
POLITECNICO DI TORINO

Master’s Degree Course in Computer Engineering

Master’s Degree Thesis

Smart Home Devices: Firmware Analysis
and Certification

Supervisors

Prof. Luca ARDITO

Dr. Michele VALSESIA

Candidate

Marian Alexandru LEONTE

July 2024

Abstract

An Internet of Things (IoT) system is a network of interconnected devices. These
devices range from simple sensors or actuators with limited computational capabil-
ities to devices with higher processing power. The behaviour of a device is driven
by the firmware, software which interacts with the device’s hardware and performs
some actions.

An example of an IoT system is the Smart Home, which is equipped with devices
that enhance the quality of life of its inhabitants.

The rapid growth of IoT systems comes with challenges such as security, standardi-
sation and a lack of proper certification.

Regarding IoT systems security, our research has mainly focused on firmware
security. Many firmware are designed without respecting security and programming
best practices, thus exposing devices to attacks. We concentrated on static and
dynamic firmware analysis. We propose two static analysis tools that could
be integrated into firmware analysis: weighted-code-coverage and complex-code-
spotter.

We also tried to address the gap in firmware certification. Indeed, there is a lack
of well-structured certification processes to validate devices in terms of behaviour
and security and to inform users about their potential dangers. We have focused
on Smart Home firmware devices’ behaviour and defined the hazard concept. A
hazard can indicate a potential safety, privacy, and financial risk associated with
the execution of determined devices’ actions within a house.

To partly address this issue, we have developed hazard-generator and code-certifier.
These tools can be used in Smart Home firmware development and integrated into
a broader certification process to inform and certify about the risks associated with
devices’ actions within a Smart Home.

The implemented tools have been highly tested and written in Rust, a new pro-
gramming language we have chosen for its security, optimisation and performance
aptitude.

In the first part of the thesis, we provide an overview of the state of the art of
IoT systems. Afterwards, we discuss the most significant challenges and security
threats, presenting potential solutions from the literature.

In the second part, we present the tools we have been working on. To address
the firmware analysis problem, we have added some features to the static analysis

tools mentioned previously. weighted-code-coverage implements three new soft-
ware quality metrics. complex-code-spotter extracts overly complex snippets of
code.

To address the gap in the description of Smart Home devices’ behaviour, we have
developed the hazard-generator. This tool receives a hazard ontology as input and
generates the API necessary to describe device hazards. The Rust library used to
create firmware, which incorporates this API, aims to enhance the classification of
devices’ behaviour while reducing firmware developer effort.

To partially fill the current gap in device behaviour certification, we have developed
the code-certifier software, which provides two main functionalities. The first one
extracts all public APIs from the Rust library used for Smart Home firmware
development. The second functionality takes the source code of a Smart Home
firmware as input and generates as output a manifest which lists all the devices
contained in the firmware. This manifest provides a detailed description of each
device, outlining its actions and associated hazards.

The thesis concludes with a performance analysis in terms of time and memory of
some of the developed tools.

ii

Acknowledgements

“Ai miei genitori,
per il loro costante supporto e

fondamentale presenza durante l’intero percorso.”
Alex

ii

Contents

List of Tables vi

List of Figures vii

1 Introduction 1

2 IoT Evolution and Challenges 4

2.1 Internet of Things . 4

2.1.1 History . 6

2.1.2 Application Domains . 9

2.2 Smart Home . 11

2.2.1 History . 12

2.2.2 Applications . 13

2.2.3 Residents Adoption . 13

2.3 IoT Challenges . 14

2.4 IoT and Smart Home Security Overview 16

2.4.1 Security Threats . 16

2.4.2 Security Solutions . 18

2.5 Firmware Analysis . 19

2.5.1 Static Analysis . 19

2.5.2 Dynamic Analysis . 25

iii

2.5.3 Testing and Coverage . 26

2.5.4 Rust . 26

2.6 Certification . 28

3 Firmware Analysis Tools 30

3.1 weighted-code-coverage . 31

3.1.1 Tool Structure and Workflow 33

3.1.2 Parsing of Grcov files . 37

3.1.3 Reimplementation of the Concurrent Execution Mechanism . 39

3.1.4 API Redesign . 41

3.1.5 CLI Refactoring . 43

3.1.6 Output . 44

3.1.7 Metrics Analysis . 47

3.1.8 Testing . 56

3.1.9 Final Remarks . 56

3.2 generate-ci . 57

3.3 complex-code-spotter . 58

4 Hazard Generator 59

4.1 Hazards . 60

4.2 Ontology . 62

4.3 JSON-LD . 63

4.4 Tool Structure and Workflow . 66

4.5 Final Remarks . 69

5 Code Certifier 70

5.1 Hazard Analyzer . 72

5.1.1 Analysis of ascot-axum Devices 74

5.1.2 Device Type Retrieval . 75

iv

5.1.3 Device Analysis . 75

5.1.4 JSON Manifest Creation . 77

5.1.5 Manifest Print . 77

5.1.6 Final Remarks . 78

5.2 Public API . 79

5.3 ccertifier . 80

6 Performance Analysis 82

6.0.1 Analysis Tools . 83

6.1 weighted-code-coverage . 85

6.1.1 Execution Time . 85

6.1.2 Memory Usage . 88

6.2 complex-code-spotter . 92

6.2.1 Execution Time . 92

6.2.2 Memory Usage . 95

6.3 hazard-analyzer . 97

6.3.1 Execution Time . 97

6.3.2 Memory Usage . 99

6.4 Final Remarks . 100

7 Conclusions 101

7.1 Future Developments . 102

Bibliography 104

v

List of Tables

6.1 weighted-code-coverage memory usage before modifications. 90

6.2 weighted-code-coverage memory usage after modifications 90

6.3 complex-code-spotter memory usage before modifications. 96

6.4 complex-code-spotter memory usage after modifications. 96

6.5 hazard-analyzer memory usage . 99

vi

List of Figures

2.1 Internet of Things structure. 4

3.1 weighted-code-coverage structure and workflow 33

3.2 Example project tree structure. 35

3.3 producer-consumers-composer pattern 39

3.4 Files mode HTML output . 44

3.5 Functions mode HTML output . 44

4.1 hazard-generator structure . 66

5.1 code-certifier structure. 72

5.2 hazard-analyzer terminal output format 77

6.1 weighted-code-coverage execution times before modifications 85

6.2 weighted-code-coverage execution times after modifications 86

6.3 weighted-code-coverage execution times comparison 87

6.4 weighted-code-coverage allocations before modifications 88

6.5 weighted-code-coverage allocations after modifications 89

6.6 complex-code-spotter execution times before modifications 92

6.7 complex-code-spotter execution times after modifications 93

6.8 complex-code-spotter execution times comparison 94

6.9 complex-code-spotter allocations before modifications 95

vii

6.10 complex-code-spotter allocations after modifications 95

6.11 hazard-analyzer execution times . 97

6.12 hazard-analyzer memory allocations 99

viii

Chapter 1

Introduction

In this thesis, we have started by analysing the Internet of Things (IoT) ecosystem
in order to identify the numerous challenges and problems that arised from the
rapid evolution of this technology.

Specifically, we have focused on the Smart Home system, one of the most popular
IoT application domains. We have found that the lack of proper certifications for
Smart Home device firmware is a major contributing factor to their insecurity and
unreliability. In fact, firmware is critical as it controls all the device’s actions and
defines its behaviour. Therefore, it is essential to establish rigorous processes for
comprehensive firmware certification.

In this context, we first present two tools that can perform a static analysis of
firmware to evaluate its software quality.

Subsequently, we introduce the concept of hazard, which refers to a danger that
may arise from an action performed by a Smart Home Device. One of the tools we
have implemented allows the integration of this concept into a Smart Home device
firmware development library. This enables developers to explicitly define that
an action may be characterised by one or more hazards. We then provide a tool
that analyses a firmware created using the library and generates a comprehensive
description of all the actions and hazards of a device.

This thesis is divided into various chapters according to the following struc-
ture:

• IoT Evolution and Challenges: in this initial chapter, we provide an
overview of the Internet of Things concept, including how this system operates
and the main events and technological advancements that have contributed
to its development. We also discuss the primary application domains where

1

Introduction

IoT principles and concepts are applied, with a focus on the Smart Home
system. Furthermore, we list the major issues and challenges related to
standardization, interoperability, reliability, and security within these systems.
Regarding security, we outline some of the solutions presented in the literature,
with a focus on firmware analysis through static and dynamic analysis. Finally,
we highlight a significant problem within the IoT ecosystem: the absence of
rigorous certification processes for the firmware device behaviour.

• Firmware Analysis Tools: in this chapter, we introduce two static analysis
tools we have contributed to: weighted-code-coverage and
complex-code-spotter. The first tool implements three new metrics for
evaluating software quality, which combine the concepts of code coverage and
complexity. The second one, instead, extracts complex code snippets based on
specific thresholds, helping developers identify code that may be challenging
to maintain. These tools represent an example of static analysis tools that
can be used to analyse the firmware of an IoT device. In particular, we list
the modifications and new features that we have implemented in these tools,
highlighting the improvements compared to their initial version.

• Hazar Generator: in this chapter, we introduce the first tool we have
developed, with the objective of addressing the lack of certification of a
Smart Home device’s behaviour. We named this tool hazard-generator,
and starting from an ontology of hazards, it generates an API that can be
integrated within a library for firmware development in order to assign hazards
to the actions of a Smart Home device.

• Code Certifier: in this chapter, we present code-certifier, our second
tool, which consists of two libraries: pub-api and hazard-analyzer. pub-api
enables the extraction of all public API from two libraries, which can be used
for the development of a Smart Home device firmware. hazard-analyzer, on
the other hand, analyzes those kinds of firmware implemented using these two
libraries with the goal of extracting a manifest that lists all device actions
and associated hazards. We then highlight the fact that a firmware manifest,
produced by this second library, could be integrated within a broader certifica-
tion process in order to help delineate the behaviour and hazards of a Smart
Home device.

• Performance Analysis: in this chapter, we present the performance analysis
in terms of execution time and memory usage that we have conducted on
weighted-code-coverage, complex-code-spotter and hazard-analyzer
binaries.

• Conclusions: in the last chapter of our thesis, we have summarized the results

2

Introduction

and final considerations about the analysis and implementations carried out
during this entire thesis, also highlighting possible future developments.

3

Chapter 2

IoT Evolution and
Challenges

This chapter introduces the Internet of Things and Smart Home concepts, outlining
their evolution and some of their main applications. It also highlights challenges
faced by these systems, such as reliability and interoperability, with a detailed
focus on security aspects.

2.1 Internet of Things

Figure 2.1: Internet of Things structure.

The term Internet of Things (IoT) refers to a system consisting of smart devices
capable of independently interacting with the physical world around them [1]. These

4

IoT Evolution and Challenges

devices are interconnected to each other and can communicate with additional
components present in the system. They can exchange information or perform
specific actions in response to external feedback or commands issued by a customer.
An example could be a smart thermostat that adjusts the temperature in a house
based on current weather conditions and time of day. Additionally, smart devices
can share their data with external services, such as a Cloud1 service, for processing
or storage purposes.

Figure 2.1 shows the essential components of an Internet of Things system [2].
These components include smart devices equipped with sensors and actuators to
gather information from the surroundings and interact with it, a communication
network, typically based on Internet protocols, and a Cloud platform.

The term Things contained in the Internet of Things noun refers to smart devices.
Despite their importance in the system, there is no universally accepted definition
of a smart device. Nevertheless, we can still identify some fundamental properties
that these devices must have [3]:

• Autonomy: after an eventual initial configuration, a smart device should be
able to perform its tasks independently, without continuous user intervention.

• Connectivity: in order to interact with other entities within an IoT system,
a device must be able to connect to the communication network. Although
wired connections are possible, wireless connections are becoming more and
more prevalent.

• Context-awareness: a device must have self-awareness of the context and
the environment in which it is installed, enabling it to gather and utilize data
accordingly.

Other characteristics which are often associated with smart devices are User
Interaction and Portability. However, these properties primarily pertain to devices
such as smartphones, computers, or smartwatches. These devices represent only
a small part of an IoT system, the one related to user control. Therefore, they
are not considered fundamental characteristics, since many IoT devices are neither
portable nor designed for direct user interaction.

Starting from the Connectivity property, we can gain a deeper understanding of
the role of the other term that composes the name Internet of Things: Internet.
The Internet is a global telecommunications infrastructure that facilitates data and

1A Cloud service consists of an online platform that provides computing resources like storage
or processing power, allowing users to access and use these resources without needing to own or
manage physical hardware.

5

IoT Evolution and Challenges

information exchange among its members. This concept of a vast, shared network
for communication and digital services was first theorized by MIT professor J.C.R.
Licklider as the Galactic Network [4]. The Internet is crucial for the IoT ecosystem,
as it serves as the primary communication channel among all of its elements. It
enables devices to interact with each other and with users, also allowing a remote
control from outside the local network. Additionally, it allows an IoT subsystem to
take advantage of network services and interact with Cloud platforms.

2.1.1 History
In 1999, during a presentation at Procter & Gamble, Kevin Ashton coined the
term Internet of Things [5]. He used this term to predict a shift in the interaction
between humans and machines. Ashton foresaw a future where machines would
interact more directly between them and with the surrounding environment, rather
than relying on human intervention [6].

This new type of interaction, later referred to as Machine-to-Machine (M2M)
communication [7], is a fundamental principle of the Internet of Things system.
M2M communication involves creating a network that enables communication
between diverse devices through standardized rules and protocols.

Until then, humans acted as the conduit between machines and the physical world.
Machines lacked direct knowledge of their surroundings, relying on data provided
by humans. This information could be transmitted via audio, video, images or
through data collected by other tools and shared with machines. Rather than
observing the physical world first-hand, machines received descriptions of it through
human input.

Ashton highlighted the limitations of this approach. He pointed out the cost and
speed advantages, in terms of collection, processing, and transmission, of an alterna-
tive where devices themselves directly gather and exchange the information.

Humans cannot compete with the efficiency, accuracy, and consistency of operation
of a sensor, nor can they react to feedback as quickly as an actuator. Even then,
the direction was clear: to create an ecosystem that minimizes human intervention
and the errors that result from it, promoting automation and the continuous
technological evolution of devices.

[8] The Internet of Things initially saw its initial growth and adoption in the
enterprise and industrial sectors. In these areas, it quickly demonstrated its
potential to accelerate and monitor business processes efficiently and consistently.
Over time, IoT technology became popular with the general public by improving
the quality of life for individuals.

6

IoT Evolution and Challenges

Beyond Ashton’s coining of the term Internet of Things, numerous innovations
over the years have contributed to the development of the IoT ecosystem as we
know it today. These innovations include tools and projects that emerged to
meet specific needs, as well as breakthroughs that have permanently changed the
telecommunications field.

We have therefore reconstructed a timeline of the key events [9] [10]:

• 1982: in Pittsburgh, Pennsylvania, at Carnegie Mellon University, some
researchers connected a Coke machine to the university’s network. This was
later named The Only Coke Machine on the Internet [11]. The purpose was
to allow individuals to check the availability of Coke before heading to the
room where the machine was located, ensuring they would not find it empty.
This machine is considered to be the first non-computer device connected to
the Internet [12].

• 1989: at CERN in Switzerland, British computer scientist Tim Berners-
Lee proposed developing software, standards, and protocols to improve and
streamline the communication and sharing of scientific material within the
organization and with other institutes using the Internet [13]. This suggestion
laid the foundation for the World Wide Web (WWW) [14]. In the context of
IoT, the Web of Things concept (WoT) [15] refers to a seamless integration
of IoT-related technologies into the WWW, allowing direct interaction and
control of smart devices through web interfaces and applications [16].

• 1990: While working on the SNMP protocol, computer scientist John Romkey
used it to control a toaster, making it the first toaster connected to the Internet
[17]. SNMP (Simple Network Management Protocol) manages devices over an
IP network, mainly to control and monitor their status [18]. This experiment
demonstrated that protocols previously adopted only for computing and
networking could also be applied to control Zphysical devices, a groundbreaking
concept at the time [19].

• 1993: Researchers at the University of Cambridge in England created the
Trojan Room Coffee Pot [20] to allow those who were far from the coffee pot’s
location to check the coffee level status. The system included a camera, a
server, and a client, and it provided employees with images with an update
rate of approximately 20 seconds. This is presumably the first example of a
webcam [21].

• 1997: technology forecaster Paul Saffo predicted that the sensors’ integration
with the Internet would have been the next revolution in information technol-
ogy, with a similar impact to the birth of microprocessors and the Internet
itself [22]. This prediction is proving accurate, as data collection through

7

IoT Evolution and Challenges

device sensors and sharing via the Internet are core concepts of the Internet
of Things.

• 2000: LG launched the first Internet-connected refrigerator [23]. Despite
offering innovative services like memo writing and monitoring product freshness,
it was not very successful. Customers found the features impractical for daily
use and the price unjustifiably high [24]. This highlighted the need that
technologies must address real customers’ needs to succeed in the market.

• 2003: RFID technology began to be adopted by the U.S. Department of
Defense [25]. RFID (Radio Frequency Identification) allows objects to be
identified, monitored, and controlled via radio waves by reading a tag with a
reader [26]. The tag acts as a transponder, emitting a signal in response to
a received signal [27]. RFID technology, giving objects a digital and unique
identity, is a precursor to the Internet of Things [28].

• 2005: the International Telecommunication Union (ITU) released its first
report on the Internet of Things [29]. The report highlighted that the evolution
of technologies such as RFID and sensors, along with network advancements,
would lead to a world where all objects are connected, simplifying data
processing and encouraging data sharing [30]. It also addressed the social and
economic impacts and challenges of IoT [31].

• 2008: Zurich, Switzerland, hosted the first international conference dedicated
to the Internet of Things [32]. The conference aimed to encourage knowledge
exchange and present the current state of IoT technologies and their applica-
tions [33]. The same year, the Internet Protocol for Smart Objects (IPSO)
Alliance [34] was founded to promote the use of the IP protocol for smart
device communication, advocating for its adoption in a simplified version
suitable for environments with battery and power consumption limitations
[35, 36].

• 2009: Cisco suggests that IoT was born between 2008 and 2009. This period
marked the surpassing of Internet-connected devices over connected people,
reaching 12.5 billion connected devices by 2010 [37]. Meanwhile, the European
Commission released an action plan emphasizing the importance of security
and privacy to increase public trust in IoT and promote its adoption within
the European community [38].

• 2012: the World IPv6 Launch Day followed the previous year’s World IPv6
Day [39]. These events aimed to test and promote IPv6 adoption as the
successor to IPv4, with major companies like Google and Facebook making
their sites accessible via IPv6 [40]. These two events were both successful,
accelerating IPv6 adoption by even more sites [41]. IPv6 is crucial for IoT

8

IoT Evolution and Challenges

as it addresses the issue of limited IP addresses in IPv4, necessary for the
growing number of smart devices [42]. The transition to IPv6 will be gradual,
ensuring compatibility and interoperability with IPv4 systems [43].

• 2015 - 2016: Cloud platforms such as Amazon’s AWS IoT [44] and Microsoft’s
Azure IoT [45] emerged, providing services for building and managing IoT
systems. These platforms facilitate device connections, data storage and data
processing. They play a crucial role in the IoT ecosystem by ensuring security
and continuous monitoring, as well as supporting devices that cannot handle
the vast amount of data autonomously [46].

• 2020: for the first time, IoT connections to the Internet surpassed non-IoT
connections. A study by IoT Analytics [47] indicated that in 2020, IoT
connections reached 11.7 billion, compared to 9.9 billion non-IoT connections,
accounting for 54% of the total amount of Internet connections.

• Future: The Internet of Things is expected to continue growing. According
to Transforma Insights [48], IoT connections will increase from an estimated
18.2 billion by the end of this year to 32.5 billion by 2030 and nearly 40 billion
by 2033. Another report from GSMA [49] suggests an even faster growth,
predicting more than 38 billion IoT connections by 2030.

2.1.2 Application Domains
The emergence of the Internet of Things has sparked significant interest and
curiosity about its potential applications, leading to its expansion into various
sectors.

This expansion aims to enhance people’s lives by creating devices that simplify
daily tasks and activities, as well as streamline industrial and business processes.
The technology is leveraged to enhance customer experience, provide better services
and products, and, at the same time, increase companies’ economic returns.

It is thus possible to state that the growth of the Internet of Things market is unlikely
to halt in the short term; instead, the opposite is happening [50]. Investments are
increasing exponentially, driven by the healthcare, lifestyle, and energy sectors.
However, there are several obstacles to this expansion. For example, communication
technologies may not be as effective over long distances, and smart devices have
power and energy consumption limitations, leading to reduced computing capacity
and data storage.

The following list offers an overview of the main Internet of Things application
domains, excluding the Smart Home, which will be discussed in more detail later
[51] [52]:

9

IoT Evolution and Challenges

• Smart cities: as urban populations continue to grow, the current infras-
tructure, often outdated and inefficient, will face increasing challenges in
meeting the needs of residents. It is imperative for cities, both present and
future, to leverage IoT technologies to enhance infrastructure efficiency while
reducing costs. For instance, implementing a smart water delivery system
can minimize leakage and enable citizens to monitor their water consumption
easily. Similarly, deploying an intelligent lighting system that utilizes sensors
to adjust lighting according to natural light levels can significantly contribute
to energy conservation. Moreover, the adoption of sensor-based waste man-
agement systems to signal when bins are full can optimize waste collection
processes, while sensors monitoring air and water quality can swiftly detect
contamination incidents, thus mitigating the environmental impact.

• Healthcare: in this context, we can talk about a real ecosystem known as
the Internet of Healthcare Things (IoHT). This encompasses patients, the
devices used by patients, and the interfaces and platforms used to control those
devices. It advances beyond past efforts of digitizing patient data. In fact,
instead of merely digitizing information, it involves implementing tangible
devices to assist healthcare providers in streamlining their tasks and effectively
managing the escalating patient volumes. An illustrative application of the IoT
paradigm in the healthcare domain involves using devices to monitor the health
status of patients with specific diseases. These devices can transmit real-time
notifications to designated caretakers in emergency situations and gather data
to facilitate diagnostic procedures. These smart solutions can also significantly
reduce healthcare costs by minimizing the need for hospitalizations and visits,
thus making healthcare more accessible.

• Energy: the energy domain is another application area where IoT has achieved
widespread use, known as the Energy Internet of Things (EIoT). Internet
of Things (IoT) technologies enable us to meet various needs in the energy
sector. This includes intelligently combining renewable and fossil energies,
prioritizing renewable sources whenever possible and using fossil fuels only
when necessary. Additionally, IoT allows for the efficient delivery of energy,
responding promptly to demand while minimizing waste. Moreover, analogical
monitoring devices can be replaced with smart devices, enabling remote
consumption detection and real-time fault reporting. This speeds up repair
times and enhances the reliability of the entire system.

• Transportation and Logistics: smart transportation vehicles equipped
with actuators and sensors can make transportation more efficient and safer
by using the data they collect. The vehicles can connect to each other and
to the internet, allowing them to adjust dynamically to traffic conditions.

10

IoT Evolution and Challenges

Implementing a smart traffic light management system can further improve
this. In logistics, instead, IoT serves as a valuable tool for monitoring critical
stages, encompassing storage, distribution, sales, transportation, customer
service, and returns. Furthermore, during the transport phase, systems
must monitor the condition of food products, ensuring specific environmental
conditions during transfer.

• Agriculture: in this field, devices and systems have been purposefully de-
signed to automate essential processes such as fertilizer distribution and
irrigation. These innovations utilize actuators that respond to data collected
by sensors and then processed to match weather and soil conditions. This
technological advancement has significantly streamlined farm operations by
minimizing human error and increasing precision. Additionally, the devel-
opment of autonomous tractor models has drastically reduced the need for
farmer intervention. Moreover, the strategic use of drones in agriculture has
transformed traditional tasks, making them more efficient and less resource-
intensive.

• Smart environments: the most popular domains where the Internet of
Things has expanded are those designed to enhance our quality of life by
simplifying and assisting in our daily activities. In addition to Smart Homes
which we will discuss later, there are instances of Smart Offices to monitor
and improve working conditions, as well as Smart Gyms and Smart Museums,
where IoT is increasingly utilized for entertainment purposes.

When discussing Internet of Things applications, it is essential to distinguish
between industrial environments and sectors such as healthcare or transport, as
opposed to other IoT application domains. The former category falls under the
Industrial Internet of Things (IIoT) [53], wherein failures and errors can result in
critical safety and security issues on a large scale. Although similar situations may
occur in non-IIoT systems, these tend to be more specific and narrowly defined
scenarios.

2.2 Smart Home
As we previously stated, the interest in the Internet of Things is growing steadily.
This continuous evolution has led to the integration of IoT technologies into
everyday life, with the Smart Home serving as a representative example.

Cisco estimated that by 2023, approximately half of all Internet-connected devices
will be Internet of Things devices [54]. Smart Home devices represent the majority
of those IoT devices. A study [55] from 2021 stated that, at that time, 822.6

11

IoT Evolution and Challenges

million Smart Home devices had been installed installed worldwide. This is nearly
double the number of devices in the second-ranking application domain, Smart
Cities, which had 450 million devices. Therefore, we can reasonably say that the
Smart Home is certainly one of the most popular and successful applications of the
Internet of Things paradigm [56].

There are multiple definitions of a Smart Home. A general definition is that a
Smart Home is an Internet of Things ecosystem where household processes, such
as adjusting a room temperature or monitoring home surveillance, are automated
through the use of smart devices [57] [58]. Some of the goals of a Smart Home
include simplifying those processes, enhancing their safety, reducing their energy
consumption and environmental impact, improving home security, and enhancing
residents’ quality of life [59].

Connectivity is a key aspect for these definitions, as Smart Home devices should
be connected to each other and to the Internet in order to be controlled from
outside a home and collaborate appropriately [60]. However, there are vendors who
label their products as Smart Home devices even if they lack connectivity. Those
devices only enhance certain aspects and features of traditional appliances, without
creating a true Smart Home network. Such definitions are inaccurate and are often
used for marketing purposes. In fact, as we mentioned earlier when listing the
characteristics of smart devices, connectivity is one of the fundamental traits that
a smart device must have.

2.2.1 History

The evolution of Smart Homes can be divided into three distinct stages [61]:

• 1990s: this decade saw the widespread adoption of broadband Internet,
which facilitated the development of the first home automation projects. This
involved the concept of setting up networks to control and automate various
home activities and operations.

• 2000s: this period marked the advent of smartphones and the proliferation
of applications. These technological advancements added a new dimension
to home automation, enabling remote control and monitoring of household
processes.

• 2010s: the 2010s witnessed the emergence of the Internet of Things. This led
to the development of smart devices capable of perceiving the surrounding
environment and dynamically adapting to customer needs.

12

IoT Evolution and Challenges

2.2.2 Applications
The implementations of the Internet of Things paradigm in the Smart Homes
context are diverse and constantly evolving. Vendors are regularly introducing new
devices and increasingly innovating systems. Below is an overview of the most
prominent smart home applications [62] [63] [64]:

• Energy: a Smart Home, using smart appliances and devices, can operate in
a way that minimizes energy waste. Smart lighting systems are among the
most well-known applications of the Internet of Things technologies in collec-
tive imagery. Additionally, these systems can be designed to automatically
adjust device behaviour based on whether someone is present in the home.
For instance, in an empty house, forgotten electronic devices can switch off
automatically or minimize energy consumption. Despite the initial installation
cost, residents benefit financially from the energy savings over time.

• Environment: this application is closely related to the previous one. In
fact, an intelligent energy system also significantly reduces the environmental
impact. Furthermore, beyond water leakage prevention, air quality monitoring,
and climate control, sensors can detect carbon monoxide, gas leaks, or fire
hazards, potentially saving lives.

• Security: integrating home security and surveillance systems into the Smart
Home network is becoming very common. This integration allows for timely
alerts in case of intrusions. A Smart Home can also implement intelligent
access systems based on passwords, voice, or smart card authentication. In
other words, the Smart Home system serves as a vigilant observer, continuously
monitoring all activities and events inside and outside the home [65].

• Assisted Living: new IoT technologies can drastically modify home environ-
ments to accommodate elderly or disabled individuals. There are applications
and devices that simplify everyday activities, such as turning on lights and
opening doors, through gestures like head movements or eye blinking. Addi-
tionally, these devices can quickly and easily alert someone in the event of a
fall or other sudden emergencies.

