
POLITECNICO DI TORINO

COLLEGIO DI INGEGNERIA GESTIONALE E DELLA PRODUZIONE

Corso di Laurea in Engineering and Management

Tesi di Laurea

Large Language Models per la
generazione di Requisiti

Relatore
prof. Riccardo Coppola

Candidato
Pablo Federico Vega Carrazan

Matricola: 307042

Anno accademico 2023-2024

Sommario
Throughout the last decades, technology has had a very big impact in hu-
mans’ life, both positively and negatively, depending on the point of view you
prefer to see it. Even though technology may have some negative impacts,
related for example to certain types of human jobs that now a days may be
substituted with technology, we can say that most of the technological advan-
cements have showed to be of great utility for humans. Everything around
us is starting to change with an impacting high dynamism, and software
development is very important in order to understand this changes.

Moreover, with the recent apparition of the so called artificial intelligence,
everything is becoming even more dynamic, and now, humans do not only
have on their hands the opportunity to develop software, or execute any kind
of technological-related task, but we also have the possibility to automate this
tasks, allowing ourselves to do our work in a more efficient way. Efficiency is
a word which relates the outcome of the work we can do; with the time we
need to spend to do it in the right way. This is exactly the point of study of
this investigation.

Large Language Models, like ChatGPT, are extremely powerful tools that
are already helping millions of people to work efficiently, throughout a widely
diverse world of topics. For the subject of our study, we want to show how
can LLM’s help human users, with different kind of knowledge, to develop
software development requirements, specifically, Use Case Diagrams and Use
Case Narratives. Both requirements are extremely useful for software de-
velopers and also for the different stakeholders, in order to understand the
different corners of the software or application under study.

Having correct requirements helps on having also correct effort estimations
related to the software to be developed, which is of high importance for the
project management organization and financial organization. As mentioned
also before, to be efficient, we do not only need to save time on our work, but
we also need our work to be well done. To this extent, we developed a detailed
methodology on how can we take profit and explode ChatGPT’s capabilities

2

in the best possible way, in order to have correct automated requirements,
developed by the AI. To understand this, we need to know that we must
think about this like a machine. We are going to have an input, which will
be the carefully written prompt introduced to the model, and the we will
have a process and an output, related to the LLM. These points are, in a
simplistic way, the focal points that we explain throughout the methodology
section of the study.

Afterwards, since the objective of the work is to analyze the effectiveness
of ChatGPT on aiding humans with the automation of the diagrams and
narratives, all the results need to be analyzed. For this, a selection of exer-
cises related to both diagrams and narratives are selected and are the object
of analysis. The original solution of the exercise can be compared to the ge-
nerated solution of the AI, and the different components of the requirements
can be further analyzed in detail. All these analyses can be found in the
results section.

Overall, this study is able to demonstrate that ChatGPT, if used throu-
ghout the described methodology, is able to showcase very good outcomes,
resulting in a useful tool both for the extent of saving time and of having
good software development requirements.

3

Ringraziamenti
The completion of this work, even if realized by myself, would have been
impossible without the support of many people, who, in one way or another,
contributed in diverse manners in having the best possible results.

First of all, my tutor and co-tutor, Riccardo Coppola and Giacomo Ga-
raccione, which, with their deep knowledge and passion related to this topic,
supported and advised me in an excellent way. A special thank to both of
them, who were a main pillar.

Moreover, I am very thankful for the fact of being able to have access to
education, since, not all the people in the world have the same opportunities.
To this point, I want to thank all the professors that I had during my career,
both from my home university in Argentina (Universidad de Belgrano), and
from the Politecnico di Torino. Finally. last but not least, my family and my
wife, who supported me unconditionally throughout this amazing journey.

I hope, every reader of this investigation, finds it helpful for their require-
ments engineering tasks, and that it can help people having a more efficient
allocation both from a time perspective and from an economic perspective.

4

Indice

Elenco delle tabelle 8

Elenco delle figure 9

1 Introduction 11

2 Background 15
2.1 Use case modeling . 16

2.1.1 Use Cases in Software Development: A Comprehensive
Overview . 16

2.1.2 Use Cases as Components of Requirements Documents 16
2.1.3 What Is a Use Case, and What Is Its Purpose? 17
2.1.4 The Multifaceted World of Actors 18
2.1.5 Goals, Interactions, and Use Case Diagrams 19
2.1.6 The Interplay Between Functional Requirements and

Use Cases . 20
2.1.7 Representation of Use Cases with UML Use Case Dia-

grams . 21
2.1.8 Summary Level, User-Goal Level, and Sub-Function . . 22

2.2 Use Case Narratives . 22
2.3 Use Case Points Modeling for Effort Estimation 26

2.3.1 Application Size Determination 26
2.3.2 Contextual Factors . 27
2.3.3 Calculation of the Points 29

2.4 Large Language Models (LLMs) 30
2.4.1 What’s the Deal with Large Language Models (LLMs)? 30
2.4.2 How Do They Work? 32
2.4.3 LLMs in Action: Applications Across Industries 32

2.5 The use of LLMs for Information Systems 33

5

2.5.1 Applications of LLMs in Information Systems 33
2.5.2 LLMs in Software Development 34
2.5.3 Challenges and Considerations 35

3 Methodology 37
3.1 Introduction to the Methodology 37
3.2 Selection of Exercises . 38
3.3 ChatGPT Prompting Strategy 40
3.4 Use of PlantUML . 42
3.5 Automated UCD Generation Process and Feedback Loop . . . 44
3.6 Integrations of Use Case Narratives 46
3.7 Exercise Portfolio . 51

3.7.1 UCD Exercises . 51
3.7.2 Use Case Narrative Exercises 92

4 Results 113
4.1 Analysis of Use Case Diagram Exercises 113

4.1.1 Actors Identification 113
4.1.2 Use Cases Identification 114
4.1.3 Associations Identification 115
4.1.4 Number of Necessary Prompts Evaluation 117

4.2 Analysis of Use Case Narrative Exercises 118
4.2.1 Estimation of Exercise Difficulty 120

4.3 Correlation Analysis . 122
4.3.1 Correlation with FK Ease Score 123
4.3.2 Correlation with Exercise Difficulty 125
4.3.3 Correlations Related to Number of Prompts and ChatGP-

T’s Accuracy . 127
4.3.4 Correlations Related to Number of Prompts and Num-

ber of Necessary Actors/UC/Associations 129
4.4 Discussion and Interpretation 131

4.4.1 ChatGPT’s Proficiency in Generating Use Case Dia-
grams . 132

4.4.2 Quality Evaluation of Use Case Narratives 132
4.4.3 Implications and Recommendations 133
4.4.4 Future Directions . 133

4.5 Limitations and Future Work regarding UCD Exercises 134
4.5.1 Heterogeneity of Exercise Sources and Difficulties . . . 134
4.5.2 Limited Association Coverage 135

6

4.5.3 Dependency on ChatGPT 135
4.5.4 FK Ease Score Precision 135
4.5.5 Subjectivity in Exercise Difficulty Assessment 135
4.5.6 Evaluation of Other Diagram Types 136

4.6 Limitations and Future Work regarding UCN Exercises 136
4.6.1 Consistency and Completeness 136
4.6.2 Level of Detail . 136
4.6.3 Structural Clarity . 137
4.6.4 Integration with Use Case Diagrams 137
4.6.5 Recommendations for Improvement 137

5 Conclusion and Future Work 139

Bibliografia 141

7

Elenco delle tabelle
2.1 Weighting factors for actor types[29] 27
2.2 Use Cases weights[10] . 27
2.3 Technical Complexity Factors[10] 28
2.4 Environmental Factors[10] . 28
3.1 Tools comparison . 43

8

Elenco delle figure
2.1 Use case example.[1] . 20
2.2 Use Case Narrative example, extracted from "A PM’s Guide to

Use Cases Part 3: Use Case Narratives from Elizabeth Larson,
2021 . 23

2.3 Effort Estimation Process, extracted from Simplifying effort
estimation based on Use Case Points from M.Ochodek &J.
Nawrocki &K. Kwarciak, Y. 2010. 31

3.1 Feedback Process . 46
3.2 Use Case Narratives Exercises Methodology 50
3.3 UCD generated with the PlantUML code provided by ChatGPT. 56
3.4 Original UCD provided by the exercise. 57
3.5 UCD generated with the PlantUML code provided by ChatGPT. 63
3.6 Original UCD provided by the exercise. 64
3.7 UCD generated with the PlantUML code provided by ChatGPT. 70
3.8 Original UCD provided by the exercise. 71
3.9 UCD generated with the PlantUML code provided by ChatGPT. 77
3.10 Original UCD provided by the exercise (First Version). 78
3.11 Original UCD provided by the exercise (Second Version). . . . 78
3.12 UCD generated with the PlantUML code provided by ChatGPT. 83
3.13 Original UCD provided by the exercise. 84
3.14 Original Narrative provided by the exercise. 94
3.15 Original Narrative provided by the exercise. 97
3.16 Original Narrative provided by the exercise. 101
3.17 Original Narrative provided by the exercise. 109
4.1 Actors Identification. 114
4.2 Use Case Identification. 115
4.3 Associations Identification. 116
4.4 Prompts Evaluation. 117
4.5 22 Question Analysis. 119

9

4.6 Pass/Fail Test. 119
4.7 Rseults Histogram. 120
4.8 Estimation of Exercise Difficulty. 121
4.9 Estimation of Exercise Difficulty. 122
4.10 Correlation of FK Score and % of Correctly Identified Actors. 123
4.11 Correlation of FK Score and % of Correctly Use Cases. 124
4.12 Correlation of FK Score and Number of Prompts. 124
4.13 Correlation with % of Correctly Identified Actors. 125
4.14 Correlation with % of Correctly Identified Use Cases. 126
4.15 Correlation with Number of Prompts. 127
4.16 Correlation between Number of Prompts and % of Correctly

Identified Actors. 128
4.17 Correlation between Number of Prompts and % of Correctly

Identified Use Cases. 128
4.18 Correlation between Number of Prompts and Number of Ne-

cessary Actors. 130
4.19 Correlation between Number of Prompts and Number of Ne-

cessary Use Cases. 130
4.20 Correlation between Number of Prompts and Number of Ne-

cessary Associations. 131

10

Capitolo 1

Introduction

The need of improved communication between the stakeholders of a project
has always been one of the most important issues of a project effectivness.
This is very related to the fact that we need better productivity for human
tasks, and simpler processes which to some extent, allows us to do our job
in a faster way, with the same quality. In the software development field,
requirements engineering and use case modelling are extremly important pil-
lars which allow the software development process to run smoothly, but at
the same time, it’s also a time consuming task. Given the high dynamism
in software development and technological improvements in general, we may
ask ourselves, how can these tasks become more efficient, allowing humans
to allocate their time better.

In order to respond to this question, this thesis depps into the possible
strategies and methodlogies in which the artificial intelligence can enhance
the software deveopment process, helping humans saving time and money.
To this point, it suggests the use of Large Language Models (LLM) as a pos-
sible tool to automate the creation of use case narratives and comprehensive
specifications. We hope to transform requirements definition and improve
stakeholder communication by utilizing the enormous cognitive powers of
sophisticated language models.

The pillars upon which software development projects are conceived, crea-
ted, and implemented are requirements engineering and use case modeling.
These procedures not only are the baseline for a software system, but they
also contain the key point in order to understand the complex web of fea-
tures, interactions, and objectives that must be met. They are essentially
the blueprint that leads a software project from conception to completion.
Effective requirements engineering ensures that project teams understand

11

1 – Introduction

what needs to be built in a clear and unambiguous manner. It serves as
the foundation for decision-making, system design, and, ultimately, software
functioning. On the other hand, use case modelling gives the information
n how the final users would interface with the system, which makes of it a
highly important tool for checking and confirming the requirements. In this
setting, both efforts become critical paths for turning business requirements
into technological specifications. However, as the software development field
is continuously growing and becoming more complex and diverse, the same
has happened to the requirements and use case modeling issues. Ambiguities,
omissions, and misconceptions in requirements can result in costly rework,
delays, and even project failure in some situations. Effective communication
is critical among all stakeholders, from developers and designers to customers
and end users. It is in this context, that Large Language Models appear as
a promising option in this scenario.

The incredible improvements in technology during recent years have been
marked by the apparition of the so caled Large Language Models, which sho-
wcase an ability never seen befre by technology, wich is the natural language
understanding and generation. This models, without any doubt, are a mile-
stone for the new era of artificial intelligence innovation. The fact that this
models are able to write similarly to a human, and are able to understand
human written prompts, has opened a new window of opportunities, which,
until now, we are continuously exporing, since they have the ability to chan-
ge the way we approach software development difficulties. To this point, or
investigation focuses in one important point of software development, which
are the requirements, and we will explore the way in which this models, with
emphasis on ChatGPT, are able to help us on the automation of the develo-
pment of software requirements, like use cases diagrams and narratives. The
objective that we have on mind, is the one of identifying the opportunity of
reducing time in manual development, which also represent cost savings, but
also to understand if it has the ability to increase the quality and clarity of
requirements documentation. As a result, this thesis encloses both techno-
logy and practice, positioned to investigate how advanced language models
might optimize efficiency in requirements creation and improve the efficacy
of communication between project stakeholders. Throughout empirical in-
vestigations, we will assess the practical usability of this methodology, by
comparing the models generated by LLM to those made by human users.
During this path of exploration and innovation we target the ultimate goal
of making a contribution to the rapidly developing field of software develop-
ment. We invite the reader to join us as we explore the possibilities of Large

12

1 – Introduction

Language Models to transform software development in the future as we go
deeper into the fields of requirements engineering and use case modeling. In
the following sections, we will provide an in-depth exploration of the back-
ground, methodology, empirical studies, and conclusions that constitute this
transformative journey.

13

14

Capitolo 2

Background

The software development world is very wide in terms of the importance
of the factors that may have an impact on it, and the use case modeling,
which is the main topic related to this investigation, helps describing how
users interact with the system and connects business goals with technical
specifications, is the cornerstone of requirements capture. The other main
topic that deals with our investigation is related to the narratives , which
are also very important since they give textual explanations of system be-
havior and present a a viewpoint in a story way, on how software satisfies
user wants and business procedures. There is also anther useful topic known
as Use Case Points Modeling, which is related to the world of narratives,
which models the functional needs of a software system using quantitative
measures. It offers a methodical way to assess the size and complexity of use
cases. The development of Large Language Models (LLMs) represents a ma-
jor breakthrough in AI.[30] Natural language generation and comprehension
skills demonstrated by LLMs position them to transform text-based jobs,
such as the formulation and sharing of software requirements. The field of
large language models for information systems is growing and has the poten-
tial to automate use case narratives and requirements. Thinking on the real
goal or objective of the use of AI for the automation of this requirements,
we may say that is is mainly aimed at improving stakeholder communication
and expedite software development processes.[30]

These components work together to create the framework for this thesis,
which explores how requirements definition efficiency may be increased and
communication within the software development domain can be improved
through the use of LLMs. Sections that follow go into greater detail on each
subject, providing a deeper comprehension of both the importance of each

15

2 – Background

topic on its own and how they work together to advance software engineering
methods.

2.1 Use case modeling
2.1.1 Use Cases in Software Development: A Compre-

hensive Overview
In the intricate realm of software development, the process of defining and
managing requirements is an essential aspect. Among the many tools and
methodologies available, use cases stand out as a fundamental and versatile
approach. They play a pivotal role in the requirements engineering process,
acting as indispensable vehicles for communicating the desired behavior of
a software system to all stakeholders. In this section, we embark on an ex-
ploration of use cases, delving into their definition, purpose, and how they
are represented using UML use case diagrams. According to G. Goos, J.
Hartmanis and J. van Leeuwen, “in the Unified Modelling Language, use
cases are provided as a way of summarising the requirements on a system.
They are defined informally as specifications of sets of sequences of actions,
and several relationships between use cases are informally defined. Dependa-
ble, tool-supported software development necessitates precise definitions of
all these concepts” 1

2.1.2 Use Cases as Components of Requirements Do-
cuments

Use cases serve as integral components of requirements formal documents
in the software development process. These documents are comprehensive
records that outline what a software system is expected to do and how it
should behave. Within this context, use cases form the narrative backbone,
describing the system’s functionality from the perspective of its users. They
are, in essence, detailed stories of how users interact with the system, which
is crucial for a shared understanding among project stakeholders. Inside the
overall requirements file, the use cases have a very important role, and even
though there is not a standard outline for this document, it is important to

1G. Goos, J. Hartmanis and J. van Leeuwen 2001. Fundamental approaches to software
engineering. Heinrich Haussmann. p. 12.

16

2.1 – Use case modeling

highlight that they will only occupy the behavioral part, or the functional
part. A possible outline for the requirements document, could be:

- Chapter 1: Purpose, Chapter 2: Use cases, Chapter 3: The terms
used/glossary, Chapter 4: The technology to be used, Chapter 5: The various
requirements and Chapter 6: Human backup, legal, political, organizational
issues.[1]

2.1.3 What Is a Use Case, and What Is Its Purpose?
Use cases may be seen as a descriptive account of how a software system
can responds to specific interactions from its users. It may be seen as “a
description of the possible sequences of interactions between the system under
discussion and its external actors, related to a particular goal.” 2 It delineates
the various scenarios in which the system is expected to operate, providing
a clear, human-readable depiction of how the software functions. As there
is somehow a gap between the business objectives, which smetimes are very
abstarct, and the technical specifications, use cases are somehow the tool
used to bridge this gap, and help to guide the development process. They
offer an unambiguous and detailed perspective on the system’s behavior,
making them instrumental in the software development journey. When we
have a determined system, with the use case tool we can try to explain how
it interacts with other actors, for example, when you go to the automatic
checkout in a supermarket, as a person (actor), you will need to interact with
the automatic checkout system. This process can be diagramed through use
cases. Later on, we will distinguish the different type of actors and their
goals. In a use case we can show all the different ways or paths in which
several actors interact with the system as the main actor works toward that
objective.

A use case typically encompasses the following components:

1. Actors: These are entities that interact with the system. Actors can re-
present end-users, external systems, or even automated processes. Each
actor is associated with specific goals they aim to achieve through their
interaction with the system. These components of the system are the
one having a behavior, to explain it in other words, making an analogy
with programming languages, they are the ones being able to execute an

2(Cockburn 2000), p. 15

17

2 – Background

“IF” statement. They might be a human being, a business, a program,
between other, which we will mention later on.

2. Goals: Use cases are goal-driven, meaning each of them serves the
purpose of achieving a specific objective. For example, in an e-commerce
application, a use case might be "Place Order," with the goal of allowing
a customer to make a purchase.

3. Stakeholders:Stakeholders in the software development process include
end-users, project managers, designers, and developers. Use cases clarify
how the software will fulfill the needs of these stakeholders.

4. Actor goals in use case diagrams:Use case diagrams are graphical
representations of use cases and their interactions with actors. The-
se diagrams visually capture how the system functions from a user’s
perspective. They help translate abstract ideas into tangible, visual
representations.

2.1.4 The Multifaceted World of Actors
Actors are a cornerstone of use cases. They represent various entities or
roles interacting with the system. Deeping a little more in what we said
before, it could be said that actually, the word "Role" might be a more
appropriate word for a seek of understanding what actors actually do in the
system. "Role" refers to the specific function that an individual does when
utilizing the system, such as "cashier," for example. Most people appear to
associate the term "actor" with a specific individual, but in reality, it refers
to anyone who is actively involved with a system’s operation. Actors can
take on different forms, including:

1. Primary actors:These are the principal users or entities who actively
interact with the system to accomplish their goals. In other words, It
is the object whose goal the use case is attempting to fulfill, and the
actor who starts the use case activity with their action. Even though,
this might seem awkward because it is not always the primary actor who
triggers the use case, we can say that they are actually the motive of
why the use case was triggered, but of course that a use case may be
initiated by another actor by means of technological convenience[31]. A
good example can be seen in hospitals, when determined actions are first
taken by clerks and then continued by more specific roles, because it is
not the goal of the secretary of a hospital to have the use case run, but

18

2.1 – Use case modeling

actually they are convenient from a technological point of view for higher
managers of the hospital. For this cases, it’s important to understand
and determine for who the use case is truly beneficial to. [1]

2. Secondary actors: The role of this type of actors in the use case is not
the main, but yes to provide support or services to the system but are
not the primary focus of the use case. They often influence the system’s
behavior indirectly. Something important to understand here is that the
word “secondary” is not strictly related to the weight of the importance
of the actor for the system, and the same reasoning applies for primary
actors. Sometimes, it may happen that external actors may be seen as
secondary in some use cases and as primary in other ones. For example,
for the payment gateway, in an e-commerce system, the primary actor
is the customer, while the payment gateway (secondary actor) securely
processes transactions, verifies payment details, communicates with the
customer’s bank, and ensures successful use case.

3. Offstage actors:Offstage actors are not explicitly shown in the use case
diagram but are involved in the system’s operation. They may represent
external systems, events, or environmental factors.

4. System actors:These are automated processes or external systems that
interact with the software.

2.1.5 Goals, Interactions, and Use Case Diagrams
When we think about Use Case Diagrams, we need to think about the re-
lationship between actors and use cases , which is represented in these dia-
grams. They turn to be very helpful diagrams for the user, since they provide
a visual map of how actors interact with the system and achieve their goals.
A use case diagram for an e-commerce system or example could show how
the "Customer" actor interacts with the "Browse Products," "Add to Cart,"
and "Place Order" use cases. In order to understand this better, we need
to see the use case from the actors and goals model perspective, where a
use case describes the primary actor’s purpose in relation to the system’s
responsibilities, including alternative scenarios between the system and ex-
ternal players, illustrating how the goal might be achieved or failed. In this
sense, we must understand that a scenario is a sequence of events aimed at
achieving a specific goal, initiated by a triggering action, which continues un-
til the goal is achieved or abandoned, and the system fulfills its obligations for

19

2 – Background

Figura 2.1. Use case example.[1]

the interaction. Fig 2.1, extracted from Cockburn, 2000 [1] provides a high-
level overview of communication between an insurance policyholder and an
insurance firm, MyInsCo, with the main actor’s objective being to receive
payment for harm. It presents the primary success scenario and appends
brief scenario fragments explaining various scenarios.

2.1.6 The Interplay Between Functional Requirements
and Use Cases

“Functional requirements are those actions that a system must be able to per-
form, without taking physical constraints into consideration. The functional
requirements specify the input and output behavior of a system” 3.These re-
quirements are a crucial part of the software development process. To explain
it in a simpler way, it’s important to know and understand what the software
is expected to do, and that is why requirements show detailed descriptions
of what the software shoud actually do. Use cases are directly related to

3(Bittner and Spence 2003. pg. 8)

20

2.1 – Use case modeling

functional requirements, as they provide a narrative that translates into the-
se requirements. For example, the "Login" use case may result in functional
requirements such as "The system must validate the user’s credentials against
the database."

2.1.7 Representation of Use Cases with UML Use Case
Diagrams

In order to represent the actors and use cases in ne system, we may use
the Use Case Diagrams, which use stick figures for actors and ellipses for
use cases, and also show the relationships between actors and use cases with
arrows, with arrowheads identifying the initiator. The diagram’s purpose is
to summarize the system’s functionality, but many people mistake it for a
complete model. An overview can be found in the UCD, but the majority can
be found in the textual documents[3]. Unified Modeling Language (UML)
diagrams provide a standardized way to represent use cases. UML use case
diagrams are a visual tool for conveying how actors and use cases interact.
These diagrams consist of several elements:

1. Actors: Represented as stick figures, they are positioned outside the
system boundary.

2. Use cases: Shown as ovals, they are placed inside the system boundary.
Each use case is labeled with its name.

3. Association lines: These lines connect actors to their associated use
cases, visually illustrating the interactions.

4. Generalization and inheritance: Sometimes, actors or use cases may
share common attributes or behavior. In such cases, a generalization
relationship, represented by an arrow, signifies inheritance.

5. Include and extend relationships: Use cases can relate to each other
in different ways. "Include" relationships represent scenarios where one
use case includes the behavior of another. "Extend" relationships signify
optional or conditional behavior that can be added to a use case.

It is important to understand that use-case descriptions provide a compre-
hensive account of a scenario, describing how actors and systems collaborate
to achieve the goal. So when we refer to a use case, “we mean the totality of
the use case, including its iconic representation, its relationships, and, most

21

2 – Background

importantly, its detailed description”4, ensuring a comprehensive understan-
ding of the entire use case. Later on we will explain about the so called use
case narratives.

2.1.8 Summary Level, User-Goal Level, and Sub-Function
According to Cockburn [1], use cases come in different levels of detail to cater
to various stages of development and the needs of different stakeholders:

1. Summary Level UC: These provide an overview of the system’s func-
tionality, often focusing on major user interactions.

