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ABSTRACT 

 

Climate change poses severe challenges to human and environmental the 

environment around them. Therefore, it is necessary to act in the energy 

domain especially as a significant source for climate change is greenhouse gas 

emissions. Effective policy measures are imperative for addressing this 

critical issue. A key strategy is the transition from conventional fossil fuels to 

renewable energy sources. This strategy involves a fundamental shift from 

carbon-based electricity to a diversified energy portfolio predominantly 

constituted of renewables, complemented by a minor share of gas. 

The thesis at hand aims to conduct extensive energy system modelling for the 

island of Favignana over three different scenarios, identifying the most 

efficient clustering algorithm to reduce computational demands while 

maintaining precise outcomes. Utilizing an advanced iteration of the Open-

Source energy Modelling System (OSeMOSYS), the energy systems are 

constructed through the clustering method applied to time-series data. This 

approach uses representative days (RDs) for various years, considering 

critical attributes on both demand and supply fronts. These RDs are to be 

clustered using diverse algorithms, with the objective of pinpointing the 

optimal one. 

The scenarios developed characterize distinct operational conditions of the 

island's energy systems, which are sole utilization of photovoltaic systems, 

sole dependence on wind energy, and a mixture of both, alongside the 

incorporation of various storage technologies such as lithium-ion batteries 

and hydrogen storage. The findings underscore that an aggressive 

decarbonization strategy is not only viable but also advantageous, and that 

different clustering algorithms exhibit varying degrees of suitability across 

different scenarios. 
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1. INTRODUCTION 

 

1.1 European Energy Scenarios and Initiatives 

 

As of 2023, the energy scenario in Europe reflects a significant shift towards 

renewable energy, alongside a diversified energy mix. Oil and petroleum 

products remain the largest contributors to the EU's gross available energy 

at 34.5%, followed by natural gas (23.7%) and solid fossil fuels (10.2%). 

Collectively, fossil fuels constitute 68.4% of the EU's energy production. 

However, the share of renewable energy has notably increased, reaching 19% 

of the EU's energy mix in 2021, underscoring the region's commitment to 

sustainable energy [1][2]. In terms of electricity generation, renewables 

accounted for 39% in 2022, with wind and solar surpassing fossil fuels for the 

first time in EU electricity generation during May of that year. This progress 

is aligned with the EU's strategic initiatives such as the European Green Deal 

and its efforts in energy diversification and climate action [3]. The adoption 

of renewable energy varies across EU member states, with Sweden, Finland, 

and Denmark leading in renewable energy shares, whereas other countries 

like Malta and Belgium have lower shares. The final energy consumption in 

the EU in 2021 was marked by a decrease in the use of solid fossil fuels and 

an increase in renewable energy sources, reaching 11.8% of the total energy 

consumption [2]. 

 The European Union (EU) has consolidated its commitment to 

decarbonization and renewable energy through several key policies. The 2030 

Climate & Energy Framework, adopted in 2014, targets a 40% reduction in 

greenhouse gas emissions by 2030, at least a 27% share of renewable energy, 

and a 27% increase in energy efficiency [4]. The European Green Deal, 

launched in 2019, aims to make the EU climate-neutral by 2050, involving a 

comprehensive range of policy initiatives [5]. The greenhouse gas emissions 

are targeted by the EU policies to be reduced to 55% according to the Fit for 

55 Package by 2030[6]. The Renewable Energy Directive (RED II), revised in 

2018, sets binding renewable energy targets, aiming for at least 32% 

renewable energy by 2030 [7]. Additionally, the Energy Efficiency Directive 

(EED), updated in 2018, seeks a 32.5% improvement in energy efficiency by 

2030 [8]. These frameworks collectively signify the EU’s strategy towards a 

sustainable and climate-resilient future. 

 

1.2 Energy and Scenario Modelling 

 

Energy and scenario modelling have become essential tools in shaping our 

understanding and responses to the energy challenges of the future. One of 
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the prominent tools in this field is the Integrated Framework of the 

International Energy Agency's (IEA) Global Energy and Climate Model (GEC 

Model). This model is a principal tool for generating detailed, sector-by-sector, 

and region-by-region long-term scenarios. It incorporates both the World 

Energy Model (WEM), a large-scale simulation model designed to replicate 

how energy market’s function, and the Energy Technology Perspectives (ETP) 

model, a technology-rich bottom-up model. This hybrid approach, combining 

the strengths of both models, is used in the IEA’s comprehensive studies, 

including their Net Zero Roadmap and the World Energy Outlook series [9]. 

The World Energy Outlook 2023, for instance, explores three fully updated 

scenarios that provide a framework for examining the implications of various 

policy choices, investment, and technology trends. These scenarios include 

the Stated Policies Scenario, the Announced Pledges Scenario, and the Net 

Zero Emissions by 2050 Scenario. Each scenario considers different 

assumptions about global economic and population growth, energy, carbon 

and mineral prices, and potential for volatility [10]. Apart from traditional 

modelling frameworks, machine learning is increasingly being recognized for 

its potential in energy projections. With today’s advancement in machine 

learning information and data from already occurred scenarios derived from 

scenario tools can be used to predict and make projections for the future. It's 

particularly effective in handling a variety of drivers that shape the evolution 

of energy systems, providing more refined 'what if' analyses and projections, 

especially over the near term. This approach allows for a more nuanced 

understanding of the real-world phenomena that long-term scenario 

modelling frameworks might overlook [11]. 

