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Abstract
X-linked dystonia parkinsonism (XDP) is a rare movement disorder
seen primarily in individuals from Panay Island, Philippines, marked
by adult-onset dystonia that gradually progresses and often transitions
into parkinsonism. The aim of this project is to assess the severity of
XDP symptoms across four specific conditions (gait, freezing of gait,
postural instability, and posture) by extracting relevant features from
signals acquired through Inertial Measurement Unit (IMU) wearable
sensors. The same approach was used to achieve this goal for each of
these tasks. The dataset comprises baseline and follow-up data. The
baseline includes 5 controls and 32 XDP subjects. Follow-up data were
collected from 13 XDP subjects at 6 months and 7 XDP subjects at
12 months after the baseline. Disease severity was assessed with the
Unified Parkinson’s Disease Rating Scale Part 3 (MDS-UPDRS). Data
collections were performed using 17 9-axis IMUs, and suitable data
features were derived to estimate clinical scores using machine learning
(ML).

A certain number of features were selected using Recursive Feature
Elimination (RFE), and a feature projection for each lower limb task was
performed to inspect the clustering between patients before classification.
An ML supervised algorithm was then developed to predict the scores
using the Random Forest algorithm with the Leave-One-Out Cross-
Validation method. Gait spatio-temporal parameters and frequency-
specific features play a crucial role, as the results demonstrate a high
degree of clustering between different stages of the disease. However,
there is a margin for improvement that could be achieved with a more
balanced dataset.

This study assessed the feasibility of using wearable sensors to eval-
uate gait patterns in XDP patients and derived reliable clinical score
estimates. The results suggest that wearable technology, combined with
advanced feature selection and machine learning algorithms, can be a
powerful tool in monitoring and evaluating the progression of movement
disorders such as XDP. Further research with larger and more balanced
datasets could enhance the accuracy and reliability of these methods,
providing valuable insights for clinical assessments.
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1. Introduction
The central aim of this project is to analyze the movements of pa-
tients affected by the rare neurogenetic movement disorder known as
X-linked Dystonia-Parkinsonism (XDP). The study’s primary objec-
tives are twofold: first, to detect the presence of characteristic dystonic
movements, and second, to implement a scoring system based on the
Unified Parkinson’s Disease Rating Scale (UPDRS). To achieve the
study’s aims, wearable sensor technology was employed, combined with
deep feature analysis and advanced machine learning algorithms. This
integrated approach allows for the identification of disease-specific vari-
ables, quantification of the disorder, and monitoring of its progression
in patients.

To fully grasp the context and significance of the study, it is essential to
highlight the key elements that will be elaborated upon in this research.

1.1 X-Linked Dystonia Parkinsonism (XDP)
X-Linked Dystonia Parkinsonism (XDP) is an uncommon inherited
neurogenetic movement disorder. It shows a notable gender difference,
primarily affecting Filipino men more than women. On Panay Island,
where XDP is prevalent, the disease occurs at a rate of about 5.74
cases per 100,000 people. The province of Capiz, in particular, has
the highest prevalence rate, with 18.9 cases per 100,000 individuals [1].
The distinct demographic pattern of XDP highlights the necessity of
understanding both genetic and environmental factors that contribute
to the disorder in this population. Further investigation into the
underlying causes and potential treatments can offer valuable insights
into the interaction between genetics and environmental factors in
movement disorders, thereby advancing clinical knowledge and patient
care. XDP is a neurodegenerative condition linked to a mutation on the
X chromosome, caused by the insertion of an antisense SINE-VNTR-
Alu (SVA)-type retrotransposon within a TAF1 intron. This insertion
is accompanied by six additional noncoding sequence changes in TAF1,
the gene encoding TATA-binding protein-associated factor-1. These
sequence changes appear to be inherited together, forming an identical
haplotype seen in all reported cases[2]. In essence, XDP results from
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1.1. X-LINKED DYSTONIA PARKINSONISM (XDP)

the combination of two well-known neurological disorders, Dystonia and
Parkinson’s disease. This unique combination highlights the complex
interplay of pathophysiological mechanisms that contribute to this
specific neurodegenerative condition.

1.1.1 Parkinson’s disease
Parkinson’s disease is recognized as the second most common neu-
rodegenerative disorder worldwide, following Alzheimer’s disease. The
prevalence of Parkinson’s disease is higher in Europe, North America,
and South America, whereas African, Asian, and Arabic countries
have lower prevalence rates.[3] Despite its growing impact, diagnosing
Parkinson’s disease remains complex and challenging. Understanding
the nuances of the earliest stages of the disease is a critical, unmet need,
emphasizing the importance of improving early detection methods and
interventions. Such advancements could enhance our knowledge and
management of this intricate neurodegenerative condition. Parkinson’s
disease is caused by the gradual loss of dopamine-producing neurons
in the brain’s substantia nigra and is marked by various motor and
non-motor symptoms.[4]

Motor and non-motor symptomps[5]

Motor symptoms refer to the physical and movement-related signs of
the condition, including:

• Muscle rigidity involves stiffness in the limbs, limiting the range of
motion. Although the speed of finger tapping might remain normal,
the amplitude of movement is significantly reduced, particularly
affecting hand movements.

• Tremors are involuntary shakes or trembles, often starting in one
limb. Unlike the typical tremor seen in essential tremor, the tremor
associated with Parkinson’s disease has a slower frequency and
occurs when the limb is at rest.

• Postural instability is difficulty in maintaining balance and coordi-
nation. Patients may experience a phenomenon called festination,
where the trunk moves ahead of the feet. To regain balance, indi-
viduals may take small, rapid steps resembling a running motion.
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1.1. X-LINKED DYSTONIA PARKINSONISM (XDP)

• Bradykinesia refers to the slowness of movement, making simple
tasks take longer. It involves a reduction in spontaneous movement,
leading to ’masked facies’ or hypomimia, which is characterized by
reduced movement of facial muscles, resulting in a less expressive
facial appearance.

Conversely, non-motor symptoms encompass a wide range of man-
ifestations that go beyond the usual movement-related impairments
linked to the condition. These symptoms can greatly affect the overall
well-being and quality of life for individuals with Parkinson’s. Some
examples of these symptoms include:

• Cognitive changes: Parkinson’s disease can lead to cognitive decline
and dementia, especially in the later stages.

• Autonomic dysfunction: problems with regulating automatic bod-
ily functions, resulting in issues like changes in blood pressure,
constipation, and abnormal sweating.

• Mood disorders: depression and anxiety are frequently experienced
by people with Parkinson’s.

• Sleep disturbances: many individuals report difficulties with falling
asleep or staying asleep.

• Anosmia: loss of the sense of smell can occur many years before
other symptoms appear.

1.1.2 Dystonia disease
Dystonia is the third most prevalent movement disorder, following
Parkinson’s disease and essential tremor. This ranking underscores its
importance within the realm of movement disorders and highlights its
clinical significance in neurological conditions. Given its prevalence and
impact on motor functions and quality of life, further exploration and
understanding of dystonia are essential, making it a critical area for
scientific research and therapeutic development [6]. Dystonia involves
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1.1. X-LINKED DYSTONIA PARKINSONISM (XDP)

sustained or intermittent muscle contractions that cause abnormal and
often repetitive movements or postures. These movements are charac-
terized by their patterned, twisting nature and sometimes tremulous
quality, emphasizing the complex motor disturbances associated with
the condition. Dystonia is also unique in that it can be influenced by
voluntary actions, creating an interplay between voluntary and involun-
tary muscle activity. Overflow muscle activation further illustrates the
multifaceted nature of dystonia, highlighting the intricate neurophysio-
logical mechanisms at play [balint2018dystonia, 7]. To thoroughly
characterize dystonia, four essential descriptors are used: age at onset,
body distribution, temporal pattern, and associated features [6, 7].

Age at onset

The age at onset is a crucial factor in the clinical context of dystonia,
influencing both diagnosis and prognosis. It helps in identifying specific
types of dystonia and guides the customization of treatments to meet
the individual needs of patients. This temporal aspect is a valuable
tool for healthcare providers, allowing them to offer more accurate and
personalized advice, as well as to predict and manage the progression
of the disease effectively.

Body distribution

Dystonia, affecting various body regions, highlights the diverse nature
of this neurological disorder. Understanding the specific forms based
on the location and type of involvement is essential for a comprehensive
grasp of the condition. This classification aids in accurate diagnosis
and customized treatments, acknowledging that dystonia’s presentation
can vary greatly depending on the affected regions and patterns of
involvement. Specifically, dystonia can be categorized as follows:

• Focal dystonia localized to a specific area, such as the neck, hand,
or face. Common types include Cervical Dystonia, Blepharospasm,
Oromandibular Dystonia, and Laryngeal Dystonia.