2. User-Goal Level Use Cases: This type of level goes much deeper
into specific user interactions, breaking down the steps and conditions
required to fulfill a user’s goal.

3. Sub-Function Use Cases: These are the most detailed, breaking a
use case into smaller, specific sub-functions, often showing alternative
and exceptional scenarios.

2.2 Use Case Narratives
As mentiones lso before, the use case diagram is very helpful for showing a
visual image f the actors and their interaction with the different use cases,
and in order to complement this, the use case narratives describe the pha-
ses involved in each use case. However, without clearer explanations, users
may not understand the process names. This is why narratives are crucial.
Developers would have to guess a lot about user interaction when designing
software, for instance, if we gave a developer just the name "request product"
and instructed them to design a software, they would lack of a lot of valuable
information and would lose a lot of time asking questions to the client about
the requirements. Narratives save time for developers and are appreciated
for their ability to explain complex concepts.

The UC is identified by a number and name, and is distributed according
to the organization’s requirements processes, templates, and standards. The
parameters of each use case are outlined in pre- and post-conditions. The
start and finish points are provided. The narrative also includes a matrix

4(Bittner and Spence 2003). pg. 5

22

2.2 – Use Case Narratives

Figura 2.2. Use Case Narrative example, extracted from "A PM’s Guide to
Use Cases Part 3: Use Case Narratives from Elizabeth Larson, 2021

illustrating the actions of the actor and the system’s responses to each re-
quest. We describe the primary, alternate, and exception flows [4]. Fig 2.2
shows a short example of a narrative with 5 important point which we will
explain.

1. Initiating a use case: Before a use case can start, several factors need
to be considered, such as whether the customer must be logged in, the
system’s availability, and the user interface in use. These conditions
are addressed as pre-conditions and are vital to avoid conflicts during
development.[4]

2. Determining use case completion: It is not very easy to realize for
a user, when a use case is actually completed, and in this case, the use
case narratives are also a useful tool since they provide answers through
post-conditions. Post-conditions, along with pre-conditions, set the use
case’s boundaries. For example, reserving items does not encompass
shipping them, which is the scope of a different use case.[4]

3. The primary path: The most common way to progress from the start
to the end of a use case is the primary path, often referred to as the
"happy path." It always commences with the actor’s action and concludes
with the system’s response, detailing the process steps. These steps
continue until the post-condition is achieved.[4]

23

2 – Background

4. Alternative path: Alternate paths offer different routes from the be-
ginning to the end. They may or may not return to the main path. In
some cases, as illustrated in the previous example, the primary path is
revisited.[4]

It is important to highlight that use cases are more than just a diagram,
and that they are described in the narratives, which shows the different
scenarios from the start to the completion. As we mentioned before, use cases
can be described on 3 different levels, and so, also we can have narratives at
different levels.

Even though in Fig. 2.2, we showed an example of a very brief narrative,
we did it for a seek of understanding, but use case narratives could be quite
more detailed and comply with determined standards which will describe the
functional requirements in a better way. In order to follow a schematic route,
we will follow Cockburn’s "fully dressed" use case template, which has the
following characteristics:

[1]

• One column (no table)

• Sequenced, meaning that the steps form the mains success scenario and
from extensions are numbered following the Dewey decimal system, and
extensions should have a letter beside the number in order to show a
difference with respect to the original step from the main success sce-
nario. For example, the second step from the main scenario can be "1",
and one possible extension could be "1.b".

• Use case name: A verb or brief phrase should describe the objective
of the use case.

• Scope: The extent of the "system" under consideration

• Level: State from which of the 3 levels the narrative corresponds

• Intention in context: A declaration of the main actor’s goal and the
situation in which it is being done.

• Primary actor

• Stakeholders interest: The list of parties involved and the primary
interests they have for the use case.

24

2.2 – Use Case Narratives

• Precondition: What we can infer about the environment and system
as it stands right now.

• Minimum guarantees: How stakeholders’ interests are safeguarded
under all conditions.

• Success guarantees: The system’s and the environment’s condition if
the main actor’s objective is accomplished.

• Main success scenario: The scenario’s numbered steps, from trigger
to goal delivery and any cleanup in between. In the part on extensions,
conditions and options are displayed.

• Extensions: <step_altered> <condition> ":" <action_description>
or <sub-use_case>

The last point that I consider crucial in use case narratives is the concept
of "transactions". Interactions or information transfers between the system
under description and external entities, other systems, or external services
are referred to as transactions. Typically, a use case narrative describes
precise situations or examples of how a system will be applied to accomplish
a given objective. According to Jacobson [6], "a use case is a sequence of
transactions performed by a system, which yields an observable result of value
for a particular actor", and he also states that a transaction is a series of
operations carried out by a system, initiated by a timed trigger within the
system or a stimulus from an actor to the system.

In a use case narrative, a transaction may involve more than one activity,
such as the intake, processing, and output of data. They show how data
moves through the system and what has to be done to complete the tasks
outlined in the use case.

For instance, a "Make a Purchase" use case in an e-commerce system may
include the following transaction:

User Sign-in:
[Transaction: To log in, the user gives their credentials.
System Reaction: The system authorizes access and verifies credentials.]
So, as we can see, the transaction is composed of the action of the user

plus the system reaction.
In conclusion, use cases are crucial in software development because they

show how a system works from the user’s perspective. They help connect
business goals with technical details, making sure everyone involved under-
stands the system. The diagrams make these use cases clearer. In the next

25

2 – Background

sections, we’ll look at more related ideas and see how Large Language Mo-
dels can help make defining requirements and communication among team
members easier and better.

2.3 Use Case Points Modeling for Effort Esti-
mation

The demand for specialized software to assist companies is expanding in tan-
dem with technological advancements, leading to a rise in the number of
software development professionals and consequently increasing competition
in the field. The fact of estimating the effort during software development is
highly important and valuable since it directly affects how resources are al-
located and project timelines. Knowing the size of a project helps determine
the amount of effort needed. The utilization of Use Case Points (UCP) mo-
deling offers a systematic approach to estimating effort, taking into account
various factors inherent to the software system that is being developed.[7][8]

2.3.1 Application Size Determination

Number of Actors

As stated in the previous section, actors are entities that engage with the
system in the context of software systems. The total system size and the effort
needed to construct it are strongly influenced by the complexity and quantity
of actors. It is crucial to classify actors into simple, average, and complex
types. For instance, “a simple actor is an actor defined in a program interface,
an average actor is an actor involving a system that communicates via a
protocol for example, TPC/IP, and a complex actor is defined as an actor
that communicates through a Graphical user Interface (GUI) or a web page”5,
therefore, influencing the overall application size. The relation between the
actor type of complexity and its respective associated value are illustrated in
table 2.1.

5A. Effendi & R. Setiawan & Z. Erlisa Rasjid, Y. 2019. pg. 692 [9]

26

2.3 – Use Case Points Modeling for Effort Estimation

Actor type Weighting factor
Simple 1

Average 2
Complex 3

Tabella 2.1. Weighting factors for actor types[29]

Number of Use Cases

Use cases define the tasks a system needs to perform. The number and
complexity of use cases affect the application’s size. In order to make a
good estimation of the effort required, it is important to distinguish between
simple and complex use cases . The complexity of a use case depends on the
number of transactions it involves, which impacts the application’s size[10].
Table 2.2 shows this relationship.

Use Case Type Number of Transactions Weighting factor
Simple ≤ 3 5
Average 4 to 7 10
Complex ≥ 8 15

Tabella 2.2. Use Cases weights[10]

2.3.2 Contextual Factors
There are several contextual factors that may have an impact on the effort
calculation apart to the actors and use cases, which include for example in-
dustry standards, regulatory requirements, and project-specific constraints.
These factors ensure the application meets specific requirements and com-
pliance standards. The UCP approach considers both the technical complexi-
ty of the system (13 elements) and the development environment (8 factors).
Tables 2.3 and 2.4 [10] list these adjustment factors.

Technical Complexity Factors

Technical complexity factors include data processing needs, performance li-
mitations, and architectural complexities. When considering the system’s

27

2 – Background

Factor Description Weight
T1 Distributed system 2
T2 Performance 1
T3 End-user efficiency 1
T4 Complex processing 1
T5 Reusable code 1
T6 Easy to install 0,5
T7 Portable 0,5
T8 Easy to change 2
T9 Concurrent 1
T11 Security features 1
T12 Access for 3rd parties 1
T13 Special training required 1

Tabella 2.3. Technical Complexity Factors[10]

Factor Description Weight
T1 Familiarity with the standard process 1,5
T2 Application experience 0,5
T3 Object-oriented experience 1
T4 Lead analyst capability 0,5
T5 Motivation 1
T6 Stable requirements 2
T7 Part-time workers -1
T8 Difficult programming language -1

Tabella 2.4. Environmental Factors[10]

total complexity, these factors have a direct impact. For example, a system
with extensive data processing or strict performance requirements has higher
technical complexity, affecting the estimation process. Technical complexity
is rated on a scale from 0 to 5, with higher values indicating greater comple-
xity. The value multiplied by the factor’s weight and summed produces the
following equation:

TCF = 0.6 + (0.01 ·
13Ø

i=1
TFweighti · valuei)

The anticipated level of impact of each technical complexity factor on the

28

2.3 – Use Case Points Modeling for Effort Estimation

project is represented by a value called valuei This value ranges from 0 to 5.
[10]

Environmental Complexity Factors

Environmental factors, such as the team’s familiarity with the process and
their motivation, can add complexities. These factors directly impact the
effort needed to integrate the software. If a team lacks motivation or skills,
more development effort is required. The equation below illustrates how the
influence of environmental factors (EF) is determined in a manner similar to
that of technical complexity factors. [10]

EF = 1.4 + (−0.03 ·
8Ø

i=1
EFweighti · valuei)

2.3.3 Calculation of the Points
Unadjusted Use Case Points (UUCP)

UUCP is the basic measure for estimation, representing the total weighted
actors and use cases. To compute UUCP, multiply the weights of the actors
and add the weights of the use cases.[10]

UUCP = (TotalActorWight) + (TotalUseCaseWeight)

Example: If a system has three simple actors (weight 1 each), one average
actor (weight 2), and four use cases with weights 3, 4, 2, and 5, the UUCP
calculation would be:

(3 × 1) + (1 × 2) + (3 + 4 + 2 + 5) = 20 UUCP.

Adjusted Use Case Pints (AUCP)

After calculating UUCP, adjustments are made for technical and environ-
mental complexities. These adjustments, usually percentages, are applied to
the UUCP to determine the Adjusted Use Case Points (AUCP). The formula
for determining Adjusted Use Case Points (AUCP) is as follows [10]:

AUCP = UUCP · (TCF · EF)

29

2 – Background

Productivity Factor and Effort Estimation

The approach involves estimating effort in terms of man-hours by multiplying
the Unadjusted Use Case Points (UCP) with the productivity factor (PF).
Initially, Karner suggested setting a default value of 20 hours per UCP for
PF.[10]

Schneider and Winters proposed a technique for determining the starting
point of PF. They recommended counting the number of environmental va-
riables F1-F6 that are expected to have an influence of less than three, as
well as factors F7-F8 that are predicted to have an influence greater than
three, based on their experience. If the total count is two or less, the default
value of 20 hours per UCP should be used. If the count falls between 3 and
4, a PF of 28 hours per UCP should be utilized. For counts exceeding 4, a
PF of 36 hours per UCP should be applied. However, it is important to note
that in cases where the project is deemed extremely risky, these values may
not be suitable.[10]

Fig. 2.3 shows a diagram with the overall process with sequenced steps
of how effort estimation is calculated, in the same way we have explained in
this section.

In overall, the important thing for the reader to understand about use
case point modelling is the fact that it is a tool that allows the possibility to
estimate the effort needed for software development projects, by analyzing
the important factors regarding use case modelling, like actors, use cases,
and various complexities. This helps people having reliable project estimates
for the software development, ensuring that projects run efficiently.

2.4 Large Language Models (LLMs)
2.4.1 What’s the Deal with Large Language Models

(LLMs)?
We can say that LLMs are the latest big thing when we want to talk about
artificial intelligence, most of all when it comes to understanding and pro-
cessing language, since they are able to process very big amounts of text and
understand it, making them great for things for a wide variety of tasks and
that allows them to be a tool that can be used in many industries.

Essentially, and in order to explain it in a simple way, these models are
just very advanced machine learning models that get trained on very big
datasets to learn how language worksn and thanks to this, they are able

30

2.4 – Large Language Models (LLMs)

Figura 2.3. Effort Estimation Process, extracted from Simplifying effort
estimation based on Use Case Points from M.Ochodek & J. Nawrocki &
K. Kwarciak, Y. 2010.

31

2 – Background

to generate texts that are coherent and that are also correct according to
the context. Now a days we also have many models like BERT, GPT-3,
and Codex that are helpful as virtual assistants, content creation, sentiment
analysis, between many others. (He, H., 2023).[11]

2.4.2 How Do They Work?
As mentioned before, the model first learns a lot from reading many text to
understand how language works. The importance of this is that in this way,
they don’t need a special programming to know what you mean. After their
big training, they can learn specific things like law or medicine or any other
field for example. (Rana, S., 2023).[12]. [13].

2.4.3 LLMs in Action: Applications Across Industries
The versatility and capabilities of LLMs extend across various industries,
enabling them to process and understand human language for a wide range
of applications. The capability of LLMs at extracting precise information
from extensive data, as a result of their training on diverse sources positions
them to be an ideal tool in numerous fields.[13, 14]

Healthcare Industry

In this field, the model has become really a very important tool since they can
look at clinical notes, lab results, and health records for example, so it means
that if it is correctly used, it may be helpful for doctors to diagnose and treat
patients. Specifically, the are models like Med-PaLM which are even better
for this field. Of course, there are some concerns about privacy and the risk
of spreading false information when using patient data. [13, 14, 16, 17]

Finance Industry

In finance, LLMs are able to analyze market trends, predict stock prices, and
offer insights into investment strategies. Specifically, we have models like
BloombergGPT which are better at financial tasks than the normal models,
even though, here there’s also a risk of generating false or harmful content,
so it is important to have some regulation in its use.[13, 14]

32

2.5 – The use of LLMs for Information Systems

Educational Field

We can ask ourselves on how can LLM’s be helpful in schools or universities,
and the truth is that when talking about education, these models can be
extremely helpful if well used, and can make a big difference. They can
help with reading and writing in classrooms for example, as well as answer
questions from almst any kind of topic that a student or teacher may want
to ask, helping with educational tasks with facility and precision. But it is
a tool that need to be used with precaution, since it may also give wrong
information, so it is not good to just rely on the artificial inteligence to
solve educational problems, but just to be used as a tool to help when a
specific question arises, and if possible, it’s always better to double check the
information provided by the model. So, while LLMs have lots of potential,
we need to handle these issues carefully.[13, 14, 15]

Law Industry

In the legal field, LLMs have the ability to help with writing documents,
predicting court decisions, and analyzing legal texts. Studies show that LLMs
can understand and reason about law very well. For example, GPT-4 scored
in the top 10% on a simulated bar exam. However, there are still concerns
about copyright, privacy, and biases. Despite these challenges, LLMs can be
very useful in law.[14]

2.5 The use of LLMs for Information Systems
2.5.1 Applications of LLMs in Information Systems
Retrieval and Processing of Data

Information Systems in general are forsure highly benefited by the advan-
cements in artificial intelligence and specially large language models, since
the models are great at understanding and processing data, which helps in-
formation systems work better. They can summarize documents and find
important information, making it easier to make decisions.[18, 19]

Natural Language Interfaces

With their natural language processing capabilities, LLMs make it possible
to talk to computers in plain language. This makes systems easier to use and

33

2 – Background

more accessible.[18, 20]

Information Retrieval and Search

LLMs help make search engines better by understanding what people are
really looking for and giving more accurate results.[18, 19]

Content Generation and Augmentation

LLMs have demonstrated remarkable versatility in generating and impro-
ving content for information systems, as noted by Huang6. These models
are adaptable to making high-quality content across diverse platforms such
as social media posts, product descriptions, and news articles. Beyond tex-
tual applications, large language models play a role in advancing the de-
sign and commercialization of multimedia communication systems, a point
emphasized by Akyildiz and Guo7[18, 19]

2.5.2 LLMs in Software Development
The use of LLM’s for the software development is higly related to the goal
of our investigation, since the goal of this research exactly is to see how well
LLMs can help with software development by comparing their work with
respect to the one of human users, and in this way be able to understand
their strengths and weaknesses better. This will help us use LLMs more
effectively for software projects, specially to write requirements and create
use case scenarios, making the whole process more accurate and efficient.
[22]

Existing studies, though preliminary, demonstrate the potential of LLMs
in assisting with efficient requirements engineering. For instance, prompt
engineering with BERT has been employed for automated requirement clas-
sification. Addressing requirements completeness, D.Luitel8 utilized BERT
to predict satisfying requirements for masked slots.[22]

6Huang et al. in 2022
7Akyldiz and Guo, Y. 2022.
8Improving requirements completeness:Automated assistance through large language

models, 2023

34

2.5 – The use of LLMs for Information Systems

Traceability and Beyond:

While many LLM applications focus on activities like code creation, testing,
and maintenance, their innate language processing abilities offer significant
potential to enhance requirements engineering tasks. Notably, traceability
in software engineering, a widespread and multidisciplinary challenge, can
benefit from LLMs. Given that requirements are frequently expressed in
everyday language, LLMs become powerful allies in establishing traceability
connections between requirements and other technical artifacts like code and
tests.[22]

2.5.3 Challenges and Considerations
Data security and privacy are major problems when integrating LLMs into
information systems. To preserve user trust and system integrity, organi-
zations need to have strong privacy policies in place and protect sensitive
data. It is difficult for LLMs to be interpreted, and increasing transparency
is necessary to win over users and stakeholders. To guarantee accountabili-
ty, it is essential to investigate interpretability frameworks and techniques.
Biases, fairness, and possible effects on users or stakeholders are among the
ethical factors to be taken into account. Achieving equilibrium between effi-
ciency enhancements and moral considerations guarantees that LLMs make
valuable contributions to information systems without sustaining prejudices
or causing harm.[23] Methodical Inquiry: Evaluating LLMs in Software De-
velopment: To accomplish the research objective, a methodical approach will
be employed. The empirical study design will involve comparing the quality
of requirements and use case models generated by LLMs against those done
by human users. In order to have more reliability, some key parameters,
such as clarity, specificity, and completeness, will be used for comparison, ai-
ming to provide a better understanding of how LLMs can optimize efficiency
in requirements definition and communication within software development
projects.

35

36

Capitolo 3

Methodology

3.1 Introduction to the Methodology

During this methodology section, the main objective is to explain how was the
approach to evaluate the ability of ChatGPT n the creation and automation
of the desired diagrams that are under study, in order to understand if it is
a useful tool that could potentially help humans for automation of software
requirements. As we als mentioned before, the goal of this methodology is
to find the right way to use ChatGPT in order o help humans in reducing
the amount of time spent on the difficult process of manually creating UCDs
and narratives. As indicated in [24], surveys carried out in recent times have
shown that 54.5% of those surveyed found it difficult to deal with the time-
consuming process of manually creating use case diagrams using programs
like Visual UML, Draw.io, Rational Rose, and Smart Draw.[24] Specifically,
regarding UML diagrams, luke use case diagrams, 40.2% of system engineers
chose manual creation, 23.9% used semi-automated methods, and only 13%
employed automatic methods. Drawing use case diagrams manually demands
system analysts to retain accurate notation, which emphasizes the need for
automation. Key Components:

• Purpose: The main goal is to evaluate ChatGPT’s effectiveness in sup-
porting the development of UCDs and narratives, with a focus on cor-
rectness and efficiency.

• Selection of Exercises: A carefully selected collection of exercises, sour-
ced from a variety of online resources, including books, papers, websites,

37

3 – Methodology

and search engines, provides the basis for assessing ChatGPT’s effecti-
veness. Specific requirements were implemented to guarantee that the
exercises were suitable for evaluating the model’s capabilities.

• ChatGPT Prompting Strategy: The methodology emphasizes clarity
and simplicity by using a carefully defined vocabulary to prompt ChatGPT.
Different prompts were designed to account for differences in the diffi-
culty of the exercises.

• Evaluation Criteria: The research establishes particular standards by
which ChatGPT’s solutions will be examined. These standards include
accuracy in classifying actors and use cases, as well as associations of
different types, and the completeness of the Plant UML code that is
produced.

• Plant UML Integration: The tool chosen to automate the production
of UCDs is Plant UML. This decision’s motivation is provided later on,
and any changes to the Plant UML code produced by ChatGPT are also
discussed in following subsections.

• Feedback Mechanism: Examples of how ChatGPT results were improved
through the use of iterative feedback and corrections are discussed. The
resulting Plant UML code was refined by the use of multiple prompts
when necessary.

• Integration of Use Case Narratives: In order to ensure that there is no
confusion with the UCD assessments, a method for integrating use case
narratives into the evaluation process is outlined.
This technique aims to assess ChatGPT’s technological skills as well as
providing insights into how it might speed up and enhance the software
development requirements process. The next parts provide an in-depth
review of the research process by going into particular aspects of the
method used.

3.2 Selection of Exercises
The exercises chosen for this study were carefully chosen in order to assess
ChatGPT’s ability to extract relevant information from textual descriptions
in order to automate the creation of use case diagrams (UCD). In order to
accomplish this goal, a portfolio including thirty distinct types of exercises

38

3.2 – Selection of Exercises

were chosen and carefully examined. A total of ten exercises related to use
case narratives and twenty exercises dealing to use case diagrams were chosen
and examined. Exercises that included both UCD and narratives from the
same textual description were included when it was feasible; as a result, some
narrative exercises correspond to the same UCD exercise that was examined,
while other narrative exercises are independent. In order to select the best
possible exercises for the investigation, a criteria was undertaken.

• Criteria: Inclusion of Textual Descriptions: The most important thing
was to prioritize exercises that included textual descriptions in any kind
of textual description, from stories, narratives or sequential interactions.
The main objective of this was to have the requisite of extracting infor-
mation from the text in order to generate the diagram. In this way, we
are able to evaluate throughout many factors, ChatGPT’s capacity of
automating this diagrams.

• Exclusion of Solution-Only Exercises: Exercises that only provided so-
lution use case diagrams without any textual support about actors or
interactions were not included in the analysis. Assessing ChatGPT’s
capacity to extract data from narrative-based descriptions was the main
goal. Of course that the rationalle behind this, is the emphasis on in-
formation extraction from the model, that our investigation is evalua-
ting. By excluding exercises with predetermined solutions without tex-
tual context allowed the study to stay focused on ChatGPT’s ability to
extract information from various types of text.

• Consideration of Complexity: Something important to highlight is the
big variety of the textual complexity of exercise. There were some exerci-
ses which presented very long and complex descriptions but the solution
was actually quite simplistic, meaning that the trick of the exercise was
precisely to know the exact information that must be extracted to create
the diagram. But on the other hand there were also exercises were you
could find simple descriptions or short ones, that actually required more
sophisticated diagrams. This is something that could test ChatGPT’s
abiities under different kind of exercise complexities, in order to have
better analysis of the results obtained. In other words, this considera-
tion of different exercise complexities also has a rationale, which aimed
to put ChatGPT under certain situations which required different types
of cognitive processing capacities.

39

3 – Methodology

• Insight into ChatGPT’s Evaluation: The wide range of exercises allows
an in-depth investigation of ChatGPT’s advantages and disadvantages
when interpreting textual data. The results section of the thesis will
include a detailed study and presentation of this analysis.
This meticulous exercise selection procedure guarantees that the metho-
dology is in line with the main goal of evaluating ChatGPT’s ability to
interpret and integrate textual data for the automated creation of UCDs.
We will go into more detail about how these exercises were implemented
to assess ChatGPT’s performance in the next sections.

3.3 ChatGPT Prompting Strategy
A carefully designed prompting technique was used for guiding the ChatGPT
interaction in order to obtain the best possible responses for the automated
use case diagram (UCD) production. The main prompt that was used in
every exercise had a similar structure:

"The following should be textually analyzed, and a use case
diagram created containing several use cases. Identify the ac-
tors, use cases, and associations. Please give me the PlantUML
code for the use case diagram corresponding to the following text:
(TEXT)."[28]

This structure was partially extracted from the following website: https://www.scribd.com/document/18122626/How-
to-Use-Use-Cases

• Refinement of Prompts:

User Goal Level Approach:
In certain instances, the prompting strategy was refined to request a use

case diagram with a specific focus, using a prompt such as: PROMPT
1: "The following should be textually analyzed, and a use case
diagram created containing several use cases. Identify the ac-
tors, use cases, and associations. Please, use the user goal level
approach. Please give me the PlantUML code for the use case
diagram corresponding to the following text: (TEXT)."

