in the
physical coordinate system,

u(t) = ℜ
I ∞Ø
n=0

U ne
inΩt

J
= u(t) = ℜ

I ∞Ø
n=0

U n [cos (nΩt) + i sin (nΩt)]
J

(2.2)

Un denotes the complex-valued amplitudes of the displacement vector in the
complex Fourier series representation. The integer n ∈ N denotes the tempo-
ral harmonics or temporal wave numbers and defines multiple of the oscillation
frequency.

4A matrix is positive semi-definite when is squared with a mix of positive and zero eigenvalues
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Let’s assume having a linear free-undamped system in the frequency domain
(We are still referring to the generalized coordinate with respect to the FE DOFs,
so the subscript fe is omitted):

([K] − ω2[M ]){U}eiω t = {0} (2.3)

The Fourier representation is simplified for the harmonic case. The problem is
analogous to:

([K] − ω2
N [M ]){Φ}eiω t = {0} (2.4)

where the mass matrix [M ] is a block-diagonal matrix, the stiffness matrix [K] is
a block-circuit matrix [25], ω2

N are the eigenvalues with ωN the system’s natural
frequency and Φ are the eigenvectors which represent the mode shapes of the system.
A system with identical sectors (cyclic symmetric solid) has different modeshape
types. By rigidly rotating the system’s normal mode of a sector angle ϕ = 2π/Ns,
the modeshape should remain the same. This is obvious for two real types of
modeshapes with Φ(l) = Φ(l+1) or Φ(l) = −Φ(l+1). However, there is another type
of normal mode. Let’s assume having a modeshape Φ′ obtained through a rigid
rotation of Φ of a sector angle amplitude. These two eigenvectors are associated
with the same eigenvalue and are not necessarily orthogonal to each other 5. So
that Φ′ is an eigenvector, there must be exist another one âΦ that is orthogonal to
Φ such as is true Φ′ = a{Φ} + b{âΦ}. It means that {Φ′} is a linear combination of
the two other orthogonal eigenvectors. Assuming the eigenvectors normalized6, it
must be that {Φ′}T{Φ′} = 1, from which a2 + b2 = 1. Automatically, we can assign
a = cos(ϕ) and b = sin(ϕ). It is also true that will exist another eigenvector such
that is true the relationship {âΦ′} = −b{Φ} + a{âΦ}. In fact:

{âΦ′}T{Φ′} = 0 (2.5)

. In conclusion:I
Φ′âΦ′

J
=

C
INJcos(ϕ) INJsin(ϕ)

−INJsin(ϕ) INJcos(ϕ)

D I
ΦâΦ

J
= [Rϕ]

I
ΦâΦ

J
. (2.6)

Where INJ is the identity matrix of dimensions sfe × sfe. The matrix [Rϕ] is the
rotational matrix. Each sector displacement vector is obtainable through a rigid
rotation from the adjacent displacement vector. Essentially,I

Φ(Ns)âΦ(Ns)

J
= [Rϕ]

I
Φ(1)âΦ(1)

J
(2.7)

5The internal product of the eigenvector is equal to zero.
6The modul is equal to 1
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, and I
Φ(1)âΦ(1)

J
=

NsÙ
l=1

[Rϕ]
I

Φ(1)âΦ(1)

J
. (2.8)

If we introduce the complex numbers, and we define a = 1 and b = i, the linear
combination of the real eigenvectors is a complex eigenvector, from which we can
write {Θ} = {Φ} + i{âΦ} and {Θ′} = {Φ′} + i{âΦ′}. With complex algebra, the
rotation involves the complex exponential:

{Θ′} = Θe−iϕ (2.9)

. It is demonstratable that a substitution leads to the rotational relationship in
2.6. With real modeshapes, each system’s points vibrate in phase between each
other, reaching together the maximum amplitude and then zero. With complex
modeshapes, the physical displacements are associated with the real part of the
normal mode, and the displacement homologous points on the Ns identical sector
reach an amplitude depending on the phase shift ϕ, defining a travelling wave
behaviour. To conclude, real eigenvectors are associated with single eigenvalues,
whereas complex eigenvectors show in couples and are associated with the same
eigenvalue. After Ns rotations, we need to obtain the same eigenvector, and
therefore:

Nϕ = 2πh (2.10)
From which:

ϕ = h
2π
Ns

(2.11)

. The phase ϕ is called the Inter-Blade Phase Angle (IBPA), and the parameter h
is the harmonic index (nodal diameter or spatial wave number). The relationship
2.11 says that the phase shift, and therefore the dephasing of the amplitudes of
homologous points of adjacent sectors, depend on the index h. Let’s assume that the
main oscillation is along the rotational axis with the direction entering the screen
or paper (clockwise rotation), and each sector point will oscillate mainly along this
direction. If we consider the sector numbering going counterclockwise (opposed
to the rotation), a point in the first sector can have the identical amplitude of a
homologous point in the Nsth sector. Otherwise, it can have the same amplitude
of a homologous point in the (Ns − 1)th sector or the (Ns − 2)th sector, and so on.
These are different modeshapes associated with complex eigenvectors, which depend
on the harmonic index. A practical approach to understanding the harmonic index
is to divide the structure into a number of diameters (that’s why it is also called
nodal diameter) equal to the number of sectors Ns at the most. At each diameter,
the amplitude at a homologous point is zero. So, the number of possibilities depends
on whether the number of sectors is even or odd. If Ns is even, then:

h = 0,1,2, ..., Ns/2−2, Ns/2+1, Ns/2, Ns/2+1, Ns/2+2, ..., Ns−2, Ns−1 (2.12)
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or

h = −Ns/2 + 1,−Ns/2 + 2, ...,2,−1,0,1,2, ..., Ns/2 − 2, Ns/2 − 1, Ns (2.13)

If Ns is odd, then:

h = 0,1,2, ..., (Ns − 1)/2 − 1, (Ns − 1)/2, (Ns − 1)/2 + 1, Ns/2 + 2, ..., Ns − 1 (2.14)

or

h = −(Ns − 1)/2,−(Ns − 1)/2 + 1, ...,−2,−1,0,1,2, ...(Ns − 1)/2 − 1, (Ns − 1)/2
(2.15)

When IBPA is zero ϕ = 0, the harmonic index is also zero h = 0, and the
eigenvector is real, corresponding to a standing wave. In this case, homologous
points of adjacent sectors have the same amplitude value. If the IBPA is ϕ = π, the
harmonic index is h = Ns/2, and the eigenvector is real, corresponding to a standing
wave. In this case, homologous points of adjacent sectors have opposite values. In
all other cases, the eigenvectors show in couples corresponding to a travelling wave.
Interestingly, two modeshapes associated with two opposed identical harmonic
indexes are identical travelling waves but with an opposite rotation. For this reason,
it is sufficient to calculate the modeshapes associated with positive harmonic indexes
or until h = N2 or h = (Ns − 1)/2.

The relationships are shortly displayed in Table ??. BTW stands for backward
travelling wave, FTW for forward travelling wave and SW for standing wave.

The values of the parameters c−
nS

and c+
nS

depend on whether the number of
sectors is even or odd:

c−
ns

=
I

ns

2 − 1 ns even
ns−1

2 ns odd

J
, (2.16)

and
c+
ns

=
I

ns

2 + 1 ns even
ns+1

2 ns odd (2.17)

The relationship between complex eigenvectors is the following:

{Θ(l)} = {Θ(l−1)}eih
2π
Ns , (2.18)

In the same way for the complex displacement amplitudes:

{U (l)} = {U (l−1)}eih
2π
Ns {U (l−1)} = {U (l)}e−ih 2π

Ns . (2.19)

The equations of motion of the fundamental sector are expressable as follows:

(−ω2[m(h)
SC ] + [k(h)

SC ]){U (l)
SC)} = 0. (2.20)
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The subscript SC stands for "Cyclic Symmetry". By solving the equations in
2.20 and by using the relationship 2.19, we can calculate the eigenfrequencies and
eigenvector of the complete system.

Our objective is to obtain the equations of a single sector in 2.20. Considering
the sector l, the DOFs at the interfaces with the adjacent sectors are the DOFs
involved in the cyclic transformation. The equations of motion of the sector l are:

(−ω2[m](l) + [k](l)){U}(l) = 0, (2.21)

and the complex amplitude vector is:

{U (l)} =


U (l)
r

U
(l)
i

U
(l)
l

 = {U (l)} =


U (l)
r

U
(l)
i

U (l+1)
r

 . (2.22)

Figure ?? is a simple illustration of the left and right sector’s boundaries. The left
boundaries of the sector l correspond to the right boundaries of the sector l + 1.
The relationship allows the substitution of the left boundaries. The procedure leads
to the transformation matrix [Pk]:

{U (l)} = {U (l)} =


U (l)
r

U
(l)
i

U (l+1)
r

 =

 Isr 0
0 Isi

Isre
ih 2π

Ns

 I
U (l)
r

U
(l)
i

J
= [Pk]{U (l)

SC}. (2.23)

The matrixes in 2.20 are obtained as:

[m(h)
SC ] = [Pk]T [m(h)][Pk] [k(h)

SC ] = [Pk]T [k(h)][Pk]. (2.24)

Conditions to have the travelling-wave type of vibrations are [82]:

• rotational periodicity of the system: mistuning effects must remain negligible;

• No coupling between travelling waveforms due to aeroelastic effects;

• the exciting force is of travelling wave type: i.e. synchronous aeroelastic
excitation of different EOs.

• no strong nonlinear effects: they can disrupt the travelling-wave characteristic
of the vibration (dry-friction contacts introduce nonlinearities that generally
don’t cause this problem).

Both vectors and matrixes undergo the transformation to the travelling-wave
coordinate system.
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In physical coordinates, the mass, stiffness and damping matrices (i.e. for the
zeroth sector) have the following structure:

A =

 All Ali 0
ATli Aii ATri
0 Ari Arr

 , A ∈ {(0)
feK,

(0)
feD,

(0)
feM} (2.25)

The subscript ll and rr account for the coupling within each boundary, and the ii
within the inner volume. The subscripts li and ri account for the coupling between
inner volume and boundaries. It is assumed that there is no coupling between
left and right boundaries because they are disjunct. Based on the considered
wavenumber k, hence IBPA ϕk, the transformation for conformed meshes 7 between
boundaries is the following:

twAk = PH
k

(0)
feAPk, A ∈ {K,D,M} (2.26)

The subscript tw has the same meaning as the subscript SC previously seen. The
superscript H indicates that the matrix is Hermitian 8. The matrix twAk has a
size sfe,l × sfe,l. For non-conforming meshes, a more general formulation has to be
applied.

The matrices in A generally are made of two components: a block circulant A
and a deviation ∆A.

A = A + ∆A (2.27)

The transformation of the equations of motion 2.1 in the travelling-wave coordinate
system leads to:

twM twü(t) + twD twu̇(t) + twK twu(t) + twfc [twu] = twfa (twü, feu̇, twu, t)
− tw∆M twü(t) − tw∆D twu̇(t) − tw∆K twu(t)

(2.28)

Krack [<empty citation>] with the above description 2.28 represents the problem
in the travelling wave coordinate system, providing a more general representation
suitable for both frequency and time domains. The frequency domain is useful
for studying periodic solutions (discretization of the displacement with complex
Fourier series) in stationary conditions and counts on effective methods such as
HBM and MHBM. However, the time domain requires direct time integration (such

7the mesh that defines the left cyclic boundaries needs to perfectly match the mesh of the
right boundaries of the adjacent sector

8A complex vector is Hemirtian if the transpose of its conjugate is equal to the original vector
itself
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as the shooting method) and is suitable for studying transients (such as run-ups
and run-downs).
The forces in the travelling wave coordinate system have the following form twf =
[twfT0 ··· twfTns−1]T , f ∈ {fefc, fefa}. In the travelling-wave coordinate system the block
circulant matrix A (block circulant in the physical coordinate system) will assume
a block diagonal form twA = bdiag{twAk}, the perturbation matrices tw∆Ak will
be instead fully populated. The block circulant matrices twMk, twDk, twKk can be
obtained from the matrices of the reference sector by applying cyclic boundary
condition of the type u(0)

l = u(0)
r eiθk . These matrices are assumed symmetric in

the physical coordinates; in the travelling-wave coordinates, they are hermitian
(twAk = twA

H
k ). They are real-valued, and, in the travelling-wave form, they present

in complex conjugate pairs twAk = twA
∗
j for corresponding IBPAs (θk = 2π − θj).

It is possible to divide the problem into decoupled subproblems based on the
"k-th" wave component if:

• Each sector has identical structural properties (fe∆M = fe∆D = fe∆K = 0)

• The aerodynamic and nonlinear forces are linear with respect to feu and feu̇
and functionally identical in the form for each sector.

The exciting force will excite specific travelling wave components, inducing a
non-trivial response.

In case of mistuning and strong nonlinearities, the subproblems cannot be
decoupled for individual wavenumber k. With mistuning, the periodicity of the
vibrations breaks, and there is localization of the vibration. With small perturba-
tions |∆A| ≪ |A|, the problem representation expressed in 2.28 can be exploited
to introduce sector-to-sector deviations.

In general, nonlinearities may cause coupling between wave components, specifi-
cally higher harmonics both in time and space can be excited, leading to energy
transfer and energy localization in the nonlinear internal resonance [82] and C. For
strong linearities, the nature of the response can also change from the travelling
wave type to the standing wave type. In general, for weakly nonlinear cases and
tuned systems, the periodicity of the excitation is propagated to the response.
The nonlinear force term in this way will allow the reduction of the model to the
reference sector with the boundary conditions.

Aerodynamical synchronous exciting force

The turbine bladed disk is subjected to a pressure field as an external exciting force.
Assuming that the pressure field is fixed in space and constant in time (uniform
and stationary), the presence of upstream disuniformity and instability, nozzles
rows, casing ovality and asymmetries of inlet and outlet distorts the axisymmetric
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property of the pressure field. We can assume that these excitations are symmetric
around the circumference. A generic point in the system rotating at speed ωrot
feels a pressure that changes with time but reaches the initial value at the end of
a cycle. If the pressure field is stationary, then the exciting force is periodic, and
all sectors are equally excited with time lag ∆t between two adjacent sectors. In
general, if the rotational speed is constant and we define the spaced angle α, the
exciting force by using the Fourier Series is:

F (α) = F0 +
Ø
EO

F (EO)cos(EOα+ δ) (2.29)

Where EO (EO ∈ N+) represents the engine order of the excitation or the generic
component of the excitation. Since α = Ωrott, the pulsation of the exciting force ω
depends on the EO of the excitation such as ω = EOΩrot. The time lag will be
∆t = π/(ΩrotNs). A force at the adjacent sector will be felt after the time lag so
(t− ∆t), and therefore:

F (n) = F (eo)cos(ωt− ψ + δ) (2.30)

Where ψ = ω∆t = EO 2π
Ns

. By using the complex notation, the force on the l-th
sector is:

F (l) = F (eo)eiω te(iδ) = F
eo
eiω t (2.31)

Between two adjacent sectors:

F
(l+1) = F

l
e−iψ (2.32)

In general:

{Feo} =


IJ

IJe
−iΨ

...
IJe

−i(Ns−1)Ψ

 {F (eo)} (2.33)

The excitation can be represented on the Campbell diagram as in ?? through a
straight line starting from the origin with a slope depending on the EO. Let’s
consider the problem in the frequency domain:

(−ω2[M ] + iω[D] + [K]){U} = F (2.34)

It is demonstrated that in a cyclic symmetric system, the only possible excited
modes are those such as EO = h.

The steady fluid pressure field is associated with the zeroth engine order, already
accounted for in the static analysis.
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In the case of multi-EO excitation, the force with a complex truncated Fourier
series discretization has the following form:

fefae(t) =
Ø

EO∈M
feFae,eoe

iEOΩrott (2.35)

In this representation, feFae,eo defines the aerodynamic complex force amplitudes
applied to the full-bladed disk. Among the engine orders EO ∈ M, the fundamental
engine order EO0 is defined as the greatest common divisor EO0 : gcdM. If there
is single-EO, with EO = 5 then m0 = 5, if there is multi-EO, with EO = 5 and
EO = 6, then EO0 = 1. This is especially useful for the nonlinear predictions.

If the pressure field is known, the Fourier transform is exploited to obtain the
different engine order components of (0)

feFae:

(0)
feFae,m = 1

2π

Ú
(2π

Ú
(0)Sb

ηS(x)p(x, t)dAe−iEOΩrottd(Ωrott). (2.36)

The time-dependent fluid pressure field is p(x, t) and the blade surface Sb. Between
the other symbols, ηS(x) is the vector of finite element shape functions associated
with the vector of nodal displacements (0)

feu, restricted to the surface normal
direction. Here, we avoid the details about the implementation for the purpose of
computation.

Contact interactions

Bladed disks present mechanical dry contact interactions at shrouds, dovetails
and friction dampers. Actual accurate contact behaviour is not yet possible, and
research is still working on it; for this reason, the modelling of the contact behaviour
requires a set of assumptions:

• No material transportation (i.e. due to wear or diffusion);

• No effect on the temperature field.

Based on the direction, the contact interactions are divided between:

• normal contact: related to unilateral interactions;

• tangential contact: related to frictional interactions.

The modelling of these interactions requires the analysis of different aspects:

• distinction between static and dynamic contact problems;

• contact discretization (kinematics, kinetics);
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• contact laws;

• solution approaches.

The distinction between static and dynamic contact problems is related to the
deformation and behaviour of the interfaces. The blades subjected to static forces
such as centrifugal load undergo large deformations, and from the static analysis,
we can gather information about:

• the deformed shape;

• the active contact regions;

• the contact situation (pressure and clearance distribution)

The active contact region will change their behaviour during the vibrations
(dynamic condition): sticking, slipping and lift-off. If the pressure is very high, the
contact areas will remain in a sticking condition, leading chiefly to a linear dynamic
behaviour in the forced response. The change in the operational rotational speed
will affect the static equilibrium, requiring an update of the information obtained
from the static analysis (such as contact pressure at the dovetail).

The discretization of the contact problem is necessary to represent the contact
behaviour of the discretized contact area of the FE model. There are different
types of discretization techniques. The more generalized is the Mortar-Like method
used to describe the contact behaviour with non-conforming meshes. The simplest
formulation is a lumped formulation where the displacement of the interacting FE
surfaces is constrained to certain rigid body movements. A highly refined mesh
discretization may not necessarily lead to a better contact behaviour representation
[82], but a more accurate stress calculation. The discretization level tries to meet
both numerical computational efficiency and sufficient convergence. Krack [82]
provides a simple explanation of the contact laws, which will be presented herein.
Examples of the application of contact laws and kinematics are provided in [85]
and [86].

The contact points are those points where the contact laws are applied (nodes
for simpler models and integration points for more complex ones), while the contact
gaps, cgq, are the relative displacements between two contact points Pq1 and Pq2

referred to contact pair q (interacting surfaces). In a three-dimensional contact
model, the contact gap has the following formulation:

cgq =
C
gn,q
gt,q

D
, cg =


cg1
·
·
·

cgnc

 (2.37)
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Considering the small-vibrations assumption, the relationship between the contact
gap and the coordinates u (either travelling wave or physical) is liner:

cg = BTu. (2.38)

In a bladed disk, the inter-sector coupling defines a pair q. Based on the symmetry
assumptions, the phase-lag boundary conditions are applicable, passing into a
travelling-wave coordinate system.

The contact force is obtained by integration of the local contact pressure distri-
bution p(x) = [pn pTt ]T . The left subscript C denotes the union of contact surfaces.
The contact force will be:

fc =
Ú
C

b(x) p(x)dA

≈
ncØ
k=1

b(xk) p(xk)∆Ak = Bλ
(2.39)

Where λq = p(xq)∆Aq and b(x) is the union of shape function restricted to
C. It relates the nodal coordinates in u with the relative displacement field
g(x) = bT (x)u. The contact laws define a relationship between p and g and their
derivatives.

The contact laws define a relationship between the local contact kinetics (pressure
and force) and the local kinematics (gap and gap velocity). The study is divided
into:

• Normal contact;

• Tangential contact.

In normal contact, the unilateral contact law is assumed. With this assumption,
the interpenetration between the surfaces is not allowed. During the vibration, the
normal load influences the friction limit load, thus the tangential contact interactions.
Furthermore, the dynamic contact behaviour will be affected depending on the
static starting condition (open contact or close contact). In the case of open contact,
the oscillation may lead to interaction between the surfaces, while in the case of
close contact, the oscillation may lead to lift-off. Rigid and linear-elastic contact
laws may both express the contact kinematic. From a mathematical point of view,
the rigid formulation is as follows:I

pn = 0 ∧ gn − gn,0 ≥ 0 separation
pn ≤ 0 ∧ gn − gn,0 = 0 contact (2.40)

In the elastic formulation, the contract law is regular:

pn =
I

0 gn − gn,0 ≥ 0 separation
kn(gn − gn,0) gn − gn,0 < 0 contact (2.41)
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kn is the normal stiffness per area value. The subscript "n" denotes the normal
direction.

The tangential contact is characterizable by the sticking and slipping conditions.
The friction is dissipative and is the primary source of damping in mechanical
joints.

The characteristic of the common friction law with constant normal load and
harmonic one-dimensional tangential motion is the steady-state hysteresis. However,
generally, the normal load is not a constant value and is one-dimensional, while
the tangential motion is two-dimensional, and the decoupling is needed.

A common law to model the behaviour of the contact motion in bladed disks is
the Coulomb law (rigid or elastic). Both the variants distinguish between sliding
and sticking states but neglect the microslip regime, typically present in the case of
compliant bodies subjected to high normal loads. The mathematical formulation
of the rigid Coulomb law is the following:I

ġt = 0 ∧ ∥pt∥ < µ|pn| sticking
ġt /= 0 ∧ pt = µ|pn| ġt

∥ġt∥ sliding (2.42)

Since pn ≤ 0, pt points into the direction of −ġt during slipping. In the context
of blade vibration, to simplify the calculations, there is no distinction between
the static and dynamic friction coefficients, while in tribology, the two values are
distinct.

The elastic Coulomb is a regular law, different from the set-value law for rigid
contact. The hysteretic character of pt follows the differential equation:

dpt =
I
ktdgt ∥pt + ktdgt∥ ≤ µ|pn| sticking

0 ∥pt + ktdgt∥ > µ|pn| sliding (2.43)

kt is the scalar tangential stiffness per area value and is isotropic. Anisotropic
friction will require kt to be a two-dimensional matrix.

In general, it is possible to choose a rigid or compliant contact law model. The
finite element discretization accounts for the macroscopic geometry and does not
capture the surface roughness. By using a rigid contact law, it is possible to
account for compliance by adding an artificial stiffness (normal and tangential)
in the model. In this way, it is easier to neglect compliance by neglecting the
artificial stiffness. The lumped discretization, typical of penalty contact methods,
follows this philosophy. It considers the contact interface as rigid in the model
of the underlying bodies and accounts for compliance in the contact model. The
parameters kn and kt represent the added structural stiffness.

The solution approach to resolve the contact problem depends on the chosen
contract law. In the elastic formulation, the contact law is regular, and the problem
is a set of ODEs solvable by standard methods. If contact stiffness is of order
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higher than that of the underlying structure, the ODEs become "stiff", leading to
ill-conditioning and requiring a finer time discretization.