• Segmental dystonia involves two or more adjacent body regions.
Examples include cranial dystonia, characterized by conditions such
as blepharospasm combined with lower facial and jaw or tongue
involvement, and bibrachial dystonia.
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1.1. X-LINKED DYSTONIA PARKINSONISM (XDP)

• Multifocal dystonia dffects two or more body regions, either con-
tiguous or noncontiguous.

• Generalized dystonia involves the trunk along with at least two
additional body sites. This category differentiates between forms
where the legs are affected and those without leg involvement.

• Hemidystonia dffects multiple body regions confined to one side of
the body.

Temporal pattern

The dynamic nature of symptoms and their varying severity over time
highlight the diversity within dystonia, allowing for a nuanced classi-
fication into static and progressive forms. This temporal variability
impacts clinical presentation and significantly influences prognosis and
treatment strategies. Recognizing this dynamic aspect is crucial for
healthcare providers to tailor interventions, monitor disease progression,
and offer informed prognostic information to patients with dystonia.
Additionally, the evolving nature of symptoms underscores the need
for longitudinal studies to thoroughly understand the underlying mech-
anisms and factors contributing to the fluctuating course of dystonic
conditions. The temporal fluctuations in dystonia’s presentation can
be categorized into four distinct types:

• Persistent: dystonia that remains consistent throughout the day
with relatively uniform intensity.

• Paroxysmal: dystonic episodes that are transient and typically
triggered by specific stimuli, with the patient returning to their
previous neurological state afterward.

• Diurnal fluctuations: dystonia’s characteristics, intensity, and oc-
currence exhibit noticeable variations according to a clear circadian
rhythm.

• Action-dpecific: dystonic movements that occur only during the
performance of a highly specific task.

14



1.2. XDP PHENOTYPE AND CONSEQUENCES

Associated features

Dystonia can appear as a sole observable phenotype, demonstrating
its ability to manifest independently. However, it can also coexist
with other movement disorders, indicating the complex interplay of
different neurological conditions. This variability highlights the diverse
clinical manifestations of dystonia and underscores the importance of
comprehensive assessments to determine whether it occurs alone or
in conjunction with other movement disorders. Based on this aspect,
distinctions can be made among:

• Isolated Dystonia form is characterized by dystonia as the only
motor feature, with tremor being the only exception.

• Combined Dystonia form includes the presence of additional move-
ment disorders, such as parkinsonism, myoclonus, or dyskinesia,
alongside dystonia.

• Complex Dystonia involves dystonia along with other neurological
or systemic manifestations. In many of these syndromes, dystonia
may be an intermittent feature or not the primary manifestation
of the disease.

1.2 XDP phenotype and consequences
X-linked Dystonia-Parkinsonism (XDP) is a rare neurodegenerative
condition mainly affecting individuals of Filipino descent, particularly
those from Panay Island. According to the current XDP study registry,
there are 505 documented cases from 253 different families. The dis-
order exhibits a significant male bias, with a male-to-female ratio of
100:1, which is a key characteristic of its pathology. This pronounced
gender difference prompts further exploration into the genetic factors
or mechanisms underlying the higher incidence in males. In all doc-
umented female cases, the women have affected relatives, suggesting
a likely connection to carrier mothers. This familial pattern supports
the X-linked inheritance of XDP, where carrier mothers pass on the
genetic mutation, resulting in the disorder in their children. XDP
typically begins to manifest between the ages of 39 and 40, with onset
ranging from 12 to 64 years. The disorder usually lasts about 16 years,
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1.2. XDP PHENOTYPE AND CONSEQUENCES

highlighting its chronic nature. On average, individuals with XDP
die around the age of 55.6 years, providing insights into the disease’s
duration and its impact on life expectancy. Initially, XDP presents
with focal dystonia that tends to generalize over time. The common
clinical manifestations of dystonia, organized by region and roughly in
descending order of frequency, include:

• Lower extremities: big toe dorsiflexion ("striatal toe"), foot exten-
sion/flexion/inversion, toe fanning, and knee extension/flexion.

• Craniofacial region: jaw opening, closing, and deviation; tongue
protrusion, rolling, and retraction; blepharospasm; facial twitch-
ing; mouth pursing; snout-like movements of lips; and adductor
laryngeal dysphonia.

• Neck and shoulder regions: rotational (torticollis), laterocollis, retro-
collis, anterocollis (or combinations thereof), with or without shoul-
der elevation.

• Upper extremities: wrist extension/flexion, writer’s cramp involv-
ing fingers, and elbow extension/flexion.

• Truncal region: sinal flexion/extension/lateral deviation (or combi-
nations thereof) and flexion at the pelvis or camptocormia.

This categorization offers a structured overview of the diverse clinical
manifestations of dystonia across different anatomical regions. As dys-
tonia symptoms lessen, Parkinsonian features begin to appear. In some
patients, these Parkinsonian symptoms can closely resemble those of
idiopathic Parkinson’s disease (PD), including resting tremor, rigidity,
and bradykinesia.

About the effects, the XDP disease leads to a range of motor and
non-motor impairments that profoundly affect those with the condition.
The repercussions of X-linked Dystonia-Parkinsonism extend beyond
physical symptoms, impacting various facets of overall well-being. This
includes:

• Psychosocial challenges: individuals often face emotional distress,
anxiety, and depression due to the progressive nature of XDP and
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its motor impairments, significantly affecting mental health. Many
individuals may initially deny these emotional struggles, which
can lead to harmful behaviors such as substance abuse, including
alcohol and drug use.

• Social isolation: motor symptoms, particularly those affecting fa-
cial expressions and speech, can lead to withdrawal from social
interactions. This can result in social isolation, loneliness, and
reduced social engagement due to communication difficulties.

• Cognitive and emotional impact: cognitive impairments, such as
difficulties with executive functions, can affect everyday decision-
making and problem-solving abilities. Emotionally, individuals may
experience frustration, grief, and a sense of loss as they deal with
the ongoing challenges of the condition.

• Financial strain: the financial burden of managing a chronic illness
like XDP can be significant. Medical expenses, the cost of assistive
devices, caregiving costs, and potential loss of income can create
substantial stress for both the affected individuals and their families.

1.3 Aim of the project
This project aims to analyze the motion in XDP patients, an area that
remains largely unexplored in current literature. Parkinsonism and dys-
tonia are closely related due to the significant overlap in their symptoms.
While existing research delves into motion analysis concerning Parkin-
son’s disease and dystonia, it does not specifically address X-linked
dystonia. The convergence of these two distinct movement disorders
presents a challenge for clinicians, complicating the accurate scoring
and assessment of the pathology. The subjective nature of clinical
evaluations further exacerbates this challenge, introducing variability
in diagnostic judgments. Additionally, the late recognition of XDP
symptoms, especially in the advanced stages, adds another layer of com-
plexity. This delay in identification can impede timely intervention and
the initiation of appropriate treatment strategies. Therefore, addressing
the subjective elements in the diagnostic process and promoting early
recognition of XDP are crucial for improving clinical outcomes and
enhancing patient care in this unique neurodegenerative disorder.
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1.3. AIM OF THE PROJECT

Furthermore, the challenge of subjectivity in clinical evaluation is par-
ticularly pronounced in this case. Diagnosing the disease is complex,
and only highly specialized and experienced clinicians can accurately
identify symptoms at the onset. However, given the phenotype of XDP,
individuals are often located in remote areas and villages with limited
access to specialized medical expertise. Developing an automatic as-
sessment tool can offer a solution, providing objective diagnostic tools
that are universally accessible.

18



2. State of the art
Dystonia, a movement disorder characterized by involuntary muscle
contractions leading to abnormal postures and repetitive movements,
requires a multifaceted approach for assessment. Traditionally, clinical
scales such as the Burke-Fahn-Marsden Dystonia Rating Scale (BFM-
DRS) and the Global Dystonia Rating Scale (GDS) have been used
to provide qualitative measures based on observed movement abnor-
malities [7]. In addition to these scales, electrophysiological methods
like electromyography (EMG) and electroencephalography (EEG) are
crucial for understanding the neural mechanisms underlying dystonia
by measuring muscle and brain activity [8]. Imaging techniques such
as functional MRI (fMRI) and positron emission tomography (PET)
further contribute by revealing brain activity and structural changes
associated with the disorder [9].

Recent advancements emphasize the importance of kinematic analysis,
utilizing motion capture systems and inertial measurement units (IMUs)
to provide quantitative assessments of movement patterns. These
systems offer objective data on joint angles, velocity, and acceleration,
aiding in the detection of motor function abnormalities [10]. The
application of machine learning and artificial intelligence to analyze
large datasets from these systems is also on the rise. These advanced
methods enable the identification of subtle movement patterns that may
not be visible to the human eye, thus enhancing diagnostic precision
[11].