Consideration of Relationships:
In order to address potential variations in the exercises, prompts were also

adjusted to instruct ChatGPT to consider specific relations or associations:
PROMPT 2: "The following should be textually analyzed, and a
use case diagram created containing several use cases. Identify

40

3.3 – ChatGPT Prompting Strategy

the actors, use cases, and associations. Please, use the user goal
level approach. Also, please consider any possible generalization
relationship between use cases or between actors, and any possible
’include’ or ’extend’ relationship between use cases. Please give
me the PlantUML code for the use case diagram corresponding to
the following text: (TEXT)."

• Spelling and Grammar:

It happened many times when during the investigation, that without even
taking it into account, I introduced certain prompts to ChatGPT that in-
cluded grammar or spelling mistakes, and this are actualy some thing that
according to many studies, can affect ChatGPT’s capacity performance in
creating the response that we expect.It is something very common to obtain
responses from the AI which are not the wanted ones, sometimes with cera-
tin unwanted errors, or sometimes with to any missing items, or maybe with
syntax errors, and that is why having good grammar and spelling could help
very much in avoiding this errors in ChatGPT’s responses.

• Insight from Relevant Literature:

This method uses info from research that shows how following language rules
helps make accurate use case diagrams (UCDs). Papers like "Automated use
case diagram generator using NLP and ML"[24] and "Domain-specific langua-
ge for automatic generation of UML models"[25] talk about how using spe-
cific languages can improve communication and reduce mistakes in software
design.

• Specialized Methods:

The method was influenced by special approaches like the Language of Use
Case for Model Automation (LUCAM). Knowing about domain-specific lan-
guages for UCD automation helped shape the prompts we used.

• Balancing Detail and Simplicity:

To make ChatGPT work better, we tried to keep the prompts detailed yet
simple, considering that language models might struggle with very complex
prompts.

41

3 – Methodology

3.4 Use of PlantUML
Plant UML was picked as the tool for making use case diagrams (UCDs) for
a few reasons:

Open-Source and Accessibility: Plant UML is free and open to eve-
ryone, making it easy for lots of people to use. This fits with the research
goals of being inclusive and practical.[26]

UML Standard Compliance: Plant UML sticks to the Unified Mode-
ling Language (UML) standards, ensuring the diagrams are reliable and can
be easily used in software development.

Text-Based Syntax: Plant UML’s text-based syntax works well with
ChatGPT’s text-focused nature, making it easier to turn text descriptions
into diagrams.

Versatility in Diagram Types: Plant UML can make different kinds
of diagrams, not just use case diagrams, which is useful for future research.

Graphical Representation Quality: Plant UML makes high-quality,
clear diagrams, which are important for effective communication in software
development.

Community Support and Documentation: Plant UML has lots of
help available, with good documentation and community support, making it
easier for researchers to use.

Integration with Existing Workflows: Plant UML integrates well
with current software development tools and systems, so it’s easy to add the
automated diagrams into existing processes.

Consistency in Evaluation: The fact of using just one tool for the
creation of the use case diagrams, somehw helped the study to be more
reliable and consistent throughout the overall evaluation of all the exercises.
To this end,using Plant UML for all exercises ensured that this investigation
is more consistent and of course, also makes it easier to assess how well
ChatGPT performs without worrying about differences in diagram tools.

Consideration of Alternatives: While taking the decision on which
tool to use for the diagram creation, some investigation was also made in
this field in order to fully understand the differences with some of the main
tols available, and even though Plant UML was chosen, there were some
ther tools that could have also been used for the investigation. Mainly,
the decision was based on factors like ease of use, community support, and
UML standards compliance. Plant UML stood out as the best fit for these
needs. A thorough review compared Plant UML with other tools like yUML,
Chart Mage, ZEN UML, Umple, UML Graph, and Dot UML, considering

42

3.4 – Use of PlantUML

their features and strengths. This comparison analysis took into account two
major aspects, which are presented in table 3.1.[24]

Tool Name Use correct UML notation Support Use Case Diagrams
PlantUML YES YES

yUML NO YES
Chart Mage YES NO
Zen UML YES NO

Umple YES NO
UML Graph YES NO
Dot UML YES NO

Tabella 3.1. Tools comparison

Factor 1: Use Correct UML Notation:
The first factor taken into account was the correct UML notation from

the tool, since it is highly important for our study that the tool that created
the diagram respected and followed the correct UML notation in order for
the evaluated exercises to be reliable and compliant with the rules of the
UML notation. To this end, from all of all the tools that were assessed,
Plant UML was the only one that really showed a complete conformance
to UML notation requirements, and this aspect is essential in order to have
exercises with high quality standards that at the same time could meet the
requirement that we are studying, which at the end is to see if the created
diagrams could be actually hepful for human users to use for the software
development processes.

Factor 2: Support Use Case Diagrams
A tool that not only followed UML standards but also explicitly supported

the creation of use case diagrams was required due to the research’s particular
focus on use case diagrams. Plant UML turned out to be the best option,
meeting this requirement properly. Its unique use case diagram creation
functionality sets it apart from competitors and offers a focused and efficient
solution that is adapted to the objectives of the research.

The comparative analysis’s findings showed that, of the solutions identi-
fied, Plant UML is the only one that performs well in both evaluated domains,
which placed Plant UML as the most suitable tool for the current study.
The careful evaluation of these variables is consistent with the dedication to
accuracy, uniformity, and relevance in the field of software modeling.

43

3 – Methodology

3.5 Automated UCD Generation Process and
Feedback Loop

A methodical approach was taken in the automated use case diagram (UCD)
generating process, which adapted to the several and detailed exercises that
ChatGPT employed to assess. The workflow was designed with feedback
loops for improvement and coherence, ensuring an evaluative and accurate
process.

ChatGPT’s preliminary analysis:
ChatGPT started each exercise by analyzing the text to identify actors,

use cases, and possible associations. After analyzing the exercise description,
ChatGPT created a PlantUML code that contained its interpretation.

Input into PlantUML Platform: The PlantUML code provided by
ChatGPT was then input into the PlantUML platform for the automated
generation of the corresponding UCD. This step aimed to visualize the UCD
based on ChatGPT’s textual analysis.

Comparative Analysis: After the creation of UCDs, a comparative
analysis was made. The generated UCD was placed under evaluation by
comparing it against the original solution (if available) and also considering
the existing knowledge on UCDs. This comparative procedure served as an
initial assessment of ChatGPT’s accuracy.

Feedback Loop Initiation: Feedback was provided to ChatGPT accor-
ding to the situation in order to improve the UCD’s correctness. The qua-
lity of the initial UCD correlated with the feedback’s extension and depth.
Different situations influenced the feedback procedure:

• Scenario 1: Minor Corrections:

Feedback was brief if the generated UCD had small errors but was otherwise
accurate. For example, a small correction was sufficient if a few actors were
missed or misidentified. In the same way, if associations were missing, the
gaps were fixed with specific feedback.

• Scenario 2: Missing Generalization or Relations:

When actors and use cases were correctly identified by the UCD but no
specific associations or generalization relations were found, the feedback was
intended to guide ChatGPT to explicitly address these needs. This strategy
ensured a more complete and accurate UCD.

44

3.5 – Automated UCD Generation Process and Feedback Loop

• Scenario 3: Complex Feedback for Messy Diagrams:

Occasionally, exercises with long, complex descriptions generated confused
diagrams. In these situations, feedback needed more specific details to ad-
dress the structural and semantic problems. Sometimes, the complex nature
of these exercises required several rounds of feedback in order to well enough
improve the UCD.

• Scenario 4: Self-Generated Information:

An alternate method involves manually reviewing the exercise description
and explicitly giving ChatGPT the necessary actors, use cases, and relations
for exercises that contained a vast quantity of irrelevant data, with respect
to the needed information for the UCD creation. By taking the initiati-
ve, ChatGPT’s processing was simplified, producing UCDs that were more
understandable and accurate.

• Scenario 5: Syntax Errors and Tool Limitations:

When ChatGPT presented PlantUML code that contained syntax errors,
the feedback identified the line of code that needed to be fixed. Sometimes,
problems continued in spite of repeated feedback, indicating a constraint in
the tool’s capacity to reliably generate error-free code for some exercises.

Iterative Feedback and Refinement: Upon each round of feedback,
ChatGPT incorporated the modifications suggested into account and pro-
duced an updated version of the PlantUML code for assessment. This me-
thod was iterative in order to gradually improve the UCD, work around
constraints, and raise the overall quality of the diagrams that were produced.

Tool Limitations and Future Considerations: The cases in which
feedback failed to correct syntax errors demonstrate a weakness in the tool’s
effectiveness. This limitation makes the tool less useful in certain circum-
stances and presents difficulties for users who are not familiar with UCD.
Future considerations might go further into methods of minimizing these
constraints, assuring a more intuitive and effective user experience.

Fig. 3.1 shows a diagram with the overall process with sequenced steps of
how the feedback process was.

Overall, the varying complexity of each exercise and the clear limitations
of ChatGPT made it something extremely important and valuable the fact
of introducing this feedback loop as described. This approach made the
methodology very dynamic and helped to improve the code created by the

45

3 – Methodology

Figura 3.1. Feedback Process

model, which finally had a direct impact on the diagram that the user can
perceive. So it can be stated that this methodology requires n adaptive
approach in order to fully show a reliable solution to be further evaluated.

3.6 Integrations of Use Case Narratives

Unlike the integration of use case diagrams (UCDs), the use case narratives
presented a unique set of complex issues when incorporated into the research
approach. The main goal now is to get more into detail about this aspect
and be able to show the analysis of the rules observed and soe of the most
important difficulties faced, as well as the approaches used.

Refined Search Methodology:

46

3.6 – Integrations of Use Case Narratives

Similar to UCDs, the search for use case narrative exercises placed a strong
emphasis on reliability and consistency. However, attention shifted to exer-
cises that shared descriptions with earlier identified UCD exercises. This
attempt intended to establish a complementary relationship between UCDs
and use case narratives for a more cohesive and comprehensive analysis.

Exercise Selection Criteria: Use case narrative exercises were chosen
with special consideration, with a focus on relevancy and complexity. The
selection was based on how well they fitted into a narrative format that could
be comparable to the standards established by industry expert Alistair Coc-
kburn. The selecting criteria made sure that the exercises included specific
system behaviors, actor interactions, and detailed context descriptions.[1]

Narrative Subjectivity:
Use case narratives are characterized by nature more subjective than

UCDs. This subjectivity is demonstrated in Cockburn’s work through the
use of several, though equally correct, narrative frameworks. The different
writing styles, like whole prose sentences or a play-style framework, highlight
the flexibility in creating narratives and make complex the analysis of them
further.[1]

Assessment Challenges:
Because use case narratives are subjective, evaluating them added a layer

of complexity. Cockburn[1] also provides examples that demonstrate how
many narrative styles (not only structures) can coexist together. Due to this
subjectivity, a more detailed review methodology was adopted, putting less
emphasis on standard correctness ratings and more on the narrative’s clarity
and depth, which should be as simple as possible always.

Quality Criteria and Evaluation Approach:
Evaluating the use case narrative exercises was also a challenge, and as the

aim of this investigation is also to show the highest standards and reliability,
some important quality criteria were analyzed for the assessment of this
type of exercises. The readability, clarity, and conciseness were the most
important thing taken into account, and moreover, "pass/fail" tests were
used to assess the quality and effectiveness of the narratives. These tests will
be discussed more in detail in the sections that follow, when we present the
results. The ChatGPT prompt designed, included some specific instructions
for guiding ChatGPT to take into account important components, like the
use case name and stakeholders, looking forward to obtain a complete and
deliberate answer from the AI. In other words, we intended to guide the
model to develop narratives that met the established quality standards. The
prompt employed was the following:

47

3 – Methodology

"The following description contains many use cases: "(DESCRIPTION
OF THE EXERCISE)" One of the use cases identified in the text is "(NAME
OF THE USE CASE)". I need you to analyze the text and to write an
appropriate Use Case description of the use case "(NAME OF THE USE
CASE)". Please take into account the following information when writing
the use case description:

• “Use Case Name” is any name that is the simplest possible but descrip-
tive too.

• "Scenario": Each use case contains the internal activities set which are
unique and it is represented as a scenario .

• “Triggering event” is basically an event that is initialized by the primary
actor to start use case execution.

• “Brief description”: is to describe the whole use case description in a
short form.

• “Actor” can be a human user, a hardware device, or a software system
that interacts with the system for goal accomplishment.

• “Related use case” represents the associated use cases.

• “Stakeholders” are the persons who are all involved in the successful
execution of the system.

• “Precondition” is a condition that should be met before the use case
starts.

• “Postcondition” is a condition that should be met after the use case
completed successfully.

• “Flow of activities” is the tenth compartment of the use case description.

• It consists of two columns about the steps performed by the actor and
the response of the system.

• “Exception conditions” describes the details of the other activities and
the exception conditions."

This prompt was adopted by taking a deep look at the solutions of the use
case narrative exercises from the book "Systems Analysis and Design" [27],

48

3.6 – Integrations of Use Case Narratives

where it clearly explained in a very brief and simplistic manner the main
components of the solution narratives.

Differently with respect to the iterative process which was described for
use case diagrams (UCDs), here, the choice was to employ a singular prompt
for each use case narrative exercise.

Strategic Rationale Behind Singular Prompts:

This strategic decision was made because of the subjective qualities of the
use case narrative exercises selected for this study. As the exercises featured
detailed textual descriptions, they provided a rich amount of information in a
single iteration. This strategy minimized the need for repetitive interactions
but still accurately expressing the essence of each exercise.

The exercises that I selected were carefully chosen to mirror real world
scenarios, showing a detailed textual environment. This context helped
ChatGPT gather a lot of information in just one interaction. The mode-
l’s ability to create detailed narratives from information-packed descriptions
showed how effective the single prompt strategy was.

Qualitative Comparative Analysis:

After its generation, each of the use case narratives developed by ChatGPT
was subject to a qualitative comparative analysis, highlighting main distinc-
tions. The principal objective was not only identifying differences but also to
offer a complete evaluation, knowing the contextual complexities relative to
the narrative construction, by identifying both advantages and disadvantages
in each solution. This procedure was made in order for the reader to have a
deeper understanding of narrative efficacy. We looked at each solution based
on how detailed the narrative was, how clear it was, and how well it matched
the exercise’s context.

Fig. 3.2 shows a diagram with the overall methodology with sequenced
steps of how the the incorporation of use case narrative exercises was.

In overall, and similarly to the exercises of use case diagrams, the inclusion
of narratives exercises also had a deliberate and refined approach, in which
I tried to follow and stick to Cockburn’s guidelines, emphasizing contextual
relevance, and addressing the inherent subjectivity of narratives, which set
the stage for a complex evaluation process. The challenges found provided
valuable insights into the difficulties of narrative construction and evaluation,
giving the possibility of a deeper exploration in the following sections.

49

3 – Methodology

Figura 3.2. Use Case Narratives Exercises Methodology

50

3.7 – Exercise Portfolio

3.7 Exercise Portfolio
In this section, all the exercises selected for the investigation will be shown,
both for the UCD analysis and UC narrative analysis. Firstly, the exercises
which provide the possibility to analyze UCD and narrative from the same
problem description will be prioritized in order for the reader to have a more
comprehensive understanding of the investigation. Afterwards, a subset of
exercises will be exposed with the complete prompt and the representation
of the Use Case Diagrams or Use Case Narratives and their respective com-
parative analysis. Since some prompts are too extensive, the complete set
of exercises with their full prompt will be included inside a "Google Drive"
open link, for any consultation. What will be shown here completely, is the
qualitative comparative analysis that was made on each exercise. In this way,
the reader has the possibility to see the number of each exercise, have a look
at the analysis made and then consult on the exercise description and both
the original solution and the generated solution by ChatGPT.

3.7.1 UCD Exercises
Something to take into consideration is that the description of each exercise
will be explicitly written inside each prompt, after the phrase "The follo-
wing should be textually analyzed and a use case diagram crea-
ted...". This is done in order to avoid repetition. Also, the link or the
book/article were the exercises can be completely seen is provided in the
"Google Drive" link mentioned before.

Exercise 1.

https://irm.com.au/use-use-cases/
PROMPT: The following should be textually analyzed and a use case

diagram created containing several use cases. Identify the actors, use cases
and associations. Please give me the PlantUML code for the use case diagram
corresponding to the following text: At the start of each semester a student
can request a prospectus containing a course list. Information about a course
is provided, such as the tutor, department and pre-requisites. The new system
will allow students to create a schedule, then select four courses. Each student
chooses two others in case their first choices become full or are cancelled.
No course can have more than 10 students. No course can have less than
3 students or it will be cancelled. This will be the same functionality as

51

https://irm.com.au/use-use-cases/

3 – Methodology

available to other internal users of the system. When registration is complete,
the registration system sends a message to the billing system to send out a bill
to the student. Tutors use the system to find which classes they are teaching
and who the students are. The registrar will administer the system. For a
period at the beginning of the semester the student can change their schedule.
Students must be allowed to access the system during this time to add or
delete courses.

ChatGPT
Sure, let’s analyze the text and identify the actors, use cases, and associa-

tions.
Actors:

1. Student

2. Tutors

3. Registrar

4. Billing System

Use Cases:

1. Request Prospectus

2. View Course Information

3. Create Schedule

4. Select Courses

5. Modify Schedule

6. Send Registration to Billing System

7. View Teaching Schedule (for Tutors)

8. Administer System (for Registrar)

Associations:

1. Student requests a prospectus.

2. Student views course information.

52

3.7 – Exercise Portfolio

3. Student creates a schedule.

4. Student selects courses.

5. Student modifies schedule during the specified period.

6. Registration system sends registration to the billing system.

7. Billing system sends out a bill to the student.

8. Tutors view their teaching schedule and associated students.

9. Registrar administers the system.

Now, let’s create the PlantUML code for the use case diagram:
@startuml
left to right direction
actor Student
actor Tutors
actor Registrar
actor BillingSystem
rectangle "System"
usecase "Request Prospectus" as UC1
usecase "View Course Information" as UC2
usecase "Create Schedule" as UC3
usecase "Select Courses" as UC4
usecase "Modify Schedule" as UC5
usecase "Send Registration to Billing System" as UC6
rectangle "Internal Users"
usecase "View Teaching Schedule" as UC7
usecase "Administer System" as UC8
Student –> UC1
Student –> UC2
Student –> UC3
Student –> UC4
Student –> UC5
Student –> UC6
UC3 –> UC4
UC3 –> UC5
UC6 –> BillingSystem
Tutors –> UC7

53

3 – Methodology

Registrar –> UC8
@enduml
PROMPT: Shouldn’t the registrar maintain course information, main-

tain tutors information, maintain curriculum and maintain student informa-
tion for example? I mean, shouldn’t these things be considered as use cases
of the actor "registrar"?

ChatGPT
Certainly! If the responsibilities of the Registrar involve maintaining va-

rious information, we can indeed represent those as separate use cases for
the Registrar actor. Here’s an updated PlantUML code reflecting these
additional use cases:

@startuml
left to right direction
actor Student
actor Tutors
actor Registrar
actor BillingSystem
rectangle "System" usecase "Request Prospectus" as UC1
usecase "View Course Information" as UC2
usecase "Create Schedule" as UC3
usecase "Select Courses" as UC4
usecase "Modify Schedule" as UC5
usecase "Send Registration to Billing System" as UC6
rectangle "Internal Users"
usecase "View Teaching Schedule" as UC7
usecase "Administer System" as UC8
usecase "Maintain Course Information" as UC9
usecase "Maintain Tutors Information" as UC10
usecase "Maintain Curriculum" as UC11
usecase "Maintain Student Information" as UC12
Student –> UC1
Student –> UC2
Student –> UC3
Student –> UC4
Student –> UC5
Student –> UC6
UC3 –> UC4
UC3 –> UC5
UC6 –> BillingSystem

54

3.7 – Exercise Portfolio

Tutors –> UC7
Registrar –> UC8
Registrar –> UC9
Registrar –> UC10
Registrar –> UC11
Registrar –> UC12
@enduml
Fig.3.3 and Fig.3.4 show both the original solution and the one generated

with the UMLPlant code provided by ChatGPT.
From this exercise, we observe that the PlantUML code provided by

ChatGPT generated a use case diagram that differed from the one in the
original answer, but in terms of correctness, it is a good diagram. In com-
pleteness, both answers are substantially complete, but the original answer
contained only one use case for the actor "student," seen as a summary use
case of all the actions the text describes that the student can do. In contra-
st, ChatGPT’s output gives a more detailed use case diagram for the actions
associated with the student.

Analyzing the text, we realize that the use cases associated with the stu-
dent, generated by the PlantUML code, align perfectly with the explicit
description given. The original answer included some use cases related to
the actor "registrar," not explicitly stated in the text but inferred from a
commonsense perspective, essentially thought by human intelligence. For in-
stance, the use case "maintain tutor’s information" is not explicitly stated,
but it is reasonable to think that the registrar must do this for the student
to access information and register for courses.

Moreover, the code generated by ChatGPT provides two different systems:
one called "internal users," where tutors and registrars can interact with the
system, and the other called "system," where students can interact, along
with the secondary actor, the billing system. Although this separation of use
case diagrams is not necessary, it adds a higher level of detail, which is a
positive aspect of ChatGPT’s output.

After evaluating the output, I decided to prompt something new to ChatGPT,
as shown in the prompt sequence. In this second case, it generated a very
high-level diagram, encompassing complete use cases related to both the stu-
dent and the registrar. It can be said that this final use case diagram is the
best one provided in terms of quality indicators.

55

3 – Methodology

Figura 3.3. UCD generated with the PlantUML code provided by ChatGPT.

Exercise 2.

https://mygust.com/uploads/BOOK-Systems_analysis_and_design_in_a_
56

https://mygust.com/uploads/BOOK-Systems_analysis_and_design_in_a_changin.pdf , https://mygust.com/wp-content/uploads/2014/12/Solutions-Chap03.pdf
https://mygust.com/uploads/BOOK-Systems_analysis_and_design_in_a_changin.pdf , https://mygust.com/wp-content/uploads/2014/12/Solutions-Chap03.pdf

3.7 – Exercise Portfolio

Figura 3.4. Original UCD provided by the exercise.

changin.pdf,https://mygust.com/wp-content/uploads/2014/12/Solutions-Chap03.
pdf

PROMPT: The following should be textually analyzed and a use case
diagram created containing several use cases. Identify the actors, use cases
and associations. Please give me the PlantUML code for the use case dia-
gram corresponding to the following text: One of the functions of the Board
of Realtors is to provide a Multiple Listing Service (MLS) system that sup-
plies information that local real estate agents use to help them sell houses
to their customers. During the month, agents list houses for sale (listings)
by contracting with homeowners. The agent works for a real estate office,
which sends information on the listing to the MLS. Therefore, any agent in
the community can get information on the listing. Information on a listing
includes the address, year built, square feet, number of bedrooms, number of

57

https://mygust.com/uploads/BOOK-Systems_analysis_and_design_in_a_changin.pdf , https://mygust.com/wp-content/uploads/2014/12/Solutions-Chap03.pdf
https://mygust.com/uploads/BOOK-Systems_analysis_and_design_in_a_changin.pdf , https://mygust.com/wp-content/uploads/2014/12/Solutions-Chap03.pdf
https://mygust.com/uploads/BOOK-Systems_analysis_and_design_in_a_changin.pdf , https://mygust.com/wp-content/uploads/2014/12/Solutions-Chap03.pdf

3 – Methodology

bathrooms, owner name, owner phone number, asking price, and status code.
At any time during the month, an agent might directly request information
on listings that match customer requirements, so the agent contacts the MLS
with the request. Information is provided on the house, on the agent who
listed the house, and on the real estate office for which the agent works. For
example, an agent might want to call the listing agent to ask additional que-
stions or call the homeowner directly to make an appointment to show the
house. Once each week, the MLS produces a listing book that contains infor-
mation on all listings. These books are sent to some real estate agents. Some
real estate agents want the books (which are easier to flip through), so they
are provided even though the information is often out of date. Sometimes,
agents and owners decide to change information about a listing, such as re-
ducing the price, correcting previous information on the house, or indicating
that the house is sold. The real estate office sends in these change requests
to the MLS when the agent asks the office to do so.