In the rigid formulation, however, the problem is that set-valued ODEs must be
solved by accounting for the complementary inequalities typical of penalty methods.
A constraint optimization problem arises, leading to an approximate solution.
With a linear penalty term, the problem is equivalent to the elastic formulation.
In the elastic formulation, the normal and tangential stiffness have a physical
interpretation, while in the penalty rigid formulation, the penalty coefficients are
just a mathematical parameter. This coefficient must be high enough to guarantee
a non-violation of the contact constraints, leading to numerical stiffness. Therefore,
for rigid contact laws for non-smooth problems, more robust numerical methods
are available, i.e. the augmented Lagrangian method. The reformulation of the
problem into non-smooth thanks to massless supplementary nodes attached to
contact points can help to overcome the numerical difficulties associated with
high-stiffness compliant models.

To summarize, the reguarized and non-smooth formulations are available for
rigid and compliant models. For the rigid contact model, penalty methods offer
regularization, resulting in stiff ODEs, whereas the non-smooth formulation requires
a standard approach. The complaint model is already regular, and the stiffness
depends on the model itself. The non-smooth formulation requires a reformulation
by using supplementary nodes.

Computation of the problem

The nonlinear equations of motion of bladed disk models with frictional joints are
not solvable using analytical or semi-analytical techniques exactly. Although with
piecewise linear contact law, it is possible to solve the equations with piecewise
integration, the transition times between the contact states are not at priori known,
and their determination from the transition conditions requires the solving of
transcendental equations. These are not solvable exactly. It means that approximate
solutions are required by exploiting numerical methods.

There are two ways to solve this kind of problem:

• time integration methods based on quadrature rules: initial values are defined,
and the unknowns evolve accordingly with the differential equation. For contact
problems, the methods are divided between event-driven and time-stepping.

• frequency methods: generally spectral methods where the generalized coordi-
nates are approximated with base functions.

Contact problems generally carry numerically stiff ODEs and a tiny time-
integration step size may be required to compute the solution, leading to high
computational demands. Therefore, time integration methods are not ideal for
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studying the nonlinear bladed disk dynamics. Frequency methods are preferred
in this context, helping save computational cost and time. There are different
available methods to compute the periodic vibrations of bladed disks. They are
computationally efficient since they transform the initial value problem into a
two-point boundary value problem. Between these methods:

• Shooting methods: A set of nonlinear algebraic equations is solved with respect
to the unknown initial values (generalized coordinates and velocities). The
time integration method is applied to solve the problem and find the values
at the end of the period. The initial values need to satisfy the periodicity
conditions.

• Spectral methods: The generalized coordinates and velocities are approximated
by base functions, which must be periodic. The approximation leads to an
error that is made orthogonal with respect to selected weights (test) functions.
The projection leads to a set of nonlinear equations in the unknown coefficients.

Soothing methods, different from direct-time integration, don’t consider the
transient regime, making it advantageous for the computation of their weak damping.
This property makes it suitable to study problems with non-smooth contacts, albeit
these methods are rarely implemented to study the nonlinear dynamics of blade
disks with frictional contact.

Spectral methods don’t generally rely on time integration and exploit the base
weight functions to approximate the generalized coordinates. A careful selection
of these functions may help reach high efficiency and accuracy. Between these
methods, there are the Galerkin methods. The most popular is the Harmonic
Balance Method with harmonic base functions.

Harmonic Balance Method

The harmonic Balance method is a frequency method used to compute periodic
solutions of ODEs. The generalized coordinates u(t) are approximated with a
truncated complex Fourier Series with a maximum number nh of temporal harmonic:

u(t) ≈ ℜ
I Ø
n∈H

Une
inΩt

J
(2.44)

n is the temporal harmonic, H = {0, ..., nh} is the set of harmonics, Ω is the
fundamental vibration frequency and Un are the complex valued amplitudes. The
substitution of this approximation in the equations of motion will produce an error
term, then made orthogonal to the base functions. That is possible by ensuring
that the Fourier components of the residual term are zero according to the Fourier-
Galerkin projection. For each temporal harmonic, a set of nonlinear algebraic
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equations has to be solved in the unknowns un. The equations of motion in ?? are
expressed as follows:è

−(nΩ)2Mn + inΩDn + Kn + Gai,n(nΩ)
é

ü ûú ý
Sn(Ω)

Un

+Fc,n(U0, ...,Unh
,Ω) = Fae,n ∀n ∈ H

(2.45)

The matrix Sn is called dynamic stiffness (or impedance), the matrices Mn, Kn, Dn

are the structural matrices, the matrix Gai,n is the aeroelastic transfer matrix, and
Fc,n and Fae,n are the complex-valued amplitudes of the forces. In the travelling
wave coordinate system the matrices depend on the wave number k: twMk, twKk,
twDk, twGai,k. The wave number k depends on the temporal harmonic n and
the fundamental wave number k0 by the congruence rule: k = n k0 modns. The
complex-valued amplitudes of the forces are related to the time-domain counterparts.

The fundamental wave number k0 and the fundamental oscillation frequency
depend on the engine order EO. For a single-EO excitation, the fundamental wave
number corresponds to EO. The oscillation frequency is determined by Ωosc = k0Ωrot.
Depending on the notation, if the temporal harmonic n is different from 1, then
the oscillation frequency is also multiplied by this value.

Rewriting the Eq. 2.45 using the dynamic stiffness,

S(Ω)U + Fc(U,Ω))Fae (2.46)

Another version is:
U + H(Ω)Fc(U,Ω) = Uae (2.47)

H = S−1 is the dynamic compliance (or receptance, or FRF) matrix. Eq. 2.46
is a balance of generalized forces, whereas Eq. 2.47 is a balance of generalized
displacements.

The harmonic balance methods can also suffer from convergence problems, and
its application to solve non-smooth problems can raise contradictions since the
approximation of the generalized coordinates has a C∞ class of differentiability,
whereas for a non-smooth problem that is limited [82]. However, for the global
behaviour analysis of the nonlinear non-smooth system, the Harmonic Balance
Method can predict the response with sufficient accuracy.

The number of harmonics in the truncation of the Fourier Series must be enough
to represent the solution with sufficient accuracy. The number of harmonics also
depends on the level of excitation.

In the case of multi-EO excitation, it may be necessary to consider at least
harmonic k1 = EO1 and K2 = EO2 to capture accurately the excitation but also
their multiples, and in general, the combination of harmonics z1 k1 + z2 k2 with
z1, z2 ∈ Z. The smallest set H should capture the dynamic behaviour with sufficient
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accuracy. The consideration of high-order contributions is a useful practice for
predicting precisely the nonlinear (local stick, slip and lift-off) behaviour of the
contact interfaces in the forced response. For contact problems, the static balance
(zeroth harmonic) defines the initial contact conditions to describe accurately the
settling and realigning of the contact interface and the static deflection typical for
breathing contact, which involves dynamic opening and closing of the interfaces.

Treatment of nonlinear forces in Harmonic Balance method

Krack [82] offers a simple but simultaneously accurate review of the treatment of
the nonlinear contact forces within the HBM method. So, we will mainly refer to
its article for the description.

A common technique within the harmonic balance formulation is to express
the nonlinear forces as a function of the generalized coordinates, treating them
implicitly and not explicitly as unknowns. The harmonics of the nonlinear contact
forces Fc need to be expressed as a function of U. It is also possible to have
a formulation with the Fc as the only unknown. Since the nonlinear forces are
less smooth than the generalized coordinates, a higher number of harmonics for
higher accuracy is preferable. However, treating them as an implicit function of
the generalized coordinates requires less harmonics with equal accuracy. One of
the main challenges is the numerical evaluation of the relationship Fc(U). Three
aspects complicate the computation:

• the relationship is set-valued: it is advantageous to use the Dynamic Lagrangian
formulation;

• presence of different contact states stick, slip and liftoff;

• hysteretic behaviour of the friction force.

A Dynamic Lagrangian representation allows the implementation of an alternat-
ing frequency-time scheme Alternating frequency-time AFT scheme to compute the
contact forces Fc in the analysis. Essentially, the nonlinear forces are calculated in
the time domain at discrete time steps, and there is a conversion to the frequency
domain for the computation of the complex Fourier amplitude of the generalized
coordinates, according to the mathematical formulation:

Fc = DFT [fc(iDFT [U0, ...,Unh
])]. (2.48)

The DFT and (i)DFT symbols denote the Discrete Fourier Transform and its
inverse, respectively. Computationally, the DFT is the Fast Fourier Transform
(FFT) that requires a defined set H of n harmonics for Un. And only the amplitude
Fc related to these harmonics will be computed. The AFT has an inherent
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discretization error, and the accuracy and computational effort depend on the
number of time steps per period.

The hysteretic behaviour of the contact forces fc cannot be expressed as a
function of the generalized coordinates u and velocities u̇, but depends on the
elastic Coulomb law. Since the purpose is to study the steady-state vibration, it
is important to determine the steady-state hysteresis cycle for the given periodic
input u(t) achieved by letting the fc evolve from a starting point on the initial
loading curve to the final steady-state cycle.

Both normal and tangential conditions are implemented depending on the
formulation, which can be:

• an elastic formulation: elastic Coulomb law for friction and elastic unilateral
contact law for normal contact;

• a rigid formulation: set-valued Coulomb law for friction and set-valued unilat-
eral contact law for normal contact.

In the case of elastic formulation, the term fc[u] is regular and has a simpler
evaluation. In the case of rigid formulation, the term leads to an optimization
problem due to the set-valued force laws. For this reason, a suitable algorithm
is the Dynamic Lagrangian method [83]. In the Augmented Lagrangian method,
the contact forces are evaluated only as a function of the primary displacement
variable.

The difference between the elastic and rigid formulation is in the definition of the
predicted sticking force (input variable of the force computation algorithm). This
force is defined by its harmonic components. For the normal contact, the sticking
force Λst,n in the elastic formulation is equal to kngn, while in the DL formulation
is equal to −Rlin,n + ϵDL,ngn. Rlin corresponds to the linear residual. Instead, the
tangential contact force Λst,t can be displacement-based or velocity-based. In the
displacement-based, elastic formulation, the force is equal to ktgt, while in the DL
formulation to −Rlin,t + ϵDL,tgt. For the velocity-based formulaiton only the DL
form exists: Rlin,t + ϵDL,t ▽ gt. The formulations are presented by considering the
force and not the pressure.

Even the lagrangian formulation presents penalty coefficients (ϵDL,n and ϵDL,t),
but, differently from the penalty-based method, they don’t influence the convergence
behaviour but rather the mathematical conditioning.

In the DL formulation, the linear part of the residual is obtained as follows:

Rlin := SU − Fae (2.49)

In the rigid formulation (DL included), all the non-contact terms (inertia, damping,
elastic and excitation forces) enter the contact forces computation differently from
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the elastic formulation, where only the contact deformation enters the contact force
computation.

In the DL formulation, in the case of the sticking condition, the contact gaps
are zero (gn = 0 and gt = 0). Therefore, Λst,n = −Rlin,n and Λst,t = −Rlin,t.

With the AFT method, the frequency domain quantities Λst,n and Λst,t are
transformed in the time domain via iFFT as λst,n,i and λst,t,i, where i denotes the
instant time. These are the time samples of the predicted sticking forces.

In the case of normal contact, the actual contact force is:

λn,i =
I

0 if N0 + λst,n,i < 0 (separation)
λst,n,i if N0 + λst,n,i ≥ 0 (contact) (2.50)

N0 denotes the normal preload. The normal gap gn,0 has a negative value, and
therefore the preload must be defined with a minus sign: N0 = −kngn,0 for the
elastic formulation, or N0 = −ϵDL,ngn,0.

In the displacement-based formulation for both elastic and DL variants, the
tangential contact force is computed as follows:

λt,i =


λpre,t,iú ýü û

λt,i−1 + λst,t,i − λst,i,i−1 if ∥λpre,t,i∥ < µ|N0 + λn,i| (sticking)
µ|N0 + λn,i| λpre,t,i

∥λpre,t,i∥ if ∥λpre,t,i∥ ≥ µ|N0 + λn,i| (sliding)
0 if N0 + λn,i = 0 (separation)

(2.51)
The computation requires knowing the normal contact force. The tangential contact
force at the instant i depends on the tangential force at the previous instant i− 1,
leading to an interactive scheme. The iteration stops at the steady-state hysteresis
cycle.

In the velocity-based formulation (only for the DL variant):

λt,i =


λst,t,i if ∥λst,t,i∥ < µ|N0 + λn,i| (sticking)

µ|N0 + λn,i| λst,t,i

∥λst,t,i∥ if ∥λpre,t,i∥ ≥ µ|N0 + λn,i| (sliding)
0 if N0 + λn,i = 0 (separation)

(2.52)

In this case an iteration is not needed.
Known the steady-state time history values of λn,i and λt,i, the DFT is applied

to obtain the harmonic components of the contact forces in the frequency domain.
For the elastic variant, the contact laws are commonly formulated directly as a

function of gaps rather than the predicted sticking force.

Newton method

The application of the Harmonic Balance method results in a nonlinear algebraic
problem. The resolution of the periodic motion of nonlinear dynamical systems
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requires the application of a specific solver. The purpose is to obtain:

R(X) = 0 (2.53)

Where X is the vector of unknown and R is the residual vector function, which is
different from zero if X is not the exact solution.

Many methods require real arithmetic for X; in the frequency domain, the
unknowns are complex-valued, specifically complex amplitudes U that can be split
into real and imaginary parts and gathered in the vector X.

Most nonlinear problems are not solvable with exact analytical solutions and
require an approximation. Global methods allow computing all problem solutions,
while local methods find only single solutions near an initial guess. Between local
methods, there is the Newton method and the group of pseudo-time solvers. The
latter group are typical for CFD and fluid-structure interaction problems.

The Newton method involves the solution of a linear set of equations:

∂R
∂XT |X=Xm(Xm+1 − Xm) = −R(Xm). (2.54)

m denotes the current iteration number. The current guess is Xm, and the objective
is to obtain the new guess Xk+1. Defined the initial guess X0, a series of iterations
is performed as long as the norm of the residual (Jacobian matrix) is below a
specified tolerance: ∥R(Xm)∥ < ϵ.

The Newton method is gradient-based and requires the computation of the
gradient of the residual with respect to the vector of the unknown. The associated
computational effort may be high since the solution is retained at each iteration but
praises good convergence behaviour in the neighbourhood of the solution. However,
convergence is not always guaranteed. Some new methods have been developed to
reduce the computational cost. They bypass the calculation of the residual like the
Jacobian-Free-Newton-Krylov, based on the Newton-Like method that exploits the
Krylov subspace to compute the equation 2.54.

There is another group of methods, quasi-Newton methods, that calculate an
approximation of the Jacobian without updating at each iteration. That reduces
the iteration computational effort, guaranteeing also reduced convergence and
iterations. An alternative is the approximation of the inverse of the Jacobian,
necessary to calculate the next correction of the vector of unknowns. It updates at
each iteration based on the available quantities but without a recalculation at each
step.

An alternative to these methods within the gradient-based is to calculate the
Jacobian analytically simultaneously with the evaluation of the residual R, thus
accelerating the calculation. The challenging part is represented by the derivation
of the nonlinear forces Fc with respect to the unknowns. The AFT scheme is

38



Description of the problem

applied and involves the FFT and iFFT:

∂Fc

∂x
= FFT

C
∂fc(u, u̇)

∂x
+ ∂fc(u, u̇)

∂uT
· IFFT

C
∂U
∂x

D
+ ∂fc(u, u̇)

∂uT
· IFFT

C
∂∇U
∂x

DD
.

(2.55)
x is an arbitrary real-valued variable.

In friction-damped systems with local nonlinearities, the friction forces fc act and
depend on only a subset cg of the generalized coordinates u (cg ∈ u). Therefore,
the nonlinear term Λ and associate gradients are sparse, a property exploited by
the exact condensation procedure, not further treated herein.

When studying the nonlinear vibrational behaviour of bladed disks coupled by
friction joints, it is commonly of interest to analyze the influence of the variation of
a certain parameter, for example, the oscillation frequency. The problem to solve
is:

R(X, ρ) = 0, ρ ∈ [ρmin, ρmax]. (2.56)

ρ = Ωosc if the oscillation frequency is the interested parameter. A set of connected
solutions X(ρ) is denoted solution branch. A common technique to compute
the solution branch is to exploit numerical (path) continuation methods, which
facilitate the iterating computation by accounting for the known solution points.
The advantage of continuation is to allow passing the turning points, where the
nonlinear dynamic is more complicated and in the presence of bifurcation (the
existence of multiple solutions for the same value of ρ). However, the detection of
separated branches requires a different approach (global approach).

Two possible continuation methods are:

• Predictor-Corrector Method;

• Asymptotic Numerical method.

We will focus only on the first method since the second one has a limitation: it
cannot be applied to systems with dry friction and unilateral contact nonlinearities.
It is necessary to regularize the nonlinearities analytically.

The predictor-corrector method obtains the next predicted solution point starting
from a defined previous solution point and goes forward in a step ∆s into a specified
direction. This direction can be a tangent of the previous solution point or a secant
(of two previous solution points). Since the predicted step doesn’t lie on the solution
branch, a correction is required to find the solution point. Newton’s method is
used for this purpose. Herein, the parameter ρ is considered unknown, making the
problem in Eq. 2.56 underdetermined. Consequently, it requires the imposition
of a constraint. There are three possible ways. The first way uses arc length
parametrization to ensure the next solution point has the specified distance ∆s
from the current solution point. The second requires forcing the point to lie in
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the hyperplane through the predicted point, orthogonal to the tangent. The third
uses local parametrization to fix the unknown to its previously predicted value.
In general, the tangent predictor step scheme and the arc-length parametrization
scheme are used in combination in the procedure. It is also possible to adapt the
step size ∆s, automatically reducing the computational effort in case of too-small
steps and ensuring fast convergence by avoiding too-large steps.

The first solution point is necessary to start the continuation procedure and
is computed through local methods, which also require an initial guess for the
iteration process. The success and rapidity of the convergence depends on how
distant is the initial guess from the solution. In some cases, the exact solution
is known for a certain parameter ρ. In a frequency response analysis, the upper
and lower frequencies in the considered range are most likely in a linear regime
where the contact points are either sticking or separating. Within that range, the
convergence is generally guaranteed.

Another important aspect is the scaling of the unknowns. In fact, considering
the equation Eq. 2.53, the unknown can assume a numerically different order
of magnitude, especially if different physical quantities are treated as unknown
variables (i.e. oscillation frequency Ω and generalized coordinates). If the distance
in the order of magnitude is too high, then convergence problems may arise. Hence,
linear scaling can be applied to the unknowns so that they assume a matching
order of magnitudes, improving the rate of convergence and behaviour.

Nonlinear modes concept

The nonlinear modes represent the autonomous behaviour of nonlinear systems in
the absence of excitation forces and self-excitations typical of operative conditions.
In general, they describe the periodic motions of the autonomous system. Nonlin-
earities can present in different ways. When associated with friction, the associated
damping causes the autonomous vibrations to be aperiodic, decaying with time. In
this case, nonlinear modes are more appropriate since they represent a generaliza-
tion of the motion. The nonlinear normal modes suggest modes that are orthogonal
between each other, according to Rosenberg’s definition [<empty citation>],
property appliable only to symmetric conservative systems. With friction damping,
the system is nonconservative. Krack [<empty citation>] proposes that non-
linear conservative systems have nonlinear periodic modes induced by a negative
damping term large enough to compensate for the inherent dissipation (periodic
motion concept). This concept allows the exploitation of standard methods for the
computation and stability analysis of the periodic motion, including the harmonic
balance method and the shooting method.

The nonlinear modal analysis (free system) calculates the vibrational modes of
the system. An important aspect of such systems is the dependence of the modal
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properties (modes, deflection shapes, natural frequencies, damping ratio) on the
vibrational level. In the case of external excitation, the resonance is characterized by
frequency shift, change in the effective damping and localization due to nonlinear
effects. Another aspect is the nonlinear modal interactions induced by energy
exchanges between two or more modes induced internally by the nonlinear forces.
That can influence the system’s dynamic with secondary maxima and isolated
branches. High harmonic content can lead to detrimental effects on effective
damping.

Mistuning

When the system’s rotational periodicity is perturbed due to sector variation of
aerodynamical, geometrical, material and contact (also contact surface conditions)
properties, then the system is said mistuned (or detuned). There are two types of
mistuning:

• small mistuning: material inhomogeneities, wear and small variations in
stiffness properties;

• large mistuning: FOD and some cases of fatigue cracks.

During the operation, wear and tear can cause mistuning to increase or decrease.
Also, assembling and disassembling the bladed disk wheel will change the wear
contact state of the contact areas, affecting the so-called contact mistuning. These
deviations affect the structural and aerodynamical behaviour of the system. A
common phenomenon associated with mistuning is the localization and mistuning
magnification. It disrupts the periodic character (typical of tuned systems) of
the vibrations - travelling-wave character - in near-resonant conditions (quasi-
periodic vibrations). It causes a magnification of the response amplitude in only a
few sectors, which reaches a maximum and becomes insensitive after additional
mistuning. Mistuning can be exploited intentionally to increase the system’s
robustness but also to reduce the effects caused by the aeroelastic flutter. In
general, determinist and stochastic methods (based on the Monte Carlo method)
have been developed over the years to model mistuning and predict its effect on
the system’s dynamic.
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General procedure to FEA

The Finite Element Analysis is an effective technique to analyze the structural
behaviour of complex geometrical problems, where the computation of analytical
solutions may be too complex or even impossible. These tools create an approxima-
tion of the main continuous structural component using small elements of simple
geometry, making the analysis possible. The number of elements in the mesh
improves the accuracy of the results but also affects the computational effort. It is
important to find the right balance. Different commercial and open-source software
for FEA are available nowadays, each with its interface. Commercial software
tends to be more advanced in terms of type of analysis and preprocessor. But, in
general, the FEA procedure is the same. The procedure is mainly divided into
preprocessing, solving and postprocessing. Each phase groups different steps, as
follows:

1. Preprocessing:

• Geometry Creation/Import: The geometry is created or imported from
CAD software.

• Mesh Generation: The geometry is divided into small elements to create
a mesh.

• Material, structural and thermal property assignment.
• Boundary Conditions: Boundary conditions and constraints are applied

to the structure. (SPSs, MPCs, Tieing conditions, cyclic symmetry
boundaries, contact models and more).

• Load definition: External loads are applied to the model as forces, pres-
sures or thermal loads. More generally, concentrated loads (applied to
points), distributed loads, centrifugal loads, etc.

• Definition of Analysis type (static, dynamic, thermal, and more)
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• Mesh quality check: Bad-quality elements can affect the accuracy of the
calculations.

• Substructures generation;
• ROM definition;
• Input file generation: All the necessary files are printed. Especially if the

solver software is separate from the preprocessor software.

2. Solving: The solver will perform the calculation based on the input files
describing the preprocessing.

3. Postprocessing:

• Results visualization: After the calculation, the result files are printed.
The visualization is performed through software. In this phase, it is
possible to visualize the deformed shape, stresses, etc.

• Extraction of the results: In this phase, the result data are extracted
(maximum stresses, displacements and so on).

• Validation: In this phase, the results are compared with experimental
data or known analytical data to validate the accuracy of the FEA

• Sensitivity Analisis: The sensitivity analysis aims to study how a change
of parameters affects the results or model response.