There are two main approaches to energy modelling, top-down and bottom-

up. Energy modelling is an essential tool for comprehending and controlling 

energy systems. Top-down models provide a macroeconomic viewpoint by 

concentrating on how more general economic issues affect energy supply and 

demand. They are usually based on economic concepts. Bottom-up models, on 

the other hand, place more emphasis on technical details and provide specifics 

about each energy technology and facility, such as operating costs and 

efficiency curves. These models better reflect the technical and physical 

characteristics of energy systems. Although integrating these two methods 

into hybrid models presents difficulties, it also provides more thorough 

insights. Prominent models in this domain, each with a distinct focus and 

methodology, include EnergyPLAN, TIMES and OSeMOSYS [12]. Energy 

planning tools commonly employ linear programming (LP) or mixed integer 

linear programming (MILP) methods for resolution. Models like TIMES and 

OSeMOSYS utilize an approach that spans multiple years, a strategy that 

effectively addresses limitations inherent in single-year models [13][14]. 

Single-year frameworks often fail to capture key dynamics such as rising 

energy demand over time, the evolving behaviour of renewable energy sources 

(RESs), and technological cost variations. In contrast, multi-year capacity 
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expansion models require an approximation of time series to manage 

computational demands. These models typically divide each year into distinct 

segments based on seasonal, daily, and hourly variations [15]. Increasing the 

number of time slices improves the accuracy of the time series representation, 

but at the expense of a more complex problem.  The correct representation of 

time series is important for scenarios with high-RES penetration and energy 

storage involvement [16]. Use of representative days (RDs) are beneficial 

while considering a multi-year modelling approach as they reduce the number 

of time slices and computational time and still give good results [17]. The 

interconnection of RDs is necessary to accurately model multi-energy systems 

with seasonal storage [18]. In order to couple the RDs different clustering 

algorithms can be used like K-means, K-medoids, K-medians, K-centres etc. 

K-medoids approximates the demand related costs the best while building 

energy systems when compared to the other clustering algorithms [19]. 

 

1.3 Thesis Roadmap 

 

The current situation in Europe regarding the energy Renewable Energy 

Sources (RES) share, as well as the initiatives undertaken to augment them 

and advance towards decarbonization, are comprehensively discussed in 

Chapter 1. This chapter also provides a succinct introduction to energy and 

scenario modelling tools, elucidating their functionalities. Chapter 2 delves 

into the diverse parameters and objectives employed in developing the 

reference energy system for Favignana, emphasizing the island's existing 

energy system and its renewable energy potential. In Chapter 3, the 

framework of the energy modelling tool Osemosys and the functioning of the 

clustering algorithms is discussed. Chapter 4 discusses about the parameters 

considered in the conceptualization of the reference energy system model. 

Finally, Chapters 5 and 6 shows the development of the model and various 

scenarios and elaborates upon the results, respectively. 

 

2. THE ENERGY SYSTEM OF FAVIGNANA 

 

2.1 Island of Favignana 

 

Favignana, the largest island within the Egadi archipelago in the 

Mediterranean Sea, lies off the west coast of Sicily, Italy, encompassing an 

area of 19.8 km². Its topography is predominantly flat, with the notable 

exception of a central hill that bisects the island from north to south. 

Favignana is entirely reliant on imported primary energy. The island's 
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electrical energy requirements are met through a combination of diesel 

generators and renewable energy sources. Notably, Favignana receives an 

average global solar horizontal irradiation of 1,800 kWh/m²/year [20]. 

Additionally, the island experiences average wind speeds ranging from 7 to 

10 m/s at a height of 100 meters [21]. However, due to its designation as a 

protected area, specific regulatory considerations apply. The surrounding 

waters are also designated as a marine protected area, further emphasizing 

the island's ecological significance. 

 

 

Figure 1 Island of Favignana 

 

2.2 Environmental regulations  

 

The Piano Energetico Ambientale della Regione Siciliana (PEARS 2030) is a 

comprehensive energy and environmental plan approved by the Sicilian 

Regional Government with Deliberation No. 67 on February 12, 2022. This 

plan is designed to address and direct both structural and infrastructural 

interventions in the energy field and serves as a reference framework for 

public and private entities undertaking energy initiatives. PEARS 2030 sets 

two main objectives: reducing energy consumption in end uses, particularly 

in the civil-agricultural sector and the transport sector (smart mobility) and 

increasing the share of renewable energy. The goal is to achieve a 68% 

incidence of renewable energy in the total regional energy production by 2030, 

compared to 33% in 2019. This implies tripling renewable energy production 

and halving non-renewable sources by 2030 [22]. As stipulated in the 

ordinance dated December 27, 1991 [23], the area was declared a special 
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conservation zone. Subsequently, in alignment with the European Directive 

92/43/ECC, it was designated as a Special Area of Conservation (SAC) [24]. 

Consequently, Italy is committed to protecting this area through appropriate 

conservation measures. 

According to the Ministerial Decree of 20 October 2017 the Sicilian Region 

has identified the areas considered unsuitable for the installation of 

electricity generation systems using wind sources. The Decree categorizes 

wind power turbines based on their power output into three groups. Turbines 

with a nominal power below 20 kW are classified as EO1, those between 20 

kW and 60 kW as EO2, and those with a nominal power exceeding 60 kW as 

EO3. In this study, the focus is on the EO3 category according to the CETA 

Favignana [25]. The Favignana island is affected by a decidedly extensive 

environmental protection regime, which takes the form of the establishment 

of various ZSC: ITA010004 “Isola di Favignana”. Furthermore, on the 

Archipelago there is an area IBA (IT157) and an area ZPS (ITA010027 

“Arcipelago delle Egadi – area marina e Terrestre”). Based on the 

environmental protection regulatory framework currently in force on the 

Archipelago, the installation of any class of wind turbine is prohibited. 

