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Abstract 
Semantic feature extraction is a novel field in neurotechnology research and is quickly 
growing in interest for its many applications, ranging from education to rehabilitation to 
BCIs. With few studies existing on the subject, a wide range of possibilities open for 
exploration. While most of the current related research landscape explored the 
implementation of time-domain and frequency-domain features, this study proposes an 
approach based on entropy measures. exploring their potentiality for differentiation 
between concepts. This study focused on the analysis of entropy measures computed on 
EEG signals as, while offering less spatial resolution compared to other brain signal 
acquisition technologies, it best suits real-life application thanks to its portability, low cost, 
and current developments for this purpose. Entropy was chosen for this purpose due to its 
fundaments in the information theory, potentially bypassing other features limitations. For 
this study EEG signals have been divided based on the concept used for stimulation 
through different methods and paradigms (pictorial, orthographic and auditory 
comprehension, repeated for perception and imagination tasks) to limit the influence on the 
results of the modality-related processing pathways in brain activity and bring focus to the 
concepts. Different entropy measures, Shannon entropy, spectral entropy, sample entropy, 
permutation entropy, and multiscale entropy, have been calculated from the EEG signals in 
two bandwidths, alpha and beta, and the results across the electrodes were assessed through 
visual and statistical analysis. The visual analysis was performed with the help of 2D plots 
of each electrode's entropy value on the scalp and with histograms. The statistical analysis 
consisted in an Analysis of Variance (ANOVA) including all three concepts (guitar, flower, 
and penguin) and t-tests performed on all pairs of concepts. The results suggest that alpha 
waves have better results compared to beta. Additionally, a tendency suggesting Shannon, 
sample and multiscale entropies could better perform in distinguishing concepts was 
observed. Sample entropy showed the best results. Multiscale entropy results could suggest 
how certain time windows at different time scales can hold more information than others, 
also highlighting how these time windows can vary across subjects and trials. Some 
interesting trends were also observed in multiscale entropy in alpha waves. Despite its 
limitations, this study can serve as a first step towards the creation of new methods for 
performing semantic feature extraction using algorithms specifically tailored on the 
different entropy features. 
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Chapter 1: Introduction 
1.1 Introduction to Brain Signals 

1.1.1 Overview of Brain Signals 
The brain is a highly complex network of neurons, each capable of sending 

and receiving messages that influence everything we experience, from basic 

body functions to complex reasoning and thoughts. Brain signals are 

generated from the communication between neurons in the brain, which 

happens via electrical and chemical signals. Neurons, fundamental elements 

of the brain, are cells with a unique structure. The structure, represented in 

Fig. 1, is composed of the soma, the cell's main body holding the nucleus and 

the cytoplasm; the dendrites, branch-like structures that extend from the soma 

and that receive signals from other cells; and the axon, a long projection that 

transmits electric impulses to other cells from its terminations. These 

terminations create a structure with the dendrites of other neurons called a 

synapse. Electrical signals are generated by the propagation of the action 

potentials along neurons, while chemical signals happen in the synapses 

through the release of neurotransmitters (Lovinger, 2008). Brain signals are 

thus generated from the electrical activity and communication processes that 

occur within the brain, whether in an active state or at rest (Smith et al., 

2009). In conclusion, brain signals are time-series representations of brain 

activity that contain biometric information crucial for understanding brain 

activity and mapping neural pathways (Schirrmeister et al., 2017). 
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Figure 1: Representation of neuronal structure 

 

 

 

1.1.2 Types of brain signals 
Brain signals can be categorized into different types based on their 

characteristics and applications. An Electroencephalogram (EEG) records the 

electrical activity of the brain. On the other hand, a magnetoencephalogram 

(MEG) records the magnetic fields generated by brain activity. Functional 

magnetic resonance imaging (fMRI) follows a different approach, recording 

brain activity and measuring changes in blood flow and oxygen levels 

(Glover, 2011; Lopes da Silva, 2013). 

 

1.1.3 Brief history of brain signal research 
After Luigi Galvani first observed the role of electricity in nerve activity in 

1792, Emil du Bois-Raymond furthered the understanding of electrical 
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properties in neurons by giving birth to electrophysiology, the study of 

electrical activity in living cells. In 1929, the psychiatrist Hans Berger created 

a breakthrough in the field by developing the EEG, which provided the first 

glimpse into ongoing brain processes. The mechanism of neuronal 

communication was later unraveled by Hodgkin and Huxley, among others 

(Catterall et al., 2012). In the modern era, brain imaging techniques like 

fMRIs and PET scans allowed researchers to observe brain activity, identify 

neural pathways, and map the brain (Biswal et al., 2010).  

 

1.1.4 Complexity of Brain Signals 
The complexity of brain signals is a well-known topic in neuroscience 

research. Brain signals present intricate nonlinear dynamics, prompting a 

surge in complexity analyses (Sun et al., 2020). Studies have shown that 

brain signal's complexity increases with development, reflecting more 

specialized and differentiated brain regions capable of a broader range of 

neural dynamics (Vakorin et al., 2011) suggesting more efficient neural 

communication and increased information processing capabilities (Thiele et 

al., 2023). Brain signals' complexity is crucial for studying brain 

development, cognitive outcomes, neurological disorders, and age-related 

changes in brain activity (Grundy et al., 2017; Sortica da Costa et al., 2017). 

 

1.1.5 Intricacy of brain functions and neural activities 
The complexity of brain functions and neural activities is a multifaceted area of 

study that delves into the complex dynamics of the brain's operational 

mechanisms. Measures such as Neural Complexity aim to capture the interplay 

between functionally segregated and integrated neuronal groups, providing 

insights into different levels of consciousness (Agarwal et al., 2019) and 

encompass the fundamental aspects of brain organization, resolving conflicting 

views on local versus global brain functions (Tononi et al., 1994). Correlated 
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spontaneous activity among neurons suggests a universal principle underlying the 

self-organization of complex neural circuits, although the precise mechanisms 

and functional roles remain unknown (Masumura et al., n.d.). The 

synchronization of neurons within the cerebral cortex forms the basis for various 

neurobiological processes closely linked to brain function and diseases (Uhlhaas 

et al., 2009).  

 

1.1.6 Non-linear and Dynamic Nature of Brain Signals 
Brain signals' dynamic and non-linear nature is a captivating area of research that 

delves into the intricate and complex dynamics of neural activities. Brain signals 

exhibit scale-free properties with complex spatiotemporal structures modulated 

by task performance (He, 2011). The variability of brain signals, stemming from 

their non-linear nature, is characterized by dynamical non-stationarity, reflecting 

the dynamic non-linear properties of the brain (Vakorin et al., 2013). Non-linear 

bistable dynamical models have been utilized to analyze EEG signals, 

underscoring the significance of non-linear dynamics in signal discrimination 

(Ying et al., 2015). The study of intraregional temporal features in fMRI data 

reveals the broadened dynamic range of brain signals when synchronized with 

other brain regions (B. Wang et al., 2023). The spectral properties of the temporal 

evolution of brain network structure unveil the dynamic nature of brain networks 

and their spectral fluctuation properties (Keilholz et al., 2020).  

 

1.1.7 Challenges in Interpreting Brain Signals 
The interpretation of brain signals can be highly challenging due to the 

complexity and dynamic nature of neural activity, making it difficult to 

extract meaningful information and draw accurate conclusions. Understanding 

the interplay between neural dynamics, hemodynamics, and information 

processing is crucial for effectively interpreting brain signals (Moore & Cao, 

2008). Challenges in interpreting brain signals are evident in user control with 
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Brain-Computer Interfaces (BCIs) due to noisy and erratic low-dimensional 

motion commands resulting from the difficulty in decoding neural activity 

(Muelling et al., 2015). The surrounding environment also impacts the brain, 

adding more complexity to extracting information from brain signals. This is 

crucial when deciding the experiment's setup and, even in real-life scenarios 

where subjects simultaneously deal with multiple stimuli.  

 

1.2 Importance of Exploring and Analyzing Brain Signals 

1.2.1 Scientific and Medical Significance 
Exploring and analyzing brain signals is of paramount scientific and medical 

significance due to the wealth of information they carry about brain function and 

health. Brain signals, such as EEG and MEG, provide insights into cognitive 

processes and neurological disorders like epilepsy, Alzheimer's, and Parkinson's 

disease, and even aid in understanding brain complexity with applications in 

brain-computer interfaces and machine learning. Techniques like signal 

processing, feature extraction, connectivity analysis, and classification models 

play crucial roles in interpreting brain signals accurately. Brain signal analysis 

enhances our understanding of brain dynamics and opens avenues for medical 

diagnosis, treatment, and cognitive research. 

 

1.2.2 Understanding brain function and cognitive processes 
Studies have shown that brain networks significantly support complex cognitive 

tasks (Downar et al., 2016). These networks, including default-mode networks 

and others, are involved in various functions like memory, executive functioning, 

and sensory processing (Damoiseaux et al., 2006). Brain signal analysis can also 

reveal the neural circuits responsible for decision-making, risk evaluation, and 

intention to act (Rocha et al., 2013). Investigating brain signals is essential for 

unraveling the intricacies of brain function and cognitive processes. 
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1.2.3 Applications in diagnosing neurological disorders 
Analyzing brain signals is crucial in diagnosing neurological disorders. 

Techniques such as EEG signal analysis, machine learning, and connectivity 

analysis have been utilized to identify conditions like epilepsy, Alzheimer's, 

Parkinson's disease, and depression (Alonso et al., 2011; Alturki et al., 2020; 

Guerrero et al., 2021). Research has demonstrated that EEG data can offer 

valuable insights into brain disorders, facilitating early diagnosis and treatment 

(Fred et al., 2022). Moreover, applicating advanced technologies like neural 

activity recordings and high-density electrode arrays presents promising 

opportunities to enhance the accuracy and efficiency of diagnosing neurological 

conditions (Du et al., 2019). By utilizing these analytical methods and state-of-

the-art technologies, healthcare professionals can improve their ability to identify 

and manage various neurological disorders effectively. 

 

1.2.4 Enhancements in brain-machine interfaces 
Brain-machine interface enhancement through brain signal analysis has 

revolutionized neuroprosthetic applications, aiding patients with brain injuries 

and neurodegenerative diseases (Andersen et al., 2014). By utilizing closed-loop 

brain-machine interfaces, individuals can control external devices through neural 

signals, enabling movement even for paralyzed individuals (Serino et al., 2022). 

Also, the integration of spiking neural networks and machine learning techniques 

has shown promise in enhancing brain-machine interface technology due to their 

low power cost and biological similarity (Taeckens et al., 2023; Waytowich et 

al., 2016). 