• Optimization: A change in the model might be necessary to optimize the
results.

The general procedure is similar for every software. When using commercial
software, the interface helps the user select the options. Other software, generally
open-source or industry-developed, might not have an advanced interface, and an
interaction with an input file is necessary.

The interface CalculiX GraphiX is not very advanced and is mainly used to
create the mesh and visualize the results. The command functions are controlled
through the interfaces but also by writing specific keywords in the console (i.e.
Linux console, command prompt in Windows) The rest of the preprocessing is
prepared by writing directly the input file. Specific keywords, parameters and
values are set in this phase.

OrAgL-NOSTIA-ROOCMAN is an FEA software specifically developed for
bladed disk dynamics analysis. The software doesn’t have its interface, but the
user interacts with input files for preprocessing and solving. The postprocessing
produces result files, and the visualization is realized with CalculiX software (or
others). The mesh in the preprocessing is prepared through CalculiX or other
software. The simulation starts by calling the executable file containing the source
code through the console, and the input file is loaded.
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Substructuring in FEA

The concept of substructuring in the context of Finite Element Analysis revolves
around the necessity of breaking down a model into smaller pieces, manageable
substructures. That is extremely useful while dealing with large models, simplifying
the analysis eventually.

The division of the component in substructures serves two purposes: to separate
one or more substructures from the entire model and to apply ROM techniques
to the substructures. In the first case, the model is analyzed independently from
the substructure, allowing parallelization. A second purpose is to apply ROM to
the single substructure to reduce the number of modes involved in the analysis.
Then, assemble each substructure and solve the equation of motion of the reduced
system. That is useful when the number of DOFs in the system is very high, leading
to computational effort. The concept of substructuring stemmed from the first
developed ROM techniques, so ROM and substrutures are intrisically related.

This last principle applies to the FEA of bladed disks. Industry models contain
a very high number of DOFs just for the single sector. When assembling all the
sectors, the number of elements and nodes is so high that a simple static calculation
wouldn’t be possible with the standard RAMs. For this reason, substructuring
and ROM techniques are used extensively to simplify the model and reduce the
computational effort while maintaining a high accuracy compared to the original
model.

In this context, a standard procedure that involves substructuring and ROM
applied to FEA models is the following:

1. Preparation of the Full-Order Model (FOM) (Paternal structure): Geometry
and mesh, node and elements sets, material properties and boundary conditions
must be defined;

2. Division of the paternal structure in smaller structures (substructures);

3. Application of the substructure ROM to the single substructures;

4. Assembly of the reduced substructures;

5. Application of the secondary ROM.

In the context of FEA, the most widely used ROM techniques are the ones that
are part of the set of CMS (Component Mode Synthesis) methods. Tendentially, the
choice falls for the Craig-Bampton method (CB) ??. CB in FEA allows handling
large structures by significantly reducing the number of DOFs while retaining the
accuracy in the representation of their dynamic behaviour. Also, it allows the
flexible inclusion of boundary conditions at the substructures for a more accurate
system response.
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Preparation of the nonlinear coupling constraints and model reduction

After dividing the structural system into substructures, in order to apply ROM, it
is essential to separate coupling and remaining coordinates:

• coupling coordinates: the physical coordinates that characterize the description
of the contact interfaces. Generally, they are retained to produce an accurate
description of the kinematics of the interfaces, as opposed to the interior
coordinated, that are a reduced set of generalized coordinates to approximate
the interior dynamic of the system.

• remaining coordinates: the physical coordinates in the structure’s interior that
are not involved in the deformation of the contact interfaces.

The definition of the coupling coordinates presents two variants: nodal coordi-
nates and relative coordinates [82].

To explain the general feature of ROM techniques, let’s consider a structure
composed of different substructures (blade and disk). Whether the system’s
representation is in the physical coordinate or the travelling-wave system and
defined as nd the number of coordinates in the vector u of the substructure, the
application of Component Mode Synthesis reduction techniques (CMS) leads to
an approximation of the displacement vector in a reduced number of nr vectors of
component modes.

u ≈ T ru (3.1)

The component modes are assembled as columns in the matrix T and the general
coordinates in the vector ru. Since the basis vector in T is not dependent on the
displacement, the approximation is linear and correct as long as the nonlinearities
are local. The approximation will result in an error in the equations of motion.
Generally, this error is made orthogonal with respect to the base vectors. The
reduced equations of motions are:

rM rü(t) + rD ru̇(t) + rK ru(t) + rfc[ru(t)] = rfa(ru, ru̇, rü, t) (3.2)

Defined as A ∈ {M,D,K}, the reduced (projected) matrices are obtained by
multiplying on the left to the Hemirtian of the component modes matrix HT and
on the right to the component modes matrix T: HTAT . The forces are obtained
by left multiplication of the Hemirtian of the component modes matrix: rf

HTf ,
f ∈ {fc, fa}. The problem is hence reduced to a subspace of component modes
and unknown coordinate nr ≪ nd, contributing to saving computational effort.
There are different techniques within the CMS reduction methods that differ from
each other based on the selection of the component modes. The most common to
study bladed disk dynamic is CB or an updated version. It is important to select
a sufficient number of component modes within T , large enough to represent the
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system’s dynamic behaviour with sufficient accuracy but as small as possible to
reduce the model and make it feasible for analysis.

PUT HERE THE DESCRIPTION of the ROMs
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Introduction to the tools

The validation process requires comparing the test rig and simulation results, and
the tools are presented in this section accordingly.

4.1 Test rig
Figure 4.1 shows a picture of the new MTU’s test rig set-up.

Based on the information publicly available from MTU Aero Engines, the
measurement equipment has a modular structure for rugged and mobile use on
internal and external test facilities or flying test beds. It consists of the following
key systems:

• Dynamic Data System (DSS): for acquiring, monitoring and analyzing data
from strain gauges, accelerometers, pressure sensors and other probes which
require high scanning rates.

• Tip timing (BSSM): It uses capacitive and optical probes to measure real-time
rotor blade vibration up to 60th engine order and down to peak amplitudes
of 2 µm. It can analyze synchronous (resonances) vibrations, asynchronous
vibrations (blade flutter and surge loads), blade untwist and crack detection.

• Tip clearance: Min, max, average tip clearance, rotor orbiting and position,
and casing deformation with capacitive probes.

• High-speed video system;

• Infrared measurement system;

• Telemetry system.
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Figure 4.1: Test rig set-up

4.2 Software
The simulations and the preparation of the models required three different software:

1. Altair Hypermesh

2. CalculiX

3. OrAgL-NOSTIA-ROCMAN

The reason to use three different software is to exploit their potentialities.

4.2.1 Altair HyperMesh
HyperMesh is a high-performance finite element pre-processor developed by Altair
Engineering. HyperMesh provides a comprehensive set of tools and functionalities
for meshing, geometry editing, and model assembly.

MTU Aero Engines exploits Hyermesh for its advanced pre-processing capabili-
ties:

• Geometry import (Different input file types of other software) and cleanup;
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• Mesh generation, mesh editing and mesh quality check;

• Possibility to use advanced functionalities: creation of surfaces from FE mesh,
creation of 2D mesh from 3D mesh, "morphing" technique, etc.

• Possibility to create an Abaqus (Analysis Solver) input deck file, compatible
with CalculiX.

Thanks to these functionalities, HyperMesh has been useful for the geometry
preparation for the geometrical mistuned model as explained in section 5, specifically
the possibility to import STL geometries and create a surface from them. The
possibility to create an input deck file in Abaqus format facilitated the passage to
CalculiX software, mainly used by MTU Aero Engine and the main FEA software
that efficiently interfaces with Oragl-NOSTIA-ROCMAN.

CalculiX

CalculiX is an open-source FEA software used to simulate the behaviour of me-
chanical structures and systems under specific loading conditions, to make thermal
simulations and coupled multiphysics 1 simulations. It is used to make linear and
nonlinear static and dynamic analyses and provides insight into stresses, strain and
deformations. It can also provide additional information. It allows the inclusion of
different material properties, nonlinearities and loading scenarios. It is a complete
FEA software that offers several functionalities for mesh generation, pre-processing,
solver and post-processing. These tools make it a powerful and versatile open-source
FEA software.

This software is used extensively by MTU Aero Engines 2 to perform basic
standard calculations that don’t require specific functionalities. Another advantage
is that it can offer a direct interface to Abaqus solver, Nastran, Ansys (all commercial
software) and other software.

CalculiX also provides a direct interface to the software Oragl-NOSTIA-ROCMAN.
Figure 4.2 showcases a simple scheme of how standard FEA software works.

OrAgL-NOSTIA-ROOCMAN

OrAgL-NOSTIA-ROCMAN is an FEA software (Matlab code) originally separated
into three parts: OrAgL, NOSTIA and ROOCMAN. Their functionalities have

1Multiphysics refers to the simulation and analysis of physical phenomena where different
physical processes or fields interact (i.e. interaction between structural mechanics, fluid dynamics,
heat transfer and so on

2The engineer developers of CalculiX are employees of MTU Aero Engines. The company can
count on a more advanced version of the software.
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joined together over the years into a unique software:

• OrAgL: Solves the equations of motion in the frequency domain;

• NOSTIA: Solves the equation of motion in the time-domain;

• ROCMAN: To introduce mistuning in the equations of motion.

NOSTIA was not used to run the simulations since the problem is in the
frequency domain. The potentiality of OrAgL resides in the modelling and solving
of the periodic nonlinear vibration in the frequency domain.

The presence of nonlinearity brings about complications to the prediction
and computation of the solution, firstly because the superposition principle is
not applicable and secondly due to the possible existence of multiple solutions.
Furthermore, the nonlinearities ?? can cause:

• change of the resonance frequency;

• variation of the damping;

• variation of the mode shape and shape of the forced response curve;

• presence of additional frequencies in the vibration response.

Figure 4.3 shows a schematic illustration of how FEA works with OrAgL.
OrAgL exploits dynamic substructuring and Reduction-Order techniques to

make the nonlinear analysis feasible. Furthermore, it computes the nonlinear
forced response with a nonlinear solver (Newton solver) in the frequency domain,
also using the numerical path continuation with an adaptive step. The contact
forces are calculated using an alternating frequency-time scheme passing from the
time to the frequency domain. That’s important to obtain the starting value of
the Fourier Coefficient of the contact forces at the steady-state hysteresis cycle.
The nonlinear Newton solver calculates the first solution point, and the path-
continuation technique finds the next predicted point from the first one using a
predictor scheme. The parametrization scheme requires a parametric constraint
imposition (i.e. the frequency) to find the next point on the solution branch. More
advanced techniques are also implemented or projected to be implemented (i.e.
isolation branches computation, bifurcation and stability analysis).

OrAgL receives information about mass and stiffness properties and geometry
DOFs from an FEA software and works independently to execute both linear and
nonlinear (local nonlinearities) analysis. In conclusion, the advantages of Oragl are:

• implementation of cyclic symmetry constraints

• Using CMS reduction-order techniques to reduce the number of vibrating
linear modes: substructure ROM and secondary ROM;
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• Resolution of the problem in the frequency domain by using HBM or MHBM;

• Implementation of the continuation procedure to find the points on the solution
branch and AFT scheme for the contact forces calculation.

The static analysis is necessary to obtain the large deformation, pre-stresses and
the starting contact pressures. It is required to set:

• centrifugal load;

• mean fluid forces (not necessarily);

• thermal load;

• contact and clamping conditions;

• cyclic symmetry boundary conditions.

With the assumption of small vibrations, the internal forces are linearized around the
equilibrium configuration. When large deformations are involved, the assumption
of small vibrations falls, and the equations of motion cannot rely anymore on the
linear description of the mechanical elastic forces.

fs = Ku + Mü. (4.1)

fs denotes the structural stiffness inertia forces and material damping. The material
dissipation is generally identified by measurements and expressed as modal damping.
The material damping forces are at least one order of magnitude smaller than the
other internal forces.

The application of the CMS is to approximate the dynamics in terms of compo-
nent modes. The objective is to have:

• a good representation of contact interactions;

• and a good representation of the dynamic compliance and the natural dynamics
in the relevant frequency range.

With the CB method, the component modes are a collection of:

• static deflections for unit displacement at each interface degree of freedom;

• fixed interface normal modes.

All the DOFs at the interfaces are retained within the formulation to represent
better the nonlinear behaviour associated with the contacts.
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Considering the equations of motion of a time-invariant mechanical system with
periodic forcing:

Mq̈ + Dq̇ + Kq + fnl(q, q̇) = fae(t) (4.2)

u, fnl, fae ∈ Rn×1 are the displacement vector, the nonlinear forces vector and
the synchronous aerodynamical external forces respectively with fae(t) = fae(t+ T ).
T = 2π/Ω denotes a period. M,D,K ∈ Rsfe×sfe are mass, damping and stiffness
matrixes respectively, with M = MT > 0. With periodic vibrations, the generalized
coordinates u(t) = u(t+ T ):

u(t) = U0 +
NØ

sfe=1
(Uc,kcos(nΩt)+Us,ksin(nΩt)) U0,Uc,k,Us,k ∈ Rsfe×1 (4.3)

It is a mathematical equivalent representation of the truncated Fourier Series.
However, it will be a complex representation that makes the calculations in the
frequency domain easier:

u = R

I
HØ
n=0

Rne
inΩt

J
, u̇ = R

I
HØ
n=0

inΩUke
inΩt

J
, ü = R

I
HØ
n=0

−(nΩ)2Uke
inΩt

J
(4.4)

Where Un ∈ Csfe×1, ∀n /= 0.
The dynamic for equilibrium in the frequency domain is:

S(nΩ)ú ýü û
[(−nΩ)2M + inΩD + K]Unü ûú ý

linear internal forces
+ Fnl,nü ûú ý

nonlinear internal forces
− Fae,nü ûú ý

external forces
= 0

(4.5)
Solving the equation leads to obtaining the Fourier COefficient of the displacement
considering that Fnl,n(U0, ..., UH). The nonlinear force in the frequency domain is
calculated via:

1
π

Ú 2π

0
fnl(uu̇)e−inΩtdt =

I
2Fnl n = 0
Fnl,n n = 1, .., H (4.6)

Depending on the form of the nonlinear forces, different formulations can be
used:

• Polynomial forces: closed formulation via Convolution theorem;

• Piecewise Polynomial (incl. piecewise linear) forces: transition time must
be determined;

• Generic nonlinear forces: Alternating-Frequency-Time (AFT) scheme 2.
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In the case of AFT, the nonlinear forces are calculated by alternating from frequency
to time domain and vice versa, as follows:

Fnl,k = FFT [fnl(iFFT [Qk]] (4.7)

In the time domain, the number of samples per period is chosen considering:

• the Nyquist-Shannon theorem for the theoretical lower limit (to avoid aliasing
effect);

• oversampling is possible in the case of non-smooth forces.

To find the first solution point, the Newton-like solver is used. For the harmonic
balance, be x = [U0,R(U1), I(U1), ...,I(UH)]T the vector of unknown of the dis-
placement Fourier Coefficient and R = [R0,R(R1), I(R1), ...,I(RH)]T the residual,
the idea of Newton is to linearize the residual:

R(x(j+1)) ≈ R(x(j)) + ∂R
∂x

----
x(j)

(x(j+1) − x(j)) = 0 (4.8)

j is the iteration index. The iteration procedure is applied to find the next solution
point:

x(j+1) = x(j) − ∂R
∂x

----−1

x(j)
R(x(j)) (4.9)

The advantages are:

• Fast convergence near solution;

• For global convergence, some adjustments are required;

• The analytical gradients reduce the computational time.

The nonlinear forced response is computed within a defined frequency range, and
the first frequency point should correspond to a point where the system behaves
linearly to assure convergence. From the first point, the numerical continuation
procedure allows computing the solution branch. The predictor-corrector is the
generally chosen technique. The numerical continuation tries to solve the equations
to obtain R(X) = 0, where X = [x Ω, with R,x ∈ Rn(2H+1)×1, in the interval
Ω(s) ≤ Ω ≤ Ω(e). It generates a sequence of suitably spaced solution points within
the given parameter range. The advantage of the continuation is that it can pass
turning and bifurcation points. The convergence stability of the method also
depends on the nonlinear behaviour of the system. The predictor, generally a
tangent, predicts the next solution point, which doesn’t stand on the actual brand.
Therefore, the corrector uses a parametrization technique, generally arc-length,
by imposing a constraint (additional equation) of a parameter (the frequency)
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as an additional unknown and finding the next solution point on the solution
branch through the solver. The parameter is an unknown. The step size in the
continuation procedure should be as small as possible to ensure convergence and not
overlook essential characteristics of the solution, but as big as possible to avoid an
unnecessary computational effort. The adaptation of the step size within a specified
range is also applicable. Apart from the nonlinear forced response computation,
other analyses are possible with OrAgL:

• self-exited limit cycles analysis;

• nonlinear modal analysis;

• resonance tracking;

• bifurcation points tracking.

The forced response study of a bladed-disk model in Oragl-NOSTIA-ROOCMAN
can be of mainly three types:

1. Cyclic Symmetry analysis with phase-lag boundary conditions;

2. FWM (Full-Wheel Model) cyclic-chain formulation by sector expansion;

3. FWM (Full-Whell Model) by using different substructures (i.e. geometrical
mistuned model).

In case 1) it is sufficient to have only one substructure for each sector. The sector
displacement vector u and the structural matrices A are partitioned to highlight
the internal, left and right boundary DOFs:

u =

 ul
ui
ur

 A =

 All Ali Alr

Ail Aii Air

Arl Ari Arr

 (4.10)

An equation is required to set the displacement congruence between the left and
right boundaries of adjacent sectors:

ul · Isb
eiθk = ur (4.11)

Isb
is an identity matrix of size sb × sb, with sb the number of DOFs at the left and

right cyclic boundaries. The angle Θk defined the IBPA (Inter-Blade Phase Angle)
that depends on the wave number k (Refer to subsection 2 for the explanation
of travelling-wave type vibrations). Thanks to the relationship, the displacement
vector is compacted:

u = Pk · åuk (4.12)
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It is a spatial Fourier transform, which is exact if all wave numbers are considered.
The matrix Pk has the same form in Eq. 2.23, and the displacement:

åuk =
C åucåui

D
(4.13)

The vector åuc denotes the displacement vector of the cyclic DOFs.
The advantages of using the phase-lag formulations are the computational effi-
ciency, the travelling-wave type mode shapes, the aerodynamic modal coefficients
that can be applied directly to the system modes, and it is optimal for nonlinear
frequency-domain analysis. However, it is not suitable for mistuning applications
and for time-domain analysis. Mistuning is caused by differences between substruc-
tures breaking the periodicity of the vibrations, and a travelling-wave reference
system is not applicable. Time-domain analysis is not convenient for steady-state vi-
brations for computational reasons, but it is inevitable to study transient conditions.

In the second case 2), the objective is to obtain a Full-Wheel (FWM) by ex-
panding the coordinates of the cyclic sector to a number of sectors ns. The new
displacement vector and structural matrices form are:

u = Ins ⊗

 ul
ui
ur

 A = Ins ⊗ A (4.14)

Then, the boundary constraints are applied:

...
u(l−1)
r

u(
l l)

u(
il)
...


=



. . . ... ... ...
· · · Isb

0 · · ·
· · · Isb

0 · · ·
· · · 0 Isi

· · ·
... ... ... . . .




...

u(l)
c

u(l)
i
...

 (4.15)

The cyclic-chain formulation is computationally demanding, and the mode
shapes are standing waves, so they are not identifiable with wave numbers (It is
possible to associate somehow an artificial wave number to identify the modes).
Also, the aerodynamic coupling application is non-trivial in the time domain. With
this formulation, it is possible to apply arbitrary mistuning and to implement
time-domain analysis; in the frequency domain, the aerodynamic modal influence
coefficients are applied in the system mode.

It is also possible to have a third hybrid formulation where both the cyclic
symmetry and cyclic chain formulations are used. In this case, a single sector
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is divided into two main substructures: blade and disk. In general, this hybrid
formulation is suitable for modelling mistuning. Since the objective is to analyze
the blades’ dynamic, then the mistuning is applied to the blades only. The disk is
modelled by imposing phase-lag boundary conditions, while the blade is cyclicly
expanded in a cyclic-chain formulation. Eventually, the model is then assembled.
With this formulation, the vibrational dynamic is characterized by a standing wave
type of vibrations since the mistuning applied to the blades breaks the periodic-
ity of the system. The advantages are increased efficiency due to the reduction
of the disk component modes, the possibility to apply the aerodynamic modal
influence coefficients directly to the system modes or at the blade components
in the frequency domain and to apply mistuning directly to the individual blade
substructures. However, nonlinear time-domain analysis is not possible.

A system’s reduction through ROM is essential to reduce the computational
effort. But, since the hybrid formulation involves many more DOFs than the cyclic
symmetric one, it is possible to set a secondary reduction of the assembled system.

The CMS methods approximate the FE deformations u in terms of component
modes assembled in the transformation matrix T:

u ≈ Tq (4.16)

T is the transformation matrix (or Modal Matrix) that contains the modes. If all
the modes are retained, then the transformation is not an approximation but exact.
q is the modal vector associated with the transformation matrix. In the CMS, the
relevant component modes are the following:

• Normal modes Φi;

• Constraints modes Ψb.

In the Craig-Bampton method (CB), the component modes are a collection of:

• Constraint modes: Static deflection per unit displacement at each boundary
degree of freedom;

• fixed interface normal modes.

The interface DOFs are retained to facilitate the linear and nonlinear coupling and
give an exact response representation to static coupling forces.

Let’s consider the substructure (s), the equations of motions are:

M(s)ü(s) + K(s)u(s) = p(s)(t) + r(s)(t) (4.17)

Where p(s) are the external excitation forces and r(s)(t) are the coupling forces.

Assuming a partition of displacement vector u(s) =
C

ub
ui

D
, where the subscripts b
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denote the boundary DOFs and i the internal ones, the equation of motions is as
follows:C

Mbb Mbi

Mib Mii

D(s) C
üb
üi

D(s)

+
C

Kbb Kbi

Kib Kii

D(s) C
ub
ui

D(s)

=
C

pb
pi

D(s)

+
C

rb
0

D(s)

(4.18)

The fixed interface normal modes are computed by solving the eigenvalue
problem:

(−ω2
jMii + Kii){Φii}j = 0, j = 1, ..., Ni (4.19)

Therefore:
Φ =

C
0bi
Φii

D
. (4.20)

The static constraint modes are obtained by static deflection of the interface
DOFs:

Ψc ≡
C
Ibb
Ψib

D
=

C
Ibb

−K−1
ii Kib

D
. (4.21)

An optimal ROM involves a number of retained modes on the basis of the
actual relevant modes for the dynamic. The number of retained normal modes
corresponds to the lowest eigenfrequencies number Nm ≪ Ni within the frequency
range of interest. The DOFs associated with the nonlinear contact interactions are
all retained.