Gait analysis

Gait analysis is a pivotal area of research in understanding dystonia,
as walking is a complex motor task that reveals the functional impact
of the disorder. Motion capture systems, such as Vicon or OptiTrack,
capture detailed motion data by tracking markers placed on the patient’s
body, providing a three-dimensional representation of the gait cycle [12].
Wearable sensors, including IMUs, measure accelerations and angular
velocities during walking, offering continuous monitoring useful for real-
world assessments [13]. Key features extracted from gait data—such as
stride length, cadence, gait velocity, joint angles, and variability—help
differentiate between dystonic and non-dystonic gait patterns [14].
Machine learning algorithms, including Support Vector Machines (SVM)
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and deep learning models, are employed to classify these gait patterns
with high accuracy [15].

Freezing of gait (FoG)

Freezing of gait (FoG), characterized by a sudden, temporary inability to
move the feet despite the intention to walk, can also occur in dystonia.
Detection methods for FoG often use wearable sensors to monitor
gait parameters, identifying episodes through sudden changes in stride
length and cadence [16]. Analysis of data from accelerometers and
gyroscopes focuses on the frequency components of movement to detect
characteristic FoG patterns [17]. Additionally, intervention strategies
such as real-time auditory or visual cues are being explored to help
patients overcome FoG episodes [18].

Postural insability

Postural instability, a common issue in dystonia that increases the risk
of falls and reduces mobility, is typically assessed using clinical tests like
the Berg Balance Scale (BBS) and the Timed Up and Go (TUG) test
[19]. These tests provide qualitative measures of balance and postural
control. Force plates are another tool used to measure the center of
pressure (CoP) during standing and dynamic tasks, with parameters
such as sway velocity and path length analyzed to assess balance control
[20]. Wearable sensors like IMUs offer additional insights by providing
data on trunk sway and other body movements during standing and
walking tasks [21]. Features such as sway amplitude, velocity, and
frequency extracted from sensor data are then used by machine learning
models to classify the severity of postural instability, aiding in the
development of targeted interventions [22].

The state of the art in dystonia assessment is advancing towards more
objective, quantitative measures through the integration of motion
capture systems, wearable sensors, and machine learning algorithms.
Assessments of gait, freezing of gait, and postural instability are critical
in providing detailed insights into the motor impairments associated
with dystonia. These technological advancements not only enhance diag-
nostic accuracy but also facilitate the monitoring of disease progression
and the evaluation of therapeutic interventions.
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3. Materials and methods
The data used in this study were collected in a controlled laboratory
environment equipped with specific IMU sensors and supervised by
a clinician who assessed patients using the UPDRS scale. This data
collection was conducted over several years, allowing for the observation
of disease progression in the patients.

Two primary software applications were employed for different purposes:

• XSens MVN Analyze: this software was used for processing
the kinematic data collected by the IMU sensors and provided
real-time visual feedback via an avatar that mirrored the patient’s
movements. Additionally, it was instrumental in segmenting the
data according to different tasks during preprocessing.

• Python 3.12.2: this programming language was utilized for the
comprehensive analysis of the collected data.

3.1 Materials and experimental set up
The research followed the principles outlined in the Declaration of
Helsinki, and all participants provided written informed consent, which
included permission for video recordings. Ethical approval was obtained
from the Mass General Brigham research ethics committee and the In-
stitutional Review Board at Jose Reyes Hospital in Manila, Philippines.
The study began in October 2022 when the Philippines Collaborative
Center for X-Linked Dystonia Parkinsonism (CCXDP) research team,
working with Dr. Christopher Stephen, started their involvement. After
training at the Motion Lab Analysis (MAL) and acquiring motion sen-
sors, the team initiated data collection with participants in Roxas City,
Panay Island. In February 2023, Dr. Stephen visited the Philippines
for research and training, further enhancing the exchange of knowledge
and expertise.

The data collection on XDP patients is ongoing, demonstrating the
continuous commitment and progress of the research project. Data
collection involved capturing kinematic data using Inertial Measure-
ment Unit (IMU) sensors and video recordings. To analyze motion
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3.1. MATERIALS AND EXPERIMENTAL SET UP

kinematics, XSens Movella Awinda motion sensors were employed, pro-
viding detailed and precise representations of participants’ movements
and then Python 3.12.2 was used for the data analysis. The dataset
comprises kinematic signals recorded during various tasks involving
both lower and upper limbs. It is important to note that this data was
collected in a laboratory setting, which may differ from a natural or
home environment.

3.1.1 IMU sensors
Inertial Measurement Units (IMUs) are sophisticated sensors that
provide critical data for measuring motion, capturing acceleration,
angular velocity, and often magnetic field strength and atmospheric
pressure. Typically, an IMU includes an accelerometer, gyroscope, and
magnetometer, each measuring along three orthogonal axes [23].

Figure 3.1: IMUs sensor

Accelerometers

Accelerometers are devices that measure the specific force of acceleration
in one or more directions. They consist of a mass suspended by springs
within a casing. When acceleration occurs, the mass moves, and this
movement is measured by the changes in capacitance, piezoelectric
properties, or other phenomena depending on the type of accelerometer.
These changes are then converted into electrical signals that can be
quantified to determine the magnitude and direction of the acceleration
[23].
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Figure 3.2: Accelerometer electrical circuit

Gyroscopes

Gyroscopes measure the rate of rotation around a particular axis. They
often use the principle of angular momentum to maintain orientation.
In a MEMS gyroscope, a vibrating structure detects changes in orienta-
tion due to Coriolis forces acting on the vibrating mass. The amount of
displacement caused by these forces is proportional to the rate of rota-
tion, which is then converted into an electrical signal. Gyroscopes are
crucial for applications requiring precise orientation and stabilization,
such as in smartphones, drones, and gaming controllers [23].

Figure 3.3: Gyroscope electrical circuit
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Magnetometers

Magnetometers measure the strength and direction of magnetic fields.
They operate using various principles, including Hall effect sensors,
fluxgates, or magneto-resistive technologies. By measuring the Earth’s
magnetic field, magnetometers can determine orientation relative to
the magnetic north, which is essential for navigation systems. When
combined with accelerometers and gyroscopes in an IMU, magnetome-
ters help provide a complete picture of an object’s orientation and
movement [23].

Figure 3.4: Magnetometer circuit

The core technology behind modern IMUs is Micro Electro Me-
chanical Systems (MEMS), which integrate miniature mechanical and
electronic components on a single chip. MEMS technology has made
IMUs compact, efficient, and cost-effective, facilitating their widespread
use in mobile devices, automotive systems, and aerospace applications.
From an engineering standpoint, IMUs are essential for precise motion
tracking and navigation. They are extensively used in environments
where GPS is unreliable, such as underwater or space. The key chal-
lenge with IMUs is the accumulation of errors over time, known as
drift. This occurs because the integration of small measurement errors
over time leads to significant deviations in calculated positions and
orientations. To mitigate this, IMUs are often used in conjunction
with GPS and other sensors, utilizing sensor fusion algorithms like
the Kalman filter to improve accuracy and reliability. Sensor fusion is
a critical process in improving the performance of IMUs. It involves
combining data from multiple sensors to produce more accurate and
reliable information. This technique leverages the strengths of different
sensors to compensate for their individual weaknesses. For example,
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while accelerometers provide precise linear acceleration data, they are
prone to noise; gyroscopes offer accurate rotational data but can drift
over time. By fusing these data streams, a comprehensive and accurate
representation of motion and orientation can be achieved [23, 24].

Kalman filter

One of the most common algorithms used in sensor fusion is the Kalman
filter, which operates in two main steps: prediction and update.

1. Initialization: the process begins with initial estimates of the
state variables and their uncertainties.

2. Prediction: the state and covariance predictions are made based
on the previous state and a model of the system’s dynamics [25].

3. Update: new measurements are used to update the state estimates
and reduce uncertainties through the calculation of the Kalman
gain, followed by state and covariance updates [23].

This iterative process allows the Kalman filter to provide accurate
state estimates even in the presence of noise and uncertainty, making
it essential for applications requiring precise motion tracking.

Figure 3.5: Flowchart of the Kalman filter process

In human activity recognition (HAR), IMUs are instrumental by
capturing detailed motion data. These sensors can be placed on various
body parts to monitor and classify activities such as walking, running,
and sitting. The data are processed using machine learning algorithms
to identify patterns and predict future activities. For instance, wearable
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exoskeleton robots utilize IMUs to enhance control and assist users
in daily tasks with high accuracy and low latency. IMUs also play a
crucial role in rehabilitation, tracking patient progress and providing
real-time feedback for therapeutic exercises [24, 26].