 

1.2.5 Technological and Research Impacts 
Brain signals analysis intensely promoted technological and research 

advancements. The development of implantable neural probes and advanced 

electrode materials has significantly improved the accuracy and efficiency of 
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brain-machine interfaces (Choi et al., 2018; Wu et al., 2021). Initiatives like the 

BRAIN Initiative aim to advance innovative neurotechnologies to understand 

brain function dynamically, integrating neuronal and circuit activity over time 

and space (Bargmann & Newsome, 2014). These advancements have led to 

developing novel tools and technologies that provide detailed insights into neural 

circuits and brain function, fostering interdisciplinary collaborations and 

accelerating neuroscience discoveries (Rainey & Erden, 2020). 

  

1.2.6 Advancements in neurotechnology 
The deep analysis of brain signals has led to groundbreaking developments in 

cognitive augmentation, neurostimulation therapies, brain-computer interfaces, 

and neural prostheses (Cinel et al., 2019; Edwards et al., 2017; Gilja et al., 2012; 

Khan & Aziz, 2019). Additionally, integrating artificial intelligence with brain-

computer interfaces has shown remarkable clinical success and expanded the 

capabilities of neurophysiological discoveries (X. Zhang et al., 2020). The 

advancements in neurotechnology are poised to revolutionize brain repair 

treatments, enhance human cognitive abilities, and shape the future of 

neuroscience research and applications. 

 

1.2.7 Contribution to fields like artificial intelligence and robotics 
The analysis of brain signals has significantly contributed to the fields of 

artificial intelligence and robotics. Integrating brain signals with artificial 

intelligence technologies has led to innovative applications, such as autonomous 

behavior, perceptual categorization, and conditioning in brain-based devices 

(Krichmar & Edelman, 2002). Advancements in neurotechnology have also 

enabled EEG signals to correct robot mistakes in real-time, enhancing the 

efficiency and accuracy of robotic tasks (Salazar-Gomez et al., 2017). The 

synergy between brain signal analysis and artificial intelligence has paved the 

way for transformative applications in robotics, offering new possibilities for 
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human-robot interaction and intelligent automation. 

 

1.3 Methods of Recording Brain Signals 

1.3.1 EEG  
EEG is a non-invasive electrophysiological method that records electric 

potentials in synchronously active neurons. EEG signals are often recorded 

through electrodes, usually made of silver and silver chloride, positioned on the 

scalp. EEG has significantly been used in clinical applications such as mental 

disorders diagnostics, sleep staging, and anesthesia monitoring, as well as in 

research settings, as a powerful toll for human brain function comprehension 

(Bleichner & Debener, 2017). 

 

1.3.2 How EEG works 
EEG records electrical brain activity by detecting brain wave frequencies and 

patterns through silver and silver chloride electrodes placed on the scalp. The 

process involves capturing different brain wave patterns and frequencies, 

providing insights into brain function and activity. EEG acquisition systems 

typically include scalp electrodes, amplifiers, converters, and potentially wireless 

transmission modules to capture and process brain electrical signals (Astrakas et 

al., 2012). The electrodes are usually embedded in electrode caps, often 

following international standards for the electrodes position in the scalp to ensure 

comparable and consistent results among studies, as the 10-20 international 

system, shown in Fig. 2, which is based on anatomical landmarks on the scalp. 

The distances between adjacent electrodes are 10% or 20% of the skull's total 

distance, front to back or left to right. Specifically, 10% is used from the 

anatomical landmarks and the first electrode in that direction, and 20% is used 

between the other electrodes. Other electrode layouts have been used following 

this same principle, shortening distances to efficiently capture spatial features, as 

in 10-10 or 10-5 systems, following the same logic and increasing the number of 



 
 

16 
  

electrodes used. The signals acquired do not record absolute values but are 

relative. Two kinds of montage are used for acquiring signals: bipolar and 

referential. In bipolar montages, the system records the potential difference 

between two adjacent electrodes, with channels arranged in “chains” that can be 

longitudinal and transverse.  These are especially useful for analyzing highly 

localized discharges and often present fewer artifacts than the referential. On the 

other hand, the referential uses one or two electrodes as a reference for all the 

others. The most common choice for reference placement is on the mastoid 

process, where, ideally, no activity can be recorded. Multiple reference electrodes 

can be useful in averaging their recorded values to overcome limitations such as 

noise, which would be picked up by one single electrode (Acharya & Acharya, 2019).   

 

 
Figure 2: 10-20 International System for electrodes placement on the scalp. 

 

1.3.3 Advantages and limitations of EEG 
The main advantages of EEG include its noninvasive nature, portability, cost-

effectiveness, and high temporal resolution compared to other neuroimaging 
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techniques (Eom, 2023). The limitations of EEG include vulnerability to artifacts, 

the need for skilled interpretation, and potentially reduced detection with a 

reduced number of channels (Schultz et al., 2021). Other limitations include its 

current usage primarily in laboratory environments, restricting its application in 

real-world settings. However, some attempts to make it fit for a real-world 

scenario are currently being developed, such as semi-dry electrodes (Fiedler et 

al., 2015). Also, a significant limitation is that it can generally capture only one-

third of the cerebral cortex due to spatial limitations, limiting brain activity 

coverage (Hasan & Tatum, 2021). 

 

1.3.4 Other Recording Techniques 
Among other recording techniques, the most relevant ones that need to be 

mentioned are Magnetoencephalography (MEG) and functional Magnetic 

Resonance Imaging (fMRI): 

 

• MEG  

MEG is a noninvasive functional imaging technique that measures the magnetic 

fields generated by electrical currents in the brain. Similar to EEG in multiple 

aspects, it proved to be especially useful in detecting areas of normal brain 

functions or dysfunctions (Hammond & Katta-Charles, 2016). 

  

• fMRI  

fMRI is a powerful, noninvasive neuroimaging technique that measures brain 

activity by detecting changes in blood oxygenation levels. It has significantly 

contributed to our understanding of brain function and has become popular in 

both clinical and research settings due to its ability to provide unique insights into 

brain functions. fMRI's capability of observing time-varying changes in brain 

metabolism has proven fundamental in many applications ranging from 

pharmacological efficacy to cognitive neuroscience investigations (Glover, 
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2011). 

 

1.3.5 Comparison of different recording methods 
EEG, MEG, and fMRI are powerful neuroimaging techniques that offer unique 

advantages and applications in studying brain function. EEG provides high 

temporal resolution, making it suitable for capturing rapid neural processes. 

MEG offers high spatial resolution and is valuable for precise localization of 

brain activity. fMRI, on the other hand, provides detailed spatial information 

about changes in brain metabolism. EEG and MEG techniques both rely on 

recording the brain's electric activity from electrodes placed on the scalp, and it 

appears they even hold redundant information for some applications  (Murphy & 

Poesio, 2010). Moreover, fMRI seems to achieve better results in most of the 

applications thanks to the possibility of creating a tridimensional map of the 

activity in the brain, overcoming the limitations of EEG and MEG (Rybar & 

Daly, 2022), while on the other hand needing an expensive and bulky machinery 

to acquire the signals, making it available only in specific locations, such as 

hospitals. 

 

1.4 Signal Preprocessing after Recording Brain Signals 

1.4.1 Importance of Signal Preprocessing 
Signal preprocessing is a critical step in brain signal analysis. Preprocessing 

techniques such as filtering, denoising, and artifact removal are essential for 

enhancing the quality of brain signals (Bashashati et al., 2007; Ergün & Aydemir, 

2020). Proper signal preprocessing significantly enhances the accuracy and 

reliability of brain signal analysis in various applications, including BCI systems 

and neurophysiological investigations. 

 

1.4.2 Enhancing signal quality for better analysis 
Enhancing the quality of brain signals for better analysis involves employing 
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various preprocessing techniques. Artifacts and noise removal play a crucial role 

in enhancing the quality of brain signal data by reducing interference from 

sources like eye blinks, EOG artifacts, EMG artifacts, and other noise sources, 

thereby improving the accuracy and reliability of brain signal analysis. 

Techniques such as spectral subtraction denoising and adaptive noise removal 

can effectively improve SNR (Gonzalez-Moreno et al., 2014; Kadah, 2004). 

These preprocessing steps play a vital role in improving the quality of brain 

signals for robust analysis in various applications.  

 

1.4.3 Common Preprocessing Steps 
Common preprocessing steps for brain signals typically include methods such as 

ensemble empirical mode decomposition, adaptive noise cancellation, deep 

learning denoising, and wavelet-based artifact identification (Adib & Cretu, 

2013; Lin et al., 2018; Mashhadi et al., 2020; Roy et al., 2017). Employing 

methods like independent component analysis (ICA) and spatial filtering further 

enhances signal-to-noise ratio (SNR) by reducing noise interference (Lindquist et 

al., 2019; Um et al., 2019). Power line frequency removal, as well as this 

frequency's harmonics) is often performed to clean the data from further 

interferences. For some applications meaningful information is held within a 

specific bandwidth; therefore, high-pass, low-pass, and band-pass filters can be 

extremely useful, especially in reducing the computational load required for the 

analysis. These preprocessing steps are essential for enhancing the signal-to-

noise ratio (SNR) and ensuring the accuracy of subsequent analyses. 

 

• Filtering  

Frequency filters commonly used in brain signal analysis include band-pass 

filtering at specific frequency ranges, low-pass filtering to eliminate high-

frequency noise, and high-pass filtering to remove low-frequency interference. 

These filtering methods are crucial for preprocessing brain signals to focus on the 
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relevant frequency components for accurate analysis (Yan et al., 2023). 

 

• Artifact removal (eye blinks, muscle activity) 

Artifact removal in brain signal analysis is crucial to ensure data accuracy, as the 

signal would be otherwise heavily corrupted by these sources, as shown in Fig. 3. 

Various methods have been proposed for artifact removal, such as using 

Independent Component Analysis (ICA) and Multivariate Empirical Mode 

Decomposition (MEMD) to eliminate EOG artifacts from multichannel EEG 

signals (G. Wang et al., 2016). Additionally, techniques like Singular Spectrum 

Analysis (SSA) combined with Independent Component Analysis (ICA) have 

been employed to remove diverse artifacts simultaneously from single-channel 

EEG signals (Cheng et al., 2019). These methods are designed to eliminate 

artifacts while preserving the underlying brain signals, thereby ensuring the 

quality and reliability of EEG data for further analysis (Junfeng Gao et al., 2010). 

 

 
Figure 3: EEG and artifacts, the effect on the observed EEG signal (Kanoga & Mitsukura, 2017). 

 

 

• Normalization and standardization 

Normalization and standardization in brain signal analysis ensure data 

comparability and reliability. Quantitative EEG analysis offers a systematic 

approach to characterizing brain functions and dysfunctions, providing detailed 

insights into brain activity with standardized protocols (Billeci et al., 2013). 
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Improved normalization techniques using cohort-specific templates have been 

shown to enhance accuracy in normalizing lesioned brains compared to standard 

methods, aiding in precise brain signal analysis (Pappas et al., 2021). 

 

1.4.4 Software tools used in preprocessing 
The preprocessing of brain signals can be implemented using specific software 

tools. Tools like BrainNet Viewer, EEGLAB, and MNE-Python provide 

visualization and analysis capabilities for brain connectomics and MEG/EEG 

data. The BrainNet Viewer tool is commonly used for visualizing brain networks 

and connectivity (Xia et al., 2013). EEGLAB is an open-source toolbox for 

analyzing single-trial EEG dynamics, including ICA (Delorme & Makeig, 2004). 