A Galerkin-type method is used for the reduction:

M(s)TCBq̈(s) + K(s)TCBq(s) − p(s) − r(s) = ϵ(s) /= 0 (4.22)

By multiplying on the left by the transposed of the transformation matrix, the
error is orthogonalized and brought equal to zero:

TT
CBM(s)TT

CBq̈(s) + TT
CBK(s)TCB + TT

CBq(s) − TT
CBp(s) − TT

CBr(s) = TT
CBϵ(s) = 0

(4.23)
The problem becomes:

M(s)
CBq̈(s) + K(s)

CBq(s) − p(s)
CB − r(s)

CB = 0 (4.24)

The number of retained DOFs for the nonlinear contact interface can still be
unmanageable, and the computation may require a long time. It is possible to do
a further reduction to the retained constraint modes Φ in T(s)

CB:

T(s)
CB =

C
I 0
Ψ Φ

D(s)

. (4.25)
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A priori interface reduction by Orthogonal Polynomials Series (OPS) [89] asso-
ciated with linear coupling can improve efficiency. The idea is to approximate the
linear interface deflection ub as a superposition of generalized DOFs ηb:

ub ≈ Θ · ηb, Nηb
≪ Nub

(4.26)

In general, arbitrary ansatz functions Θ can be used for the interface deflections
but require a priori definition to have the functions available for the computation,
realized with respect to ηb. The new transformation matrix is:

T
∗(s)
CB =

C
I 0
Θ Φ

D(s)

. (4.27)

The three main properties of this reduction are that:

• the ansatz functions Θ depend on the geometry only and not the discretization.
It also applies to non-conforming meshes, but the interface-pair geometry has
to be identical.

• the number of generalized DOFs Nηb
depends on the maximum degree of the

polynomial polDeg: Nηb
= 3 · (1

2polDeg
2 + 3 · polDeg + 1).

• The interface coupling is performed via η(s)
b

The interface deflections are approximated by Netab
2D polynomials of maximum

polynomial degree polDeg.
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Chapter 5

Model preparation

As explained in the objective in Chapter 1, the work focuses on three FE analyses:

1. FEA of the model in cyclic symmetry;

2. FEA of the modal stiffness mistuned model;

3. FEA of the geometrical mistuned model by importing the different blade
substructures.

The preparation and calculation required three different FEA software types:

• Hypermesh;

• CalculiX;

• OrAgL-NOSTIA-ROCMAN.

Figures 5.4, 5.2, and 5.1 show a schematic illustration of the preparation of the
three different models.

Although the mesh creation was not a task to be performed, it might be useful
to give some information 1 about the base-FE mesh.

For the models used for the FEA in cyclic symmetry and with modal stiffness
mistuning, the mesh information is provided in Table 5.1. It has to be highlighted
that the FE sector model presented low quality for some elements, specifically
regarding the Jacobian ratio 2. The need for fewer elements to privilege the compu-
tational time played a role in choosing a simplified mesh. In general, the Jacobian

1Pictures of the mesh are not provided inasmuch as they are the intellectual property of MTU
Aero Engines

2The Jacobian ratio is
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Type Number
Elements C3D10 107525

Nodes 171079

Table 5.1: 3D mesh data for cyclic symmetric model and modal stiffness mistuned
model

ratio has to be over 0 to compute the solution. For some types of calculations,
the lowest acceptable value is in the range of 0.6-0.7. The mesh was prepared by
company engineers, and no time for its improvement was available. In this way, the
investigation could focus on the only simulations. For the geometrical mistuned
model, it was used a different FE 3D mesh to reduce further the computational
effort inevitably associated with the geometrical mistuned model, considering that
60 different substructures had to be included. The mesh information is provided in
the Table 5.2.

Type Number Position
Elements C3D10 26885 Disk + Blade fir tree
Elements C3D20 13422 Rest of the blade

Nodes 109226

Table 5.2: 3D mesh data for geometrical mistuned model

5.1 Model in Cyclic symmetry
As explained in Chapter 3, the FEA process is divided into three main categories:
preprocessing, solving and postprocessing.

Figure 5.1 shows the schematic FEA procedure.

5.1.1 CalculiX
The preparation starts from CalculiX, where the mesh is provided to the software.
The following definitions are set in the preprocessing phase:

• Definition of node, element and surface sets (already provided with the FE
mesh file, except for new necessary sets);

• Definition of the material cards: Elastic Modulus, Thermal Expansion Co-
efficient, Density, Conductivity, etc. (already provided with the FE mesh
file).
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• Definition of the initial temperature (already provided with the FE mesh file);

• Definition of the Boundary Conditions: Cyclic Symmetry boundaries, SPCs,
MPCs and TIE boundaries (already provided with the FE mesh file).

• Definition of the Centrifugal Load (definition of the constant rotational speed);

• Definition of the contact parameters (i.e. constant friction coefficient) for the
dovetail interfaces.

OrAgL-NOSTIA-ROOCMAN requires the static analysis to be performed with a
different FEA software. CalculiX serves this purpose and requires the definition
of the rotational speed to set the centrifugal load on the model (cyclic symmetric
model). Each node undergoes large static deformations until an equilibrium
configuration, and the contact interfaces at the fir tree will be subjected to a static
pressure distribution. Since the contact interfaces at the shrouds are tied together,
the only considered friction nonlinearities are present at the dovetail. Another type
of nonlinearity has to be considered for the static analysis. As already explained
in the previous section ?? and the appendix ??, the equations of motion cannot
be expressed with the hypothesis of small vibrations since the mechanical elastic
forces exhibit geometrical nonlinear behaviour. These geometrical nonlinearities
need to be included with a different formulation of the elastic forces requiring an
iteration of the equations of motion during the computation to reach the static
equilibrium. After the analysis, the structural matrixes are saved in separate files
along with the system’s DOFs information.

5.1.2 OrAgL-NOSTIA-ROOCMAN
The structural matrixes and DOFs information are provided to OrAgL-NOSTIA-
ROOCMAN by importing the files. Differently from common FE software, OrAgL-
NOSTIA-ROOCMAN focuses on solving the bladed disk dynamic and more. The
preprocessing consists of these main steps:

• Definition of nodes, elements and surfaces sets (Can be different from CalculiX);

• Definition of the Boundary Conditions: Cyclic Symmetry boundaries, SPCs,
MPCs, contact and TIE boundaries.

• Definition of the concentrated load at the interested node (External aerody-
namic static or periodic force);

• Definition of the response node: it corresponds to the node where the maximum
amplitude is measured.
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• Definition of ROM: The method and the retained normal modes number
(linear modes).

Once the preprocessing phase is completely set, it follows the computation phase.
For the computation, specifically, to compute the nonlinear response, some other
information must be provided:

• Definition of the damping: Rayleigh, Hysteretic or modal damping (in our case,
aerodynamic damping included as a simplification in hysteretic damping).

• Definition of contact data: friction coefficient, contact pressure or force,
nonlinear contact forces computation algorithm, tangential direction coupling
specification, algorithm parameter specification.

• Definition of HBM parameters: formulation, temporal-harmonics number,
time-samples number for the computation of the nonlinear contact forces in
the AFT.

• Definition of the parameters for the numerical continuation method: stepsize
and adaptive stepsize.

• Definition of the linear modal analysis: Number of eigenfrequencies, treatment
of the contact areas - fixed or linearized.

• Definition of the linear forced response parameters: Frequency range, equidis-
tant frequency points number, treatment of contact areas - fixed or linearized.

The postprocessing phase in OrAgL-NOSTIA-ROOCMAN is based on the
printed output files. In a forced response calculation, the files will contain data
regarding the frequencies, amplitudes and contact areas’ statuses based on the
solution points. Much more data can be gathered, such as participation factors, to
study the modes involved in the solution (intrinsic for the nonlinear behaviour).
Gnuplot can be used for the visualization, but also Python or else. Some output
files can be printed in the specific CalculiX format to visualize graphically the
vibrational modes.

Some information regarding the parameters set in Oragl is provided in Table
5.3 3.

3Data such as Material Data, Initial Conditions, Boundary Conditions, Contact pressure
distribution and friction coefficient are the intellectual property of MTU Aero Engines
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Parameter Value/Specification
EOs of interest 6 - 18
Order Reduction Method Craig-Bampton D
N° of retained normal modes for substructure 50
N° of temporal harmonics n 7
Numerical Continuation method Predictor-corrector
Numerical continuation parametrization Arch-length
Regularization strategy for contact models Dynamic Lagrangian

Table 5.3

5.2 Modal stiffness mistuned model

Figure 5.2 shows a schematic illustration of the modal stiffness mistuned model
preparation. The procedure from CalculiX to OrAgL-NOSTIA-ROOCMAN is
similar to the previous case (cyclic symmetry) since the sector’s (blade and disk
substructures) and DOFs matrixes are imported as files. However, the way the
model is prepared in OrAgL-NOSTIA-ROOCMAN is different. As explained in
Chapter 4, the modal stiffness mistuned model requires cyclically expanding the
wheel. Consequently, the preprocessing is set differently for some parts. Mistuning
is something that’s intrinsically related to the geometry of the system. Over the
years, due to the inability to analyze large FE models, the research has developed
different techniques trying to simulate the effects of mistuning. One of these
techniques is the so-called modal stiffness mistuning, which is achieved by altering
the eigenfrequencies of the specific interested modes. In our case, the interested
modes belong to the blade substructures, and consequently, the disk can be modelled
with cyclic symmetric boundary conditions. The way modal stiffness mistuning is
introduced requires the equations of motion in a modal reference system. Mistuning
methods were originally developed along with ROM techniques to meet the double
objective of reducing the system and introducing mistuning. Modal stiffness is one
of these types of methods, but the mathematical formulation won’t be reported
herein, referring the reader to the following scientific articles [90]. This type of
mistuning requires the definition of a variational parameter that directly affects
the eigenfrequencies of the system in the reduced-order modal formulation and is
applied singularly to each blade. The vibrations of bladed disks occur in the family,
and each of them is characterized by a vibrational mode shape. The small mistuning
may affect the mode shapes (flexure, torsion, etc.), therefore the convenience of
defining the mistuning pattern for each mode separately. The reduced-order model
is then formulated so that the modal stiffness (the dominant blade mode) for each
blade appears explicitly. For the reduction, the Craig-Bampton method D can
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be used. The model can be reduced further using secondary reduction, which is
applied to the whole model.

Let’s define the mistuning variational parameter δn. The relationship between
the blade mistuned eigenvalue λmistn and the tuned one λbm is:

λmistn = (1 + δn)λbm (5.1)

The identification of the frequency pattern is a sensible topic, and many tech-
niques have been proposed over the years [<empty citation>]. Unfortunately,
those methods cannot be applied for the considered case since we have at our
disposal only the linear frequency distribution of the blades. For this reason, it was
decided to obtain the variational parameter by considering the linear frequency
registered in the test rig for the interested mode in λmistn and their average-linear
natural frequency in λbm. The identification’s accuracy is essentially enclosed in
the assumption of λbm. The values for OrAgL-NOSTIA-ROOCMAN is (1 + δn)
that multiplicates λbm.

è
−ω2MSMA

em + KSMA
é

{q} =
C

Ae AT
em

Aem Am

D I åqe
qm

J
= 0. (5.2)

MSMA =
C

I MSMAT

MSMA I

D
(5.3)

KSMA =
C åΛSMA

e 0
0 Λbm

D
(5.4)

The calculation is simplified by removing the N rows related to the partition Am.
Once q is calculated, it is sufficient to solve the bottom portion of Eq. 5.2:

[Aem Am]
I åqe
qm

J
=

è
−ω2MSMA

em − ω2I + diagn01,...,Nλmistn
é I åqe

qm

J
= 0 (5.5)

5.2.1 CalculiX
The procedure performed in CalculiX is the same as explained in subsection 5.1.1
for preprocessing, static analysis and postprocessing.

5.2.2 OrAgL-NOSTIAROOCMAN

Provided a general explanation of modal stiffness mistuning (frequency mistuning),
the procedure in OrAgL-NOSTIA-ROOCMAN requires the creation of the sub-
structures in the preprocessing phase and the definition of the mistuning pattern
in the solving file. Figure 5.2 provides a schematic illustration of the geometrical
mistuned model preparation. In the preprocessing phase, the preparation procedure
is the following:
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• Definition of the node, element and surface sets;

• Definition of the boundary conditions: SPCs, MPCs, Cyclic symmetry bound-
aries;

• Definition of the concentrated load: static or periodic aerodynamic force.

• Definition of the response node: the node where the maximum amplitude is
registered and analyzed;

• Definition of the substructures (i.e. blade and disk);

• Definition of the boundaries between substructures: contact and tie boundaries
- Node sets specification;

• Definition of the substructure ROM: the method and retained normal modes
number for each substructure;

• Expansion of the cyclic sector around the rotational axis;

• Definition of the secondary order reduction applied to the expanded wheel.

Since the mistuning is applied only to specific blade modes, the model requires
the definition of two different substructures within a sector: blade and disk. With
this subdivision, all the nodes, elements and surfaces sets are moved to the specific
substructures, along with the concentrated loads (i.e. exciting forces), response
nodes and boundary conditions previously assigned to the particular nodes within
the sector. Boundaries such as contact interactions and tie constraints are defined
with relationships between adjacent substructures. The substructure ROM is set
before cyclicly expanding the blade components to the total sectors number and
assigning the cyclic symmetry boundaries to the disk substructure, after which it
is defined the secondary reduction ROM.

Concluded the preprocessing phase, the preparation of the solving section requires
adding the mistuning pattern distribution based on the mode to be mistuned and
setting the computational parameters as in Table ??. The only difference is
the assignment of the contact parameters to each contact substructure interface
separately.

The file containing the parameters for the solver also requires the definition of
the mistuning pattern. The parameters (1 + δn) have to be provided by defining
the precise mode to be mistuned. The mistuning patterns were selected according
to the linear frequency distributions registered in the test rig. Figures 5.3a, 5.3b
and 5.3c showcase the modal stiffness parameter distributions.
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5.3 Geometrical mistuned model
The geometrical mistuning refers to the geometrical differences between similar
substructures, i.e. the blades. A geometrical mistuning analysis requires having
each substructure of the model and assembling them into a wheel. The application
of ROM techniques is inevitable for the successful completion of the simulations.

Figure 5.4 illustrates the steps for the preparation of the model. The process
requires Hypermesh and CalculiX for the geometrical model preparation and the
static analysis, respectively, and OrAgL-NOSTIA-ROCMAN to prepare the model
for the forced responses calculations.

5.3.1 Hypermesh
The different geometries of the blade are collected in STL files with a random 2D
refined mesh after the Blue Light Scan (BLS) technique has been used to scan the
actual blades and collect the geometries. These STL files are imported singularly
into Hypermesh along with a CAD model of the sector (blade and disk) where a
3D mesh is already applied. The information about the mesh used for this model
is specified in Table 5.2.

Hypermesh allows the user to exploit a "morphing" technique to adapt the new
geometry derived from the STL file to the CAD geometry, keeping the base-FE
mesh of the model. The steps are summarized as follows:

• Creation of a surface from the STL file;

• Creation of a 2D mesh from the base-3D mesh;

• Apply "morphing" defining which nodes are "moved" to the new surface and
which ones are not;

• The 3D FE mesh is automatically updated.

One of the main problems was related to the condition of the STL mesh. The
bad-quality scans of the blades with holes in the geometries created complications
in the creation of the surfaces from the STL meshes. Furthermore, due to the
holes, it was chosen to "morph" only the blades’ airfoils and the fillets, excluding
those elements not covered by the surfaces. The exclusion of the contact areas
from the morphing led to the inability to catch any contact mistuning effect 4. The

4For contact mistuning is intended the inevitable differences between contact areas of the
interacting surfaces of the involved substructure, but also the differences between contact areas
belonging to the substructure that don’t interact but are arranged cyclically around the rotational
axes (i.e. contact areas of two different blades around the rotational axes that do not interact
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possibility of maintaining the 2D mesh after the morphing and updating it to a
3D mesh helped reduce the problem of having further distortion and conserve the
node numbering, important for the application of the aerodynamical load and to
identify the response node. Once the operation is completed, the file with the mesh
is saved. This procedure is repeated for all 60 blades.

5.3.2 CalculiX
Once the 60 mesh Hypermesh files are ready, they are transformed into CalculiX
format. In CalculiX, a similar procedure, as explained for the previous models, is
followed (refer to subsection 5.1.1) for each sector geometry.

The static analysis is implemented for all 60 sectors, storing the matrices for
OrAgL-NOSTIA-ROCMAN.

5.3.3 OrAgL-NOSTIA-ROOCMAN
The preparation in OrAgL-NOSTIA-ROOCMAN is similar to the previous modal
stiffness mistuned model but with a few differences. In fact, the blades (substruc-
tures) are not cyclically expanded, but each sector geometry and mesh is imported
along with its matrixes and DOFs file data. Each geometrical sector is analyzed
in cyclic symmetry individually so that the inertia, elastic, damping and contact
pressure data is stored. The preprocessing phase is summarized with the following
steps:

• Definition of nodes, elements and surfaces sets for each mesh.

• Definition of the boundary conditions for each mesh: SPCs, MPCs, Cyclic
Symmetry boundaries.

• Definition of the concentrated load for each mesh;

• Definition of the response node for each mesh;

• Definition of the substructures;

• Definition of the boundaries between substructure: tie constraints and contact
constraints;

• Definition of substructure ROM;

• Full model construction.

• Definition of secondary ROM.
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In the preprocessing phase, each sector geometry is imported, but only the blades
substructures contribute to the full wheel construction with the actual geometries.
In fact, the disk never underwent any morphing and mesh adaptation since mis-
tuning was not applied to it. For this reason, the disk substructure is imported
once and then cyclically expanded. The substructure ROM is defined by specifying
the number of linear normal modes to be retained and the method (CB). Then, it
is requested the assembling of the model and the application of secondary model
order reduction. The secondary ROM is then also applied by selecting the number
of linear retained modes. Each substructure required the predefinition of tie and
contact relationships.

In the file containing the computation parameters, the contact data has to be
defined for each substructure. The rest is similar to the cyclic symmetric model.
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(a) Illustration of the modal stiffness pa-
rameter distribution for the M1ND6 dur-
ing acceleration

(b) Illustration of the modal stiffness pa-
rameter distribution for the M2ND18 dur-
ing acceleration

(c) Illustration of the modal stiffness pa-
rameter distribution for the M1ND6 dur-
ing deceleration

Figure 5.3: Modal stiffness parameter distributions
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Chapter 6

Results

6.1 Test rig

6.1.1 Free-undamped system frequency distribution
The knowledge about the presence of the resonance coincidence comes from previ-
ously obtained data of the actual turbine Campell’s Diagram ?? over an ampler
rotational frequency range. The system is then tested over a closer-more-precise
frequency range to confirm the situation. The results are displayed in figures 6.1a
and 6.1b. These Campbell’s diagrams are constructed for two distinctive conditions:
acceleration and deceleration. The reason stemmed from the fact that measures
taken at a constant speed (steady-state condition) in the test rig wouldn’t allow
gathering information about the resonance frequencies of all the blades. Therefore,
the system had to be accelerated or decelerated to cover the whole frequency range.
As long as the magnitudes of the acceleration and deceleration are kept sufficiently
low, the system is in a steady-state condition, as an assumption. However, transient
effects are observed during experimentations as well. Based on the diagrams in
figures 6.1a and 6.1b, the system behaves slightly differently during the acceleration
and deceleration phases. In fact, the resonance coincidence with both excitations
of M1ND6 and M2ND18 (red circles) modes is registered during acceleration, while
only the M1ND6 mode during the deceleration 1. For this reason, in the case of
FEA with modal stiffness mistuning, three different patterns 6.2 were chosen to
represent the inevitable blade-to-blade deviations based on the linear frequency
distributions:

1The "nodal diameter" is used in this context to have a more direct identification of the
interested modes for mistuned systems. In general, the designation has an actual meaning for
cyclic symmetry where vibrations are expressed in a travelling wave coordinate system
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• M1ND6 during acceleration (Figure 6.2b);

• M1ND6 during deceleration (Figure 6.2a);

• M2ND18 during acceleration (Figure 6.2c).

(a) Campbell Diagram obtain from the
test rig with very small acceleration and
absent aerodynamic exciting force

(b) Campbell Diagram obtain from the
test rig with very small deceleration and
absent aerodynamic exciting force

Figure 6.1: Campbel linear test rig
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(a) Blade frequency distribution registered
for the mode equivalent to M1ND6 during
the deceleration

(b) Blade frequency distribution regis-
tered for the mode equivalent to M1ND6
during the acceleration

(c) Blade frequency distribution registered
for the mode equivalent to M2ND18 dur-
ing the acceleration

Figure 6.2: Linear Frequency Distribution

6.1.2 Aerodynamically excited system
Campbell diagrams

Figure 6.3 and 6.4 report Campbell’s diagrams of the periodically excited system,
where the black dots highlight the excited resonances. The bigger the dot, the
higher the energy involved. In Figure 6.3, Campbell’s diagrams with excitation of
M1EO6 during acceleration and deceleration show the presence of the resonance
coincidence of M1ND6 and M2ND18 (Count the straight lines from bottom to top
to identify the relevant modes), specifically the black dots on the 6th and 18th
straight lines starting counting from the bottom (the nodal diameter identifies the
slope of the lines). Both the acceleration-deceleration regime and the excitation
level influence the actual dynamics of the system. For the lowest excitation level, in
the acceleration, it appears the presence of an independent excited mode M1ND1
(yellow dot). At medium-high excitation level and in the acceleration case of high
excitation level, the M1ND7 resonance appears. Both these resonances are excited
in the transient during the acceleration-deceleration of the system and thus will
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not be considered any further in this study. Figure 6.4 reports Campbell’s diagram
of the M1EO18 excited system. Independently from the acceleration-deceleration
regime and excitation level, no sign of resonance coincidence and independent
modes are observable. Based on the previous experimental results, the presence of
resonance coincidence (internal resonance) of the type 3:1 ?? due to energy transfer
is confirmed.
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(a) Campbell Diagram with 15g/s
exciting airflow and 5rpm/s acceler-
ation

(b) Campbell Diagram with 15g/s
exciting airflow and 5rpm/s deceler-
ation

(c) Campbell Diagram with 60g/s
exciting airflow and 5rpm/s acceler-
ation

(d) Campbell Diagram with 60g/s
exciting airflow and 5rpm/s deceler-
ation

(e) Campbell Diagram with 70g/s
exciting airflow and 5rpm/s acceler-
ation

(f) Campbell Diagram with 70g/s
exciting airflow and 5rpm/s deceler-
ation

Figure 6.3: Campell diagram with aerodynamic excitation M1EO6
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(a) Campbell Diagram with 30g/s
exciting airflow and 5rpm/s acceler-
ation

(b) Campbell Diagram with 30g/s
exciting airflow and 5rpm/s deceler-
ation

(c) Campbell Diagram with 130g/s
exciting airflow and 5rpm/s acceler-
ation

(d) Campbell Diagram with 130g/s
exciting airflow and 5rpm/s deceler-
ation

(e) Campbell Diagram with 150g/s
exciting airflow and 5rpm/s acceler-
ation

(f) Campbell Diagram with 150g/s
exciting airflow and 5rpm/s deceler-
ation

Figure 6.4: Campell diagram with aerodynamic excitation of M2EO18

Amplitude distributions

Figure 6.5 and 6.6 report the test-rig amplitude distributions of the main excited
resonances, whereas in Figure 6.7 the ones of the second resonances obtained thanks
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to a Fourier decomposition. The distributions differ based on the accelerating-
decelerating regime and the excitation level. The absolute values on the reference
axes are normalized with respect to the average magnitude depending on the
excitation level. Interestingly, these results underline the randomness of the
influence of the mistuning on the forced response of the system, thus the efforts to
effectively simulate the inevitable differences within the system.
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(a) Amplitude distribution during accel-
eration and 15g/s airflow excitation

(b) Amplitude distribution during decel-
eration and 15g/s airflow excitation

(c) Amplitude distribution during accel-
eration and 60g/s airflow excitation

(d) Amplitude distribution during decel-
eration and 60g/s airflow excitation

(e) Amplitude distribution during accel-
eration and 70g/s airflow excitation

(f) Amplitude distribution during decel-
eration and 70g/s airflow excitation

Figure 6.5: Amplitude distribution of the main resonance after M1EO6 excitation
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(a) Amplitude distribution during accel-
eration and 30g/s airflow excitation

(b) Amplitude distribution during decel-
eration and 30g/s airflow excitation

(c) Amplitude distribution during accel-
eration and 130g/s airflow excitation

(d) Amplitude distribution during decel-
eration and 130g/s airflow excitation

(e) Amplitude distribution during accel-
eration and 150g/s airflow excitation

(f) Amplitude distribution during decel-
eration and 150g/s airflow excitation

Figure 6.6: Amplitude distribution of the main resonance after M2EO18 excitation
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(a) Amplitude distribution during accel-
eration and 15g/s airflow excitation

(b) Amplitude distribution during decel-
eration and 15g/s airflow excitation

(c) Amplitude distribution during accel-
eration and 60g/s airflow excitation

(d) Amplitude distribution during decel-
eration and 60g/s airflow excitation

(e) Amplitude distribution during accel-
eration and 70g/s airflow excitation

(f) Amplitude distribution during decel-
eration and 70g/s airflow excitation

Figure 6.7: Amplitude distribution of the internal resonance after M1EO6 excita-
tion

6.1.3 Brief description of results order
It is the case of the present work that the chronological order of the simulations
doesn’t match the logical order. In general, this type of situation can happen when
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analysing the results of an investigation certain behaviours are observed, and a
further assessment is needed, ultimately leading to an increase in the number of
simulations, changing the values of some parameters or changing the direction
of the study objective. Our scenario required changing the values of the friction
coefficients and increasing the number of simulations to make a parametric study
to understand the influence of those changes. The friction coefficient is a significant
parameter affecting the system’s dynamics due to its association with the nonlinear
behaviour (stick-slip) of the system’s contact interfaces, the contact stiffness and
friction damping. The tribology team (specifically in MTU Aero Engines) provides
their value based on the contact pressure magnitudes. In the present work, the
friction coefficient is set for shroud (blade-to-blade interface) and fir tree contact
interfaces (blade-to-disk interface).