Furthermore, the stretch of sea affected by the presence of the Egadi 

Archipelago has been recognized as having environmental value through the 

establishment of the Marine Protected Area.  

Through the Piano Nazionale Integrato per l’Energia e il Clima (PNIEC) of 

December 2019, Italy declared how an accelerated process of decarbonisation 

and electrification of consumption with renewable sources would be tested in 

some small non-interconnected islands, including Favignana. In this context, 

the Ministerial Decree of 02/14/2017 set specific objectives for each island to 

cover consumption with renewable sources. The decree aimed to promote the 

modernization of electricity networks to allow the use of more renewable 

sources and the implementation of pilot projects aimed at increasing the use 

of renewables, using storage systems. The Decree promotes the installation 

of RES plants by private individuals, remunerating the production and self-

consumption of electricity with tariff incentives dedicated to the smaller non-

interconnected islands. Certain regulations were ignored because the 

primary objective of decarbonization is to eliminate carbon emissions, a goal 

achievable only with sufficient renewable energy resources. Therefore, any 

existing regulation that may hinder this goal, whether now or in the 

foreseeable future, should be re-evaluated for potential modification. The 

analysis conducted for the for the island of favignana considers the 

fluctuating potential of renewable energy, factoring in both current and 

potentially more rigorous environmental regulations. 

2.3 Energy System of Favignana 
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The island of Favignana is not connected to the national grid and therefore 

the electricity demands of Favignana is met by Società Elettrica di Favignana 

S.p.A. with a diesel power plant of 12 MW installed capacity [26] and 

photovoltaics with an installed capacity of 360.87kW as of June 2021.  

The cumulative energy demand of Favignana for the year 2019 was 

14.865GWh. This demand is divided into three categories according to the bill 

tables.  

a) Residential Demand which accounted for 3.862GWh. 

b) Non-Residential Demand accounted for 1.864GWh. 

c) Activities and Services demand accounted for 9.139GWh. 

There is clear spike in electricity demand during the summer season due to 

use of air conditioners and tourism as shown in Fig.2. 

 

Figure 2 Electricity demand for Favignana 

Potential for future photovoltaics and wind turbine installation 

According to CETA Favignana [25], the suitable rooftop area available for 

photovoltaics is 303,734 m2 which can accommodate total PV panel of 85,622 

m2. The total maximum installed capacity is 16.76 MW with an annual 

energy production of 27.51GWh/year. And there is also mention of 
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Figure 3 Solar Radiation for rooftop mounted PV  

three separate ground mounted photovoltaic plants which can be installed 

with annual energy production of 12-13GWh/year. 

 

Figure 4 Solar Radiation for ground mounted PV 
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The CETA also mentions a suitable area located in the western part of the 

island adopting the relaxation of IBA criteria for wind energy potential. 

 

Figure 5 Suitable wind farm area for Favignana 

A single Vestas V90 model with a nominal power of 3MW was considered 

which has an annual energy production of 8GWh/year. 

Possibilities for energy storage 

Two kinds of energy storage Hydrogen Storage and Lithium-Ion Battery 

storage are considered in this energy system. 

 

3. ENERGY MODELLING FRAMEWORK 

 

3.1 Osemosys Framework 

 

The energy modelling is carried out by the software Osemosys. The Open-

Source Energy Modelling System, is a tool designed for analysing energy 

strategy development at various levels, including local, national, and multi-

regional. It operates as a deterministic, linear optimization framework for 

long-term modelling, focusing on optimizing the net present value cost within 

an energy system [27]. It is a deterministic, linear optimization, long-term 

modelling framework. It is also possible to apply mixed-integer linear 

programming for specific functions. Multiple complex iterations are needed 
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to get to the final solution for such problems and to do these specific solvers 

are used.  As for scenario modelling frameworks, there are several available 

solvers. In the simulations presented here, the primary solver utilized was 

IBM ILOG CPLEX©, known for its implementation of both primal and dual 

simplex optimization algorithms. The time frame for these simulations 

varies, with a time step resolution that's determined by the specific domain 

of application and can cover a period ranging from several years to decades. 

It's worth noting that the finer the time step or the longer the period analysed, 

the greater the computational resources required [28][29]. 

The aim of this analysis is to develop a robust and realistic model of the 

energy system, enabling accurate estimations of the system's behaviour in 

response to applied constraints and the introduction of new technologies. 

The OSeMOSYS framework is structured around sets, parameters, and 

variables. Sets define the model's physical structure, including aspects like 

time frames (YEAR), technologies (TECHNOLOGY), time slices 

(TIMESLICE), fuels (FUEL), and regions (REGION). Parameters are user-

defined numerical inputs that vary across scenarios, including global 

parameters (like Discount Rate), technology costs, storage details, and 

capacity constraints. Variables are the computed outputs, encompassing 

aspects like demands, storage, capacity, activity levels, and costs. This 

structure enables flexible modelling of energy systems under various 

scenarios and conditions.  
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Figure 6 OSeMOSYS workflow 

In the Python-based version of OSeMOSYS, the inputs for both SETS and 

PARAMETERS are organized within an Excel file. This approach facilitates 

the input management for various components of the model, enabling 

efficient and structured data handling for energy system analysis. As we are 

using the representative days approach, clustering algorithms are used to 

compute blocks in parameters which are dependent on time series. 

 

3.2 Clustering algorithms 

 

Clustering algorithms are a type of unsupervised learning technique used to 

group sets of objects based on their similarities and distinct features. Unlike 

supervised learning where the data is labelled, clustering algorithms organize 

data into clusters without pre-labelled responses. These algorithms are 

particularly useful for exploring data structure, identifying patterns, and 
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extracting meaningful information from large datasets. Clustering 

algorithms offer several key benefits, particularly when dealing with large 

datasets. 