On the other hand, MNE software provides comprehensive analysis tools for 

processing MEG and EEG data, covering preprocessing, source estimation, time-

frequency analysis, statistical analysis, and functional connectivity estimation 

(Gramfort et al., 2013). 

 

1.4.5 Algorithms commonly employed 
The algorithms commonly employed for preprocessing in brain signal analysis 

include time domain filtering, blind source separation, and time-frequency 

domain analysis methods (Liu et al., 2017). Other techniques include 

simultaneous low-pass filtering and total variation denoising for EEG signals 

(Nimmy John et al., 2018). These algorithms are crucial in preparing brain signal 

data for further analysis and interpretation. 

 

1.5 Feature Extraction in Brain Signal Analysis 

1.5.1 Importance of Feature Extraction 
Feature extraction is a critical step in brain signal analysis, fundamental in 

converting raw brain signals into meaningful information. Extracted features from 

EEG signals are vital for distinguishing between different brain states during tasks 
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(Tang et al., 2022). For example, in motor imagery tasks, these features capture 

important signal characteristics necessary for decoding voluntary movements and 

classifying cognitive states (T. Li et al., 2018). 

 

1.5.2 Reducing data dimensionality 
A fundamental aspect of feature extraction in brain signals is data 

dimensionality reduction. Reducing data dimensionality is essential for efficient 

processing and interpretation of complex data. Neural signals are naturally 

high-dimensional signals. The ability to extract exclusively meaningful 

information from the raw signals not only tends to increase the decoding 

accuracy but also greatly reduces the computational costs of the decoding 

process (Dadi et al., 2020). 

  

1.5.3 Enhancing interpretability and analysis 
As mentioned above, feature extraction also dramatically contributes to 

complex signals, such as brain signals, by enhancing decoding accuracy and 

interpretability (Dadi et al., 2020). Again, feature extraction is a fundamental 

step in brain signal analysis because of its many positive effects on the 

subsequent analysis steps. 

 

1.5.4 Types of Features in Brain Signals 
The features extractable from brain signals are many and have deep 

differences and meanings among each other, but most of them can be 

grouped into 3 classes or types: time-domain features, frequency domain 

features, and time-frequency domain features. 

  

• Time-domain features 

Extracted directly from the time series data, these features, such as mean, 

variance, skewness, kurtosis, standard deviation, zero-crossing, and peak-to-peak 
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voltage, are directly extracted from the raw signal, providing valuable insights 

into signal characteristics and dynamics (Bang et al., 2013). Moreover, time-

domain features can assess signal complexity through metrics like sample 

entropy, which reflects the irregularity and predictability of brain signals 

(Delgado-Bonal & Marshak, 2019). Overall, time-domain features in brain 

signals provide valuable information for various applications, including 

diagnosis, rehabilitation, and the comprehension of brain function. 

 

• Frequency-domain features 

Extracted from brain signals, these features offer insights into their frequency 

characteristics, providing valuable information for analysis and interpretation. 

The first steps most used for calculating frequency-domain features are the power 

spectral density (PSD) or a Fourier transform, like the Fast Fourier transform 

(FTT). Other than statistical features like mean, median, and variance, an 

important frequency-domain feature is the relative power at specific bandwidths 

(Stancin et al., 2021). These bandwidths have been widely studied, and the whole 

frequency content of brain signals has been divided into five bandwidths: 

- δ (0.5 - 3.5 Hz): High-amplitude waves usually associated with the 

NREM sleep phase, also occur during mental calculation tasks 

corresponding to “internal concentration” (Fernfindez et al., 1995), 

 

- θ (3.5 - 7.5 Hz): Theta waves are typically associated with deep relaxation 

and meditation. Theta waves are also thought to play a role in memory 

consolidation, specifically during the transition between wakefulness and 

sleep, in emotional processing and regulation, and in the navigation of 

different types of memory (Karakaş, 2020; Lagopoulos et al., 2009), 

- α (7.5 – 13.5 Hz): Alpha waves represent the dominant oscillations in 

human brain activity and reflect a state of relaxed wakefulness. They have 

been shown to promote creativity and are linked with attention regulation 
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and sensory processing (Fink & Benedek, 2014; Foxe & Snyder, 2011), 

 

- β (13.5 – 30 Hz): Beta waves associated with active thinking are closely 

linked to the state of attention. Beta activity can increase in case of stress 

or anxious situations (Díaz et al., 2019; Hendrayana et al., 2020), 

 

- γ (30 – 100 Hz): Gamma waves have been observed during tasks 

requiring high cognitive processing and attention (Koelewijn et al., 2013). 

They appear to play a role in controlling synchronization between 

different brain regions, contributing to various complex processes such as 

movement, perception, and memory (Guan et al., 2022). 

 

Frequency domain features are essential for tasks like emotion recognition, fault 

diagnosis, and EEG signal classification, enabling a comprehensive analysis of 

brain signals in various applications. 

 

• Time-frequency domain features 

The analysis of brain signals simultaneously in the temporal and frequency 

domains is a powerful tool for observing the change in frequency over time. 

Short-time Fourier transform (STFT) and Wavelet transform are the main 

functions used to calculate these features (Stancin et al., 2021).  

 

1.5.5 Methods for Extracting Features 
Different methods are applied to perform feature extraction of different 

features from raw data. Most of these methods can be categorized into one of 

the following methods groups: statistical methods, machine learning 

techniques, and entropy-based methods. 
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• Statistical methods 

Statistical methods, used for both time-domain and frequency-domain features, 

encompass extracting features based on statistical properties and methods to 

characterize the data utilizing statistical characteristics like mean, variance, 

skewness, kurtosis, standard deviation, and more (Stancin et al., 2021).  

 

• Machine learning techniques 

Machine learning techniques for feature extraction use algorithms and models 

that can automatically identify and extract meaningful patterns from the raw 

data. These techniques are especially suitable for handling complex, high-

dimensional data such as brain signals. Among the most used techniques, we 

can mention Principal Component Analysis (PCA) and ICA, machine 

learning algorithms that divide the data into different components based on 

the most significant variance and source components, respectively, as well as 

Convolutional Neural Networks (CNNs), that aim at extracting more abstract 

features from the data through the application of multiple convolutional 

layers, and Recurrent Neural Networks (RNNs), particularly useful to capture 

temporal dependencies in sequential time-series data by maintaining a 

memory of previous inputs (Jogin et al., 2018; Keren & Schuller, 2016; Khalid, 

2014). 

 

• Entropy-based methods 

Entropy-based methods quantify the complexity, irregularity and 

unpredictability of a time series of data. These methods have been widely 

used to analyze dynamic and non-linear data. Some examples of entropy-

based methods are Shannon's entropy, which quantifies the amount of 

information held in stochastic data, and spectral entropy, which quantifies the 

complexity or randomness of a signal in the frequency domain (Garcia-

González et al., 2023; A. Zhang et al., 2008). 
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In the next chapter, we will explore semantic features, one of the most important aspects 

of brain signals. Understanding these features is crucial for advancing our brain-to-brain 

communication, artificial intelligence, and cognitive neuroscience knowledge. 
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Chapter 2: Semantic Feature Extraction from EEG 
Signals 
2.1 Introduction to Semantic Features in EEG Signals 
Semantic features are the essential components of the meaning that a lexical item, 

like a word or a sentence, holds. These components represent the characteristics of a 

specific term or sentence and allow us to differentiate meanings and define 

relationships between different lexical items. 

 

2.1.1 Definition of semantic features in the context of brain signals 

 Semantic features in the brain refer to the distinct attributes and characteristics 

that our brain uses to encode and represent meaning in language and concepts. 

These features are derived from the patterns of neural activity observed during 

cognitive processes involving understanding, processing, and generating 

language. By analyzing these patterns, researchers can identify specific neural 

correlates associated with different semantic elements, thereby shedding light on 

how the brain organizes and accesses meaning. This understanding is crucial for 

advancements in brain-to-brain communication, artificial intelligence, and 

cognitive neuroscience (Fuseda et al., 2022; Gao et al., 2019). 

 

2.1.2 Importance and Potential Applications 
The study of semantic features in brain signals is a burgeoning field with 

great potential to unravel how our brain represents concepts and information. 

This field of study can provide fundamental insights into how the brain not 

only represents but also organizes and retrieves semantic information to 

develop better models of our cognition and memory systems and create better 

maps of our brain through the identification of the brain regions involved in 

semantic features processing, as well as increasing our ability to diagnose and 
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treat language-related disorders. The potential applications of semantic 

features are countless and range from education and learning systems based 

on individual neural responses to mental health diagnosis and therapy in 

atypical semantic-related conditions such as aphasia, to neuromarketing, to 

the great improvement of BCIs and neurorehabilitation technologies, to 

artificial intelligence, and to the creation of technologies that would allow us 

to have direct brain-to-brain communication. 

 

2.1.3 Current Research Landscape 
The current research landscape for semantic features in brain signals is growing 

and encompasses various studies focusing on decoding semantic information 

from neural activity. Studies have utilized multivariate pattern analysis and 

representational similarity analysis to investigate how the brain represents 

semantic content (Liuzzi et al., 2020). Research has shown that semantic features 

are retained as neural oscillations and play a role in memorization processes 

(Noguchi, 2022). Additionally, efforts have been made to map semantic 

representations in the brain, linking concepts with specific brain areas based on 

shared semantic features (L. Zhang et al., 2019). These studies highlight the 

ongoing exploration of how semantic features are processed and represented in 

the brain, shedding light on the intricate mechanisms underlying semantic 

cognition. 

Existing research on semantic features in brain signals highlights how, with 

time, our comprehension of how our brain holds semantic features 

significantly improves. To assess the hypothesis under which semantic 

features are represented with specific patterns of neural activations, 

researchers succeeded in classifying the brain signals from stimuli given 

through different modalities, such as visual and auditory (Simanova et al., 

2014). Another similar study was performed between visual perception and 

imagery mechanisms as stimulus modality, suggesting that the semantic 
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features could be best observed in the parieto-occipital cortex and the α 

frequency band (Dijkstra et al., 2019; Xie et al., 2020).  

Additionally, attempts have been made to predict neural activations occurring 

from stimuli given in a language by prior analysis of the neural activity in 

reaction to the same stimuli provided in a different but similar origin 

language (Van de Putte et al., 2018).  These studies confirm that while part of 

the neural activation is due to the stimuli modality, which elicits different 

neural processing pathways, part is linked to the semantic concept.  

Studies have shown that EEG responses can reflect the retrieval of lexical semantic 

information (Bastiaansen et al., 2008), the integration of semantic information 

during language comprehension (Sarett et al., 2023), and predict emotional states 

(Deniz et al., 2019; Gao et al., 2019). Additionally, both spatial and temporal 

analysis of EEG signals have been shown to provide crucial information (Chan et al., 

2011).  