It is listed here the chronological order of the analysis related to the contact-area
parametric study:

• Nonlinear-FRF analysis with only high-level excitations for both M1EO6 and
M2EO18 and by considering contact interactions at both shroud (full contact
area) and fir tree with reference friction coefficients;

• Parametric study and selection of different reduced contact areas based on
alignment of the eigenfrequencies of the free-linear-system with the free-linear-
system test rig frequencies 2

• Nonlinear FRF analysis with different excitation levels for both M1EO6 and
M2EO18 excitations by using reduced contact area at the shroud (closest
frequency alignment with the test rig results) with reference friction coefficient;

• Nonlinear FRF analysis with different excitation levels for both M1EO6 and
M2EO18 excitations by considering central reduced contact area at the shroud
(no closest linear frequencies alignment with test rig results) and reference
friction coefficients;

• Nonlinear-FRF friction coefficients parametric study by considering central
reduced contact area (no closest linear frequencies alignment with test rig
results) at the shroud and full contact area at the fir-tree;

• Nonlinear-FRF friction coefficients parametric study by considering central
reduced contact area at the shroud (no closest linear frequencies alignment
with test rig results) and tied fir tree;

2This parametric study was useful for the selection of the best shroud contact area, but since
it would be necessary to present sensible data the results won’t be displayed in the present work
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• Nonlinear-FRF friction coefficients parametric study by considering full contact
area at the shroud and full contact area at the fir tree;

• Nonlinear-FRF analysis of the modal stiffness mistuned model by considering
central reduced contact area (no closest linear frequencies alignment with test
rig results) with the non-reference friction coefficient and tied fir tree;

• Nonlinear-FRF analysis of the geometrical mistuned model by considering
central reduced contact area (no closest linear frequencies alignment with test
rig results) with the non-reference friction coefficient and tied fir tree;

It is evident that the chronological order is not the logical one. Naturally, the
friction coefficient analysis should be at the beginning. In the present work, the
awareness of its influence on the forced response was clear through an assessment
of the ambiguous results. Generally, a homogeneous friction coefficient is assumed
based on tribology data (especially contact pressure) for all the simulations with
similar pressure values. There is always partial uncertainty about the correct values
of the friction coefficient for the following reasons:

• Non-uniform pressure at the fir tree (depends on the static results after the
application of the centrifugal load);

• The tribology team doesn’t provide friction coefficients for all pressure values,
and an interpolation is needed.

The results of the simulations are presented herein in the following order:

• Comparison of the linear eigenfrequencies with test rig results and display of
nonlinear FRF plots of the models with cyclic symmetry assumptions and full
contact area at the shroud and the fir tree;

• Comparison of the linear eigenfrequencies with test rig results and display
of nonlinear FRF plots of the models with cyclic symmetry assumption with
reduced central contact area at the shroud and full contact area at the fir tree;

• Comparison of the linear eigenfrequencies with test rig results and display of
nonlinear FRF plots of the models with cyclic symmetry assumptions with
reduced central contact area at the shroud and tied fir tree;

• Comparison of the linear eigenfrequencies with test rig results and display
of nonlinear FRF plots of the modal stiffness mistuned models with reduced
central contact area at the shroud and tied fir tree;

• Comparison of the linear eigenfrequencies with test rig results and display
of nonlinear FRF plots of the modal stiffness mistuned models with reduced
central contact area at the shroud and tied fir tree;

86



Results

The computational effort is far from negligible, and introducing contact interfaces
in an FE model means introducing nonlinear equations to be solved. The higher
the number of nonlinear DOFs involved, the higher the computational burden. It’s
especially true for mistuned models, which adopt the complete model without the
cyclic symmetry assumption. In cyclic symmetry, the analyses focused on models
with contact interfaces at the shrouds and the fir trees and with contact interfaces
only at the shrouds. In this way, the influence of the nonlinearities is better assessed
and accounted for in the mistuned model simulation results, which are inevitably
obtained by introducing the contact model only at the shrouds and tieng the fir
tree for computational reasons.

All the plots and tables presented herein don’t display absolute values, and the
normalization applies with respect to the linear-natural-frequency average value
registered in the test rig concerning the frequencies and with respect to the average
amplitude value registered in the test rig measured during the acceleration regime
concerning the forced response.

6.2 Results of the simulations with the model in
cyclic symmetry

The cyclic symmetry is an idealization, and mathematically, the assumption im-
plements the so-called cyclic symmetry boundary conditions. Similarly to ROMs,
the DOFs differentiate between dependant (slave DOFs) and independent (masters
DOFs) sides. As briefly explained in ??, these boundaries’ introduction allows
operating a matrix transformation to the travelling wave coordinate system, by
which it is possible to express the vibrational dynamics of the system.

Figures 6.8a and 6.8b display the complete and central-reduced contact areas at
the dependent side of the blade shroud.

(a) Full contact area (b) Central-reduced contact area

Figure 6.8: Contact areas at the dependent side of the shroud

The nodes, specifically the DOFs, in these regions are involved in the contact
model and the modes retained when the CB-ROM is applied.
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6.2.1 Results with full contact area at the shroud and fir
tree

Starting with the results concerning the FE model with complete contact areas at
the shrouds and fir trees, the following scheme is presented:

• Free-undamped system vibrations;

• Nonlinear forced response;

• Participation Factor Study;

• Friction Coefficient parametric Study.

Free-Undamped-system linear frequency comparison

The resolution of the free-undamped-linear system requires solving the following
equations of motion in the frequency domain:

([K] − λ[M ]){ϕ} = {0} (6.1)

Where [K] is the stiffness matrix, [M ] the mass matrix, and λ = ω2 and {ϕ} are
the eigenvalues and eigenvectors respectively.

Table 6.1 displays the results of the free-undamped system, focused on a com-
parison of the linear vibrational natural frequencies with the test rig values, thus
underlying (in red) the discrepancy rather than providing the absolute frequencies.

Mode Free-undamped-system Damping Nodal Discrepancy [%]
linear normalized frequency ratio Diameter

1 1.2144 0 6 21.44
2 1.6875 0 18 68.75

Table 6.1: Comparison of linear-frequencies discrepancy between simulations and
test-rig values

By reading the table, the actual discrepancies are 21.44% and 68.75% for the
M1ND6 and M2ND18 modes, respectively. These values are considered high,
especially knowing that validation would require to stand below 5%.

Since the FE model has been used for other investigations with cyclic symmetry
boundary conditions within MTU Aero Engines but for different lower frequency
regimes 3 resulting in a satisfying frequency alignment, the reason of the discrepancy

3These works are internal non-published investigations and therefore not cited herein

88



Results

may be ascribed to the effect of mistuning and specifically contact mistuning on the
overall dynamics of the system. Errors in the definition of boundary conditions or
with the geometry are unlikely since there was good alignment in a lower frequency
range, albeit in a region of Campbel’s diagram where the dynamics looked less
complicated.

Based on this analysis, a common direction to take is to reduce the contact area
at the shroud, which inevitably influences the system stiffness. Assuming a static
equilibrium defined by a constant normal force orthogonal to the contact surfaces
at the shroud, a reduction of the contact area is associated with a higher contact
pressure. The force value defines the normal friction force limits within which the
interfaces maintain a linear behaviour. From a dynamic point of view, sliding and
partial separation are associated with a softening behaviour, causing the forced
response curve to bend towards lower frequencies. However, from a static point
of view, the whole wheel would have a lower overall stiffness, thus leading to a
forced response curve shifted at a lower frequency range (see Campbell’s diagrams
in Figure 2.2 and 2.3).

Consequently, a parametric study with different reduced contact areas helped
to highlight the conditions with the best frequency alignment. Specifically, by
analyzing the results of a free-undamped system vibration of a model in cyclic
symmetry with a reduced contact area, it was observed a discrepancy of the natural
frequencies with respect to the test rig values of 5.299% and 5.84% for mode
M1ND6 and M2ND18 respectively. Unfortunately, these results were unacceptable
for the following two reasons: Too-reduced contact area; Contact area location.
A too-reduced contact area is associated with a stiff contact interface, mainly
driven by sticking dynamics with an overall linear behaviour, which is considerably
different from what was observed by the camera pointed at the shrouds in the test
rig. Furthermore, the location of the contact area was far from the centre, localized
at the vertex of the complete contact area used for the previous analyses.

For these reasons, a central-not-too-reduced contact area at the shrouds resulted
in a better option thanks to a better position matching the reality with the presence
of nonlinear behaviour of the contact interfaces. At the same time, we accept a
bigger frequency misalignment. The results for this case are presented in section
6.2.2.

Nonlinear FRF

Figure 6.9 showcases the plots of the nonlinear forced response with a parametric
study by changing the friction coefficients in alignment with the inhomogeneous
contact pressure (defined by the static analysis) at the fir tree and a homogeneous
pressure preload at the shroud contact area. The friction coefficient reference
value is commonly a general benchmark for standard simulations. However, as
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already explained, the parametric analysis highlighted the influence of the friction
coefficients on the forced response amplitude level, leading to a different choice in
its values for the mistuned models.
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(a) Nonlinear FRF - Full contact at
shroud and fir tree - M1EO6 High exci-
tation level

(b) Nonlinear FRF - Full contact at
shroud and fir tree - M2EO18 High ex-
citation level

(c) Nonlinear FRF - Full contact at
shroud and fir tree - M1EO6 High exci-
tation level - test-rig reference - acceler-
ation

(d) Nonlinear FRF - Full contact at
shroud and fir tree - M2EO18 High ex-
citation level - test-rig reference - decel-
eration

(e) Nonlinear FRF - Full contact at
shroud and fir tree - M1EO6 High exci-
tation level - test-rig reference - acceler-
ation

(f) Nonlinear FRF - Full contact at
shroud and fir tree - M2EO18 High ex-
citation level - test-rig reference - decel-
eration

Figure 6.9: Nonlinear FRF friction-coefficient parametric study - Full contact at
shroud and fir tree - High excitation levels91
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The two main factors assessed from the plots in Figure 6.9 are: 1) the maximum
amplitude alignment of the forced response curves within the test-rig magnitude
amplitude range (defined by the green continuous lines and red dashed straight
lines); 2) and the friction coefficient influence on the forced response curve.

A good alignment is observed in the forced response curve relative to the M1N6
resonance. It is especially true when the friction coefficients assume the reference
values. That’s different from what is observable with the second resonance, where
even a variation of the friction coefficients within the most likely value range doesn’t
guarantee sufficient alignment of the amplitudes. For both cases, the nonlinear
behaviour is affected (curve shape).

Participation Factor Study

The "modal participation factor study" refers to the analysis of the contribution of
the excited modes to the overall amplitude level. Such an investigation requires
selecting a specific solution point on the forced response curve, and thanks to the
Fourier Series, the different modal contributions are separated.

Assuming to be in the frequency domain, according to the Fourier Series, the
solution is:

u(t) = R

I ∞Ø
n=0

Une
inΩext

J
= R

I ∞Ø
n=0

(An cos(nΩext) + iBn sin(nΩext))
J
. (6.2)

The oscillation frequency Ωosc,n is proportional to the excitation frequency by
the temporal harmonic "n":

Ωosc,n = nΩex. (6.3)

The excitation frequency Ωex is proportional to the rotational frequency by the
nodal diameter ND:

Ωex = NDΩrot = EOΩrot. (6.4)

In the ideal case, where the cyclic symmetry assumption is adopted, it is demon-
strable that necessarily ND = EO ??, other modes are not excited.

After the separation of the Fourier Coefficients, to select the interested temporal
harmonics, it is possible to refer to the "congruence rule":

k = nm0 modns (6.5)

k is the wave number (spacial harmonic), and m0 is the fundamental wave number.
The operator mod denotes the modular mathematics. In short, the number of
sectors ns divides the product n∗m0, and the remainder of the division corresponds
to the result. In the resonance M1ND6, we are looking for internal resonances
determined by M2ND18. Consequently, if the wave number is k = 18 and the
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fundamental wave number is m0 = 6 (Maximum Common Divisor), then the 3rd
temporal harmonic is the interested one.

Figure 6.10 showcases the selected nonlinear FRFs (orange curves in Figure 6.9)
with the analysed solution points colour-marked.

(a) M1EO6 Nonlinear FRF - High exci-
tation level

(b) M2EO18 Nonlinear FRF - High ex-
citation level

Figure 6.10: Solution Points study - Nonlinear FRFs - High excitation levels

Tables 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 6.10 summerize the important infor-
mation about the participation factor study.
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Resonance Excitation
level Solution Point

Normalized
Oscillation
Frequency
Ωosc,n

Normalized
Amplitude

M1EO6 High Blue 1.176 0.343

Temporal Har-
monic n 1st

Normalized
Oscillation
Frequency
Ωosc,n

1.176

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 6 1.214 10−7 10−4

2 6 / 10−6 10−6

Temporal Har-
monic n 2nd

Normalized
Oscillation
Frequency
Ωosc,n

/

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 12 / 10−6 10−5

Temporal Har-
monic n 3rd

Normalized
Oscillation
Frequency
Ωosc,n

1.186

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 18 / 10−6 10−8

2 18 1.68 10−7 10−7

Table 6.2: M1EO6 - High excitation level - Solution Point study
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Resonance Excitation
level Solution Point

Normalized
Oscillation
Frequency
Ωosc,n

Normalized
Amplitude

M1EO6 High Orange 1.14 0.529

Temporal Har-
monic n 1st

Normalized
Oscillation
Frequency
Ωosc,n

1.114

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 6 1.214 10−5 10−4

2 6 / 10−6 10−6

Temporal Har-
monic n 2nd

Normalized
Oscillation
Frequency
Ωosc,n

/

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 12 / 10−5 10−5

Temporal Har-
monic n 3rd

Normalized
Oscillation
Frequency
Ωosc,n

1.155

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 18 / 10−6 10−6

2 18 1.68 10−6 10−6

Table 6.3: M1EO6 - High excitation level - Solution Point study
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Resonance Excitation
level Solution Point

Normalized
Oscillation
Frequency
Ωosc,n

Normalized
Amplitude

M1EO6 High Green 1.117 0.58

Temporal Har-
monic n 1st

Normalized
Oscillation
Frequency
Ωosc,n

1.117

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 6 1.214 10−5 10−4

2 6 / 10−6 10−6

Temporal Har-
monic n 2nd

Normalized
Oscillation
Frequency
Ωosc,n

/

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 12 / 10−5 10−5

Temporal Har-
monic n 3rd

Normalized
Oscillation
Frequency
Ωosc,n

1.127

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 18 / 10−5 10−6

2 18 1.68 10−6 10−6

Temporal Har-
monic n 6th

Normalized
Oscillation
Frequency
Ωosc,n

/

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

2 36(24) / 10−5 10−7

Table 6.4: M1EO6 - High excitation level - Solution Point study
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Resonance Excitation
level Solution Point

Normalized
Oscillation
Frequency
Ωosc,n

Normalized
Amplitude

M1EO6 High Red 1.1576 1.235

Temporal Har-
monic n 1st

Normalized
Oscillation
Frequency
Ωosc,n

1.235

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 6 1.214 10−4 10−5

Temporal Har-
monic n 3rd

Normalized
Oscillation
Frequency
Ωosc,n

1.168

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 18 / 10−6 10−5

2 18 1.68 10−6 10−5

Table 6.5: M1EO6 - High excitation level - Solution Point study

Regarding the M1ND6 resonance, from the analysis of the first three solution
points, contributions come from the 1st, 2nd and 3rd temporal harmonic, thus
nodal diameters 6, 12 and 18, respectively. A contribution from nodal diameter 12
wasn’t between the expectations, but it is ascribable to the frequency discrepancy.
It means that in that frequency range, an energy transfer comes about between
nodal diameters 6 and 12 in an internal resonance 2:1 with the magnitude of the
contribution not negligible: see the branch on the left that sticks out from the main
resonance curve associated with a strong nonlinear behaviour (stick-slip-partial
separation 4. The third solution point showcases a new contribution of nodal
diameter 36 (24), likely caused by the frequency discrepancy and suggesting an
energy transfer of type 4:1. The energy transfer is a complicated effect of the
nonlinearities (friction damping in this case) that comes about when the resonant
frequencies become commensurate, leading to an internal resonance and a possible

4It won’t be displayed any precise data of the contact interfaces conditions to avoid showing
software information and to lengthen the thesis any further, but short information will be provided
by whenever necessary
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increase in the magnitude of the response amplitude. At the last solution point
on the curve (maximum amplitude), only contributions from nodal diameters 6
and 18 are observable. Interestingly, the nodal diameter 18 is excited in the first
(M1ND18) and second modes (M2ND18), corresponding to another discrepancy
with the test rig results and Campbel’s diagram, considering that only the second
mode (M2ND18) should be excited. It is also probably induced by the frequency
misalignment.

Resonance Excitation
level Solution Point

Normalized
Oscillation
Frequency
Ωosc,n

Normalized
Amplitude

M2EO18 High Blue 1.5 0.255

Temporal Har-
monic n 1st

Normalized
Oscillation
Frequency
Ωosc,n

1.5

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 18 / 10−6 10−7

2 18 1.687 10−5 10−5

Table 6.6: M2EO18 - High excitation level - Solution Point study
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Resonance Excitation
level Solution Point

Normalized
Oscillation
Frequency
Ωosc,n

Normalized
Amplitude

M2EO18 High Orange 1.42 0.348

Temporal Har-
monic n 1st

Normalized
Oscillation
Frequency
Ωosc,n

1.42

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 18 / 10−5 10−5

2 18 1.687 10−5 10−5

Temporal Har-
monic n 3rd

Normalized
Oscillation
Frequency
Ωosc,n

1.42

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 108 (12) / 10−5 10−6

Table 6.7: M2EO18 - High excitation level - Solution Point study
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Resonance Excitation
level Solution Point

Normalized
Oscillation
Frequency
Ωosc,n

Normalized
Amplitude

M2EO18 High Green 1.42 0.356

Temporal Har-
monic n 1st

Normalized
Oscillation
Frequency
Ωosc,n

1.42

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 18 / 10−6 10−5

2 18 1.687 10−5 10−5

Temporal Har-
monic n 3rd

Normalized
Oscillation
Frequency
Ωosc,n

/

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 54(6) 1.214 10−6 10−5

6 54(6) / 10−5 10−5

Table 6.8: M2EO18 - High excitation level - Solution Point study
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Resonance Excitation
level Solution Point

Normalized
Oscillation
Frequency
Ωosc,n

Normalized
Amplitude

M2EO18 High Red 1.424 0.401

Temporal Har-
monic n 1st

Normalized
Oscillation
Frequency
Ωosc,n

1.424

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 18 / 10−5 10−5

2 18 1.687 10−6 10−5

Temporal Har-
monic n 3rd

Normalized
Oscillation
Frequency
Ωosc,n

/

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 54(6) 1.214 10−6 10−5

6 54(6) / 10−5 10−5

Table 6.9: M2EO18 - High excitation level - Solution Point study

Resonance Excitation
level Solution Point

Normalized
Oscillation
Frequency
Ωosc,n

Normalized
Amplitude

M2EO18 High Violet 1.625 0.1505

Temporal Har-
monic n 1st

Normalized
Oscillation
Frequency
Ωosc,n

1.625

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 18 / 10−6 10−6

2 18 1.687 10−5 10−5

Temporal Har-
monic n 3rd

Normalized
Oscillation
Frequency
Ωosc,n

/

Mode
Reference
Nodal Diame-
ter

Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 54(6) 1.214 10−6 10−5

6 54(6) / 10−5 10−5

Table 6.10: M2EO18 - High excitation level - Solution Point study
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Regarding the M2ND18 resonance, five solution points were selected. By their
analysis, it turned out that there were more contributions than the only one expected.
The resonance branch should have been dominated by the only excitation of the
second mode of nodal diameter (M2ND18) without any energy transfer to other
modes. However, significant contributions from the first mode of the nodal diameter
18 (M1ND18) influence the dynamics along with excitations of the modes 1 and 6
of nodal diameter 54 (6), suggesting an energy transfer of type 1:3. Furthermore,
at the second solution point has been found a contribution of the first mode of
nodal diameter 108 (12) suggesting an energy transfer of type 2:3. All these results
outline a strong inaccuracy, which won’t considered any further, most likely caused
by the frequency misalignment.

Following these results, the study kept in the direction of sufficiently reducing
the contact area, trying to improve the frequency alignment, and at the same time
maintaining a reasonable nonlinear behaviour of the contact interfaces.

6.2.2 Contact model at the shroud (Reduced contact area)
and fir tree

For the following study, the friction contact model is adopted at both shrouds and
fir tree, but with a reduced central contact area at the former and maintaining
the complete contact area at the latter. Figure 6.8b displays the central reduced
contact area at the dependent side of the shroud.