• Entertainment: although this application may seem less important compared
to others, IoT implementations in the entertainment field can significantly
improve a person’s mood after a stressful day.

2.2.3 Residents Adoption
Despite the numerous listed advantages of Smart Home systems, many people
remain hesitant to install them in their homes. This study [66] assumes that a smart

13

IoT Evolution and Challenges

home system can save between 20% and 30% on household expenses. However, it
found that a significant number of individuals doubt the utility, functionality, and
tangible benefits that such a system promises to deliver. Furthermore, respondents
expressed concerns about both the security and reliability of Smart Home systems.
They worry that these systems might introduce vulnerabilities or fail to perform
consistently. Cost is another major factor. Many potential customers question
whether the advantages of installing a Smart Home system are worth the expense
involved.

[67] [68] Other obstacles include the difficulty some people have in using these
technologies and the lack of interoperability between devices from different ven-
dors. Each vendor proposes its own implementation, complicating the process of
integrating various devices into a cohesive system. This lack of standardization
makes it challenging to create a single, interoperable Smart Home network. As a
result, residents often struggle with compatibility issues and may find it difficult to
make the most of their Smart Home devices.

According to another survey [69], people are concerned about how their personal
data, including audio and video recordings of private conversations and moments, is
handled. They worry about the possibility of this data being shared with third-party
companies. However, it is important to acknowledge that sensitivity to privacy
varies among individuals [70]. What may not violate one person’s privacy could
be a concern for another. Therefore, inhabitants should have the opportunity to
configure and manage in detail how their personal data is processed. This ensures
their complete control over privacy preferences and settings.

All the previous concerns highlight the need for better education in addition to
reassurance about the practical benefits and security measures of Smart Home
technologies. Moreover, to ensure that those assurances are based on concrete im-
provements, these systems require advancements in their security and privacy.

2.3 IoT Challenges
The concerns expressed by users regarding the adoption of smart home systems
highlight other unresolved challenges in the context of the Internet of Things
(IoT). The following list summarizes the most significant ones [71] [72] [73] [74] [75]
[76]:

• Scalability: the rapid growth and proliferation of IoT technologies present a
complex problem. As the number of smart devices and IoT networks continues
to increase, managing these systems becomes progressively more challenging.
Advanced technologies will lead to faster devices capable of collecting and

14

IoT Evolution and Challenges

exchanging ever-larger amounts of data. Consequently, managing Big Data,
extracting useful information, and discarding noise become critical tasks.
Developing smarter, faster, and more efficient algorithms for data processing
is essential. Additionally, there is the challenge of storing this vast amount of
data and ensuring that networks can manage the data exchange load. As each
device needs a unique identity within the global IoT ecosystem, transitioning
to IPv6 becomes necessary to accommodate this expanding network.

• Interoperability: another significant challenge is the need for interoperability
between different devices and systems. Various devices using different com-
munication protocols must coexist on the same network. Devices within the
same subsystem may have different performance levels and processing speeds.
This makes developing efficient interaction and cooperation essential. Despite
progress, significant work remains in standardizing IoT architectures and data
exchange formats and protocols. The lack of a unique adopted architecture
hinders interoperability between IoT systems and creates barriers to seamless
integration [77].

• Reliability: as IoT networks grow, the risk of system failures increases
proportionally with the number of connected devices. Therefore, IoT networks
must be designed to manage these failures effectively and continue functioning
even under adverse conditions. It is essential to implement robust protocols
that detect device problems and minimize the impact on other network devices.
Additionally, providing adequate technical support to many customers poses
a significant challenge. Efforts should focus on creating robust and reliable
devices to reduce the frequency and severity of technical issues, thereby
minimizing the need for support.

• Energy Management: efficient energy use is a priority as the number of IoT
devices grows. We need to find more effective ways to power these devices,
reducing their dependence on batteries and minimizing their environmental
impact. Exploring sustainable energy alternatives, such as solar-powered smart
devices, can significantly enhance energy management.

• Social Implications: the increasing development and adoption of IoT devices
in various sectors will likely lead to significant social implications. The use
of IoT technologies in enterprises and industries simplifies and automates
many tasks, potentially reducing or eliminating the need for human labour in
certain areas. This may result in job displacement and increased unemploy-
ment, causing social unrest. Furthermore, the pervasive integration of these
technologies into daily life could foster a dependency on them, leading to un-
predictable social consequences. Addressing these social implications requires
careful consideration and proactive measures to ensure that the benefits of IoT

15

IoT Evolution and Challenges

technologies are equitably distributed and do not deepen existing inequalities.

These challenges illustrate the complexity and scope of issues that must be ad-
dressed to fully realize the potential of IoT technologies in Smart Homes and other
applications. Overcoming these challenges will require coordinated efforts from
researchers, developers, policymakers, and industry stakeholders to create robust,
secure, and user-friendly IoT systems that can enhance the quality of life while
mitigating potential risks.

2.4 IoT and Smart Home Security Overview
Another significant challenge is enhancing the security of Internet of Things systems.
Equally important is ensuring the privacy of data collected by smart devices.

IoT systems are inherently vulnerable to cyberattacks due to their connection to
the Internet [78]. This vulnerability is especially concerning Smart Homes, where
security systems and appliances such as ovens and stoves are present. Security
breaches in these areas can pose potential risks of physical harm, highlighting the
critical need for implementing strong security measures.

In their haste to keep up with market growth, many vendors release IoT devices
with security vulnerabilities that attackers can exploit. According to the 2023
SonicWall Cyber Threat Report [79], there was a 243% increase in IoT malware
attacks between early 2018 and late 2022. Within the shorter span from early 2021
to late 2022, the volume of such attacks grew by 87%.

2.4.1 Security Threats
Threats to the security of Internet of Things systems are numerous and varied. Many
of these threats are malware, each with specific characteristics that can damage
and compromise an IoT network. Malware is malicious software designed to alter
the normal functioning of targeted software [80]. It can cause harmful actions
within the target system, compromising both the integrity and confidentiality of
the data it manages [81].

Here is an overview of some possible IoT security threats [82] [83] [84] [85]:

• Denial of Service (DoS): This attack makes the IoT system’s service
inaccessible by occupying necessary resources, preventing the system from
responding to users’ requests. Mitigating and preventing DoS attacks within
an IoT network is highly challenging. Researchers dedicate significant efforts
to develop increasingly effective methods to tackle this issue [86].

16

IoT Evolution and Challenges

• Botnet: malware can take control of certain IoT devices and use them for
illegal activities. Multiple compromised devices form a botnet. Attackers use
these compromised devices to mask their real identity during attacks [87].
Botnets are commonly used to execute Distributed Denial of Service (DDoS)
attacks, which are large-scale DoS attacks using multiple resources.

• Spyware: this malware monitors activities within an infected system, collect-
ing users’ data and personal information [88]. In IoT systems with multimedia
devices like cameras, spyware can access users’ audio and video recordings,
severely violating their privacy [89].

• Backdoors: a backdoor is a piece of code inserted by developers or attackers
to bypass security or authentication measures [90]. While developers may
insert backdoors to facilitate certain actions, attackers can exploit them to
take control of a smart device and gain network access, potentially attacking
other network parts [91].

• Sleep Deprivation: this attack targets network endpoints to drain their
power, reducing battery life and shortening device lifespan. Typically, smart
devices enter sleep mode to minimize power consumption when not in use.
Sleep deprivation attacks prevent devices from entering this state, increasing
power consumption to the point of making the devices unavailable [92] [93].

A significant challenge in IoT security stems from the inherent limitations of IoT
devices [94]. These devices cannot manage complex cryptographic operations due
to limited computational power and storage capacity. Additionally, such operations
can increase power consumption, which is often prohibitive since many IoT devices
operate in low-power contexts without the aid of powerful batteries. Therefore,
it is complex to implement the same robust security solutions adopted in other
contexts.

The following list presents some guidelines and principles to take into consideration
when defining security solutions for the Internet of Things systems [95] [96]:

• User Awareness: educate users about their pivotal role in ensuring IoT
security. Developing sophisticated security solutions is futile if users employ
weak passwords or fail to use them at all. It is well documented that users
often leave default passwords or choose easily guessable ones [97].

• Authentication: strengthen authentication mechanisms for IoT devices
and users. Only authorized devices and users should interact within the
IoT network and access its resources. It is also crucial to ensure strong
authentication between IoT network endpoints and supporting Cloud platforms
[98], as sensitive user information is exchanged in these communications.

17

IoT Evolution and Challenges

• Confidentiality: protect user data privacy through encryption and secure
keys. Despite various proposed solutions, there is currently no standardized
and properly structured solution to guarantee confidentiality in an IoT system
[99].

• Integrity: maintain data integrity within the IoT network [100]. Unauthorized
devices and users must not be able to alter system data and resources.

• Availability: ensure that an IoT system remains functional when users need
to access it [101]. Implement measures to guarantee continuous operation even
during failures or attacks, enabling quick recovery from disruptions.

• Mutual Trust: implement a framework that fosters mutual trust among users,
particularly for devices with multiple owners. Secure management of shared
devices and facilitation of ownership transfers within corporate environments
are essential to maintain operational efficiency and security.

2.4.2 Security Solutions
Various solutions have been proposed, ranging from well-established concepts to
innovative methodologies such as: Machine Learning, Blockchain, and Firmware
Analysis [102]. We will briefly overview the first two approaches before focusing on
the third one:

• Machine Learning: a Machine Learning (ML) system can learn and make
decisions within a specific domain after being trained on extensive data related
to that domain [103]. These models are effectively used in the context of
Internet of Things security. In IoT security, ML models analyze network traffic
to identify patterns indicative of cyberattacks and those of normal traffic. This
enables the detection of abnormal intrusion attempts or potential DoS [104].

• Blockchain: initially developed for cryptocurrency, blockchain technology
has rapidly found applications in IoT security. [105] A blockchain comprises
a series of transactions, known as records, which correspond to the blocks
of a chain. Each record is linked to the previous one, and a set of records
is called a ledger. All participants who take part in the transactions must
have a copy of the ledger. A miner, an autonomous entity, oversees the
blockchain and ensures the validity of the transactions added to the ledger.
This structure makes it extremely difficult for an attacker to manipulate or
insert false records without being detected. In a Smart Home system, a miner
can monitor communications, effectively managing security, authentication,
and access control. Thus, blockchain technology can be used within IoT
networks to guarantee confidentiality, integrity, and availability [106].

18

IoT Evolution and Challenges

2.5 Firmware Analysis
Smart devices serve as the endpoints of an Internet of Things (IoT) system. They
are responsible for collecting data and carrying out user-requested operations.
The firmware is a binary provided by the device vendor and is stored in the non-
volatile memory of a device. It regulates the behaviour of the device by interacting
with actuators and sensors [107] and serves as a connection between software and
hardware components. Vendors must ensure firmware security and issue patches as
needed to protect user data privacy and physical safety in an IoT system [108].

There are various methods for analyzing firmware for vulnerabilities. Two of the
most popular solutions are static and dynamic analysis [109]. Static analysis
examines a firmware source code in search of vulnerabilities, but it is not applicable
if the code is not available. On the other hand, dynamic analysis involves executing
firmware.

While effective against known vulnerabilities, these methods struggle with zero-day
vulnerabilities, which are vulnerabilities that hackers can exploit because they are
unknown to developers at the time of their discovery [110]. The most effective
approach is a hybrid approach that integrates static and dynamic analyses, possibly
enhanced by machine learning. This method enhances vulnerability detection,
covering both known and zero-day vulnerabilities [111].

2.5.1 Static Analysis
Static analysis involves examining a source code without executing the relative
binary or needing any input data [112]. It starts from the source code and checks
for issues by comparing it against known error patterns [113] [114].

Some issues that can be detected through static analysis include the following ones
[115] [116] [117] [118]:

• Incorrect Memory Management: this includes attempts to access deallo-
cated memory, inefficient allocations, and memory leaks. Allocated memory is
a portion of memory reserved for a specific purpose. A memory leak occurs
when that portion of memory is not deallocated after its use is no longer
needed.

• Incorrect Resource Management: this involves mishandling the opening
of resources such as files and sockets, or failing to close them properly.

• Poor code architecture: this refers to structuring code inefficiently without
using all the characteristics of the language. Poor architecture makes it more
difficult to read, understand, and debug, complicating future revisions or

19

IoT Evolution and Challenges

error corrections. Lack of modularity and unclear code logic also reduce
maintainability.

• Bad Practices: this involves coding practices that reduce code clarity and
efficiency, such as overly nested conditions, functions with too many parameters,
hard-coded values, circular dependencies, and poor class coupling.

• Dead Code: this refers to code that will never be executed because the
condition that determines its execution will never be set to true.

• Duplicated Code: this refers to code segments repeated in various parts
of the code. This duplication significantly affects maintainability and can be
resolved by extracting the repeated code into a separate function.

• Failure to comply with guidelines: this includes organization-level guide-
lines for code writing, such as indentation or variable naming conventions.

• Use of insecure constructs: this involves constructs known to be vulnerable
to security issues. It also includes outdated libraries with known vulnerabilities.

• Concurrency errors: this includes mishandling synchronization among
threads accessing the same resources, detecting possible deadlocks, race condi-
tions and starvation situations [119].

• Logical errors: these are mistakes in conditional constructs and loops. They
could, for example, lead to an infinite loop [120].

• Improper handling of errors and exceptions: this refers to the failure in
managing errors or exceptions, such as in the Java language [121].

• Security vulnerabilities: this identifies code portions which potentially
expose a program to attacks like SQL Injection [122] or buffer overflow [123].

One of the earliest static analysis tools is Lint [124]. Developed in the 1970s at Bell
Laboratories by Stephen Curtis Johnson, Lint was designed for the C language. It
provides additional checks on source code correctness without impacting compiler
performance. Integrating static analysis into the compilation process might seem
advantageous, but it could slow down and undermine its efficiency. Therefore, Lint
performs its checks independently from the compiler.

Lint’s checks are stricter than those of the compiler. It imposes tighter constraints
on typing and identifies code segments that might reduce portability across different
operating systems and architectures [125].

There are various methods to check source code in search of issues [126]. Code
review is among the most straightforward. Peer code review involves team members
analyzing each other’s code, but this process can be complex and resource-intensive

20

IoT Evolution and Challenges

in large codebases. Static analysis tools partially automate some aspects of this
process, making the two methods complementary. Conducting static analysis before
code review helps identify common errors. This reduces the effort required for a
review, allowing reviewers to focus on more complex issues, thus improving the
efficiency of the entire review.

Static analysis is vital for code maintainability because it allows the identification
of issues early in development, avoiding high effort for complex refactors later.

The main techniques adopted for static analysis are [127]:

• Lexical analysis: this technique divides a source code into fragments and
compares them with reference patterns to detect potential vulnerabilities.
However, it has limitations, and it often results in a high rate of false positives.

• Type inference: it uses the compiler’s type inference system to perform
checks, applying additional rules to ensure the correctness of variables and
functions.

• Data flow analysis: by examining the path of variables within a program
through the use of a control flow graph, this method identifies situations where
the assigned values could lead to vulnerabilities.

• Rule checking: this technique verifies program adherence to predefined
security rules.

• Constraint analysis: it creates and verifies constraints regarding the rela-
tionships between variables.

• Patch comparison: this method compares patches against the current
program state to identify security vulnerabilities.

• Symbolic execution: it replaces input values with symbolic ones and analyzes
the resulting algebraic expressions to check whether they meet determined
constraints. For example, an execution with symbolic values could reveal that
passing a negative number to a specific function causes the program to crash.

• Abstract interpretation: this technique provides a formal description of a
program, aiming to derive its semantic meaning.

• Theorem proving: it transforms a program into logical constructs and uses
them in a mathematical proof-like demonstration to establish the program’s
correctness.

• Model checking: this technique constructs a formal model of a program,
such as a state machine or a graph, that could be used to explore all the states,
thereby allowing the detection of unexpected behaviours of a program.

21

IoT Evolution and Challenges

To determine software quality, static analysis can use several metrics calculated from
the source code under analysis [128]. These can be combined into more complex
code quality assessment models. Setting thresholds for these metrics is complex
and requires well-defined steps and processes. However, the same thresholds may
not be suitable for different scenarios.

Among those metrics, we are presenting the ones related to source code size and
complexity.

Lines of Code

Lines of Code (LOC) metrics measure the size of the source code [129] [130]:

• Source Lines of Code (SLOC): the total number of source code lines.

• Comment Lines of Code (CLOC): the number of lines containing com-
ments.

• Physical Lines of Code (PLOC): the number of lines that are not blank
or commented out. A line with both code and comments is counted in both
PLOC and CLOC metrics.

• Logical Lines of Code (LLOC): the number of statements in a source
code. The definition of a statement varies from language to language, and it
generally refers to a specific action performed by a programming language
[131]. A statement may span several code lines, or there may be multiple
statements in a single line. Each statement, regardless of its length or position,
counts as one for the final sum.

• Blank Lines of Code (BLOC): the number of blank lines in a code.

Complexity

The following metrics are designed to calculate the complexity of the source
code:

• Cyclomatic [132] [133] [134]: this metric calculates the complexity of a
program by considering all possible independent execution paths. Cyclomatic
complexity is mainly used to establish software’s testability, i.e., the ease with
which a program can be tested. This metric starts from a control flow graph
where each node represents either an uninterrupted sequence of operations, or
a jump due to conditional constructs, such as if-then, if-then-else and switch
statements, or iterative constructs, such as while and for. Each edge that
Each edge that comes out of a jump node represents one of the possible paths
of the program. Cyclomatic complexity is computed using a formula based

22

IoT Evolution and Challenges

on the number of nodes (N) and edges (E) in the graph, originally defined by
Thomas J. McCabe in 1976 as

CC = E − N + 2 (2.1)

• Cognitive [135] [136]: this metric measures the clarity of a program and the
effort required to intuitively understand its functionality. It primarily assesses
the maintainability of a source code rather than its testability, overcoming
the limitations of cyclomatic complexity in evaluating code maintainability.
The calculation method varies depending on the specific static analysis tool
used. Generally, a weight is assigned to conditional and iterative constructs,
and the complexity value is then calculated based on how these constructs
are combined. If they are not deeply nested, the complexity value will be low,
indicating an easy-to-understand program. Instead, if there are heavily nested
consturcts, the complexity increases significantly. Logical conditions involving
logical operators such as AND and OR are also considered. Long conditions
with many operators contribute significantly to the final complexity value.

23

IoT Evolution and Challenges

Metrics Example

1 #inc lude <s t d l i b . h>
2 #inc lude <s t d i o . h>
3

4 // C func t i on
5 // opera t ion = 1 −> a + b
6 // opera t ion = 2 −> a − b or b − a
7 i n t func t i on (i n t a , i n t b , i n t operat i on) {
8 i n t r e s u l t ;
9

10 i f (ope ra t i on == 1) {
11 r e s u l t = a + b ;
12 } e l s e i f (opera t i on == 2) {
13 i f (a >= b) {
14 r e s u l t = a − b ;
15 } e l s e {
16 r e s u l t = b − a ;
17 }
18 } e l s e {
19 p r i n t f (" Not r ecogn i z ed ' opera t ion ' ") ;
20 }
21

22 re turn r e s u l t ;
23 }

Listing 2.1: C code snippet

For completeness, we provide an example of these metrics calculated on the code
snippet written in C language as shown in Listing 2.1. To obtain the metric values,
we use a tool called rust-code-analysis 2, which will be explained in more detail
later. This tool allows the calculation of LOC, cyclomatic complexity and cognitive
complexity.

The metric values for the example above are:

• SLOC: the value is equal to 23. Note that this value corresponds to the total
number of source code lines since it is equal to the number shown in the left
part of the figure.

• CLOC: the value is equal to 3 and corresponds to lines 4, 5 and 6.

• PLOC; the value is equal to 17 and corresponds to the lines 1, 2, 7, 8, 10-20,
22 and 23.

2rust-code-analysis: https://github.com/mozilla/rust-code-analysis

24

IoT Evolution and Challenges

• LLOC: the value is equal to 9 and corresponds to lines 8, 10-14, 16, 19 and
22.

• BLOC: the value is equal to 3 and corresponds to lines 3, 9 and 21.

• Cyclomatic Complexity: the value is equal to 4.

• Cognitive Complexity: the value is equal to 6.

2.5.2 Dynamic Analysis
Different from static analysis, dynamic analysis involves examining software during
its execution. This approach provides a closer view of the program’s actual
behaviour and helps to clarify uncertainties related to issues that static analysis may
only partially address [137]. Advancements in software development have introduced
paradigms and constructs that manifest only at runtime, posing challenges for
static analysis due to its inherent imprecision in such scenarios. Concepts like
dynamic binding, dependency injection, polymorphism, and concurrency are more
suited for dynamic analysis.

A comparison study [138] points out that both types of analysis examine only a
subset of possible program executions. Therefore, they are considered complemen-
tary, with static analysis results often serving as input for dynamic analysis. A
combined approach of the two avoids redundant analyses and can concentrate the
effort on unexplored execution paths. The following list details some dynamic
analysis processes and the relating techniques [137]:

• Instrumentation: the dynamic analysis process typically involves an ini-
tial phase called profiling or tracing. During profiling, program execution
is observed to capture events such as function calls or conditional branch
points. This information is captured through instrumentation, which involves
modifying a program’s source code, object code, or binary by inserting spe-
cific instructions to extract information from the program’s execution. The
information gathered during the profiling phase will be used as input for the
subsequent phases.

• VM Profiling: this method runs the program on specific virtual machines
on which profiling is done through interfaces and plugins. It simplifies the
profiling process by leveraging the virtual machine’s interface, rather than
directly managing trace extraction.

• Aspect-Oriented Programming (AOP): It is a programming paradigm
that enables the implementation of cross-cutting behaviors, which are func-
tionalities that affect multiple parts of a program without having to modify

25

IoT Evolution and Challenges

each part individually. In dynamic analysis, AOP can be used to perform
profiling.

2.5.3 Testing and Coverage
[139] Testing is another fundamental activity in ensuring software quality. It is
used to verify that software operates as intended. Validation and Verification are
two key aspects for testing. Validation aims to ensure that software meets user
requirements by testing against specific inputs in order to produce an expected.
Verification, on the other hand, checks for design errors and bugs in software with
the aim of assessing whether it has been developed correctly.

Coverage is a metric used to evaluate the quality of testing by indicating how
thoroughly tests cover a codebase. Different coverage metrics include the percentage
of covered lines, statements, functions, or paths [140]. To obtain coverage values,
the code under analysis must be instrumented [141], which means that the code
will be extended with additional instructions to gather coverage information during
the execution of the tests.

This study [142] suggests that higher coverage typically leads to uncovering more
bugs, making it desirable to aim for a high coverage value. However, it is important
not to rely solely on this metric to assess testing quality, as even 100% coverage
does not guarantee the identification of all bugs. Therefore, evaluating test quality
based exclusively on coverage can lead to misleading conclusions.

Regarding coverage thresholds, each development team typically establishes its
own conventions. However, commercial tools often employ a traffic light model.
For example, Codecov [143] uses a model in which red identifies coverage below
60%, yellow means coverage between 61% and 79%, and green denotes coverage
above 80%.

2.5.4 Rust
Issues detected by static and dynamic analysis vary significantly depending on the
programming language features. Certain issues are common in every language all
languages, while others are only specific to certain languages. Some programming
languages are developed to address common issues and mitigate or eliminate them,
and Rust [144] is one such language. It stands out as a relatively new language
compared to established ones such as C, C++, or Java, and originated as a personal
project by Mozilla employee Graydon Hoare in 2006 and gained prominence starting
from 2010.

Rust was deliberately designed to proactively eliminate issues present in other

26

IoT Evolution and Challenges

languages, and has established itself as one of the most secure and at the same
time efficient programming language [145]. The following lists outlines some of its
key features: [146] [147]:

• Memory Management: Rust implements a memory management mech-
anism based on the ownership concept. This mechanism manages memory
through a set of rules that the compiler checks at compile time to enforce
that each portion of memory has a single owner at any given time. When a
variable is declared, Rust allocates memory to it and automatically deallocates
this memory when the variable goes out of scope. Additionally, Rust supports
shared references for read access and exclusive references for write access, en-
suring safe management of these references to prevent common memory-issues,
such as the reference of deallocated memory areas, attempts to deallocate an
already deallocated memory zone or null pointer exceptions.

• Bounds Checks: Rust detects any attempts to access out-of-bounds array
elements at runtime. If such an attempt occurs, execution is immediately
stopped, and an error message is returned reporting the unauthorized access
attempt.

• Zero-cost Abstraction: Rust does not require a garbage collector, in contrast
to other languages such as Java. This results in a higher performance since
it completely removes the garbage collector overhead. In fact, Rust provides
high-level constructs at zero cost. These constructs are more compact and
easier to use compared to the ones provided by low-level languages. Despite
their simplicity, they maintain the same or even higher performance.

• Safe Concurrency: Rust allows the implementation of concurrent programs
in a simple and safe manner. Through the use of special constructs and relying
on the concepts of borrowing and ownership mentioned earlier, it makes it
easy to create thread-safe programs free of issues such as race conditions,
starvation, and deadlocks.

• Crate: represents the smallest piece of compiled Rust code that the compiler
processes, and can be used to either define a binary or a library. In the first case
it represents an executable program that can be directly runned through the
command-line. A library, instead cannot be directly executed and is used to
define reusable functionalities intended to be shared among multiple projects.
The crate concept promotes modularity by offering developers the possibility
to encapsulate in separated and reusable units. Moreover, Rust comes with
a package manager called Cargo that allows to facilitate the integration of
external libraries in a crate, ensuring that the versions of the dependencies
are managed correctly.

27

IoT Evolution and Challenges

Rust is ideal for contexts such as software and firmware development, as it is
well-suited for resource-constrained environments [148]. Furthermore, it can be
easily used in conjunction with other low-level programming languages such as C,
making it very versatile.

This study [149] demonstrated that Rust delivers performance comparable, or
even superior, to C/C++ when used for programming ESP32 microcontrollers.
This outlines Rust’s potential in IoT while providing the benefits of a higher-level
programming language.

Rust has been chosen for developing the tools discussed in this thesis. All the
features we have listed and the advantages in terms of performance, memory safety,
security and minimal runtime overhead make this language an ideal choice for
developing reliable and efficient software.

2.6 Certification
As already emphasized, the lack of well-defined standards and regulations poses
substantial challenges for the Internet of Things ecosystem. According to [150],
there is an urgent need for regulatory agencies capable of quickly adapting to
the rapid growth of the IoT market. These agencies must establish dynamic
regulations and certification methodologies to ensure that high-security standards
are maintained as the number of smart devices continues to grow.

In addition, certification methodologies must account for the diversity among IoT
systems and the fact that they often consist of a wide variety of smart devices
using different technologies [151].

This study [152] points out the inadequacy of current cybersecurity certification
systems when applied to the Internet of Things context. It highlights that the
static nature of existing certification processes struggles to address the dynamic
and evolving nature of IoT systems. Furthermore, it identifies a lack of meaningful
metrics to evaluate the real effectiveness of certification processes in enhancing the
security of IoT systems.

The OWASP IoT Top 10 [153] lists the lack of proper firmware validation as one of
the major issues threatening the security of IoT devices. The absence of well-defined
processes for certifying firmware represents a significant gap for the Internet of
Things security landscape and must be addressed as a primary issue.

The firmware analysis approaches and techniques presented in the previous sections
could serve as a starting point for defining certification methodologies which validate
and certify smart devices’ firmware.

28

IoT Evolution and Challenges

This thesis aims to partially address these challenges by proposing a solution tailored
for Smart Home firmware that could be integrated into a more vast certification
process.

We propose a manifest that details all potential risks that may arise from device
actions in a Smart Home system. This is similar to an Android application’s
manifest [154], which outlines permissions required for installation and execution
of the applications, such as camera, location, or microphone usage.

The purpose of our manifest in the certification process is to ensure transparency
regarding the risks associated with the smart devices’ actions within the Smart
Home. Additionally, we define some mandatory risks for specific device actions and
highlight in the manifest if a developer has failed to declare them.

29

Chapter 3

Firmware Analysis Tools

Software developers tend to prioritize implementing new features over performing
activities such as testing, writing documentation, setting up a continuous integration
workflow, or reviewing the code to find which parts need to be refactored [155]
[156]. These activities are crucial for maintaining and enhancing software quality.
Therefore, it would be better to design tools that streamline and automate them.
Such tools would also help reduce potential human errors caused by inadequate
attention and prioritization of these tasks.