• Pattern Recognition: Helps in identifying patterns and structures in 

large datasets that are not immediately apparent. 

• Data Simplification: Clustering simplifies large datasets by grouping 

similar items, making it easier to analyse and interpret the data. 

• Anomaly Detection: It can be used to detect anomalies or outliers in 

the data, which are data points that do not fit well into any cluster. 

• Feature Learning: Clustering can assist in feature learning, where new 

features are derived based on the clustered groups, which can be useful 

for other machine learning tasks. 

• Scalability: Many clustering algorithms are scalable to large datasets, 

although this can depend on the specific algorithm and its 

implementation. 

The different clustering algorithms used in this work to compute the models 

are K-means, K-medians and K-medoids. 

 

K-means 

1. Initialization: The algorithm starts by randomly selecting 'k' points as 

the initial centroids, where 'k' is the number of clusters you want to 

identify. 

2. Assignment Step: Each data point in the dataset is assigned to the 

nearest centroid, and thus clusters are formed. The distance is usually 

calculated using Euclidean distance, but other distance measures can 

also be used. 

3. Update Step: Once all data points are assigned to clusters, the 

centroids of these clusters are recalculated. This is typically done by 

taking the mean of all points in each cluster. 

4. Iteration: Steps 2 and 3 are repeated iteratively until the centroids no 

longer change significantly, which suggests that the clusters are as 

good as they can be given the current dataset. 

5. Convergence: The algorithm stops when the centroids have stabilized, 

and the final clusters are defined. 
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Figure 7 Kmeans representation 

K-medians 

1. Initialization: Similar to K-means, K-medians begins by selecting 'k' 

initial points as the centroids of the clusters. These points can be 

chosen randomly or through a more sophisticated method. 

2. Assignment Step: Each data point in the dataset is assigned to the 

cluster whose median is closest to it. The distance is usually calculated 

using a metric like the Euclidean or Manhattan distance, though the 

latter is more common in K-medians due to its alignment with the 

median concept. 

3. Update Step: The centroid of each cluster is updated instantly after the 

points are assigned to the clusters. In K-medians, this update is done 

by calculating the median of the data points in each cluster, rather 

than the mean (as in K-means). This involves finding the middle value 

(or the average of the two middle values if there is an even number of 

points) for each dimension of the data points in the cluster. 

4. Iteration: The assignment and update steps are repeated iteratively. 

In each iteration, data points may be reassigned to different clusters 

based on the updated medians, and then the medians are recalculated. 

5. Convergence: The process continues until a stable state is reached 

where there are no (or minimal) changes in the cluster assignments or 

median positions between successive iterations. 

 

K-medoids 

1. Initialization: The process starts by selecting 'k' representative objects 

from the dataset as the initial medoids. These are typically chosen 
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randomly, although there are more sophisticated methods for initial 

selection. 

2. Assignment Step: Each data point in the dataset is assigned to the 

nearest medoid. The distance between data points and medoids is 

typically calculated using a distance metric like Euclidean or 

Manhattan distance. This step is similar to the assignment step in K-

means and K-medians. 

3. Update Step: Unlike K-means, which recalculates centroids, or K-

medians, which recalculates medians, K-medoids involves finding a 

new medoid for each cluster. This is done by selecting a point within 

the cluster that minimizes the total distance to all other points in that 

cluster. In simple terms, the most centrally located point within each 

cluster is chosen as the new medoid. 

4. Iteration: The algorithm iteratively performs the assignment and 

update steps. In each iteration, data points may be reassigned to 

different clusters based on the newly determined medoids, and then 

the medoids are updated. 

5. Convergence: The process continues until the medoids no longer 

change, indicating that the clusters are as stable as possible given the 

current dataset. 

 

 

                                     Figure 8 Difference between Kmeans and Kmedoids 

Days with similar time series data for a year of wind and solar capacity 

factors and electrical load profiles are grouped together using clustering 

algorithms. These days are referred to as representative days RDs. A 

sensitivity analysis was made to determine the number of representative 

days that can be used for approximation of the final solution. In this model 
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the comparison of different number of representative days was made with 144 

days instead of 365 representative days due to lack of computational power. 

 

 

 

 

4. MODEL DEFINITION 

4.1 Reference Energy System 

 

 

Figure 9 Reference Energy System of Favignana 

Diesel Power Plant 

The operational life of the diesel power plant is assumed to be 20 years [30]. 

The efficiency of the diesel power plant is assumed to be 45% [31]. The Input 

Activity ratio of the plant is taken as 2.85. The availability factor of the diesel 

power plant 0.91 [32]. 

Wind Turbine 

Vestas V90 turbine is used in this model for the island of Favignana. The 

operational life of the wind turbine is set to be 20 years. The hourly capacity 

factor of the wind turbine when placed in Favignana is taken from the 

Renewables Ninja Website [33]. The availability factor for the PV is 0.95 [34]. 

Photovoltaic Power Plant 

The operational life of the PV is 25 years [35]. The hourly capacity factor of 

the PV when placed in Favignana is taken from the Renewables Ninja 
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Website. The availability factor for the PV is 0.95 [36]. The solar panels 

chosen for the models are of monocrystalline type. 

Lithium-ion Battery Storage  

The operational life of Li-ion battery storage is 10 years [37] and the 

operational life of the Li-ion technology is 30 years [38]. The availability factor 

of the Li-ion technology is 0.92 [39]. With a round trip efficiency of 86% Li-ion 

batteries is an easy to install storage system. The input activity ratio of the 

Li-ion technology is 1.17 [40] 

Hydrogen Storage System 

The operational life of the hydrogen storage is 18 years, and the operational 

life of the electrolyser and fuel cell are 30 and 10 years respectively [41]. The 

availability factor of the hydrogen electrolyser and the fuel cell are both 0.95 

[42]. The input activity ratio of the hydrogen electrolyser is 1.36 [43].  