Free-Undamped-system linear frequency comparison

Table 6.11 showcases the discrepancy of the linear natural frequencies of the
free-undamped system between the test rig and simulations.

Mode Free-undamped-system Damping Nodal Discrepancy [%]
linear normalized frequency ratio Diameter

1 1.0858 0 6 8.58
2 1.1276 0 18 12.76

Table 6.11: Comparison of linear-frequencies discrepancy between simulations
and test-rig values

The central reduced contact area at the shroud guarantees a better frequency
alignment, where the frequency discrepancy is even below 10% for the mode M1ND6.
For the mode M2ND18, the relative difference is still above that value. In both
cases, they don’t meet the 5% limit for validation.
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Nonlinear FRF comparison with different excitation levels

In the plots showcased in Figure 6.11, a comparison for the different excitation level
of the interested mode is presented. On the left plots both axes are normalized
and on the right only the frequency axis is normalized. This was necessary to
visually preserve the amplitude scaling. In fact, for the lowest excitation level the
amplitude discrepancy is such that the maximum amplitude is almost 9 times the
average registered amplitude in the test rig with the system in acceleration. This
is better visible in Figure 6.12 and 6.13.

(a) Nonlinear forced response - M1EO6
- Normalized amplitudes and frequencies

(b) Nonlinear forced response - M1EO6
- Absolute amplitudes and normalized
frequencies

(c) NonlinearfForced response -
M2EO18 -Normalized amplitudes and
frequencies

(d) Nonlinear FRF - M2EO18 - Absolute
amplitudes and normalized frequencies

Figure 6.11: Nonlinear FRF - Central reduce contact area at shroud and full
contact at dir tree - Comparison between excitation levels

In Figure 6.11, the left plots display the amplitudes of the forced response
curves normalized with respect to the average maximum excitation-level-test-rig
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amplitudes, while the plots on the right their absolute values 5. It is significant to
highlight the total inconsistency of the amplitudes for the lowest excitation levels
for the excited mode M1ND6, whereas, for higher excitation levels, the values are
slightly above the test rig ones. Differently, for the second excited mode M2ND18,
the lowest excitation has the maximum amplitude above the average maximum
test rig value, whereas the highest excitations stand below. The discrepancy is
nevertheless analogue.

It is hard to pinpoint the actual cause, but it might be due to some imprecisions
associated with the contact conditions definition in the contact model. The
introduction of miscroslip and the effect of non-planar contact might improve
catching the nonlinear behaviour and simultaneously adjust the friction energy
dissipation. However, it is not completely clear.

Nonlinear FRF comparison with test rig acceleration amplitude values

In this section, the results showcased in Figure 6.12 and 6.13 display forced response
curves with a comparison between the amplitudes obtained with the simulations
and the maximum amplitude values registered in the test rig with the system
both in acceleration and deceleration. The dashed red line represents the average
maximum values, while the green continuous lines are the maximum of maximum
amplitudes and the minimum of the maximum values.

5The absolute values are not displayed
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(a) Nonlinear FRF - Low excitation level
- Both friction contact model at shroud
(Central reduced contact area) and at
the fir tree

(b) Nonlinear FRF - Low excitation level
- Both friction contact model at shroud
(Central reduced contact area) and at
the fir tree

(c) Nonlinear FRF - Low excitation level
- Both friction contact model at shroud
(Central reduced contact area) and at
the fir tree

(d) Nonlinear FRF - Low excitation level
- Both friction contact model at shroud
(Central reduced contact area) and at
the fir tree

(e) Nonlinear FRF - Low excitation level
- Both friction contact model at shroud
(Central reduced contact area) and at
the fir tree

(f) Nonlinear FRF - Low excitation level
- Both friction contact model at shroud
(Central reduced contact area) and at
the fir tree

Figure 6.12: Amplitude comparison with test rig values registered in the test rig
with the system in both acceleration and deceleration - Amplitude normalization
wrt to the acceleration value
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(a) Nonlinear FRF - Low excitation level
- Both friction contact model at shroud
(Central reduced contact area) and at
the fir tree

(b) Nonlinear FRF - Low excitation level
- Both friction contact model at shroud
(Central reduced contact area) and at
the fir tree

(c) Nonlinear FRF - Low excitation level
- Both friction contact model at shroud
(Central reduced contact area) and at
the fir tree

(d) Nonlinear FRF - Low excitation level
- Both friction contact model at shroud
(Central reduced contact area) and at
the fir tree

(e) Nonlinear FRF - Low excitation level
- Both friction contact model at shroud
(Central reduced contact area) and at
the fir tree

(f) Nonlinear FRF - Low excitation level
- Both friction contact model at shroud
(Central reduced contact area) and at
the fir tree

Figure 6.13: Amplitude comparison with test rig values registered in the test rig
with the system in both acceleration and deceleration - Amplitude normalization
wrt to the acceleration value
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The plots confirm the comments expressed in the previous subsection.

Participation factor study

Similar to what was presented in the previous participation study subsection,
different solution points are selected on the forced response curve obtained with
reference friction coefficients and analyzed. Figure 6.14 reports the interested plots.

(a) Nonlinear FRF M1EO6 - Solution
point study

(b) Nonlinear FRF M2EO18 - Solution
point study

Figure 6.14: Solution points study

Tables 6.12, 6.13, 6.14, 6.15, 6.16, 6.17 showcase the modal contribution in the
respectives resonances.
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Resonance Solution Point

Normalized
Oscillation
Frequency
Ωosc,n

Normalized
Amplitude

M1EO6 Blue 1.092 1.0827

Temporal Har-
monic n 1st

Normalized
Oscillation
Frequency
Ωosc,n

1.092

Mode
Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 1.086 10−4 10−4

Temporal Har-
monic n 3rd

Normalized
Oscillation
Frequency
Ωosc,n

1.112

Mode
Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 / 10−6 10−6

2 1.139 10−5 10−5

Table 6.12: Comparison of linear-frequencies discrepancy between simulations
and test-rig values
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Resonance Solution Point

Normalized
Oscillation
Frequency
Ωosc,n

Normalized
Amplitude

M1EO6 Orange 1.076 1.3555

Temporal Har-
monic n 1st

Normalized
Oscillation
Frequency
Ωosc,n

1.076

Mode
Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 1.086 10−4 10−5

Temporal Har-
monic n 3rd

Normalized
Oscillation
Frequency
Ωosc,n

1.112

Mode
Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 / 10−6 10−6

2 1.139 10−5 10−5

Table 6.13: Comparison of linear-frequencies discrepancy between simulations
and test-rig values

Resonance Solution Point

Normalized
Oscillation
Frequency
Ωosc,n

Normalized
Amplitude

M2EO18 Blue 1.0905 0.485

Temporal Har-
monic n 1st

Normalized
Oscillation
Frequency
Ωosc,n

1.0905

Mode
Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 / 10−5 10−6

2 1.127 10−5 10−4

Table 6.14: Comparison of linear-frequencies discrepancy between simulations
and test-rig values

109



Results

Resonance Solution Point

Normalized
Oscillation
Frequency
Ωosc,n

Normalized
Amplitude

M2EO18 Orange 1.087 0.5

Temporal Har-
monic n 1st

Normalized
Oscillation
Frequency
Ωosc,n

1.087

Mode
Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 / 10−5 10−6

2 1.127 10−5 10−4

Table 6.15: Comparison of linear-frequencies discrepancy between simulations
and test-rig values

Resonance Solution Point

Normalized
Oscillation
Frequency
Ωosc,n

Normalized
Amplitude

M2EO18 Green 1.093 0.494

Temporal Har-
monic n 1st

Normalized
Oscillation
Frequency
Ωosc,n

1.093

Mode
Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 / 10−5 10−6

2 1.127 10−5 10−4

Table 6.16: Comparison of linear-frequencies discrepancy between simulations
and test-rig values
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Resonance Solution Point

Normalized
Oscillation
Frequency
Ωosc,n

Normalized
Amplitude

M2EO18 red 1.109 0.442

Temporal Har-
monic n 1st

Normalized
Oscillation
Frequency
Ωosc,n

1.109

Mode
Free-system
linear normal-
ized Frequency

Fourier
Coefficient-
Real Part An
- Order of
Magnitude

Fourier Coeffi-
cient - Imagi-
nary Part Bn -
Order of Mag-
nitude

1 / 10−6 10−5

2 1.127 10−5 10−5

Table 6.17: Comparison of linear-frequencies discrepancy between simulations
and test-rig values

Regarding the first two solution points on the excited M1ND6 resonance, the
reduction of the contact area also gave a better alignment with the contributions.
The internal resonance of type 3:1 due to energy transfer from M2ND18 is confirmed.
However, it is still participant a contribution from the M1ND18, likely caused by
the frequency misalignment.

Regarding the excited second resonance M2ND18, there is better alignment
concerning the contribution due to the absence of energy transfer from modes with
different nodal diameters. However, the presence of energy transfer from mode 1 is
still a possible consequence of the frequency misalignment.

Friction Coefficient Comparison

This subsection presents a parametric study to assess the influence of the friction
coefficients on the forced response curves. Figure 6.15 displays the resonances.
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(a) Nonlinear FRF - M1EO6 - central
reduced contact at the shroud and full
contact at the fir tree

(b) Nonlinear FRF - M2EO18 - central
reduced contact at the shroud and full
contact at the fir tree

Figure 6.15: Friction coefficient parametric study

The plots exhibit the friction coefficient influence on the resonance amplitudes
and slightly on the nonlinear behaviour (curve shape). Based on the results, it was
decided to adopt a friction coefficient of 1.5 ∗ µref at the shroud for the subsequent
studies. For computational reasons (see section ??), the mistuning simulations
require tying the contact interfaces at the fir tree.

6.2.3 Contact model at the shroud (Central reduced contact
area) and TIED fir tree

As shortly disclosed in the previous sections and will be thoroughly explained in a
later chapter ??, the computational burden associated with combining mistuning
and nonlinearities in an FEA is particularly heavy. Even the introduction of ROM
by selecting a sufficient number of retain modes to not affect the accuracy and
the introduction of the OPS for the contact interfaces is not enough to permit a
feasible analysis of the FE problem. A solution is to reduce the number of nonlinear
equations involved in the mathematical problem. Considering the importance of
the shrouds over the fir trees’ contact interfaces on the nonlinear dynamics, it was
decided to tie the dovetails’ surfaces.

In this section, the plots provide the results of the FEA of models with the
assumption of cyclic symmetry to have material to compare with the results later
presented of the FEA nonlinear mistuned model.

Figure 6.16 displays the nonlinear forced response. Similarly to the previous
section, the plots amplitudes are normalized on the left and kept with their absolute
values on the right.
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(a) Nonlinear forced response - M1EO6
- central reduced contact area at the
shroud and tied fir tree - normalized
frequencies and absolute amplitudes

(b) Nonlinear forced response - M1EO6
- central reduced contact area at the
shroud and tied fir tree - normalized
frequencies and amplitudes

(c) Nonlinear forced response - M2EO18
- central reduced contact area at the
shroud and tied fir tree - normalized
frequencies and absolute amplitudes

(d) Nonlinear forced response - M2EO18
- central reduced contact area at the
shroud and tied fir tree - normalized
frequencies and amplitudes

Figure 6.16: Nonlinear forced response - central reduced contact area at the
shroud and tied fir tree - comparison of different excitation levels

Similarly to the case where contact models are implemented both at the shroud
and fir trees’ interfaces, there is a strong inaccuracy with the amplitude level,
especially for the lowest excitations. For the excited mode M1ND6 and the
lowest excited resonance, the maximum amplitude is almost 13 times the average
maximum value registered in the test rig. At the higher excitation levels, the
maximum amplitudes are only around 2.5 times higher than the test rig value. In
the same way, for the excited mode M2ND18, the disproportion is kept but with
different ratios.

Figures 6.17 and 6.18 display the plots of the resonances separately, so that it
is easier to compare the amplitudes and frequencies with respect to the test rig
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values.
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(a) Nonlinear forced response - Low ex-
citation level - central reduced contact
area at shroud and tied fir tree - accel-
eration

(b) Nonlinear forced response - Low ex-
citation level - central reduced contact
area at shroud and tied fir tree - decel-
eration

(c) Nonlinear forced response - Medium-
High excitation level - central reduced
contact area at shroud and tied fir tree -
acceleration

(d) Nonlinear forced response - Medium-
High excitation level - central reduced
contact area at shroud and tied fir tree -
deceleration

(e) Nonlinear forced response - High ex-
citation level - central reduced contact
area at shroud and tied fir tree - accel-
eration

(f) Nonlinear forced response - High ex-
citation level - central reduced contact
area at shroud and tied fir tree - decel-
eration

Figure 6.17: M1EO6 nonlinear forced responses - normalized plots115
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(a) Nonlinear forced response - Low ex-
citation level - central reduced contact
area at shroud and tied fir tree - accel-
eration

(b) Nonlinear forced response - Low ex-
citation level - central reduced contact
area at shroud and tied fir tree - decel-
eration

(c) Nonlinear forced response - Medium-
High excitation level - central reduced
contact area at shroud and tied fir tree -
acceleration

(d) Nonlinear forced response - Medium-
High excitation level - central reduced
contact area at shroud and tied fir tree -
acceleration

(e) Nonlinear forced response - Medium-
High excitation level - central reduced
contact area at shroud and tied fir tree -
acceleration

(f) Nonlinear forced response - Medium-
High excitation level - central reduced
contact area at shroud and tied fir tree -
acceleration

Figure 6.18: M2EO18 - nonlinear forced responses - normalized plots116
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Figure 6.19 showcases the plots of all the resonances together. In this way, the
influence of friction at the fir tree is assessed over the nonlinear behaviour (shape
of the curve) and the maximum amplitude level (friction damping).

(a) M1EO6 - Nonlinear forced responses
- normalized frequencies and amplitudes

(b) M1EO6 - Nonlinear forced responses
- normalized frequencies and absolute
amplitudes

(c) M2EO18 - Nonlinear forced re-
sponses - normalized frequencies and am-
plitudes

(d) M2EO18 - Nonlinear forced re-
sponses - normalized frequencies and ab-
solute amplitudes

Figure 6.19: Nonlinear forced responses comparison

The forced responses of the excited mode M1ND6 are more affected by the tying
of the fir trees’ contact surfaces in both shape and friction damping. For the lowest
excitation, the maximum amplitudes pass from being around 9 times than the
test rig reference value to 13 times. At higher excitation levels, the ratio changes
from 1.5 to around 2.5. The forced responses for the excited mode M2ND18 seem
unaffected concerning friction damping.
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6.3 Results of the simulations with modal stiff-
ness mistuned model

This section presents the results of the nonlinear modal stiffness mistuned FE
model where only contact interactions at the shroud (central reduced contact area)
have been implemented mathematically.

As explained before, for the study have been used three different modal stiffness
mistuning patterns based on the linear frequency distribution of the blades registered
in the test rig 6.2.

6.3.1 Linear eigenfrequencies of the free-undamped system

Tables 6.18, 6.19 and 6.20 show the results of the free-undamped system analysis by
adopting the three different mistuning distributions (Figure 6.2). When mistuning
is involved, the "nodal diameter" notation relative to the travelling wave coordinate
system loses significance since the complete system has to be solved. However, the
software Oragl-NOSTIA-ROCMAN can fictitiously match the frequencies with the
corresponding modes to help the engineer identify them.

Interestingly, using the frequency distribution of the registered mode M1ND6
in both acceleration and deceleration, the software identified three different eigen-
frequencies associated with the mode M2ND18. It may be a mistake since the
eigenfrequencies present in couple, but the importance is relative. It may suggest
the presence of a modal density region with close linear frequencies. For the mode
M1ND6, the frequency discrepancy is around 8.7% with respect to the test rig
value, whereas for the mode M2ND18 is around 12%.

Using the frequency distribution registered for the mode M2ND18, the software
did a better identification, and the frequency alignment improved as well, with a
discrepancy setting to around 6.3% for both modes.

Mode Free-undamped system linear normalized frequencies Reference Nodal Diameter
1 1.087418 6
1 1.087429 6
2 1.121675 18
2 1.122121 18
2 1.123329 18

Table 6.18: Linear free-undamped-system frequencies for modal stiffness mistuned
model with register test-rig linear frequency distribution pattern of M1ND6 excited
mode in deceleration
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Mode Free-undamped system linear normalized frequencies Reference Nodal Diameter
1 1.087415 6
1 1.087443 6
2 1.1217 18
2 1.1222 18
2 1.1232 18

Table 6.19: Linear free-undamped-system frequencies for modal stiffness mistuned
model with register test-rig linear frequency distribution pattern of M1ND6 excited
mode in acceleration

Mode Free-undamped system linear normalized frequencies Reference Nodal Diameter
1 0.93996 6
1 0.93674 6
2 0.936931 18
2 0.936943 18

Table 6.20: Linear free-undamped-system frequencies for modal stiffness mistuned
model with register test-rig linear frequency distribution pattern of M2ND18 excited
mode in acceleration

6.3.2 Nonlinear force response
The following plots report the results of the modal-stiffness-mistuned nonlinear
forced responses of the system. For computational reasons, each simulation had to
run two times, starting from the left and the right of the resonance. The starting
frequency point needs to fall in an area where the system behaves linearly, or the
software doesn’t find convergence easily.

• Excited mode M1ND6 at a low excitation level with M1ND6 frequency distri-
bution registered during acceleration: Figure 6.20;

• Excited mode M1ND6 at a low excitation level with M1ND6 frequency distri-
bution registered during deceleration: Figure 6.21;

• Excited mode M1ND6 at a low excitation level with M2ND18 frequency
distribution registered during acceleration: Figure 6.22;

• Excited mode M1ND6 at a Medium-High excitation level with M1ND6 fre-
quency distribution registered during acceleration: Figure 6.23;
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• Excited mode M1ND6 at a Medium-High excitation level with M1ND6 fre-
quency distribution registered during deceleration: Figure 6.24;

• Excited mode M1ND6 at a Medium-High excitation level with M2ND18
frequency distribution registered during acceleration: Figure 6.25;

• Excited mode M1ND6 at a High excitation level with M1ND6 frequency
distribution registered during acceleration: Figure 6.26;

• Excited mode M1ND6 at a High excitation level with M1ND6 frequency
distribution registered during deceleration: Figure 6.27;

• Excited mode M1ND6 at a High excitation level with M2ND18 frequency
distribution registered during acceleration: Figure 6.28;

• Excited mode M2ND18 at a low excitation level with M2ND18 frequency
distribution registered during acceleration: Figure 6.29;

• Excited mode M2ND18 at a Medium-High excitation level with M2ND18
frequency distribution registered during acceleration: Figure 6.30;

• Excited mode M2ND18 at a High excitation level with M2ND18 frequency
distribution registered during acceleration: Figure 6.29;

M1EO6 excited forced responses

Figures 6.20a and 6.20b showcases the results of the forced response of the system
with the mode M1ND6 mistuning pattern distribution registered during acceleration.
The curves exhibit a slight softening behaviour due to the condition of the contact
surfaces (stick-slip-partial separation). A particular nonlinear behaviour stands
out with a small closed branch on the left sides of the curves. Figures 6.20c
and 6.20d display the amplitude distribution obtained by selecting the maximum
amplitude value for each resonance. This distribution suggests a strong localization
of the amplitudes between blades 46 and 60, including blade 1. The other blades
show a periodic alternation. The distribution is completely different from the one
registered in the test rig: see Figures 6.20e and 6.20f. Interestingly, the maximum
amplitude values reached are around 13 times higher than the average maximum
value registered in the test rig, similar to the models in cyclic symmetry.

In the same way, Figures 6.21 and 6.22 for low excited resonances and mistuning
distributions of M1ND6 registered during deceleration and M2ND18 registered
during acceleration. For these cases, the amplitude localization phenomenon and
the maximum value are analogous to the previous one. The only difference is in
the nonlinear behaviour. In Figure 6.21, the system behaves more linearly, whereas,
for the other mistuning distribution, the nonlinearity tends to localize at the root
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of the resonances and at the top (not easily noticeable from the plots, but there are
turning points for both left and right branches with the curve going downward).

Figures 6.23, 6.24 and 6.25 showcase forced responses and maximum amplitude
distributions for the three chosen mistuning patterns with a medium-high excitation
level. In the same way, Figure 6.26, 6.27 and 6.28. Interestingly, the localization
of the amplitudes is similar independently from the mistuning pattern with a
concentration from the blade 49 to 60, including the first one, and a periodic
distribution for the others. In any case, they don’t correspond with the actual
amplitude distribution. Furthermore, it seems that mistuning tends to influence the
nonlinear dynamics. To be more specific, by choosing the mistuning distribution
associated with the mode M1ND6, which is more pertinent for these cases considered
the excitation M1EO6, the forced responses (see Figures 6.23, 6.24, 6.26 and 6.27)
presents just a slight bent toward lower frequencies, suggesting softening. On
the other hand, the forced responses (see Figures 6.25 6.28) obtained with the
mistuning pattern associated with the mode M2ND18 display a strong nonlinear
behaviour with secondary peaks, turning points and also strong variation of the
dynamic contact equilibrium. In fact, on the left branches, it seems to present a
bifurcation point (completely absent in the test rig for stationary conditions but
present during the transient) where the solutions completely change direction and
proceed downward on the left while keeping a strong nonlinear behaviour due to
the fast-changing of the contract states. A similar trend of the curves is present on
the right branches.