ChatGPT
Actors:

1. Real Estate Agent

2. Homeowner

3. Multiple Listing Service (MLS)

4. Real Estate Office

Use Cases:

1. List House for Sale (by Real Estate Agent)

2. Request Listing Information (by Real Estate Agent)

3. Produce Weekly Listing Book (by MLS)

4. Change Listing Information (by Real Estate Agent)

Associations:

1. Real Estate Agent lists houses for sale by contracting with homeowners.

2. Real Estate Agent sends information on the listing to the MLS.

3. Any agent can get information on a listing from the MLS.

58

3.7 – Exercise Portfolio

4. Real Estate Agent requests information on listings that match customer
requirements from the MLS.

5. MLS provides information on the house, the listing agent, and the real
estate office.

6. MLS produces a weekly listing book containing information on all li-
stings.

7. Some real estate agents receive the weekly listing book.

8. Real Estate Agent can request changes to listing information from the
Real Estate Office.

9. Real Estate Office sends change requests to the MLS.

Now, let’s create the PlantUML code for the use case diagram:
@startuml left to right direction
actor "Real Estate Agent" as Agent
actor Homeowner
actor "Multiple Listing Service (MLS)" as MLS
actor "Real Estate Office" as Office
rectangle "System"
usecase "List House for Sale" as UC1
usecase "Request Listing Information" as UC2
usecase "Produce Weekly Listing Book" as UC3
usecase "Change Listing Information" as UC4
Agent –> UC1
Agent –> UC2
MLS –> UC2
MLS –> UC3
Agent –> UC4
Office –> UC4
@enduml
PROMPT: I think that you are missing the "management" actor and I

also think that you are missing too much use cases related to the actor "real
estate officer". The PlantUML code you provided me is too basic. I need
really much more detailed code. Analyze the whole text again and provide
me a better code please.

ChatGPT

59

3 – Methodology

I apologize for the oversight. Let’s analyze the text again and provide a
more detailed use case diagram with the necessary actors and use cases.

Actors:

1. Real Estate Agent

2. Homeowner

3. Multiple Listing Service (MLS)

4. Real Estate Office

5. Management

Use Cases:

1. List House for Sale (by Real Estate Agent)

2. Request Listing Information (by Real Estate Agent)

3. Produce Weekly Listing Book (by MLS)

4. Receive Weekly Listing Book (by Real Estate Agent)

5. Change Listing Information (by Real Estate Agent)

6. Request Change to Listing Information (by Real Estate Office)

7. Approve Change Request (by Management)

8. Update Listing Information (by Real Estate Office)

Associations:

1. Real Estate Agent lists houses for sale by contracting with homeowners.

2. Real Estate Agent sends information on the listing to the MLS.

3. Any agent can get information on a listing from the MLS.

4. Real Estate Agent requests information on listings that match customer
requirements from the MLS.

5. MLS provides information on the house, the listing agent, and the real
estate office.

60

3.7 – Exercise Portfolio

6. MLS produces a weekly listing book containing information on all li-
stings.

7. Some real estate agents receive the weekly listing book.

8. Real Estate Agent can request changes to listing information from the
Real Estate Office.

9. Real Estate Office sends change requests to the MLS.

10. Real Estate Office requests changes to listing information.

11. Management approves change requests.

12. Real Estate Office updates listing information.

Now, let’s create the PlantUML code for the improved use case diagram:
@startuml
left to right direction
actor "Real Estate Agent" as Agent
actor Homeowner
actor "Multiple Listing Service (MLS)" as MLS
actor "Real Estate Office" as Office
actor Management
rectangle "System"
usecase "List House for Sale" as UC1
usecase "Request Listing Information" as UC2
usecase "Produce Weekly Listing Book" as UC3
usecase "Receive Weekly Listing Book" as UC4
usecase "Change Listing Information" as UC5
usecase "Request Change to Listing Information" as UC6
usecase "Approve Change Request" as UC7
usecase "Update Listing Information" as UC8
Agent –> UC1
Agent –> UC2
MLS –> UC2
MLS –> UC3
Agent –> UC4
Agent –> UC5
Office –> UC5
Office –> UC6

61

3 – Methodology

Management –> UC7
Office –> UC8
@enduml
PROMPT: What about if you consider just 3 actors: real estate office,

agent, and management? Give me a new code.
ChatGPT
Certainly, if we simplify the actors to just "Real Estate Office," "Agent,"

and "Management," and focus on the core interactions, the PlantUML code
would look like this:

@startuml left to right direction
actor "Real Estate Office" as Office
actor "Real Estate Agent" as Agent
actor Management
rectangle "System"
usecase "List House for Sale" as UC1
usecase "Request Listing Information" as UC2
usecase "Produce Weekly Listing Book" as UC3
usecase "Receive Weekly Listing Book" as UC4
usecase "Change Listing Information" as UC5
usecase "Request Change to Listing Information" as UC6
usecase "Approve Change Request" as UC7
usecase "Update Listing Information" as UC8
Office –> UC1
Agent –> UC2
Office –> UC2
Office –> UC3
Agent –> UC4
Agent –> UC5
Office –> UC5
Office –> UC6
Management –> UC7
Office –> UC8
@enduml
Fig.3.5 and Fig.3.6 show both the original solution and the one generated

with the UMLPlant code provided by ChatGPT.
This exercise offers an abundance of context and explanations regarding

interactions with the system. Unfortunately, ChatGPT did not manage to
provide a solution as close to the original one this time. Initially, the ge-
nerated output code was overly summarized and significantly different from

62

3.7 – Exercise Portfolio

Figura 3.5. UCD generated with the PlantUML code provided by ChatGPT.

the actual answer. Something important to say, is that there were two new
actors : the Multiple Listing Service (MLS) and the Homeowner. The MLS
is a necessary actor, possibly omitted in the original answer, as the text
clearly shows real interactions between the MLS and the system. However,
the Homeowneris not really necessary for this diagram.

Moreover, the second code provided was somehow more detailed and spe-
cific but still was not comparable to the original solution. Maybe some of

63

3 – Methodology

Figura 3.6. Original UCD provided by the exercise.

this differences were due to the inclusion of use cases associated with new
actors that were not present in the original solution. Although the second
code generated a Use Case Diagram (UCD) that was more or less correct
in comparison to the text description, I wanted to explore what ChatGPT
could produce if we instructed it to consider the same actors as in the original
answer. Surprisingly, the third solution was the most close to the one given
in the exercise, with a big mistake, which was identifying "receive weekly
listing book" as an agent’s goal, which it is not. This shows an error in the
model’s understanding and highlights a limitation when processing extensive
descriptive contexts.

Something very important comparison between the original solution and
ChatGPT’s output is that the actor "management" went unidentified initially.
Despite my request to include this actor, the model couldn’t generate the
associated use cases. While this stands as a limitation, it is a minor one,

64

3.7 – Exercise Portfolio

as even as a reader, it wasn’t easy for me to identify this actor in the text.
At this juncture, it becomes evident that when the textual description lacks
explicitness, ChatGPT struggles to identify and incorporate these elements
into the code.

Exercise 3.

https://mygust.com/uploads/BOOK-Systems_analysis_and_design_in_a_
changin.pdf,https://mygust.com/wp-content/uploads/2014/12/Solutions-Chap03.
pdf

PROMPT: The following should be textually analysed and a use case
diagram created containing several use cases. Identify the actors, use cases
and associations. Please give me the PlantUML code for the use case diagram
corresponding to the following text: Recall the On the Spot courier service
introduced in Chapter 2. The details of the package pickup and delivery
process are described here. When Bill got an order, at first, only on his phone,
he recorded when he received the call and when the shipment would be ready
for pickup. Sometimes, customers wanted immediate pickup; sometimes, they
were calling to schedule a later time in the day for pickup. Once he arrived
at the pickup location, Bill collected the packages. It was not uncommon for
the customer to have several packages for delivery. In addition to the name
and address of the delivery location, he also recorded the time of pickup. He
noted the desired delivery time, the location of the delivery, and the weight of
the package to determine the courier cost. When he picked up the package, he
printed out a label with his portable printer that he kept in the delivery van.
At first, Bill required customers to pay at the time of pickup, but he soon
discovered that there were some regular customers who preferred to receive a
monthly bill for all their shipments. He wanted to be able to accommodate
those customers. Bills were due and payable upon receipt. To help keep track
of all the packages, Bill decided that he needed to scan each package as it
was sorted in the warehouse. This would enable him to keep good control of
his packages and avoid loss or delays. The delivery of a package was fairly
simple. Upon delivery, he would record information about when the delivery
was made and who received it. Because some of the packages were valuable,
it was necessary in those instances to have someone sign for the package.

ChatGPT
Actors:

1. Courier (e.g., Bill)

65

https://mygust.com/uploads/BOOK-Systems_analysis_and_design_in_a_changin.pdf , https://mygust.com/wp-content/uploads/2014/12/Solutions-Chap03.pdf
https://mygust.com/uploads/BOOK-Systems_analysis_and_design_in_a_changin.pdf , https://mygust.com/wp-content/uploads/2014/12/Solutions-Chap03.pdf
https://mygust.com/uploads/BOOK-Systems_analysis_and_design_in_a_changin.pdf , https://mygust.com/wp-content/uploads/2014/12/Solutions-Chap03.pdf

3 – Methodology

2. Customer

3. Warehouse Personnel

4. Signee (for valuable packages)

Use Cases:

1. Receive Order Call (by Courier)

2. Schedule Pickup Time (by Customer)

3. Perform Immediate Pickup (by Courier)

4. Perform Scheduled Pickup (by Courier)

5. Collect Packages (by Courier)

6. Record Pickup Details (by Courier)

7. Determine Courier Cost (by Courier)

8. Print Label (by Courier)

9. Receive Payment at Pickup (by Courier)

10. Send Monthly Bill (by Courier)

11. Receive Package at Warehouse (by Warehouse Personnel)

12. Scan Package for Sorting (by Warehouse Personnel)

13. Deliver Package (by Courier)

14. Record Delivery Details (by Courier)

15. Sign for Valuable Package (by Signee)

Associations:

1. Courier receives order calls and records pickup details.

2. Customers schedule pickup times (immediate or scheduled later).

3. Courier collects packages from customers.

66

3.7 – Exercise Portfolio

4. Courier records pickup details including time, delivery location, and
package weight.

5. Courier determines the courier cost based on package details.

6. Courier prints a label for the package using a portable printer.

7. Courier receives payment at the time of pickup or sends monthly bills.

8. Warehouse personnel receive packages, scan for sorting, and keep track.

9. Courier delivers packages and records delivery details.

10. For valuable packages, someone (Signee) signs upon delivery.

Now, let’s create the PlantUML code for the use case diagram:
@startuml left to right direction
actor "Courier" as Courier
actor "Customer" as Customer
actor "Warehouse Personnel" as WarehousePersonnel
actor "Signee" as Signee
rectangle "On the Spot Courier Service"
usecase "Receive Order Call" as UC1
usecase "Schedule Pickup Time" as UC2
usecase "Perform Immediate Pickup" as UC3
usecase "Perform Scheduled Pickup" as UC4
usecase "Collect Packages" as UC5
usecase "Record Pickup Details" as UC6
usecase "Determine Courier Cost" as UC7
usecase "Print Label" as UC8
usecase "Receive Payment at Pickup" as UC9
usecase "Send Monthly Bill" as UC10
usecase "Receive Package at Warehouse" as UC11
usecase "Scan Package for Sorting" as UC12
usecase "Deliver Package" as UC13
usecase "Record Delivery Details" as UC14
usecase "Sign for Valuable Package" as UC15
Courier –> UC1
Courier –> UC2
Courier –> UC3
Courier –> UC4

67

3 – Methodology

Courier –> UC5
Courier –> UC6
Courier –> UC7
Courier –> UC8
Courier –> UC9
Courier –> UC10
WarehousePersonnel –> UC11
WarehousePersonnel –> UC12 Courier –> UC13
Courier –> UC14
Signee –> UC15
Customer –> UC2
Customer –> UC9
@enduml
PROMPT: I think that "recieve order call" is not a goal of the courier

and should not be included as a use case, and I think that "recieve package
at warehouse" is also not a goal for the warehouse personnel so it should not
be included as a use case also.

ChatGPT
You are correct, and I appreciate your clarification. Let’s refine the use

case diagram by removing "Receive Order Call" and "Receive Package at
Warehouse" as separate use cases. Instead, we can integrate these actions
into existing use cases. Here is the updated PlantUML code:

@startuml
left to right direction
actor "Courier" as Courier
actor "Customer" as Customer
actor "Warehouse Personnel" as WarehousePersonnel
actor "Signee" as Signee
rectangle "On the Spot Courier Service"
usecase "Schedule Pickup Time" as UC2
usecase "Perform Immediate Pickup" as UC3
usecase "Perform Scheduled Pickup" as UC4
usecase "Collect Packages" as UC5
usecase "Record Pickup Details" as UC6
usecase "Determine Courier Cost" as UC7
usecase "Print Label" as UC8
usecase "Receive Payment at Pickup" as UC9
usecase "Send Monthly Bill" as UC10
usecase "Scan Package for Sorting" as UC12

68

3.7 – Exercise Portfolio

usecase "Deliver Package" as UC13
usecase "Record Delivery Details" as UC14
usecase "Sign for Valuable Package" as UC15
Courier –> UC2
Courier –> UC3
Courier –> UC4
Courier –> UC5
Courier –> UC6
Courier –> UC7
Courier –> UC8
Courier –> UC9
Courier –> UC10
WarehousePersonnel –> UC12
Courier –> UC13
Courier –> UC14
Signee –> UC15
Customer –> UC2
Customer –> UC9
@enduml
Fig.3.7 and Fig.3.8 show both the original solution and the one generated

with the UMLPlant code provided by ChatGPT.
For this exercise, ChatGPT did not produce the outcome that we could

have expected. The long and extense textual description was a challenge for
the AI, and this generated it to have significant semantic errors that impacted
the correctness of the Use Case Diagram (UCD). It was evidenced that the
AI struggled to accurately identify actors, associations, and included a huge
number of unnecessary use cases for the actor "courier."

Even though that we inputted additional information in the second prompt
to address the unnecessary use cases for the courier (which were not actual
goals), ChatGPT only took into account the specific use cases I had signaled.
Unfortunately, it failed to identify the broader distinction between real goals
of the actors and actions that were not genuine goals.

Furthermore, an additional error arose when ChatGPT incorrectly asso-
ciated some use cases related to the delivery person with the character "Bill,"
who was not the actual delivery person. Also, we may see that a new ac-
tor named the "signee" was identified, and it could have been recognized as
the customer, giving the reader a misunderstanding about who actually is
signing. This tells us that if the person prompting ChatGPT doesn’t have a
big knowledge of use cases, it could lead to a confusion.

69

3 – Methodology

Figura 3.7. UCD generated with the PlantUML code provided by ChatGPT.

70

3.7 – Exercise Portfolio

Figura 3.8. Original UCD provided by the exercise.

In the other hand, if the person providing the prompts has some basic
knowledge of use cases, they may be able to re-inquire, correcting certain
aspects and providing additional feedback to obtain a more refined code,
although not entirely correct.

Exercise 4.

https://cmps-people.ok.ubc.ca/bowenhui/310/8-UML.pdf
PROMPT: The following should be textually analysed and a use case

diagram created containing several use cases. Identify the actors, use cases
and associations. Please, use the user goal level approach. Also, please con-
sider any possible generalization relationship between use cases or between
actors, and any possible "include" or "extend" relationship between use cases.
Please give me the PlantUML code for the use case diagram corresponding
to the following text: This case study concerns a simplified system of the
automatic teller machine (ATM). The ATM offers the following services: 1.
Distribution of money to every holder of a smart-card via a card reader and a
cash dispenser. 2. Consultation of account balance, cash and cheque deposit
facilities for bank customers who hold a smart-card from their bank. Do not
forget either that: 3. All transactions are made secure. 4. It is sometimes
necessary to refill the dispenser, etc. From these four sentences, we will work
through the following activities: • Identify the actors, • Identify the use ca-
ses, •Construct a use case diagram, •Write a textual description of the use

71

https://cmps-people.ok.ubc.ca/bowenhui/310/8-UML.pdf

3 – Methodology

cases, •Complete the descriptions with dynamic diagrams, •Organise and
structure the use cases. What are the external entities that interact direc-
tly with the ATM? Let’s look at each of the sentences of the exposition in
turn. Sentence 1 allows us to identify an obvious initial actor straight away:
every “holder of a smart-card”. He or she will be able to use the ATM to
withdraw money using his or her smart-card. However, be careful: the card
reader and cash dispenser constitute part of the ATM. They can therefore not
be considered as actors! You can note down that the identification of actors
requires the boundary between the system being studied and its environment
to be set out exactly. If we restrict the study to the control/ command sy-
stem of physical elements of the ATM, the card reader and cash dispenser
then become actors. Another trap: is the smart-card itself an actor? The
card is certainly external to the ATM, and it interacts with it... Yet, we do
not recommend that you list it as an actor, as we are putting into practice
the following principle: eliminate “physical” actors as much as possible to the
advantage of “logical” actors. The actor is the who or what that benefits from
using the system. It is the card holder who withdraws money to spend it, not
the card itself! Sentence 2 identifies additional services that are only offered
to bank customers who hold a smart-card from this bank. This is therefore a
different profile from the previous one, which we will realise by a second actor
called Bank customer. Sentence 3 encourages us to take into account the fact
that all transactions are made secure. But who makes them secure? There
are therefore other external entities, which play the role of authorisation sy-
stem and with which the ATM communicates directly. An interview with the
domain expert4 is necessary to allow us to identify two different actors: •
the Visa authorisation system (VISA AS) for withdrawal transactions car-
ried out using a Visa smart-card (we restrict the ATM to Visa smart-cards
for reasons of simplification); • the information system of the bank (Bank
IS) to authorise all transactions carried out by a customer using his or her
bank smart-card, but also to access the account balance. Finally, sentence 4
reminds us that an ATM also requires maintenance work, such as refilling
the dispenser with bank notes, retrieving cards that have been swallowed, etc.
These maintenance tasks are carried out by a new actor, which – to simplify
matters – we will call Maintenance operator.

ChatGPT
Based on the information provided, here’s the textual analysis and the

corresponding PlantUML code for the use case diagram:
Actors:

72

3.7 – Exercise Portfolio

1. Holder of a Smartcard

2. Bank Customer

3. Visa Authorization System (VISA AS)

4. Bank Information System (Bank IS)

5. Maintenance Operator

Use Cases:

1. Withdraw Money

2. Consult Account Balance

3. Deposit Cash

4. Deposit Cheque

5. Secure Transactions

6. Refill Dispenser

7. Retrieve Swallowed Card

Associations:

• Holder of a Smart-card (Actor) interacts with:

• Withdraw Money (Use Case)

• Consult Account Balance (Use Case)

• Deposit Cash (Use Case)

• Deposit Cheque (Use Case)

• Secure Transactions (Use Case)

• Bank Customer (Actor) interacts with:

• Consult Account Balance (Use Case)

• Visa Authorization System (VISA AS) (Actor) interacts with:

• Withdraw Money (Use Case)

73

3 – Methodology

• Bank Information System (Bank IS) (Actor) interacts with:

• Consult Account Balance (Use Case)

• Secure Transactions (Use Case)

• Maintenance Operator (Actor) interacts with:

• Refill Dispenser (Use Case)

• Retrieve Swallowed Card (Use Case)

Generalization Relationships:

• Withdraw Money (Use Case) and Consult Account Balance (Use Case)
can be generalized under a common Use Case named "Basic Transac-
tion."

Here’s the PlantUML code:
@startuml
left to right direction
actor "Holder of a Smartcard" as Holder
actor "Bank Customer" as BankCustomer
actor "Visa Authorization System (VISA AS)" as VisaAS
actor "Bank Information System (Bank IS)" as BankIS
actor "Maintenance Operator" as Operator
rectangle "ATM"
usecase "Withdraw Money" as Withdraw
usecase "Consult Account Balance" as ConsultBalance
usecase "Deposit Cash" as DepositCash
usecase "Deposit Cheque" as DepositCheque
usecase "Secure Transactions" as SecureTransactions
usecase "Refill Dispenser" as RefillDispenser
usecase "Retrieve Swallowed Card" as RetrieveCard
Holder –> Withdraw
Holder –> ConsultBalance
Holder –> DepositCash
Holder –> DepositCheque
Holder –> SecureTransactions
BankCustomer –> ConsultBalance
VisaAS –> Withdraw

74

3.7 – Exercise Portfolio

BankIS –> ConsultBalance
BankIS –> SecureTransactions
Operator –> RefillDispenser
Operator –> RetrieveCard
Withdraw <|.. ConsultBalance : «generalization»
@enduml
PROMPT: Thank you. but I think that Visa AS and Bank IS should

be clearly identified as secondary actors, and you should consider that a
cardholder can only withdraw money, cannot deposit and cannot consult
balance, on the other hand, the bank customer is able to do everything
(deposit, consult balance and withdraw cash). Also, the use case "secure
transactions" should not exist, since you are confusing it with the fact that
they are secured by the visa AS and bank IS.

ChatGPT
Certainly, I appreciate your feedback. Here’s the revised PlantUML code

considering the provided clarifications:
@startuml
left to right direction
actor "Cardholder" as Cardholder
actor "Bank Customer" as BankCustomer
actor "Maintenance Operator" as Operator
rectangle "ATM" usecase "Withdraw Money" as Withdraw
usecase "Deposit Cash" as DepositCash
usecase "Deposit Cheque" as DepositCheque
rectangle "Authorization System"
usecase "Authorize Visa Transaction" as AuthorizeVisa
usecase "Authorize Bank Transaction" as AuthorizeBank
rectangle "Maintenance"
usecase "Refill Dispenser" as RefillDispenser
usecase "Retrieve Swallowed Card" as RetrieveCard
Cardholder –> Withdraw
Cardholder –> DepositCash
Cardholder –> DepositCheque
BankCustomer –> Withdraw
BankCustomer –> DepositCash
BankCustomer –> DepositCheque
AuthorizeVisa –> Withdraw
AuthorizeBank –> Withdraw
Operator –> RefillDispenser

75

3 – Methodology

Operator –> RetrieveCard
@enduml
PROMPT: You are still considering that a cardholder can deposit, but

I told you that the cardholder is only able to withdraw cash, while the bank
customer is the one who is able to do everything. Apart from this, the bank IS
is a secondary actor that should support for deposits and consulting balance,
while the visa AS is a secondary actor that only supports for withdrawing
money.

ChatGPT
I appreciate the clarification. Here’s the revised PlantUML code based on

your feedback:
@startuml
left to right direction
actor "Cardholder" as Cardholder
actor "Bank Customer" as BankCustomer
actor "Maintenance Operator" as Operator
actor "Bank Information System" as BankIS
actor "Visa Authorization System" as VisaAS
rectangle "ATM"
usecase "Withdraw Cash" as Withdraw
rectangle "Bank Services"
usecase "Deposit Cash" as DepositCash
usecase "Deposit Cheque" as DepositCheque
usecase "Consult Balance" as ConsultBalance
rectangle "Authorization Systems"
usecase "Authorize Visa Transaction" as AuthorizeVisa
usecase "Authorize Bank Transaction" as AuthorizeBank
rectangle "Maintenance"
usecase "Refill Dispenser" as RefillDispenser
usecase "Retrieve Swallowed Card" as RetrieveCard
Cardholder –> Withdraw
BankCustomer –> Withdraw
BankCustomer –> DepositCash
BankCustomer –> DepositCheque
BankCustomer –> ConsultBalance
BankIS –> DepositCash
BankIS –> ConsultBalance
VisaAS –> Withdraw
Operator –> RefillDispenser

76

3.7 – Exercise Portfolio

Figura 3.9. UCD generated with the PlantUML code provided by ChatGPT.

Operator –> RetrieveCard
@enduml
Fig.3.9, Fig.3.10 and Fig.3.11 show both the original solution and the one

generated with the UMLPlant code provided by ChatGPT.
This exercise, which included an extensive textual explanation, needed

three prompts to get a better outcome. The Use Case Diagram (UCD) was
acceptable but the first code that was generated had some undesirable errors.
One significant issue was that ChatGPT misinterpreted the use cases related

77

3 – Methodology

Figura 3.10. Original UCD provided by the exercise (First Version).

Figura 3.11. Original UCD provided by the exercise (Second Version).

78

3.7 – Exercise Portfolio

to both bank and card clients, incorrectly giving to cardholders capabilities
like balance inquiries and deposits that were actually aimed for bank custo-
mers. Even though this mistake is not very serious, it might lead to confusion
contemplating how long the exercise is. Thankfully, the final code corrected
this error.

Another inconvenience arose when ChatGPT included a use case for "secu-
re transactions" associated with the bank customer, which was unnecessary
and inconsistent with the text’s description. In the text it clearly described
that transactions were made through the VISA Authorization System and
Bank Information System. In the final code, this issue was solved.