Implementing proper measures and tools to ensure high code quality is particularly
important in the development of IoT device firmware. Since IoT devices interact
directly with the physical environment and people, ensuring high code quality is
crucial. In fact, poor coding practices can alter device behavior, posing risks to
people’s safety. Therefore, implementing proper measures and tools is essential to
mitigate these potential risks.

In this chapter, we present weighted-code-coverage and complex-code-spotter,
two static analysis tools that have been created in the context of Internet of Things
development. These tools have been designed to analyse the source code of IoT
applications and firmware, but can also be used to perform a static analysis of
software pertaining other domains. Our work focused on refactoring these tools,
streamlining their structure and implementation, introducing new features, and
trying to enhance their overall performance.

30

Firmware Analysis Tools

3.1 weighted-code-coverage
weighted-code-coverage1 is a tool written in Rust that proposes a solution to
merge the concepts of code coverage and code complexity into single metrics. In
particular, this tool implements several metrics, each aiming to combine coverage
and complexity through specific algorithms and mathematical expressions.

Typically, these two concepts are separately analyzed using different tools to assess
code test coverage and structural complexity. Instead, weighted-code-coverage
implements an analysis where both these aspects have been taken into account,
ensuring that neither high coverage nor low complexity alone will be enough to
obtain a positive evaluation.

For example, code with maximum coverage but very high complexity will not
be positively evaluated. Similarly, a well-structured and modular code formed
by simple functions, but with a small coverage value, will also receive a negative
evaluation. The best-case scenario is code that is both extensively tested and
organized to avoid overly complex functions and scopes.

By combining these two aspects, weighted-code-coverage promotes a more com-
prehensive approach to software quality, encouraging developers to strive for both
thorough testing and maintainable code structures.

The main goal of our work consisted of simplifying and refactoring
weighted-code-coverage. However, we have also introduced new features re-
lated to output and metrics computation and improved the functionalities already
present.

The initial version of the tool had an unorganized code and several design problems.
It was characterized by extensive use of repeated code in various places throughout
the program. This redundancy greatly increased the developer’s maintenance
effort, as any changes had to be applied to all instances of the repeated code.
Failing to update all repetitions could lead to inconsistencies and unpredictable
behaviour.

Moreover, the presence of repeated code and lack of modularity increased the
source code length, making it more difficult to navigate and understand at first
glance. Therefore, it was necessary to review the entire software design and perform
a comprehensive refactor. This refactoring aimed to increase modularity and
reorganize the repeated code into reusable functions or constructs, improving both
maintainability and clarity.

1https://github.com/SoftengPoliTo/weighted-code-coverage

31

Firmware Analysis Tools

Another problem was that the tool’s API was overly complex and featured a large
number of functions. This complexity made the API unintuitive and challenging
to use. Additionally, the API’s intricate nature made it difficult to thoroughly test
the general behaviour. It then seemed absolutely necessary to simplify the API and
reduce the number of exposed functions to enhance usability, improve developer
experience, and ensure more straightforward and effective testing.

32

Firmware Analysis Tools

3.1.1 Tool Structure and Workflow

Figure 3.1: weighted-code-coverage structure and workflow

We start by providing a brief overview of the tool’s structure, followed by an
explanation of its workflow. This overview will clarify how the tool has been
designed and how it operates. Understanding these aspects is fundamental to
comprehending the rationale behind every modification we have made in the code
and why they have been so necessary.

As shown in Figure 3.1, weighted-code-coverage provides a library crate and
a command line interface (CLI). The crate can be used to obtain a Rust data
structure containing a project’s metrics values. The CLI, leverages on the API
provided by the crate, to compute the metrics values for a project whose path
is passed as input, and generate outputs in different file formats containing the
results of analysis.

33

Firmware Analysis Tools

Both the CLI and the crate leverage on some third-party libraries. The most
important ones are:

• serde and serde_json: are used within the tool to serialize Rust data
structures into JSON files and to deserialize JSON files into the respective
data structures.

• crossbeam and rayon: are used in conjunction with the Rust standard library
to implement the concurrent execution mechanism of the tool. These crates
provide specific and optimised constructs to implement various concurrent
programming patterns in a simple and efficient manner.

• minijinja: is a lightweight crate that provides a template engine that allows
the management and rendering of templates in Rust. Templates are files that
contain placeholders and logic that can be replaced and evaluated with values
dynamically assigned during program execution.

• rust-code-analysis: this crate enables the analysis of code written in
various programming languages by constructing an Abstract Syntax Tree
(AST)2. Each node of an AST corresponds to a specific programming language
construct, keyword or token.

• clap: enables the creation of a CLI by providing constructs to easily manage
command line arguments.

We will provide more details about these crates when we describe them during the
description of the program workflow.

Examining Figure 3.1, we can see that the workflow starts with profiling files of the
project under analysis. These files are obtained by instrumenting a program, which
means that the compiler inserts additional instructions into the code to collect data
during its execution [157] [158]. This profiling data may include execution time,
memory allocation, and frequency calls of specific functions. Such information
can eventually be used to analyze the execution of a software instance and its
performance [159].

In our case, we use profiling to gather test coverage information for a project
[160]. To obtain coverage profiles for a Rust project, we start by configuring the
development environment. This involves installing tools that support profiling
and setting compilation options that instruct the compiler to include coverage
extraction instructions. These options can be set using environment variables.

2An AST provides a hierarchical representation of the syntactic structure of a source code,
depicting its organization and relationships among the elements

34

Firmware Analysis Tools

When compiling the Rust project with these options, the rustc compiler embeds
extra code into the program. This extra code, or instrumentation, tracks which
parts of the code are executed and records this information.

When the project’s tests are run, the instrumented code is executed. Therefore,
data retrieved from code pieces covered by tests is collected and recorded in the
output profiling files. At the end of this process, we obtain various profiling files
containing the coverage information of the entire project.

These files are then passed as input to a tool called grcov3. This tool analyses
the profiling files and extracts from them information to produce a detailed report
about the test coverage of a project. grcov allows producing reports in various
formats, including HTML, lcov4 and JSON.

weighted-code-coverage parses as input the grcov JSON format, which can be
in two different variants: coveralls and covdir. Despite minor differences in how
metadata have been represented, both variants contain all the coverage information
necessary to compute the project metrics.

Figure 3.2: Example project tree structure.

For example, if we consider a Rust project with the same structure as the one
shown in Figure 3.2, first we execute grcov, passing as input the profiling files of a
project and choose coveralls or covdir as output format.
"source_files": [

{
"coverage": [2, 2, 2, 2, 2, 0, 0, null, 0, null, 2],

"name": "src/lib.rs"
},
...

]

3https://github.com/mozilla/grcov
4https://github.com/linux-test-project/lcov

35

Firmware Analysis Tools

As we can see from the example above, the coveralls format contains a list of all
project files, each accompanied by a coverage array whose number of elements
corresponds to the total number of lines in a file. Each array value represents the
coverage of a specific line, and can be of three different types:

• 0: means that the line of code in a file, which represents the array index for
obtaining its corresponding coverage value, is not covered by tests.

• Positive integer: represents the number of tests that cover that line.

• null: denotes a line that is ignored during the computation of coverage. For
example, when a line contains a comment.

On the other hand, if we consider this snippet of code taken from the covdir output
for the same project file:

"src": {
"children": {

"lib.rs": {
"coverage": [2, 2, 2, 2, 2, 0, 0, -1, 0, -1, 2],
"coveragePercent": 66.67,
"linesCovered": 6,
"name": "lib.rs"

},
...
}

}

we can see that this variant contains also other information in addition to the
coverage array, such as file coverage percentage and the total number of covered
lines. The main difference with respect to the coveralls format is that covdir uses
the -1 value instead of null to denote an ignored line. Another major difference is
that coveralls utilises a flat representation, listing each source file one by one as an
array element, while covdir uses a nested, hierarchical structure.

weighted-code-coverage accepts as input both the covidr and coveralls variants
produced by grcov. As we will see, part of our work focused on the parsing of
these two variants. This effort led to create data structures that could uniformly
represent the information of both variants despite their differences.

Once the coverage information has been obtained, the tool requires complexity
metrics and certain lines of code (LOC) metrics in order to compute its own metrics.
For this purpose, it uses rust-code-analysis to compute cyclomatic complexity,
cognitive complexity and the LOC metrics presented in Section 2.5.1.

We will further explore the details of these metrics and their composition later

36

Firmware Analysis Tools

on. For now, it is enough to know that once these metrics are computed, they are
stored within specific data structures.

Furthermore, the tool can also generate an output, in two different formats, to
present the information contained within these data structures. The JSON format is
the first available output type, which consists of a mere deserialisation of the data
structure using serde_json. The second output type instead is the HTML format,
which provides a more user-friendly and easier-to-understand representation. Later
in this chapter, we will dedicate an entire section to the output formats of this
tool.

Now, we will have a more in-depth look at the main parts of weighted-code-coverage,
listing every modification we have made and highlighting the rationales behind our
choices.

3.1.2 Parsing of Grcov files
The first step consisted of reimplementing the deserializatio of the coverage files
produced by grcov. In fact, by analysing weighted-code-coverage code, we have
noticed that the parsing of these files was partially implemented within the same
functions that were instead supposed to only use the coverage information the
files contain. Moreover, the two formats were managed separately, leading to a
repetition of code for parsing logic common among modules. These issues resulted
in poor code modularity and significantly decreased maintainability.

To address these problems, we created a separate module called grcov exclusively
dedicated to the parsing of the two JSON variants. This module provides data
structures that uniformly represent the information contained within the coverage
files. Consequently, the rest of the code can use these structures without having to
differentiate between formats. Furthermore, this approach allowed us to separate
the parsing logic specific for each format into distinct files and consolidate the
logic which was common among them, thereby eliminating a significant amount of
repeated code and enhancing reusability.

We also realised that the previous implementation did not completely deserialize
the cover format. As we have seen before, this format represents project files
hierarchically rather than linearly. The original implementation failed to correctly
parse covdir files for projects with multiple directories and subdirectories, stopping
at the first level of the hierarchy. To address this problem, we created a function
that deeply parses the entire structure represented in the covdir format, retrieving
coverage information for every file contained in the project. This ensures that
projects with complex directory structures are fully and accurately analysed.

One modification that contributed to standardise the representation of the two

37

Firmware Analysis Tools

grcov variants within weighted-code-coverage, was ensuring that coverage arrays
for project lines were uniformly represented. Specifically, we ensured that null and
-1 values, used respectively in coveralls and covdir to denote an ignored line during
coverage computation, were represented consistently using the same Rust construct.
This change, though seemingly trivial, was crucial as it gave us the possibility to
use a single, interoperable format to represent the coverage information. Previously,
this was not the case, leading to a worse tool maintainability.

In fact, the previous grcov file parsing implementation was one of the main reasons
behind the code repetition problem within weighted-code-coverage. The other
reason that led to an increase in duplicate code stems from the fact that the tool
can operate in two modes:

• files: the tool computes the metrics only for the files contained in a project.

• functions: the tool also computes the metrics for each single function of a
project.

The absence of data structures capable of uniformly and independently representing
coverage information, coupled with the distinction between these two operational
modes, resulted in dividing the tool’s workflow in four cases:

1. files-coveralls: the tool operates in files mode using a coveralls file.

2. files-covdir: the tool operates in files mode using a covdir file.

3. functions-coveralls: the tool operates in functions mode using a coveralls
file.

4. functions-covdir: the tool operates in functions mode using a covdir file.

These four cases, however, share a significant part of operational logic, which
means that there are code segments where they execute the exact same instructions.
Despite that, the old implementation opted for duplicating code instead of using an
approach based on functions that can efficiently encapsulate and reuse the shared
logic. This approach increased the overall code complexity, making it challenging
to maintain and introducing the risk of errors when updating functionalities which
are shared between the four different operational scenarios of the tool.

Many of the modifications applied to this tool have been made to address problems
resulting from structuring its workflow according to this separation. The creation
of the grcov module, as well as the changes we will eventually present, allowed us
to eliminate this separation and compact the tool’s workflow, leading to a more
streamlined and maintainable code.

38

Firmware Analysis Tools

3.1.3 Reimplementation of the Concurrent Execution Mech-
anism

Figure 3.3: producer-consumers-composer pattern

After the implementation of the grcov module, we focused on refactoring and
simplifying the concurrent execution mechanism. This can be considered a key
aspect of the tool, because it led to the analysis of multiple files in parallel,
significantly accelerating the computation of a project’s metrics.

The concurrent implementation of this tool is based on the producer-consumers-
composer pattern shown in Figure 3.3. This pattern consists of splitting and
assigning independent execution units to multiple threads5 according to the following
structure:

• Producer: this thread is responsible for partitioning the workload into various
jobs, which are tasks that can be performed independently and concurrently
by different threads. The producer is also responsible for sending the jobs to
consumer threads by placing them into a shared data structure. In the context
of weighted-code-coverage, this shared data structure is represented by a
channel, a construct provided by the crossbeam library. A channel is a com-
munication mechanism that enables threads to communicate asynchronously.
This means that a thread can send a message through the channel without
having to wait for the receiver thread to receive it. Consequently, the re-
ceiver can manage the message whenever it is ready. This mechanism allows

5are the smallest unit of execution within a process. Threads allow the parallel execution of
several operations by sharing the same process resources.

39

Firmware Analysis Tools

threads to work without blocking each other, thereby improving efficiency for
multi-threaded programs.

• Consumers: these threads asynchronously receive jobs from the producer
through the channel. Upon receiving a job, each consumer executes a specific
algorithm which resolves its assigned task, producing a result in output.
Subsequently, the consumer sends this result to the composer thread using
another shared channel.

• Composer: this is the thread at the end of the entire structure. Also referred
to as the sink, the composer gathers the data generated by consumers and, in
case, processes it, producing the final result.

In weighted-code-coverage, the producer-consumers-composer pattern has
been employed to create a job for each file of the project under analysis. This
allows consumer threads to calculate metrics for every file in parallel. In addition
to computing the metrics of a file, consumers also create data structures filled
with information about the coverage of a file, its complexity, and the respective
LOC values. These data structures are then passed to the composer, who exploits
them with the objective of computing the weighted-code-coverage metric values.
We will provide a more detailed description of these output metrics in a following
section 3.1.7. Furthermore, the composer also computes minimum, maximum and
average values of the files’ metrics.

The tool’s implementation of the concurrency before our modifications was based
on the pattern we have just presented. However, it had similar problems to those
outlined in the previous grcov section3.1.2. In particular, the implementation
lacked modularity, as it did not separate the logic into simple and reusable functions
that could be called independently across different parts of the code. Instead, it
relied on duplicated code and used huge functions into which the entire logic was
inserted. This approach significantly increased the effort required by developers
to identify and understand code sections that implement the various components
that are part of the composer-consumers-composer pattern. Therefore, it seemed
necessary to completely refactor this section of the tool, by adopting crates and
good programming practices aimed at simplifying and, at the same time, improving
the concurrent implementation.

We started the redesign of the multi-threading execution code by creating a new
module called concurrent, and clearly defining the structure of the concurrent
execution mechanism pattern within it. We achieved this by creating specific
functions for the producer, consumer, and composer components and defining their
interaction and data exchange logic. However, we did not specify a priori how the
consumer processes the files or how the composer produces the final result. This

40

Firmware Analysis Tools

approach enabled us to create a more general and reusable structure, eliminating
redundant code and condensing the pattern logic into a few lines of code.

The specific instructions performed by a producer, a consumer, and a composer
are defined separately, thus allowing the concurrent pattern implementation to be
detached from the tool’s actual algorithm. This approach proved very useful at
the beginning of the refactor, as we initially maintained separate workflows for
the files and functions modes. Therefore, we were able to define the behaviour of
pattern components for each mode without having to repeat the entire concurrent
logic.

Subsequently, we further simplified the tool’s workflow by eliminating the separation
between the two modes and putting in different files the mode-specific operations.
These operations are then appropriately called within the single obtained workflow,
resulting in a more maintainable structure, and drastically reducing the complexity
of the concurrent code.

For the implementation of this channel-based thread communication, we have used
the crossbeam library. Instead, we relied on rayon to manage the aspects related
to the creation of a thread. This crate provides specific constructs API that can be
used to compactly create multiple threads and manage their results.

Once we had completed the concurrent module, we realized that, together with the
grcov module, we had all the necessary elements to entirely remove the workflow
separation pointed out by the four cases presented before: files-coveralls, files-covdir,
functions-coveralls, and functions-covdir. Therefore, these two modules simplified
the workflow and removed redundant code, resulting in a well-structured and more
maintainable codebase.

3.1.4 API Redesign
Another fundamental part of weighted-code-coverage that underwent significant
refactoring was API. An API serves as the interface between a developer and a
library, so its design should prioritize ease of use and clarity [161]. It is essential
that the exposed constructs have concise names that immediately convey their
functionalities. Another important criterion for an API is to minimize a developer’s
effort, ensuring that operations that can be internally managed by a library do not
unnecessarily burden a developer [162]. This principle highlights the necessity for
API to automate complex tasks and streamline workflows. Therefore, a developer
should concentrate only on the application logic of a library instead of on the
specific details of its implementation.

The initial version of this API was particularly problematic. It consisted of an
excessive number of functions and required developers to know a priori the exact

41

Firmware Analysis Tools

sequence in which these functions should be called. As a result, developers had
to invoke several intermediate functions to obtain the final metrics, and explicitly
manage the passage among the intermediate results from one function to another.
A library should perform these operations internally instead of discharging this
responsibility to a developer. Indeed, a developer should only have to input the
necessary parameters and obtain the desired results without performing avoidable
operations.

Another problem with API was that it exposed a different function for each of
the four cases in which the workflow had been initially split. This design choice
resulted in an API that lacked cohesion and forced developers to write a large
amount of code to manage all the different scenarios. As a result, the initial version
of the API suffered from poor maintainability and usability due to its complexity,
which increased the likelihood of errors for developers.

For the API redesign, we decided to base our implementation on the builder pattern
[163]. The main principle of this pattern is to separate the building process of
an object from its internal representation. In our case, the object corresponds to
a data structure that contains all the parameters of the analysis performed by
weighted-code-coverage.

The builder pattern allows us to build this data structure step by step since, for
each considered parameter, there is a function that can be called to set its value.
Each parameter also has a default value, which will be used if no value has been
provided. Another advantage of the builder pattern is that a function used to set
the parameters can also validate its input values.

After defining every desired parameter, a developer must call a function named run,
to start the tool’s workflow. This function takes as arguments only two mandatory
parameters: the path to the project to be analysed and the path to the grcov
file.

The functions adopted for setting the various parameters, the run function, and
some custom data types constitute the new API for the weighted-code-coverage
library. This API is straightforward to understand because every construct is
well-documented, and the functions that set the analysis parameter have names
that clearly indicate their purpose. Furthermore, a developer only needs to set the
values of the parameters they what to change, keeping the default values for the
others, thereby reducing the effort.

As a result, this API implementation is very maintainable and flexible, as it can be
easily extended with additional parameters by just adding additional functions to
the interface. This redesign has significantly simplified the tool’s API, offering to
developers a minimal and self-documented interface.

42

Firmware Analysis Tools

3.1.5 CLI Refactoring
After implementing this new API, we focused on the refactoring of the
weighted-code-coverage CLI. This refactor came as a natural consequence of
the API redesign, as the CLI calls this API and was thus affected by the API’s
usability problems. The previous API implementation resulted in a binary with
significant code repetition, mainly due to the widely discussed four-case distinction.
Instead, by adopting the new API, we created a binary which is more compact,
eliminating all duplicated code.

CLI commands allow users to set a series of arguments with the main goal of
customizing the analysis. These arguments map one-to-one to the parameters
settable through API. Compared to the previous version of the CLI, we removed
some arguments that were no longer needed and modified other ones in order to
make them more straightforward to use. As a result, users can now set the following
arguments:

• Project Path: the path of the project to be analysed by
weighted-code-coverage. This is a mandatory argument.

• Grcov File Format: a mandatory argument specifying the grcov JSON
variant passed as input to the tool. The possible values are: coveralls and
covdir.

• Grcov File Path: the path of the grcov file containing the coverage infor-
mation for a project. This is a mandatory argument.

• Thresholds: this argument can be used to set the thresholds for the computed
metrics instead of the default ones. We will further detail the thresholds in
the metrics section 3.1.7.

• Threads: this can be used to set the number of threads that the tool will
use for the parallel computation of metrics. By default, the tool will use
threadsmax − 1.

• Mode: specifies which mode to use for the analysis. The possible values are
files or functions, with files as the default.

• Sort: specifies according to which metric to sort the final result. The possible
values are wcc, crap, and skunk. If not specified, the default value is wcc.

• Json Path: is a mandatory argument that specifies the output path of the
JSON file containing the analysis process result.

• Html Path: an optional argument that can be used if a user also wants
to obtain the HTML version of the output. If not specified, the tool will only

43

Firmware Analysis Tools

produce the JSON format as output.

To implement the CLI logic, we leveraged the clap crate and defined a module
called cli, within which we inserted all the CLI code. This approach allowed us to
obtain a reusable module that can be easily employed for implementing different
variations of the CLI binary.

3.1.6 Output

Figure 3.4: Files mode HTML output

Figure 3.5: Functions mode HTML output

The refactoring of the output produced by weighted-code-coverage is one of
the aspects we have worked on the most. Indeed, this is a crucial aspect of this

44

Firmware Analysis Tools

tool since it should provide users with a comprehensive view of the entire analysis.
The output should present the computed metrics in a clear and concise manner,
allowing developers to easily assess the quality of their codebase. It should highlight
potential problems, and offer insights into the code maintainability. Additionally,
the output should be well-organized and formatted, making it easy for developers
to quickly locate specific information and take informed decisions about necessary
code improvements.

The initial version of the CLI version allowed the production of JSON, CSV, or HTML
as outputs, all of which were optional. We initially maintained this approach, only
to later realize that it would be more effective to always produce at least one output
format. We believed that CLI users would have been more interested in viewing
the analysis results instead of getting the outputs from the crate. We chose the
JSON format for this purpose because it strikes a good balance between usability
and the number of generated files, encapsulating all project metrics in a single file.
Instead, the specific API contained in the crate allowed users to obtain a data
structure containing all metrics results without forcing the creation of any output
file. We also decided to drop the CSV output format due to its lack of clarity and
entirely focus on the JSON and HTML variants.

The changes we implemented for the JSON output directly reflect the changes to
the data structure containing all the final metrics. The JSON output is simply a
serialization of this data structure, containing the same information as the HTML
output. The advantage of JSON is that information is represented in an easily
serializable format, which is widely used among developers, and it can be seen as
the machine-readable version of the output, suitable for being parsed by other tools
and systems. Conversely, the HTML output has been choses as a more user-friendly
alternative due to its possibility for better displaying metrics in a clear way.

The initial version of the HTML output, despite containing all the analysis information,
was very minimal and not simple at all to understand. Our contribution involved a
complete output redesign with the objective of making it as intuitive as possible,
allowing developers to comprehend the information about the project quickly.

The first thing we have done in our refactoring is to replace the previous template
engine crate with minijinja. This crate provides a lightweight, minimal, yet
powerful solution for creating even complex software based on templates.

The outputs vary slightly depending on whether the files or functions mode has
been selected. Every mode starts from a common base template that displays every
file in a project, but the functions mode adds the possibility of displaying all the
functions contained in each file, along with its respective metrics.

As shown in Figure 3.4, we have chosen a data dashboard as a visualization style.

45

Firmware Analysis Tools

This allows us to present the information, on a single page broken down into
different cards. Initially, we structured the page using only a series of tables.
However, we then realized that these tables did not provide a clear and immediately
understandable view of the metrics.

The first card shows the common parameters of our analysis, such as granularity
mode and complexity type. In fact, as we will further describe, the tool can
compute metrics using both cyclomatic and cognitive complexity. In the initial
tool version, a developer had to specify which type of complexity to consider. We
have noted that it would be inconvenient for a user running the tool to have to run
the tool twice in order to obtain the metrics computed with both cyclomatic and
cognitive complexity. As a result, the HTML offers the possibility to switch between
the metrics computed with complexity metric through a dropdown menu in the
navigation bar called Complexity.

Next to the card that shows the analysis parameters we have placed the Thresholds
one, which displays the metrics thresholds.

The following cards are for Coverage, Wcc, CRAP, and Skunk, the
weighted-code-coverage metrics. These cards show the total, minimum, and
average values for each metric

The Files card shows a doughnut chart that provides a general overview of every
file in a project. The Not complex category includes files whose metrics do not
exceed the thresholds. Instead, the Complex category includes files whose at least
one of the thresholds is exceeded. Finally, the Ignored category includes files for
which we cannot retrieve profiling and coverage data, thus those files are excluded
from the analysis. Clicking on the section of the chart corresponding to the Ignored
icon shows a complete list of these files

In the bottom section of the page, there is a table where every row represents a
file of a project, along with its path and the corresponding metric values. A green
vertical line next to the file name indicates that that file is Not complex, while a
red vertical line indicates it is a Complex one.

As mentioned before, whenever the functions mode is chosen, we can reach the
corresponding metrics values, in addition to other information, by clicking on the
function name in the table. This event takes a developer to a new page completely
dedicated to the chosen function This page, as seen in Figure 3.5, shows the same
fie metrics present in the previous page, along with an additional table containing
the list of functions metrics.

46

Firmware Analysis Tools

3.1.7 Metrics Analysis
Now, we are going to describe the core aspect of weighted-code-coverage, which
is the implemented metrics and how they have been computed. We start by
describing the state of the metrics before our contribution and highlighting the
problems we noticed during the refactoring. After that, we are going to list all
the modifications we have made to address these problems and present the new
metrics’ state. To better explain the changes applied to metrics, we will build some
concrete scenarios by referring to the snippet of code shown in Listing 3.1.

1 f unc t i on f1 () {
2 i n s t r u c t i o n a
3 i n s t r u c t i o n b
4 i n s t r u c t i o n c
5 }
6

7 f unc t i on f2 () {
8 i n s t r u c t i o n d
9 i n s t r u c t i o n e

10 i n s t r u c t i o n f
11 }

Listing 3.1: Example code snippet

This code has a SLOC2.5.1 value of 11 and a PLOC value of 10.

The initial version of the tool implemented four metrics: Wcc plain, Wcc quantized,
CRAP and Skunk. However, before starting our description, we first need to
introduce the code space concept. It refers to any programming language construct
which contains a function, such as functions themselves, classes, methods, structs
or closures. In the example code, we can identify two code spaces: functions f1
and f2. Note that we are assuming that the instructions inside the two functions
do not define other internal code spaces.

To compute the Wcc quantized from a source file, we need to analyse the file line
by line and apply on each line the following algorithm:

• The algorithm starts by initializing to 0 a variable that accumulates the
weights associated with the considered lines.

• When a file does not have PLOC lines, the Wcc quantized value for that file is
equal to 0. Otherwise the algorithm proceeds to analyse every single PLOC
line.

• For each PLOC line it checks whether the line is covered.

• If a line is not covered the tool proceeds to analyse the following PLOC line.

47

Firmware Analysis Tools

• Otherwise, if the line is covered the algorithm retrieves the complexity from
the code space associated with that line. If the complexity value is greater than
15, the weights variable is incremented by 2. Instead, when the complexity
value is less than or equal to 15, the weights variable is incremented by 1.
Note that the same algorithm is adopted for both cyclomatic and cognitive
complexity.

• Finally, after parsing all lines, the algorithm computes the Wcc quantized
value for the file under analysis by dividing the weight value by the total
number of PLOC lines in that file.

If the tool is run in functions mode, it uses the exact same algorithm to compute
the metrics for each function. The only difference is that it will only analyse the
lines of code of the function, so the PLOC value will correspond to the PLOC of
the function. Regarding complexity, the algorithm determines the complexity value
based on the innermost code space that encapsulates the line in question. This
means that if a line belongs to an inner closure within the function, the complexity
value used corresponds to the closure’s complexity rather than that of the function
itself.

To highlight this metric’s issues, we present some specific scenarios, using the code
in Listing 3.1 as a reference:

• Worst case: we start by considering the worst-case scenario, in which the
code under analysis is poorly covered and very complex. For example, we
suppose that both functions f1 and f2 have only 2 lines out of 5 covered by
the tests, and that both have a complexity greater than 15. In this case, we
have that the Wcc quantized of the file is equal to:

wcc_quantized(f) = weights

PLOC
= 2 + 2 + 2 + 2

10 = 8
10 = 0.8 (3.1)

where we have that since there are a total of 4 lines covered and they have a
complexity greater than 15, they will all have a weight of 2.