The entity of the amplitude level cannot be assessed for these forced responses
as the curves are uncompleted.
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(a) M1EO6 - Low Ex. - Mod. Stiff
Mistuned Nonlinear forced responses -
normalized axes

(b) M1EO6 - Low Ex. - Mod. Stiff
Mistuned Nonlinear Forced responses -
test rig reference - normalized axes

(c) M1EO6 - Low Ex. - Mod. Stiff Mis-
tuned Nonlinear Amplitude Distribution
- Left branch

(d) M1EO6 - Low Ex. - Mod. Stiff Mis-
tuned Nonlinear Amplitude Distribution
- Right branch

(e) M1EO6 - Low Ex. - Test rig Ampli-
tude Distribution during acceleration -
Main Resonance M1ND6

(f) M1EO6 - Low Ex. - Test rig Ampli-
tude Distribution during acceleration -
Secondary Resonance M2ND18

Figure 6.20: Modal Stiffness Mistuned Nonlinear forced response and amplitude
distributions - Low Ex. - Acceleration
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(a) M1EO6 - Low Ex. - Mod. Stiff
Mistuned Nonlinear FRF - Deceleration
- normalized axes

(b) M1EO6 - Low Ex. - Mod. Stiff Mis-
tuned Nonlinear FRF - test rig reference
- Deceleration - normalized axes

(c) M1EO6 - Low Ex. - Mod. Stiff Mis-
tuned Nonlinear Amplitude Distribution
- Deceleration - Left branch

(d) M1EO6 - Low Ex. - Mod. Stiff Mis-
tuned Nonlinear Amplitude Distribution
- Deceleration - Right branch

(e) M1EO6 - Low Ex. - Test rig Ampli-
tude Distribution during acceleration -
Main Resonance M1ND6

(f) M1EO6 - Low Ex. - Test rig Ampli-
tude Distribution during acceleration -
Secondary Resonance M2ND18

Figure 6.21: Modal Stiffness Mistuned Nonlinear Forced Response - Low Ex. -
Deceleration
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(a) M1EO6 - Low Ex. - Mod. Stiff
Mistuned Nonlinear FRF - Acceleration
Second Distribution - normalized axes

(b) M1EO6 - Low Ex. - Mod. Stiff
Mistuned Nonlinear FRF - Acceleration
Second Distribution - test rig reference -
normalized axes

(c) M1EO6 - Low Ex. - Mod. Stiff Mis-
tuned Nonlinear Amplitude Distribution
- Acceleration Second Distribution - Left
branch

(d) M1EO6 - Low Ex. - Mod. Stiff
Mistuned Nonlinear Amplitude Distribu-
tion - Acceleration Second Distribution
- Right branch

(e) M1EO6 - Low Ex. - Test rig Ampli-
tude Distribution during acceleration -
Main Resonance M1ND6

(f) M1EO6 - Low Ex. - Test rig Ampli-
tude Distribution during acceleration -
Secondary Resonance M2ND18

Figure 6.22: Modal Stiffness Mistuned Nonlinear FRF - Low Ex. - Acceleration
Second Distribution
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(a) M1EO6 - Medium-High Ex. - Mod.
Stiff Mistuned Nonlinear FRF - Acceler-
ation - normalized axes

(b) M1EO6 - Medium-High Ex. - Mod.
Stiff Mistuned Nonlinear FRF - test rig
reference - Acceleration - normalized
axes

(c) M1EO6 - Medium-High Ex. - Mod.
Stiff Mistuned Nonlinear Amplitude Dis-
tribution - Acceleration - Left branch

(d) M1EO6 - Medium-High Ex. - Mod.
Stiff Mistuned Nonlinear Amplitude Dis-
tribution - Acceleration - Right branch

(e) M1EO6 - Medium-High Ex. - Test
rig Amplitude Distribution during accel-
eration - Main Resonance M1ND6

(f) M1EO6 - Medium-High Ex. - Test
rig Amplitude Distribution during accel-
eration - Secondary Resonance M2ND18

Figure 6.23: Modal Stiffness Mistuned Nonlinear FRF - Medium-High Ex. -
Acceleration
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(a) M1EO6 - Medium-High Ex. - Mod.
Stiff Mistuned Nonlinear FRF - Deceler-
ation - normalized axes

(b) M1EO6 - Medium-High Ex. - Mod.
Stiff Mistuned Nonlinear FRF - test rig
reference - Deceleration - normalized
axes

(c) M1EO6 - Medium-High Ex. - Mod.
Stiff Mistuned Nonlinear Amplitude Dis-
tribution - Deceleration - Left branch

(d) M1EO6 - Medium-High Ex. - Mod.
Stiff Mistuned Nonlinear Amplitude Dis-
tribution - Deceleration - Right branch

(e) M1EO6 - Medium-High Ex. - Test
rig Amplitude Distribution during decel-
eration - Main Resonance M1ND6

(f) M1EO6 - Medium-High Ex. - Test
rig Amplitude Distribution during decel-
eration - Secondary Resonance M2ND18

Figure 6.24: Modal Stiffness Mistuned Nonlinear FRF - Medium-High Ex. -
deceleration
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(a) M1EO6 - Medium-High Ex. - Mod.
Stiff Mistuned Nonlinear FRF - Acceler-
ation Second Distribution - normalized
axes

(b) M1EO6 - Medium-High Ex. - Mod.
Stiff Mistuned Nonlinear FRF - test rig
reference - Acceleration Second Distri-
bution - normalized axes

(c) M1EO6 - Medium-High Ex. - Mod.
Stiff Mistuned Nonlinear Amplitude Dis-
tribution - Acceleration Second Distri-
bution - Left branch

(d) M1EO6 - Medium-High Ex. - Mod.
Stiff Mistuned Nonlinear Amplitude Dis-
tribution - Acceleration Second Distri-
bution - Right branch

(e) M1EO6 - Medium-High Ex. - Test
rig Amplitude Distribution during accel-
eration - Main Resonance M1ND6

(f) M1EO6 - Medium-High Ex. - Test
rig Amplitude Distribution during accel-
eration - Secondary Resonance M2ND18

Figure 6.25: Modal Stiffness Mistuned Nonlinear FRF - Medium-High Ex. -
Acceleration Second Distribution
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(a) M1EO6 - High Ex. - Mod. Stiff
Mistuned Nonlinear FRF - Acceleration
- normalized axes

(b) M1EO6 - High Ex. - Mod. Stiff Mis-
tuned Nonlinear FRF - test rig reference
- Acceleration - normalized axes

(c) M1EO6 - High Ex. - Mod. Stiff Mis-
tuned Nonlinear Amplitude Distribution
- Acceleration - Left branch

(d) M1EO6 - High Ex. - Mod. Stiff Mis-
tuned Nonlinear Amplitude Distribution
- Acceleration - Right branch

(e) M1EO6 - High Ex. - Test rig Ampli-
tude Distribution during acceleration -
Main Resonance M1ND6

(f) M1EO6 - High Ex. - Test rig Ampli-
tude Distribution during acceleration -
Secondary Resonance M2ND18

Figure 6.26: Modal Stiffness Mistuned Nonlinear FRF - High Ex. - Acceleration

128



Results

(a) M1EO6 - High Ex. - Mod. Stiff
Mistuned Nonlinear FRF - Deceleration
- normalized axes

(b) M1EO6 - High Ex. - Mod. Stiff Mis-
tuned Nonlinear FRF - test rig reference
- Deceleration - normalized axes

(c) M1EO6 - High Ex. - Mod. Stiff Mis-
tuned Nonlinear Amplitude Distribution
- Deceleration - Left branch

(d) M1EO6 - High Ex. - Mod. Stiff Mis-
tuned Nonlinear Amplitude Distribution
- Deceleration - Right branch

(e) M1EO6 - High Ex. - Test rig Ampli-
tude Distribution during deceleration -
Main Resonance M1ND6

(f) M1EO6 - High Ex. - Test rig Ampli-
tude Distribution during deceleration -
Secondary Resonance M2ND18

Figure 6.27: Modal Stiffness Mistuned Nonlinear FRF - Medium-High Ex. -
deceleration
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(a) M1EO6 - High Ex. - Mod. Stiff
Mistuned Nonlinear FRF - Acceleration
Second Distribution - normalized axes

(b) M1EO6 - Medium-High Ex. - Mod.
Stiff Mistuned Nonlinear FRF - test rig
reference - Acceleration Second Distri-
bution - normalized axes

(c) M1EO6 - Medium-High Ex. - Mod.
Stiff Mistuned Nonlinear Amplitude Dis-
tribution - Acceleration Second Distri-
bution - Left branch

(d) M1EO6 - High Ex. - Mod. Stiff
Mistuned Nonlinear Amplitude Distribu-
tion - Acceleration Second Distribution
- Right branch

(e) M1EO6 - High Ex. - Test rig Ampli-
tude Distribution during acceleration -
Main Resonance M1ND6

(f) M1EO6 - High Ex. - Test rig Ampli-
tude Distribution during acceleration -
Secondary Resonance M2ND18

Figure 6.28: Modal Stiffness Mistuned Nonlinear FRF - High Ex. - Acceleration
Second Distribution
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M2EO18 Excited forced responses

Figures 6.29, 6.30 and 6.32 display the forced responses and the maximum ampli-
tude distributions of the excited mode M2ND18 with different excitation levels.
Differently from the other mode, all the force responses presents a strong softening.
For the lowest excitation level 6.29, the force responses showcases unusual thinness
very different from what was obtained for the cyclic symmetric model. The under-
astimation of the friciton damping. It may be possible that some improvements in
the definition of the contact model should be done. Accounting for example for
phenomena that at low excitation level tend to be predominant as microslip.

For higher excitation levels (see Figures 6.30 and 6.32), the forced responses are
more bulk and similar. But at medium-high excitation level (see Figure 6.30), the
left branches of the curves don’t match the right ones. It means that the software
found different solutions. Figure 6.31 displays the plots better and can be compared
with Figure 6.33 of the higher excitation level. The question comes rather naturally:
How did it happen, and which is the most stable one? It seems that the starting
frequency point also had an influence. However, MTU Aero Engines will carry out
further investigations in this regard.
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(a) M2EO18 - Low Ex. - Mod. Stiff
Mistuned Nonlinear FRF - normalized
axes

(b) M2EO18 - Low Ex. - Mod. Stiff
Mistuned Nonlinear FRF - test rig ref-
erence - normalized axes

(c) M2EO18 - Low Ex. - Mod. Stiff
Mistuned Nonlinear Amplitude Distri-
bution - Left branch

(d) M2EO18 - Low Ex. - Mod. Stiff
Mistuned Nonlinear Amplitude Distri-
bution - Right branch

(e) M2EO18 - Low Ex. - Test rig Am-
plitude Distribution during acceleration
- Main Resonance M1ND6

(f) M2EO18 - Low Ex. - Test rig Am-
plitude Distribution during deceleration
- Secondary Resonance M2ND18

Figure 6.29: Modal Stiffness Mistuned Nonlinear FRF - Low Ex. - Acceleration
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(a) M2EO18 - Medium-High Ex. - Mod.
Stiff Mistuned Nonlinear FRF - normal-
ized axes

(b) M2EO18 - Medium-High Ex. - Mod.
Stiff Mistuned Nonlinear FRF - test rig
reference - normalized axes

(c) M2EO18 - Medium-High Ex. - Mod.
Stiff Mistuned Nonlinear Amplitude Dis-
tribution - Left branch

(d) M2EO18 - Medium-High Ex. - Mod.
Stiff Mistuned Nonlinear Amplitude Dis-
tribution - Right branch

(e) M2EO18 - Medium-High Ex. - Test
rig Amplitude Distribution during accel-
eration - Main Resonance M1ND6

(f) M2EO18 - Medium-High Ex. - Test
rig Amplitude Distribution during decel-
eration - Secondary Resonance M2ND18

Figure 6.30: Modal Stiffness Mistuned Nonlinear FRF - Low Ex. - Acceleration
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(a) M2EO18 - Medium-High Ex. - Mod.
Stiff Mistuned Nonlinear FRF - Left
Branch

(b) M2EO18 - Medium-High Ex. - Mod.
Stiff Mistuned Nonlinear FRF - Right
branch

(c) M2EO18 - Medium-High Ex. - Mod.
Stiff Mistuned Nonlinear FRF

Figure 6.31: M2EO18 - Modal Stiffness Mistuned Nonlinear FRF - Medium-High
Ex. - Analysis
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(a) M2EO18 - High Ex. - Mod. Stiff
Mistuned Nonlinear FRF - normalized
axes

(b) M2EO18 - High Ex. - Mod. Stiff
Mistuned Nonlinear FRF - test rig ref-
erence - normalized axes

(c) M2EO18 - High Ex. - Mod. Stiff
Mistuned Nonlinear Amplitude Distri-
bution - Left branch

(d) M2EO18 - High Ex. - Mod. Stiff
Mistuned Nonlinear Amplitude Distri-
bution - Right branch

(e) M2EO18 - Medium-High Ex. - Test
rig Amplitude Distribution during accel-
eration - Main Resonance M1ND6

(f) M2EO18 - High Ex. - Test rig Am-
plitude Distribution during deceleration
- Secondary Resonance M2ND18

Figure 6.32: Modal Stiffness Mistuned Nonlinear FRF - High Ex.
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(a) M2EO18 - High Ex. - Mod. Stiff
Mistuned Nonlinear FRF - Left Branch

(b) M2EO18 - High Ex. - Mod. Stiff
Mistuned Nonlinear FRF - Right branch

(c) M2EO18 - High Ex. - Mod. Stiff
Mistuned Nonlinear FRF

Figure 6.33: M2EO18 - Modal Stiffness Mistuned Nonlinear FRF - Medium-High
Ex. - Analysis

6.4 Results of the simulations with geometrical
mistuned model

This section focuses on the results of the geometrical mistuned model. They will
be presented as follows:

• Excited mode M1ND6 at a low excitation level: Figure 6.34;

• Excited mode M1ND6 at a Medium-High excitation level: Figure 6.35;

• Excited mode M1ND6 at a High excitation level: Figure 6.36;

• Excited mode M2ND18 at a low excitation level: Figure 6.37;
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• Excited mode M2ND18 at a Medium-High excitation: Figure 6.38;

• Excited mode M2ND18 at a High excitation level: Figure 6.39;

6.4.1 Linear eignefrequencies of the free-undamped system
Table 6.21 showcases linear eigenfrequencies of the geometrical mistuned system.
The software identified the linear frequencies associated with the respective modes
by assigning the fictitious nodal diameter. Based on that assignment, the frequency
discrepancy with respect to the test rig reference value is around 9% for mode
M1ND6 and 12% for mode M2ND18.

Mode Free-undamped-system linear normalized frequencies Reference Nodal Diameter
1 1.09139 6
1 1.09399 6
2 1.12074 18
2 1.12453 18

Table 6.21: Linear free-undamped-system normalized frequencies for geometrical
mistuned model

6.4.2 Nonlinear forced response
The nonlinear geometrical mistuned forced responses are showcased in Figures 6.34,
6.35 and 6.36 for the excited mode M1ND6, and 6.37, 6.38 and 6.39 for the excited
mode M2ND18.

Regarding the forced responses of the excited mode M1ND6, independently from
the excitation level, the curves exhibit strong nonlinear behaviour with many turning
points. They suggest the presence of a very complicated dynamic exacerbated by
both mistuning and nonlinearities. The curves obtained by low excitations display
low friction damping, causing the maximum amplitude to reach almost 20 times
the test rig value. It means that the mistuning causes an increase in the response
for some blades with respect to the cyclic symmetric model. The curves obtained
by medium-high and high excitation levels still display a complicated dynamic, but
the maximum amplitudes are unknown due to the incompleteness of the forced
responses. In general, the distributions are overall similar for all excitation levels,
and the localization is analogous to the previous results obtained for the modal
stiffness mistuned models. Furthermore, interestingly, it is noticeable a secondary
peak on the right of the curves.

Regarding the forced responses of the excited mode M2ND18, the plots display a
different mistuning distribution than the previous results. Overall, the localization
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shows a concentration of the maximum amplitudes between the 46th and the 60th
blades, including the 1st one. However, for the other blades, the distribution
doesn’t look as periodic as in the previous cases. In any case, the results don’t
match the test rig ones. At the lowest excitation level, the amplitudes stay within
the limits marked by the test rig registered amplitude range. Unfortunately, this
cannot be verified for the other excitation levels since the curves are uncompleted.
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(a) M1EO6 - Low Ex. - Geometrical
Mistuned Nonlinear Forced Responses -
normalized axes

(b) M1EO6 - Low Ex. - Geometrical
Mistuned Nonlinear Forced Responses -
test rig reference - normalized axes

(c) M1EO6 - Low Ex. - Geometrical
Mistuned Nonlinear Amplitude Distri-
bution - Left branch

(d) M1EO6 - Low Ex. - Geometrical
Mistuned Nonlinear Amplitude Distri-
bution - Right branch

(e) M1EO6 - Low Ex. - Test rig Ampli-
tude Distribution during acceleration -
Main Resonance M1ND6

(f) M1EO6 - Low Ex. - Test rig Ampli-
tude Distribution during deceleration -
Main Resonance M2ND18

Figure 6.34: Geometrical Mistuned Nonlinear Forced Responses - Low Ex.
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(a) M1EO6 - Medium-High Ex. - Mod.
Stiff Mistuned Nonlinear FRF - normal-
ized axes

(b) M1EO6 - Medium-High Ex. - Mod.
Stiff Mistuned Nonlinear FRF - test rig
reference - normalized axes

(c) M1EO6 - Medium-High Ex. - Geo-
metrical Mistuned Nonlinear Amplitude
Distribution - Left branch

(d) M1EO6 - Medium-High Ex. - Geo-
metrical Mistuned Nonlinear Amplitude
Distribution - Right branch

(e) M1EO6 - Medium-High Ex. - Test
rig Amplitude Distribution during accel-
eration - Main Resonance M1ND6

(f) M1EO6 - Medium-High Ex. - Test
rig Amplitude Distribution during decel-
eration - Main Resonance M1ND6

Figure 6.35: Geometrical Mistuned Nonlinear Forced Responses - Medium-High
Ex.
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(a) M1EO6 - High Ex. - Geometrical
Mistuned Nonlinear Fprced Responses -
normalized axes

(b) M1EO6 - High Ex. - Geometrical
Mistuned Nonlinear Forced Responses -
test rig reference - normalized axes

(c) M1EO6 - High Ex. - Geometrical
Mistuned Nonlinear Amplitude Distri-
bution - Left branch

(d) M1EO6 - High Ex. - Geometrical
Mistuned Nonlinear Amplitude Distri-
bution - Right branch

(e) M1EO6 - High Ex. - Test rig Ampli-
tude Distribution during acceleration -
Main Resonance M1ND6

(f) M1EO6 - High Ex. - Test rig Ampli-
tude Distribution during deceleration -
Main Resonance M1ND6

Figure 6.36: Geometrical Mistuned Nonlinear Forced Responses - High Ex.
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(a) M2EO18 - Low Ex. - Geometrical
Mistuned Nonlinear FRF - normalized
axes

(b) M2EO18 - Low Ex. - Geometrical
Mistuned Nonlinear FRF - test rig ref-
erence - normalized axes

(c) M2EO18 - Low Ex. - Geometrical
Mistuned Nonlinear Amplitude Distri-
bution - Left branch

(d) M2EO18 - Low Ex. - Geometrical
Mistuned Nonlinear Amplitude Distri-
bution - Right branch

(e) M2EO18 - Low Ex. - Test rig Am-
plitude Distribution during acceleration
- Main Resonance M2ND18

(f) M2EO18 - Low Ex. - Test rig Am-
plitude Distribution during deceleration
- Main Resonance M2ND18

Figure 6.37: Geometrical Mistuned Nonlinear Forced Responses - Low Ex.
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(a) M2EO18 - Medium-High Ex. - Geo-
metrical Mistuned Nonlinear Forced Re-
sponses - normalized axes

(b) M2EO18 - Medium-High Ex. - Geo-
metrical Mistuned Nonlinear Forced Re-
sponses - test rig reference - normalized
axes

(c) M2EO18 - Medium-High Ex. - Geo-
metrical Mistuned Nonlinear Amplitude
Distribution - Left branch

(d) M2EO18 - Medium-High Ex. - Geo-
metrical Mistuned Nonlinear Amplitude
Distribution - Right branch

(e) M2EO18 - Medium-High Ex. - Test
rig Amplitude Distribution during accel-
eration - Main Resonance M2ND18

(f) M2EO18 - Medium-High Ex. - Test
rig Amplitude Distribution during decel-
eration - Main Resonance M2ND18

Figure 6.38: Geometrical Mistuned Nonlinear Forced Responses - Medium-High
Ex.
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(a) M2EO18 - High Ex. - Geometrical
Mistuned Nonlinear Forced Responses -
normalized axes

(b) M2EO18 - High Ex. - Geometrical
Mistuned Nonlinear Forced Responses -
test rig reference - normalized axes

(c) M2EO18 - High Ex. - Geometrical
Mistuned Nonlinear Amplitude Distri-
bution - Left branch

(d) M2EO18 - High Ex. - Geometrical
Mistuned Nonlinear Amplitude Distri-
bution - Right branch

(e) M2EO18 - High Ex. - Test rig Am-
plitude Distribution during acceleration
- Main Resonance M2ND18

(f) M2EO18 - High Ex. - Test rig Am-
plitude Distribution during deceleration
- Main Resonance M2ND18

Figure 6.39: Geometrical Mistuned Nonlinear Forced Responses - High Ex.
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6.4.3 Computational Burden
In this section, the computational information is showcased to give an idea of the
necessary RAM and time required to run the simulations.

Tables 6.22, 6.23 and 6.24 display the computational data for the models with
cyclic symmetric boundaries.

Tables 6.25 and 6.26 display the computational data for the modal stiffness
mistuned models and 6.27 of the geometrical mistuned model.

Type cyclic symmetry (1 sector needed)
Substructure division no

Contact at shroud yes (49 nodes)
Contact at fir tree yes (332 nodes)

PRE

N° of retained linear modes for substructure 50
RAM requested ≈ 24 GB

Computational time ≈ 5.5 hrs
SOLVE

RAM requested < 10 GB
Computational time 50 ÷ 250 hrs

Table 6.22: Computational data for cyclic symmetric model - full contact at
shroud and fir tree
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Type cyclic symmetry (1 sector needed)
Substructure division no

Contact at shroud yes (9 nodes)
Contact at fir tree yes (332 nodes)

PRE

N° of retained linear modes for substructure 50
RAM requested ≈ 24 GB

Computational time 5 ÷ 10 hrs
SOLVE

RAM requested < 10 GB
Computational time 30 ÷ 110 hrs

Table 6.23: Computational data for cyclic symmetric model - reduced contact at
shroud and full contact at fir tree

Type cyclic symmetry (1 sector needed)
Substructure division no

Contact at shroud yes (9 nodes)
Contact at fir tree no

PRE

N° of retained linear modes for substructure 50
RAM requested ≈ 20 GB

Computational time ≈ 4 hrs
SOLVE

RAM requested < 10 GB
Computational time < 1 hr

Table 6.24: Computational data for cyclic symmetric model - reduced contact at
shroud and tied fir tree
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Type modal stiffness mistuning (60 sectors)
Substructure division yes (between blade and disk)

Contact at shroud yes (6 nodes*60)
Contact at fir tree yes (332 nodes*60)

PRE

N° of retained linear modes for substructure 20
N° of retained linear modes for secondary ROM 150

RAM requested ≈ 1.3 TB
Computational time ≈ 100 hrs

SOLVE

RAM requested > 2 TB (Likely 3TB)
Computational time < Unknown (Weeks)

Table 6.25: Computational data for modal stiffness mistuned model - reduced
contact at shroud and full contact at fir tree

Type modal stiffness mistuning (60 sectors)
Substructure division yes (sectorial)

Contact at shroud yes (9 nodes*60)
Contact at fir tree no

PRE

N° of retained linear modes for substructure 20
N° of retained linear modes for secondary ROM 150

RAM requested < 200Gb
Computational time ≈ 3 hrs

SOLVE

RAM requested < 150 GB
Computational time < Unknown (> 600 hrs)

Table 6.26: Computational data for modal stiffness mistuned model - reduced
contact at shroud and tied fir tree
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Type modal stiffness mistuning (60 sectors)
Substructure division yes (blade and disk substructures)

Contact at shroud yes (9 nodes*60)
Contact at fir tree no

PRE

N° of retained linear modes for substructure 20
N° of retained linear modes for secondary ROM 150

RAM requested < 200Gb
Computational time ≈ 3 hrs

SOLVE

RAM requested < 150 GB
Computational time < Unknown (> 600 hrs)

Table 6.27: Computational data for geometrical mistuned model - reduced contact
at shroud and tied fir tree
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Chapter 7

Conclusions

OrAgL-NOSTIA-ROOCMAN software condenses the most up-to-date techniques
to accomplish FEA of bladed disk problems, giving us the possibility to analyze
complicated dense mistuned nonlinear models by using HBM in the frequency do-
main, the Dynamic Lagrangian method to model the contact interactions and the
continuation procedure to build the nonlinear resonant branch. The obtained free
and forced response results were unsatisfying overall but shed light on issues regard-
ing optimization, opening the question of possible room for numerical improvement,
a topic that the researcher developers of the software and engineers in MTU Aero
Engines will further investigate for the next period. An important discovered
numerical factor is the influence of the nonlinear solver initial frequency point on
the stability of the continuation method, causing many convergence problems when
associated with severe nonlinear behaviour. Other possible improvements of the
software that may help from a computational perspective can be the introduction of
new ROM techniques such as the one in [76] or the introduction of a static-coupled
approach as published in [65], however, expertise on the possible implementation is
needed and the efficiency tested against the actual techniques.