The last notable point is that both the VISA Authorization System and the
Bank Information System are secondary actors. This was not made evident
in the first code that was generated. However, taking into account the long
description, we can conclude that, if the user had some understanding of
Use Case Diagram (UCD) design, ChatGPT proved helpful in producing a
preliminary code that could be further refined by the user.

Exercise 5.

https://web.uettaxila.edu.pk/CMS/AUT2010/seSREbs/notes%5CLecture_
12%20SRE.pdf

PROMPT: The following should be textually analyzed and a use case
diagram created containing several use cases. Identify the actors, use cases
and associations. Please, use the user goal level approach. Also, please con-
sider any possible generalization relationship between use cases or between
actors, and any possible "include" or "extend" relationship between use cases.
Please give me the PlantUML code for the use case diagram corresponding
to the following text: Problem Description: A bank has several automated
teller machines (ATMs), which are geographically distributed and connected
via a wide area network to a central server. Each ATM machine has a card
reader, cash dispenser, a keyboard/display, and a receipt printer. By using
the ATM machine, a customer can withdraw cash from either checking or
savings account, query the balance of an account, or transfer funds from one
account to another. A transaction is initiated when a customer inserts an
ATM card into the card reader. Encoded on the magnetic strip on the back
of the ATM card are the card number, the start date, and the expiration
date. Assuming the card is recognized, the system validates the ATM card
to determine: that the expiration date has not passed, that the user-entered
PIN matches the PIN maintained by the system, that the card is not lost or

79

https://web.uettaxila.edu.pk/CMS/AUT2010/seSREbs/notes%5CLecture_12%20SRE.pdf
https://web.uettaxila.edu.pk/CMS/AUT2010/seSREbs/notes%5CLecture_12%20SRE.pdf

3 – Methodology

stolen. The customer is allowed three attempts to enter the correct PIN; the
card is confiscated if the third attempt fails. Cards that have been reported
lost or stolen are also confiscated. If the PIN is validated satisfactorily, the
customer is prompted for a withdrawal, query, or transfer transaction. Be-
fore a withdrawal transaction can be approved, the system determines that
sufficient funds exist in the requested account, that the maximum daily limit
will not be exceeded, and that there are sufficient funds available at the local
cash dispenser. If the transaction is approved, the requested amount of cash
is dispensed, a receipt is printed containing information about the transac-
tion, and the card is ejected. Before a transfer transaction can be approved,
the system determines: that the customer has at least two accounts and that
there are sufficient funds in the account to be debited. For approved query
and transfer requests, a receipt is printed, and the card ejected. A customer
may cancel a transaction at any time; the transaction is terminated, and the
card is ejected. Customer records, account records, and debit card records are
all maintained at the server. An ATM operator may start up and close down
the ATM to replenish the ATM cash dispenser and for routine maintenance.
It is assumed that functionality to open and close accounts and to create,
update, and delete customer and debit card records is provided by an existing
system and is not part of this problem.

ChatGPT
Based on the provided text, I’ve identified the actors, use cases, and asso-

ciations for the ATM system. Here is the PlantUML code for the correspon-
ding use case diagram:

@startuml left to right direction
actor "Customer" as Customer
actor "ATM Operator" as Operator
database "Central Server"
folder "Customer Records"
[Maintain Customer Records]
[Maintain Debit Card Records] [Maintain Account Records]
rectangle "ATM Machine"
usecase "Withdraw Cash" as Withdraw
usecase "Query Balance" as QueryBalance
usecase "Transfer Funds" as TransferFunds
usecase "Cancel Transaction" as CancelTransaction
Operator –> [Maintain Customer Records]
Operator –> [Maintain Debit Card Records]
Operator –> [Maintain Account Records]

80

3.7 – Exercise Portfolio

Customer –> Withdraw
Customer –> QueryBalance
Customer –> TransferFunds
Customer –> CancelTransaction
Withdraw –> [Validate ATM Card]
QueryBalance –> [Validate ATM Card]
TransferFunds –> [Validate ATM Card]
CancelTransaction –> [Terminate Transaction]
[Validate ATM Card] –> [Check Expiration Date]
[Validate ATM Card] –> [Check PIN]
[Validate ATM Card] –> [Check Card Status]
[Check PIN] –> [Card Confiscated]
[Check PIN] –> Withdraw
[Check PIN] –> QueryBalance
[Check PIN] –> TransferFunds
[Withdraw] –> [Check Account Balance]
[Withdraw] –> [Check Daily Limit] [Withdraw] –> [Check Cash Availa-

bility]
[Withdraw] –> [Dispense Cash]
[Withdraw] –> [Print Receipt]
[Withdraw] –> [Eject Card]
[TransferFunds] –> [Check Multiple Accounts]
[TransferFunds] –> [Check Debit Account Balance]
[TransferFunds] –> [Print Receipt]
[TransferFunds] –> [Eject Card]
[CancelTransaction] –> [Terminate Transaction]
[CancelTransaction] –> [Eject Card]
@enduml
PROMPT: This is too messy, Please consider the following summarized

information of the problem: The customer is able to: Withdraws funds from
the checking or savings account, Query the balance of an account, Transfer
funds from one account to another. Consider that the action of PIN vali-
dation is common to all these 3 actions. The ATM customer interacts with
the system via the ATM card reader, keyboard/display, cash dispenser, and
receipt printer. Regarding the operator interactions: Shuts down the ATM,
Replenishes the ATM cash dispenser, and Starts the ATM.

ChatGPT
Certainly! Here is a more concise and simplified PlantUML code based on

the summarized information:

81

3 – Methodology

@startuml left to right direction
actor "Customer" as Customer
actor "ATM Operator" as Operator
rectangle "ATM System"
usecase "Withdraw Funds" as Withdraw
usecase "Query Balance" as QueryBalance
usecase "Transfer Funds" as TransferFunds
usecase "Shutdown ATM" as ShutdownATM
usecase "Replenish Cash" as ReplenishCash
usecase "Start ATM" as StartATM
Customer –> Withdraw
Customer –> QueryBalance
Customer –> TransferFunds
Withdraw –> [Validate PIN]
QueryBalance –> [Validate PIN]
TransferFunds –> [Validate PIN]
[Validate PIN] –> [Common Validation]
Operator –> ShutdownATM
Operator –> ReplenishCash
Operator –> StartATM
@enduml
PROMPT: It is good, just that I think that the relationship between the

3 use cases of the customer and the Validate PIN use case should be with an
"include" dashed arrow, since the PIN validation use case is included within
the other 3 use cases, meaning that in order to achieve those actions, I first
need to validate pin.

ChatGPT
Absolutely, I appreciate the clarification. Here is the updated PlantUML

code with "include" relationships between the customer actions and the "Va-
lidate PIN" use case:

@startuml left to right direction
actor "Customer" as Customer
actor "ATM Operator" as Operator
rectangle "ATM System"
usecase "Withdraw Funds" as Withdraw
usecase "Query Balance" as QueryBalance
usecase "Transfer Funds" as TransferFunds
usecase "Validate PIN" as ValidatePIN
usecase "Shutdown ATM" as ShutdownATM

82

3.7 – Exercise Portfolio

usecase "Replenish Cash" as ReplenishCash
usecase "Start ATM" as StartATM
Customer –> Withdraw
Customer –> QueryBalance
Customer –> TransferFunds
Withdraw –> (ValidatePIN)
QueryBalance –> (ValidatePIN)
TransferFunds –> (ValidatePIN)
(ValidatePIN) –> [Common Validation] : «include»
Operator –> ShutdownATM
Operator –> ReplenishCash
Operator –> StartATM
@enduml
Fig.3.12 and Fig.3.13 show both the original solution and the one genera-

ted with the PlantUML code provided by ChatGPT.

Figura 3.12. UCD generated with the PlantUML code provided by ChatGPT.

This exercise is very similar to EXERCISE 4, but with some slight dif-
ferences in the actors, use cases, and problem description. The approach
that I thought better was to verify ChatGPT’s performance using two dif-
ferent methods. First, the problem description was given in the full form,

83

3 – Methodology

Figura 3.13. Original UCD provided by the exercise.

and ChatGPT was given the task of providing the necessary code. In this
first instance, the resulting code was extremely disorganized, making the Use
Case Diagram (UCD) incomprehensible. It included a huge amount of ab-
solutely unneeded use cases and pointless associations. Having this result, I
prompted ChatGPT once more, adopting the second strategy, which invol-
ved examining the actors and use cases that had been given based on the
description.

For the second case, readability and correctness of the resulting code were
significantly better than in the previous one. But there was still a small
mistake, particularly with the "inclusion" related arrow, which wasn’t mar-
ked with a dash. However, the user could understand it because the word
"inclusion" was written above the arrow. With the improved code closely
matching the analyzed description of actors and use cases, this solution was
quite similar to the original UCD solution offered by the exercise.

For exercises 6 to 20, which are all regarding Use Case Dia-
grams, their full prompts, providing the Plant UML code for the
generation of the UCD, and the description of the exercise with
its respective link (for further consultation) can be found in the

84

3.7 – Exercise Portfolio

following "Google Drive" link:
https://drive.google.com/drive/folders/1W3cI5jiLkLsVCyaVDQklLouh-wglntnE?

usp=drive_link

Exercise 6.

https://www.cerritos.edu/dwhitney/SitePages/CIS201/Lectures/IM-7ed-Chapter03.
pdf

The first thing to notice about ChatGPT’s output in this exercise is the
addition of a new actor—the "head of family"—that was mentioned implicitly
in the text. The only slight difference between it and the original solution
is that the PlantUML code includes one extra use case, "enter treatment
information." Other than that, both use cases are actually identical and si-
milar. It seems that the original answer’s "record visit information" use case
includes this additional use case.

Another noteworthy distinction is absent in the original diagram – an
"include" association between the use cases "record visit info" and "enter
prescription info." The text’s ambiguity leaves room for interpretation regar-
ding the necessity of this association. Consequently, the code and diagrams
generated by the Language Model (LLM) in this case are once again substan-
tially correct, complete, and even more detailed than the original, reflecting
a nuanced understanding of the textual content.

Exercise 7.

https://csis.pace.edu/~marchese/CS389/L9/Use%20Case%20Diagrams.pdf
Even if this exercise is simple, it is important to examine various types of

exercises with different levels of difficulty in order to properly evaluate and
comprehend the results produced by Language Models (LLMs) in supporting
requirements. The Use Case Diagram (UCD) produced by ChatGPT in this
particular case matched the original. The "sales representative" actor wasn’
included in the original diagram, but this was actually a decision made by
the author rather than a constraint on how the interaction could be shown.
Since the salesperson interacts with the ordering system as well, the text
makes it apparent that they may be included in the use case diagram.

ChatGPT, demonstrating precision in its outcomes, generated an exact
diagram, considering every possible scenario regarding actors and use cases.
It appears that for simple exercises, the outcomes provided by ChatGPT are
remarkably accurate and aligned with the intended representation.

85

https://drive.google.com/drive/folders/1W3cI5jiLkLsVCyaVDQklLouh-wglntnE?usp=drive_link
https://drive.google.com/drive/folders/1W3cI5jiLkLsVCyaVDQklLouh-wglntnE?usp=drive_link
https://www.cerritos.edu/dwhitney/SitePages/CIS201/Lectures/IM-7ed-Chapter03.pdf
https://www.cerritos.edu/dwhitney/SitePages/CIS201/Lectures/IM-7ed-Chapter03.pdf
https://csis.pace.edu/~marchese/CS389/L9/Use%20Case%20Diagrams.pdf

3 – Methodology

Exercise 8.

https://online.visual-paradigm.com/diagrams/templates/use-case-diagram/
grocery-cart-system-/

If you look at this activity quickly, it may seem more complicated than it
is. It is an effective way to evaluate ChatGPT’s ability to extract relevant
data in order to create a Use Case Diagram (UCD). Moreover, it is clear that
the created diagram and the one provided in the exercise are the same when
comparing the provided PantUML code. This shows also ChatGPT’s ability
in generating similar results when you input an accurate prompt.

When we see that the associations between "proceed to checkout," "calcu-
late total price," "process payment," and "send confirmation" are all "include"
associations, the AI’s diagram becomes very meaningful, since it is easy to
see that in order to continue with the checkout process, a customer should
compute the total cost, handle payment, and validate the transaction. A ve-
ry obvious constraint here is the lack of a payment gateway for the "process
payment" use case as a secondary or supporting actor. But even though of
this, the diagram maintains its overall accuracy.

Upon introducing a new prompt inquiring about this limitation, ChatGPT
addressed the issue in the above transcript. It emphasized that for a more rea-
listic and detailed solution, the payment system support actor should be in-
cluded. The subsequent PlantUML code provided by ChatGPT incorporated
this refinement.

Exercise 9.

https://www.lucidchart.com/pages/UML-use-case-scenario-examples
Compared to the exercises we’ve previously examined, this one used a dif-

ferent methodology given that the information was provided as a narrative
that described the full Use Case Diagram (UCD). I gave ChatGPT a revi-
sed text description of the main scenario, leaving out any information about
the phases in order. The that was created was very similar to the exercise’s
original UCD, but with a big difference that is the inclusion of a new actor
named "Consumer." As the bookshop needs the customer to finish the nar-
rative delivery, it might be seen as a potential support actor for the use case
"deliver the story to consumers," even if it is not technically necessary in the
publication process.

Another big distinction, though not new one, is that ChatGPT once again
struggled to differentiate the user goal level of an actor. In this case, the
goal of the "agent" should be to sell the story, and the action of contacting

86

https://online.visual-paradigm.com/diagrams/templates/use-case-diagram/grocery-cart-system-/
https://online.visual-paradigm.com/diagrams/templates/use-case-diagram/grocery-cart-system-/
https://www.lucidchart.com/pages/UML-use-case-scenario-examples

3.7 – Exercise Portfolio

publishing houses is a means to achieve this goal. If we think that the agent
could even sell the story on its own, this step might not even be required.
This could be fixed by adding a type association of "extend" between the use
cases "selling the story" and "contacting publishing house."

The final code generated by ChatGPT aligns well with the original solution
and is the most suitable one, presenting a close match. In this case, it can be
affirmed that ChatGPT’s outcome was almost entirely accurate and correct.

Exercise 10.

https://ceur-ws.org/Vol-2503/paper2_2.pdf
This exercise is very simple in terms of the quantity of actors and use cases,

but it actually created a challenge for ChatGPT to achieve a good solution.
A we may appreciate, the first code generated included unnecessary use cases
for the actions of getting permission (for employee) and granting permission
(for manager). We could think that these secondary actions are included
when organizing a trip, which is actually a use case for this diagram. It’s
also critical to emphasize that ChatGPT integrated the booking of a hotel
and a train into a single use case. Although not completely incorrect, a more
comprehensive method would see them as two distinct use cases, particularly
when considering the user goal level. Alternatively, they may have been
combined into a single use case using a summary-level method.

Furthermore, ChatGPT demonstrated a limitation in assessing when the-
re should be an "include" or "extend" association between use cases. When
planning a trip, it is essential to have made hotel and transportation reserva-
tions in advance. Therefore, for a higher-quality Use Case Diagram (UCD),
these use cases belong in the "plan a trip" use case. It took three prompts
to reach this ideal UCD, indicating the need for iterative improvement and
awareness of the limitations of the solution.

Exercise 11.

https://www.cpe.ku.ac.th/~plw/oop/e_book/ood_with_java_c++_and_uml/
ch7.pdf

This exercise was initially solved correctly but in a simple manner by
ChatGPT, encompassing the two principal use cases. However, it lacked the
extended use cases for the "add asset" use case. While the exercise and the
initial outcome were satisfactory, a more comprehensive result was obtained

87

https://ceur-ws.org/Vol-2503/paper2_2.pdf
https://www.cpe.ku.ac.th/~plw/oop/e_book/ood_with_java_c++_and_uml/ch7.pdf
https://www.cpe.ku.ac.th/~plw/oop/e_book/ood_with_java_c++_and_uml/ch7.pdf

3 – Methodology

with the second code generated. This improvement happened when I reque-
sted the inclusion of extended use cases, which shows ChatGPT’s capacity
to improve its solutions based on user feedback.

Exercise 12.

https://www.cpe.ku.ac.th/~plw/oop/e_book/ood_with_java_c++_and_uml/
ch7.pdf

In this exercise, it’s important to note that for generating a report, the
librarian should perform some preliminary actions such as accessing the ac-
count database and asset database. ChatGPT did not take these actions
into consideration, even though they are part of the original solution. Even-
though this was somehow expected, as we know ChatGPT’s limitations to
deduce information that isn’t stated clearly in the prompt. It did not, ho-
wever, take into account the possibility of a more generalized use case for
report generation.

This could account for the two different specialized cases of reports, each
included as a specialization with the corresponding arrow.

Surprisingly, when I prompted ChatGPT to address this issue, it generated
a code with a syntax error for the first time, failing to produce an updated
Use Case Diagram (UCD). The initial UCD generated by ChatGPT is fair
and correct, but it lacks some details, notably the inclusion of a generalized
use case for generating a report.

Exercise 13.

https://www.uml-diagrams.org/airport-checkin-uml-use-case-diagram-example.
html

In this problem, information about the actors and use cases in an Airport
Check-in and security screening context was provided without detailing the
sequence of actions and interactions for each actor, as in other exercises.
ChatGPT was expected to comprehend and generate a reasonable solution,
but the first code it produced had syntax errors, preventing the generation of
the UCD. In order to obtain a code that worked correctly in the PlantUML
website, I needed to prompt three times. Even though at least the code
worked on the third attempt, the UCD lacked quality in terms of critical
indicators such as correctness, completeness, and readability.

The lack of generalizations between actors and use cases, the inclusion of
clear extend/include relationships that one would expect the AI to compre-
hend, and the presence of outstanding actors with no association to any use

88

https://www.cpe.ku.ac.th/~plw/oop/e_book/ood_with_java_c++_and_uml/ch7.pdf
https://www.cpe.ku.ac.th/~plw/oop/e_book/ood_with_java_c++_and_uml/ch7.pdf
https://www.uml-diagrams.org/airport-checkin-uml-use-case-diagram-example.html
https://www.uml-diagrams.org/airport-checkin-uml-use-case-diagram-example.html

3.7 – Exercise Portfolio

case made the diagram unhelpful. Even though it was asked ChatGPT to
fix these problems and send an updated code, another code that had syntax
errors was given once again.

From this, we can easily see that the AI has problems in generating
good outcomes when generalizations/specializations and extend/include re-
lationships are involved in the UCD, ChatGPT lacks the capacity to fully
understand and provide a correct code.

Exercise 14.

https://www.uml-diagrams.org/ticket-vending-machine-use-case-diagram-example.
html?context=uc-examples

Although a more extensive Use Case Diagram (UCD) may have been ex-
pected, this exercise just required a basic UCD solution. However, the initial
code generated by ChatGPT was accurate and concise; it’s only weakness was
that it did not distinguish between the two actors as primary (the commuter)
and secondary (the bank). In the second prompt I wrote the necessary in-
formation for this issue to be solved, and the final UCD showed the intended
solution.

Exercise 15.

https://www.uml-diagrams.org/examples/hospital-management-use-case-diagram-example.
html?context=uc-examples

In this exercise, unlike others we’ve analyzed, the relatively short text
description lacked some explicit information, requiring readers to infer details
for inclusion in the Use Case Diagram (UCD) solution. Some confusion was
generated to the user by the fact of the incomprehensible diagram with too
many associations and unnecessary actors in the first code that ChatGPT
developed. The goal was to analyze the hospital reception system, with the
receptionist serving as the only major actor.

Upon highlighting this issue in the second prompt, a new code was ge-
nerated that resulted in a more refined UCD, comparable to the original
solution, albeit with some pros and cons. On the positive side, it correctly
incorporated the use cases "record payment," "provide receipt," and "file insu-
rance claims" with "include" relationships regarding the "receive payments"
use case. But something negative to show is that it wasn’t abe to distin-
guish "admit patient" and "schedule appointment" as extended use cases of
"collecting patient information." Furthermore, there was no distinction made

89

https://www.uml-diagrams.org/ticket-vending-machine-use-case-diagram-example.html?context=uc-examples
https://www.uml-diagrams.org/ticket-vending-machine-use-case-diagram-example.html?context=uc-examples
https://www.uml-diagrams.org/examples/hospital-management-use-case-diagram-example.html?context=uc-examples
https://www.uml-diagrams.org/examples/hospital-management-use-case-diagram-example.html?context=uc-examples

3 – Methodology

between the patients who were inpatients and outpatients. However, the re-
levant "include" connection was correctly integrated with the "bed allotment"
use case.

In conclusion, ChatGPT’s solution satisfied the needs of the average user
and might be enhanced further by a user with more UCD expertise.

Exercise 16.

https://www.uml-diagrams.org/examples/software-license-use-case-diagram-example.
html?context=uc-examples

In this exercise, a lengthy description of the problem provided numerous
possibilities for drawing an incorrect Use Case Diagram (UCD). The ini-
tial output by ChatGPT had a semantic issue, potentially beneficial if one
considered a code error that led to the drawing of some use cases with stick-
men instead of ovals. Apart from this, the UCD showed slight but incorrect
differences from the suggested solution.

For example, redundant use cases were identified for the product manager
and development actors. The "Protection Key Update" process was not in-
cluded as an extended use case of "Entitlement Management," and "Product
Activation" was not shown as a common use case for both "Entitlement Ma-
nager" and "Customer Service." Even though that I marked this problems, the
new code did not take into account "Product Activation" and the "Protection
Key Update" correctly.

Therefore, taking into account the complexity of the problem description,
we may conclude that the initial generated code was not at all terrible. For
someone with little knowledge of UML and use cases, it identified every actor
and the majority of the use cases, making it a helpful place to start. With
further input and prompts, the first UCD was used as a guide to create a
more accurate one.

Exercise 17.

https://online.visual-paradigm.com/diagrams/templates/use-case-diagram/
restaurant-ordering-use-case-diagram/

In this problem, ChatGPT’s first output was largely accurate, with only
minor errors. These were pointed out, and a second prompt was given to
address them. Surprisingly, the second output included more elements than
requested, introducing fundamentally incorrect relationships.

In particular, the second method includes relationships that intuitively
are incorrect—namely, "include" links between a use case and an actor. The

90

https://www.uml-diagrams.org/examples/software-license-use-case-diagram-example.html?context=uc-examples
https://www.uml-diagrams.org/examples/software-license-use-case-diagram-example.html?context=uc-examples
https://online.visual-paradigm.com/diagrams/templates/use-case-diagram/restaurant-ordering-use-case-diagram/
https://online.visual-paradigm.com/diagrams/templates/use-case-diagram/restaurant-ordering-use-case-diagram/

3.7 – Exercise Portfolio

first solution highlighted the difficulties in instructing ChatGPT to deliver
appropriate responses throughout iterative refining, as it was more simple
and approximated the original.

Exercise 18.

https://online.visual-paradigm.com/diagrams/templates/use-case-diagram/
online-ticket-booking-system-/

The last paragraph, which identifies the user as the actor with the abi-
lity to add or remove events, may have a redaction error. Nevertheless, an
administrative actor that wasn’t specified in the description was part of the
solution. The first code from the AI only included the "user" actor and missed
the administrator. This was fixed after I gave a corrected description in the
second prompt, and then the AI included the administrator. This showed
that when given the right information, ChatGPT can accurately identify all
the actors and their use cases.

Exercise 19.

https://online.visual-paradigm.com/diagrams/templates/use-case-diagram/
ride-sharing-service-/

This exercise was very complex, so the first code generated was good
enough, even though with some incomplete information Two actors were
identified: "user" and "administrator." The "user" actor was ambiguously used
for both drivers and riders, though they only share the "cancel ride" use case.
The second prompt asked ChatGPT to address this and complete the missing
use cases for the driver while assigning the "manage driver complaints" use
case to the administrator.

The final UCD was nearly perfect, with only a minor error in assigning the
"view driver details" use case, which should have been "view rider details."
These slight errors could be easily corrected by someone familiar with the pro-
blem description. Overall, ChatGPT’s solution was useful and time-saving
in UCD creation.

Exercise 20.

https://online.visual-paradigm.com/diagrams/templates/use-case-diagram/
movie-ticket-reservation-system-/

The description of this exercise concentrated on the perspective of the
customer and how they interacted with the movie ticket reservation system.