3.1.2 Xsens
The XSens 9-axis Inertial Measurement Units (IMUs) have been used in
this study to collect data on body movements. These sensors measure
acceleration, angular velocity, magnetic fields, and atmospheric pressure.
The data were processed using MVN Software, which employs advanced
algorithms and biomechanical models to accurately reconstruct the
wearer’s movements in real-time.

The Xsens MVN system is an advanced motion capture solution for
tracking full-body human motion. It combines miniature inertial sensors,
wireless communication, and sophisticated sensor fusion algorithms. Its
portability and versatility allow it to be used in various environments,
including outdoors, offices, and workspaces, without needing to be
confined to a studio or lab.

Figure 3.6: Awinda full body strap set

The key components and functionalities of this system could be
divided into hardware and software section:

Hardware Components

• Motion Trackers (MTx and MTx-STR): sophisticated IMUs with
3D accelerometers, gyroscopes, magnetometers, and barometers,
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placed on key body parts.

• Body Pack (BP): central hub for data synchronization and trans-
mission, powered by a rechargeable battery with up to 9.5 hours of
recording time.

• Access Point (AP): manages data transmission between the Body
Pack and the computer, supporting multiple systems.

• MVN Awinda System: wireless motion trackers (MTw) with in-
ternal batteries, using the Awinda Station and Dongle for data
reception and synchronization.

Software and functionalities

the MVN system is controlled via the MVN Analyze/Animate software
a powerful windows 10 application for real-time motion capture, record-
ing, and data analysis. It includes tools for calibration, live monitoring,
playback, editing, and exporting data in various formats for integration
with other software.

Xsens sensors were strategically placed on specific anatomical lo-
cations, including the head, trunk, shoulders, upper and lower arms,
hands, pelvis, upper and lower legs, and feet, as depicted figure 3.7.
The data collected from each sensor included the following parameters:

a. Sensor Orientation

b. Sensor Magnetic Field

c. Sensor Free Acceleration

d. Segment Velocity

e. Segment Acceleration

f. Segment Joint Angles

g. Segment Angular Velocity

h. Segment Angular Acceleration

i. Segment Position
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j. Center of Mass

Figure 3.7: Full body sensor displacement

Instead the Xsens Metaglove, created by Manus, utilizes precise finger
tracking with sub-millimeter accuracy, seamlessly integrated into the
Xsens motion capture system. This setup provided comprehensive
finger-related data, particularly for the 3D position:

• Carpus

• Metacarpus

• Proximal, Middle, and Distal Phalanx

3.2 Data collection
The data collection process was supervised by Dr. Stephen and his
team. It began with a clinical assessment to determine participant
eligibility. Once eligibility was confirmed, the XSens motion sensors
were set up. Participants were then instructed to perform a series of
exercises to facilitate data collection.

3.2.1 Subjects
This diverse sample, encompassing participants from both North Amer-
ica and the Philippines, offers a comprehensive view of X-linked dystonia
parkinsonism (XDP). Including individuals from various geographic
regions enhances the dataset by incorporating potential differences in

29



3.2. DATA COLLECTION

genetic backgrounds, environmental influences, and healthcare access.
This expands the study’s scope, enabling a more detailed understanding
of XDP and allowing for the investigation of regional variations in the
disease’s manifestation.

Our dataset is divided into baseline and follow-up data:

• Baseline Data: this includes 37 subjects from both the U.S. cohort
and Panay Island. Specifically, from the U.S. cohort, we have 3
manifest male XDP cases, 1 at-risk male, 5 symptomatic carrier
females, and 5 control individuals with baseline data only. From
Panay Island, there are 24 subjects, consisting of 23 manifest male
cases and 1 carrier female.

• Follow-up Data: this section involves only Filipino subjects
who participated in follow-up data collections to track disease
progression, totaling 20 subjects. The follow-up data is further
divided into two groups:

a. 6-month Follow-Up: includes 12 manifest male cases and 1 car-
rier female.

b. 12-month Follow-Up: comprises 6 manifest male cases and 1
carrier female.

Overall, the dataset consists of 57 subjects as shown in the figure below
(Figure 3.8).

Figure 3.8: Subjects involved in the study.

The following tables aim to display the age, age at onset, and gender
of each participant in our study for both baseline (Figure 3.9) and
follow-up (Figure 3.10).
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Figure 3.9: Baseline set: demographic information.
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Figure 3.10: Follow-up set: demographic information.

Looking at the baseline dataset, noteworthy demographic difference
emerges among the groups studied:

• Control group: mean age of 38.4, ranging from 21 to 57

• XDP patients: mean age of 47.65, ranging from 18 to 78

These findings highlight the diverse age distributions within each group,
offering valuable insights into the age-related characteristics of XDP
and control participants.

3.2.2 Tasks and UPDRS scale
The study involved 24 tasks designed to provoke dystonia, categorized
into five primary groups:

1. Upper limb tasks: finger tapping, hand movement (opening/-
closing), pronation/supination, finger to Nose.
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2. Lower limb tasks: leg agility, toe tap, heel/toe alternating move-
ment.

3. Head tasks: turning head, ear to shoulder.

4. Resting tasks: seated with palms down, seated with palms up,
seated with eyes closed, seated while reciting the months of the
year backward, wing-beating position, arms outstretched with eyes
open and closed.

5. Gait tasks: arise from chair, trunk and posture, walking, turning,
walking on toes, tandem gait, backward walking, retropulsion Ppll.

This classification enables a detailed analysis of dystonia-related pat-
terns and features across various motor functions, offering a thorough
understanding of how X-linked dystonia-parkinsonism affects both up-
per and lower limbs as well as gait.

All tasks were evaluated by a single experienced clinician and the use
of a comprehensive array of rating scales, including the Blepharospasm
Scale, Unified Parkinson’s Disease Rating Scale (UPDRS), XDP Rating
Scale, Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS),
and the Tsui Torticollis Scale, ensures an extensive evaluation of various
aspects related to dystonia and associated movement disorders. Each of
these scales is designed to measure specific elements of motor function
and symptom severity, collectively offering a detailed understanding of
the participants’ conditions.

Specifically, for the purpose of this study, the patients’ scores on the
UPDRS were utilized.

Unified Parkinson’s Disease Rating Scale (UPDRS)

The Unified Parkinson’s Disease Rating Scale (UPDRS) is a widely
recognized tool for evaluating the severity of Parkinson’s disease and
tracking its progression. Initially developed in the 1980s, the UPDRS
has undergone several revisions and updates. The scale is divided into
multiple parts, each addressing different aspects of Parkinson’s disease:

• Part I: non-motor experiences of daily living - this section in-
cludes thirteen items, split into six items for rater-based assessment
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(evaluated by clinicians or researchers) and seven items for patient
self-assessment.

• Part II: motor experiences of daily living - comprising 13 items
based on patient self-reporting.

• Part III: motor examination - consisting of 18 items evaluated by
the clinician.

• Part IV: motor complications - including six items focused specifi-
cally on dyskinesia and fluctuations. A trained clinician administers
the UPDRS through patient interviews and observation of both
motor and non-motor symptoms. The disease’s severity is assessed
based on the clinician’s expertise. Each part is scored separately
from 0 (healthy) to 4 (severe), and the total score offers an overall
evaluation of the impact of Parkinson’s disease.

In this research, we specifically chose the Unified Parkinson’s Disease
Rating Scale as the sole assessment tool for creating the label vector in
our supervised learning algorithm. This choice was made to enhance
the model’s reliability and specificity, as the UPDRS provides a compre-
hensive overview of the clinical manifestations of Parkinson’s disease,
thereby contributing to the robustness of our analytical framework.
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3.3 Methods
For this study, the analysis concentrated on three specific tasks, fol-
lowing the criteria from the Unified Parkinson’s Disease Rating Scale
(UPDRS):

1. Gait task

This task allows the examiner to make a simultaneous observation
of both sides of the body, like the movement coordination, and to
detect subtle signs of motor dysfunction that might indicate the
presence of dystonia or parkinsonism, providing insight into the
severity and progression of the disorder. The patients are asked
to walk away from and then towards the clinician for at least 10
meters (30 feet), turn around, and return to the examiner.

2. Freezing of gait (FoG) task

The freezing of gait is a common and disabling symptom, partic-
ularly in advanced stages of movement disorders like Parkinson’s
disease and dystonia. It is characterized by the sudden, temporary
inability to move the feet forward despite the intention to walk.
The assessment of the freezing of gait while is a crucial point in the
XDP evaluation. Indeed, this procedure helps distinguish between
different movement disorders and could give important information
about how fluid and coordinated is the walk, especially during
turns.

3. Postural instability task

Postural instability involves assessing how well a patient can main-
tain their balance, especially when subjected to sudden movements
or displacements. In dystonia and related disorders, balance control
is often impaired, increasing the risk of falls. Evaluating postural
stability helps clinicians understand the degree of motor control
loss and the potential need for supportive therapies to prevent
falls and enhance patient safety. These evaluations are critical for
several reasons:
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• Diagnostic accuracy: they help distinguish dystonia from other
neurodegenerative disorders that might have overlapping symp-
toms.