Extremely important in the design, often overlooked, is the mesh quality. In our
models, some elements had very low Jacobian Ratios close to zero and may have
influenced the accuracy of both static and dynamic results: natural frequencies,
mode shapes, stresses and displacements. Regarding the geometrical mistuned
model, the geometries were adapted to the BLS scan blades only at the airfoil,
excluding some holes, likely influencing the accuracy of the results. Employing a
better quality of the BLS scanned blades and adapting the geometries to the shrouds
(including the contact areas) and the blade roots would definitely improve the
results. Regarding the nonlinear contact conditions, some improvements can be the
addition of a microslip model and the possibility of accounting for non-flat contact
surfaces, as well as contact mistuning. The contact mistuning requires an effective
identification method from a deterministic standpoint for correct results. Statistical
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models provide an alternative solution. Regarding the blade-to-blade mistuning,
the discrepancy between the modal stiffness mistuned and the geometrical mistuned
models suggested that the identification technique used to select the modal stiffness
mistuning pattern by using the linear eigenfrequency distribution may not be the
most effective way, especially since more mistuning distributions were available.
Regarding the contact parameters, the friction coefficient uncertainty still remains
at the centre of the discussion, and adding a variable value based on the contact
pressure may represent a possible improvement despite the increase in computational
effort. More generally, the knowledge of the nonlinear frictional behaviour is still
partly limited [80] and particularly the value assumed by the static friction forces.
Despite the hurdles, the research keeps putting effort into shedding more light on
the development of identification and modelling techniques.
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Appendix A

Jacobian Ratio

The Jacobian ratio defines the deviation of the element from its perfect shape. This
value ranges from 0.0 to 1.0. The calculation is done at the integration points of
the elements (Gauss points). At each integration point, the Jacobian determinant
is calculated and the ratio is obtained by dividing the minimum and maximum
values. In the case of 2D elements, the Jacobian determinant is calculated by
projecting the element onto a plane. In the case of 3D elements, it is found by
direct calculation. If the quadrilateral element is not convex, a negative Jacobian
determinant can be obtained. If the ratio is also negative the elements cannot be
solved with correct results. The mesh in this case should be improved somehow.
Hypermesh also gives the possibility to calculate the Jacobian determinant at the
corner nodes. Jacobian ratios above 0.7 are generally accepted.
Extensive literature provide the analytical process to obtian this value based on
the specific element; some example are shown in [91].
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Appendix B

Boundary conditions and
constraints

B.0.1 SPCs, MPCs and tieing constraints
In a single-point constraint, one or more degrees of freedom can be fixed for one or
more nodes.

In a multi-point constraint, a relationship is established between the degrees of
freedom of one or more nodes. In MPCs, only linear relationships are considered.
This is typically used when different parts of the model have not matching meshes
and it is necessary to create a relationship between those entities.

The documentation [92] gives a more thorough explanation.

B.0.2 Contact models
Contact models will not be explained mathematically as in a contact mechanics
course. For that the reader is referred to the literature.
In the context of Finite Element Analysis, contact methods are used to simulate
the interactions between bodies.

A main division is the following:

• Penalty-Based Methods:
They use a penalty term in the objective function to enforce contact condition.
This is expressed in term of force or pressure and is multiplied by the amount
of penetration. They are efficient computationally, but they may leader to
numerical instability.
ADVANTAGES:

– Conceptually simple and easy to implement;
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– can handle a wide range of contact conditions;
– Generally computationally efficient;

DISADVANTAGES:

– Possible numerical instability if the parameter is not choosen carefully;
– Can results in a stiffer system leading, affecting the convergence. The

penalty terms introduced can lead to ill-conditioned stiffness matriced,
impacting the stability and the accuracy of the solution.

– possible artificial stiffness due to an overestimation of the contact forces
for high penalty values.

• Mortar contact:
It is generally used for non-conforming meshes or surfaces. In these meshes
nodes and elements on one surface do not align with those on the other
surface. A mortar element is introduce to enforce the contact constraints. And
lagrangian multiplier are often implemented. The formulation can be derived
by the variational principle where the minimization of a potential energy
functional is sought subject to the contact constraints. From the numerical
implementation standpoint, it involves the assembly of stiffness matrices and
solution of algebric equations that incorporating the constraints. Both sliding
and separation can be implemented as a frictional model.
ADVANTAGES:

– It is flexible for contact conditions, since frictional condition and large
sliding can be implemented;

– It is robust in complex contact scenarios like large deformations, sliding
and separation.

– It is accurate in modelling contact interactions where conforming meshes
are difficult to generate

DISADVANTAGES:

– Computational cost;
– Complexity. It requires carefullness for accuracy and stability.

• Lagrangian Multiplier Methods:
Instead of using a penalization term, the lagrangian multipliers are introduced
to enforce contact constraints. It introduces additional degrees of freedom and
it is effective for the unilateral contact problem.
ADVANTAGES:
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– It has a rigorous mathematical foundation to handle constraints;
– Well suited for unilaterl contact problems and in general problems with

contact constraints.
– It enforce contact constrained in unilateral contact, bilateral contact and

friction making it a flexible algorithm.

DISADVANTEGES

– For large-scale problems, it can be computationally expensive;
– It may require a careful consideration of the choice of contact conditions.
– In situation with high contact stiffness, it may be susceptible to numerical

stability issues.

• Augmented Lagrangian Method:
It is an extension of the previous approach, with the difference that this
algorhitm helps to overcome the numerical instability problem associated with
penalty methods. They uses a penalty term and an adjustment factor to
control the contact stiffness.
ADVANTAGES:

– Improve penalty methods with an additional term for numerical instability
– Offers a smooth transition from penalty-based to constrained solutions;
– Improves convergence properties compared to pure penalty methods.
– It handle effectively hard contact conditions, such as unilateral contact

and friction, where there are abrupt transitions between states.

DISADVANTAGES

– Can be sensitive to the choice of parameter (i.e. penalty factor)
– Complexity: it needs to solve augmented lagrangian subproblems.
– Computationally expensive

Based on the type of contact discretization, the contact conditions can be
simulated between two FEA surfaces with the following methods:

• node-to-node contact:
nodes of different components are checked for proximity, and contact forces
are applied based on the relative displacement;

• node-to-surface contact:
The interaction is model between the nodes of one component and the surface
of the other.
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Boundary conditions and constraints

• surface-to-surface contact:
The interaction is between the surfaces of the two components. It is compu-
tationally more expensive compared to the previous ones, but with a more
accurate representation of the contact behaviour.

• edge-to-edge contact:
The contact interaction is simulated between the edges of the components. It
depends on the specific scenario.

• edge-to-surface contact: Similar to the previous one, but it involves the
interaction between the edge of one component and the surface of the other.

• beam-to-surface contact:
It allows interactions between beams and surfaces (Of the other component)

• rigid body contact:
It is used for bodies treated as rigid that interact with deformable structures.

• frictional contact:
It is not a specific discretization. The frictional forces are added to the normal
contact surfaces to simulate real-word scenarios

Penalty-Based Methods

Penalty contact models are used in computational mechanics to simulate the contact
interactions between bodies. Differently from other contact models, they introduce
a penalty term as a penalty force or constraint to enforce contact conditions.
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Appendix C

Nonlinear normal modes

Before giving some simple concepts of NNMs and modal interaction it’s important
to note that we will refer to the undamped or linear damped nonlinear conservative
systems since they are simplified systems. The analysis of a damped nonlinear
non-conservative system would be more fit for the studied problem but unnecessary
to understand the main concepts.

Linear vibrating systems are characterized by Linear Normal Modes (LNMs)
which describe the vibrating behaviour of the system. The mathematical linearity
of the problem can be exploited to decouple the equations of motion. The two
main properties of these types of systems are:

• Invariance: The excitation of one mode leaves the other modes in a quiescent
state;

• Modal superposition: free and forces oscillations can be expressed as a linear
combination of LNM motions.

By assuming the linear behaviour of the system doesn’t repropose reality. A
straightforward definition of NNM is a vibration in unison of the system (i.e. a
synchronous oscillation) [93]. Differently from linear systems:

• Nonlinear systems can exhibit extremely complex behaviour such as jumps,
bifurcations, saturation, subharmonic, superharmonic and internal resonances,
resonance captures, limit cycles, modal interactions and chaos;

• The principle of superposition doesn’t apply to nonlinear systems. Also, the
lack of orthogonality relationships represents a problem for the NNMs as a
basis for order reduction.

Some important aspects:
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• To compute NNMs numerical methods are necessary by also exploiting algo-
rithms for the continuation of periodic solutions.

• For linear and nonlinear system identification of dynamics system time-
frequency analysis is a versatile tool and it has been successfully exploited.
Wavelet transform, unlike Fourier transform, models the time evolution of the
dominant frequency component of a signal. It is suggested [93] this method is
ideal for the studying of NNMs due to the inherent frequency-energy depen-
dence to nonlinear oscillation

For the representation of NNMs, a frequency-energy plot might be convenient.
The are two definitions of NNMs presented by Rosenberg, and Shaw and Pierre.

other definitions include a complex-valued invariant manifold formulation and
group theoretic definitions.

As a basis of the NNM development, there are Lyapunov and Pointcaré contri-
butions. For a conservative system with n DOFs with no internal resonances, there
exist at least n different families of periodic solutions around the stable equilibrium
point of the system. These n families of periodic solutions are NNMs and oscillate
in the neighbourhood of the LNMs of the system at low energies.

Considering Rosenberg’s definition, the normal modes of a linear conservative
system make each component oscillate with the same frequency and a fixed ratio
amongst the displacements of the components. To extend the concept of LNM,
the NNM is a vibration in unison of the system (i.e., a synchronous oscillation).
According to the definition, each material point of the system reaches its extreme
value and passes through zero simultaneously. All displacements can be expressed
in terms of a single reference displacement.

A characteristic of NNMs is the dependence on the system’s total energy. If
special spatial symmetry exists, the NNMs may degenerate (energy-invariant)
straight modal lines, as in the linear case.

As a generalization to Rosenberg’s definition, Shawn and Pierre provide a
definition of NNMs for damped systems. The invariant manifold approach is based
on geometric arguments and inspired by the centre manifold technique. The NNM
is a two-dimensional invariant manifold in phase space. The manifold is invariant
under the flow (the orbit that starts in the manifold remains in it for all the time)
extending the invariance property of LNMs to NNMs. The parameterization of the
manifold is based on a pair of state variables (i.e. displacement and velocity) as
master coordinates. The other variables are related to that pair. From a geometrical
standpoint, LNMs are represented as planes in the phase space. The NNMs are
two-dimensional surfaces that are tangent to them at the equilibrium point.

Although the Rosenberg’s definition has limitations because it cannot be ex-
tended to nonconservative systems and with the presence of internal resonances
some coordinates may have a dominant frequency component that is different

158



Nonlinear normal modes

from the other coordinates (some coordinates vibrant faster than others and the
vibration is not in unison anymore), they can be circumvented. Firstly, in industry,
the engineering design is often based on a conservative system due to a lack of
knowledge of damping mechanisms. Secondly, the motion is still periodic in the
presence of internal resonances. For these reasons, Rosenberg’s definition of NNM
can be extended to a periodic motion of the non-necessarily-synchronous conserva-
tive system. This extension allows the computation of NNMs with algorithms for
the continuation of periodic solutions.

Nonlinear systems present a frequency dependence in their oscillation. The
modal curves and frequency of oscillations of NNMs depend on the total energy of
the system. And the FRFs are no longer invariants. This is noticeable by studying
the FRFs of a two-DOF damped nonlinear system [93].

In short words for high-energy states the natural frequencies of nonlinear systems
are affected. This phenomenon opens up a door for internal resonances and other
nonlinear dynamic behaviour of mechanical systems.

By choosing a Fourier ansatz for displacement or a representation with a singular
harmonic, it is easy to show by applying the harmonic balance method how the
total energy of a very simplified undamped nonlinear system with a few DOFs
showcases a strong relationship with the Fourier Coefficients.

Even if the curves of the natural frequencies don’t intersect in FEP (Frequency-
Energy Plot), doesn’t mean that some intersections aren’t possible. To explain
better this concept, the reader can imagine dividing or multiplying the value of the
natural frequency with a higher changing ratio by a constant integer (i.e. 2, 3, 4,5
and so on). One or more intersections start to appear. If intersections are possible,
then internal resonances happen.

A typical example is shown for the 2-DOf undamped nonlinear oscillator [93].
The nonlinearity is present as a cubic spring which causes a hardening behavior.
In fact, by studying the FEP it is evident the natural frequency value increment
of both the second out-of-phase mode and the first in-phase mode with higher
increment ratio for the second mode. If the curve of the second mode is drawn
by dividing for a factor of 3 (or higher) some intersections appear. If the curves
are computed for higher total energies some tongues are generated for the first
mode. These tongues showcase the internal resonance behaviour. For the first
case, a 3:1 resonance. If more 0, 1, 3, and 5 harmonics for the representation
of the displacement and the Fourier Coefficient are studied, it is observed the
contribution of the third harmonic the more the reference frequency-energy point
on the curve gets closer to the other mode scaled branch. In that specific case, the
transition between an in-phase to an out-of-phase mode, by studying the Fourier
Coefficients signs of the third harmonics and the curve in the configuration space
(The configuration of a system is defined by general coordinates and in this case
the displacement of the two DOFs). Differently, the phase space or state space
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is the space where all possible states of a dynamical system are presented. For
that problem, position and velocity. The linear problem would showcase an elliptic
curve in the phase space which would degenerate as soon as the nonlinear effects
take over.

The internal resonance can happen in both linear and nonlinear systems although
it is a more observed nonlinear phenomenon. Linear internal resonance happens
when the linear natural frequencies are commensurate or nearly commensurate.
The energy transfer in a linear system doesn’t occur in the same way as in a
nonlinear system. During the linear internal resonance the increased response
amplitude is obtained for constructive interference of the response associated with
the individual modes involved. Each mode responds independently to the excitation,
and the combined response is a linear superposition of these individual responses.
The mechanism of energy transfer is different and for linear internal resonances is
conservative not resulting in loss or gain over time.

Nonlinear internal resonance is more complicated, leading to more sophisticated
phenomena and energy transfer between modes.During the internal resonance, an
energy exchange between modes can be observed. The excitation of a high-frequency
mode can cause a large amplitude in a low-frequency mode. The example of the
2-DOF nonlinear undamped oscillator with a cubic spring is an example. The
different variations of the NNMs with the total energy open up the possibility of
mode interaction although the two linear natural frequencies are not commensurate.
In short words, with the variation of their values, the two NNMs frequencies can
create a state of different proportional ratios causing opportunities for modal
interactions.

In turbine bladed disks the internal resonances occur due to the nonlinear property
of the system. These types of problems are nonconservative since the nonlinearity
presents as a Coulomb friction damping component, which causes energy dissipation.
Internal resonances happen when the natural frequencies of the system become
commensurate or nearly commensurate, allowing for energy transfer between modes.
In a linear system of the same type, this energy transfer cannot occur since each
vibrational mode responds independently and the response of the system can be
described as a modal superposition of the modal responses. There is no inherent
mechanism of energy transfer.

When adding friction contact elements, the system behaves nonlinearly with
mode coupling and energy dissipation. The emergence of new frequencies can also
be observed. The mode coupling refers to the internal resonance phenomena where
energy transfer between modes occur. There have to be commensurability between
frequencies in simple mathematical ratios.

Bifurcation points can also be generated where the stability of the equilibrium
solutions changes. From bifurcation, new equilibria are set, but also limit cycles
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and chaotic behaviour can be observed.
The emergence of new frequencies in the context of internal resonance have

specific names: subharmonics and superharmonics. Both are frequencies related to
the excitation frequency and the natural frequency of the system and they emerge
as a fraction of the natural frequency. For subharmonics they may appear with
frequency f0/2, f0/3, f0/4, where f0 is the natural frequency. For superharmonics,
the frequencies may be 2f0, 3f0, 4f0, and so on.

For more complicated systems like turbine wheels, the nonlinear phenomena
are complicated. Assuming a linear system with phase-lag boundary conditions
[<empty citation>], the vibrational modes can be studied thanks to cyclic
symmetry (it is assumed that every sector is identical). The modes are divided
into three categories: in-phase standing wave, out-of-phase standing wave, and
travelling waves. With cyclic symmetry math, all types are associated with the
nodal diameter number or inter-phase blade angle. The bladed disk is made up of
N number of sectors. If N is even, assumed h as the nodal diameter (or harmonic
index or spatial wave number), then for h = 0 and h = N/2 the systems will be
characterized by in-phase and out-of-phase linear motions. For 0 < h < N/2 the
system exhibits traveling waves due to their mathematical complex base. The
vibrational mode for N/2 < h < N is the same of 0 < h < N/2 but with opposite
rotation and it is proven mathematically. The motion for h = N is the same for
h = 0.

When the linear cyclic symmetric system is exited with a single engine order of
excitations, only specific modes of motion are awakened. If a forced excitation of
EO equal to six is added, then the mode associated with nodal diameter 6 would
be excited. This is also proven mathematically. The only possible solution for
a rotational linear system with phase-lag boundary conditions is that the engine
order is equal to the nodal diameter. Visualizing the Campel diagram should help
being prepared on the expectations. The Campel Diagram has rotational speeds
on both axes. In the x-axis there is the rotational speed of the system (the wheel),
while on the y-axis the eigenvalues. It is possible to draw a straight line starting
from the origin which slope is the EO. To understand which family mode is involved
in the vibration at that rotational speed

Bifurcation and stability

For some nonlinear systems, the number of NNMs can exceed the number of
DOFs characteristics of the system. The so-called mode bifurcation features
those systems as the NNMs no longer appear as a nonlinear continuation of
LNMs. Additional modes bifurcate from the main ones and these modes cannot
be captured by linearization techniques. NNMs are also characterized by stability.
This is in contrast with linear theory where all modes are naturally stable. With
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unstable systems, small perturbations generated from NNM motion can lead to
the elimination of the oscillation. And this is not physically realizable. Bifurcation
and stability are related because there is a change in stability through bifurcation.
For example, after a bifurcation point, two unstable modes can be generated from
a stable one.

Localization phenomena

When the vibrational energy is confined to one particular area of the structure
the phenomenon of localization or motion confinement is observed. This can be
observed for mistuned bladed disks (without contact interfaces), which are periodic
linear structures with structural irregularity. Even though energy transfer between
NNMs takes place, the NNM motion might localize to either DOF for higher
energies of the system. This is due to the frequency-energy dependence of nonlinear
oscillations.
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Appendix D

Craig-Bampton (CB)
method

It will be presented the reduction procedure following the Craig-Bampton (CB)
scheme [82], [28] of a substructure. Assumed both stiffness and mass matrices are
hermitian and positive defined, the vector of coordinates can be divided between
coordinates to be retained uTret in the reduced model and those that are deleted
and replaced by generalized coordinates uTdel: u = [uTretuTdel]T . Assuming that the
stiffness matrix is available:I

F ret

F del

J
=

C
Kred,ret Kret,del

Kdel,ret Kdel,del

D I
uret
udel

J
(D.1)

The retained DOFs are the boundary ones and the related are the internal DOFs.
The constraint modes will be the mode shapes of the internal DOFs due to the
displacements of the boundary points. To determine the constraint modes the
forces at the internal DOFs are set equal to zero:

{0} = [Kdel,ret]uret + [Kdel,del]{udel} (D.2)

from which:
{udel} = [Kdel,del]−1[Kdel,ret]uret = [Ψ]{uret} (D.3)

The diagonal mass matrix obtained from a lamped-mass formulation is:

[m] =
C
mret,ret 0

0 mdel,del

D
(D.4)

The substructure’s normal modes will be the normal modes of the substructure
with all boundaries constrained. The complex representation of the displacement
vector is:

{udel} = {Udel}eiωt (D.5)
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The equations of motion of the free undamped system is:

ω2[mdel,del]{Udel} = [Kdel,del]{Udel} (D.6)

Let [ϕN ] be the matrix of the eigenvectors (normal modes) of the constrained
substructure. These eigenvectors are organized as columns in the matrix. It is
important to sustain two assumptions:

• the vector {udel} contains a large number of elements (internal DOFs);

• the contribution of the substructure normal modes to the displacement of
the internal DOFs can be approximated by a smaller set of coordinates {pN},
modal coordinates vector or modal vector.

Hence:
{ϕ} = { ϕ

N
ϕN }, {p}

I
pret

pN

J
(D.7)

The modes to be retained are contained in ϕ
N . The transformation between the

substructure’s final coordinates and initial coordinates is the following:

{u} = [Tcb]{p}, Tcb =
C
Inret 0nret×ndel

Ψ Φfixed

D
(D.8)

The matrix Tcb of component modes is made up of constraint modes Ψ and fixed
interface normal modes Φfixed. The matrix [Ψ] is the matrix of the constraint
modes. The partition of the stiffness matrix [Kdel,del] is related to the interior DOFs
when the boundary points are totally constrained. Interesting to note that:

{pret} ≡ {uret} (D.9)

In the transformation only the internal DOFs and constraint modes are affected.
The stiffness matrix in the final set of substructure generalized coordinates {p} is:

[Kcb] = [Tcb]T [k][Tcb] =
 k

ret,ret 0
0 k

N,N

 (D.10)

The off-diagonal submatrices are null. This is fundamental. The diagonal matrixes
are calculating as follows:

k
ret,ret = [kret,ret] + [kret,del][ϕc], [kN,N ] = [ϕN ]T [kdel,del][ϕN ] (D.11)

The matrix [kN,N ] is diagonal due to the orthogonality of the substructure normal
modes.
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The mass matrix of the substructure has instead the following form:

[mcb] = [Tcb]T [m][Tcb] =
C
mret,ret mret,N

mN,ret mN,N

D
(D.12)

The internal matrices are obtained:

[mret,ret] = [mret,ret] + [ψC ]T [mdel,del][ψC ]
[mret,N ] = [mN,ret]T = [ψC ]T [mdel,del][ψN ]

[mN,N ] = [ψN ]T [mdel,del][ψN ]

(D.13)

The matrix [mN,N ] due to the orthogonality of the substructure normal modes.
The elements of the matrices [mN,N ] and k

N,N are related by the equation of the
free undamped system with totally boundary constrained:

[kN,N ] = ω2[mN,N ] (D.14)

The ω are the natural frequencies of the substructure normal modes. Even the
force vectors undergo the transformation. The principle of virtual work will be
used. Defining ∆W the virtual work done by the forces F in an arbitrary virtual
displacement ∆u. The generalized forces P in the p coordinate system are those
forces that do a virtual work equal to ∆W when the coordinates p undergo a virtual
dispalcement consistent with ∆u. It follows that:

∆W = P T∆p = F T∆u (D.15)

Considering the transformation in Eq. D.8:

P T∆p = F T [Tcb]∆p (D.16)

Since ∆p is arbitrary, it follows:

P T = F T [Tcb], or P = [Tcb]TF (D.17)
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