91

https://online.visual-paradigm.com/diagrams/templates/use-case-diagram/online-ticket-booking-system-/
https://online.visual-paradigm.com/diagrams/templates/use-case-diagram/online-ticket-booking-system-/
https://online.visual-paradigm.com/diagrams/templates/use-case-diagram/ride-sharing-service-/
https://online.visual-paradigm.com/diagrams/templates/use-case-diagram/ride-sharing-service-/
https://online.visual-paradigm.com/diagrams/templates/use-case-diagram/movie-ticket-reservation-system-/
https://online.visual-paradigm.com/diagrams/templates/use-case-diagram/movie-ticket-reservation-system-/

3 – Methodology

One thing I want to highlight is that the administrator actor wasn’t explicitly
mentioned in the text, and even though, it was included with its relevant use
cases in the original solution.This time, ChatGPT could identify the customer
actor and all their use cases, but it had trouble with the administrator. Also,
even though ChatGPT included some "include" relationships, it didn’t use
the right dashed arrows and "«include»" notation to show them properly.
Despite these small issues, the quality of ChatGPT’s output was impressive
and showed its ability to create detailed diagrams even with slight deviations
from the given instructions.

After this small error, ChatGPT generated output of very good quality,
proving its capacity to produce precise and complete diagrams even when
there are small variations from the guidelines.

3.7.2 Use Case Narrative Exercises
The ten exercises regarding UC Narratives are present in this subsection. Fir-
st, five exercises which are common to some of the UCD exercise descriptions
exposed in the previous subsection will be deeply analyzed here, with the full
prompts and solutions. For the prompts, the reader should recall at section
3.6 to see the generic prompt presented for all exercises of narratives. Then,
the parts that are going to be shown here are the specialized description
of each exercise, and the specialized name of each use case under analysis.
For the remaining five exercises, the comparative analysis is shown, but the
exercises complete prompts and solutions can be consulted on the same "Goo-
gle Drive" link where the UCD exercises are: https://docs.google.com/
document/d/1mWaGZ-fO0bCoTqmtXWYVkgUd3T-tIzyr/edit?usp=drive_link&
ouid=105778861586687512114&rtpof=true&sd=true

Exercise 1. (Related to Exercise 2. from the UCD subsection.)

https://www.chegg.com/homework-help/systems-analysis-and-design-in-a-changing-world-6th-edition-chapter-5-solutions-9781133713371
https://mygust.com/uploads/BOOK-Systems_analysis_and_design_in_

a_changin.pdf
PROMPT:
Description: "One of the functions of the Board of Realtors is to provide

a Multiple Listing Service (MLS) system that supplies information that local
real estate agents use to help them sell houses to their customers. During
the month, agents list houses for sale (listings) by contracting with homeow-
ners. The agent works for a real estate office, which sends information on the

92

https://docs.google.com/document/d/1mWaGZ-fO0bCoTqmtXWYVkgUd3T-tIzyr/edit?usp=drive_link&ouid=105778861586687512114&rtpof=true&sd=true
https://docs.google.com/document/d/1mWaGZ-fO0bCoTqmtXWYVkgUd3T-tIzyr/edit?usp=drive_link&ouid=105778861586687512114&rtpof=true&sd=true
https://docs.google.com/document/d/1mWaGZ-fO0bCoTqmtXWYVkgUd3T-tIzyr/edit?usp=drive_link&ouid=105778861586687512114&rtpof=true&sd=true
https://www.chegg.com/homework-help/systems-analysis-and-design-in-a-changing-world-6th-edition-chapter-5-solutions-9781133713371
https://mygust.com/uploads/BOOK-Systems_analysis_and_design_in_a_changin.pdf
https://mygust.com/uploads/BOOK-Systems_analysis_and_design_in_a_changin.pdf

3.7 – Exercise Portfolio

listing to the MLS. Therefore, any agent in the community can get informa-
tion on the listing. Information on a listing includes the address, year built,
square feet, number of bedrooms, number of bathrooms, owner name, owner
phone number, asking price, and status code. At any time during the month,
an agent might directly request information on listings that match customer
requirements, so the agent contacts the MLS with the request. Information
is provided on the house, on the agent who listed the house, and on the real
estate office for which the agent works. For example, an agent might want
to call the listing agent to ask additional questions or call the homeowner
directly to make an appointment to show the house. Once each week, the
MLS produces a listing book that contains information on all listings. These
books are sent to some real estate agents. Some real estate agents want the
books (which are easier to flip through), so they are provided even though
the information is often out of date. Sometimes, agents and owners decide
to change information about a listing, such as reducing the price, correcting
previous information on the house, or indicating that the house is sold. The
real estate office sends in these change requests to the MLS when the agent
asks the office to do so."

Use Case: "Add agent to real estate office".
ChatGPT
Use Case Name: Add Agent to Real Estate Office
Triggering Event: Real estate office decides to add a new agent to their

team.
Brief Description: This use case involves the process of adding a new

agent to a real estate office within the context of the Board of Realtors
system.

Actor: Real Estate Office Manager/Administrator
Related Use Case: None directly related.
Stakeholders:

1. Real Estate Office Manager/Administrator: Initiates the process to add
a new agent.

2. Board of Realtors System: Manages and records information related to
real estate agents and listings.

Precondition: The real estate office is registered with the Board of
Realtors system, and the system is operational.

Postcondition: The new agent is successfully added to the real estate
office, and their information is updated in the Board of Realtors system.

93

3 – Methodology

Figura 3.14. Original Narrative provided by the exercise.

Flow of Activities:
Actor: Real estate office manager logs into the Board of Realtors system.
System Response: System validates the manager’s credentials and grants

access.
Actor: Manager selects the option to add a new agent to the office.
System Response: System prompts the manager to enter the new agent’s

details (name, contact information, etc.).
Actor: Manager enters the required information and confirms the addition.
System Response: System validates the data and updates the real estate

office’s records.
Actor: System notifies the manager of the successful addition of the new

agent.
System Response: Manager receives a confirmation message and can view

the updated list of agents.

Original Solution shown in Fig.3.14:

94

3.7 – Exercise Portfolio

When comparing the two solutions for the "Add Agent to Real Estate
Office" use case, both have common elements like the triggering event, actors,
stakeholders, preconditions, post-conditions, and the core flow of activities.
But there are some key differences in how they approach things.

The original solution, which is longer,can be observed to have a conside-
rably deeper description that places a lot of attention on the clerk’s part in
entering agent details and determining the precise office location. Additio-
nally, the modified version offers an alternate procedure for adding a new
agent via the web, whereas the original makes no mention of a corresponding
use case.

The original provides a deep perspective of the clerk’s actions and the
system’s reaction by including more specific steps in the flow of activities.
This is made simpler in the new version, which has fewer stages for data
entry and identification.

It can be said that in general, the original solution is better at providing
detailed steps and a nuanced description, while the revised one is more concise
and adds the idea of a related use case. Combining the strengths of both
could result in a comprehensive and concise use case description.

Exercise 2. (Related to Exercise 2. from the UCD subsection.)

https://www.chegg.com/homework-help/systems-analysis-and-design-in-a-changing-world-6th-edition-chapter-5-problem-2cbr-solution-9781133713371
https://mygust.com/uploads/BOOK-Systems_analysis_and_design_in_

a_changin.pdf
PROMPT: The prompt for this exercise is the same one as the one of

Exercise 1., with the only difference that the Use case asked to be analyzed
is now "Create New Listing", instead of "Add Agent to Real State Office".

ChatGPT
Use Case Name: Create New Listing
Scenario: Creating a new listing for a property.
Triggering Event: A real estate agent initiates the process of listing a

property for sale.
Brief Description: This use case involves the process of adding a new

property listing to the Multiple Listing Service (MLS) system, enabling
real estate agents to access and share information about the property with
potential buyers.

Actor: Real Estate Agent
Related Use Case: None directly related.
Stakeholders:

95

https://www.chegg.com/homework-help/systems-analysis-and-design-in-a-changing-world-6th-edition-chapter-5-problem-2cbr-solution-9781133713371
https://mygust.com/uploads/BOOK-Systems_analysis_and_design_in_a_changin.pdf
https://mygust.com/uploads/BOOK-Systems_analysis_and_design_in_a_changin.pdf

3 – Methodology

1. Real Estate Agent: Initiates the process of creating a new listing.

2. Homeowner: Provides information about the property to be listed.

3. Multiple Listing Service (MLS) System: Records and disseminates in-
formation about property listings.

Precondition: The real estate agent is registered with the MLS system,
and the system is operational.

Postcondition: The new property listing is successfully added to the
MLS system and is accessible to other real estate agents.

Flow of Activities:
Actor: Real estate agent logs into the MLS system.
System Response: System validates the agent’s credentials and grants

access.
Actor: Agent selects the option to create a new listing.
System Response: System prompts the agent to enter details about the

property (e.g., address, year built, square footage, bedrooms, bathrooms,
owner’s contact information, asking price).

Actor: Agent enters the required information and submits the listing.
System Response: 1) System validates the data and adds the new listing

to the MLS database. 2) System confirms successful creation of the listing.
Actor: Agent receives a confirmation message and can view the newly

created listing in the MLS system.
Exception Conditions:

• If the agent’s credentials are invalid, the system denies access and promp-
ts the agent to provide correct credentials.

• If there are technical issues preventing the creation of the listing, the
system displays an error message and instructs the agent to try again
later.

• If the entered information for the new listing is incomplete or incorrect,
the system prompts the agent to correct the details before submission.

• In case the MLS system is unavailable, the agent is informed of the
temporary outage and advised to try again when the system is back
online.

Original Solution shown in Fig.3.15

96

3.7 – Exercise Portfolio

Figura 3.15. Original Narrative provided by the exercise.

For this exercise, when we take a look at the revised approach ChatGPT ca-
me up with and the solution offered for the "Create New Listing" use case
both focus on the clerk’s role in listing a new property. Basics like the trigger
event of receiving a new property for sale, the clerk’s role as the principal
player, and the requirement to identify and validate the agent in charge of
the listing are all covered by both solutions. They also recognize the impor-
tance of difficult factors like the existence of the real estate office and agent,
as well as stakeholders like the agent, property owner, and office.

Maybe the biggest difference between them is in detail and structure.
The provided solution keeps things short and concise, just outlining how the
clerk finds the agent and fills in the listing details. On the other hand, the
generated code by the AI goes deeper, breaking down the clerk’s actions and
the system’s responses. ChatGPT also added a related use case where agents
can create listings online, giving them another option.

97

3 – Methodology

Exercise 3. (Related to Exercise 3. from the UCD subsection)

https://www.chegg.com/homework-help/systems-analysis-and-design-in-a-changing-world-6th-edition-chapter-5-problem-1osc-solution-9781133713371
https://mygust.com/uploads/BOOK-Systems_analysis_and_design_in_

a_changin.pdf
PROMPT:
Description: "As On the Spot Courier Services continues to grow, Bill di-

scovers that he can provide much better services to his customers if he utilizes
some of the technology that is currently available. For example, it will allow
him to maintain frequent communication with his delivery trucks, which could
save transportation and labor costs by making the pickup and delivery ope-
rations more efficient. This would allow him to serve his customers better.
Of course, a more sophisticated system will be needed, but Bill’s development
consultant has assured him that a straightforward and not too complex solu-
tion can be developed. Here is how Bill wants his business to operate. Each
truck will have a morning and an afternoon delivery and pickup run. Each
driver will have a portable digital device with a touch screen. The driver
will be able to view his or her scheduled pickups and deliveries for that run.
(Note: This process will require a new use case—something the Agile develop-
ment methodology predicted would happen.) However, because the trucks will
maintain frequent contact with the home office via telephony Internet access,
the pickup/delivery schedule can be updated in real-time—even during a run.
Rather than maintain constant contact, Bill decides that it will be sufficient
if the digital device synchronizes with the home office whenever a pickup or
delivery is made. At those points in time, the route schedule can be updated
with appropriate information. Previously, customers were able to either call
On the Spot and request a package pickup or visit the company’s website to
schedule a pickup. Once customers logged in, they could go to a web-page
that allowed them to enter information about each package, including “deli-
ver to” addresses, size and weight category information, and type of service
requested. On the Spot provided “three-hour,” “same day,” and “overnight”
services. To facilitate customer self-service, On the Spot didn’t require exact
weights and sizes, but there were predefined size and weight categories from
which the customer could choose. Once the customer entered the information
for all the packages, the system would calculate the cost and then print mai-
ling labels and receipts. Depending on the type of service requested and the
proximity of a delivery truck, the system would schedule an immediate pickup
or one for later that day. It would display this information so the customer
would immediately know when to expect the pickup. Picking up packages was

98

https://www.chegg.com/homework-help/systems-analysis-and-design-in-a-changing-world-6th-edition-chapter-5-problem-1osc-solution-9781133713371
https://mygust.com/uploads/BOOK-Systems_analysis_and_design_in_a_changin.pdf
https://mygust.com/uploads/BOOK-Systems_analysis_and_design_in_a_changin.pdf

3.7 – Exercise Portfolio

a fairly straightforward process. But there was some variation in what would
happen depending on what information was in the system and whether the
packages were already labeled. Upon arriving at the scheduled pickup location,
the driver would have the system display any package information available
for this customer. If the system already had information on the packages, the
driver would simply verify that the correct information was already in the sy-
stem for the packages. The driver could also make such changes as correcting
the address, deleting packages, or adding new packages. If this were a cash
customer, the driver would collect any money and enter that into the system.
Using a portable printer from the van, the driver could print a receipt for the
customer as necessary. If there were new packages that weren’t in the system,
the driver would enter the required information and also print mailing labels
with his portable printer. One other service that customers required was to be
able to track the delivery status of their packages. The system needed to track
the status of a package from the first time it “knew” about the package until it
was delivered. Such statuses as “ready for pickup,” “picked up,” “arrived at
warehouse,” “out for delivery,” and “delivered” were important. Usually, a
package would follow through all the statuses, but due to the sophistication of
the scheduling and delivery algorithm, a package would sometimes be picked
up and delivered on the same delivery run. Bill also decided to add a status of
“cancelled” for those packages that were scheduled to be picked up but ended
up not being sent."

Use Case: "request a package pick-up".
ChatGPT
Use Case Name: Request Package Pick-Up
Scenario: Initiating a package pick-up request by a customer.
Triggering Event: A customer initiates a request for On the Spot

Courier Services to pick up a package.
Brief Description: This use case involves customers requesting the pick-

up of packages through On the Spot Courier Services. Customers can log
in to the system via the company’s website, provide package details, select
service options, and schedule a pick-up.

Actor: Customer
Related Use Case: None directly related.
Stakeholders:

1. Customer: Initiates the request for package pick-up.

2. On the Spot Courier Services: Manages and fulfills pick-up requests.

99

3 – Methodology

Precondition: The customer is registered on the On the Spot Courier
Services website, and the system is operational.

Post-condition: The system acknowledges the pick-up request, schedules
it based on the selected service, and updates the customer on the expected
pick-up time.

Flow of Activities:
Actor: Customer logs in to the company’s website.
System Response: System validates customer credentials and grants ac-

cess.
Actor: Customer navigates to the pick-up request page.
System Response: System displays a web-page allowing the customer to

enter package details (size, weight, "deliver to" address) and select service
options ("three-hour," "same day," or "overnight").

Actor: Customer submits package information and service preferences.
System Response: System calculates the cost, schedules the pick-up based

on service type and proximity of delivery truck, and displays the scheduled
pick-up time to the customer.

Actor: Customer reviews the scheduled pick-up details and confirms the
request.

System Response: System confirms the pick-up request, generates and
prints mailing labels, and updates the package status to "ready for pickup."

Exception Conditions:

• If the customer’s login credentials are invalid, the system denies access
and prompts the customer to provide correct credentials.

• If there are technical issues preventing the submission of package details,
the system displays an error message and instructs the customer to try
again later.

• If the entered information for the pick-up request is incomplete or in-
correct, the system prompts the customer to correct the details before
submission.

• In case the system cannot schedule an immediate pick-up due to opera-
tional constraints, it informs the customer of the next available slot and
confirms the scheduled pick-up time.

Original Solution shown in Fig.3.16

100

3.7 – Exercise Portfolio

Figura 3.16. Original Narrative provided by the exercise.

The solutions are very similar regarding all the elements included in them
and the structure . In order to request a pick-up online, clients must fol-
low the instructions provided by both systems, which include inputting pac-
kage details, calculating charges, displaying displayed pickup times, and
generating delivery labels.

Probably the major difference that we may see from both solutions could
be related to the level of detail . The original solution looks more on what
the customer does and how the system responds, keeping it pretty straight-
forward. But the ChatGPT-generated solution breaks down the process into
smaller parts, giving a more thorough explanation. What makes the provided

101

3 – Methodology

solution even better is that it includes related use cases for requesting packa-
ge pickups by phone or in-person. This adds extra value to the description.
Conversely, the narrative produced by AI maintains clarity by excluding any
references to related use cases.

Even with some variations mostly in the level of detail, but we can see
that both solutions are able to show a quite good narrative.

Exercise 4. (Related to Exercise 4. from the UCD subsection)

https://cmps-people.ok.ubc.ca/bowenhui/310/8-UML.pdf
PROMPT:
Description: "This case study concerns a simplified system of the automa-

tic teller machine (ATM). The ATM offers the following services: 1. Di-
stribution of money to every holder of a smartcard via a card reader and a
cash dispenser. 2. Consultation of account balance, cash and cheque deposit
facilities for bank customers who hold a smartcard from their bank. Do not
forget either that: 3. All transactions are made secure. 4. It is sometimes
necessary to refill the dispenser, etc. Let’s look at each of the sentences of
the exposition in turn. Sentence 1 allows us to identify an obvious initial
actor straight away: every “holder of a smartcard”. He or she will be able
to use the ATM to withdraw money using his or her smartcard. However, be
careful: the card reader and cash dispenser constitute part of the ATM. They
can therefore not be considered as actors! You can note down that the identi-
fication of actors requires the boundary between the system being studied and
its environment to be set out exactly. If we restrict the study to the control/
command system of physical elements of the ATM, the card reader and cash
dispenser then become actors. Another trap: is the smartcard itself an actor?
The card is certainly external to the ATM, and it interacts with it... Yet, we
do not recommend that you list it as an actor, as we are putting into practice
the following principle: eliminate “physical” actors as much as possible to the
advantage of “logical” actors. The actor is the who or what that benefits from
using the system. It is the card holder who withdraws money to spend it, not
the card itself! Sentence 2 identifies additional services that are only offered
to bank customers who hold a smartcard from this bank. This is therefore a
different profile from the previous one, which we will realise by a second actor
called Bank customer. Sentence 3 encourages us to take into account the fact
that all transactions are made secure. But who makes them secure? There
are therefore other external entities, which play the role of authorisation sy-
stem and with which the ATM communicates directly. An interview with the

102

https://cmps-people.ok.ubc.ca/bowenhui/310/8-UML.pdf

3.7 – Exercise Portfolio

domain expert4 is necessary to allow us to identify two different actors: •
the Visa authorisation system (VISA AS) for withdrawal transactions car-
ried out using a Visa smartcard (we restrict the ATM to Visa smartcards
for reasons of simplification); • the information system of the bank (Bank
IS) to authorise all transactions carried out by a customer using his or her
bank smartcard, but also to access the account balance. Bank customer and
CardHolder are, furthermore, mutually exclusive. Another solution, which is
a little more developed, consists in considering Bank customer as a specia-
lisation of CardHolder. Let’s take the cardholder and list the different ways
in which they can use the ATM: CardHolder: one of this ways is that it can
withdraw money. The Withdraw money use case has two possible primary
actors (but they cannot be simultaneous). Another way to express this notion
is to consider the Bank customer actor as a specialisation (in the sense of
the inheritance relationship) of the more general CardHolder actor. A bank
customer is actually a particular card holder who has all the privileges of the
latter, as well as others that are specific to him or her as a customer. For
all use cases appropriate for the bank customer, you must explicitly bring in
Bank IS as a secondary actor. But a problem arises for the shared use case,
Withdraw money. Indeed, if the primary actor is a Visa card holder, the Visa
AS must be called on (which will then be responsible for contacting the IS of
the holder’s bank); whereas the ATM will contact the Bank IS directly if it
concerns a bank customer. Another solution would be to distinguish two use
cases for the withdrawal of money: Withdraw money using a Visa card and
Withdraw money using a bank card. This more precise, yet more cumberso-
me, modelling is easier for the reader of the diagram to grasp. Furthermore,
it clearly tells against the use of generalisation between actors, which was
mentioned beforehand. Indeed, the distinction between the two use cases is
contradictory with the attempt at inheritance of the unique Withdraw money
case, which had been viewed more highly, while the secondary actors had not
yet been added."

Use Case: "Withdraw money using a Visa Card".
ChatGPT
Use Case Name: Withdraw Money Using a Visa Card
Scenario: A Visa cardholder initiates a request to withdraw money from

the ATM.
Triggering Event: The Visa cardholder inserts their Visa smartcard into

the card reader.
Brief Description: The use case involves the Visa cardholder interacting

with the ATM to withdraw money securely using their Visa smartcard. The

103

3 – Methodology

system verifies the cardholder’s identity, authorizes the transaction throu-
gh the Visa Authorization System (VISA AS), and dispenses the requested
amount.

Actor:

• Primary Actor: Visa Cardholder

• Secondary Actor: VISA AS

Related Use Case: Withdraw Money Using a Bank Card
Stakeholders:

• Visa Cardholder: Initiates the withdrawal transaction.

• VISA AS: Authorizes the transaction and communicates with the bank’s
Information System (Bank IS) for approval.

Precondition:

• The Visa cardholder has a valid Visa smartcard.

• The ATM is operational.

Postcondition:

• The requested amount is dispensed to the Visa cardholder.

• Transaction details are recorded.

Flow of Activities:

1. Visa Cardholder inserts the Visa smartcard into the card reader. 1.1
System prompts the cardholder to enter their PIN. 1.2 Visa Cardholder
enters the PIN. 1.3 System validates the PIN.

2. System contacts VISA AS for authorization. 2.1 VISA AS verifies the
cardholder’s authorization.

3. Visa Cardholder specifies the withdrawal amount. 3.1 System validates
the requested amount.

4. System dispenses the requested amount. 4.1 Visa Cardholder collects
the dispensed cash.

Exception Conditions:

104

3.7 – Exercise Portfolio

• If the PIN is incorrect, display an error message and allow the cardholder
to retry.

• If the VISA AS denies authorization, display a transaction declined
message.

• If the requested amount exceeds limits, display an error message.

• If the smartcard is invalid or damaged, prompt the cardholder to contact
their bank.

Original Solution available at: https://cmps-people.ok.ubc.ca/bowenhui/
310/8-UML.pdf, pg. 15-19.

The original use case is very comprehensive and structured and It clearly
covers the main success scenario, alternative sequences, and error sequences.
It is simple to follow the processes of the interaction between the Visa card-
holder, the ATM, and the VISA authorization system because of the orderly
structure of the events. Something very interesting is the inclusion of time in
the error steps, like E4 and E5, where the ATM does some actions just aftes
some specific period of time. By addressing probable problems like the card
not being returned or the cash not being collected, this gives the situation a
more realistic feeling.

Moreover, the use of clear and concise language in both the main suc-
cess scenario and error sequences contributes to the overall readability and
understanding of the use case. The detailed postconditions give a clear repre-
sentation of the expected situation following the use case’s conclusion. Since
these errors may involve actions or communication with the Visa authoriza-
tion system, one consideration for potential improvements or revisions would
be to explicitly mention that the Visa AS was involved in the error sequences
(E1, E2, E3, E4, E5) where appropriate. When everything is considered, the
first use case is prepared effectively, providing detailed coverage of a varie-
ty of scenarios and using realistic features to enhance understanding of the
system’s behavior in different settings.