 

 

4.2 Sets 

 

Region 

It sets the regions to be modelled. In this model the region is defined as 

FAVIGNANA. 

Emission 

This section is used to contain all kinds of emissions that will be produced 

during the operation of different technologies. Carbon -dioxide is the only 

pollutant considered in this model for ease of the simulation. 

 

Fuel 

This section is used to incorporate various technologies associated with fuel 

like energy vectors, energy services or proxies entering or exiting 

technologies. In this model the Fuels are Diesel (DSL), Electricity second line 

(ELEC_SC) and Electricity Final Demand (ELEC_FD). 

Time Period 

It gives indication of how many parts the day is split into, and in which order 

these parts are sorted. In this model the number of time brackets considered 

are 5 and the length of the brackets are in the ratio 6;4;4;4;6. Therefore the 

timeperiod is number of time brackets multiplied by number of days in a year. 

In this case the timeperiod is equal to 1825. 
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Figure 10 Time Period representation with time brackets. 

Time Slice 

It is used to represent the time split of each modelled year. The time slice is 

the product of the number of representative days and number of time 

brackets. In this model the different number of representative days are 

considered, therefore the time slice all varies. 

 

No: of time brackets No: of RDs No: of time slices 

5 6 30 

5 12 60 

5 24 120 

5 36 180 

5 48 240 

5 72 360 

5 144 720 

Table 1 Time Slices 

Mode of Operation 

The number of modes with which a technology functions is defined by the 

mode of operation. Generally, two modes of operation are assigned to the 

storage system when the technology is connected. In this case for Li-ion 

technology there are two modes in which it works “charging” and 

“discharging”. 
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Storage 

It includes storage facilities in the model. In this model the storages involved 

are Lithium-ion battery storage (LI_STO) and hydrogen storage (HYD_STO). 

Technology 

It includes all the subsystems of the energy system whose objective is to 

change a commodity from one form to another, usage of the commodity or 

supply of the commodity itself. In this model the different technologies are for 

import of fossil fuels, electricity generation, conversion, and distribution.  

a) IMP_DSL which defines the import of diesel for the island of Favignana. 

There are no other fossil fuels used in the model of Favignana.  

b) DIESEL_PP is used to refer the diesel power plant being used in 

Favignana. 

c) PV_PP is used to refer the photovoltaic power plant setup. 

d) WIND_PP is used for the wind turbine setup in Favignana. 

e) LI_TECH is used to define the rectifiers and inverters used for the LI-ion 

battery technology. 

f) HYD_ELS is used to refer to the hydrogen electrolyser used in the 

production of hydrogen. 

g) HYD_FC is used for the fuel cells and inverters which are involved in the 

conversion of hydrogen to electricity. 

h) ELEC_DIS is used to define the distribution line which is responsible to 

supply electricity from the generators to the users. 

 

4.3 Parameters 

 

The parameters are divided into different categories, and they are global 

parameters, Demands, Performance, Technology costs, Storage, Capacity 

constraints, Activity constraints, Reserve margin, RE generation target and 

Emissions. 

Global parameters 

a) The YearSplit is the length of a time slice when represented as  a fraction 

of a year. It has been calculated by dividing the length of each time slice in 

hours by the total number of hours in a year. 

b) The DaySplit is the length of a single time bracket of a day as a fraction of 

the year. It is calculated by dividing the length of the time bracket by the 

number of hours in a year. 
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c) The DiscountRate for the region is set as 4% for the region of Favignana 

[44]. The depreciation method is set to sinking fund depreciation. 

Demands 

The energy demand data seen in section 2.3 is used for this parameter. The 

specific demand profile and the accumulated annual demand are calculated 

with the time series data that we have for a year for the specific annual 

demand. The specific annual demand is considered to increase 1.5% per year 

as considering an increase in electrification and tourism. 

Performance  

a) The CapacityToActivityUnit is the factor for used for calculating the 

amount of energy that would be produced when one unit of capacity which is 

equal to 1GW is fully used in one year which is 24h*365=8760h/year. 

Therefore, the activity in one year will be equal to 8760GWh/year. Since we 

are considering all calculations GWh, therefore the conversion factor is 1. So, 

except for IMP_DSL and ELEC_DIS for all the other technologies the value 

for this parameter will be 8760 and for these two the values will be equal to 

1. 

b) The CapacityFactor will give insights of the capacity available for each time 

slice and it’s expressed as a fraction of the total installed capacity. As 

mentioned earlier the capacity factor for PV and Wind are retrieved from 

renewable ninjas [33].  

c) The AvailabilityFactor is the maximum time a technology can run in a year. 

Technology Availability Factor 

DIESEL_PP 0.91 

PV_PP 0.94 

WIND_PP 0.95 

LI_TECH 0.92 

HYD_ELS 0.95 

HYD_FC 0.95 

ELEC_DIS 1.00 

IMP_DSL 1.00 

Table 2 Availability Factor 

d) The OperationalLife is the useful lifetime of a technology expressed in 

years. 

Technology Operational life 

DIESEL_PP 20 

PV_PP 25 

WIND_PP 20 

LI_TECH 30 

HYD_ELS 30 
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HYD_FC 10 

ELEC_DIS 30 

IMP_DSL 1 

Table 3 Operational Life 

e) The ResidualCapacity is the capacity available from before the modelling 

period. This value is calculated with the help of the operational life, installed 

year and the annual capacity to calculate the annual decrease in capacity. 

f) The InputActivityRatio is the ratio of rate of use of a commodity by a 

technology, to the rate of activity. 

g) The OutputActivityRatio is the ratio of rate of commodity output from a 

technology to the rate of activity. 