• Monitoring progression: regular assessments can track how the
disease evolves over time, allowing for adjustments in treatment
plans.

• Treatment effectiveness: they provide a baseline to measure the
effectiveness of interventions and therapies.

This test evaluates the patient’s response to a sudden displacement
by pulling the shoulders while they stand upright with eyes open
and feet parallel. The examiner stands behind the patient, explains
the procedure, and allows the patient to step backward to prevent
falling. After an initial mild and unrated pull for demonstration,
a second forceful pull is performed to shift the patient’s center of
gravity, requiring them to step backward. The examiner observes
the number of steps taken or if the patient falls.

As outlined in the previous chapter, our data collection methodology
involves gathering two types of data: kinematic data (collected by using
XSens Movella Awinda motion sensors) and video recordings (trough
the use of cameras).

In this study, we exclusively used motion sensor data, while video
recordings were solely for scoring purposes. This approach allows us to
focus on the objective and quantifiable data provided by the motion sen-
sors, ensuring a thorough examination of biomechanical aspects without
the potential biases of subjective video assessments. This reliance on
motion sensor data supports our goal of developing an automated assess-
ment tool for X-linked dystonia-parkinsonism, highlighting the need for
objective diagnostic tools that can be used in various settings, including
remote areas with limited access to specialized medical expertise.

Project pipeline

The project pipeline (Figure 3.11), developed in Python 3.12.2, consists
of several key steps:

• Pre-processing
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• Gait events and spatio-temporal parameters evaluation or window-
ing

• Feature extraction

• Feature selection and feature projection

• Classification

Figure 3.11: Project pipeline

This section delineates the methodologies used at each stage of the
pipeline, providing a detailed explanations of the techniques employed
at each point. Furthermore, the rationale and significance behind each
technique are elaborated upon, enhancing the overall transparency and
interpretability of the experimental process.

3.3.1 Pre-processing
Data preprocessing is a critical phase in the data analysis pipeline,
transforming raw data into a structured format suitable for analysis.
The quality of preprocessing directly impacts the accuracy and effec-
tiveness of subsequent analyses, as raw datasets often contain errors,
missing values, outliers, and inconsistencies that must be addressed
to extract meaningful insights. Effective preprocessing techniques are
vital in medical informatics to address data imperfections, leading to
more accurate and reliable results. This aligns with our approach to
preprocessing, ensuring the data’s suitability for detailed analysis [27].

In this study, the data from XSens Movella Awinda motion sensors
underwent preprocessing using MVN Analyze software. This step
was essential to ensure the cleanliness and reliability of the data. A
biomechanical model was applied to further refine the data. Given
the inherent reliability of the data post-MVN Analyze preprocessing,

38



3.3. METHODS

additional filtering was not performed. Instead, the preprocessing
phase focused solely on segmenting the data for analysis. Using inertial
sensing technology like XSens MVN provides consistent and reliable
tracking of human motion. This supports our reliance on high-quality
motion sensor data, reinforcing the decision to use the preprocessed
data from MVN Analyze without further filtering [28].

In our study, min-max normalization was applied to each feature to
ensure that the evaluations of signals were comparable across different
subjects. This preprocessing step was critical for achieving consistent
and reliable results when classifying patients into different clinical
categories.

Min-max normalization

Min-max normalization is a widely used technique in data preprocessing
for machine learning. It scales the data to a specific range, typically [0,
1], by transforming each feature using the formula:

Xnormalized = X − Xmin

Xmax − Xmin

This process ensures that all features contribute equally to the model’s
performance and helps improve the convergence of optimization al-
gorithms, particularly those that are sensitive to the scale of input
features, such as gradient descent [29, 30].

To evaluate the various tasks, different types of signals were used:
• Gait task: feet position, feet velocity and acceleration, vertical

angular velocity of feet and forearms and several joint angles signals
(ankles dorsi/plantarflexion, knees flexo/extension and internal/ex-
ternal rotation).

• Freezing of gait task: linear pelvis acceleration, feet position, feet
velocity and acceleration, vertical angular velocity of feet, forearms
and pelvis and several joint angles signals (ankles dorsi/plantarflex-
ion, knees flexo/extension and internal/external rotation).

• Postural instability task: linear pelvis acceleration, antero-
posterior pelvis acceleration, feet position, feet velocity and ac-
celeration, vertical angular velocity of feet, forearms and pelvis
and several joint angles signals (ankles dorsi/plantarflexion, knees
flexo/extension).
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3.3.2 Gait analysis
For the gait analysis, prior to detecting individual events such as strike
and toe-off, we initially identified the turning points in the patients’
gait. Throughout the duration of the gait task, patients walk straight
and then make a certain number of turns. To detect these curves, we
utilized vertical angular velocity and applied filtering exclusively to this
signal. Specifically, we filtered the signal with a cutoff frequency of 1
Hz and analyzed zero-crossings to determine the beginning and end of
each turn.

After identifying the curves, we proceeded with the detection of strike
and toe-off events. For this, we primarily used the linear acceleration of
the pelvis and joint angle signals of the feet, focusing on the dorsiflexion
and plantarflexion of both the right and left feet. This dual detection
approach was chosen because literature suggests that pelvic acceleration
is the gold standard for detecting strike and toe-off events. However,
due to the cleaner signal obtained from the ankle joints, we initially
performed the detection on these joint angle signals (Figure 3.12) before
proceeding with the pelvic linear acceleration (Figure 3.13).

Figure 3.12: Gait events detection on ankles
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Figure 3.13: Gait events detection on pelvis

We then matched the events detected from both the pelvis and the
feet, finding an almost perfect alignment between them (Figure 3.14).

Figure 3.14: Gait events detection match

This dual detection method was essential not only for calculating
features individually for both sides of the body but also for some
features that required signals from the pelvis or trunk.
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Spatio-temporal parameters

After identifying the gait events, specifically strike and toe-off, this foun-
dational step was crucial for calculating the spatiotemporal parameters
of gait (Figure 3.15).

Figure 3.15: Gait parameters

These parameters are essential for data analysis as they play a
vital role in assessing and differentiating the severity of the disease
among patients. For example, stride length is a critical feature in
distinguishing the severity of the condition, making the calculation of
these parameters essential. As depicted in the figure below, the key
spatiotemporal parameters include stride, stance, step, swing, double
support time, single support time, and cadence (Figure 3.16).
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Figure 3.16: Spatio-temporal parameters

The computation of these parameters is also vital because certain
features need to be derived from specific gait events, such as swing or
stride, as we will discuss later.

3.3.3 Feature extraction and dataset construction
Feature extraction is a crucial process in data analysis, especially in
the context of AI projects for clinical data. Studies have demonstrated
that effective feature extraction significantly enhances the accuracy and
reliability of predictive models. For example, a framework for feature
extraction from hospital medical data has been developed to support
risk prediction tasks. This approach allows for the creation of rich,
data-driven feature’s sets that improve the performance of machine
learning models in predicting patient outcomes and other clinical tasks
[31].

The aim of feature extraction in this study was to identify and isolate
significant task-specific features, guided by clinical observations. This
method ensured that the chosen features were both relevant to the
tasks and aligned with clinical insights, improving their interpretability
and clinical relevance. Integrating clinical expertise into the feature
extraction process enhances the robustness and validity of the data
analysis.

Gait task

The feature evaluation was conducted on both sides, drawing from prior
clinical observations, resulting in a total of 93 features (Table 3.1).
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Feature Clinical meaning

Gait speed bradykinesia[32]

Dominant frequency rhythmicity of movement

Stride length impaired locomotion[32, 33,
34]

Dominant
frequency/total energy

Gait asymmetry index gait asymmetry[35]

Min, max, std and
variance

Coefficient of variation
(CV)

step-to-step variability[36,
37, 38]

Energy around the
dominant frequency

rhythmicity of movement

Root mean square
(RMS)

bradykinesia

Skewness and kurtosis

Cross-correlation coordination of movement

Amplitude of dominant
frequency

Range of motion (ROM) postural control[39]

Step length impaired locomotion[32, 33,
34]

Table 3.1: Gait features table
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Freezing of gait task

As for the gait task, the feature evaluation was conducted on both sides,
mainly on the turns segment, resulting in a total of 123 features. In
particular, the number of features assessed for the gait task has been
maintained while incorporating additional specific features relevant to
the analysis. (Table 3.2).