Exercise 5. (Related to Exercise 5. from the UCD subsection)

https://web.uettaxila.edu.pk/CMS/AUT2010/seSREbs/notes%5CLecture_
12%20SRE.pdf

PROMPT:

105

https://cmps-people.ok.ubc.ca/bowenhui/310/8-UML.pdf
https://cmps-people.ok.ubc.ca/bowenhui/310/8-UML.pdf
https://web.uettaxila.edu.pk/CMS/AUT2010/seSREbs/notes%5CLecture_12%20SRE.pdf
https://web.uettaxila.edu.pk/CMS/AUT2010/seSREbs/notes%5CLecture_12%20SRE.pdf

3 – Methodology

Description: " A bank has several automated teller machines (ATMs),
which are geographically distributed and connected via a wide area network
to a central server. Each ATM machine has a card reader, cash dispenser,
a keyboard/display, and a receipt printer. By using the ATM machine, a
customer can withdraw cash from either checking or savings account, query
the balance of an account, or transfer funds from one account to another. A
transaction is initiated when a customer inserts an ATM card into the card
reader. Encoded on the magnetic strip on the back of the ATM card are the
card number, the start date, and the expiration date. Assuming the card is re-
cognized, the system validates the ATM card to determine: that the expiration
date has not passed, that the user-entered PIN matches the PIN maintained
by the system, that the card is not lost or stolen. The customer is allowed
three attempts to enter the correct PIN; the card is confiscated if the third at-
tempt fails. Cards that have been reported lost or stolen are also confiscated.
If the PIN is validated satisfactorily, the customer is prompted for a withdra-
wal, query, or transfer transaction. Before a withdrawal transaction can be
approved, the system determines that sufficient funds exist in the requested
account, that the maximum daily limit will not be exceeded, and that there
are sufficient funds available at the local cash dispenser. If the transaction
is approved, the requested amount of cash is dispensed, a receipt is printed
containing information about the transaction, and the card is ejected. Befo-
re a transfer transaction can be approved, the system determines: that the
customer has at least two accounts and that there are sufficient funds in the
account to be debited. For approved query and transfer requests, a receipt is
printed, and the card ejected. A customer may cancel a transaction at any ti-
me; the transaction is terminated, and the card is ejected. Customer records,
account records, and debit card records are all maintained at the server. An
ATM operator may start up and close down the ATM to replenish the ATM
cash dispenser and for routine maintenance. It is assumed that functionality
to open and close accounts and to create, update, and delete customer and
debit card records is provided by an existing system and is not part of this
problem. The customer is able to: Withdraws funds from the checking or
savings account, Query the balance of an account, Transfer funds from one
account to another. Consider that the action of PIN validation is common
to all these 3 actions. The ATM customer interacts with the system via the
ATM card reader, keyboard/display, cash dispenser, and receipt printer. "

Use Case: "Validate PIN".
ChatGPT
Use Case Name: Validate PIN

106

3.7 – Exercise Portfolio

Scenario: A customer initiates the PIN validation process by inserting
an ATM card into the card reader.

Triggering Event: Customer inserts the ATM card into the card reader.
Brief Description: The use case involves validating the customer’s Per-

sonal Identification Number (PIN) when initiating a transaction. The system
checks the validity of the ATM card, ensuring that the expiration date has
not passed, the entered PIN matches the system’s records, and the card is
not reported as lost or stolen. The customer is given three attempts to enter
the correct PIN; failure on the third attempt results in the confiscation of
the card.

Actor: ATM Customer
Related Use Cases:

• Withdraw Funds

• Query Balance

• Transfer Funds

Stakeholders:

• ATM Customer

• Bank (System)

Precondition:

• The ATM card is inserted into the card reader.

• The card is recognized by the system.

Postcondition:

• Successful validation allows the customer to proceed with the desired
transaction.

• If unsuccessful after three attempts, the card is confiscated.

Flow of Activities:
Actor:
1. Insert ATM card
System Response:
2. Read card information
3. Validate expiration date

107

3 – Methodology

4. Validate PIN (3 attempts allowed)
5. If PIN validation successful, proceed
6. If PIN validation fails after 3 attempts, confiscate card
7. If card reported lost or stolen, confiscate card
Actor:
8. Enter PIN
System Response:
9. Verify entered PIN against system records
Actor:
10. Verify PIN
11. Proceed with transaction or confiscate card if unsuccessful
System Response:
12. Eject card (after successful transaction or confiscation)
Exception Conditions:

• If the entered PIN is incorrect, inform the customer and allow additional
attempts.

• If the card is reported lost or stolen, confiscate the card.

• If the expiration date has passed, inform the customer and do not
proceed with the transaction.

• If the card is not recognized, inform the customer.

Original Solution shown in Fig.3.17
The solution provided by the exercise is very concise but at the same

time describes very well the PIN validation transaction by showinf the essen-
tial steps, including card recognition, PIN entry, and potential alternative
scenarios like card expiration or being reported lost or stolen.

Regarding ChatGPT’s solution, it offered a solution much more compre-
hensive by including certain aspects like a table that had the flow of all
the actionsor even some details like a triggering event, related use cases,
stakeholders, and a more explicit breakdown of the flow of activities.

In this exercise, even though both solution are fine, one can say that
ChatGPT´s response was able to provide a bit more detail and structure,
most of all through the use of a table and additional sections for related
information. The differences are largely in the presentation and level of
detail rather than a substantial deviation from the core content of the original
solution.

108

3.7 – Exercise Portfolio

Figura 3.17. Original Narrative provided by the exercise.

Exercise 6.(Related to Exercise 12. from the UCD subsection

https://web.uettaxila.edu.pk/CMS/AUT2010/seSREbs/notes%5CLecture_

109

https://web.uettaxila.edu.pk/CMS/AUT2010/seSREbs/notes%5CLecture_12%20SRE.pdf
https://web.uettaxila.edu.pk/CMS/AUT2010/seSREbs/notes%5CLecture_12%20SRE.pdf

3 – Methodology

12%20SRE.pdf
The original solution was able to showcase a very good narrative in terms

of completeness. It may be stated that the "Validate PIN" use case shows
an inclusion dependency, which highlights the significance of PIN validation
prior to the withdrawal process, is one important change. Something inte-
resting was the addition of alternatives, such as managing invalid account
numbers or insufficient cash, strengthens the system and completely covers
a range of eventualities. The postcondition clearly explains the intended
outcome by briefly stating that the withdrawal was completed successfully.
Even though both solutions are okay, in this case, the original one showcased
a better representation of the "Withdraw Funds" use case due to its expli-
cit inclusion of the "Validate PIN" requirement and its careful handling of
alternate circumstances.

Exercise 7.

https://www.chegg.com/homework-help/systems-analysis-and-design-in-a-changing-world-6th-edition-chapter-5-problem-2pe-solution-9781133713371
https://mygust.com/uploads/BOOK-Systems_analysis_and_design_in_

a_changin.pdf
The initial approach to this use case demonstrates a very well-structured,

simple approach while also managing to incorporate all required process
steps. The related use case "Add new driver," which guarantees a flexible
and versatile method of managing new drivers inside the current policy, is
one notable feature. We can see that the inclusion of some preconditions and
also postconditions was able to ensure a good understanding of the state of
the system both before and after the completion of the use case. To impro-
ve the activity flow, it could be helpful to show a simpler transition from
the clerk’s actions to the system’s reactions. In this case and once again,
ChatGPT was able to offer a better solution if we think in terms of a detai-
led flow of activities, since its solution showed directly the actor’s steps and
the corresponding system responses in separate columns, which generated a
better way of viewing the interaction between the actor and the system, and
at the same time made it simpler to understand. Although the two solutions
show in a good way the use case, with the original solution offering a more
streamlined and concise presentation, the solution generated by ChatGPT
provides a more detailed breakdown of actor-system interactions.

Exercise 8.

https://www.chegg.com/homework-help/systems-analysis-and-design-in-a-changing-world-6th-edition-chapter-5-problem-2tsb-solution-9781133713371

110

https://web.uettaxila.edu.pk/CMS/AUT2010/seSREbs/notes%5CLecture_12%20SRE.pdf
https://web.uettaxila.edu.pk/CMS/AUT2010/seSREbs/notes%5CLecture_12%20SRE.pdf
https://www.chegg.com/homework-help/systems-analysis-and-design-in-a-changing-world-6th-edition-chapter-5-problem-2pe-solution-9781133713371
https://mygust.com/uploads/BOOK-Systems_analysis_and_design_in_a_changin.pdf
https://mygust.com/uploads/BOOK-Systems_analysis_and_design_in_a_changin.pdf
https://www.chegg.com/homework-help/systems-analysis-and-design-in-a-changing-world-6th-edition-chapter-5-problem-2tsb-solution-9781133713371

3.7 – Exercise Portfolio

https://mygust.com/uploads/BOOK-Systems_analysis_and_design_in_
a_changin.pdf

Once again, the original narrative is simple but if we talk in terms of
completeness and good quality, it has nothing missing at all. It is able
to show all the necessary details such as resort information, facilities, and
accommodations. Having said that, it is nevertheless crucial to note that
things could become better. The actor referred to as "Clerk" is first identified;
however, it would be helpful to clarify if this is a reference to a specific role in
the resort management or SBRU system administration. We are also able to
see that the flow of activities could be more detailed. Related to the related
use cases and stakeholders, these were two aspect that were covered by the
solution provided by the AI, offering a more comprehensive knowledge of the
system’s interactions. Additionally, the steps for validating the entered data
were specified explicitly. The generated solution in this case then only differs
from the original one in the sense that it offers more details.

Exercise 9.

https://www.usability.gov/how-to-and-tools/methods/use-cases.html#:
~:text=A%20use%20case%20is%20a,when%20that%20goal%20is%20fulfilled.

There are some things that are alike between both solutions related to the
main activities of doing laundry, like for example sorting, washing, drying,
folding, and ironing. ChatGPT´s method, grouped related tasks under a
generic flow of events and arranges alternate flows for particular cases, pro-
viding a more succinct and ordered presentation. ChatGPT´s version also
addressed the importance of using a stakeholder named "Housekeeper" in or-
der to better conform to accepted use case modeling practices. A complete
understanding can be gained from the original solution’s detailed analysis of
alternate flows and exceptions, but a high-level use case description may not
require such granularity. The new provided approach aimed for clarity while
keeping essential information for clear understanding and communication.

Exercise 10.

https://www.chegg.com/homework-help/systems-analysis-and-design-in-a-changing-world-6th-edition-chapter-5-problem-1pe-solution-9781133713371
https://mygust.com/uploads/BOOK-Systems_analysis_and_design_in_

a_changin.pdf
Between the structure of both narratives we may find just few differences

even though that the solution from the AI showcases a better description of

111

https://mygust.com/uploads/BOOK-Systems_analysis_and_design_in_a_changin.pdf
https://mygust.com/uploads/BOOK-Systems_analysis_and_design_in_a_changin.pdf
https://www.usability.gov/how-to-and-tools/methods/use-cases.html#:~:text=A%20use%20case%20is%20a,when%20that%20goal%20is%20fulfilled.
https://www.usability.gov/how-to-and-tools/methods/use-cases.html#:~:text=A%20use%20case%20is%20a,when%20that%20goal%20is%20fulfilled.
https://www.chegg.com/homework-help/systems-analysis-and-design-in-a-changing-world-6th-edition-chapter-5-problem-1pe-solution-9781133713371
https://mygust.com/uploads/BOOK-Systems_analysis_and_design_in_a_changin.pdf
https://mygust.com/uploads/BOOK-Systems_analysis_and_design_in_a_changin.pdf

3 – Methodology

the process, by dividing in a better way the actions between actor and sy-
stem. The updated solution also incorporates particular system interactions,
such prompts, automatic updates, and validations, giving a more thorough
understanding of the system’s function in the use case. By taking into ac-
count probable unusual events, the provision of alternative scenarios, which
specifically address credit limit concerns and missing item prices, improves
the use case’s robustness. Overall, the method is still explained in a clear
and comprehensive manner in the updated solution, which makes it more
detailed and informative.

112

Capitolo 4

Results

4.1 Analysis of Use Case Diagram Exercises
4.1.1 Actors Identification
Regarding the identification of actors, an Excel table was created to analyze
the accuracy of actor identification in the diagrams generated by ChatGPT.
The table includes the following columns:

• Exercise: Lists the number of each exercise (total of 20 exercises).

• Number of Necessary Actors: Indicates the number of necessary actors
involved in each exercise.

• Number of Correctly Identified Actors: Shows the count of correctly
identified actors in the diagrams generated by ChatGPT.

• % of Correctly Identified Actors: Presents the percentage of correctly
identified actors out of the total necessary actors for each exercise.

• Number of Wrongly Identified Actors: Displays the count of wrongly
identified actors in the diagrams.

It’s important to note that the number of correctly identified actors and the
number of wrongly identified actors are not directly correlated. For instance,
an exercise may require 2 necessary actors, but ChatGPT may identify extra
actors incorrectly.

The analysis reveals that, on average, each exercise contains approximately
2.85 necessary actors. ChatGPT identified an average of 2.55 correct actors

113

4 – Results

per exercise, indicating a nearly 90% accuracy rate in actor identification
across all exercises. On average, there were 0.3 wrongly identified actors
per exercise, totaling to 20 exercises. Overall, these findings suggest that
ChatGPT’s capabilities in identifying actors are relatively satisfactory.

Figura 4.1. Actors Identification.

4.1.2 Use Cases Identification
Regarding the identification of Use Cases, an Excel table was constructed to
evaluate the accuracy of use case identification in the diagrams generated by
ChatGPT. The table includes the following columns:

• Exercise: Lists the number of each exercise (total of 20 exercises).

• Number of Necessary Use Cases: Indicates the number of necessary use
cases involved in each exercise.

• Number of Correctly Identified Use Cases: Displays the count of correc-
tly identified use cases in the diagrams generated by ChatGPT.

• % of Correctly Identified Use Cases: Presents the percentage of correctly
identified use cases out of the total necessary use cases for each exercise.

114

4.1 – Analysis of Use Case Diagram Exercises

• Number of Wrongly Identified Use Cases: Specifies the count of wrongly
identified use cases in the diagrams.

Similar to the identification of actors, the number of correctly identified
use cases and the number of wrongly identified use cases are not direc-
tly correlated due to potential inclusion of extra or missing use cases by
ChatGPT.

The analysis indicates that, on average, each exercise contains approxima-
tely 6.7 necessary use cases. ChatGPT identified an average of 5.4 correct
use cases per exercise, representing an approximate 85% accuracy rate in use
case identification across all exercises. On average, there were 0.75 wron-
gly identified use cases per exercise, totaling to 20 exercises. Overall, while
ChatGPT’s capabilities in identifying use cases are relatively satisfactory,
they were slightly less accurate compared to the identification of actors.

Figura 4.2. Use Case Identification.

4.1.3 Associations Identification
To assess the identification of associations in the generated use case diagrams,
an Excel table was created with the following columns:

115

4 – Results

• Exercise: Lists the number of each exercise (total of 20 exercises).

• Number of Necessary "Extend" Associations: Indicates the number of
necessary "extend" type associations involved in each exercise.

• Number of Necessary "Include" Associations: Specifies the number of
necessary "include" type associations involved in each exercise.

• % of Missing "Extend" Associations: Presents the percentage of missing
identified "extend" associations by ChatGPT.

• % of Missing "Include" Associations: Displays the percentage of missing
identified "include" associations by ChatGPT.

Figura 4.3. Associations Identification.

The analysis of associations reveals that, on average, each exercise contains
0.35 necessary "extend" associations and 0.4 necessary "include" associations.
These averages are notably low, indicating that the investigation’s capability
to study the accuracy of ChatGPT in identifying "extend" associations is
limited.

However, further examination shows that 100% of the "extend" associa-
tions were missing in the diagrams generated by ChatGPT. This suggests a

116

4.1 – Analysis of Use Case Diagram Exercises

significant deficiency in ChatGPT’s capability to identify "extend" associa-
tions, as only 4 out of 20 exercises contained "extend" associations, and in
all of these exercises, the "include" associations were missing. Notably, the
average for missing "extend" associations was calculated based only on the 4
exercises containing such associations, not across all 20 exercises.

Regarding missing "include" associations, the analysis shows an average of
58% across the exercises where such associations were present. While this
percentage is relatively better than that of missing "extend" associations, it
is still concerning.

It can be stated that ChatGPT’s capabilities in identifying associations,
both "extend" and "include" types, appear to be weak. This suggests that
users relying only on ChatGPT to generate use case diagrams should be cau-
tious, especially regarding the completeness of necessary associations. Basic
users, without much expertise in developing use case diagrams, should not
solely rely on the diagrams generated by ChatGPT as they may lack crucial
associations. Advanced users may be better equipped to detect and correct
missing associations, thereby mitigating this issue to some extent.

4.1.4 Number of Necessary Prompts Evaluation

Figura 4.4. Prompts Evaluation.

117

4 – Results

To evaluate the effectiveness of ChatGPT in generating correct outcomes,
the number of necessary prompts for each exercise was recorded in an Excel
table. This table consisted of two columns: one listing the exercise numbers
from 1 to 20, and the other indicating the corresponding number of prompts
required.

The results revealed that the range of prompts required varied from a
minimum of 1 prompt to a maximum of 5 prompts across the 20 exercises.
The average number of prompts needed was calculated to be 2.2 prompts per
exercise.

These findings suggest that while some exercises were effectively solved
with minimal prompts, others required multiple iterations before a satisfacto-
ry outcome was achieved. In the subsequent sections, we will explore if there
is any correlation between the number of necessary prompts and the accuracy
of ChatGPT’s outcomes in identifying actors, use cases, and associations.

4.2 Analysis of Use Case Narrative Exercises
To evaluate the quality of the use case narrative exercises, a "Pass/Fail" test
inspired by Alistair Cockburn’s methodology in "Writing Effective Use Cases"
was conducted. This test consisted of 22 questions aimed at assessing the
content of each use case narrative. These questions were selected based on
their relevance and ease of evaluation.

A table was created with 11 columns, where the first column listed the
question numbers and the subsequent columns represented each of the 10 use
case narrative exercises (Exercise 1 to Exercise 10). Each cell in the table
was filled with either "YES" or "NO" to indicate whether the corresponding
exercise answered the question satisfactorily.

Following this evaluation, another table was generated, featuring four co-
lumns: "Exercise" (numbered 1 to 10), "Passed" (indicating whether the exer-
cise passed the quality test), "%" (the percentage of "YES" responses out of
the 22 questions), and "Score (max:22)" (the total score out of a maximum
of 22 questions).

A threshold of 60% was set to determine whether an exercise passed the
quality test. If at least 60% of the questions were answered with "YES", the
exercise was considered to have passed.

Additionally, a histogram was constructed to visually represent the quan-
tity of questions answered with "YES" for each exercise.

118

4.2 – Analysis of Use Case Narrative Exercises

Figura 4.5. 22 Question Analysis.

Figura 4.6. Pass/Fail Test.

The results revealed that all ten exercises were able to pass the quality
test, with an overall average percentage of 93% and a score of 20.4 out of

119

4 – Results

22. This indicates ChatGPT’s high proficiency in generating high-quality
use case narratives.

Figura 4.7. Rseults Histogram.

Having said all the above, we can say that given the subjective nature
of use case narrative writing and the variability in templates and formats,
leveraging AI tools like ChatGPT can significantly improve efficiency and
ensure high-quality outcomes, as demonstrated by the positive results of this
investigation.

4.2.1 Estimation of Exercise Difficulty

To provide a comprehensive assessment of the difficulty of each exercise, a
table was constructed with six columns. The first column, labeled "Exerci-
se," listed the numbers of the 20 exercises. The subsequent columns included
"Number of Necessary Actors," "Number of Necessary Use Cases," "Number
of Necessary Extend Associations," and "Number of Necessary Include Asso-
ciations," providing quantitative data regarding the elements involved in each
exercise. Finally, the "Mean Difficulty Score (Max: 5)" column presented the
average difficulty score assigned to each exercise, ranging from 1 (very easy)
to 5 (very difficult).

120

4.2 – Analysis of Use Case Narrative Exercises

Figura 4.8. Estimation of Exercise Difficulty.

To generate the values for the "Mean Difficulty Score," an expert assess-
ment involving three evaluators, including myself, was conducted. Each eva-
luator assessed the difficulty of the exercises based on the number of necessary
actors, use cases, and associations. After each evaluator assigned scores to
the exercises, the mean score was calculated, resulting in the final difficulty
score for each exercise.

Furthermore, a table was created to display the scores assigned by each
evaluator to every exercise, allowing for a detailed comparison of individual
assessments. Additionally, this table included a column labeled "FK Ease
Score (Max: 100)," which reported the difficulty of the textual descriptions
of each exercise using the Flesch-Kincaid grade level tool. This tool evaluates
the readability of texts based on factors such as sentence length and syllable
count, providing an ease score ranging from 1 to 100. A higher ease score
indicates easier readability, whereas a lower score suggests greater difficulty.

Upon analysis, the results indicated that the mean difficulty score for the
20 exercises was 3.05 out of 5, reflecting an average level of difficulty. The
average scores given by each of the three evaluators were notably similar,
demonstrating a high level of agreement among the experts. Specifically, the
mean scores assigned by the evaluators were 3.1, 3.05, and 3, respectively.

121

4 – Results

Figura 4.9. Estimation of Exercise Difficulty.

Regarding the difficulty of the textual descriptions of the exercises, the
average FK ease score was 42.3 out of 100. This suggests that, on average,
the textual descriptions were moderately difficult to understand and required
a reading grade level equivalent to that of a college student.

In summary, the evaluation of exercise difficulty revealed a moderate level
of challenge for the exercises under investigation, supported by consistent
assessments from the multiple evaluators. Additionally, the textual descrip-
tions were found to be moderately difficult, underscoring the need for readers
to possess a certain level of literacy to comprehend the content effectively.

4.3 Correlation Analysis
One of the objectives that we tried to achieve for this work was identify or
just analyze the relationship between the different variables that may affect
the investigation, als by influencing the way in which Use Case Diagrams
may be generated by the AI. Having this as a goal, I established some corre-
lation analysis that were investigated and ahown more deeply in the fllowing
paragraphs, that somehow allows to understand the relationships between

122

4.3 – Correlation Analysis

the factors. 4 different correlations were studied, with respect to the factors
that contribute to the accuracy and efficiency of ChatGPT’s output.

4.3.1 Correlation with FK Ease Score
The FK ease score was on important factor from the results of this inve-
stigation, given the importance of textual description for our study. That’s
why the first correlation analysis undertaken investigated the associations
related to the Flesch-Kincaid (FK) Ease Score, which, as mentioned also
before, measures the readability of textual descriptions. To this aim, three
distinct tables were constructed, which showed the FK Ease Score with a dif-
ferent variable: the percentage of correctly identified actors, the percentage
of correctly identified use cases, and the number of prompts required for each
exercise. When the Pearson correlation factor was calculated, the result for
each of the pair of data described a positive but low correlation.

Figura 4.10. Correlation of FK Score and % of Correctly Identified Actors.

To be more specific, the correlation between the FK Ease Score and the
percentage of correctly identified actors was found to be 16%, indicating a
weak positive relationship. Something very similar happened with the corre-
lation between the FK Ease Score and the percentage of correctly identified

123

4 – Results

Figura 4.11. Correlation of FK Score and % of Correctly Use Cases.

Figura 4.12. Correlation of FK Score and Number of Prompts.

124

4.3 – Correlation Analysis

use cases was 15.3%, showing a comparable level of correlation. Conversely,
the correlation between the number of prompts and the FK Ease Score was
even lower at 7.8%, which suuggests us somehow that the reading difficulty of
an exercise does not neccessairly have a big impact to the number of prompts
required to generate an accurate diagram.

4.3.2 Correlation with Exercise Difficulty
On the other hand, and also considering it a very important subject of stu-
dy, the second type of correlation analysis undertaken was focused on the
relationship between exercise difficulty, as estimated by the three evaluators,
and various variables. To this aim, again, three separate tables were created,
each showing the mean difficulty score for an exercise with one of the follo-
wing: the percentage of correctly identified actors, the percentage of correctly
identified use cases, and the number of prompts. Surprisingly, two negative
correlations emerged from this analysis.

Figura 4.13. Correlation with % of Correctly Identified Actors.

Firstly, the correlation between the mean difficulty score and the percen-
tage of correctly identified actors was negative (-25%), suggesting that as

125

4 – Results

exercise difficulty increased, ChatGPT’s accuracy in identifying actors de-
creased, which is of course, a coherent result. Secondly, the correlation bet-
ween the mean difficulty score and the percentage of correctly identified use
cases was notably negative (-75%), which one again shows an expected result,
meaning that when the exercise difficulty is higher, it is related to the lower
accuracy of ChatGPT in this field. Conversely, a positive correlation of 37%
was observed between the mean difficulty score and the number of necessary
prompts, indicating that more challenging exercises tended to require addi-
tional prompts for satisfactory outcomes. This was also an expected result
from a common-sense point of view.

These results highlight the complexity of the relationship between exercise
difficulty and the variables influencing ChatGPT’s performance, but at the
same time allows the user to understand ChatGPT’s expected outcomes with
respect to the exercise difficulty, taking into account the number of required
actors, use cases and associations.

Figura 4.14. Correlation with % of Correctly Identified Use Cases.

126

4.3 – Correlation Analysis

Figura 4.15. Correlation with Number of Prompts.

4.3.3 Correlations Related to Number of Prompts and
ChatGPT’s Accuracy

Moreover, another question that the reader may have regarding the investi-
gation is related to the quality and accuracy of ChatGPT, related to the
number of necessary prompts that were necessary for each exercise. Akcnow-
lidging this, two additional correlation analyses were conducted to in order to
understant such relationship between the number of prompts and ChatGP-
T’s accuracy in identifying actors and use cases. For this, separate tables
were created to pair the number of prompts required for each exercise with
the percentage of correctly identified actors and the percentage of correctly
identified use cases, respectively. The results from the analysis were very
interesting to analyze and revealed important insights into the interaction
between prompt usage and ChatGPT’s performance.