 

 

Technology Costs 

The technology costs are split into Capital cost, Fixed cost and Variable cost. 

The CapitalCost accounts for the capital investment cost of a technology, per 

unit of capacity. The FixedCost accounts for the Operational and 

Maintenance cost of a technology per unit of capacity and VariableCost 

accounts for the variable O&M cost with different modes of operation. The 

costs of PV panels and wind turbines are assumed to decrease [45] and for the 

rest of the technologies the costs are considered constant. 

 Capital costs Fixed Costs Variable 

Costs 

DIESEL IMPORT 0.00001 k€/MW 0.00001 

k€/MW/y 

1.77 k€/t 

DIESEL PP 1023.5 k€/MW 30.705 

k€/MW/y 

0.019 

k€/MWh 

PV PP 5982023 -3302050 

k€/MW 

8.16 k€/MW/y 0 k€/MWh 

WIND PP 13042023-11182050 

k€/MW 

14.575 

k€/MW/y 

0.003 

k€/MWh 

LI TECH 1596 k€/MW 3.916 k€/MW/y 0.006 

k€/MWh 

HYDROGEN 

ELECTROLYZER 

1691 k€/MW 12.91 k€/MW/y 0.0056 

k€/MWh 

HYDROGEN 

FUEL CELL 

1234.4 k€/MW 11.92 k€/MW/y 0.00044 

k€/MWh 

ELEC_DIS 0.00001 k€/MW 0 k€/MW/y k€/MWh 

Table 4 Costs 
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Storage 

In this model two storage systems are used, Hydrogen Storage and Lithium-

ion battery storage. The Hydrogen storage is connected to the electrolyser 

during the charging phase and to the fuel cell during the discharging phase. 

The Lithium-ion storage uses only one technology which charges during mode 

of operation 1 and discharges during mode of operation 2. The state of charge 

is set to zero for the storages when they are installed. The lifetime of the 

hydrogen storage is considered as 18 years [46] and the lifetime of the 

Lithium-ion storage is considered as 10 years [47]. 

Capacity Constraints 

The capacity constraints are parameters used to set limits to the renewable 

power potentials that can be installed in the region and the investments that 

can be made. In this model we are setting it to invest freely in the installation 

of technology and the installation of renewable energy technology. This is 

done because the primary aim of this project is to study how different 

clustering algorithms affect long term energy modelling. 

Activities constraints 

The activity constraints are similar to capacity constraint in function, it is 

used to limit the activity of renewable energy technology. In this model we 

don’t need to limit the technologies activities. 

Reserve Margin 

The excess installed capacity with respect to the peak demand is called as 

reserve margin. For this model we are not considering any extra reserve 

margin, so the value has been set to 1.  

Renewable generation target 

The renewable energy technologies used in this model are PV panels and wind 

turbines and they are set to 0 and the Diesel power plant is set to 0. This is 

done because when emissions are considered it is better because when 

renewable generation target is applied the system is forced to satisfy the 

electricity demand, but this doesn’t reduce the emissions of the technologies 

which is disconnected from the network. 

Emissions 

In our model we have considered CO2 gas as the only emission. The emissions 

of CO2 are linked with the diesel import. It’s considered to be 3.15 tons of CO2 

per ton of diesel imported [48]. When the limits are set, the system is forced 

to reduce the pollutants and tries to satisfy all the demands using CO2 free 

technology. 
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4.4 Scenario definition 

 

Different scenarios are modelled to test the functionality of the different 

clustering algorithms. In this model we have modelled a total of 3 scenarios. 

The three different scenarios are namely only PV, only Wind and Hybrid. As 

the name suggests “only PV” scenario involves the use of PV panels alone as 

renewable energy source and in the “only Wind” scenario the wind turbines 

are the only source of renewable energy. In the “Hybrid” scenario both wind 

turbines and PV panels are used as renewable energy sources. 

For each scenario the model is run using k-means, k-medoids and k-medians 

algorithms. As described earlier the model is run for different number of 

representative days which are 6,12,24,36,48,72 and 144. So, in the end a total 

of 63 different models were simulated to understand the working of the 

clustering algorithms. 

 

 K-MEANS K-MEDIANS K-MEDOIDS 

ONLY PV 6, 12, 24, 36, 48, 72, 144 

REPRESENTATIVE DAYS ONLY WIND 

HYBRID 

Table 5 Scenarios 

 

5. MODEL AND SCENARIO DEVELOPMENT 

 

In this project for model development the osemosys software is used which is 

coded using the python language. The code is run using the spyder python 

software in the anaconda environment. The code is written in multiple sub-

files which are then called upon by a main function. The code also takes inputs 

from excel files which contains the information of the sets and parameters as 

described in the previous chapter. The scenarios are developed with the help 

of the configurations sheet. 
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Figure 11 Time Series Configuration settings 
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Figure 12 Scenario Setting Configuration Settings 
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Figure 13 Demand Evolution Configuration Setting 

In figure 11, 12 and 13 we can see the different sheets which are present in 

the configuration settings excel file. In the first sheet we have the Timeseries 

data for the island of Favignana. The timeseries is recorded for every hour of 

every day of the month for a whole year. The timeseries data includes the 

electricity final demand of Favignana and the timeseries data for the capacity 

factor of solar and wind energy retrieved from renewable ninja are also part 

of this first sheet seen in figure 11.  