• Balanced case: we now consider the case where the first function f1 has a
coverage of 3 out of 5 lines and complexity equal to 10, thus not very low but
still less than 15. Instead, f2 has coverage equal to 2 and complexity much
lower than 15. So we have that:

wcc_quantized(f) = (3 × 1) + (2 × 1)
10 = 5

10 = 0.5 (3.2)

• Balanced case: if we consider a f1 as the one of the previous case, but a f2
that has coverage equal to 4 lines and complexity greater than 15, we have

48

Firmware Analysis Tools

that the metric is equal to:

wcc_quantized(f) = (3 × 1) + (4 × 2)
10 = 11

10 = 1.1 (3.3)

• Best case: finally, we take into account the best case scenario, which is a
highly covered file with low complexity. In particular we consider maximum
coverage and a complexity lower than 15 for both functions. The Wcc quantized
value is equal to:

wcc_quantized(f) = 10 × 1
10 = 10

10 = 1 (3.4)

Upon examining these results, it is evident that there are some inconsistencies
between the obtained values and the scenarios considered. First of all, when
transitioning from the worst case to the first balanced case, we observe a decrease in
the metric value despite an increase in the number of covered lines and a reduction
in complexity. This contradicts the expected behaviour of the Wcc quantized
metric, which should ideally increase with higher coverage and reduced complexity.
However, in our case, the metric value decreases from 0.8 to 0.5, which is not
consistent with the intended design.

When comparing the second balanced case with the best case, we observe another
anomaly. In this scenario, a balanced case exhibiting high coverage and high
complexity, results in a Wcc quantized value greater than that of the best case.
Moreover, the value of the balanced case is equal to 1.1, which is odd because the
Wcc quantized metric, like coverage, was designed to be expressed as a percentage.
In this case, the percentage would be 110%, which is incorrect as it exceeds the
100% value of the best case.

We now analyse the second originally implemented metric, known as Wcc plain.
Its algorithm closely resembles that of Wcc quantized.

The first difference is that the algorithm computes a file’s metric using the total
complexity of the entire file, rather than the complexity value of each line’s code
space. Instead, for computing the metric of a single function, the algorithm uses
the complexity value of the entire function rather than that of the inner most scope
that encapsulates the line.

The second difference is in how the algorithm analyses each covered line. Instead
of incrementing the weights partial sum by 1 or 2 based on a complexity threshold,
for each line, it adds to weights the total complexity value. The Wcc plain value is
subsequently derived by dividing the total weight sum by the PLOC.

49

Firmware Analysis Tools

In the following scenarios, we focus solely on computing the metric for a file.
However, the issues highlighted also manifest when computing metrics for single
functions:

• Worst case: we assume a file complexity value of 20 and a coverage of 2
covered lines per function. Therefore, the metric value is:

wcc_plain(f) = weights

PLOC
= 4 × 20

10 = 80
10 = 8 (3.5)

• Balanced case: keeping the same coverage value of the worst-case and
decreasing the complexity to 2, we obtain:

wcc_plain(f) = 4 × 2
10 = 8

10 = 0.8 (3.6)

• Balanced case: we assume a coverage of 4 out of 5 covered lines for each
function, and a complexity equal to 20. The metric value is:

wcc_plain(f) = 8 × 20
10 = 160

10 = 16 (3.7)

• Best case: for the best case we consider maximum coverage and a low
complexity equal to 1.0. The Wcc plain value is:

wcc_plain(f) = 10 × 1
10 = 10

10 = 1 (3.8)

We notice that the increasing and decreasing trend of the metric values is equal to
the one observed for Wcc quantized. However, Wcc plain values exhibit even more
pronounced anomalies than before. Notably, some values are much higher than 1,
which should ideally be the maximum value. Moreover, the worst-case scenario
exhibits a value eight times higher than the best-case. This clearly illustrates the
critical nature of this metric.

Given the issues with the previous two metrics, we attempted to find a solution
to overcome them. First of all, we decided to eliminate the distinction between
Wcc quantized and Wcc plain, and merge them in a single metric called Wcc. This
decision was made because our analysis revealed that Wcc plain is essentially
a less restricted version of Wcc quantized, with the same issues and even less
accuracy.

As a result, Wcc builds upon the concepts and ideas of the previous two metrics
and aims to resolve their issues. Wcc’s algorithm is almost identical to the Wcc

50

Firmware Analysis Tools

quantized one. The only difference is that in Wcc quantized, when it encounters
a line from a code space of complexity greater than 15, a weight of 2 is added to
the weights, whereas in Wcc, such lines are directly ignored, leaving the weights
unchanged.

In other words, Wcc excludes from the metric calculation all lines that, despite
being covered, belong to a code space that is too complex. This slight modification
significantly alters the metric values, making them consistent with the cases under
analysis. If we revisit the exact same scenarios considered for Wcc quantized, using
the same coverage and complexity values, we obtain the following results:

• Worst case: 2 covered lines and complexity greater than 15 for both functions:

wcc(f) = weights

PLOC
= 0

10 = 0
10 = 0 (3.9)

• Balanced case: 3 covered lines for the first function and 2 for the second,
with complexity lower than 15 for both:

wcc(f) = 3 + 2
10 = 5

10 = 0.4 (3.10)

• Balanced case: 3 covered lines and complexity lower than 15 for f1, 4 covered
lines and complexity greater than 15 for f2:

wcc(f) = 3
10 = 0.3 (3.11)

• Best case: 10 total covered lines and complexity lower than 15 for both
functions:

wcc(f) = 10 × 1
10 = 10

10 = 1 (3.12)

To provide a clearer evaluation of these results, we can express them as percent-
ages:

• Worst case:
wcc%(f) = wcc(f) × 100 = 0 × 100 = 0% (3.13)

• Balanced case:
wcc%(f) = 0.4 × 100 = 40% (3.14)

• Balanced case:
wcc%(f) = 0.3 × 100 = 30% (3.15)

51

Firmware Analysis Tools

• Best case:
wcc%(f) = 1 × 100 = 100% (3.16)

Now, the best-case scenario achieves a 100% percentage, whereas the other three
cases exhibit lower percentages. In addition, the balanced cases have higher
percentages compared to the worst-case scenario. This aligns with the intended
behaviour of the metric that we wanted to obtain. Upon further analysis of the
algorithm, it becomes evident that Wcc values will never exceed 100%. This is due
to the exclusion of lines within code spaces with complexity exceeding 15, even if
adequately covered by tests.

This is the behaviour we wanted to get from the metric Moreover, analyzing the
algorithm further, we realize how it will never be possible to have a value of Wcc
greater than 1, thus greater than 100%. In fact, all code spaces with complexity
greater than 15 are excluded, despite perhaps being reasonably covered by tests.
While this approach may seem too strict, it is justified for code segments with a
complexity greater than 15 to have a Wcc of 0. This is because the maximum
complexity value should typically fall within the range of 10 to 15, although it’s
generally recommended to keep it below 10 [164]. In fact, a complexity greater than
15 suggests that the function is extremely complex and should be refactored. This
implies that having a fully covered function is not sufficient to obtain a positive
evaluation of the analysis, and the metric calculated in this way helps to identify
these scenarios.

Wcc can be seen as a sort of coverage weighted by complexity. Therefore, as the
default threshold, we decided to adopt the same 60% value, typically used for
coverage. However, it is possible to change this value using the function provided
by the API.

The Wcc value of the entire project is computed using the same algorithm previously
described. In fact, as each file undergoes analysis, the tool records the PLOC and
weight values for each of them. In the end, it sums up the weights of all files and
divides this total by the aggregate PLOC, thereby deriving the project’s Wcc.

CRAP

The next metric we analysed is CRAP [165], which can be represented by a
mathematical expression. Let c be a code space with coverage equal to cov(c),
where cov(c) ∈ [0, 1], and complexity equal to comp(c), then CRAP of c is defined
as:

CRAP (c) = comp(c)2 × (1 − cov(c))3 + comp(c) (3.17)

52

Firmware Analysis Tools

This metric, unlike previous ones, is a score, which means that it should be kept
as low as possible. Indeed, a high value of CRAP suggests that the code is either
poorly covered, too complex, or both. Instead, a low value means that the code is
well-covered and not too complex.

The presented equation allows to compute CRAP score of a code space, but it can
also be used to compute the metric for an entire file. In that case, comp corresponds
to the average complexity of code spaces within the file, and cov represents the
file’s coverage. Moreover, to compute the CRAP score for the entire project, comp
reflects the average complexity of code spaces within the project, and cov represents
the project’s overall coverage.

Initially, we explored the possibility of converting all metrics implemented by
weighted-code-coverage into percentages. This approach could have provided
more representative values and simplified threshold definitions. However, this was
only feasible for Wcc. Score metrics, in contrast, cannot be easily expressed as
percentages because a score can grow indefinitely, making it impossible to define a
maximum value and, consequently, a range for percentage conversion.

The CRAP threshold is defined by computing the metric value using a coverage
of 60% and a complexity of 10. We consider this an average case and use its
value as the default threshold for the metric. In fact, 60% represents the typical
coverage threshold, while a complexity value of 10 aligns with the complexity range
considerations discussed previously. This results in a threshold of:

CRAPthr = 102 × (1 − 0.6)3 + 10 = 16.4 (3.18)

CRAP does not have particular problems that require us to modify the way values
are computed. However, it does have some accuracy issues which we will discuss
later when comparing the various metrics.

Skunk

Skunk is another score metric, which can also be represented through a mathematical
expression. Let c be a code space with coverage equal to cov(c), where cov(c) ∈ [0, 1],
and complexity equal to comp(c), then Skunk of c defined as:

Skunk(c) = comp(c)
COMPLEXITY FACTOR

× (100 − cov(c)) + comp(c) (3.19)

where COMPLEXITY FACTOR is an empirically obtained value, equal to
60.

53

Firmware Analysis Tools

To compute a file’s Skunk, we have to substitute comp with the average complexity
of code spaces within the file, and cov with the file’s coverage. Instead, to compute
the score for the entire project, we have to substitute comp with the average
complexity of code spaces within the project, and cov with the project’s overall
coverage.

However, the presented formula does not correspond to the initial expression of
the metric. In fact, the previous version of the tool implemented an algorithm
following this representation:

Skunk(c) =

⎧⎨⎩
comp(c)

COMP LEXIT Y F ACT OR
, ifcov(c) = 100

comp(c)
COMP LEXIT Y F ACT OR

× (100 − cov(c)), otherwise
(3.20)

where COMPLEXITY FACTOR is equal to 25.

This expression corresponds to the one presented in the original documentation of
the Skunk metric [166]. However, while examining this expression we noticed that
it presents several issues. First of all, if we consider a code space with a complexity
equal to 50 and a maximum coverage of 100%, the Skunk value is equal to 2:

Skunk(c) = comp(c)
COMPLEXITY FACTOR

= 50
25 = 2 (3.21)

This value is anomalous because a highly complex function should not have such
a low Skunk score. To address this issue, we modified the original expression as
follows:

Skunk(c) = comp(c)
COMPLEXITY FACTOR

× (100 − cov(c)) + comp(c) (3.22)

where COMPLEXITY FACTOR remains equal to 25.

This modification resolves the previous issue. However, we observed that when
computing the threshold value, assuming, as for CRAP, a coverage of 60% and a
complexity of 10, the threshold becomes 26:

Skunk(c) = 10
25 × (100 − 60) + 10 = 26 (3.23)

54

Firmware Analysis Tools

This allows code spaces with complexities up to 26 to be accepted by the metric.
For instance, a code space with maximum coverage of 100% and a complexity of
26 would have a Skunk score of 26:

Skunk(c) = 26
25 × (100 − 100) + 26 = 26 (3.24)

Instead, defining a COMPLEXITY FACTOR equal to 60 yields a threshold value
of 16.7:

Skunkthr = 10
0.6 × (1 − 0.6) + 10 = 16.7 (3.25)

Therefore, based on these considerations, we decided to further modify the formula
and adopt a COMPLEXITY FACTOR equal to 60. However, despite these
modifications, Skunk is the most problematic and least accurate metric. In fact, the
authors do not adequately document how the initial COMPLEXITY FACTOR
of 25 was obtained. Furthermore, as stated in the conference video in which the
metric was presented, it is defined as a sort of magic number [167].

Metrics Comparison

When comparing the three metrics, Wcc stands out as the most accurate. It achieves
this by effectively balancing coverage and complexity. As mentioned earlier, Wcc
can be briefly described as coverage augmented by complexity information. It
first checks whether a line is covered and only then evaluates complexity to decide
whether or not to consider the line’s weight. This ensures that in the best case
scenario, when all lines in the file are covered and none of them belongs to a code
space of complexity greater than 15, the value of Wcc will be exactly equal to the
coverage, without ever exceeding it.

In contrast, CRAP and Skunk prioritize complexity over coverage. For example, if
we consider a file f with 0% coverage and an average code space complexity of 3,
the CRAP score would be equal to:

CRAP (f) = 32 × (1 − 0)3 + 3 = 12 (3.26)

and the Skunk would be:

Skunk(f) = 3
60 × (100) + 3 = 8 (3.27)

55

Firmware Analysis Tools

Despite the file being entirely uncovered, these scores are considered acceptable
since they fall below the threshold. Therefore, CRAP and Skunk metrics are
perceived as less accurate because they require complexity to exceed a certain
threshold to achieve a high score, even when coverage is minimal. Moreover, Skunk
is considered less accurate than CRAP due to its slower growth rate and the
ambiguities surrounding the definition of the COMPLEXITY FACTOR.

3.1.8 Testing
For the tool’s testing, we replaced the previous unit and integration tests, which
were based on standard Rust testing methodologies, with tests implemented using
snapshots. Snapshots provide a mechanism to capture the output of a test and
compare it against a reference value stored in a file. This method is particularly
useful in situations where a developer needs to test the values of large data structures.
To implement these tests, we used the insta crate, which offers a lightweight and
easy-to-use solution for this type of testing.

The old tests were cumbersome and verbose because developers had to manually
create and populate data structures with expected metrics values. This approach
greatly reduced testing maintainability, because if a metric parameter changed,
causing the metric values to change, the developer had to manually update all
the expected values in every test. Snapshots, on the other hand, allow us to
quickly update the reference values against which we want to compare the tool’s
result.

In particular, we implemented integration tests to thoroughly assess all functionali-
ties and potential execution scenarios of weighted-code-coverage, covering the
diverse parameters settable via the API. In addition to this, we have also defined
unit tests to verify the behaviour of the new grcov module we created, and ensure
that the files are parsed correctly.

In conclusion, this new implementation allowed us to provide a comprehensive evalu-
ation of weighted-code-coverage. Furthermore, the adoption of a more modular
structure has streamlined the testing process and enhanced its maintainability,
facilitating an eventual expansion of the test suite in the future.

3.1.9 Final Remarks
The refactoring of weighted-code-coverage illustrates how poor initial API
design and implementation choices can have a detrimental impact on software,
compromising its usability and maintainability.

For instance, the decision to split the tool’s execution into four cases based on

56

Firmware Analysis Tools

mode and grcov file variant led to extensive code repetition and significantly
decreased code readability. This design choice not only complicated the code-
base but also introduced challenges in maintaining and extending the software’s
functionality.

These challenges emphasize the importance of thoughtful design and implementation
strategies from the project’s beginning. Furthermore, they highlight the need for
scalable and modular programming practices, to ensure the software’s long-term
viability and ease of development.

3.2 generate-ci
generate-ci6 is a tool designed to facilitate the creation of build systems and
Continuous Integration (CI) configuration files using predefined templates. It
supports various programming languages, allowing developers to generate project-
specific configurations for tasks such as building, testing and static or dynamic
analysis. Among the tasks related to static analysis, there is also one dedicated to
weighted-code-coverage.

In fact, our contribution to generate-ci focused on enhancing the integration of
weighted-code-coverage analysis within the CI workflow automatically generated
by this tool. Initially, the workflow included basic integration of
weighted-code-coverage, which only exposed the JSON output file containing all
computed project metrics. To enhance the usability and visibility of the results
produced during the analysis, we have modified the CI workflow in order to have in
output the HTML format of weighted-code-coverage. This update also defined a
command to set up a dedicated URL for accessing the produced HTML pages.

Furthermore, we enriched the weighted-code-coverage task by adding a badge
creation. This badge displays the overall Wcc metric value for the project under
consideration and offers a direct link to the hosted HTML output once clicked. At
last, we have updated the documentation templates generated by generate-ci to
prominently integrate this badge.

Our contribution significantly improved the visualisation and accessibility of the
weighted-code-coverage analysis performed within the CI workflow generated
by generate-ci. Developers can now quickly access and navigate the analysis
reports, allowing a complete evaluation of a project.

6https://github.com/SoftengPoliTo/generate-ci

57

Firmware Analysis Tools

3.3 complex-code-spotter
The last tool we worked on is complex-code-spotter7, which is a static analysis
tool that extracts pieces of code deemed complex from the source code of a project.
The main objective of this tool is to help developers identify code snippets that are
too complex, and can thus be difficult to understand or may increase the likelihood
of introducing errors.

The current version of complex-code-spotter evaluates the cyclomatic and cog-
nitive complexity of a code fragment. When the snippet exceeds the threshold
for either of the two metrics, it is extracted and saved. This tool is very flexible
and allows developers to customize the analysis by specifying a different threshold
instead of the default value of 15. Additionally, developers can specify the file
extensions to include in the analysis for a more focused complexity evaluation.

The tool’s workflow heavily leverages multithreading to parallelize and optimize
the analysis. The initial concurrent execution mechanism was based on the
producer-consumers pattern, a variation of the producer-consumers-composer
pattern that uses a shared data structure among consumers instead of a final com-
poser. In complex-code-spotter, this shared data structure is used by consumers
to store the code snippets that exceed the complexity thresholds.

However, the implementation of this pattern was verbose and thus difficult to
maintain. Therefore, we decided to replace it with the producer-consumers-
composer pattern created in the context of weighted-code-coverage. This al-
lowed us to significantly streamline the workflow of complex-code-spotter and
remove a great amount of code, enhancing the tool’s maintainability and readabil-
ity. Since the implementation of the producer-consumers-composer pattern in
weighted-code-coverage was designed with reusability in mind, it was straight-
forward to adapt it for complex-code-spotter with minimal effort.

7https://github.com/SoftengPoliTo/complex-code-spotter

58

Chapter 4

Hazard Generator

Internet of Things devices gather data from the physical environment in order to
perform specific actions. These actions can be a direct response to a customer
request, such as switching on a light, or a consequence of a previously set configu-
ration, such as automated shutters that open and close at specific times each day.
Furthermore, devices can also act autonomously according to the data collected on
a daily basis, such as irrigation systems, which activate themselves depending on
weather conditions and soil humidity.

The firmware drives all these actions and the overall behaviour of smart devices,
ensuring that they promptly respond to customer commands and operate as
intended. It serves as the interface to the hardware components, reading data
collected by sensors and sending commands to actuators. Therefore, firmware is a
fundamental but also critical part of IoT systems, as errors in firmware can lead to
extremely dangerous situations in terms of safety and security. For example, faulty
firmware for light devices could cause overheating and trigger a fire. Similarly,
issues in appliances such as dishwashers and washing machines could lead to
flooding and potential shock threats if water comes into contact with any electrical
components.

As mentioned in section 2.6, the lack of well-structured certifications in the IoT
landscape, particularly for firmware which controls smart devices, represents a
significant problem. This gap increases people’s scepticism and fears regarding
the security of these systems, as highlighted in the user adoption section 2.2.3.
Therefore, a certification process must also consider the description of a device’s
behaviour and the potential dangers that may arise from its actions.

All these concerns broadly apply to the entire Internet of Things ecosystem. How-
ever, in this chapter, we focus on the Smart Home domain. In fact, the dangers and

59

Hazard Generator

firmware certification problems discussed above are highly relevant for Smart Home
devices, which often play an essential role in everyday living environments.

In particular, we concentrate on the behaviour of Smart Home devices and on the
risks that may arise from their actions. We model these risks using an ontology,
which is a structured way of representing the knowledge of a specific domain of
interest. Within the ontology, the risks are referred to as hazards. This part of
the thesis aims to implement a tool that parses the hazard ontology and generates
APIs for the Rust language. These APIs can then be integrated into a crate for
developing Smart Home firmware in order to represent the hazards.

4.1 Hazards
Hazards represent dangerous situations that can arise as a consequence of actions
issued by Smart Home devices. These hazards could occur due to firmware errors
or device defects that alter its normal operation, or because of an incorrect device
use. Inexperienced Smart Home residents, unfamiliar with such technologies, could
unintentionally endanger themselves and other inhabitants by misusing some of the
functions provided by a device. For example, it is possible to mistakenly switch off
the monitoring system of a house, potentially exposing it to intrusions that would
go undetected. In that case, turning off the monitoring system could result in the
hazard of strangers intruding into the home.

To describe and classify hazards, we started from the hazard concept defined within
SIFIS-Home1, which is a research project that implemented a secure-by-design
framework for developing Smart Home systems, ensuring safety, security, and
privacy for the inhabitants of a house. This framework defines APIs that represent,
at a higher level, the actions performed by a Smart Home device. For example,
for a light device, one of its actions is switching it on, and the way this is done
changes depending on how the manufacturer has implemented the device. As a
result, the framework provides APIs that represent these device-specific actions,
offering a standardized approach to managing and controlling the actions of Smart
Home devices.

This approach has the advantage that, given every action is represented by a
corresponding API, the framework can ensure a more reliable and consistent
management of each action. In particular, the framework assigns each API a
label containing a list of all possible hazards that may arise as a consequence of
executing the action. Each hazard can belong to only one of the following three

1https://www.sifis-home.eu/

60

Hazard Generator

categories:

• Safety: hazards that may endanger the physical safety of the inhabitants.
Examples include AirPoisoning, which indicates that an action may release
toxic gases, and FireHazard, which indicates that an action may lead to a
fire.

• Privacy: hazards that may compromise personal and sensitive data, affecting
the privacy of the residents. For example, TakePicture warns that an action
could lead to image acquisition, while AudioVideoStream indicates a potential
audio or video recording.

• Financial: hazards that may lead to unwanted expenses, for example, as a
consequence of excessive electricity or gas consumption by a device.

For defining a hazard, it is also possible to use a slightly different variant that allows
the assigning of a risk score to it. This risk score is a numerical value between
1 and 10 that quantifies the severity of a hazard. For example, turning on the
oven might have an ElectricEnergyConsumption hazard with a risk score of 8,
while lowering the refrigerator’s temperature might have the same hazard with a
risk score of 5. This indicates that the oven’s energy consumption, and thus the
associated costs, is higher than those of the refrigerator.

Firmware producers assign these risk scores during the firmware development phase,
allowing for extensive diversification of the associated hazards, even among devices
of the same type. In fact, even if two devices of the same type share a hazard for a
given action, their risk scores might be very different.

However, this hazard variant, and particularly the process to follow in order to
assign the risk score, is still in its early stages and faces some issues. For example,
if we consider two devices of type light, such as an LED light and a halogen bulb,
they both have an action to turn the light on, which should be associated with
a FireHazard. Since the overheating risk for an LED light is smaller than for a
halogen bulb, the risk score for the FireHazard of turning on the LED light is
expected to be lower than that for the halogen bulb. The problem is that there is
no well-established assessment process that follows standardized methodologies for
rigorously assigning a risk score value. Therefore, even if it is reasonable to assume
that an LED light’s fire risk is lower than that of a halogen bulb, a procedure has
not yet been established to assess this according to precise rules.

Despite its current incompleteness and instability, we still decided to include the
option of using the hazard variant with the risk score in our implementation. In
fact, with further refinement, this variant offers great potential since it could
enable a more complete and precise description of the hazards associated with an

61

Hazard Generator

action.

Starting from the hazard concept defined in SIFIS-Home, helped us reduce our
efforts in delivering a comprehensive evaluation of device behaviours and associated
risks. In fact, it provided us with a strong foundation that thoroughly describes
and categorizes the hazards of Smart Home devices, allowing us to leverage it to
further expand our knowledge and analysis of the dangers that may arise from
their actions.

4.2 Ontology
As we have already mentioned, the hazard concept is modelled using an ontology,
which provides a detailed and organized representation of all its characteristics. In
computer science, an ontology is a formal representation of a given domain of interest
[168]. This representation provides a clear and unambiguous description that can
be shared among all entities interested in the domain. A shared understanding
facilitates communication among involved entities, ensuring they all refer to the
same concepts. Entities are people or computational systems that can communicate
with each other by referring to a shared model.

The fundamental components of an ontology are [169]:

• Classes: an ontology categorizes the elements of a domain of interest and
establishes clear relationships between these categories. Therefore, classes
represent the categories into which the domain of interest concepts can be
divided. Furthermore, it is possible to define a hierarchy between classes: the
vehicle class could have two subclasses, car and truck.

• Properties: a class may be characterized by one or more attributes repre-
senting the properties an element must have to be considered part of that
class.

• Individuals: are concrete instances of elements that belong to a given class.

• Relationships: represent the relationships that may exist between the var-
ious classes of an ontology. Relationships are generally implemented using
properties. For example, a Person class may have a property called owns that
links it to a Car class, representing the fact that a person can own a car.

With regard to the hazard ontology2, it defines the following classes:

2https://www.sifis-home.eu/ontology/index-en.html

62

Hazard Generator

• Hazard: represents an hazard. Each hazard is characterized by an id property,
which allows it to be uniquely identified within the ontology. The class also
includes properties such as name and description, which provide a brief
definition of the hazard. Additionally, when using the risk score variant, it is
also possible to use the riskScore property. Finally, there is a property named
hasCategory that allows the implementation of the one-to-many relationship
between hazard and category. In fact, the value assigned to this property is
an id that identifies the corresponding hazard category.

• Category: represents all the possible hazard categories. Its properties are id,
name and description.

In addition to these classes, the original representation of the SIFIS-Home haz-
ard ontology (SHO), from which we started, also includes another class called
InteractionAffordance. This class is not defined by the SHO but corresponds to a
class defined within the Web of Things (WoT) Thing Description (TD) Ontology3,
which is an ontology that aims to standardize and provide a formal description
of IoT ecosystem resources, establishing a common vocabulary to enhance their
usability and interoperability [170]. The InteractionAffordance class represents the
various types of interactions that may occur between IoT system entities, such as an
action issued by a device in response to a user command. In fact, the SIFIS-Home
ontology was born as an extension of the TD ontology to associate device actions
with their potential hazards, thereby including aspects of behaviour in a device’s
description. However, in our hazard implementation, we do not explore this part
of the SHO and how it relates to the concepts expressed by WoT and within the
TD ontology. In fact, we use a subset of the SHO, specifically the part related to
the definition and categorization of the hazards.

4.3 JSON-LD
When working with an ontology, it is essential to have a serialized version of it,
since this helps automating its processing and ensures it can be standardized
for interoperability across different systems and applications. Over time, various
formats have been developed, each with its own advantages and drawbacks. The
available formats of the hazard ontology are: RDF/XML4, N-Triples5, TTL6

and JSON-LD. Among these, we have opted to use the JSON-LD variant due

3https://www.w3.org/2019/wot/td
4https://www.w3.org/TR/rdf-syntax-grammar/
5https://www.w3.org/TR/n-triples/
6https://www.w3.org/TR/turtle/

63

Hazard Generator

to its intrinsic characteristics, which allows us to greatly simplify the parsing
process.

JSON-LD (JavaScript Object Notation for Linked Data) is an extension of the
JSON format originally born to represent Linked Data. Linked Data is a well-
established standard that involves structuring data published on the Internet
to facilitate linking between different datasets and interconnect the information
[171]. In addition, this structuring also makes the data more comprehensible for
both humans and machines, enabling easier analysis and automated processing
to implement complex algorithms and applications. Therefore, Linked Data was
created to address the problem of unstructured and disjointed data, which hinders
the full exploitation of the vast amount of data available on the web.

Linked Data fits into the broader context of the Semantic Web, proposed by World
Wide Web founder Tim Berners-Lee [172]. The Semantic Web aims to create a
Web of interconnected data that are easily understandable and interpretable by
a machine. This interconnectedness improves interoperability between data of
different domains, facilitating navigation and knowledge discovery. Furthermore,
it enhances search engines’ efficiency and the quality of their answers to complex
queries involving data from different datasets.