In the correlation analysis between the number of prompts and the per-
centage of correctly identified actors, a correlation of approximately 20% was
observed. This result shows that in fact there is not such a strong correla-
tion between the number of prompts provided and the accuracy of ChatGPT
in identifying correct actors. This modest correlation was very important

127

4 – Results

Figura 4.16. Correlation between Number of Prompts and % of Cor-
rectly Identified Actors.

Figura 4.17. Correlation between Number of Prompts and % of Cor-
rectly Identified Use Cases.

128

4.3 – Correlation Analysis

and notable, since it contradicts the assumption that one could suppose,
that more prompts necessarily lead to better outcomes, indicating a nuanced
relationship between prompt usage and accuracy.

Continuing with the correlation analysis, the the results furthermore also
revealed that between the number of prompts and the percentage of correctly
identified use cases , there was incredibly a negative correlation of -9%. This
shocking and unexpected result suggests us that there is an inverse relation-
ship between prompt usage and the accuracy of identifying use cases. This
result could be possibly understod subject to further analysis if it is prooved
that exercises that require more prompts tend to be more complex, leading
to decreased accuracy in identifying use cases despite additional input.

4.3.4 Correlations Related to Number of Prompts and
Number of Necessary Actors/UC/Associations

Another interesting insight that I wanted to explore in order to have a better
understanding of the study, was to investigate if there existed correlations
between the number of necessary prompts, and the number of necessary
Use Cases, actors or associations. To this extent, in a deeper exploration
of the relationship between prompt usage and the complexity of exercises,
three additional correlation analyses were realized. These analyses paired
the number of prompts with the number of necessary actors, use cases, and
associations for each exercise, respectively.

Regarding the correlation between the number of prompts and the number
of necessary actors, the results from analysis showed a positive correlation
of 30%, which suggests us that the exercises whic require more actors are
tending also also to need more prompts in order to achieve better outcomes.
It is very important to highlight this, since it als gives an insight regarding
the importance of providing adequate input to ChatGPT when dealing with
exercises that involve numerous actors.

Surprisingly, the correlation between the number of prompts and the num-
ber of necessary use cases yielded a slightly negative correlation of -1.7%,
which is a very unexpected result, but at the same time very valuable, which
suggests that exercises requiring fewer use cases may paradoxically require
more prompts to achieve accurate diagrams, which forsure is not something
expected.

Finally, the correlation between the number of prompts and the number
of necessary associations upshoed us a correlation which was stroner and
expected, of 43%, which reveals the very important role of associations in

129

4 – Results

Figura 4.18. Correlation between Number of Prompts and Number
of Necessary Actors.

Figura 4.19. Correlation between Number of Prompts and Number
of Necessary Use Cases.

130

4.4 – Discussion and Interpretation

Figura 4.20. Correlation between Number of Prompts and Number of
Necessary Associations.

determining the need for additional prompts. From this findings, we are
able to state that ChatGPT showed a limited proficiency in identifying and
incorporating associations often necessitated multiple prompts to ensure that
they were finally included in the diagram.

These correlation analyses offer valuable insights into the nuanced relation-
ship between prompt usage, exercise complexity, and ChatGPT’s performan-
ce in generating accurate use case diagrams. Understanding these dynamics
can inform strategies for optimizing the interaction with ChatGPT to achieve
desired outcomes effectively.

4.4 Discussion and Interpretation

The results presented in the preceding sections focused on the capabilities
and limitations of using ChatGPT for generating use case diagrams and
narratives. This discussion aims to delve deeper into the implications of
these findings and provide insights into the effectiveness of leveraging AI in
software development tasks.

131

4 – Results

4.4.1 ChatGPT’s Proficiency in Generating Use Case
Diagrams

ChatGPT demonstrated to have a good proficiency in identifying actors and
use cases across the exercises analyzed. The analysis revealed that, on avera-
ge, ChatGPT correctly identified approximately 90% of necessary actors and
85% of necessary use cases. These results underscore the AI’s ability to com-
prehend textual descriptions and translate them into structured diagrams
effectively.

However, challenges emerged in accurately identifying associations, parti-
cularly "extend" relationships. The analysis showed a considerable deficiency
in identifying "extend" associations, with all exercises containing such rela-
tionships showing missing associations in the generated diagrams. This limi-
tation highlights a gap in ChatGPT’s understanding of more complex UML
structures, showing the need of further investigation and improvement.

The correlation analysis provided valuable insights into the factors influen-
cing ChatGPT’s performance. While there was a modest correlation between
exercise difficulty and the accuracy of actor identification, unexpected trends
appeared in the correlation between prompt usage and accuracy. The findings
suggest that the relationship between prompt usage, exercise complexity, and
diagram accuracy is very variable, requiring careful consideration in practice.

4.4.2 Quality Evaluation of Use Case Narratives

Regarding Use Case Narratives exercises and their quality, one can say that
all of them were able to show excellent results, with all exercises passing the
quality evaluation test. The level of proficiency from ChatGPT was very
high in generating coherent and comprehensive narratives, and this is clearly
evidenced by the average score of 93% across exercises, which underscores
that the AI can extract very well the input from use case scenarios and
generate narratives which are of high quality which are able to help users
with software development tasks.

Moreover, this correlation analysis also deeped into the relationship bet-
ween exercise difficulty, readability, and narrative quality. Something im-
portant to highlight and that was actually not a surprise, is the negative
correlation observed between exercise difficulty and the accuracy of identi-
fying actors and use cases. Actually, this result was expected because it

132

4.4 – Discussion and Interpretation

suggests that ChatGPT can have higher difficulty in providing a better qua-
lity narrative for more challenging exercises, and this could be potentially
due to the richer contextual information provided.

4.4.3 Implications and Recommendations
If we analyze the results and findings from this section, we can understand
that they may have several implications for any person who cud possibly
make use of any LLM for the automation of diagrams or narratives, special-
ly for practitioners and researchers in the field of software engineering and
natural language processing. This is sustained from the fact that the results
are clearly able to show the potential of AI, specifically ChatGPT, to be a
valuable tool for automating certain aspects of software development, such as
generating use case diagrams and narratives which are the subject of study.

Even though the investigation show this valuable insight, I think it is hi-
ghly recommended to understand the limitations of the ChatGPT at least on
the current days, in the case when more complex UML structures are given,
and particularly regarding to the inclusion of associations. Future research
related to this study should focus on improving the LLM’s comprehension
of more complex software engineering concepts to improve the quality and
completeness of the output generated. This is why it is very important to
consider as a user to have at least some knowledge on the field, and not just
to rely on the fact that ChatGPT will be able to help in the development of
tasks. It is very important for the user to be able to at least understand the
quality and completeness of the output generated by the AI. In other words,
while ChatGPT can be really helpful and advantageous in terms of the time
that as a user you could be able to save for the development process, human
oversight and validation remain critical to ensure the quality and integrity of
the final deliverables.

4.4.4 Future Directions
Something that I believe would be very important for the future related to
the investigation, is to try to find new ways in which the AI could be able
to help human beings in developing any kind of software development tasks.
Some ways could be to potentially enhance the actual the models that we
know, or even better, to develop new ones that could be better understanding
software engineering stuff.

133

4 – Results

I think it’s also important the opinion of software related people, like for
example software developers, in understanding if this kind of models are
really able to help them with their work or not, for this, I think it could be
a great idea to carry on surveys or any other way that could let us analyze
the actual help that this kind of models are able to support expert and basic
users in their tasks . The fact of understanding over time how people use
them for their "day a day" life, could probably let us learn more about what
it’s really like to use AI in software development.

4.5 Limitations and Future Work regarding
UCD Exercises

Regarding the Use Case Diagram exercises, the investigation in overall sug-
gests us that ChatGPT is a very capable tool in generating the diagrams,
even though that it clearly demonstrated different levels of accuracy and
completeness in its output. As presented before, some exercises were able to
showcase almost a perfect diagram, while in other cases it failed to generate
a good outcome and in this cases, it was required to prompt more times in
order to generate a refined diagram. It could be said that when there were
textual descriptions with some implicit information that should be taken into
account, ChatGPT failed to detect it and to include it in the diagram, but
the most important taking is that it was almost never able to detect and
identify the correct associations and include them in the diagrams.

4.5.1 Heterogeneity of Exercise Sources and Difficul-
ties

One big problem was that the exercises that were taken into consideration for
the investigation were gathered from all sorts of different places, so they were
not all the same in terms of their difficulty and detail. This mix of exercises
makes the study more complete, but it also makes it harder to compare them
directly. Future studies might work better if the exercises chosen for the the
analysis are all about the same difficulty or from the same source, so it’s
easier to compare them.

134

4.5 – Limitations and Future Work regarding UCD Exercises

4.5.2 Limited Association Coverage
One of the issues that I discovered after evaluating completely all of the exer-
cises that I chose for the study, was that very few exercises had associations,
and most of them didn’t contain even one necessary association. This can
be signalled as something to take into account, since it makes it hard to
see how well ChatGPT can find and show associations. To this extent, it
would be important for future studies to include more exercises with lots of
associations to better test ChatGPT’s skills in this area.

4.5.3 Dependency on ChatGPT
Another thing to highlight from our study is the fact that we only used
ChatGPT an not any other LLM for the generation of the outcomes needed
for our diagrams. This is important also, since even though that ChatGPT
is one of the most known LLM now a days, other models could have had
different results that would have been also good to study and that could
change the results from the investigation. Of course this was not done because
of lack of time to perform the same tests with many different models, but
it could be a good idea for future investigations to perform this kind of
analysis also with other models in order to test them, also, because software
technology is very dynamic and we do not know the changes that this models
may have in the medium to long term.

4.5.4 FK Ease Score Precision
Using the Flesch-Kincaid (FK) Ease Score to measure how hard the text
is can be a bit off. This score just looks at sentence length and syllables,
missing other things that make text complex. Future studies could use more
detailed measures to better judge text difficulty.

4.5.5 Subjectivity in Exercise Difficulty Assessment
Another important thing that could be seen as a limitation is the fact that
even if the 3 evaluators which provided a difficulty level for each exercise were
supposed to have knowledge enough to show a reliable difficulty level, this is
also a little subjective, in terms of the evaluation, because each person can
consider different factors in order to give a score, and this clearly is something
that can affect how results are interpreted. So, regarding this evaluation, even
though in overall one could say that they are useful in order to have a better

135

4 – Results

assessment of the study, future research could standardize the evaluation
process or use multiple evaluators to make the difficulty assessments more
reliable.

4.5.6 Evaluation of Other Diagram Types
In order not to generate confusions to the reader regarding the models reliabi-
lity and usefulness in helping users with the automatization of requirements,
it is highly important to remind that this study only looked at generating
UCDs, meaning that one potential thing to do for future research could also
see how ChatGPT performs with other diagram types, like class diagrams or
sequence diagrams in order to give a better understanding of its strengths
and weaknesses in creating different diagrams.

4.6 Limitations and Future Work regarding
UCN Exercises

The review of the use case narrative exercises showed both strengths and
areas for improvement. Each exercise was checked for clarity, completeness,
and how well it matched with standard use case modeling practices. Some
key points from the study are highlighted below.

4.6.1 Consistency and Completeness
Most of the exercises chosen for the investigation aimed to be consistent
and complete, describing the important steps and interactions in each use
case. Common elements like actors, triggering events, preconditions, and
postconditions were always included, helping to understand the system’s
behavior.

4.6.2 Level of Detail
There were differences in how detailed the provided solutions and ChatGPT’s
solutions were. Some had detailed breakdowns of activities and alternative
scenarios, while others were more brief. The right balance between detail
and brevity depended on each exercise’s needs.

136

4.6 – Limitations and Future Work regarding UCN Exercises

4.6.3 Structural Clarity
The clarity of structure varied. Some solutions had a clear and organized
flow of activities, while others could be clearer. Adding related use cases,
stakeholders, and clear actor-system interactions made the narratives easier
to understand.

4.6.4 Integration with Use Case Diagrams
A big issue was the lack of alignment between the use case narratives and their
diagrams. This disconnect made it hard to evaluate the exercises as a whole,
as differences between the text and diagrams hindered the full assessment of
system requirements.

4.6.5 Recommendations for Improvement
Alignment with Use Case Diagrams

A mentioned before in other sections, and as presented, not all of the use
case narrative exercises selected for study matched with the exercises about
Use Case Diagrams, which putted a limitation in the overall assessment of
the investigation, since other areas for analysis and for study could have been
approached. To this extent, future exercises should make sure the use case
narratives match their diagrams in order to help understanding in a better
way system requirements and interactions.

Clarification of Roles and Responsibilities

Clearly defining actor roles and their responsibilities would help in under-
standing stakeholder interactions and system behavior better.

Enhanced Detailing

Finding the right balance between brevity and detail is key. Exercises should
give enough detail to capture the system’s behavior without being too wordy.

The evaluation showed the importance of clarity, completeness, and mat-
ching with standard modeling practices. By fixing the areas needing improve-
ment and making sure text descriptions match the diagrams, future exercises
can better convey system requirements and interactions

137

138

Capitolo 5

Conclusion and Future
Work
The investigation tried to show the reader that for the software development
process, the available tools and methods that we have at the reach of our
hands, can be super important for human users to make things run smoothly
and using resources wisely to take better profit of time, which is a limited
resource that we should try to allocate in the best possible way. Use Case
Diagrams and Use Case Narratives are very important parts of this, helping
with gathering requirements, designing systems, and estimating work. These
diagrams and narratives show how the system works and how users interact
with it, which affects how successful and cost-effective software projects are.

As we know that Large Language Models now a days are very popular and
highly utilized by human for many different kind of activities, in our specific
case, we wanted to prove the capability and possibility of making use of Large
Language Model, and in this specific case, ChatGPT, in automating Use Case
Diagrams and Narratives. The main goal was to see if these models could
save time and make human users more productive in software development.

The evaluation of the exercises and the analysis from the results of the
outcomes from ChatGPT showcased both strengths and weaknesses in using
LLMs for this task. ChatGPT was good at creating clear representations
of system functions, but there were differences compared to those made by
people. These differences show that human review and tweaking are still
needed to make sure everything is accurate and complete.

The study also highlighted the partnership between LLMs and humans
in software development. The important finding from here is mainly that
even if LLMs can of course, generate initial diagrams and narratives much

139

5 – Conclusion and Future Work

faster than a human user, the verification and knowledge about the area
from human users are essential for refining and validating these outputs.
Using LLMs in the development process can speed things up, helping with
requirements and design work.

The benefits go beyond just saving time. Quick creation of Use Case Dia-
grams and Narratives can help with estimating the effort needed for software
projects. Also, if we are able to have diagrams that showcase more quality
in terms of correctness and completeness, it could really help in planning
resources and timelines better, reducing uncertainties and risks in project
planning.

To close up, this investigation has helped to show that the use of large
language models by human beings is extremely helpful in the automation
of the diagrams and narratives which were subject of study , but their real
value comes from working together with human experts. What we are trying
to say with this is that the real work should be done by the humans. We,
as humans, must be extremely cautious about the use of these models, and
most of all, we must understand that we dominate them, we instruct them,
and they are just a tool to assist us. By using LLMs as tools to assist,
software development teams can get the advantages of automation while
keeping the deep understanding and creativity that humans bring. This
teamwork approach can lead to more efficient, innovative, and successful
software development.

140

Bibliografia

[1] A. Cockburn, Y. 2000. Writing effective use cases, Addison-Wesley
Proffessional.

[2] K. Lano, Y. 2009. UML 2 Semantics and Applications., John Wiley and
Sons.

[3] K. Bittner e I. Spence, Y. 2003. Use Case Modeling, Addison-Wesley
Professional.

[4] Elizabeth Larson, Cbap, Pmi-Pba, 2021. A PM#&8217;s Gui-
de to Use Cases Part 3: Use Case Narratives. Available at:
https://www.watermarklearning.com/blog/a-pms-guide-to-use-cases-
part-3/.

[5] S. Shendall & A. Strohmeier, Y. 2001. Guide to Use Cases Part 3: Use Ca-
se Narratives. Available at: https://www.watermarklearning.com/blog/a-
pms-guide-to-use-cases-part-3/.

[6] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard, Y. 1992.
Object-Oriented Software Engineering: A Use Case Driven Approach,
Addison-Wesley.

[7] A. Sharma & N. Chaudhary, Y. 2023. Prediction of Software Effort
by Using Non-Linear Power Regression for Heterogeneous Projec-
ts Based on Use case Points and Lines of code, Elsevier. Available
at:https://www.sciencedirect.com/science/article/pii/S1877050923001382

[8] Y. Mahmood & N. Kama & A. Azmi, Y. 2019. A syste-
matic review of studies on use case points and expert-based
estimation of software development effort, Wiley. Available at:
https://onlinelibrary.wiley.com/doi/epdf/10.1002/smr.2245

[9] A. Effendi & R. Setiawan & Z. Erlisa Rasjid, Y. 2019. Ad-
justment Factor for Use Case Point Software Effort Estimation
(Study Case: Student Desk Portal) , Elsevier. Available at:
https://www.sciencedirect.com/science/article/pii/S1877050919311342

141

Bibliografia

[10] M.Ochodek & J. Nawrocki & K. Kwarciak, Y. 2010. Simplifying
effort estimation based on Use Case Points, Elsevier. Available at:
https://www.sciencedirect.com/science/article/pii/S095058491000176X

[11] He, H. Y. 2023. Robotgpt: from chatgpt to robot intelligence..
https://doi.org/10.36227/techrxiv.22569247

[12] Rana, S. Y. 2023. Ai and gpt for management scholars and practi-
tioners: guidelines and implications. FIIB Business Review, 12(1), 7-9.
https://doi.org/10.1177/23197145231161408

[13] L.Fan & L.Li & Z.Ma & S.Lee & H.Yu & L. Hemphill. Y. 2023. A
Bibliometric Review of Large Language Models Research from 2017 to
2023. School of Information , University of Michigan, Ann Arbor,MI.

[14] Wayne Xin Zhao,Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yu-
peng Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong,
Yi fan Du, Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,
Rui yang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian Yun
Nieand Ji-Rong Wen. Y. 2023. A Survey of Large Language Models.
GitHublink:https://github.com/RUCAIBox/LLMSurvey

[15] Faruk Enes Oguz, Mahmut Nedim Ekersular, Kubilay Muhammed
Sunnetci & Ahmet Alkan. Y. 2023. Can Chat GPT be Utilized in
Scientific and Undergraduate Studies? BIOMEDICAL ENGINEERING
SOCIETY.

[16] Xin Liu, Daniel McDuff, Geza Kovacs, Isaac Galatzer-Levy, Jacob
Sunshine, Jiening Zhan, Ming-Zher Poh, Shun Liao, Paolo Di Achille,
Shwetak Patel. Y. 2023. Large Language Models are Few-Shot Health
Learners.

[17] Laura Ruis ,Akbir Khan, Stella Biderman, Sara Hooker, Tim Rock-
täschel1 , Edward Grefenstette. Y. 2022. LARGE LANGUAGE MO-
DELS ARE NOT ZERO-SHOT COMMUNICATORS. University College
London,EleutherAI, Booz Allen Hamilton.

[18] B.Andersson, M.Bergoltz & P.Johannesson. Y.2002. Natural Language
Processing and Information Systems., 6th International Conference on
Applications of Natural Language to Information Systems, NLDB 2002.
Stockholm, Sweeden, June 2002. Ed. Springer.

[19] E.Metais. Y.2002. Enhancing information systems management with na-
tural language processing techniques. Data & Knowledge Engineering.
Elsevier.

[20] L.Zhou, M.Shaikh & D.Zhang. Y.2007. Natural Language Interface to
Mobile Devices. University of Maryland, Baltimore County.

142

Bibliografia

[21] Akyildiz, I. F. and Guo, H. Y. 2022. Wireless communication research
challenges for extended reality (xr). ITU Journal on Future and Evolving
Technologies. https://doi.org/10.52953/qgkv1321

[22] A.Fan & B.Gokkaya & M.Harman & M.Lyubarskiy & S.Sengupta
& S.Yoo & Jie M.Zhang. Y.2023. Large Language Models for Soft-
ware Engineering: Survey and Open Problems Cornell University,
arXiv:2310.03533v4 [cs.SE] 11 Nov 2023

[23] I.Ozkaya. Y.2023. Application of Large Language Models to Soft-
ware Engineering Tasks: Opportunities, Risks, and Implications. IEEE
SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY

[24] H.Rukshan Piyumadu Dias & C.S.L Vidanapathirana & Rukshala Wee-
rasinghe & M.D Asitha Manupiya & R.M.S.K. Bandara Y.P.H.W. Ra-
nasighe. Y. 2023. Automated use case diagram generator using NLP and
ML. Ithaca: Cornell University Library, arXiv.org

[25] Miranda, Márcio Assis ; Ribeiro, Marcos Guilherme ; Marques-Neto,
Humberto Torres ; Song, Mark Alan Junho. Y.2017. Domain-specific
language for automatic generation of UML models.The Institution of
Engineering and Technology.

[26] https://plantuml.com/faq
[27] John W.Satzinger & Robert B.Jackson & Stephen D.Burd. Y. 2015.

Systems Analysis and Design in a Changing World. Cengage Learning.
[28] https://www.scribd.com/document/18122626/How-to-Use-Use-Cases
[29] https://ar5iv.labs.arxiv.org/html/1401.3069
[30] M. Usman Hadi & Rizwan Qureshi, & Abbas Shah, & Amgad Mu-

neer, & Muhammad Irfan, & Anas Zafar, & M. Bilal Shaikh, & Naveed
Akhtar,& Jia Wu, & S. Mirjalili. Y.2023. A Survey on Large Langua-
ge Models: Applications, Challenges, Limitations, and Practical Usage.
https://doi.org/10.36227/techrxiv.23589741.v2

[31] https://eulynx.eu/storage/simple-file-list/General-
Documents/Modelling-Standard/20220502-Modelling-Standard-
Eu_Doc_30-v4_0-0_A.pdf

143

	Elenco delle tabelle
	Elenco delle figure
	Introduction
	Background
	Use case modeling
	Use Cases in Software Development: A Comprehensive Overview
	Use Cases as Components of Requirements Documents
	What Is a Use Case, and What Is Its Purpose?
	The Multifaceted World of Actors
	Goals, Interactions, and Use Case Diagrams
	The Interplay Between Functional Requirements and Use Cases
	Representation of Use Cases with UML Use Case Diagrams
	Summary Level, User-Goal Level, and Sub-Function

	Use Case Narratives
	Use Case Points Modeling for Effort Estimation
	Application Size Determination
	Contextual Factors
	Calculation of the Points

	Large Language Models (LLMs)
	What's the Deal with Large Language Models (LLMs)?
	How Do They Work?
	LLMs in Action: Applications Across Industries

	The use of LLMs for Information Systems
	Applications of LLMs in Information Systems
	LLMs in Software Development
	Challenges and Considerations

	Methodology
	Introduction to the Methodology
	Selection of Exercises
	ChatGPT Prompting Strategy
	Use of PlantUML
	Automated UCD Generation Process and Feedback Loop
	Integrations of Use Case Narratives
	Exercise Portfolio
	UCD Exercises
	Use Case Narrative Exercises

	Results
	Analysis of Use Case Diagram Exercises
	Actors Identification
	Use Cases Identification
	Associations Identification
	Number of Necessary Prompts Evaluation

	Analysis of Use Case Narrative Exercises
	Estimation of Exercise Difficulty

	Correlation Analysis
	Correlation with FK Ease Score
	Correlation with Exercise Difficulty
	Correlations Related to Number of Prompts and ChatGPT's Accuracy
	Correlations Related to Number of Prompts and Number of Necessary Actors/UC/Associations

	Discussion and Interpretation
	ChatGPT's Proficiency in Generating Use Case Diagrams
	Quality Evaluation of Use Case Narratives
	Implications and Recommendations
	Future Directions

	Limitations and Future Work regarding UCD Exercises
	Heterogeneity of Exercise Sources and Difficulties
	Limited Association Coverage
	Dependency on ChatGPT
	FK Ease Score Precision
	Subjectivity in Exercise Difficulty Assessment
	Evaluation of Other Diagram Types

	Limitations and Future Work regarding UCN Exercises
	Consistency and Completeness
	Level of Detail
	Structural Clarity
	Integration with Use Case Diagrams
	Recommendations for Improvement

	Conclusion and Future Work
	Bibliografia