 

While some efforts have been made, many aspects of semantic features still 

need to be discovered. The techniques and methods used until now shed light 

on many truths, but simultaneously realized the difficulties on this topic. We 

know that semantic processing involves multiple brain regions, but the exact 

interaction mechanism between them remains largely unclear. The 

representation of semantic features also presents a vital inter-subject and even 

intra-variability due to different factors that can be both environmental and 

depend on the personal history and experience of each subject, even, for 

example, their sex and age. 

 

Therefore, exploring semantic features is of the utmost importance and will 

require many studies, each focusing on different aspects and possible 

approaches.  
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This section will focus on the possibility of semantic feature extraction from 

EEG signals, one of the most versatile and cost-effective brain signal 

acquisition technologies that could be the key to implementing many real-life 

applications. 

 

2.2 EEG Relevancy towards Semantic Feature Extraction 
EEG signals possess several properties that make them particularly relevant for 

semantic feature extraction. These properties include: 

• High Temporal Resolution: EEG signals are characterized by their high 

temporal resolution, typically milliseconds. This allows for the precise 

tracking of neural dynamics as they unfold in real time, making it possible 

to capture rapid changes in brain activity associated with semantic 

processing. 

 

• Frequency Band Analysis: EEG signals can be decomposed into different 

frequency bands associated with distinct cognitive and physiological 

states. For example, Delta (0.5-3.5 Hz) is often linked with deep sleep and 

unconscious processes; Theta (4-7 Hz) is associated with drowsiness, 

meditation, and memory encoding; Alpha (8-13 Hz) is related to relaxed 

wakefulness and inhibition control; Beta (14-30 Hz) relates to active 

thinking, focus, and alertness; and Gamma (>30 Hz) is tied to high-level 

cognitive functions, such as perception and consciousness. Each of these 

bands can provide different insights into the neural correlates of semantic 

processing, helping to differentiate between various semantic features 

based on their frequency-specific activity. 

 

 

• Spatial Resolution: Although not as high as some other neuroimaging 
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techniques like fMRI, EEG provides adequate spatial resolution using 

multiple electrodes placed on the scalp. This spatial distribution allows 

researchers to infer the involvement of different cortical regions in 

semantic processing. Advances in source localization techniques, such as 

Low-Resolution Brain Electromagnetic Tomography (LORETA), have 

improved the spatial interpretability of EEG data. 

 

• Non-Invasiveness and Practicality: EEG is a non-invasive method used in 

various settings, including clinical, research, and everyday environments. 

Its portability and relatively low cost make it accessible for widespread 

use, facilitating large-scale studies on semantic feature extraction. 

 

 

• ERPs: EEG can measure ERPs, which are time-locked responses to 

specific stimuli. ERPs such as the N400 and P600 components are 

particularly relevant to semantic processing. The N400 is associated with 

meaning processing and is sensitive to the semantic congruence of words 

within a context, while the P600 is linked to syntactic processing and 

reanalysis. 

 

• Neural Oscillations and Synchronization: EEG allows the study of neural 

oscillations and their synchronization across different brain regions. 

Oscillatory activities have been implicated in binding semantic features 

and integrating information across distributed neural networks, especially 

in the theta and gamma bands. 

 

• Neuroplasticity and Learning: EEG can capture changes in brain activity 

associated with learning and neuroplasticity. As semantic knowledge is 

acquired and refined, EEG can track how neural representations of 
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semantic features evolve over time, providing insights into the dynamic 

nature of semantic processing. 

 

By leveraging these properties, researchers can employ EEG to decode the neural 

underpinnings of semantic features, enhancing our understanding of how the brain 

processes, organizes and retrieves semantic information. 

 

2.3 The Concept of Entropy in Signal processing 
Entropy is a fundamental concept in thermodynamics and information theory, representing 

a system's degree of disorder or randomness. In the context of EEG signals, entropy 

represents a measure of irregularity or unpredictability in the signal, offering valuable 

insights into the underlying brain activity. Various entropy measures can be computed from 

EEG signals to capture distinct aspects of signal complexity (Sharma et al., 2015). Among 

the many entropy measures used, some of the most important ones are Shannon entropy, 

spectral entropy, approximate entropy, sample entropy, permutation entropy, and multiscale 

entropy.  

It's important to note that rigorous data preprocessing is always necessary to obtain 

accurate and meaningful entropy measures. Preprocessing includes power-line noise 

removal via notch filtering to remove power-line frequency and its harmonics. A high-pass 

filter is often applied to EEG signals to filter out frequencies below 0.5 Hz to remove low-

frequency drifts due to head movements, wires, and scalp perspiration. As entropy 

measures are prone to numerical instability with very small values, a normalization or 

standardization step is crucial for their correct implementation. A low-pass filter is often 

applied to keep meaningful information while rejecting mainly artifacts and noise. A high-

pass filter with a cut-off frequency of 2 Hz can be applied to obtain high-quality ICA 

decomposition for artifact removal. ICA efficiently removes artifacts such as blinks, eye 

movements, and muscle activity. Eye components can be identified with other tools to 

obtain epochs around EOG events, which are then rejected by the ICA (Wilson et al., 2023).  
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2.3.1 Entropy Measures in EEG Analysis 
Among the various entropy methods available, each possessing unique strengths and 

weaknesses, this study will concentrate on Shannon entropy, spectral entropy, sample 

entropy, permutation entropy, and multiscale entropy. A brief overview of each of these 

entropy measures will be provided: 

• Shannon Entropy (H): Introduced by Claude Shannon, Shannon entropy quantifies 

the average uncertainty in a set of possible outcomes. For EEG signals, Shannon 

entropy can measure the unpredictability of neural activity, offering insights into the 

brain's information processing capacity. The implementation for Shannon entropy is 

typically expressed as: 

 

𝐻(𝑥) =  − ∑ 𝑝(𝑥) ∗ 𝑙𝑜𝑔2𝑝(𝑥)𝑥∈𝑋                       (1) 

 

where: 

- H(x) denotes the entropy of the source “𝑥”, 

- 𝑥 is the set of all the possible outcomes of the random variable, 

- p(x) is the probability mass function, which represents the probability 

of each outcome occurring, 

- the negative sign is used to ensure the obtained value is always non-

negative. 

This formula quantifies the average amount of information a stochastic source 

produces, providing a measure of its predictability. 

Shannon entropy has found numerous applications in many different fields. In the 

EEG context, it has been applied in the diagnosis and classification of neurological 
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disorders, such as in Alzheimer's disease research, underscoring the significance of 

its measures, or in the diagnosis of autism spectrum disorder (Abásolo et al., 2006; 

Djemal et al., 2017). It has even been used and proven crucial to distinguish 

between focal and non-focal EEG signals (Sharma et al., 2015). 

• Spectral Entropy (SE): Derived from the signal's power spectral density, it measures 

the distribution of power across frequency bands, indicating the complexity of the 

frequency components of EEG signals. The spectral entropy value indicates how 

evenly the power is distributed across the frequency spectrum, with higher entropy 

values suggesting a more uniform distribution and lower entropy values indicating a 

more concentrated power distribution within the signal.  

The implementation for spectral entropy consists of calculating the entropy of a 

signal's power spectral density (PSD). The formula can be expressed as: 

 

                                        𝑆𝐸 =  − ∑ (
𝑃(𝑓𝑖)

𝑃𝑡𝑜𝑡𝑎𝑙
)𝑛

𝑖=1 log (
𝑃(𝑓𝑖)

𝑃𝑡𝑜𝑡𝑎𝑙
)                           (2) 

 

where: 

- 𝑆𝐸 represents the spectral entropy, 

- 𝑃(𝑓𝑖) is the power at frequency 𝑓𝑖, 

- 𝑃𝑡𝑜𝑡𝑎𝑙 is the total power of the signal, 

- 𝑛 is the total number of frequency bins. 

Various studies have leveraged spectral entropy in different EEG applications. It has 

been suggested as a biomarker for altered function in conditions like schizophrenia 

and bipolar disorder, where abnormalities in entropy modulation of the EEG signal 

have been identified (Molina et al., 2020). Spectral entropy has also been employed 

in classifying EEG suppression to assess the risk of sudden unexpected death in 



 
 

35 
  

epilepsy (SUDEP) (Mier et al., 2020). Moreover, spectral entropy has been applied 

in identifying brain regions affected by bipolar disorder, demonstrating its utility in 

highlighting impaired brain regions in such conditions (Khaleghi et al., 2019). 

 

• Sample Entropy (SampEn): An improvement over approximate entropy, Sample 

Entropy is less dependent on data length and excludes self-matches, making it more 

reliable for analyzing EEG signals. Sample entropy can be considered as an 

evolution of approximate entropy. Used to quantify the complexity and 

unpredictability of time-series data, same as approximate entropy, it offers 

numerous advantages. Sample entropy has also been found to be more sensitive to 

EEG phase changes, exhibiting higher relative separation rates than other entropy 

measures, including approximate entropy (Khaleghi et al., 2019; Y. Li et al., 2022).  

The implementation for sample entropy involves calculating the negative natural 

logarithm of the conditional probability that two sequences of data, each of length 

"𝑚" , similar within a tolerance "𝑟" , will remain similar when their length is 

increased by one data point. The formula for sample entropy can be expressed as: 

 

                                                𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟) = −𝑙𝑛 (
𝐴(𝑚+1,𝑟)

𝐴(𝑚,𝑟)
)                          (3) 

 

where: 

- 𝑆𝑎𝑚𝑝𝐸𝑛 represents the sample entropy, 

- 𝑚 is the length of the sequences to be compared, 

- 𝑟 is the tolerance parameter that defines similarity between data points, 

- 𝐴(𝑚, 𝑟) is the number of similar sequences of length 𝑚 with tolerance 𝑟. 
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Studies have demonstrated the efficacy and potential of sample entropy for many 

applications, such as capturing variations in brain activity related to attention or as 

distinguishing patterns linked to epilepsy. Many studies emphasized sample 

entropy's versatility and effectiveness in extracting valuable information from EEG 

signals (Song & Liò, 2010; P.-S. Wang et al., 2014). 

• Permutation Entropy (PE): Assesses the complexity of a time series based on the 

order of its values, capturing non-linear and dynamic properties of EEG signals. It 

quantifies the irregularity and predictability of a time series based on the order in 

which values appear. Higher permutation entropy values indicate greater complexity 

and randomness in the time series, while lower values suggest more regular and 

predictable patterns (Bandt & Pompe, 2002). Compared to others, permutation 

entropy shows simplicity and efficiency, with a notable robustness to noise. 

Additionally, it can capture non-linear and non-stationary characteristics of time 

series that other more traditional entropy measures might miss. 