Linked Data principles mandate the use of unique identifiers, known as URIs
(Uniform Resource Identifiers), and standard data representation formats [173].
URIs facilitate direct referencing and linking to specific data resources, fostering
seamless integration and cross-referencing of information.

Various formats exist for representing Linked Data, one of which is JSON-LD,
which provides a syntax for expressing Linked Data in the form of a JSON file. One
of the main advantages of using JSON-LD is that it is completely compatible with
the JSON format, which is already widely known and adopted among developers
[174]. This compatibility ensures that developers can utilize existing JSON tools
to parse JSON-LD files, thereby minimizing the effort required for adoption and
integration.

JSON-LD has a great expressive power that makes it well-suited for defining
and representing ontologies [175]. It allows a clear representation of ontology
components such as individuals, properties, classes, and relationships. Furthermore,
since it is a format for representing Linked Data, it also allows referencing external
classes, enabling the creation of an ontology that relies on concepts defined in other
ontologies. The strong interoperability of the JSON-LD format and the ability
to easily create an ontology leveraging Linked Data concepts allows it to provide

64

Hazard Generator

a comprehensive representation of the SIFIS-Home 7 ontology. Furthermore, the
JSON-LD format also provides a set of algorithms that can be applied in order to
facilitate the parsing [176]:

• Expansion: the JSON-LD format, such as JSON, uses a key-value pair syntax
to represent data objects within a file. Each key corresponds to a class property
name and is identified by a URI. In the first part of a JSON-LD file, there is
a section called context, defined using the @context tag, that provides all the
necessary information to interpret the content of a file. The purpose of the
context is to define the mapping between the property name used within the
file and its corresponding URI. For example, if we define the class Person in our
ontology with a property name representing a person’s name, we can specify in
the context that "name": "https://schema.org/name". This means that
the URI for the "name" property is https://schema.org/name, and if we
navigate to that link, we will be redirected to a web page that describes the
meaning of the property. After defining this mapping, we can, for example,
define a person named John Smith using the syntax "name": "John Smith"
instead of "https://schema.org/name": "John Smith". This enhances
readability and, at the same time, allows the linking and referencing of
different resources. The expansion algorithm resolves property names into
their URIs, simplifying file parsing by eliminating the need to use the context
to obtain the URI of a property name. As a result, all instances of "name"
within the file will be expanded to "https://schema.org/name".

• Compaction: this algorithm performs the opposite operation to expansion.
It exploits the mapping defined in the context tag to compact an expanded
document, making it more readable by replacing all URIs with their property
name.

• Flattening: class relationships of the JSON-LD format can be represented
by defining a property that contains a value uniquely identifying another
object or by directly nesting objects, forming a tree structure. In the sec-
ond case, for example, if the Person class property "marriedTo" indicates
a person’s spouse, this relationship is defined as "name": "John Smith",
"marriedTo": { "name": "Mary Smith", "age": 30 }. However, this
nested representation can overcomplicate the structure and readability of
the format, especially if there are huge objects with further nested objects
inside. The flattening algorithm removes the nesting by assigning a unique
identifier to each tree node, simplifying the structure into an array of nodes.
For example, in the case of the "marriedTo" relationship, the object "name":

7https://www.sifis-home.eu/ontology/ontology.jsonld

65

Hazard Generator

"Mary Smith", "age": 30, which represents the value of the relationship,
will be assigned the ID "_:ms0", and then the relationship will be represented
as "name": "John Smith", "marriedTo": {"@id":"_:ms0"}.

The use of the JSON-LD format has enabled the creation of an ontology that is
both highly readable and easy to parse. This format’s underlying principles provide
a high degree of flexibility, allowing for effortless and seamless potential extensions
of the ontology.

4.4 Tool Structure and Workflow

Figure 4.1: hazard-generator structure

As part of the work done in this thesis, we developed a Rust tool called
hazard-generator. This tool takes the JSON-LD serialized version of the hazard
ontology as input and parses it to create an API that enables straightforward
integration of the hazard concept into firmware development.

The API generated by hazard-generator is seamlessly integrated into a Rust crate
called ascot-library8, which is used for implementing firmware of Smart Home
devices. This new API enhances the crate, providing developers with the necessary
constructs to efficiently define and manage the hazards of a device action.

The main objective of hazard-generator is to help fill one of the several gaps of
Smart Home devices certification. In fact, a robust certification process should

8https://github.com/SoftengPoliTo/ascot-firmware/tree/master/src

66

Hazard Generator

encompass not only the functional aspects of Smart Home devices but also their
behavioural characteristics, emphasizing potential risks and hazards. Using the
API generated by hazard-generator, developers can effectively outline and inte-
grate hazards during the firmware implementation phase and, at the same time,
reduce the overall effort in doing so. As a result, integrating hazards directly
into device firmware could streamline the certification process by enabling a more
straightforward evaluation of a device’s behaviour.

As with every other tool in this thesis, this one is also written in Rust, and its
structure is better illustrated in Figure 4.1.

This project comprises both a library and a command-line interface (CLI). The
library implements the program’s operational logic, while the CLI offers a set of
arguments that exploit the library APIs to enable customization of the execution.
Using the CLI is straightforward due to its compact design and comprehensive
documentation. It provides the following arguments, divided between mandatory
and optional:

• Ontology Path: this mandatory argument specifies the path to the JSON-LD
serialized version of the hazard ontology. Although there is currently only one
version of the ontology, this parameter contributes to enhancing the tool’s
flexibility. In fact, in case of modifications to the ontology, users can easily
specify the path to the new JSON-LD file and easily generate an updated
version of the API.

• Template: hazard-generator produces the hazards API only for the Rust
language. However, it was designed with the intention to be extendable for also
generating APIs for other programming languages, such as C or C++. In fact,
its modular structure allows straightforward extension by leveraging the work
done for the Rust API. As we will discuss in more detail, we use a template to
define the structure of the produced Rust API. Starting from the logic defined
in this template, we can adapt and reuse it to implement different templates,
thereby generating APIs for various programming languages. Therefore, the
CLI’s template argument specifies the name of the programming language for
which we want to obtain the API, and at the moment, the only possible value
is Rust.

• With Risk: this optional argument allows the generation of an API that
is based on the risk score variant of hazards. In fact, by default, the
hazard-generator generates an API without the hazard’s risk score informa-
tion. However, we can set this argument to obtain an API that includes the
risk score property.

• Output Path: this mandatory argument specifies the path to the output

67

Hazard Generator

directory where the generated API will be placed.

The workflow implemented within the library can be subdivided into two main
operational phases:

• Ontology Parsing: we first deserialize and parse the JSON-LD input file
in order to extract the necessary information for building the APIs. We use
the json-ld crate to apply the expansion and flattening algorithms. The
expansion resolves the names of the properties in their corresponding URIs.
Flattening removes nested structures, converting the parsing tree into a flat
one. In this way, each hazard and category is represented by a single node.
This facilitates the subsequent parsing process, which involves exploring the
tree to determine whether a node is a hazard or a category. We create the
corresponding data structure for each node using the extracted information,
such as id, name, and description. Eventually, if a user requires the generation
of the risk score variant of the API, we also extract that property. In the code,
the Rust data structure used to define a hazard includes a field that stores
the name of the hazard’s category. Meanwhile, the data structure used to
represent a category has a field that contains the list of all hazards belonging
to that category.

• API Generation: after parsing the JSON-LD file, we can proceed to create
the actual API. This is done by defining a template that contains the Rust
constructs skeleton, which represents hazards and categories within the API.
We then use the minijinja crate to dynamically fill at runtime the template
with the data collected during the previous parsing step. Finally, we use the
filled template to create the API file in the specified output path. When
generating the API for the risk score variant, we use an extra template in
addition to the base one. This other template includes the required Rust
constructs that enable us to define a hazard with a risk score value.

To ensure that the tool operates correctly and that it produces the expected APIs,
we implemented some integration tests using the insta crate. This crate allowed
us to create snapshots, which helped us easily check if the data filled into the
templates matched the information about hazards and categories of the ontology.
Specifically, we created two tests: one to verify the API generated for the variant
without the risk score and another to verify the API with the risk score. After
confirming through these tests that the produced APIs meet our expectations,
we integrated the API variant without risk score into the ascot-library crate,
thereby successfully achieving the initial objective we set at the beginning of this
chapter.

68

Hazard Generator

4.5 Final Remarks
hazard-generator strives to facilitate and streamline firmware development by
providing a tested, flexible, and easy-to-use tool for creating APIs that can be
integrated into a Smart Home device firmware library.

These APIs offer concrete support for developing secure and safe firmware, explicitly
informing a resident about the potential hazards arising from running device actions
in a Smart Home. Furthermore, making these hazards explicit and integrating
them within the firmware code opens up the possibility of creating certification
processes that, starting from an analysis of the source code, can easily individuate
the hazards associated with a device.

69

Chapter 5

Code Certifier

Through the development of hazard-generator, we have successfully implemented
a tool that, starting from a hazards ontology, generates a Rust API. This API can
be used in firmware development to associate hazards to the actions performed by
a Smart Home device. We integrate this API in a crate named ascot-library,
which defines a set of functions and constructs that allow retrieving the information
of a Smart Home device running a server. In fact, as we will explore in detail later,
we provide the ability to implement a server that allows the use of specific APIs to
interact with the commands defined on a Smart Home device.

Specifically, the ascot-library can be used to create the routes through which
the device’s actions can be controlled. This crate allows us to define the inputs of
a route and to obtain information about previously defined routes. The integration
of the API created by the hazard-generator made it possible to further extend
the functionalities provided by ascot-library, giving the possibility of defining
and retrieving the hazards of a device.

To implement a server running on a device, we use the ascot-axum1 crate, which
allows the creation of a local REST server. A REST server is a server which
adheres to the principles of REST (Representational State Transfer) architecture
[177]. According to these principles, the resources of a server are uniquely identified
by URIs, also known as routes. Interaction with these resources is done through
HTTP verbs, which define the type of operation to be performed on a resource,
ensuring a standardized way of managing them:

• GET: this verb allows retrieving a specific resource from the server.

1https://github.com/SoftengPoliTo/ascot-firmware/tree/master/ascot-axum/src

70

Code Certifier

• POST: creates a new resource on the server.

• PUT: updates an existing resource.

• DELETE: deletes an existing resource.

In the server implemented using ascot-axum, resources correspond to the various
actions that can be performed by the device on which the server is running. An
action can be controlled through a REST API, which is a combination of a verb
and a unique route established by the firmware producer. The choice of verb
depends on how the action changes the state of the device. For example, to
switch off a light device, the server could provide the following REST API: PUT
127.0.0.1:3000/light/off. In this case, the verb is PUT because it updates the
state of the light from on to off.

Therefore, device actions are executed using the corresponding REST APIs. Fur-
thermore, when a firmware developer defines the REST API for an action, they
also have the option to associate one or more hazards to it using the API added
inside ascot-library.

ascot-library and ascot-axum are two crates that belong to a Rust project
named ascot-firmware2. These two libraries enable the creation of firmware while
also allowing the description of its behaviour. However, the resulting firmware needs
to be certified, and for this purpose, we developed a tool called code-certifier
that performs two tasks: hazard analysis using the hazard-analzer crate and the
retrieval of all public APIs from ascot-library and ascot-axum using pub-api.
Therefore, hazard-analyzer allows us to analyze the source code of a firmware
developed using the ascot-firmware crates and generate a description of the
hazards associated with the device actions. On the other hand, pub-api helps in
identifying the public APIs defined within ascot-library and ascot-axum that
have been used within a firmware.

The code-certifier, whose structure is depicted in Figure 5.1, also includes
another crate named ccertifier, which implements a CLI that uses the APIs
provided by hazard-analyzer and pub-api to create a subcommand for each of
them. In this chapter, we provide a comprehensive description of hazard-analyzer
and pub-api, delineating their structure and usage.

2https://github.com/SoftengPoliTo/ascot-firmware

71

Code Certifier

Figure 5.1: code-certifier structure.

5.1 Hazard Analyzer
To model a device within the server, one should create in the ascot-axum crate a
Rust file for each type of device that can be found in a Smart Home. Currently, we
have created only two files: one for light devices and one for refrigerators. However,
additional devices can be added as needed, using these two files as starting points
and adapting them accordingly.

These files provide the necessary constructs to map, for each action, the low-level
interface of a device to the high-level interface provided by ascot-axum. Therefore,
to interact with a device from the outside, a developer must define a route for
each action. In this way, when that route is invoked by an external process, the
corresponding action is executed. In the end, each device is characterized by a
state and a set of routes that represent its REST interface. When a request is made
via an API, the firmware executes the code that the developer associated with it
during the firmware implementation, thereby changing the state of a device.

What really distinguishes a device from another is the type of actions it can
perform. For example, a light device provides actions such as turning itself on and
off, while a refrigerator provides actions such as increasing or decreasing its internal
temperature. Each device, depending on its type, can have a certain number of

72

Code Certifier

mandatory actions, which are those actions a device must be able to perform
in order to fulfil its main tasks. Indeed, it would not make sense to think of a
light that cannot be switched on or off, or of a refrigerator that does not allow its
temperature to be adjusted.

Devices currently implemented in the ascot-axum crate, as well as those that will
be added later, must specify as mandatory only those actions that are absolutely
necessary for that device type. This approach enables a ascot-axum device to
maintain broad applicability, thus allowing its use in defining firmware for various
producer-specific variants of the device type. For example, the ascot-axum light
can be utilized to develop firmware for both an LED light and a bulb light, as long
as both provide all the mandatory actions of the ascot-axum device.

Each ascot-axum device also allows the addition of optional actions, which
depend on the device’s producer, and ensures the possibility of defining routes to
control them. For example, a producer might provide options to modify the light’s
colour or regulate its intensity as features of its light device, whereas lights of other
producers may not have these functionalities. As a result, mandatory actions are
those that a device must have in order to define its type, while optional actions are
those that a producer can add.

When implementing the firmware of a device using ascot-axum, a developer must
define routes of both mandatory and optional actions. Furthermore, those actions
can be associated with zero or more hazards. For example, a developer writing
a firmware for a smart washing machine could associate its turn-on action with
a WaterFlooding hazard. However, developers do not have complete freedom
because we set some specific constraints on the hazards that can be associated with
a device:

• Mandatory Hazards: as we said, each device is characterized by a set of
mandatory actions that define it. For each of these actions, we define certain
hazards that must be associated with them. For example, a developer defining
the turn light on action for a light device must necessarily include the
FireHazard in the list of hazards associated with that action. If a developer
fails to add a mandatory hazard and the firmware is executed the same, the
execution will abruptly stop, and an error will highlight that the turn light
on action must have a FireHazard. Therefore, this runtime check allows us
to assess whether the developer has assigned all the requested mandatory
hazards to a device’s mandatory actions.

• Allowed Hazards: each device is also characterized by a set of allowed
hazards that indicates which kind of hazards can be assigned to it. Indeed, it
is reasonable to assume that a light device will never have an action associated

73

Code Certifier

with a WaterConsumption hazard. Therefore, the allowed hazards list restricts
the hazards that can be assigned to a device to a set of appropriate ones.
During firmware execution, we use this list to check whether the hazards
assigned to a device’s action are all allowed, and if they are not, we halt the
execution and report the error. As a result, hazards assigned to mandatory
and optional actions must always be a subset of the device’s allowed hazards.

The hazard-analyzer crate of code-certifier has been developed based on the
considerations discussed so far. It takes as input the source code of a firmware which
has been implemented using the ascot-firmware crates and analyzes its structure
to ensure it adheres to the previously described constraints. The analysis consists
of several steps and has been divided within the crate through various modules to
ensure a high maintainability, reusability, and readability of the code.

5.1.1 Analysis of ascot-axum Devices
Before starting the analysis of firmware, we have to first examine the files of the
ascot-axum devices in order to retrieve for each of them the information about
their actions and hazard constraints.

In order to accomplish this, we use the crate rust-code-analysis that we intro-
duced in one of the previous chapters 3. This crate generates an Abstract Syntax
Tree (AST) from a source code and offers various APIs for traversing its nodes
in search of specific constructs. To maximize its use within our project, we made
some minor modifications, such as making certain internal functions and modules
public for external use and generalizing some of the node search functions.

Leveraging on the functionalities provided by rust-code-analysis, we managed
to create, for each ascot-axum device, a data structure that contains the following
information:

• Device name, which represents the type of the device.

• The list of its allowed hazards.

• The list of its mandatory actions.

• For each mandatory action, the list of its mandatory hazards.

At the beginning of the analysis, we download the ascot-axum crate into a tempo-
rary directory. This ensures that we analyze the most recent version of the crate
and can obtain information about any new devices that may have been added in
the meantime.

Once we have gathered information about all the devices defined within ascot-axum,
we can proceed to the next step.

74

Code Certifier

5.1.2 Device Type Retrieval
The ascot-firmware crates have been written in Rust. Consequently, the firmware
of a device implemented with these crates is also written in Rust language. Therefore,
after we ensure that the input firmware path is a directory, we search for all files
with the .rs3 extension within that directory. Among these files, since a firmware
source code can be split into multiple files, we have to find the one that contains
the code snippet used to create the ascot-axum device through the crate API. In
fact, a developer needs to instantiate an ascot-axum device corresponding to the
device type for which the firmware is written.

To speed up the analysis of the various firmware files in search of the code
snippet, we relied again on the concurrent execution mechanism based on the
producer-consumers-composer pattern. Therefore, we split the workload among
the various consumer threads, which work in parallel to find the code fragment
related to the definition of the ascot-axum device.

To search for this definition inside a file, we use the rust-code-analysis crate. In
particular, we exploit the AST generated by the crate to search through its nodes,
looking for the root node of the device’s definition code snippet. This is achieved
by establishing specific conditions on the node to be searched, guaranteeing that
the search will yield only one result if the node exists. One of these conditions
requires that the node contains the name of one of the possible devices defined
within ascot-axum. Despite helping us to find the root note, this also allows us to
understand the device type for which the firmware has been written.

5.1.3 Device Analysis
Knowing the device type, we can now use the information about ascot-axum
devices, gathered during the first phase of the workflow, to analyze the defined
device starting from its root node.

To do this, we use rust-code-analysis to explore all the descendants of the
root node and analyse the entire code snippet. However, we must first specify
that there are two modes to create an instance of a ascot-axum device within a
firmware:

1. The first one allows us to define all the mandatory actions of a device by
passing them as arguments of a constructor function. This mode is adopted
when a device is characterised by a few mandatory actions, thus allowing us
to obtain a constructor function with few parameters.

3Rust files extension

75

Code Certifier

2. The second mode is used when a device is characterized by a large number of
mandatory actions, which would result in a constructor function with too many
parameters. This approach consists of defining a method for each mandatory
action, which must then be explicitly called one by one in order to define
them.

In the first mode, a developer is obliged to define all mandatory actions, since
if he does not pass all the necessary arguments to the constructor function, the
firmware cannot be compiled. Therefore, in this case, it is possible to check directly
at compile time if all mandatory actions are defined.

However, it is not possible to define a check during the compilation phase that
verifies whether a developer has called a set of methods. Therefore, in the sec-
ond case, it is not possible to check at compile time whether a developer has
defined all the mandatory actions of a device. Therefore, in this case, a developer
could implement firmware without mandatory actions that still compile correctly.
However, there is instead a runtime check that detects and signals, by blocking
the execution, an attempt to create a ascot-axum device without one or more
mandatory actions.

Within the firmware analysis process, we consider these two different possibilities of
creating a ascot-axum device. Specifically, knowing the type of device allows us to
determine if it is defined using the first or second mode. Therefore, if it is a device
belonging to the second category, we analyse the code snippet, starting from the
root node, to ensure that all mandatory actions’ methods have been called.

After this initial check, the analysis follows the same process for both device
categories, verifying the hazards assigned to their mandatory actions. First, for
each action, we ensure that all mandatory hazards have been defined. Next, since
it is also possible to assign other hazards in addition to the mandatory ones, we
check that the other hazards belong to the list of those allowed for the device.

After completing the mandatory actions analysis, we proceed to analyze the optional
actions. For each action, we first extract the name that the developer assigned to
it. After that, we check whether the list of hazards associated with the action is a
subset of the devices’s allowed hazards.

This analysis allows us to obtain a complete overview of all actions and hazards
associated with a device. Furthermore, it helps us assess whether the initially
defined constraints were adhered to during the definition of hazards.

76

Code Certifier

5.1.4 JSON Manifest Creation
All the information we gather during the analysis is stored within a Rust data
structure. Once the analysis is completed, we serialize this data structure, using
the crates serde and serde-json, into a JSON file. This file contains a struc-
tured representation of the analysis result and is named firmware manifest. It
includes:

• The device type for which the firmware has been implemented. It is equal to
the name of the corresponding ascot-axum device.

• The filename that contains the code snippet for creating the instance of the
ascot-axum device, along with the row and column numbers where the code
snippet begins.

• The list of defined mandatory and optional actions. We show each action’s
name and the list of hazards that a developer has assigned to it. Of these
hazards, if any, we show those that are not allowed. Additionally, for the
mandatory actions, we list any missing mandatory hazards.

• Any mandatory actions that have not been defined.

5.1.5 Manifest Print

Figure 5.2: hazard-analyzer terminal output format

In addition to the manifest in JSON format, we also give the possibility to print
the analysis result on the terminal. For this purpose, as shown in Figure 5.2, we
have defined a specific format which, through the use of specific colours, makes it
possible to clearly display the various characteristics of a device and to highlight
errors relating to actions and hazards:

• Green: represents the hazards assigned to the mandatory actions of a device.

• Yellow: represents the hazards assigned to the optional actions.

77

Code Certifier

• Red: highlights erroneous conditions that cause the device instance to be
incorrect. In particular, this colour is used to show the mandatory actions that
have not been defined (missing mandatory actions), missing mandatory
hazards (missing hazards), and hazards that are not in the list of allowed
ones (not allowed hazards).

This format allows for a quick check and identification of potential issues within a
firmware. Furthermore, it provides a more user-friendly representation than the
JSON one, thus making it appropriate even for less experienced users.

5.1.6 Final Remarks
hazard-analyzer allows the analysis of firmware source code to extract a compre-
hensive description of device behaviour, focusing on the actions a firmware can
execute. It identifies potential hazards stemming from these actions, forcing a
developer to define them explicitly during firmware development. The tool also
ensures that device actions adhere to the hazard constraints defined within the
ascot-axum crate.

The produced outputs allow us to obtain a complete overview of the firmware
analysis, and the JSON manifest can also be used in a firmware certification process
to certify the aspects related to a device’s behaviour.

The analysis conducted by hazard-analyzer requires access to a firmware source
code. While this might be seen as a limitation, it is reasonable to expect that
developers who make use of the ascot-firmware crates for developing their own
firmware would permit to analyze its source code by the hazard-analyzer, with
the objective of certifying its behaviour.

hazard-analyzer has been extensively tested by defining various device types and
firmware examples to check whether the tool can detect every erroneous situation
previously described. These tests have been implemented using the insta crate,
which allowed us to exploit the advantages of snapshots in order to streamline the
testing process.

We have created firmware which represents different device types as tests. Among
them, we have intentionally omitted mandatory actions and firmware where actions
lack mandatory hazards or include hazards that are not allowed. Finally, we also
tested two firmware examples 4 that we implemented with ascot-firmware, which
define a concrete application of the concepts we presented before. These tests

4https://github.com/SoftengPoliTo/ascot-firmware/tree/master/ascot-axum/examples

78

Code Certifier

allowed us to comprehensively verify the hazard-analyzer operations and ensure
that the firmware analysis is conducted as intended.

5.2 Public API
The second crate we implemented is pub-api. This crate is designed with the objec-
tive of extracting all public APIs from the ascot-library and ascot-axum crates.
The information retrieved by pub-api can, for example, be used to identify all
ascot-firmware APIs utilized within a firmware, providing additional information
to better analyze and certify a device’s behaviour.

To extract the public APIs, we leveraged on rustdoc 5, a documentation generation
tool integrated into the Rust toolchain. This tool allows to generate a complete
and detailed documentation for an entire Rust project.

In particular, we have used an experimental feature of this tool that permits the
representation of project documentation as a JSON 6 file, instead of the HTML that
rustdoc produces by default.

The JSON file represents the AST of a Rust project, and starting from the root
node, it is possible to explore all the public constructs contained in the tree. To
exploit rustdoc and its JSON represenation within pub-api, we have adopted two
third-party crates:

• rustdoc-json: launches the rustdoc command on a project in order to
produce a JSON documentation.

• rustdoc-types: defines some data structures and types that can be used to
facilitate the parsing of the JSON file created with the first crate.

With these two crates, we are able to extract all the public APIs contained in
ascot-library and ascot-axum. In particular, we currently extract the following
Rust constructs:

• Structs 7

• Enum 8

5https://doc.rust-lang.org/rustdoc/what-is-rustdoc.html
6https://rust-lang.github.io/rfcs/2963-rustdoc-json.html
7https://doc.rust-lang.org/book/ch05-00-structs.html
8https://doc.rust-lang.org/book/ch06-00-enums.html

79

Code Certifier

• Traits 9

• Functions 10

• Macros 11

As output, the crate produces a JSON manifest that contains a list of all these
constructs. For each construct, it specifies its name, the file within which it is
contained in addition to the eventual functions associated with it.

This tool has been extensively tested to verify that it is indeed capable of extracting
all the constructs previously listed. As for hazard-analyzer, we used the insta
crate to define snapshots, which allows us to define different scenarios and observe
how the crate analyzes each of them. In particular, we create snapshots for each
specific extracted construct and also test more complex use cases, including placing
constructs within internal sub-modules or using aliases 12.

Using rustdoc-json and rustdoc-types allows for a straightforward expansion
of the capabilities of this crate since the analysis relies only on the information
contained in the JSON documentation. This ensures that the analysis remains
independent of the specific project under analysis, allowing the extraction of public
APIs from any Rust project.

5.3 ccertifier

As we mentioned at the beginning of the chapter, within code-certifier we
have also defined a crate named ccertifier that provides an interface for using
hazard-analyzer and pub-api. In particular, this crate implements a CLI by
defining two subcommands: hazard-analyzer and pub-api for the respective
crates.

The arguments provided by the hazard-analyzer subcommand are:

• Firmware Path: is a required argument that represents the path to the
firmware that has to be analyzed.

• Devices Path: is an optional argument that can be used to specify the
path to a local directory containing the files of the ascot-axum devices, in

9https://doc.rust-lang.org/book/ch10-02-traits.html
10https://doc.rust-lang.org/book/ch03-03-how-functions-work.html
11https://doc.rust-lang.org/book/ch19-06-macros.html
12An alias is a way to create an alternative name for existing types or modules

80

Code Certifier

order to use them instead of the devices defined within the ascot-axum crate
downloaded by the hazard-analyzer.

• Manifest Path: is a mandatory argument that specifies the path in which to
place the JSON firmware manifest.

• Quiet: If set, this argument causes the result of the analysis to no longer be
printed on the terminal.

On the other hand, pub-api provides the following arguments:

• Library Path: is an optional argument that can be used to specify the path
to a local version of the ascot-library crate, in order to use it instead of the
version download by pub-api.

• Axum Path: is an optional argument that can be used to perform the same
operation of the previous one but for the ascot-axum crate.

• Manifest Path: is a mandatory argument that can be used to specify the
path in which to place the output JSON file that contains the extracted APIs.

81

Chapter 6

Performance Analysis

In this chapter, we conduct a performance analysis of some of the tools introduced
in the previous chapters. The purpose of this analysis consists of evaluating their
behaviour in increasingly computationally demanding scenarios and eventually
identify potential improvements. In particular, we perform two types of performance
analysis: the first one evaluates the tools’ execution times, while the second one
examines their memory usage.

We have decided to analyse: weighted-code-coverage, complex-code-spotter,
as well as the hazard-analyzer, a crate integrated into code-certifier as one
of its crates.

For the first two static analysis tools, in addition to adding new features, we
also made significant changes to the implementation of their concurrent execution
mechanism. Therefore, it is important to evaluate how these changes have impacted
the performance of the tools, and determine whether they have improved or possibly
worsened it.