Feature[40]

Freezing index

Energy

Power

Power in freeze band

Power in locomotor
band

Table 3.2: Freezing of gait features table

Regarding the dataset construction for both gait and freezing of gait
tasks, the features were calculated by segmenting the patient signals
into multiple samples, corresponding to the number of straight paths
they performed, with the same number of turns. The features were
calculated based on each step, stride, or swing event, depending on
the type of feature. This segmentation was necessary because some
features need to be assessed during specific gait events, and thus, the
application of the sliding windows technique was not as effective in
providing useful information.

Postural instability task

The feature evaluation was conducted bilaterally, based on prior clinical
observations, resulting in a total of 88 features (Table 3.3). For the other
two tasks, only the ’gait’ signal segment was assessed. However, for the
postural instability task, we focused on the ’retropulsion’ test segment.
During this segment, the clinician evaluated the number of backward
steps taken by the patients to assign a score. Given the shortness of
this segment and the limited number of steps, it was necessary to apply
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the sliding windows technique with a window length of 1 second and a
80% overlap. Consequently, the dataset contains a higher number of
samples per patient for the postural instability task compared to the
other tasks.

Features[41]

RMS

Jerk

F95

Length sway

Centroidal frequency

High frequency power

Mean velocity sway

Frequency dispersion

Sway area

Skewness, kurtosis

Table 3.3: Postural instability features table

3.3.4 Feature selection
Feature selection is a fundamental process in data analysis, particularly
when managing complex and high-dimensional datasets. This process
enhances the efficiency and effectiveness of modeling algorithms by
pinpointing and retaining only the most relevant features. By reducing
the dimensionality of the data, the feature selection not only streamlines
computational efforts but also improves model interpretability and
predictive performance. The primary aim of feature selection is to
identify and maintain a subset of features that significantly contribute
to the specific task, while discarding irrelevant or redundant information
[42].

This approach not only simplifies the computational process but also
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aids in uncovering underlying patterns and relationships within the
data, leading to more accurate and interpretable results. Effective
feature selection can prevent overfitting and reduce model complexity,
making it easier to deploy models in real-world applications.

Feature selection techniques can be categorized into three main types:

1. Filter methods: use statistical measures to evaluate the relevance of
features independently of any learning algorithm. Techniques such
as Pearson’s correlation, Chi-square test, and mutual information
are common examples.

2. Wrapper methods: involve selecting features based on the perfor-
mance of a specific learning algorithm. Recursive Feature Elimina-
tion (RFE) is a popular wrapper method that recursively removes
features and builds models to identify the optimal subset.

3. Embedded methods: perform feature selection during the model
training process. Regularization techniques like Lasso and Ridge
regression fall under this category, which add penalties to the model
for complexity, thereby selecting features that contribute the most
to prediction accuracy.

In this project pipeline, the Recursive Feature Elimination (RFE)
method, which is part of the wrapper methods category, was employed
in conjunction with a Random Forest classifier to enhance feature se-
lection, combined with k-fold cross-validation to validate the model’s
performance reliably (Figure 3.17). Before implementing this procedure,
the correlation between features in the initial dataset was calculated to
ensure its reliability.

Figure 3.17: Feature selection pipeline

The process (figure 3.17 begins with the initial set of features, from
which a correlation matrix is computed. This matrix is used to identify
and eliminate features that have a correlation coefficient of 0.9 or higher,
ensuring that highly similar features are removed. The reduced set
of features is then subjected to Recursive Feature Elimination (RFE)
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combined with k-fold cross-validation to assess the performance of a
Random Forest classifier trained on this subset. The RFE process
iteratively removes the least significant feature, starting with the full
feature set and continuing until only one feature remains. Throughout
this process, the F1 score is used to evaluate the performance of the
model at each step. The goal is to find the smallest subset of features
that allows the model to achieve at least 95% of the performance
it would have with the complete feature set (after correlation-based
elimination).

The following paragraphs will provide a detailed explanation of the
techniques used.

Correlation between features

In data analysis, particularly in the context of high-dimensional datasets,
calculating the correlation between features is a critical step. This helps
in identifying and eliminating redundant features, which can enhance
model performance and interpretability. One effective approach to
achieve this is through feature selection based on correlation. This
method helps in identifying and eliminating redundant features that do
not add significant value to the predictive modeling process. There are
several methods to calculate correlation and apply feature elimination,
including:

a. Pearson correlation coefficient: it measures the linear correlation
between two variables. Values range from -1 to 1, where 1 indicates
a perfect positive linear relationship, -1 indicates a perfect negative
linear relationship, and 0 indicates no linear relationship.

b. Spearman’s rank correlation: a non-parametric measure of rank
correlation. Assesses how well the relationship between two vari-
ables can be described using a monotonic function. Useful when
the data are not normally distributed or when dealing with ordinal
variables.

c. Kendall’s tau correlation: another non-parametric measure of cor-
relation. Useful for small sample sizes and ordinal data. Measures
the strength and direction of association between two variables.

Among the various methods for correlation-based feature elimination,
the Threshold-Based Feature Elimination is a widely used technique.
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This method involves setting a predefined threshold for the correlation
coefficient, above which features are considered redundant and are
removed from the dataset. This helps in mitigating multicollinearity,
reducing the complexity of the model, and improving its performance.
This method is based on computing the correlation matrix of all features
and setting a threshold to identify pairs of highly correlated features.
Features that have a correlation coefficient above the set threshold are
considered redundant and are removed. In this project, a threshold of
90% was applied, meaning any features with a correlation coefficient
of 0.9 or higher were eliminated to reduce multicollinearity and ensure
the dataset’s reliability.

Benefits of Threshold-Based Feature Elimination

1. Improved model performance: by removing highly correlated fea-
tures, the model becomes less prone to overfitting and can generalize
better to new data.

2. Enhanced interpretability: simplifying the model by reducing the
number of features makes it easier to understand and interpret
the relationships between the remaining features and the target
variable.

3. Reduced computational cost: fewer features mean less computa-
tional resources are required for training the model, leading to
faster processing times.

Recursive Feature Elimination (RFE)

Recursive Feature Elimination (RFE) is a powerful feature selection
method used to enhance the performance of machine learning models
by iteratively removing less important features. This technique helps
in simplifying models, reducing overfitting, and improving the model’s
interpretability and accuracy [43].

This method is characterized by several steps:

1. Model training: the process begins by training a model using
all available features. A common choice for the model in RFE is
a linear model or a tree-based model, such as Random Forest or
Support Vector Machines (SVM).
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2. Feature ranking: once the model is trained, each feature is
assigned an importance score based on its contribution to the pre-
diction accuracy. In the context of tree-based models like Random
Forest, this could be the decrease in impurity or the Gini index
when a feature is used for splitting.

3. Elimination: the least important features are removed from the
dataset. The number of features to remove at each iteration can
be predetermined by the user. Typically, one or a small percentage
of features are removed in each iteration to avoid losing important
information prematurely

4. Iteration: the model is retrained with the remaining features, and
the process of ranking and eliminating features is repeated. This
iterative process continues until a specified number of features is
reached or until the model performance stops improving.

5. Optimal subset selection: the subset of features that results in
the best model performance is selected as the final feature set. The
model trained on this optimal subset is then used for prediction.

Random Forest classifier

The Random Forest Classifier is a widely-used ensemble learning algo-
rithm specifically designed for classification tasks. It builds multiple
decision trees during the training phase and then merges their outputs
to generate more accurate and stable predictions. Developed by Leo
Breiman, Random Forests have gained popularity due to their robust-
ness, ease of use, and effectiveness in handling various types of data,
including those with high dimensionality [44, 45].

One of the fundamental concepts of the Random Forest Classifier is the
creation of an ensemble of decision trees. Each tree is trained on a dif-
ferent subset of the training data, which is generated through bootstrap
sampling, a method that involves random sampling with replacement.
This approach, known as bagging (Bootstrap Aggregating), introduces
randomness into the data sampling process, which helps in reducing
overfitting—a common issue in single decision trees [44].

At each node within a tree, a random subset of features is selected to
find the best split for the data. This random feature selection ensures
that the trees are diverse and less correlated, which leads to a more

50



3.3. METHODS

robust and accurate model. By not considering all features at each
split, the model avoids overfitting to specific features and gains gener-
alizability across different datasets [44].

Each tree in the forest is grown to its maximum depth without prun-
ing. This results in "deep" and complex trees. However, the ensemble
approach mitigates the risk of overfitting. During training, the data
is split at each node based on the best feature and threshold that
maximize class separation, typically using criteria like Gini impurity or
information gain [45].

Once all the trees have been trained, the Random Forest Classifier
makes predictions for new data points by aggregating the predictions
of individual trees. In classification tasks, each tree votes for a class,
and the class with the majority vote is selected as the final prediction.
This majority voting mechanism ensures that the overall model is less
sensitive to the biases of individual trees, leading to more accurate and
stable predictions [44].