The implementation for permutation entropy involves calculating the Shannon 

entropy of the probability distribution of ordinal patterns in the time series. The 

formula can be expressed as: 

 

     𝑃𝐸 = − ∑ 𝑝𝑖log (𝑝𝑖)𝑚!
𝑖=1                                     (4) 

 

where: 

- 𝑃𝐸 represents the permutation entropy, 

- 𝑝(𝑥𝑖) is the probability of occurrence of the "𝑖"th permutation pattern in 

the time series, 

- 𝑚  is the embedding dimension, 
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- The sum is taken over all 𝑚!  possible permutations of the signal 

components 

Permutation entropy has been widely used to analyze EEG signals across various 

fields, such as sleep stages, anesthesia, epilepsy, and meditation (Nicolaou & 

Georgiou, 2011; Zhu et al., 2017). 

 

• Multiscale Entropy (MSE): Evaluates the complexity of time-series data across 

multiple time scales, providing a more comprehensive understanding of signal 

dynamics. The specific implementation for multiscale entropy may vary depending 

on the approach used, such as multiscale sample entropy or multiscale dispersion 

entropy (Rossini et al., 2020). 

 

The implementation of Multiscale entropy is based on the specific approach, as it 

calculates a different entropy, such as Shannon or sample entropy, at different time 

scale. It is implemented, for a generic entropy En, as: 

 

                                                   𝑀𝑆𝐸(𝜏) = 𝐸𝑁(𝑦(𝜏))                                    (5) 

where: 

- 𝑀𝑆𝐸 represents the multiscale entropy, 

- 𝜏  is the temporal scale factor that defines the length of the non-

overlapping windows, 

- 𝐸𝑁  is the generic entropy method implemented for the specific 

application of multiscale entropy,  

- 𝑦(𝜏) is the “Construct Coarse-Grained Time Series, it is a new time series 

of data created by averaging the data points within non-overlapping 

windows of data points, defined as: 
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𝑦𝑗
(𝜏)

=  
1

𝜏
∑ 𝑥𝑖

𝑗𝜏
𝑖=(𝑗−1)𝜏+1                                 (6) 

      with  j =  1,2, … , [
𝑁

𝜏
]. 

 

Multiscale entropy has been used to analyze brain signals and assess cognitive 

decline in conditions like Alzheimer's disease (Azami et al., 2017). The versatility 

of multiscale entropy makes it a powerful tool for characterizing the complexity and 

dynamics of diverse systems across different temporal scales. 

 

2.3.2 Application in EEG Signal Analysis 
• Feature Extraction: Entropy measures are used to extract features that capture the 

inherent complexity of EEG signals. These features can differentiate between 

different mental states or cognitive tasks. 

• Detection of Abnormalities: In clinical settings, entropy can identify abnormal brain 

activities such as epileptic seizures. Lower entropy values may indicate the highly 

ordered structure of seizure activity, while higher values correspond to normal brain 

function. 

• BCIs: Entropy measures enhance BCI performance by providing robust features that 

improve the classification accuracy of user intentions, making BCIs more effective 

and responsive. 

• Cognitive State Monitoring: Entropy analysis helps in monitoring cognitive states 

such as attention, relaxation, and workload, which are essential for applications in 

neurofeedback and cognitive training. 
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2.3.3 Quantifying Dynamic Complexity 
• Neural Dynamics: EEG signals exhibit dynamic complexity due to the brain's non-

linear and non-stationary nature. Entropy provides a framework to quantify this 

complexity, revealing how different brain regions interact over time. 

• Temporal Variability: By analyzing entropy over time, researchers can understand 

how brain activity fluctuates during different cognitive processes or states, offering 

insights into the temporal dynamics of neural activity. 

 

2.3.4 Challenges and Considerations 
• Data Quality and Noise Sensitivity: Entropy measures can be sensitive to noise and 

artifacts in EEG data. Proper preprocessing, such as filtering and artifact removal, is 

crucial for accurate entropy calculation. Since entropy measures the uncertainty in a 

probability distribution, any distortion, such as noise and outliers, can lead to 

incorrect entropy values. Redundancies in the data can also alter entropy measures 

by artificially increasing the regularity of a series. Moreover, small sample data can 

lead to significant statistical fluctuations, making entropy measures unreliable. All 

these potential issues can heavily impact entropy measures. Many studies assessed 

how data quality is most important for accurate entropy estimations (Grenn et al., 

2015; Zanin et al., 2012). 

 

• Parameter Selection: The accuracy of entropy measures depends on the selection of 

parameters like embedding dimension and tolerance in Sample Entropy or the scale 

factor in Multiscale Entropy. Careful tuning of these parameters is necessary to 

obtain meaningful results. 

• Computational Complexity: Efficient algorithms and computational resources are 

required to handle large EEG datasets. The computational complexity and 

challenges of implementing entropy methods can vary depending on the specific 

application and the type of entropy measure utilized. Entropy methods are often 
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applied to high-dimensional data, and data points can become sparse, making it 

difficult to estimate probability distributions accurately. Entropy calculations also 

often involve logarithms and small probabilities, which can lead to numerical 

instability. Additionally, approximate and sample entropy have high computational 

costs due to their reliance on many data points (Lu et al., 2017). 

• Interpretation of the Results: Interpreting the results obtained from entropy 

measures can present several challenges due to the data's complexity and nature.  

Like the EEG signals, they are calculated from entropy measures influenced by the 

dataset's context, environment, or other specific characteristics. This aspect and 

others, such as the scale and range of the data, can present challenges when 

compared to different datasets, increasing the difficulty of getting to an absolute 

interpretation. Entropy measures can be applied to perform temporal and spatial 

analyses. In both cases, interpreting the results can be quite challenging given the 

high dimensionality of the data and its susceptibility to many factors. Additionally, 

different entropy measures produce different results with the same data, each with 

its own interpretation and applicability, and that can lead to further confusion when 

trying to interpret many entropy measures together (Hu, 2017; Mammone et al., 

2011). 

 

By leveraging entropy measures, researchers can gain deeper insights into the complexity 

and dynamics of brain activity.  

 

2.3.5 Tools and Software 
Finding applications in multiple fields, entropy measures have gained extensive 

interest. Many tools and software incorporated the calculation of such measures, 

and where missing, first-party and third-party toolboxes filled the gap. Two main 

programming languages have been widely employed in research environments: 

MATLAB and Python. 
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MATLAB has a built-in function, “wentropy,” which computes various signal 

entropy measures. Available toolboxes for entropy calculations are “Signal 

Processing Toolbox” and “Wavelet Toolbox,” which provide various functions for 

many time-frequency analyses, filtering, and more, including entropy calculations. 

EEGLAB is also an interactive MATLAB toolbox for advanced EEG and MEG 

analysis. 

In Python, many libraries are available to calculate entropy measures. Libraries like 

SciPy, NumPy, PyEntropy, antropy, nolds, mne-python, and others offer the 

possibility of calculating various entropy measures, with each library filling the 

gaps of the others, covering different possibilities for entropy calculations.  

 

2.4 Case Studies and Real-World Applications 
Entropy measures are not new in many fields but represent a novel approach to semantic 

feature extraction from EEG signals. Despite its newness, some studies and real-world 

applications are already available. This section will briefly overview some of these studies 

and applications to prove the potentialities and interests surrounding entropy-based 

methods. 

 

Case Study 1: 

This study is an example of how an entropy measure was used to successfully 

extract semantic features from EEG signals. In 2022 a group of researchers 

proposed their newly developed entropy method, the multivariate multiscale 

modified-distribution entropy (MM-mDistEn) to perform emotion recognition from 

multichannel EEG signals. Emphasizing the need for multichannel EEG rather than 

relying only on one or two channels, they assessed the classification capabilities of 

features extracted with MM-mDistEn. An Artificial Neural Network, trained with 

backpropagation, was used for classification of the two classes: valence and arousal. 
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The architecture was tested with 2 different datasets: the “Database for Emotion 

Recognition System Based on EEG Signals and Various Computer Games” 

(GAMEEMO) and the “Database for Emotion Analysis using Physiological Signals” 

(DEAP). They achieved classification performances of 95.73% ± 0.67 for valence 

and 96.78% ± 0.25 for arousal for the GAMEEMO (Fig.4) dataset, and of 92.57% ± 

1.51 in valence and 80.23% ± 1.83 in arousal for the DEAP dataset (Fig.5) (Aung et 

al., 2022). 

 

 

Figure 4: Performances on the GAMEEMO dataset (Aung et al., 2022). 

 

 

Figure 5: Performances on the DEAP dataset (Aung et al., 2022). 
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Case Study 2: 

This study highlights the practical use of entropy measures. In (Mu et al., 2017), the 

authors used multiple entropy measures, such as spectral entropy, approximate 

entropy, fuzzy entropy, and sample entropy, to detect driver fatigue, a major cause 

of traffic injuries. As in the real application, some electrodes would record mainly 

noise; therefore, Fisher distance was used to measure electrode selection. Support 

Vector Machine (SVM) was the machine learning algorithm used for the 

classification. This study's average classification accuracy of 98.75% emphasizes 

how the extracted features from the electrodes T5, TP7, TP8, and FP1 may yield 

better performance. In Fig.6, it is possible to visually notice the difference between 

the normal and fatigue states using fuzzy entropy. In this study, entropy measures 

have been shown to hold great potential for feature extraction from EEG signals. 

 

Figure 6: Comparison of Fisher distance on fuzzy entropy across multiple samples in two states (Mu 

et al., 2017).  

 

Real-World Applications: 
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Entropy methods find many real-world applications. Approximate and sample 

entropy are used in epilepsy detection devices, as EEG loses complexity during 

seizures. Entropy measures are even used for early detection and monitoring of 

neurodegenerative diseases such as Alzheimer's disease and dementia. They're used 

to monitor the depth of anesthesia during surgeries and to provide additional data 

for depression and anxiety diagnosis. Additionally, control systems use entropy 

measures for BCIs to improve accuracy and reliability of signal interpretation 

(Liang et al., 2015; Zambrana-Vinaroz et al., 2022). 

 

2.5 A Comparative Analysis between Entropy Measures and Other 
Feature Extraction Methods 

Among the various techniques available to perform feature extraction from brain 

signals, entropy measures surely stand out for their ability to focus on the 

complexity or unpredictability of the data. Even so, every technique presents its 

advantages and disadvantages therefore other features are often utilized. Time-

domain features are always appreciated for their simplicity and ease of 

implementation and interpretation, especially compared to entropy measures. On the 

other hand, they often struggle with noise sensitivity and, due to their simplicity, can 

easily miss more complex patterns present in dynamic and high-dimensional data 

like EEG signals. Frequency-domain techniques transform time-series data to the 

frequency domain, revealing hidden periodic components and filtering noise. 