The time series sheet helps switching between scenarios from ONLY PV, 

ONLY WIND and HYBRID. This is done by bringing changes to the capacity 

factors of solar and wind energy. For ONLY PV scenario the capacity factors 

of wind are set to zero and the PV intact. For ONLY WIND scenario the 

capacity factors of PV are set to zero and the wind intact. In the HYBRID 

scenario both the capacity factors are kept intact. 

In the next sheet shown in figure 12, the different parameters that are used 

to set the model are seen. Under the column clustering algorithm, it is 

possible to switch between the different clustering algorithms. Then there are 
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options where the number of representative days and time brackets can be 

specified with intervals. 

In the next sheet shown in figure 13, the final demand for the island of 

Favignana is given as an input. In this model we have used the values from 

the year 2019. These values are expressed in GW. 

Figures 14 and 15 are the representation of the sheets that were used for sets 

and parameters for the island of Favignana respectively. Both these sheets 

were inputted with data which has been described in the previous chapters 

got after thorough research. 

 

Figure 14 Sets sheet of Favignana 
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Figure 15 Parameters sheet of Favignana 

 

For long-term energy modelling using python, different programs are 

written for executing the model. The structure of the code is given below in 

figure 16. 

 

 

Figure 16 Structure of the code 
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Each of these python files has a function. Below the description of each of 

these files are given. 

Main_batch.py 

When this program is initiated, it first accesses the 'Configurations' Excel file. 

This file holds all the details about the models, as mentioned in the previous 

section like the sets, parameters and the timeseries and scenario settings. 

Subsequently, the tool sets up the entire simulation environment. This 

includes establishing the directories and importing additional functions. 

 

Configuration_loop.py 

The chosen model comprises various scenarios, each with its unique 

configurations. These settings are processed in a configuration loop using a 

for loop, which then initiates the simulation for each scenario. During this 

phase, a time series file is either generated or accessed if it pre-exists. After 

accumulating all the data for each scenario, the software proceeds to produce 

the sets file using 'sets_write.py'. It also creates an Excel file for the 

parameters using 'time_input_write.py' and then runs the scenario 

simulation through 'optimization_run.py'. ‘input_dat_generation.py’ carries 

out the operation of creating the input data for all the years of modelled. Upon 

completing a simulation, the program moves on to simulate the next scenario. 

The timeseries if its more than 8760 values because of more values because 

of less duration intervals it will be resized to 8760 values. 

Time_input_write.py 

This code creates the parameters specific to each scenario based on the 

conditions outlined in the configuration file. It utilizes a template parameters 

file that includes all essential parameters for the model's convergence, 

initially set for just one year. The 'time_input_write' script accesses this file 

and alters it by incorporating customizations specified in the configuration 

file, if any are present. Alternatively, it replicates the first year's data for the 

subsequent years. This process results in a fully formed parameter file, which 

is then saved for future use. 

Clustering_algorithms.py 

This code functions to switch between clustering algorithms that will be used 

while running the optimization program. Upon called by the code the 

clustering algorithm functions. 

Optimization_run.py 

Following the creation of the sets and parameters files, the subsequent step 

involves the 'optimization_run' code producing a .dat file. This file holds the 

necessary information for OSeMOSYS to carry out the simulation. Once this 
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is done, the simulation commences, leading to the generation of an output 

JSON file that encapsulates all the results. 

 

Results_collection.py 

Once the model's various scenarios have been fully simulated, the 

'results_collection' script cycles through all the results folders, extracting data 

from the JSON files. Each scenario of the model is stored in a dictionary, with 

a separate sub-dictionary dedicated to each scenario. Within each sub-

dictionary, there are further subdivisions corresponding to the number of 

output variables. After completing this collection process, the script 

consolidates the results into a numpy file, which is then formatted for 

compatibility with the visualization tool. 

 

 

Figure 17 Python terminal for Main_batch.py while simulation 
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Visualisation 

For visualisation of the results a code was written on python which helped in 

converting the json file into excel files with the important data needed.  

SETTING UP THE INPUT DATA 

FOR SETS, PARAMETRS, 

CONFIGURATION SETTINGS 

RUNNING THE 

MAIN_BATCH.PY CODE 

RUNNING THE 

CONFIGURATION LOOP CODE 

ON THE SCENARIOS 

Timeseries output generation  

Sets and Parameters 

Excel file generation. 

dat file 

generation 

OSeMOSYS 

simulation 
json 

results file. 

Solved 

scenarios 

collection. 

Visualization 

tool 

Figure 18 Simulation Flowchart 



36 
 

 

Figure 19 json to excel code. 

The resulting excel file was then imported into Power BI where the results 

were visualised in the form of graphs [49]. In figure 20 the layout of the Power 

BI software is shown.  

 

Figure 20 Layout of POWER BI 
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6. RESULTS 

 

In this pivotal section of our thesis, we delve into the findings of our 

comprehensive energy system modelling for Favignana Island. Utilizing an 

enhanced version of the OSeMOSYS tool, we explored multiple scenarios with 

a focus on identifying the most suitable time-series clustering algorithm that 

effectively balances computational efficiency and result accuracy. Our 

scenarios, diverse in their approach, include exclusive reliance on 

photovoltaics, wind energy, and a hybrid combination of both, augmented 

with various storage technologies like Li-ion batteries and hydrogen storage. 

The results derived from these scenarios provide crucial insights into the 

feasibility and desirability of ambitious decarbonization strategies. Notably, 

they highlight the differential suitability of various clustering algorithms in 

distinct scenarios, offering a nuanced understanding of their applicability in 

energy system modelling. The implications of these findings are significant, 

offering a path forward in energy planning that is both efficient and effective, 

particularly in contexts similar to Favignana Island. 