A significant advantage of the Random Forest Classifier is its ability to
measure feature importance. Feature importance is calculated based
on the average decrease in Gini impurity (or another metric) caused
by each feature across all trees in the forest. These importance scores
help identify which features contribute most to the model’s predictive
performance, providing insights into the underlying structure of the
data [46].

Random Forests are inherently capable of handling missing values and
outliers effectively. Since each tree is built on a different subset of the
data, the impact of missing values is minimized. Outliers are also less
influential because the aggregation of multiple trees tends to decrease
their effect [45].

Advantages:
• Robustness: the ensemble approach ensures robustness against

overfitting and improves generalization to unseen data.

• Versatility: can handle both classification and regression tasks,
though primarily discussed here in the context of classification.

• Ease of use: requires minimal parameter tuning compared to
other machine learning algorithms.
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• Interpretability: provides feature importance scores, offering
insights into the data and the model.

Cross Validation

Cross-validation is a crucial technique for evaluating the robustness
and generalizability of machine learning models. This method involves
partitioning the dataset into multiple subsets, known as folds, and
systematically using these folds for both training and validation. By
doing so, cross-validation provides a comprehensive assessment of a
model’s performance across different data subsets, reducing the risk of
overfitting and offering a more realistic estimation of its effectiveness
[47].

The primary goal of cross-validation is to provide a comprehensive eval-
uation of a model’s performance. By systematically rotating through
different subsets of the dataset, cross-validation offers insights into
the model’s ability to generalize to new, unseen data. This process is
essential for making informed decisions about the model’s suitability
and reliability for real-world applications. Various cross-validation tech-
niques can be tailored to the specific nature of the dataset, ensuring
that the chosen method aligns with the characteristics and requirements
of the data under investigation [48].

In this research, k-fold cross-validation and leave-one-group-out cross-
validation were employed to evaluate model performance. The k-fold
approach was specifically applied in the feature selection section, while
the leave-one-group-out method was used for prediction of the score.
These methods provided robust evaluations, ensuring that the models
developed were both reliable and generalizable.

K-Fold Cross-Validation

K-fold cross-validation is one of the most commonly used methods. In
this approach, the dataset is divided into k equally sized folds. The
model is trained on k1 folds and validated on the remaining one fold.
This process is repeated k times, ensuring that each fold serves as
a validation set exactly once. For instance, in this study, a 10-fold
cross-validation was adopted. This means the dataset was split into 10
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parts, and the model was trained and validated 10 times, each time
with a different fold held out for validation. This method provides a
robust measure of model performance by averaging the results from all
folds, thereby reducing variance and providing a more reliable estimate
of the model’s ability to generalize to unseen data [48].

Leave-One-Group-Out Cross-Validation

Leave-one-group-out cross-validation is particularly useful when dealing
with grouped or clustered data. In this technique, entire groups or sets
of related observations are systematically excluded from the training
and validation sets in each iteration. This ensures that the model is
evaluated on its ability to generalize to completely unseen groups, which
is crucial for ensuring robustness in real-world applications where data
can exhibit grouping. In this study, the leave-one-group-out approach
was applied by grouping data associated with individual subjects. This
method helps mitigate potential overfitting by ensuring comprehensive
evaluation across different subjects [49].

3.3.5 Feature projection
The features identified through the feature selection pipeline were
subsequently used to create visual projections within a reduced dimen-
sionality feature space. This was achieved using the Sammon mapping
technique, a nonlinear dimensionality reduction method that preserves
the structure of the data as much as possible when reducing its dimen-
sions. Sammon mapping is effective for visualizing high-dimensional
data by maintaining the inter-point distances from the high-dimensional
space in the lower-dimensional projection. This makes it a powerful
tool for revealing underlying patterns and relationships within the data,
enhancing the interpretability of the feature space [50, 51].

The color-coded projections generated through Sammon mapping pro-
vided valuable insights into how selected features relate to different
clinical categories. By highlighting these relationships, the projections
facilitated a more intuitive understanding of the data, making it easier
to interpret and analyze the results [52].
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Sammon mapping plot

Sammon mapping projections provide an effective visual representation
of high-dimensional data within a reduced-dimensional space. This
technique aims to preserve the pairwise dissimilarities or distances
between data points, enabling a clearer visualization of the dataset’s
inherent structure. By maintaining these relationships, Sammon map-
ping facilitates an intuitive understanding of complex data patterns
and clusters.

In our study, we generated 3D Sammon mapping projections using
the ten features identified as most important by the Random Forest
Regressor. These features were deemed crucial by the regression model
and are central to shaping the visual representation of the data in the
reduced-dimensional space. The projections are color-coded to enhance
interpretability, highlighting clusters corresponding to different clinical
labels. This approach allows for an insightful exploration of relation-
ships between features and clinical categories, aiding in the discovery of
intricate patterns and providing a deeper understanding of the data’s
underlying structure [50, 51, 52].

3.3.6 Classification
Using the fine-tuned Random Forest Regressors, clinical labels were
derived to achieve the goal of this study. Specifically, the project aimed
to classify patients into three distinct categories. By employing this
method with with Leave-one-Out cross-validation algorithm, we were
able to accurately differentiate among the three classes of patients,
ensuring precise and reliable classification results.

Random Forrest Regressor

The Random Forest Regressor is a robust and versatile ensemble learn-
ing method used extensively for regression tasks. This technique builds
multiple decision trees, each trained on different subsets of the data and
a random selection of features, a process known as bootstrap aggregat-
ing or bagging. By averaging the predictions of these trees, the Random
Forest Regressor achieves high predictive accuracy and reduces the risk
of overfitting. This ensemble approach also enhances the model’s ability
to generalize from the training data to unseen datasets, making it
particularly effective in handling complex, high-dimensional data [44,
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53, 54].

Key aspects of the Random Forest Regressor include its ability to
estimate feature importance, which helps identify the most influen-
tial variables in the dataset. This is particularly useful in reducing
dimensionality and improving model interpretability. Additionally, the
method is known for its resilience to overfitting, especially when com-
pared to single decision trees, due to the randomness introduced in
both the data sampling and feature selection processes [44].

In the context of this study, the Random Forest Regressor was employed
with leave-one-out cross-validation (LOO-CV) to predict scores in three
distinct tasks. LOO-CV is a rigorous validation technique where each
data point is used once as a test case while the remaining points form
the training set. This method provides an unbiased estimate of model
performance, particularly valuable in medical and clinical research
where data points (patients) are often few but highly significant [53].
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4. Results and discussion
The subsequent sections delve into the findings of our study, detailing
the results of the machine learning algorithms used to achieve our
research objectives (Aim1:assess the presence and gravity of the disease,
Aim2:assess the disease progression in patients). For each task, we will
present Sammon mapping projections, derived from selecting the most
significant features as previously described. This qualitative analysis
aims to shed light on the model’s performance. Furthermore, we will
provide confusion matrices for the optimized Random Forest Regressor,
offering a quantitative evaluation of the achieved accuracies and F1
scores in our study.

4.1 Gait task
For the gait task, as explained in the previous chapter, the features were
evaluated based on the gait events detected during the gait analysis.

Given the large number of features and the possibility of redundant
information, a feature selection algorithm was applied before proceeding
with the prediction of the score.

4.1.1 Feature projection
After evaluating the correlation matrix between features, 21 features
were removed from the initial set of 93 due to the presence of 42 similar
features. Following the application of the feature selection algorithm,
only 11 features were ultimately selected for further analysis.
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Figure 4.1: Gait feature projection

The plot offers a visual representation of the 3D projections derived
from the Sammon Mapping technique. This remapping was generated
using the top 11 most important features, as identified by the optimized
Random Forest Classifier. The visualization distinctly illustrates a
clear separation between the three distinct clusters. This separation
highlights the efficacy of the methodology employed in capturing and
distinguishing the underlying patterns within the dataset. The ability
to visually discern these clusters affirms the robustness of our feature
selection and classification process.

4.1.2 Classification
After selecting the features, a Random Forest Regressor with Leave-
one-Out cross-validation was applied to the dataset, utilizing only these
selected features.
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Figure 4.2: Gait task prediction of the score

Examining the performance of the classifier, which achieved an F1
score of 78%, reveals that the prediction accuracy is quite satisfactory.
Notably, the classification of the most severe class is nearly perfect, with
only one instance misclassified in the first class. This high accuracy
in identifying the most severe cases is particularly commendable and
demonstrates the classifier’s effectiveness in distinguishing between
varying levels of severity.