Despite their positive characteristics, they can be computationally intensive and 

result in an important loss of temporal resolution. Time-frequency domain provide a 

more balanced approach by analyzing the signal in both time and frequency domain 

simultaneously. They provide a dynamic analysis of the data but can significantly 

increase computational complexity and may require attentive parameter tuning to 

optimize the process. Entropy measures often show promising results where other 

techniques struggle, being able to distinguish between two time-series data with 
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similar temporal and frequency characteristics, focusing on their information 

content and complexity. Due to their nature, compared to other techniques they 

tendentially lack in temporal resolution by providing a single value calculated oven 

a sequence of data points and, additionally, can pose to serious challenges for their 

interpretation. Some entropy methods, like approximate and sample entropy, can 

also be quite computationally heavy, making these not optimal for real-time 

applications with the current computational power. Given these disadvantages, it's 

crucial to remember that they offer a completely different point of view on the data 

while also being relatively robust to noise. Entropy measures can successfully 

distinguish subtle differences in patterns that other methods might miss and are 

especially fit to capture the non-linear dynamics of a signal providing insights into 

complex and high-dimensional data. Moreover, techniques such as Multiscale 

Entropy allow for the analysis of complexity and unpredictability of a signal at 

multiple temporal scales, potentially providing additional meaningful information 

(Ljung & Glover, 1979; Stancin et al., 2021). 

 

2.6 Chapter Summary and Preview 
Knowing what semantic features are in the context of EEG signals and the attempts 

made for their extraction, it's clear that our knowledge in the field is still limited 

and that exploration possibilities are countless. Entropy measures have already 

been used to perform feature extraction from brain signals both in clinical and 

research settings, with some real-life applications as well, but there are very few 

studies that attempted to apply them to perform semantic feature extraction. 

Other techniques, such as time-domain, frequency domain, and time-frequency 

domain, have been used to perform semantic feature extraction, but entropy 

techniques can offer a different point of view for data analysis and interpretation. 

There are indeed many challenges regarding both the means, entropy methods, 
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and the goal, semantic feature extraction, but, as in many novel studies, the 

potentialities overcome the difficulties.  

A robust methodology, justified by what is reported above, is crucial to obtaining 

significant results from a study involving entropy measures of EEG signals in an 

attempt to extract semantic features. Every step, if rigorously taken, can greatly 

enhance the outcomes. 

 

The next chapter will describe the methodology, including details on the dataset 

specifications, preprocessing steps, the types of entropy measures used, and the 

rationale behind these choices. It will outline the methods and approaches employed, 

setting the stage for the subsequent presentation of results in a dedicated section. 
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Chapter 3: Materials and Methods 
3.1 Dataset 
The dataset used in this study has been made available by the authors of (Wilson et al., 

2023). This dataset was chosen for the analysis for its pertinence with this study, offering 

the possibility of studying different concepts expressed in different modalities and for their 

dimension as one of the few relatively extended datasets available online involving 

semantic concepts. The dataset comprises the EEG signals acquired by twelve subjects, 

three of which performed more than one session. One participant with visual and hearing 

impairment was included in the study. Before the experiment the subjects completed 2 

questionnaires, the Bucknell Auditory Imagery Scale (BIAS-V)(Halpern, 2015) and the 

Visual Imagery Questionnaire (VVIQ) (Isaac A. et al., 1986), that served as reports of, 

respectively, auditory and visual mental imagery ability. The questionnaire scales are 1 to 7 

for BIAS-V and 1 to 5 for VVIQ. The questionnaire resulted in an average of 4.76 for the 

BIAS-V and 3.75 for the VVIQ. 

3.1.1 Experimental Procedure 
After the questionnaires and a practice session, the subjects could ask questions 

about any uncertainties. The procedure for the actual experiment follows the main 

task flow presented in Fig. 7. The experiment was designed using Psycophy Version 

3 (Peirce et al., 2019), presented on a 1920x1080 resolution screen, and performed 

with environmental lights off. A Lab Streaming Layer network sent the triggers to 

acquire timestamps related to the stimuli given by the presentation. The experiment 

consisted of 10 blocks, but most of the participants stopped before the end due to 

fatigue or reduced concentration (Wilson et al., 2023). 
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Figure 7: This figure shows an example of a trial. Five trials occur after a cue indicating the stimuli modality, 

each with a different stimulus. The subject decides the break duration (Wilson et al., 2023). 

 

3.1.2 Data Acquisition 
For data acquisition, a 128 channel ANT Neuro eego Mylab measuring system with 

124 EEG electrodes was used. The gel-based cap of the electrodes has active 

shielding, offering protection from 50/60 Hz environmental noise. The sampling 

rate was 1024 Hz with a 24-bit resolution. The electrodes were placed following the 

10-5 International System. The EEG cap size was chosen based on the participant's 

head circumference, which was large, medium, and small. OneStep Cleargel 

conductive gel was applied to the electrodes referenced to CPz. The ground was 

fixed to the left mastoid with Ten20 paste. The goal was to obtain an impedance of 

below 50, but due to individual factors, often up to 10 electrodes had higher 

impedance. The EEG data was stored as .cnt files and the events as .evt files in ANT 

Neuro native format (Wilson et al., 2023). 

 

3.1.3 Paradigms 
The dataset is based on six paradigm variations consisting of two tasks: imagination 

and perception, and three modalities: pictorial, orthographic and auditory 

comprehension. Three semantic categories were used: guitar, flower and penguin. 

These concepts were selected due to their semantic distance, determined by 

computing a Word2Vec latent space (Mikolov et al., 2013), so that all pair-distances 

were <0.2 (Fig. 8). For the perception task the authors used different pictures 

varying between simple, intermediate and complex style, for the pictorial task, 
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different fonts and colors for the orthographic task, and 2 seconds long clips varying 

between low, medium and high voice for the auditory comprehension task. The 

imagery tasks took place after the perception's, leaving to the subject the task of 

imagining what they had seen/heard. In the pictorial task, the image in the 

perception task appears in a white box, that appears again in the imagery task to 

frame the mental image. In the orthographic task the text is presented on a white 

square background that also appears in the imagination task. A representation of an 

example trial can be observed in Fig.9 (Wilson et al., 2023). 

 

Figure 8: 2D plot, using a t-distributed Stochastic Neighbor Embedding (t-SNE), of semantic distances computed using 

Word2Vec (Wilson et al., 2023). 

 

Figure 9: Example of a pictorial trial. After the cue, 5 trials occur with a different picture in each (Wilson et al., 2023). 
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3.2 Preprocessing 
The dataset consists of two subsets: raw data and preprocessed data. Since the 

preprocessing performed by the dataset authors aligns with this study's objectives, the 

preprocessed data was used. This study details the specific preprocessing steps completed 

by the dataset authors and those conducted during this research.  The bad channel detection 

and interpolation, re-reference of the electrodes, the Notch filtering, the high-pass filtering , 

and the ICA application were performed by the dataset's authors.  The bad channel 

detection and interpolation, described in section 3.2.1, was fundamental to obtaining clear 

data and meaningful results from all the epochs as a bad channel could record low quality 

signal or missing signal altogether, missing a large portion of the underlying brain activity 

(Courellis et al., n.d.). The Notch filtering wouldn't have been strictly necessary for this 

study, as the highest frequency analyzed was 30 Hz of the β waves, but it didn't affect the 

signal analyzed, so it was negligible. On the other hand, the high-pass filtering was 

necessary for correctly applying the ICA application, crucial for artifact removal in the 

signal analyzed. Therefore, preprocessed data was used to incorporate these crucial steps, 

bad channel interpolation, and artifact removal, into the dataset, which would have required 

considerable time and resources to apply to the whole dataset due to manual resource 

limitations. This section provides a detailed description of all the preprocessing methods 

applied to the raw dataset. 

3.2.1 Data Processing 
The first preprocessing step performed by the authors was bad channel detection. 

Both manual and automatic detection were performed. Automatic detection was 

performed using PyPrep PrepPipeline, which uses several bad channel detection 

methods, such as the correlation between channels, channels with abnormally high 

or low amplitudes, and channels with flat signals. Interpolation was then applied to 

correct these channels. A re-reference step to CPz electrode was performed after 

every step that offset the statistical trend of the overall data. It was applied before 
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and after bad channel interpolation and after filtering to remove low-frequency 

drifts. Re-referencing was computed through common average referencing in MNE 

(Wilson et al., 2023). 

 

3.2.2 Filtering 
Notch filtering removed power-line noise at 50 Hz and its harmonics. A high-pass 

filter with a cutoff frequency of 2 Hz was applied to remove low-frequency drifts, 

such as head movements and skin perspiration, and to perform high-quality ICA 

decompositions. Artifact removal was performed via ICA's application. The 

FastICA algorithm was used, and 50 components were selected. Eye components 

were identified using an MNE-implementation that generates epochs around EOG 

artifacts, estimated from Fp1 and Fp2 electrodes. 

In this study α and β bandwidths were analyzed; therefore, an additional band-pass 

filter had to be applied, with cutoff frequencies 7.5 Hz and 13.5 Hz for α, and 13.5 

Hz and 30 Hz for β, to isolate these bandwidths from the rest of the signal and allow 

for specific analysis. The low-pass section of the band-pass filters also removed 

higher-frequency noise. This choice was made to observe the characteristics of 

different bandwidths in detail, and due to the limited resources and time, we focused 

on specific ones. Many studies pointed out different frequencies performing better 

for semantic extraction, suggesting meaningful semantic information could be held 

from θ to γ waves. The choice was made following (Klimesch et al., 1997; 

Pfurtscheller & Kumesch, 1992) but that doesn't imply the absence of semantic 

information at lower or higher frequencies. The band-pass filter was implemented 

using a Butterworth filter (Farah Binti Hussin et al., 2016). The filter parameters 

were calculated with the “butter” from scipy library. The filter was applied through 

the “sosfiltfilt” fuction, also from scipy library. This method was picked to perform 

zero-phase filtering while maintaining numerical stability. 
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Additionally, data was downsampled from 1024 Hz to 256 Hz to reduce the 

computational load without altering the observations.  

All the preprocessing steps performed on the data have been applied with the Python 

coding language. Specifically, the preprocessing performed in this study has been coded on 

Google Colab, and the data is stored on Google Drive. The data was uploaded first to 

Google Drive in a .fif format, as shared by the authors, and then loaded on Google Colab. 

The data was then extracted with the “read_raw_fif” function from mne library.  

 

3.3 Entropy for Semantic Feature Extraction in EEG signals 

3.3.1 Rationale 
Chapters 1 and 2, highlighted the lack of semantic feature extraction from EEG 

signals and the potentiality of entropy measures. This study proposes to evaluate the 

potentiality of certain entropy measures in the context of semantic feature extraction 

in EEG signals. This approach was chosen after carefully considering the most used 

features for semantic feature extraction in EEG signals and their limitations. Due to 

the great inter and intra-subject variability of EEG signals, an approach based on the 

“information theory” (Shannon, 1948) could bypass this issue by analyzing the 

quantity of information developed in different brain regions, potentially picking up 

patterns that would be ignored by other methods. As brain activity, when processing 

any kind of information, displays an increase in activity and irregularity, an 

approach able to pick on that increase in complexity could be crucial for semantic 

feature extraction. Different entropy measures have been implemented based on 

their approach to quantifying the complexity or randomness of a signal. Shannon 

entropy, spectral entropy, sample entropy, permutation entropy, and multiscale 

entropy were implemented, each quantifying the complexity of a signal with 

different approaches. The entropy measures implemented were chosen among 

others to observe how their different approaches would perform in this specific task. 