As we previously introduced, weighted-code-coverage computes some code met-
rics from a Rust project source code, while complex-code-spotter evaluates its
complexity. Therefore, both tools need to analyse every Rust file in a project,
and the effort required to perform this analysis depends on the size of the project,
specifically on the number of source files that compose it. In fact, it is reasonable
to assume that as the number of files increases, the tool will be under greater
stress since it will have to analyse and process a larger quantity of data. Therefore,
this analysis aims to assess the impact of project size on the tools’ execution
time and memory usage, and verify how they vary according to this parameter.
For this purpose, we choose three different Rust projects with increasing sizes,
which will be used as input projects for analysing weighted-code-coverage and

82

Performance Analysis

complex-code-spotter:

• seahorse1: is a minimal framework for creating CLIs in Rust. It is easy to
use, has no external dependencies, and relies entirely on the constructs of the
Rust standard library. seahorse comprises only 12 Rust files, so we used it
as the small project example for our tools’ analysis.

• serde2: is a library used for serializing Rust data structures known such as
JSON, XML, BSON, or deserializing these formats into Rust data structures. It is
one of the most widely used libraries within the Rust ecosystem and consists
of 164 Rust files, making it a good choice as an example of a medium-sized
project.

• rust-analyzer3: represents the choice for the large project example, consisting
of 1270 Rust files. This tool provides a front-end for the Rust compiler that
can be integrated into various text editors used by developers for writing code.
It improves developers’ productivity by providing complete support for code
writing, code navigation, debugging, and error checking.

As the two previous static analysis tools, hazard-analyzer also analyses all the
Rust files of a project. However, we cannot consider any Rust project, but only a
firmware implemented with the ascot-firmware crates. For this reason, to analyse
hazard-analyzer, we use one of the ascot-firmware examples, specifically the
one that implements a firmware for a light device 4.

6.0.1 Analysis Tools
To conduct this execution time and memory usage analysis, have chosen the
following tools:

• Hyperfine5: is a command line tool that allows precise measurement of a
program execution time through benchmarking, making it ideal for a per-
formance evaluation of our tools. Hyperfine provides a statistical average of
execution time by repeatedly running the program under analysis, enabling
the identification of time variations and fluctuations. Its ability to perform
warm-up runs and prepare the execution environment for optimal conditions

1https://github.com/ksk001100/seahorse
2https://github.com/serde-rs/serde
3https://github.com/rust-lang/rust-analyzer
4https://github.com/SoftengPoliTo/ascot-firmware/tree/master/ascot-axum/examples/light
5https://github.com/sharkdp/hyperfine

83

Performance Analysis

ensures stable and accurate results, reducing the impact of random variations
and temporary system conditions.

• Heaptrack6: is a memory profiling tool that tracks memory allocation during
execution. This tool is essential for analyzing how our software manages
memory and for identifying usage peaks, temporary allocations, and potential
memory leaks. By using Heaptrack, we obtain a detailed view of the tools’
memory usage, which we can use as information for optimizing their memory
management, and thus improving their overall efficiency.

Heaptrack computes various metrics from the analysis it performs. Among all of
them, we have decided to consider the following ones:

• Allocations: an allocation occurs when an operating system dynamically
assigns a certain amount of memory to a program based on a certain request.
This memory is used by the program to store data needed at runtime for its
execution. Heaptrack provides the total number of allocation requests made
by a program, thus allowing the detection of any memory usage anomaly.

• Temporary allocations: refer to memory allocations that persist for a short
period, such as temporary data structures quickly released as soon as they
are no longer needed. Knowing the total number of temporary allocations
provides insights into memory management efficiency, revealing opportunities
for further optimization.

• Permanent allocations: in contrast to temporary allocations, permanent al-
locations refer to allocations that persist for a longer time during the program’s
execution and thus have a greater impact on its memory usage. Monitoring
this parameter is essential, as a high number of permanent allocations may
overload the memory and decrease overall program performance.

• Peak heap memory consumption: the heap is the program’s memory area
used to dynamically allocate the memory requested by the program during
its execution. This value helps identify the program’s maximum memory
requirements and detect potential memory leaks, which refers to allocations
that are not correctly released.

• Peak RSS (Resident Set Size): RSS represents the amount of physical
memory (RAM) that an operating system reserves for a process at a given
time. Peak RSS indicates the maximum RAM required by a program during
its entire execution. This information contributes to defining a program’s
memory requirements and can help identify inefficient memory usage.

6https://github.com/KDE/heaptrack

84

Performance Analysis

6.1 weighted-code-coverage
We start by analysing weighted-code-coverage It is the first tool on which we
have applied the producer-consumer-composer pattern, which was subsequently
adopted for the other tools we implemented. We therefore use the analysis of
weighted-code-coverage to understand whether this pattern actually brings
advantages. At the same time, we want to evaluate the impact of new features and
further modifications on the tool’s performance.

In particular, we will examine how the tool performed in terms of execution time
and memory usage before the modifications and then compare the obtained results
to those achieved after the changes.

6.1.1 Execution Time
Before

seahorse
(12 files)

serde
(164 files)

rust-analyzer
(1270 files)

Projects

0

5

10

15

20

Ex
ec

ut
io

n
Ti

m
e

(s
)

0.4

3.93

23.15
weighted-code-coverage before modifications

Figure 6.1: weighted-code-coverage execution times before modifications

As depicted in Figure 6.1, the execution time of the original version of
weighted-code-coverage tends to increase as the number of project files grows.
Specifically, we observe that the execution time is nearly ten times when transition-
ing from seahorse, which has 12 files, to serde, which has 164 files. Moreover, in
the case of rust-analyzer, with the number of files increasing by approximately
105 times that of seahorse and around eight times that of serde, the execution

85

Performance Analysis

time rises to 23.15 seconds, which is nearly fifty-six times that of seahorse and
about six times that of serde.

After

seahorse
(12 files)

serde
(164 files)

rust-analyzer
(1270 files)

Projects

0

1

2

3

4

5

6

Ex
ec

ut
io

n
Ti

m
e

(s
)

0.31

1.12

6.65
weighted-code-coverage after modifications

Figure 6.2: weighted-code-coverage execution times after modifications

In the chart shown in Figure 6.2, we observe that even after our modifications,
the execution times of weighted-code-coverage increase as the number of files
grows. Starting with an execution time of 0.31 seconds for seahorse, the time
rises to 1.12 seconds for serde, nearly a four times increase. For rust-analyzer,
the execution time is 6.65s, which is about twenty-two times longer than seahorse
and nearly six times longer than serde.

86

Performance Analysis

Comparison

seahorse
(12 files)

serde
(164 files)

rust-analyzer
(1270 files)

0

5

10

15

20
Ex

ec
ut

io
n

Ti
m

e
(s

)

weighted-code-coverage comparison
Before modifications
After modifications

Figure 6.3: weighted-code-coverage execution times comparison

These results confirm our initial assumptions and demonstrate that as the size of a
project increases, the tool must process more files, leading to longer execution times.
This trend is true for both versions of the tool, but there are some differences.

As shown in Figure 6.3, the execution times of the modified version of
weighted-code-coverage are consistently shorter than those of the unmodified
version. This difference becomes more and more accentuated as the projects
become larger. In fact, for seahorse, the execution time of the new version is 0.31s
compared to 0.4s for the old version. However, if we consider rust-analyzer, we
observe that the execution time of the new version is approximately four times
shorter and has a slower growth rate as the number of files increases.

These observations allow us to conclude that adding features to
weighted-code-coverage has not negatively impacted its execution time. Fur-
thermore, replacing the old concurrent execution implementation with the producer-
consumer-composer pattern has made the tool faster, decreasing the overall execu-
tion times and growth rate.

87

Performance Analysis

6.1.2 Memory Usage
Before

Project: seahorse
Files: 12
Total Allocations: 226007

Permanent: 95.64%
Temporary: 4.36%

Project: serde
Files: 164
Total Allocations: 6370832

Permanent: 99.70%
Temporary: 0.30%

Project: rust-analyzer
Files: 1270
Total Allocations: 2081862

Permanent: 95.21%
Temporary: 4.79%

Figure 6.4: weighted-code-coverage allocations before modifications

Analysing the charts in Figure 6.4, we can observe that the initial version of
weighted-code-coverage records a total of 226,007 allocations for seahorse,
6,370,832 for serde and 2,081,862 for rust-analyzer.

The first thing we notice is that the number of allocations does not seem to depend
on the size of the project being analysed. In fact, serde has significantly fewer
files than rust-analyzer, and despite that, it has approximately three times more
allocations.

The proportion of temporary allocations also seems independent of the number of
files. rust-analyzer has the highest percentage of temporary allocations at 4.79%,
closely followed by seahorse at 4.36%, while serde has a much lower value of just
0.3%.

This data suggests very poor memory management for what concerns the serde
analysis, given the very high number of allocations and the very low percentage
of temporary allocations. Instead, the more effective utilization of temporary
allocations is during the analysis of rust-analyzer.

88

Performance Analysis

After

Project: seahorse
Files: 12
Total Allocations: 39934

Permanent: 75.10%
Temporary: 24.90%

Project: serde
Files: 164
Total Allocations: 330612

Permanent: 84.37%
Temporary: 15.63%

Project: rust-analyzer
Files: 1270
Total Allocations: 2906717

Permanent: 85.43%
Temporary: 14.57%

Figure 6.5: weighted-code-coverage allocations after modifications

Figure 6.5 shows the memory allocation values for the new version of the tool. The
charts reveal that the number of allocations increases with the number of files in
the project. Specifically, the number of allocations starts at 39,934 for seahorse,
rises to 330,612 for serde, and reaches 2,906,717 for rust-analyzer.

The percentages of temporary allocations follow a similar trend: for seahorse,
the value is 24.9%, for serde it is 15.63%, and for rust-analyzer it is 14.57%.
This data indicates that memory utilization intensifies as the number of files to be
analysed increases, leading to more allocations. Additionally, they suggest that as
projects grow in size, managing the analysis with temporary allocations becomes
increasingly difficult. This results in a greater reliance on permanent allocations,
which have a larger impact on overall memory usage.

89

Performance Analysis

Comparison

Project Files Memory Peak Peak RSS Allocations Temporary
seahorse 12 2.3 MB 14.5 MB 226007 4.36 %
serde 164 55.7 MB 69.4 MB 6370832 0.3 %
rust-analyzer 1270 183.5 MB 200.8 MB 2081862 4.79 %

Table 6.1: weighted-code-coverage memory usage before modifications.

Project Files Memory Peak Peak RSS Allocations Temporary
seahorse 12 2.5 MB 1.7 MB 39934 24.9 %
serde 164 10.5 MB 29.1 MB 330612 15.63 %
rust-analyzer 1270 19.9 MB 46.9 MB 2906717 14.57 %

Table 6.2: weighted-code-coverage memory usage after modifications

Tables 6.1 6.2 provide a comprehensive overview of the memory usage of the two
versions of the tool. Using this data, we can show how these changes have impacted
the tool’s memory management.

Starting with the memory peak parameter, which corresponds to the peak heap
memory consumption, we see a clear decrease for serde and rust-analyzer
projects, from 55.7MB to 10.5MB and from 183.5MB to 19.9MB. For seahorse,
on the other hand, the value has not decreased but actually increased from 2.3MB
to 2.6MB. The improvements we made to boost the tool’s performance are being
balanced out in small projects by the extra memory used for the new features.

Regarding peak RSS values, there is a notable decrease across all projects. For
seahorse, it dropped from 14.5MB to 1.7MB, for serde from 69.4MB to 29.1MB,
and for rust-analyzer from 200.8MB to 46.9MB.

Looking at the number of allocations, seahorse and serde saw significant decreases,
from 266,007 to 39,934 and from 6,370,832 to 330,612. However, rust-analyzer
saw an increase from 2,081,862 to 2,906,717.

The percentage of temporary allocations is much higher in the update version of
the tool. It increased from 4.36% to 24.9% for seahorse, from 0.3% to 15.63% for
serde, and from 4.79% to 14.57% for rust-analyzer. Notably, there is a large
difference between the two percentages of serde, and in the updated version, the
values for serde and rust-analyzer are very similar despite the latter being a
much larger project.

From this comparison, we can conclude that our changes have led to a general

90

Performance Analysis

improvement in memory management, with memory usage following a more pre-
dictable trend as project size increases. The tool’s memory peaks have decreased
considerably, and the use of different programming practices has optimized the
program’s allocations by increasing the usage of temporary allocations instead of
permanent ones.

91

Performance Analysis

6.2 complex-code-spotter
For complex-code-spotter, the changes did not involve adding new features.
Instead, we have modified the concurrent execution mechanism by replacing the old
implementation with the producer-consumer-composer pattern and simplified
most parts of the code. Since we have not added new features which could increase
execution times or memory usage, we expect our modifications to improve the
tool’s performance or, at the very least, not degrade it.

6.2.1 Execution Time
Before

seahorse
(12 files)

serde
(164 files)

rust-analyzer
(1270 files)

Projects

0

2

4

6

8

10

Ex
ec

ut
io

n
Ti

m
e

(s
)

0.37
1.21

10.95
complex-code-spotter before modifications

Figure 6.6: complex-code-spotter execution times before modifications

In the version prior to our modifications, as shown in Figure 6.6, the execution time
increases significantly with the size of the project. When moving from seahorse
to serde, the execution time rises from 0.37s to 1.21s, roughly tripling. For
rust-analyzer, the execution time is 10.95s, which is approximately thirty times
longer than seahorse and about nine times longer than serde.

92

Performance Analysis

After

seahorse
(12 files)

serde
(164 files)

rust-analyzer
(1270 files)

Projects

0

1

2

3

4

5

6

7

8
Ex

ec
ut

io
n

Ti
m

e
(s

)

0.31

1.09

7.88
complex-code-spotter after modifications

Figure 6.7: complex-code-spotter execution times after modifications

As shown in Figure 6.7, in the modified version of complex-code-spotter, the
execution time for seahorse is 0.31s. For serde, the value increases to 1.09s,
roughly four times longer. For rust-analyzer, the tool takes 7.88s, which is about
twenty-five times longer than seahorse and seven times longer than serde.

93

Performance Analysis

Comparison

seahorse
(12 files)

serde
(164 files)

rust-analyzer
(1270 files)

0

2

4

6

8

10
Ex

ec
ut

io
n

Ti
m

e
(s

)

complex-code-spotter comparison
Before modifications
After modifications

Figure 6.8: complex-code-spotter execution times comparison

We note that, as expected, execution times increase as the number of project
files increases, regardless of whether the tool has been used with or without
modifications.

However, as seen in Figure 6.8, the difference between the execution times of the
two versions of the tool is not very pronounced for small to medium-sized projects,
with similar execution times for seahorse and serde. For seahorse, the time
decreases from 0.37s to 0.31s, and for serde, it decreases from 1.21s to 1.09s.

These observations lead us to conclude that the impact of our changes on
complex-code-spotter becomes more significant as the project size increases. The
old version has comparable execution times to the updated one for projects with
few files. For rust-analyzer, the changes reduce the execution time from 10.95s
to 7.88s, a decrease of over 3s.

These considerations allowed us to assess that the impact of the changes made
to complex-code-spotter tends to become more and more significant as the
project size increases. For rust-analyzer, our changes reduce the execution time
from 10.95s to 7.88s, a decrease of over 3s. Instead, the old version of the tool
has execution times comparable to the updated version for projects with fewer
files.

94

Performance Analysis

6.2.2 Memory Usage
Before

Project: seahorse
Files: 12
Total Allocations: 32889

Permanent: 81.18%
Temporary: 18.82%

Project: serde
Files: 164
Total Allocations: 271540

Permanent: 93.71%
Temporary: 6.29%

Project: rust-analyzer
Files: 1270
Total Allocations: 2451991

Permanent: 94.93%
Temporary: 5.07%

Figure 6.9: complex-code-spotter allocations before modifications

Looking at the charts depicted in Figures 6.9, we can observe that as the number of
files in the project increases, the total number of allocations also rises. Moving from
seahorse to serde, the number of allocations increases from 32,889 to 271,540,
and for rust-analyzer, it reaches 2,451,991.

However, the trend for the percentage values of temporary allocations is less
consistent. The highest value is for seahorse at 18.82%, while it decreases to
6.29% for serde, and then increases again to 14.57% for rust-analyzer.

After

Project: seahorse
Files: 12
Total Allocations: 33092

Permanent: 81.15%
Temporary: 18.85%

Project: serde
Files: 164
Total Allocations: 271687

Permanent: 95.45%
Temporary: 4.55%

Project: rust-analyzer
Files: 1270
Total Allocations: 2451735

Permanent: 96.41%
Temporary: 3.59%

Figure 6.10: complex-code-spotter allocations after modifications

The changes made to the tool are reflected in the allocation charts depicted in
Figure 6.10. Here, we can observe that the total number of allocations for the
three projects are 33,092 for seahorse, 271,687 for serde, and 2,451,735 for
rust-analyzer.

95

Performance Analysis

The percentage of temporary allocations appears to correlate with the number of
files in the project under analysis. This value shows a gradual decrease, starting
at 18.85% for seahorse, decreasing to 4.55% for serde, and further dropping to
3.59% for rust-analyzer.

Comparison

Project Files Memory Peak Peak RSS Allocations Temporary
seahorse 12 7.6 MB 16.5 MB 32889 18.82 %
serde 164 87.4 MB 83.4 MB 271540 6.29 %
rust-analyzer 1270 220.6 MB 260.2 MB 2451991 5.07 %

Table 6.3: complex-code-spotter memory usage before modifications.

Project Files Memory Peak Peak RSS Allocations Temporary
seahorse 12 7.6 MB 15.3 MB 33092 18.85 %
serde 164 94.4 MB 74.2 MB 271687 4.55 %
rust-analyzer 1270 233.7 MB 242.8 MB 2451735 3.59 %

Table 6.4: complex-code-spotter memory usage after modifications.

Comparing the memory management of the two versions of the tool by means of
Tables 6.3, 6.4, we can observe that the implemented changes resulted in increased
peak memory values for serde and rust-analyzer, from 87.4MB to 94.4MB
and from 220.6MB to 233.7MB, respectively. However, the peak memory value
for seahorse remained unchanged at 7.6MB. This suggests a worse allocation
management within the tool, indicating an increased requirement for memory
allocations compared to the previous version.

This consideration also seems to be confirmed by comparing the total number of
allocations. In fact, while the value decreased for rust-analyzer, from 2451991 to
2451735, there was an increase for the other two projects. For seahorse and serde,
it increased from 32,889 allocations to 33,092, and from 271,540 to 271,687.

The percentage of temporary allocations also indicates a less efficient memory usage.
Except for seahorse, where the value remained almost unchanged from 18.82% to
18.85%, there was a decrease for this metric as project size increased. Specifically,
for serde, it decreased from 6.29% to 4.55%, and for rust-analyzer, it dropped
from 5.07% to 3.59%.

This decline in allocation management efficiency could be attributed to the imple-
mentation of concurrent execution code. It improved execution times but, at the

96

Performance Analysis

same time, increased the total number of allocations and reduced the percentage of
temporary ones.

Conversely, there was a minor improvement in the peak RSS parameter. In each of
the projects, this value decreased in the new version of the tool: from 16.5MB to
15.3MB for seahorse, from 83.4MB to 74.2MB for serde, and from 260.2MB to
242.8MB for rust-analyzer. This suggests that despite an increase in allocation
requests, the tool now requires less overall RAM memory.

6.3 hazard-analyzer
As we have already mentioned in Chapter 55, to evaluate the performance of
hazard-analyzer, we use a small light firmware implemented with the
ascot-firmware crate. This is because, differently from the analysis of the two
static analysis tools, for hazard-analyzer, we cannot have a large variety of
firmware projects of different sizes. Therefore, we will provide an overview of
performance based on analysing a single firmware, while still attempting to compre-
hensively evaluate the tool’s execution time and memory management aspects.

6.3.1 Execution Time

min mean max
0.0

0.2

0.4

0.6

0.8

1.0

Ex
ec

ut
io

n
Ti

m
e

(s
)

0.83

0.92

1.03
hazard-analyzer

Figure 6.11: hazard-analyzer execution times

97

Performance Analysis

Figure 6.11 shows the minimum, mean, and maximum execution times for
hazard-analyzer. These values are derived from the analysis performed with
hyperfine, which runs the program multiple times, extracting these specific execution
times. The average value is 0.92 seconds, while the minimum and maximum times
are 0.82 seconds and 1.03 seconds, respectively. In particular, we can observe that
the average execution time is under 1s, with a value of 0.92, while the minimum
and maximum values are 0.82s and 1.03s.

These data show that the execution time of the tool is fairly consistent be-
tween the various executions and is comparable with the execution times of
weighted-code-coverage and complex-code-spotter in the case of a medium-
sized project.

98

Performance Analysis

6.3.2 Memory Usage

Permanent 36.57%

Temporary 63.43%

hazard-analyzer

Figure 6.12: hazard-analyzer memory allocations

Memory Peak Peak RSS Allocations Temporary
3.1 MB 25.8 MB 161772 63.43 %

Table 6.5: hazard-analyzer memory usage

Figure 6.12 and Table 6.5 illustrate that the tool accumulates 161,772 allocations,
with 63.43% of them being temporary. This indicates that while the number
of allocations is relatively high, a significant majority of them are temporary,
facilitating a quick memory release and resulting in a small memory peak of only
3.1MB.

In contrast, the RSS peak reaches 25.8MB. This relatively high value, considering
that we are using a small firmware for the analysis, is probably caused by the
intensive exploration and traversal of AST nodes using rust-code-analysis. This
process often involves deep tree traversal to locate nodes with specific proper-
ties, which can intricately increase both the number of allocations and memory
usage.

Therefore, it is important to further optimize the tool to reduce the RSS peak

99

Performance Analysis

and potentially decrease the total number of allocations, while maintaining a high
percentage of temporary allocations for a more efficient memory usage.

6.4 Final Remarks
This performance analysis allowed us to assess that for weighted-code-coverage
and complex-code-spotter, there is a close dependence between execution time and
the size of the project under analysis. In particular, execution times increase as
the number of files of a project grows. In addition, the data obtained allowed us to
evaluate the impact of our changes, noting that they improved execution times for
both tools regardless of the size of the input project.

For what concerns memory management of these two tools, we observed, with
some exceptions, that it is generally influenced by the size of the project. In fact,
memory peak, peak RSS, and total allocation values tend to increase as the project
size increases, while the percentage of temporary allocations tends to decrease. The
changes made to weighted-code-coverage resulted in an overall improvement in
memory utilization. For complex-code-spotter, however, there was a general
worsening in all parameters except peak RSS, suggesting that the tool’s memory
management could be further improved.

The performance analysis of hazard-analyzer enabled us to evaluate its ex-
ecution time and memory usage by passing a small firmware as input. This
analysis was less exhaustive compared to that of weighted-code-coverage and
complex-code-spotter, due to the lack of projects of different sizes. This indicates
a need for future re-evaluations with a broader range of firmware with the objective
of better assessing the tool’s behaviour under more computationally demanding
conditions. However, the data obtained was generally encouraging, both in terms of
execution time and memory management. The latter, in particular, could be further
improved by reducing total RAM usage and optimizing the tool’s allocations.

100

Chapter 7

Conclusions

In this thesis, we have observed how the rapid evolution of the Internet of Things
(IoT) ecosystem has led to various unresolved challenges related to security, relia-
bility, and standardization.

One particular problem that stands out is the absence of a well-defined certification
process for analyzing the firmware of IoT devices. As a result, many devices, released
by different manufacturers, may contain major vulnerabilities that significantly
compromise their security.

These problems become even more pronounced if we think of a Smart Home
system, where, for example, some devices may manage a home’s surveillance or fire
prevention system.

Thus, for the kind of devices that can collect sensitive data and manage critical
functions within a home, vulnerabilities can result in situations that seriously
threaten the privacy and physical safety of its inhabitants.

It is therefore essential to define certification processes that, starting from the
firmware of a Smart Home device, can draw a comprehensive assessment of its
security and associated risks.

In this context, we have initially introduced two static analysis tools,
weighted-code-coverage and complex-code-spotter, which can be used to an-
alyze and evaluate the source code of a firmware in terms of software quality.

Next, we have introduced hazard-generator and code-certifier. The former
takes as input a hazard ontology and generates an API that can be used to
define the hazards that may arise as a consequence of the actions performed by
a device. The generated API is then integrated inside a crate used to develop

101

Conclusions

firmware for Smart Home devices. This library aims to enhance the understanding
and classification of devices’ behaviour while reducing the effort required by a
firmware developer. code-certifier, instead, analyses a firmware source code
with the objective of obtaining a description of all its actions and associated
hazards. Furthermore, it generates a firmware manifest which can be integrated
into a certification process.

7.1 Future Developments
Both the tools developed for static firmware analysis and those for certifying device
behaviour can be improved and extended with new features. The continuously
evolving Smart Home ecosystem presents numerous opportunities to enhance these
tools, adapting them to ongoing and emerging challenges while increasing their
effectiveness. The following sections outline some specific examples of where further
advancements can be made:

• weighted-code-coverage: in terms of possible future improvements, we
might think of adding a new feature that could be used to exclude specific
project functions from the analysis performed by this tool. This would be
beneficial when complex or poorly covered functions could affect the metrics
values of an entire project. Another idea could be that of exploring the
integration of the necessary processes focused on producing a grcov file directly
within weighted-code-coverage, in order to further streamline the tool’s
workflow. Furthermore, ongoing efforts could focus on refining the metrics
implemented by the tool, particularly CRAP and Skunk, with the objective of
increasing their precision and relevance during code quality evaluation.

• hazard-generator: we might focus on refining the risk score definition and
providing a rigorous assessment methodology in order to calibrate its values.
This would allow for a more precise description of the hazards assigned to an
action, leading to a more comprehensive understanding of a device’s behaviour.

• code-certifier:

– pub-api: the public API extraction performed by this create could be
extended by adding new features, such as extracting additional types
of constructs or gathering more information about the ones which have
already been retrieved. For example, one could implement the possibility
to extract the parameters of a function.

– hazard-analyzer: we foresee the possibility of defining firmware for more
complex devices in the future, which might be formed by a composition
of several devices. For example, we can think of a smart mirror that, in

102

Conclusions

addition to humidity sensors and a touch user interface, also provides some
LED lights. In that case, the device could be implemented as a combination
of simple devices, each one with its corresponding ascot-axum5 device
implementation and actions. For such scenario, we could extend the
firmware analysis performed by our crate in order to provide a manifest
that includes all necessary information about every device that is part of
the composition. Additionally, supplementing the source code analysis
with a firmware binary analysis would make the certification process
even more flexible and comprehensive. This would also allow a firmware
behaviour analysis even when a source code is unavailable. Finally, further
improvements can be made to streamline firmware analysis by eventually
adding new features. For example, we could try to modify some constraint
checks in order to perform them at compile time, such as those related to
the definition of all mandatory hazards of an action.

103

Bibliography

[1] Detlef Schoder. «Introduction to the Internet of Things». In: Internet of
things A to Z: technologies and applications (2018), pp. 1–50 (cit. on p. 4).

[2] Tajkia Nuri Ananna and Munshi Saifuzzaman. Introduction to IoT. 2024.
arXiv: 2312.06689 [cs.CR] (cit. on p. 5).

[3] Manuel Silverio-Fernández, Suresh Renukappa, and Subashini Suresh. «What
is a smart device? - a conceptualisation within the paradigm of the internet
of things». In: Visualization in Engineering 6.1 (May 2018), p. 3. issn:
2213-7459. doi: 10.1186/s40327-018-0063-8. url: https://doi.org/
10.1186/s40327-018-0063-8 (cit. on p. 5).

[4] Barry M. Leiner, Vinton G. Cerf, David D. Clark, Robert E. Kahn, Leonard
Kleinrock, Daniel C. Lynch, Jon Postel, Larry G. Roberts, and Stephen Wolff.
«A brief history of the internet». In: SIGCOMM Comput. Commun. Rev. 39.5
(Oct. 2009), pp. 22–31. issn: 0146-4833. doi: 10.1145/1629607.1629613.
url: https://doi.org/10.1145/1629607.1629613 (cit. on p. 6).

[5] Kevin Ashton et al. «That ‘internet of things’ thing». In: RFID journal 22.7
(2009), pp. 97–114 (cit. on p. 6).

[6] Arindam Giri, Subrata Dutta, Sarmistha Neogy, Keshav Dahal, and Zee-
shan Pervez. «Internet of things (IoT): a survey on architecture, enabling
technologies, applications and challenges». In: Proceedings of the 1st In-
ternational Conference on Internet of Things and Machine Learning. IML
’17. Liverpool, United Kingdom: Association for Computing Machinery,
2017. isbn: 9781450352437. doi: 10.1145/3109761.3109768. url: https:
//doi.org/10.1145/3109761.3109768 (cit. on p. 6).