4.1.3 Feature assessment
This section will present the distribution of the two most important
features across the three classes. Additionally, it will assess these
features in two example patients over several months to evaluate disease
progression from the baseline to the follow-up.
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Figure 4.3: Range of motion of the left knee during the swing phase

Figure 4.4: Stride length of left foot

From these two figure (figure 4.5, figure 4.4), we can observe a clear
clustering among the three classes, particularly for the ’range of motion
of the left knee during the swing phase’ feature, which was identified
as the most important by the algorithm.
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Figure 4.5: Patient PH-0592:
ROM left knee

Figure 4.6: Patient PH-0592:
stride length

Figure 4.7: Patient PH-0510:
ROM left knee

Figure 4.8: Patient PH-0510:
stride length

The observation of feature progression in patients is one of the most
significant findings from our study.

Particularly for patient PH-0592, we can observe a significant escalation
in feature values from the baseline to the follow-up, which corresponds
with the increasing severity of the disease. Specifically, for both features
(figure 4.5, figure 4.6), there is an inverse proportionality between the
disease severity and the feature values: a conspicuous progressive
decrease in feature values is evident as the disease severity gradually
increases.

For the second patient, PH-0510, we observe a similar trend in the first
feature (figure 4.7), where the feature value changes with the severity
of the disease. However, the pattern is opposite compared to the first
patient: while the first patient shows a gradual decrease in feature
value, the second patient exhibits a gradual increase. This difference is
attributed to the distinct phenotypes of the disease observed in this
study. Additionally, the second feature (figure 4.8) does not exhibit a
clear trend in relation to the progression of the disease. This can be
attributed to the fact that the final assessment is typically based on a
combination of several features rather than relying on a single feature.
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4.2 Freezing of gait task
For the freezing of gait task, features were evaluated on specific gait
events, as previously done for the gait task. The original gait features
dataset was retained, and additional specific features for this task were
included, particularly focusing on the turn segments performed by
patients. This focus was due to clinical insights indicating that freezing
episodes primarily occur during turns.

The steps for this task remained consistent: features providing similar
information were eliminated by calculating the correlation matrix,
reducing the initial set from 123 features to a subset of 84 features.
Subsequently, a feature selection algorithm was applied to further
remove redundant information, ultimately resulting in the selection of
just 7 key features.

4.2.1 Feature projection
This remapping (figure 4.9) was generated using the top 7 most impor-
tant features, as identified by the optimized Random Forest Classifier.

Figure 4.9: Freezing of gait feature projection

We can observe a reasonably good clustering among the three classes.
However, the primary challenge here is the imbalance in the dataset.
This imbalance may affect the classifier’s performance and the clarity
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of the clustering, highlighting the need for further adjustments or
techniques to address this issue.

4.2.2 Classification
After feature selection, a Random Forest Regressor with Leave-One-Out
cross-validation was applied to the dataset.

Figure 4.10: Freezing of gait prediction of the score

Examining the performance of the classifier (figure 4.10), which
achieved an F1 score of 70%, reveals that the prediction accuracy is
quite satisfactory. However, even though the classifier’s performance is
not particularly low, the main issue for this task, and the subsequent
one analyzed in the next section, is the unbalanced dataset. The
distribution of patients among the three classes is as follows:

a. Class 0: 43 subjects

b. Class 1: 7 subjects

c. Class 2: 7 subjects
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This imbalance compromises the reliability of the task evaluation,
not due to the classifier setup but because of the poor distribution
of subjects. Increasing the dataset size to achieve a more balanced
distribution could significantly improve the task evaluation.

4.2.3 Feature assessment
This section will show the distribution of the two most important
features across the three classes. Additionally, it will assess these
features in two example patients over several months to evaluate disease
progression from baseline to the 6-month follow-up.

Figure 4.11: Maximum of left foot

Figure 4.12: Power in the freeze band during stride events

From these two figures (figure 4.11 and figure 4.12), we can observe
a wide spread in feature values among patients. There is no clear
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clustering in the box plots based on the current sample size. This lack
of distinct clustering suggests that the distribution could be improved
with a larger dataset. Consequently, we cannot conclude that the
feature is unreliable for discriminating this disease solely due to the
current data limitations, particularly for the second feature.

Figure 4.13: Patient 0590: Maximum
of left foot

Figure 4.14: Patient PH-0590: Power
in the freeze band during stride

Figures 4.13 and 4.14 illustrate the distribution of these two features
for patient PH-0590. There is a notable change in feature values,
particularly for the second feature. As observed in the gait task, these
changes in feature values correspond with the increasing severity of the
disease.

4.3 Postural instability task
The postural instability evaluation was conducted using the sliding win-
dows technique for reasons outlined in the previous chapter. Windows
with a size of 1 second and an overlap of 80% were applied to detect
quantitative features from the signals. This approach increased the
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number of samples per patient compared to the previous tasks, but the
issue of an unbalanced dataset remains significant, as will be shown in
the following sections.

The same pipeline steps were followed: calculating the correlation ma-
trix resulted in the removal of 46 features, reducing the feature set
from 88 to 42 features. Subsequently, through the feature selection
algorithm, a subset of 4 features was selected.

4.3.1 Feature projection
This remapping (figure 4.15) was generated using the top 4 most
important features, as identified by the optimized Random Forest
Classifier.

Figure 4.15: Postural instability feature projection

The Sammon plot shows a larger number of samples due to the
application of windows for feature extraction. However, this increase
in sample size is insufficient to mitigate the impact of the unbalanced
dataset, resulting in suboptimal clustering between the three classes.

4.3.2 Classification
After feature selection, a Random Forest Regressor with Leave-One-Out
cross-validation was applied to the dataset.
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Figure 4.16: Postural instability classification

Analyzing the performance of the classifier (Figure 4.16), which
achieved an F1 score of 63%, indicates that the prediction accuracy
is inadequate. The primary issue for this task lies in the unbalanced
dataset. The distribution of patients among the three classes is as
follows:

a. Class 0: 29 subjects

b. Class 1: 4 subjects

c. Class 2: 3 subjects

This imbalance significantly undermines the reliability of the task
evaluation. Increasing the dataset size to achieve a more balanced
distribution could substantially improve the task evaluation, especially
when combined with a more precise feature evaluation.
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5. Conclusion
The results of this study suggest that wearable technology, combined
with advanced feature selection and machine learning algorithms, can
be a powerful tool in monitoring and evaluating the progression of
movement disorders such as XDP.

Limitation

This preliminary exploration into the quantitative analysis of XDP also
presents several limitations and aims to lay the groundwork for more
in-depth future investigations.

One significant limitation of our study is the subjectivity inherent in
the scoring process, which was conducted by a single clinician. This
introduces potential bias, as the scores may reflect individual clinical
judgment rather than a consensus view. To enhance the objectivity
and reliability of assessments, future research should employ multiple
clinicians or implement standardized scoring protocols.

Another major limitation is the imbalance within our dataset. The
unequal distribution of samples across different labels, particularly the
abundance of samples for label 0 compared to others, poses challenges
for accurate analysis. This imbalance partly stems from the difficulty
in data acquisition and the removal of certain subjects due to data
unreliability issues, resulting in a smaller and more imbalanced dataset.
Addressing this limitation would involve additional data collection
efforts or applying advanced techniques, such as resampling methods,
to create a more representative dataset for comprehensive analysis.

Future work should focus on refining and optimizing methodologies,
exploring additional feature extraction techniques, and addressing the
challenges associated with imbalanced datasets. Our findings highlight
the need for a nuanced approach and pave the way for more sophisticated
analyses in subsequent research endeavors.

Conclusion

Our research contributes to the understanding and management of
XDP, a complex neurological movement disorder. By focusing on the

67



Conclusion

detection of dystonic movements and utilizing the UPDRS scale for
scoring, we address the critical need for more refined diagnostic tools
in the clinical assessment of this disorder. The integration of sensing
technology with machine learning algorithms presents a transformative
approach to studying pathologies. Technologies such as IMUs, which
were used in this study, provide rich streams of data capturing intricate
physiological and anatomical details in real-time. Machine learning
algorithms excel at extracting meaningful patterns and insights from
vast datasets, enabling the identification of subtle biomarkers and dis-
ease signatures that may otherwise go unnoticed. By combining these
technologies, we can gain deeper insights into the underlying mecha-
nisms of XDP, enhance diagnostic accuracy, and personalize treatment
strategies.

Our approach involves extracting features from various metrics grounded
in clinical observation. This not only broadens the scope of our analysis
but also ensures a comprehensive evaluation of the disorder’s manifes-
tations.

Future developments

The insights from our study could be transformative for the management
of this rare neurogenetic movement disorder. Providing clinicians with a
more objective scoring method has the potential to significantly improve
the assessment of the pathology. Additionally, applying our findings in
telemedicine could benefit individuals without local support, offering a
more accessible means of evaluation and support.

Further research with larger and more balanced datasets could enhance
the accuracy and reliability of these methods, providing valuable insights
for clinical assessments and potential use of follow-up as a test part for
the classifier previously trained with the baseline dataset.
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