Specifically, Shannon and spectral entropy differ from the data utilized to calculate 
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the entropy, where Shannon uses the original time-series data while spectral entropy 

uses the power spectral density of the data. Assessing which one would look more 

promising was crucial to understand which path was more convenient to follow, the 

time-domain or the frequency-domain related entropies. Also, thanks to their easy 

implementation, they work as a “base” for many entropies, and their results can 

direct our interest towards a specific category of entropy measures rather than others. 

Permutation entropy and sample entropy were chosen due to their similar base 

concept but different approaches: permutation entropy's approach is based on the 

“order” of data points, calculating the probability of that order being preserved by 

shuffling data points in a small time window, while sample entropy's key concept is 

the “similarity”, looking for similarities in nearby data points, even if not in the 

exact order. An important difference is that permutation entropy looks for exact 

matches, while sample entropy includes a tolerance variable, making it more noise-

resistant. Additionally, sample entropy was selected over approximate entropy due 

to its proposed crucial advantages, highlighted in section 2.3.1. Finally, multiscale 

entropy analysis is crucial because it does not consider the signal as one single 

block but effectively divides it into time windows, allowing finding patterns 

restricted in specific moments after the stimuli onset. These entropy measures have 

been selected to provide a general overview of the possibilities entropy measures 

offer and assess what approach is more promising for differentiating semantic 

features. 

To assess the possibility of performing semantic feature extraction through entropy 

measures, they were computed over each electrode. Theoretically, each concept 

should be represented by different brain activity patterns, therefore impacting 

different electrode recordings. A statistical analysis will be later implemented to 

assess the difference between the concepts. 
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3.3.2 Implementation 
For the calculation of entropy measures, data was loaded differently based on the 

task: imagination or perception. Following the specifications in the experiment 

modality in section 3.1.3, the imagination tasks were cropped from the stimuli onset 

to 4 seconds afterward, while the perception tasks were cropped to 3 seconds after 

the stimuli onset. The entropy measures were calculated at different moments, 

dividing the dataset into five subsets, mainly for resource limitations. This division 

step was performed so that, as 3 participants took part in a second experimental 

session, it was equally divided to grant different subjects for each subset, avoiding a 

subset containing data from more experiments from the same subject. Also, each 

subset contained up to 1-second session to ensure variability between the data and 

maximize similarity across subsets. 

After each entropy calculation, a normalization step was computed over the whole 

subset to ensure comparability and correct analysis interpretation for further steps. 

• Shannon Entropy 

Shannon entropy was calculated by computing the probability distribution over a 

histogram that divided values into intervals. The number of intervals, or bins, was 

set to 50. The rationale behind this choice was to keep the number of bins above the 

value provided by the square-root method (square root of data points) to obtain a 

relatively detailed view of the data and not oversimplify the analysis of high-

complexity EEG signals. A value was obtained for each electrode for the whole 

epoch. 

• Spectral Entropy 

Spectral entropy was implemented using the Welch method (Welch, 1967). The 

“welch” function from the scipy library calculates the signal's power spectral density. 

The result is then normalized over the sum of each element to represent a 

probability distribution. A histogram, with the number of bins equal to 50 as above, 
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was then applied to perform the entropy calculation. Each electrode was then 

assigned a value for the epoch. 

• Sample Entropy 

Sample entropy was computed with the “sampen” function from nolds library. 

Similarly to before, each electrode was assigned a value representing the whole 

epoch's activity. 

• Permutation Entropy 

Permutation entropy was computed using the “permutation_entropy” function from 

the ordpy library. Again, a value was assigned to each electrode for each epoch. 

• Multiscale Entropy 

Thanks to its features, multiscale entropy was implemented based on Shannon 

entropy, with different time scales. The data was analyzed in non-overlapping time 

windows of 250 ms and 500 ms, respectively, 64 and 128 samples, considering 256 

Hz of the signal. Differently from other entropies, for each epoch, each electrode 

was assigned an array of values representing the different time window entropies. 

3.4 Visual and Statistical Analysis 
Each entropy's results were analyzed through different means to investigate their 

potentiality for classification.  

3.4.1 Visual Analysis 
Across the concepts (guitar, flower, and penguin), visual analysis was performed on 

all entropies, multiscale excluded due to the results format. A 2D plot of the scalp 

and a histogram were selected to perform this analysis to make it possible to 

observe the spatial representation and the occurrences distribution of the entropy 

measure's results, respectively.  
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A 2D plot representing the scalp with a color-graded electrode value was computed 

by averaging the electrode values across the epochs. The coordinates of the 

electrodes necessary for the plot were obtained from the “get_elec_coords” function, 

using the electrode names available in the .fif file and the placement layout used, 

and plotted with the “plot_coords” function. Both functions are part of the 

eeg_positions library. To transform normalized values to colors, a “ScalarMappable” 

object from the matplotlib library was generated and then used for the conversion 

with the “.to_rgba” property of the object. The color map used was “viridis”. The 

color bar was added with the function “colorbar” again from the matplotlib library. 

Additionally, a histogram, computed with the “hist” function from the matplotlib 

library, was plotted to observe concept similarities or abnormalities.  

 

3.4.2 Statistical Analysis 
All entropy measures were subject to statistical analyses. Specifically, the Analysis 

of Variance (ANOVA) and the T-test were implemented. The statistical analysis 

images shown in Chapter 4 were generated on Matlab with “Statistics and Machine 

Learning Toolbox”. 

• ANOVA 

ANOVA is a statistical method used to compare the means among more than 

2 different groups and assess whether at least one group is statistically 

different from the others. This statistical analysis chose ANOVA due to its 

renowned efficiency and flexibility. ANOVA considers the differences 

between and within the groups, making it a perfect instrument for this 

specific analysis. 

  

ANOVA was implemented on the entropy measures across epochs of each 

electrode to assess which electrode could perform better at discriminating 

among concepts. ANOVA returns F-scores, Fisher-Snedecor distribution-



 
 

57 
  

derived values calculated as the ratio of the mean square variance between 

groups (MSB) and mean square variance within groups (MSW),  

                           𝐹 =  
𝑀𝑆𝐵

𝑀𝑆𝑊
                                            (7) 

 

and negative log of p-values, negative logarithm in base 10 of the p-value: 

 

− log10(𝑝)                                         (8) 

 

 

representing the probability of the null hypothesis, the hypothesis that there 

is no difference between the groups, being true. A significant value for the p-

value is usually set around 0.1 or 0.05 or smaller, which corresponds to a 

negative log of p of 1 or 1.3 or higher (Anders, 2017). ANOVA method was 

implemented with the function “f_classif” from sklearn library. 

 

• T-test 

A t-test is a statistical method used to determine whether there is a 

statistically significant difference among 2 groups. After applying ANOVA, 

looking for the statistical difference of one of the groups from the others, the 

natural following step was to look for statistical differences between each 

pair of the groups to assess if each can be considered statistically 

differentiated from the other. To do so, the t-test was chosen for its ease of 

interpretation, as it is a straightforward method that compares the mean of 2 

groups to determine if they differ from each other.  

 

It was applied, similarly to ANOVA, among epochs for each electrode, but 

this time, all possible pairs of concepts were compared: guitar and flower, 
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guitar and penguin, and flower and penguin. If the p-value obtained is below 

a statistical level α, usually set around 0.1 or 0.05, then the null hypothesis is 

rejected. T-test was conducted with Bonferroni correction for multiple 

analyses. Bonferroni correction is a statistical adjustment applied when 

multiple comparisons are being conducted to minimize the probability of a 

type I error, the rejection of a null hypothesis that is true, occurring. It 

adjusts the significance value based on how the number of conducted 

comparisons as: 

 

     𝛼0 =  
𝛼

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠
                               (9) 

 

For example, with 124 electrodes being analyzed and 𝛼 of 0.05, the new 𝛼0 

would be 0.403 × 10−3 (Sedgwick, 2012; Tae Kyun Kim, 2015). For the t-

test, only electrodes that achieved statistical significance were saved. T-test 

was implemented with “ttest_ind” function from scipy library. 
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Chapter 4: Results 
In this section results will be presented. As many of these, especially regarding the 

visual analysis, strictly refer to images, and due to the excessive number of images 

across different groups obtained from the different methods, not all will be 

presented. Some images will be presented for context and clarification, but the 

results will be mainly exposed textually. 

 

4.1 Visual Analysis Results 
The visual analysis interpretation found constants between the different entropy 

measures and bands. While concept differentiation could be somewhat appreciated 

across various groups, histogram interpretation led to no results, showing some 

slight differences in kurtosis and skewness of the histogram curve, but so slight and 

apparently random that no assumption was made. An example will be presented in 

the paragraph showing greater differentiation to highlight the issue. 

 

▪ Shannon entropy 

 

o α band 

In the α band some differences could be generally appreciated. In 

some case the distinction was evident, while in others it would be still 

present but less evident, relying on the scale more than on the colors 

(Fig. 10).  

 
Figure 10: 2D plot of Shannon entropy in alpha waves for, in order, guitar, flower and penguin. Group 1. 
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o β band 

In the β band differences could be hardly appreciated, with some rare 

and slight difference in a couple of groups (Fig. 11). 

 
Figure 11: 2D plot of Shannon entropy in beta waves for, in order, guitar, flower and penguin. Group 3. 

Overall, Shannon entropy showed some potential for distinction of the concepts in 

the α bandwidth, while showing little to no evidence in the β bandwidth. 

 

▪ Spectral entropy 

In spectral entropy no meaningful difference could be observed between the 

concepts in any of the groups in both α waves, as shown in Fig. 12, and β waves, in 

Fig.13. 

 

o α band  

 
Figure 12: 2D plot of spectral entropy in alpha waves for, in order, guitar, flower and penguin. Group 4. 
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o β band 

 
Figure 13: 2D plot of spectral Shannon entropy in beta waves for, in order, guitar, flower and penguin. Group 1. 

 

▪ Sample entropy 

 

o α band 

Sample entropy showed the greatest potential among the entropies 

visually tested. Particularly in the α band the differences between 

concepts are appreciable in Fig. 14. Additionally, as mentioned above, 

the related histograms will be presented in Fig. 15 to support the 

judgement of no evident differentiation between concepts. 

 

 
Figure 14: 2D plot of sample entropy in alpha waves for, in order, guitar, flower and penguin. Group 5. 
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Figure 15: Histogram of sample entropy in alpha waves for, in order, guitar, flower and penguin. Group 5. 

 

o β band 

In the β band sample entropy shows some slight differences (Fig.16). 

Not as appreciable as in α waves, but still more evident than Shannon 

entropy in the same bandwidth. 

 
Figure 16: 2D plot of sample entropy in beta waves for, in order, guitar, flower and penguin. Group 1. 

Overall, sample entropy showed the greatest differences among the concepts in the 

various groups.  