[7] Pawan Kumar Verma et al. «Machine-to-Machine (M2M) communications:
A survey». In: Journal of Network and Computer Applications 66 (2016),
pp. 83–105. issn: 1084-8045. doi: https://doi.org/10.1016/j.jnca.
2016.02.016. url: https://www.sciencedirect.com/science/article/
pii/S1084804516000990 (cit. on p. 6).

104

https://arxiv.org/abs/2312.06689
https://doi.org/10.1186/s40327-018-0063-8
https://doi.org/10.1186/s40327-018-0063-8
https://doi.org/10.1186/s40327-018-0063-8
https://doi.org/10.1145/1629607.1629613
https://doi.org/10.1145/1629607.1629613
https://doi.org/10.1145/3109761.3109768
https://doi.org/10.1145/3109761.3109768
https://doi.org/10.1145/3109761.3109768
https://doi.org/https://doi.org/10.1016/j.jnca.2016.02.016
https://doi.org/https://doi.org/10.1016/j.jnca.2016.02.016
https://www.sciencedirect.com/science/article/pii/S1084804516000990
https://www.sciencedirect.com/science/article/pii/S1084804516000990

BIBLIOGRAPHY

[8] Somayya Madakam, R Ramaswamy, Siddharth Tripathi, and Balqes Mu-
jahed. «Internet of Things (IoT): A Literature Review». In: (Dec. 2022)
(cit. on p. 6).

[9] Krishan Goyal, Amit Garg, Ankur Rastogi, and Saurabh Singhal. «A Lit-
erature Survey on Internet of Things (IoT)». In: International Journal of
Advanced Manufacturing Technology 9 (Jan. 2018), pp. 3663–3668 (cit. on
p. 7).

[10] P. Suresh, J. Vijay Daniel, V. Parthasarathy, and R. H. Aswathy. «A
state of the art review on the Internet of Things (IoT) history, technology
and fields of deployment». In: 2014 International Conference on Science
Engineering and Management Research (ICSEMR). 2014, pp. 1–8. doi:
10.1109/ICSEMR.2014.7043637 (cit. on p. 7).

[11] The ’Only’ Coke Machine on the Internet. url: https://www.cisco.com/
c/en/us/solutions/collateral/executive- perspectives/annual-
internet-report/white-paper-c11-741490.pdf (cit. on p. 7).

[12] Stephen Ornes. «The Internet of Things and the explosion of intercon-
nectivity». In: Proceedings of the National Academy of Sciences 113.40
(2016), pp. 11059–11060. doi: 10.1073/pnas.1613921113. eprint: https:
//www.pnas.org/doi/pdf/10.1073/pnas.1613921113. url: https:
//www.pnas.org/doi/abs/10.1073/pnas.1613921113 (cit. on p. 7).

[13] Chhaya A Khanzode and Ravindra D Sarode. «Evolution of the world wide
web: from web 1.0 to 6.0». In: International journal of Digital Library services
6.2 (2016), pp. 1–11 (cit. on p. 7).

[14] Tim Berners-Lee, Robert Cailliau, Ari Luotonen, Henrik Frystyk Nielsen,
and Arthur Secret. «The World-Wide Web». In: Commun. ACM 37.8 (Aug.
1994), pp. 76–82. issn: 0001-0782. doi: 10.1145/179606.179671. url:
https://doi.org/10.1145/179606.179671 (cit. on p. 7).

[15] Web of Things. url: https://www.w3.org/WoT/ (cit. on p. 7).
[16] Dominique Guinard, Vlad Trifa, Friedemann Mattern, and Erik Wilde. «From

the Internet of Things to the Web of Things: Resource-oriented Architecture
and Best Practices». In: Architecting the Internet of Things. Ed. by Dieter
Uckelmann, Mark Harrison, and Florian Michahelles. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 97–129. isbn: 978-3-642-19157-2. doi:
10.1007/978-3-642-19157-2_5. url: https://doi.org/10.1007/978-
3-642-19157-2_5 (cit. on p. 7).

[17] Nour Oweis, Claudio Aracenay, Waseem George, Mona Oweis, Hussein Soori,
and Vaclav Snasel. «Internet of Things: Overview, Sources, Applications
and Challenges». In: vol. 427. Jan. 2016, pp. 57–67. isbn: 978-3-319-29503-9.
doi: 10.1007/978-3-319-29504-6_7 (cit. on p. 7).

105

https://doi.org/10.1109/ICSEMR.2014.7043637
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://doi.org/10.1073/pnas.1613921113
https://www.pnas.org/doi/pdf/10.1073/pnas.1613921113
https://www.pnas.org/doi/pdf/10.1073/pnas.1613921113
https://www.pnas.org/doi/abs/10.1073/pnas.1613921113
https://www.pnas.org/doi/abs/10.1073/pnas.1613921113
https://doi.org/10.1145/179606.179671
https://doi.org/10.1145/179606.179671
https://www.w3.org/WoT/
https://doi.org/10.1007/978-3-642-19157-2_5
https://doi.org/10.1007/978-3-642-19157-2_5
https://doi.org/10.1007/978-3-642-19157-2_5
https://doi.org/10.1007/978-3-319-29504-6_7

BIBLIOGRAPHY

[18] Douglas Mauro and Kevin Schmidt. Essential SNMP: Help for System and
Network Administrators. " O’Reilly Media, Inc.", 2005 (cit. on p. 7).

[19] John Romkey. «Toast of the IoT: The 1990 Interop Internet Toaster».
In: IEEE Consumer Electronics Magazine 6.1 (2017), pp. 116–119. doi:
10.1109/MCE.2016.2614740 (cit. on p. 7).

[20] The Trojan Room Coffee Pot. url: https://www.cl.cam.ac.uk/coffee/
qsf/coffee.html (cit. on p. 7).

[21] Quentin Stafford-Fraser. «On site: The life and times of the first Web Cam».
In: Commun. ACM 44.7 (July 2001), pp. 25–26. issn: 0001-0782. doi: 10.
1145/379300.379327. url: https://doi.org/10.1145/379300.379327
(cit. on p. 7).

[22] Paul Saffo. «Sensors: the next wave of innovation». In: Commun. ACM 40.2
(Feb. 1997), pp. 92–97. issn: 0001-0782. doi: 10.1145/253671.253734. url:
https://doi.org/10.1145/253671.253734 (cit. on p. 7).

[23] SB Prapulla, G Shobha, and T Thanuja. «Smart refrigerator using internet of
things». In: Journal of Multidisciplinary Engineering Science and Technology
2.1 (2015), pp. 1795–1801 (cit. on p. 8).

[24] Abrar Mohammed. «Implementation of Smart Refrigerator based on Internet
of Things». In: IJITEE (International Journal of Information Technology and
Electrical Engineering) 9 (Dec. 2019). doi: 10.35940/ijitee.B6343.129219
(cit. on p. 8).

[25] The History of RFID Technology. url: https://www.rfidjournal.com/
the-history-of-rfid-technology (cit. on p. 8).

[26] Aman Ullah. «IoT: Applications of RFID and issues». In: International
journal of internet of things and web services 3 (2018) (cit. on p. 8).

[27] Stevan Preradovic, Nemai C. Karmakar, and Isaac Balbin. «RFID Transpon-
ders». In: IEEE Microwave Magazine 9.5 (2008), pp. 90–103. doi: 10.1109/
MMM.2008.927637 (cit. on p. 8).

[28] Xiaolin Jia, Quanyuan Feng, Taihua Fan, and Quanshui Lei. «RFID technol-
ogy and its applications in Internet of Things (IoT)». In: 2012 2nd Interna-
tional Conference on Consumer Electronics, Communications and Networks
(CECNet). 2012, pp. 1282–1285. doi: 10.1109/CECNet.2012.6201508
(cit. on p. 8).

[29] The Internet of Things. url: https://www.itu.int/net/wsis/tunis/
newsroom/stats/The-Internet-of-Things-2005.pdf (cit. on p. 8).

106

https://doi.org/10.1109/MCE.2016.2614740
https://www.cl.cam.ac.uk/coffee/qsf/coffee.html
https://www.cl.cam.ac.uk/coffee/qsf/coffee.html
https://doi.org/10.1145/379300.379327
https://doi.org/10.1145/379300.379327
https://doi.org/10.1145/379300.379327
https://doi.org/10.1145/253671.253734
https://doi.org/10.1145/253671.253734
https://doi.org/10.35940/ijitee.B6343.129219
https://www.rfidjournal.com/the-history-of-rfid-technology
https://www.rfidjournal.com/the-history-of-rfid-technology
https://doi.org/10.1109/MMM.2008.927637
https://doi.org/10.1109/MMM.2008.927637
https://doi.org/10.1109/CECNet.2012.6201508
https://www.itu.int/net/wsis/tunis/newsroom/stats/The-Internet-of-Things-2005.pdf
https://www.itu.int/net/wsis/tunis/newsroom/stats/The-Internet-of-Things-2005.pdf

BIBLIOGRAPHY

[30] Xian-Yi Chen and Zhi-Gang Jin. «Research on Key Technology and Ap-
plications for Internet of Things». In: Physics Procedia 33 (2012). 2012
International Conference on Medical Physics and Biomedical Engineering
(ICMPBE2012), pp. 561–566. issn: 1875-3892. doi: https://doi.org/10.
1016/j.phpro.2012.05.104. url: https://www.sciencedirect.com/
science/article/pii/S1875389212014174 (cit. on p. 8).

[31] Gustavo Ramirez Gonzalez, Mario Muñoz Organero, and Carlos Delgado
Kloos. «Early infrastructure of an internet of things in spaces for learning». In:
2008 eighth IEEE international conference on advanced learning technologies.
IEEE. 2008, pp. 381–383 (cit. on p. 8).

[32] International Conference for Industry and Academia. url: https://iot-
conference.org/iot2008/ (cit. on p. 8).

[33] Christian Floerkemeier. The Internet of Things: First International Con-
ference, IOT 2008, Zurich, Switzerland, March 26-28, 2008, Proceedings.
Vol. 4952. Springer Science & Business Media, 2008 (cit. on p. 8).

[34] IPSO Alliance. url: https://omaspecworks.org/ipso-alliance/ (cit. on
p. 8).

[35] De-Li Yang, Feng Liu, and Yi-Duo Liang. «A Survey of the Internet of
Things». In: Proceedings of the 1st International Conference on E-Business
Intelligence (ICEBI 2010). Atlantis Press, 2010/12, pp. 524–532. isbn: 978-
90-78677-40-6. doi: 10.2991/icebi.2010.72. url: https://doi.org/10.
2991/icebi.2010.72 (cit. on p. 8).

[36] Luigi Atzori, Antonio Iera, and Giacomo Morabito. «The Internet of Things:
A survey». In: Computer Networks 54.15 (2010), pp. 2787–2805. issn: 1389-
1286. doi: https://doi.org/10.1016/j.comnet.2010.05.010. url:
https://www.sciencedirect.com/science/article/pii/S13891286100
01568 (cit. on p. 8).

[37] Dave Evans. «The internet of things». In: How the Next Evolution of the In-
ternet is Changing Everything, Whitepaper, Cisco Internet Business Solutions
Group (IBSG) 1 (2011), pp. 1–12 (cit. on p. 8).

[38] Internet of Things — An action plan for Europe. url: https://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2009:0278:FIN:
EN:PDF (cit. on p. 8).

[39] Tianyu Cui, Chang Liu, Gaopeng Gou, Junzheng Shi, and Gang Xiong. «A
Comprehensive Study of Accelerating IPv6 Deployment». In: 2019 IEEE
38th International Performance Computing and Communications Conference
(IPCCC). 2019, pp. 1–8. doi: 10.1109/IPCCC47392.2019.8958771 (cit. on
p. 8).

107

https://doi.org/https://doi.org/10.1016/j.phpro.2012.05.104
https://doi.org/https://doi.org/10.1016/j.phpro.2012.05.104
https://www.sciencedirect.com/science/article/pii/S1875389212014174
https://www.sciencedirect.com/science/article/pii/S1875389212014174
https://iot-conference.org/iot2008/
https://iot-conference.org/iot2008/
https://omaspecworks.org/ipso-alliance/
https://doi.org/10.2991/icebi.2010.72
https://doi.org/10.2991/icebi.2010.72
https://doi.org/10.2991/icebi.2010.72
https://doi.org/https://doi.org/10.1016/j.comnet.2010.05.010
https://www.sciencedirect.com/science/article/pii/S1389128610001568
https://www.sciencedirect.com/science/article/pii/S1389128610001568
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2009:0278:FIN:EN:PDF
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2009:0278:FIN:EN:PDF
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2009:0278:FIN:EN:PDF
https://doi.org/10.1109/IPCCC47392.2019.8958771

BIBLIOGRAPHY

[40] Geoff Huston. Testing IPv6 for World IPv6 Day. 2011 (cit. on p. 8).
[41] Tianyu Cui, Chang Liu, Gaopeng Gou, Junzheng Shi, and Gang Xiong. «A

Comprehensive Study of Accelerating IPv6 Deployment». In: 2019 IEEE
38th International Performance Computing and Communications Conference
(IPCCC). 2019, pp. 1–8. doi: 10.1109/IPCCC47392.2019.8958771 (cit. on
p. 8).

[42] Nuno Miguel Carvalho Galego, Rui Miguel Pascoal, and Pedro Ramos
Brandão. «IPv6 in IoT». In: Management, Tourism and Smart Technologies.
Ed. by Carlos Montenegro, Álvaro Rocha, and Juan Manuel Cueva Lovelle.
Cham: Springer Nature Switzerland, 2024, pp. 89–94. isbn: 978-3-031-44131-
8 (cit. on p. 9).

[43] Antonio J Jara, Socrates Varakliotis, Antonio F Skarmeta, and Peter Kirstein.
«Extending the Internet of Things to the Future Internet through IPv6
support». In: Mobile Information Systems 10.1 (2014), pp. 3–17 (cit. on
p. 9).

[44] AWS IoT. url: https://aws.amazon.com/iot/ (cit. on p. 9).
[45] Azure IoT. url: https://azure.microsoft.com/en-us/solutions/iot

(cit. on p. 9).
[46] Daniel Bastos. «Cloud for IoT—A survey of technologies and security features

of public cloud IoT solutions». In: Living in the Internet of Things (IoT
2019). IET. 2019, pp. 1–6 (cit. on p. 9).

[47] State of the IoT 2020: 12 billion IoT connections, surpassing non-IoT for the
first time. url: https://iot-analytics.com/state-of-the-iot-2020-
12-billion-iot-connections-surpassing-non-iot-for-the-first-
time/ (cit. on p. 9).

[48] Current IoT Forecast Highlights. url: https://transformainsights.com/
research/forecast/highlights (cit. on p. 9).

[49] IoT Connections Forecast to 2030. url: https://data.gsmaintelligence.
com/research/research/research-2023/iot-connections-forecast-
to-2030 (cit. on p. 9).

[50] Shadi Al-Sarawi, Mohammed Anbar, Rosni Abdullah, and Ahmad B. Al
Hawari. «Internet of Things Market Analysis Forecasts, 2020–2030». In:
2020 Fourth World Conference on Smart Trends in Systems, Security and
Sustainability (WorldS4). 2020, pp. 449–453. doi: 10.1109/WorldS450073.
2020.9210375 (cit. on p. 9).

108

https://doi.org/10.1109/IPCCC47392.2019.8958771
https://aws.amazon.com/iot/
https://azure.microsoft.com/en-us/solutions/iot
https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/
https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/
https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/
https://transformainsights.com/research/forecast/highlights
https://transformainsights.com/research/forecast/highlights
https://data.gsmaintelligence.com/research/research/research-2023/iot-connections-forecast-to-2030
https://data.gsmaintelligence.com/research/research/research-2023/iot-connections-forecast-to-2030
https://data.gsmaintelligence.com/research/research/research-2023/iot-connections-forecast-to-2030
https://doi.org/10.1109/WorldS450073.2020.9210375
https://doi.org/10.1109/WorldS450073.2020.9210375

BIBLIOGRAPHY

[51] Yusuf Perwej, Kashiful Haq, Firoj Parwej, M Mumdouh, and Mohamed
Hassan. «The internet of things (IoT) and its application domains». In:
International Journal of Computer Applications 975.8887 (2019), p. 182
(cit. on p. 9).

[52] Sapandeep Kaur and Ikvinderpal Singh. «A survey report on Internet of
Things applications». In: International Journal of Computer Science Trends
and Technology 4.2 (2016), pp. 330–335 (cit. on p. 9).

[53] Hugh Boyes, Bil Hallaq, Joe Cunningham, and Tim Watson. «The industrial
internet of things (IIoT): An analysis framework». In: Computers in Industry
101 (2018), pp. 1–12. issn: 0166-3615. doi: https://doi.org/10.1016/j.
compind.2018.04.015. url: https://www.sciencedirect.com/science/
article/pii/S0166361517307285 (cit. on p. 11).

[54] Cisco Annual Internet Report (2018–2023). url: https://www.cisco.com/
c/en/us/solutions/collateral/executive- perspectives/annual-
internet-report/white-paper-c11-741490.pdf (cit. on p. 11).

[55] Ivan Cvitić, Dragan Peraković, Marko Periša, Marko Krstić, and Brij Gupta.
«Analysis of IoT concept applications: Smart home perspective». In: Inter-
national Conference on Future Access Enablers of Ubiquitous and Intelligent
Infrastructures. Springer. 2021, pp. 167–180 (cit. on p. 11).

[56] David Vasicek, Jakub Jalowiczor, Lukas Sevcik, and Miroslav Voznak. «IoT
smart home concept». In: 2018 26th Telecommunications Forum (TELFOR).
IEEE. 2018, pp. 1–4 (cit. on p. 12).

[57] Muhammad Raisul Alam, Mamun Bin Ibne Reaz, and Mohd Alauddin Mohd
Ali. «A Review of Smart Homes—Past, Present, and Future». In: IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews) 42.6 (2012), pp. 1190–1203. doi: 10.1109/TSMCC.2012.2189204
(cit. on p. 12).

[58] Vasanth Williams, Jude Immaculate, et al. «Survey on Internet of Things
based smart home». In: 2019 International Conference on Intelligent Sus-
tainable Systems (ICISS). IEEE. 2019, pp. 460–464 (cit. on p. 12).

[59] Sam Solaimani, Wally Keijzer-Broers, and Harry Bouwman. «What we
do–and don’t–know about the Smart Home: An analysis of the Smart Home
literature». In: Indoor and Built Environment 24.3 (2015), pp. 370–383
(cit. on p. 12).

[60] Michael Schiefer. «Smart home definition and security threats». In: 2015
ninth international conference on IT security incident management & IT
forensics. IEEE. 2015, pp. 114–118 (cit. on p. 12).

109

https://doi.org/https://doi.org/10.1016/j.compind.2018.04.015
https://doi.org/https://doi.org/10.1016/j.compind.2018.04.015
https://www.sciencedirect.com/science/article/pii/S0166361517307285
https://www.sciencedirect.com/science/article/pii/S0166361517307285
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://doi.org/10.1109/TSMCC.2012.2189204

BIBLIOGRAPHY

[61] Heetae Yang, Wonji Lee, and Hwansoo Lee. «IoT smart home adoption:
the importance of proper level automation». In: Journal of Sensors 2018.1
(2018), p. 6464036 (cit. on p. 12).

[62] Changmin Lee, Luca Zappaterra, Kwanghee Choi, and Hyeong-Ah Choi.
«Securing smart home: Technologies, security challenges, and security re-
quirements». In: 2014 IEEE Conference on Communications and Network
Security. IEEE. 2014, pp. 67–72 (cit. on p. 13).

[63] Jawaher Abdulwahab Fadhil, Omar Ammar Omar, and Qusay Idrees Sarhan.
«A survey on the applications of smart home systems». In: 2020 International
Conference on Computer Science and Software Engineering (CSASE). IEEE.
2020, pp. 168–173 (cit. on p. 13).

[64] Sumathi Balakrishnan, Hemalata Vasudavan, and Raja Kumar Murugesan.
«Smart home technologies: A preliminary review». In: Proceedings of the 6th
International Conference on Information Technology: IoT and Smart City.
2018, pp. 120–127 (cit. on p. 13).

[65] Eileen Köhler and Daniel Spiekermann. «Smart Home as a Silent Witness - A
Survey». In: Proceedings of the 2022 European Interdisciplinary Cybersecurity
Conference. EICC ’22. Barcelona, Spain: Association for Computing Machin-
ery, 2022, pp. 12–16. isbn: 9781450396035. doi: 10.1145/3528580.3528583.
url: https://doi.org/10.1145/3528580.3528583 (cit. on p. 13).

[66] Anna Förster and Julian Block. «User adoption of smart home systems».
In: Proceedings of the 2022 ACM conference on information technology for
social good. 2022, pp. 360–365 (cit. on p. 13).

[67] Mariacristian Roscia, Vasile Dancu, and George Cristian Lazaroiu. «Smart
Home Survey Analysis». In: 2023 IEEE International Smart Cities Confer-
ence (ISC2). IEEE. 2023, pp. 1–5 (cit. on p. 14).

[68] Tom Hargreaves, Charlie Wilson, and Richard Hauxwell-Baldwin. «Learning
to live in a smart home». In: Building Research & Information 46.1 (2018),
pp. 127–139 (cit. on p. 14).

[69] Samantha Reig, Elizabeth Jeanne Carter, Lynn Kirabo, Terrence Fong,
Aaron Steinfeld, and Jodi Forlizzi. «Smart home agents and devices of
today and tomorrow: Surveying use and desires». In: Proceedings of the 9th
International Conference on Human-Agent Interaction. 2021, pp. 300–304
(cit. on p. 14).

[70] Mahsa Keshavarz and Mohd Anwar. «The Automatic Detection of Sensitive
Data in Smart Homes». In: June 2019, pp. 404–416. isbn: 978-3-030-22350-2.
doi: 10.1007/978-3-030-22351-9_27 (cit. on p. 14).

110

https://doi.org/10.1145/3528580.3528583
https://doi.org/10.1145/3528580.3528583
https://doi.org/10.1007/978-3-030-22351-9_27

BIBLIOGRAPHY

[71] Georgios Lampropoulos, Kerstin Siakas, and Theofylaktos Anastasiadis.
«Internet of things (IoT) in industry: Contemporary application domains,
innovative technologies and intelligent manufacturing». In: people 6.7 (2018)
(cit. on p. 14).

[72] Noman Shahid and Sandhya Aneja. «Internet of Things: Vision, application
areas and research challenges». In: 2017 International Conference on I-SMAC
(IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). 2017, pp. 583–587.
doi: 10.1109/I-SMAC.2017.8058246 (cit. on p. 14).

[73] Laith Farhan, Sinan T Shukur, Ali E Alissa, Mohmad Alrweg, Umar Raza,
and Rupak Kharel. «A survey on the challenges and opportunities of the
Internet of Things (IoT)». In: 2017 Eleventh International Conference on
Sensing Technology (ICST). IEEE. 2017, pp. 1–5 (cit. on p. 14).

[74] Arindam Giri, Subrata Dutta, Sarmistha Neogy, Keshav Dahal, and Zee-
shan Pervez. «Internet of things (IoT): a survey on architecture, enabling
technologies, applications and challenges». In: Proceedings of the 1st In-
ternational Conference on Internet of Things and Machine Learning. IML
’17. Liverpool, United Kingdom: Association for Computing Machinery,
2017. isbn: 9781450352437. doi: 10.1145/3109761.3109768. url: https:
//doi.org/10.1145/3109761.3109768 (cit. on p. 14).

[75] Shruti G Hegde Soumyalatha. «Study of IoT: understanding IoT architec-
ture, applications, issues and challenges». In: 1st International Conference
on Innovations in Computing & Net-working (ICICN16), CSE, RRCE. In-
ternational Journal of Advanced Networking & Applications. Vol. 478. 2016
(cit. on p. 14).

[76] Rob Van Kranenburg and Alex Bassi. «IoT challenges». In: Communications
in Mobile Computing 1.1 (2012), p. 9 (cit. on p. 14).

[77] Sarah A. Al-Qaseemi, Hajer A. Almulhim, Maria F. Almulhim, and Saqib
Rasool Chaudhry. IoT architecture challenges and issues: Lack of standard-
ization. 2016. doi: 10.1109/FTC.2016.7821686 (cit. on p. 15).

[78] Subramanian Balaji, Karan Nathani, and Rathnasamy Santhakumar. «IoT
technology, applications and challenges: a contemporary survey». In: Wireless
personal communications 108 (2019), pp. 363–388 (cit. on p. 16).

[79] 2023 SonicWall Cyber Threat Report. url: https://www.sonicwall.com/
2023-cyber-threat-report/ (cit. on p. 16).

[80] Simon Kramer and Julian C Bradfield. «A general definition of malware».
In: Journal in computer virology 6 (2010), pp. 105–114 (cit. on p. 16).

111

https://doi.org/10.1109/I-SMAC.2017.8058246
https://doi.org/10.1145/3109761.3109768
https://doi.org/10.1145/3109761.3109768
https://doi.org/10.1145/3109761.3109768
https://doi.org/10.1109/FTC.2016.7821686
https://www.sonicwall.com/2023-cyber-threat-report/
https://www.sonicwall.com/2023-cyber-threat-report/

BIBLIOGRAPHY

[81] Imtithal A Saeed, Ali Selamat, and Ali MA Abuagoub. «A survey on malware
and malware detection systems». In: International Journal of Computer
Applications 67.16 (2013) (cit. on p. 16).

[82] Prajoy Podder, M. Rubaiyat Hossain Mondal, Subrato Bharati, and Pinto
Kumar Paul. «Review on the Security Threats of Internet of Things».
In: International Journal of Computer Applications 176.41 (July 2020),
pp. 37–45. issn: 0975-8887. doi: 10.5120/ijca2020920548. url: http:
//dx.doi.org/10.5120/ijca2020920548 (cit. on p. 16).

[83] Panagiotis I Radoglou Grammatikis, Panagiotis G Sarigiannidis, and Ioannis
D Moscholios. «Securing the Internet of Things: Challenges, threats and
solutions». In: Internet of Things 5 (2019), pp. 41–70 (cit. on p. 16).

[84] Ioannis Andrea, Chrysostomos Chrysostomou, and George Hadjichristofi.
«Internet of Things: Security vulnerabilities and challenges». In: 2015 IEEE
symposium on computers and communication (ISCC). IEEE. 2015, pp. 180–
187 (cit. on p. 16).

[85] Mazwa Khawla and Mazri Tomader. «A survey on the security of smart
homes: issues and solutions». In: Proceedings of the 2nd International Con-
ference on Smart Digital Environment. 2018, pp. 81–87 (cit. on p. 16).

[86] Shruti Kajwadkar and Vinod Kumar Jain. «A Novel Algorithm for DoS
and DDoS attack detection in Internet Of Things». In: 2018 Conference on
Information and Communication Technology (CICT). 2018, pp. 1–4. doi:
10.1109/INFOCOMTECH.2018.8722397 (cit. on p. 16).

[87] Navdeep Kaur and Maninder Singh. «Botnet and botnet detection techniques
in cyber realm». In: 2016 International Conference on Inventive Computation
Technologies (ICICT). Vol. 3. 2016, pp. 1–7. doi: 10.1109/INVENTIVE.2016.
7830080 (cit. on p. 17).

[88] Liying Sun. «Who Can Fix the Spyware Problem?» In: Berkeley Tech. LJ
22 (2007), p. 555 (cit. on p. 17).

[89] Muhammad Aqeel, Fahad Ali, Muhammad Waseem Iqbal, Toqir A Rana,
Muhammad Arif, and Md Rabiul Auwul. «A review of security and privacy
concerns in the internet of things (IoT)». In: Journal of Sensors 2022.1
(2022), p. 5724168 (cit. on p. 17).

[90] Sam L Thomas and Aurélien Francillon. «Backdoors: Definition, deniability
and detection». In: Research in Attacks, Intrusions, and Defenses: 21st
International Symposium, RAID 2018, Heraklion, Crete, Greece, September
10-12, 2018, Proceedings 21. Springer. 2018, pp. 92–113 (cit. on p. 17).

112

https://doi.org/10.5120/ijca2020920548
http://dx.doi.org/10.5120/ijca2020920548
http://dx.doi.org/10.5120/ijca2020920548
https://doi.org/10.1109/INFOCOMTECH.2018.8722397
https://doi.org/10.1109/INVENTIVE.2016.7830080
https://doi.org/10.1109/INVENTIVE.2016.7830080

BIBLIOGRAPHY

[91] KrishnaKanth Gupta and Sapna Shukla. «Internet of Things: Security
challenges for next generation networks». In: 2016 International Conference
on Innovation and Challenges in Cyber Security (ICICCS-INBUSH). 2016,
pp. 315–318. doi: 10.1109/ICICCS.2016.7542301 (cit. on p. 17).

[92] Olivier Brun, Yonghua Yin, Javier Augusto-Gonzalez, Manuel Ramos, and
Erol Gelenbe. «Iot attack detection with deep learning». In: ISCIS Security
Workshop. 2018 (cit. on p. 17).

[93] Vikas Hassija, Vinay Chamola, Vikas Saxena, Divyansh Jain, Pranav Goyal,
and Biplab Sikdar. «A Survey on IoT Security: Application Areas, Security
Threats, and Solution Architectures». In: IEEE Access 7 (2019), pp. 82721–
82743. doi: 10.1109/ACCESS.2019.2924045 (cit. on p. 17).

[94] Yuchen Yang, Longfei Wu, Guisheng Yin, Lijie Li, and Hongbin Zhao. «A
Survey on Security and Privacy Issues in Internet-of-Things». In: IEEE
Internet of Things Journal 4.5 (2017), pp. 1250–1258. doi: 10.1109/JIOT.
2017.2694844 (cit. on p. 17).

[95] Rwan Mahmoud, Tasneem Yousuf, Fadi Aloul, and Imran Zualkernan. «In-
ternet of things (IoT) security: Current status, challenges and prospective
measures». In: 2015 10th International Conference for Internet Technology
and Secured Transactions (ICITST). 2015, pp. 336–341. doi: 10.1109/
ICITST.2015.7412116 (cit. on p. 17).

[96] Waqar Ali, Ghulam Dustgeer, Muhammad Awais, and Munam Ali Shah.
«IoT based smart home: Security challenges, security requirements and
solutions». In: 2017 23rd International Conference on Automation and
Computing (ICAC). 2017, pp. 1–6. doi: 10.23919/IConAC.2017.8082057
(cit. on p. 17).

[97] Tidiane Sylla, Mohamed Aymen Chalouf, Francine Krief, and Karim Samaké.
«Context-aware security in the internet of things: a survey». In: International
journal of autonomous and adaptive communications systems 14.3 (2021),
pp. 231–263 (cit. on p. 17).

[98] Bogdan-Cosmin Chifor, Ion Bica, Victor-Valeriu Patriciu, and Florin Pop.
«A security authorization scheme for smart home Internet of Things devices».
In: Future Generation Computer Systems 86 (2018), pp. 740–749 (cit. on
p. 17).

[99] S. Sicari, A. Rizzardi, L.A. Grieco, and A. Coen-Porisini. «Security, privacy
and trust in Internet of Things: The road ahead». In: Computer Networks 76
(2015), pp. 146–164. issn: 1389-1286. doi: https://doi.org/10.1016/j.
comnet.2014.11.008. url: https://www.sciencedirect.com/science/
article/pii/S1389128614003971 (cit. on p. 18).

113

https://doi.org/10.1109/ICICCS.2016.7542301
https://doi.org/10.1109/ACCESS.2019.2924045
https://doi.org/10.1109/JIOT.2017.2694844
https://doi.org/10.1109/JIOT.2017.2694844
https://doi.org/10.1109/ICITST.2015.7412116
https://doi.org/10.1109/ICITST.2015.7412116
https://doi.org/10.23919/IConAC.2017.8082057
https://doi.org/https://doi.org/10.1016/j.comnet.2014.11.008
https://doi.org/https://doi.org/10.1016/j.comnet.2014.11.008
https://www.sciencedirect.com/science/article/pii/S1389128614003971
https://www.sciencedirect.com/science/article/pii/S1389128614003971

BIBLIOGRAPHY

[100] Chalwe Musonda, MK Monica, Mayumbo Nyirenda, and Jackson Phiri.
«Security, Privacy and Integrity in Internet of Things–A Review». In: Pro-
ceedings of the ICTSZ International Conference in ICTs. 2019, pp. 148–152
(cit. on p. 18).

[101] Slavko J Pokorni. «Reliability and availability of the Internet of things». In:
Vojnotehnicki glasnik/Military Technical Courier 67.3 (2019), pp. 588–600
(cit. on p. 18).

[102] Ioannis Antzoulis, Md Minhaz Chowdhury, and Shadman Latiff. «IoT Secu-
rity for Smart Home: Issues and Solutions». In: 2022 IEEE International
Conference on Electro Information Technology (eIT). 2022, pp. 1–7. doi:
10.1109/eIT53891.2022.9813914 (cit. on p. 18).

[103] Issam El Naqa, Ruijiang Li, and Martin J Murphy. «Machine Learning in
Radiation Oncology Theory and Applications». In: () (cit. on p. 18).

[104] Eirini Anthi, Lowri Williams, Amir Javed, and Pete Burnap. «Hardening
machine learning denial of service (DoS) defences against adversarial attacks
in IoT smart home networks». In: Computers Security 108 (2021), p. 102352.
issn: 0167-4048. doi: https://doi.org/10.1016/j.cose.2021.102352.
url: https://www.sciencedirect.com/science/article/pii/S016740
4821001760 (cit. on p. 18).

[105] Akanksha Kaushik, Archana Choudhary, Chinmay Ektare, Deepti Thomas,
and Syed Akram. «Blockchain — Literature survey». In: 2017 2nd IEEE In-
ternational Conference on Recent Trends in Electronics, Information Com-
munication Technology (RTEICT). 2017, pp. 2145–2148. doi: 10.1109/
RTEICT.2017.8256979 (cit. on p. 18).

[106] Bandar Alotaibi. «Utilizing Blockchain to Overcome Cyber Security Concerns
in the Internet of Things: A Review». In: IEEE Sensors Journal 19.23 (2019),
pp. 10953–10971. doi: 10.1109/JSEN.2019.2935035 (cit. on p. 18).

[107] Chu Jay Tan, Junita Mohamad-Saleh, Khairu Anuar Mohamed Zain, and
Zulfiqar Ali Abd. Aziz. «Review on Firmware». In: Proceedings of the
International Conference on Imaging, Signal Processing and Communication.
ICISPC 2017. Penang, Malaysia: Association for Computing Machinery,
2017, pp. 186–190. isbn: 9781450352895. doi: 10.1145/3132300.3132337.
url: https://doi.org/10.1145/3132300.3132337 (cit. on p. 19).

[108] Nai-Wei Lo and Sheng-Hsiang Hsu. «A secure IoT firmware update frame-
work based on MQTT protocol». In: Information Systems Architecture and
Technology: Proceedings of 40th Anniversary International Conference on In-
formation Systems Architecture and Technology–ISAT 2019: Part I. Springer.
2020, pp. 187–198 (cit. on p. 19).

114

https://doi.org/10.1109/eIT53891.2022.9813914
https://doi.org/https://doi.org/10.1016/j.cose.2021.102352
https://www.sciencedirect.com/science/article/pii/S0167404821001760
https://www.sciencedirect.com/science/article/pii/S0167404821001760
https://doi.org/10.1109/RTEICT.2017.8256979
https://doi.org/10.1109/RTEICT.2017.8256979
https://doi.org/10.1109/JSEN.2019.2935035
https://doi.org/10.1145/3132300.3132337
https://doi.org/10.1145/3132300.3132337

BIBLIOGRAPHY

[109] Ibrahim Nadir, Haroon Mahmood, and Ghalib Asadullah. «A taxonomy of
IoT firmware security and principal firmware analysis techniques». In: Inter-
national Journal of Critical Infrastructure Protection 38 (2022), p. 100552
(cit. on p. 19).

[110] Shahid Ul Haq, Yashwant Singh, Amit Sharma, Rahul Gupta, and Dipak
Gupta. «A survey on IoT & embedded device firmware security: architecture,
extraction techniques, and vulnerability analysis frameworks». In: Discover
Internet of Things 3.1 (Oct. 2023), p. 17. issn: 2730-7239. doi: 10.1007/
s43926-023-00045-2. url: https://doi.org/10.1007/s43926-023-
00045-2 (cit. on p. 19).

[111] Daojing He, Hongjie Gu, Tinghui Li, Yongliang Du, Xiaolei Wang, Sen-
cun Zhu, and Nadra Guizani. «Toward hybrid static-dynamic detection of
vulnerabilities in IoT firmware». In: IEEE Network 35.2 (2020), pp. 202–207
(cit. on p. 19).

[112] Nathaniel Ayewah, William Pugh, David Hovemeyer, J. David Morgenthaler,
and John Penix. «Using Static Analysis to Find Bugs». In: IEEE Software
25.5 (2008), pp. 22–29. doi: 10.1109/MS.2008.130 (cit. on p. 19).

[113] Denis Gopan and Thomas Reps. «Guided static analysis». In: International
Static Analysis Symposium. Springer. 2007, pp. 349–365 (cit. on p. 19).

[114] Sreeja Nair, Raoul Jetley, Anil Nair, and Stefan Hauck-Stattelmann. «A
static code analysis tool for control system software». In: 2015 IEEE 22nd
International Conference on Software Analysis, Evolution, and Reengineering
(SANER). 2015, pp. 459–463. doi: 10.1109/SANER.2015.7081856 (cit. on
p. 19).

[115] David Evans. «Static detection of dynamic memory errors». In: ACM SIG-
PLAN Notices 31.5 (1996), pp. 44–53 (cit. on p. 19).

[116] Pär Emanuelsson and Ulf Nilsson. «A comparative study of industrial static
analysis tools». In: Electronic notes in theoretical computer science 217
(2008), pp. 5–21 (cit. on p. 19).

[117] Diego Marcilio, Rodrigo Bonifácio, Eduardo Monteiro, Edna Canedo, Welder
Luz, and Gustavo Pinto. «Are Static Analysis Violations Really Fixed?
A Closer Look at Realistic Usage of SonarQube». In: 2019 IEEE/ACM
27th International Conference on Program Comprehension (ICPC). 2019,
pp. 209–219. doi: 10.1109/ICPC.2019.00040 (cit. on p. 19).

[118] Valentina Lenarduzzi, Fabiano Pecorelli, Nyyti Saarimaki, Savanna Lujan,
and Fabio Palomba. «A critical comparison on six static analysis tools:
Detection, agreement, and precision». In: Journal of Systems and Software
198 (2023), p. 111575 (cit. on p. 19).

115

https://doi.org/10.1007/s43926-023-00045-2
https://doi.org/10.1007/s43926-023-00045-2
https://doi.org/10.1007/s43926-023-00045-2
https://doi.org/10.1007/s43926-023-00045-2
https://doi.org/10.1109/MS.2008.130
https://doi.org/10.1109/SANER.2015.7081856
https://doi.org/10.1109/ICPC.2019.00040

BIBLIOGRAPHY

[119] Devin Kester, Martin Mwebesa, and Jeremy S. Bradbury. «How Good is
Static Analysis at Finding Concurrency Bugs?» In: 2010 10th IEEE Working
Conference on Source Code Analysis and Manipulation. 2010, pp. 115–124.
doi: 10.1109/SCAM.2010.26 (cit. on p. 20).

[120] Andreas Ibing and Alexandra Mai. «A Fixed-Point Algorithm for Auto-
mated Static Detection of Infinite Loops». In: 2015 IEEE 16th International
Symposium on High Assurance Systems Engineering. 2015, pp. 44–51. doi:
10.1109/HASE.2015.16 (cit. on p. 20).

[121] Jang-Wu Jo, Byeong-Mo Chang, Kwangkeun Yi, and Kwang-Moo Choe. «An
uncaught exception analysis for Java». In: Journal of systems and software
72.1 (2004), pp. 59–69 (cit. on p. 20).

[122] Xiang Fu, Xin Lu, Boris Peltsverger, Shijun Chen, Kai Qian, and Lixin Tao.
«A static analysis framework for detecting SQL injection vulnerabilities».
In: 31st annual international computer software and applications conference
(COMPSAC 2007). Vol. 1. IEEE. 2007, pp. 87–96 (cit. on p. 20).

[123] Hossain Shahriar and Mohammad Zulkernine. «Classification of Static
Analysis-Based Buffer Overflow Detectors». In: 2010 Fourth International
Conference on Secure Software Integration and Reliability Improvement
Companion. 2010, pp. 94–101. doi: 10.1109/SSIRI-C.2010.28 (cit. on
p. 20).

[124] P. Louridas. «Static code analysis». In: IEEE Software 23.4 (2006), pp. 58–61.
doi: 10.1109/MS.2006.114 (cit. on p. 20).

[125] Stephen C Johnson. Lint, a C program checker. Bell Telephone Laboratories
Murray Hill, 1977 (cit. on p. 20).

[126] Devarshi Singh, Varun Ramachandra Sekar, Kathryn T. Stolee, and Brittany
Johnson. «Evaluating how static analysis tools can reduce code review
effort». In: 2017 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). 2017, pp. 101–105. doi: 10.1109/VLHCC.2017.
8103456 (cit. on p. 20).

[127] Peng Li and Baojiang Cui. «A comparative study on software vulnerability
static analysis techniques and tools». In: 2010 IEEE International Conference
on Information Theory and Information Security. 2010, pp. 521–524. doi:
10.1109/ICITIS.2010.5689543 (cit. on p. 21).

[128] Michail Papamichail, Themistoklis Diamantopoulos, and Andreas Syme-
onidis. «User-Perceived Source Code Quality Estimation Based on Static
Analysis Metrics». In: 2016 IEEE International Conference on Software
Quality, Reliability and Security (QRS). 2016, pp. 100–107. doi: 10.1109/
QRS.2016.22 (cit. on p. 22).

116

https://doi.org/10.1109/SCAM.2010.26
https://doi.org/10.1109/HASE.2015.16
https://doi.org/10.1109/SSIRI-C.2010.28
https://doi.org/10.1109/MS.2006.114
https://doi.org/10.1109/VLHCC.2017.8103456
https://doi.org/10.1109/VLHCC.2017.8103456
https://doi.org/10.1109/ICITIS.2010.5689543
https://doi.org/10.1109/QRS.2016.22
https://doi.org/10.1109/QRS.2016.22

BIBLIOGRAPHY

[129] Miroslaw Ochodek, Krzysztof Durczak, Jerzy Nawrocki, and Miroslaw Staron.
«Mining Task-Specific Lines of Code Counters». In: IEEE Access 11 (2023),
pp. 100218–100233. doi: 10.1109/ACCESS.2023.3314572 (cit. on p. 22).

[130] Vinny Kristina Sihombing, Mario ES Simaremare, Deni Josua Samosir, and
Ventina Otani Limbong. «Improving Prometer, A Measure For Programmer
Performance». In: 2022 IEEE International Conference of Computer Science
and Information Technology (ICOSNIKOM). IEEE. 2022, pp. 01–06 (cit. on
p. 22).

[131] Seymour V. Pollack and Ron K. Cytron. «Statement». In: Encyclopedia of
Computer Science. GBR: John Wiley and Sons Ltd., 2003, pp. 1683–1685.
isbn: 0470864125 (cit. on p. 22).

[132] Ayman Madi, Oussama Kassem Zein, and Seifedine Kadry. «On the im-
provement of cyclomatic complexity metric». In: International Journal of
Software Engineering and Its Applications 7.2 (2013), pp. 67–82 (cit. on
p. 22).

[133] DI De Silva, N Kodagoda, and H Perera. «Applicability of three complexity
metrics». In: International Conference on Advances in ICT for Emerging
Regions (ICTer2012). IEEE. 2012, pp. 82–88 (cit. on p. 22).

[134] DI De Silva, N Kodagoda, and H Perera. «Applicability of three complexity
metrics». In: International Conference on Advances in ICT for Emerging
Regions (ICTer2012). IEEE. 2012, pp. 82–88 (cit. on p. 22).

[135] G. Ann Campbell. «Cognitive complexity: an overview and evaluation».
In: Proceedings of the 2018 International Conference on Technical Debt.
TechDebt ’18. Gothenburg, Sweden: Association for Computing Machinery,
2018, pp. 57–58. isbn: 9781450357135. doi: 10.1145/3194164.3194186.
url: https://doi.org/10.1145/3194164.3194186 (cit. on p. 23).

[136] Jitender Kumar Chhabra. «Code cognitive complexity: a new measure».
In: Proceedings of the World Congress on Engineering. Vol. 2. International
Association of Engineers Hong Kong, China. 2011, pp. 6–8 (cit. on p. 23).

[137] Anjana Gosain and Ganga Sharma. «A Survey of Dynamic Program Analysis
Techniques and Tools». In: Proceedings of the 3rd International Conference
on Frontiers of Intelligent Computing: Theory and Applications (FICTA)
2014. Ed. by Suresh Chandra Satapathy, Bhabendra Narayan Biswal, Siba K.
Udgata, and J.K. Mandal. Cham: Springer International Publishing, 2015,
pp. 113–122. isbn: 978-3-319-11933-5 (cit. on p. 25).

[138] Michael D. Ernst. «Static and dynamic analysis: Synergy and duality». In:
WODA 2003: Workshop on Dynamic Analysis. Portland, OR, USA, May
2003, pp. 24–27 (cit. on p. 25).

117

https://doi.org/10.1109/ACCESS.2023.3314572
https://doi.org/10.1145/3194164.3194186
https://doi.org/10.1145/3194164.3194186

BIBLIOGRAPHY

[139] Sanjay Kumar Singh and Amarjeet Singh. Software testing. Vandana Publi-
cations, 2012 (cit. on p. 26).

[140] Pavneet Singh Kochhar, Ferdian Thung, and David Lo. «Code coverage and
test suite effectiveness: Empirical study with real bugs in large systems». In:
2015 IEEE 22nd international conference on software analysis, evolution,
and reengineering (SANER). IEEE. 2015, pp. 560–564 (cit. on p. 26).

[141] Brian Marick, John Smith, and Mark Jones. «How to misuse code coverage».
In: Proceedings of the 16th Interational Conference on Testing Computer
Software. 1999, pp. 16–18 (cit. on p. 26).

[142] TW Williams, MR Mercer, JP Mucha, and R Kapur. «Code coverage, what
does it mean in terms of quality?» In: Annual reliability and maintainability
symposium. 2001 Proceedings. International symposium on product quality
and integrity (Cat. No. 01CH37179). IEEE. 2001, pp. 420–424 (cit. on p. 26).

[143] Codecov Coverage Thresholds. url: https://about.codecov.io/blog/
identify-coverage-holes-with-the-codecov-sunburst-chart/ (cit.
on p. 26).

[144] Rust. url: https://github.com/rust-lang/rust (cit. on p. 26).
[145] Chat Room. «Rust (Language)». In: system 5.32 (2022), p. 23 (cit. on p. 27).
[146] William Bugden and Ayman Alahmar. «Rust: The programming language

for safety and performance». In: arXiv preprint arXiv:2206.05503 (2022)
(cit. on p. 27).

[147] Nicholas D. Matsakis and Felix S. Klock. «The rust language». In: Proceedings
of the 2014 ACM SIGAda Annual Conference on High Integrity Language
Technology. HILT ’14. Portland, Oregon, USA: Association for Computing
Machinery, 2014, pp. 103–104. isbn: 9781450332170. doi: 10.1145/2663171.
2663188. url: https://doi.org/10.1145/2663171.2663188 (cit. on
p. 27).

[148] Tunç Uzlu and Ediz Şaykol. «On utilizing rust programming language for
Internet of Things». In: 2017 9th International Conference on Computational
Intelligence and Communication Networks (CICN). 2017, pp. 93–96. doi:
10.1109/CICN.2017.8319363 (cit. on p. 28).

[149] Ignas Plauska, Agnius Liutkevičius, and Audronė Janavičiūtė. «Performance
evaluation of c/c++, micropython, rust and tinygo programming languages
on esp32 microcontroller». In: Electronics 12.1 (2022), p. 143 (cit. on p. 28).

[150] Eireann Leverett, Richard Clayton, and Ross Anderson. «Standardisation
and Certification of the ‘Internet of Things’». In: Proceedings of WEIS.
Vol. 2017. 2017 (cit. on p. 28).

118

https://about.codecov.io/blog/identify-coverage-holes-with-the-codecov-sunburst-chart/
https://about.codecov.io/blog/identify-coverage-holes-with-the-codecov-sunburst-chart/
https://github.com/rust-lang/rust
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1109/CICN.2017.8319363

BIBLIOGRAPHY

[151] André Cirne, Patrícia R Sousa, João S Resende, and Luís Antunes. «IoT
security certifications: Challenges and potential approaches». In: Computers
& Security 116 (2022), p. 102669 (cit. on p. 28).

[152] Gianmarco Baldini, Antonio Skarmeta, Elizabeta Fourneret, Ricardo Neisse,
Bruno Legeard, and Franck Le Gall. «Security certification and labelling in
Internet of Things». In: 2016 IEEE 3rd World Forum on Internet of Things
(WF-IoT). 2016, pp. 627–632. doi: 10.1109/WF-IoT.2016.7845514 (cit. on
p. 28).

[153] OWASP IoT Top 10. url: https://owasp.org/www-project-internet-
of-things/ (cit. on p. 28).

[154] Ryan Johnson, Zhaohui Wang, Corey Gagnon, and Angelos Stavrou. «Analy-
sis of android applications’ permissions». In: 2012 IEEE Sixth International
Conference on Software Security and Reliability Companion. IEEE. 2012,
pp. 45–46 (cit. on p. 29).

[155] Zainab Masood, Rashina Hoda, Kelly Blincoe, and Daniela Damian. «Like,
dislike, or just do it? How developers approach software development tasks».
In: Information and Software Technology 150 (2022), p. 106963 (cit. on
p. 30).

[156] Philipp Straubinger and Gordon Fraser. «A Survey on What Developers
Think About Testing». In: 2023 IEEE 34th International Symposium on
Software Reliability Engineering (ISSRE). 2023, pp. 80–90 (cit. on p. 30).

[157] Thomas Borchert. Code profiling: Static code analysis. 2008 (cit. on p. 34).
[158] Soma Pal. «Properties of Profile-Guided Compiler Optimizations with GCC

and LLVM». PhD thesis. University of Kansas, 2022 (cit. on p. 34).
[159] Alexandre Bergel, Felipe Banados, Romain Robbes, and Walter Binder.

«Execution profiling blueprints». In: Software: Practice and Experience 42.9
(2012), pp. 1165–1192 (cit. on p. 34).

[160] Alexandre Bergel, Felipe Banados, Romain Robbes, and David Röthlisberger.
«Spy: A flexible code profiling framework». In: Computer Languages, Systems
& Structures 38.1 (2012), pp. 16–28 (cit. on p. 34).

[161] Jasmin Blanchette. «The little manual of API design». In: Trolltech, Nokia
(2008) (cit. on p. 41).

[162] Joshua Bloch. «How to design a good API and why it matters». In: Compan-
ion to the 21st ACM SIGPLAN symposium on Object-oriented programming
systems, languages, and applications. 2006, pp. 506–507 (cit. on p. 41).

[163] Rust Builder Pattern. url: https : / / rust - unofficial . github . io /
patterns/patterns/creational/builder.html (cit. on p. 42).

119

https://doi.org/10.1109/WF-IoT.2016.7845514
https://owasp.org/www-project-internet-of-things/
https://owasp.org/www-project-internet-of-things/
https://rust-unofficial.github.io/patterns/patterns/creational/builder.html
https://rust-unofficial.github.io/patterns/patterns/creational/builder.html

BIBLIOGRAPHY

[164] P. Koopman. Better Embedded System Software. Drumnadrochit Education,
2010. isbn: 9780984449002. url: https://books.google.it/books?id=
mxCtngEACAAJ (cit. on p. 52).

[165] CRAP. url: https://testing.googleblog.com/2011/02/this-code-
is-crap.html (cit. on p. 52).

[166] Skunk. url: https://www.fastruby.io/blog/code-quality/introduci
ng-skunk-stink-score-calculator.html (cit. on p. 54).

[167] Skunk Conference Presentation. url: https://www.youtube.com/watch?
v=ZyU6K6eR-_A&t=1492s (cit. on p. 55).

[168] Karin Koogan Breitman, Marco Antonio Casanova, and Walter Truszkowski.
«Ontology in computer science». In: Semantic Web: Concepts, Technologies
and Applications (2007), pp. 17–34 (cit. on p. 62).

[169] Robert Stevens, Alan Rector, and Duncan Hull. «What is an ontology?» In:
Ontogenesis (2010) (cit. on p. 62).

[170] Victor Charpenay, Sebastian Käbisch, and Harald Kosch. «Introducing
Thing Descriptions and Interactions: An Ontology for the Web of Things.»
In: SR+ SWIT@ ISWC. 2016, pp. 55–66 (cit. on p. 63).

[171] Prateek Jain, Pascal Hitzler, Peter Z Yeh, Kunal Verma, and Amit P Sheth.
«Linked data is merely more data». In: 2010 AAAI Spring Symposium Series.
2010 (cit. on p. 64).

[172] Peter Neish. «Linked data: what is it and why should you care?» In: The
Australian Library Journal 64.1 (2015), pp. 3–10 (cit. on p. 64).

[173] Christian Bizer, Tom Heath, and Tim Berners-Lee. «Linked data-the story
so far». In: Linking the World’s Information: Essays on Tim Berners-Lee’s
Invention of the World Wide Web. 2023, pp. 115–143 (cit. on p. 64).

[174] Sander Stolk, Wouter Lubbers, Freek Braakman, and Sander Weitkamp.
«Ontologies and JSON-LD at TenneT: The Use of Linked Data on EU-303
Projects.» In: LDAC@ ESWC. 2022, pp. 20–31 (cit. on p. 64).

[175] Kevin Angele23 and Jürgen Angele. «JSON towards a simple Ontology and
Rule». In: (2021) (cit. on p. 64).

[176] Manu Sporny, Dave Longley, Gregg Kellogg, Markus Lanthaler, and Niklas
Lindström. «JSON-LD 1.1». In: W3C Recommendation, Jul (2020) (cit. on
p. 65).

[177] Xinyang Feng, Jianjing Shen, and Ying Fan. «REST: An alternative to RPC
for Web services architecture». In: 2009 First International Conference on
future information networks. IEEE. 2009, pp. 7–10 (cit. on p. 70).

120

https://books.google.it/books?id=mxCtngEACAAJ
https://books.google.it/books?id=mxCtngEACAAJ
https://testing.googleblog.com/2011/02/this-code-is-crap.html
https://testing.googleblog.com/2011/02/this-code-is-crap.html
https://www.fastruby.io/blog/code-quality/introducing-skunk-stink-score-calculator.html
https://www.fastruby.io/blog/code-quality/introducing-skunk-stink-score-calculator.html
https://www.youtube.com/watch?v=ZyU6K6eR-_A&t=1492s
https://www.youtube.com/watch?v=ZyU6K6eR-_A&t=1492s

	List of Tables
	List of Figures
	Introduction
	IoT Evolution and Challenges
	Internet of Things
	History
	Application Domains

	Smart Home
	History
	Applications
	Residents Adoption

	IoT Challenges
	IoT and Smart Home Security Overview
	Security Threats
	Security Solutions

	Firmware Analysis
	Static Analysis
	Dynamic Analysis
	Testing and Coverage
	Rust

	Certification

	Firmware Analysis Tools
	weighted-code-coverage
	Tool Structure and Workflow
	Parsing of Grcov files
	Reimplementation of the Concurrent Execution Mechanism
	API Redesign
	CLI Refactoring
	Output
	Metrics Analysis
	Testing
	Final Remarks

	generate-ci
	complex-code-spotter

	Hazard Generator
	Hazards
	Ontology
	JSON-LD
	Tool Structure and Workflow
	Final Remarks

	Code Certifier
	Hazard Analyzer
	Analysis of ascot-axum Devices
	Device Type Retrieval
	Device Analysis
	JSON Manifest Creation
	Manifest Print
	Final Remarks

	Public API
	ccertifier

	Performance Analysis
	Analysis Tools
	weighted-code-coverage
	Execution Time
	Memory Usage

	complex-code-spotter
	Execution Time
	Memory Usage

	hazard-analyzer
	Execution Time
	Memory Usage

	Final Remarks

	Conclusions
	Future Developments

	Bibliography