 

▪ Permutation entropy 

Permutation entropy showed no sign of differentiation between concepts in α 

(Fig.17) and in β waves (Fig.18). 

 

o α band 
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Figure 17: 2D plot of permutation entropy in alpha waves for, in order, guitar, flower and penguin. Group 2. 

 

o β band 

 
Figure 18: 2D plot of permutation entropy in beta waves for, in order, guitar, flower and penguin. Group 3. 

 

4.1 Statistical Analysis Results 
To effectively represent a huge amount of data and ensure clarity, the following 

images will represent, across the various groups, the number of electrodes with a 

significant p-score (p<0.05). 

 

• ANOVA Results 

 

o α band 

ANOVA results for α band suggest Shannon entropy and sample entropy as holding 

more potentiality for semantic concept differentiation, with generally higher and 

more constant results coming from sample entropy. 
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Figure 19: Number of electrodes with a statistically significant p-score across groups with different entropy measures 

computed in alpha waves 

 

In multiscale entropy different time windows seem to perform better than others as 

a sort of “wave pattern” can be observed, reaching for higher values in the first time 

windows, then going down to grow again towards the end of the signal analyzed. 

 

Figure 20: Number of electrodes with a statistically significant p-score across groups with multiscale entropy with 

different time scales and windows computed in alpha waves 
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Particularly, in multiscale entropy with a 500ms time scale this tendency can be 

observed in Fig. 21, where global and local maximums often appear, respectively, 

within the first 1500ms and in the last 1000ms: 

 

Figure 21: Line plot of the number of electrodes with a statistically significant p-score across groups with multiscale 

entropy at 500ms time scale computed in alpha waves, where “P” indicates perception tasks and “I” imagination tasks. 

 

o β band 

In the β band ANOVA results suggested slight better but variable results coming 

from sample entropy, while Shannon entropy lacked the same consistency as in the 

α band. 

 

Figure 22: Number of electrodes with a statistically significant p-score across groups with different entropy measures 

computed in beta waves 
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No tendency was observed regarding multiscale entropy in the β band, suggesting 

poor semantic meaningful information held in such frequency bandwidth. 

 

Figure 23: Number of electrodes with a statistically significant p-score across groups with multiscale entropy with 

different time scales and windows computed in beta waves 

 

Something peculiar can also be observed in β waves as in most of the groups 

spectral entropy performed greatly better in imagination tasks, suffering majorly 

only in group 3. 

 

Figure 24: Number of electrodes with a statistically significant p-score across groups with different entropy measures 

computed in beta waves in Imagination tasks 
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• T-test Results 

All t-test were implemented with Bonferroni correction to limit type 1 error 

in multiple comparisons. 

 

o α band 

For the different entropy measures t-test can provide a general idea of the situation, 

but it's obvious that some issue lies within the results. Part of the results for some 

groups indicated 0 or 124 significant electrodes, possibly indicating the occurrence 

of type 1 and type 2 errors, often including, but sometimes rejecting all the 

electrodes values. While still taking this issue into account, tendentially the results 

tend to align with the ANOVA test in this case. 

 

Figure 25: Number of electrodes with a statistically significant p-score across groups with different entropy measures with 

different time scales and windows computed in alpha waves. Respectively: Guitar vs Flower, Guitar vs Penguin, Flower vs 

Penguin. 

 

For multiscale entropy only an example has been brought of T-test as, probably due 

to the low number of samples, it would perform extremely high or extremely low, 

with rare exceptions. This is probably due to the nature of Shannon entropy used in 

the multiscale implementation, as with a low number of samples, given the signals 

were resampled to 256Hz, would be limited in the possible number of results, 

especially in the first case. 
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Figure 26: Number of electrodes with a statistically significant p-score across groups of multiscale entropy measures 

computed in alpha waves. Respectively with a time scale of 250 and 500ms. 

 

To support this interpretation, the distribution of the values measured by multiscale 

entropy in the 2 scenarios is displayed in Fig. 27, where the difference is 

appreciable. 

 

Figure 27: Distribution of multiscale entropy values alpha waves. Respectively, in the time windows 0-250ms and 0-

500ms. Concept 1 is Guitar and Concept 2 is Flower. 
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o β band 

The issue persists even in the β waves but again, generally, the results outline 

sample entropy better performances. 

 

Figure 28: Number of electrodes with a statistically significant p-score across groups with entropy measure computed in 

beta waves. Respectively: Guitar vs Flower, Guitar vs Penguin, Flower vs Penguin. 

 

Multiscale entropy shows similar results to the α waves and is probably affected by 

the same issues.  

 

Figure 29: Number of electrodes with a statistically significant p-score across groups of multiscale entropy measures 

computed in beta waves. Respectively with a time scale of 250 and 500ms. 
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Chapter 5: Discussion 
This study aims at evaluating the potentiality of certain entropy measures for 

differentiation between semantic concepts in α and β waves. From the results obtained 

in Chapter 4 a few considerations can be made.  

Foremost, the t-test showed important issues in its application, probably mainly due to 

its susceptibility to Type 1 and Type 2 errors, even with Bonferroni correction, making 

it significantly less interpretable compared to ANOVA testing, which limits these issues 

by controlling the overall error rate and the comprehensive use of data. Therefore, 

towards the interpretation of the results, it will be used only for support for some 

general interpretation, preferring ANOVA as a more reliable source of information 

towards a more accurate understanding. Additionally, the discussion of the results will 

separate multiscale entropy from the others as specific considerations should be made.  

Out of the visual and statistical analysis, a trend for interpretation can be noticed. 

Shannon entropy and sample entropy showed better potentiality for differentiation, 

with a partial indication for spectral entropy utility from the ANOVA test in 

imagination tasks in the β waves, and a poor contribution of permutation entropy, 

possibly due to its nature of searching for exact patterns in the context of a high-

complexity signal. Regarding Shannon entropy, better results were achieved in the α 

waves, while showing comparable to spectral and permutation entropies in the β waves. 

Even sample entropy, even if showing better results compared to Shannon entropy, 

obtained a significantly outcome in the α waves. It should be noted also that, while 

outperforming other entropy measures, sample entropy presents a computational cost 

significantly greater than other methods. The potentiality of Shannon entropy and 

sample entropy depend on the specific application. For real-time applications where the 

computation needs to be completed in the shortest possible time Shannon entropy 

might be the right choice. For different applications sample entropy seems to hold a 

greater potential and with proper resources it could provide valuable information.  
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Multiscale entropy, differently from the other methods, doesn't calculate a single value 

for the whole epoch, but divides the signal into time-defined windows, possibly 

providing additional information regarding the evolution of the brain activity at 

different moments. For the tests performed in this study multiscale entropy was 

implemented through Shannon entropy, therefore its results should be compared to 

Shannon entropy results. Some considerations should be made before giving a 

judgement on multiscale entropy potentiality. Referring to Fig. 21 the results suggest a 

tendency, or pattern, in which most of the global maximums of number of statistically 

significant electrodes appear within the first 1500ms and another local maximum after 

2000ms. Given that the results come from different groups composed of different 

subjects and trials the results are an average of the samples considered. Hypothetically, 

aligning these patterns could possibly represent a significant approach to improve 

performances. This pattern, if confirmed and further explore by other studies, could 

offer insights into how our brain elaborates semantic information. In general, compared 

to Shannon entropy, multiscale entropy showed a slight improvement in α waves and a 

significant one in β waves. An important limitation of multiscale Shannon entropy, as 

reported in Chapter 4, is the limited possible values that can be obtained from a short 

signal. This issue is strictly related to Shannon entropy and another kind of entropy not 

affected by this issue such as sample entropy could be implemented, with the downside 

of the computational load in this specific case. As the tests were conducted with 

Shannon entropy the results of the ANOVA test for multiscale entropy could have been 

in fact limited, especially in the 250ms time window. Generally, multiscale entropy 

seems to hold great potential for its application as it has been able to significantly 

improve the results in the β band, but towards a possible application into a semantic 

features extraction algorithm the right considerations and data manipulations should be 

used to maximize its potential. Which specific time scales and windows are most 

effective for semantic concept differentiation is still unknown, with just a few 

directions highlighted in this study that could be further explored in future studies. 
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Moreover, α bandwidth has shown to hold more meaningful information that makes it 

possible to differentiate between semantic concepts compared to the β bandwidth, in 

accordance with the literature (Klimesch et al., 1997).  

Due to resources limitations using Google Colab the dataset had to be divided in 

multiple groups and, for some tests like ANOVA, imagination and perception tasks 

were analyzed separately to reduce the computational cost. While still having a 

significant number of samples for any participant, having only 3 subject per group 

might have created imbalances and important differences across the groups, which 

could have affected the results. Multiscale entropy was evaluated with Shannon 

entropy rather than sample entropy mainly for this reason as, due to the time required, 

Google Colab would often disconnect before completing the analysis. This limitation 

also affected the frequency bandwidths observed, as the initial scope was to provide a 

complete overview of the entropy measures possibilities in different bandwidths.  

Future studies should address these issues by exploring even other promising frequency 

bandwidths, such as θ and γ. Additionally, performing classification using the insights 

from this study could shed light on the actual applicability of entropy measures towards 

semantic features extraction. Multiscale entropy could have many applications, 

therefore studies aiming at finding the best parameters to obtain meaningful results are 

crucial, as well as developing a tailored classification algorithm that would focus on its 

specific features to optimize the outcome. 
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Chapter 6: Conclusion 
This study aimed at exploring a field still largely unknown, proposing a first step for future 

research regarding the use of entropy measures as a tool to perform semantic feature 

extraction from EEG signals analyzing α and β waves.  

To summarize the results and their interpretation, Shannon entropy and sample entropy 

seem to hold greater potential for semantic concept differentiation compared to spectral 

entropy and permutation entropy, especially in the α bandwidth where significant better 

results were achieved overall. Spectral entropy showed some limited but interesting results 

in the β waves relative to imagination tasks. Multiscale entropy, on the other hand, offers to 

apply such entropies to specific time windows and represents a promising approach that, 

with the right algorithm, could significantly impact semantic feature extraction research. 

Multiscale Shannon entropy showed limitations regarding its calculation for small time 

windows related to the number of samples, simultaneously suggesting the presence of a 

tendency for better performing time windows, opening to possibility for specific research 

around certain moments rather than analyzing the whole signal, possibly impacting 

accuracy of classification and computational costs.  

Despite the limitations of this study, the insights can have an important role in for 

understanding strengths and weaknesses of promising entropy measures, as well as some 

possible uptakes for the design of a CNN or RNN specifically tailored to perform semantic 

feature extraction through entropy measures. 

To assess the validity of this study, as one of the first steps in this direction, more studies 

will have to be conducted focusing not only on expanding the exploration to other 

frequency bands and methods, but also on empirically test semantic feature extraction with 

entropy measures confirm or deny not only the results regarding what entropy measures 

would perform better, but also the considerations made analyzing the results such 

limitations and trends.  
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