EXCEL FILE 

GRAPHICAL 

REPRESENTATION 

USING PYTHON CODE 

USING POWER BI 

Figure 21 Flowchart of graphical representation 

JSON FILE 
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In the following sections, we present a detailed analysis of these results, 

offering a clear, structured, and critical assessment of each scenario and the 

performance of the clustering algorithms employed. 

We have thoroughly discussed the results obtained from our simulation runs, 

where we meticulously analyzed the performance of three clustering 

algorithms - KMEANS, KMEDOIDS, and KMEDIANS - across different 

energy scenarios like ONLY PV, ONLY WIND, and HYBRID. The study's 

crux lies in evaluating these algorithms based on various parameters such as 

computational time, net present cost, sizing of components, and relative 

errors in total system cost and sizing. The primary objectives of this 

investigation are twofold: firstly, to identify a clustering algorithm that 

significantly reduces computational time, thereby curtailing the costs 

associated with simulations; and secondly, to pinpoint the algorithm that 

yields the most accurate results. This dual focus on efficiency and precision 

in algorithm selection is pivotal for advancing the reliability and cost-

effectiveness of renewable energy system modelling. 

 

6.1 Computational Time 

 

K-means Analysis 

The variation of the computational time with respect to the representative 

days for different scenarios while using the k-means algorithm can be 

visualised in figure 22. 

The Hybrid scenario shows a consistent increase in computational time as the 

number of representative days increases, indicating a direct relationship 

between data volume and processing time. 

The Only PV scenario exhibits a non-linear pattern, with a significant peak 

at 36 rep days, suggesting that the nature of the PV data might have 

complexities that impact computational efficiency differently at various 

stages. 

The Only Wind scenario like Hybrid, it displays a generally increasing trend, 

but with a distinct peak at 24 rep days, which could be due to specific data 

characteristics at that point. 

The Hybrid scenario shows a considerable increase in computational time, 

most significantly from 24 to 36 representative days with an increase of 

57.60%. In the Only PV scenario, a substantial peak is observed from 24 to 36 

rep days, with an 83.39% increase, followed by a notable decrease of 27.48% 

from 36 to 48 rep days. The Only Wind scenario presents its most dramatic 

increase between 12 to 24 rep days, a striking 466.51%, indicating a 

significant computational demand during this period. 
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Figure 22 Computational Time-Kmeans 

K-medians Analysis 

The variation of the computational time with respect to the representative 

days for different scenarios while using the k-medians algorithm can be 

visualised in figure 23. 

The Hybrid scenario has a fluctuating pattern, with a notable peak at 48 rep 

days, indicating a higher computational demand for larger datasets. 

The only PV scenario varies significantly, peaking at 36 rep days, much like 

in the K-means analysis. This variation could be indicative of data anomalies 

or irregularities. 

The Only Wind scenario shows a less consistent trend, with the highest time 

at 12 rep days, potentially highlighting the algorithm's sensitivity to wind 

data peculiarities. 

For K-medians, the scenario with Only Wind shows an extremely high 

increase of 1113.65% from 6 to 12 rep days, suggesting a significant 

sensitivity of this algorithm to wind data. The Hybrid scenario also 

demonstrates considerable fluctuations, with a notable increase of 116.86% 

from 36 to 48 rep days. In the Only PV scenario, the change from 24 to 36 rep 
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days stands out with a 122.24% increase, reflecting the algorithm's varying 

efficiency with different data sizes. 

 

Figure 23 Computational Time-Kmedians 

 

 

K-medoids Analysis 

The variation of the computational time with respect to the representative 

days for different scenarios while using the k-medians algorithm can be 

visualised in figure 24. 

The Hybrid scenario exhibits the most considerable variation in 

computational times, with an exceptionally high time at 36 rep days. This 

could be due to its more complex computation, particularly when handling 

diverse or outlier-heavy data. 

The Only PV scenario shows a dramatic increase in computational time as 

the number of rep days grows, indicating that the PV data may contain 

numerous outliers or complex structures that significantly impact 

computational efficiency. 
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The Only Wind scenario follows a somewhat increasing trend but with less 

pronounced peaks compared to other scenarios, possibly due to the nature of 

wind data. 

The Hybrid scenario records an exceptionally high increase of 511.04% from 

24 to 36 rep days, followed by a sharp decrease of 63.94% from 36 to 48 rep 

days. The Only PV scenario shows an enormous increase of 2007.30% from 12 

to 24 rep days, indicating a high computational demand for this data type in 

this period. Similarly, in the Only Wind scenario, there is a significant 

increase of 295.31% from 6 to 12 rep days. 

 

Figure 24 Computational Time-Kmedoids 

Best Suited Algorithm  

To determine the most suited clustering algorithm, we must consider both 

computational efficiency and the nature of the data: 

Efficiency: K-means generally shows the most consistent and lowest 

computational times across scenarios, indicating its efficiency in handling 

various data types and volumes. 
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Robustness: K-medoids, while computationally intensive, is more robust to 

outliers and could be preferred if the data has many anomalies or non-

standard distributions. 

Data Nature and Complexity: K-medians might be a choice when the dataset 

has significant non-normal distributions, especially in the PV data. 

Given the trade-off between computational efficiency and robustness to 

outliers, K-means emerges as the most suited for scenarios where 

computational efficiency is a priority and the data is relatively clean with few 

outliers. However, in cases where data robustness is crucial, and the presence 

of outliers is significant, K-medoids, despite its higher computational 

demand, would be a preferable choice. K-medians could be considered for 

specific datasets with non-normal distributions, particularly in the PV 

scenario. 

 

6.2 Net Present Cost 

K-means Analysis 

The variation of the net present cost with respect to the representative days 

for different scenarios while using the k-means algorithm can be visualised 

in figure 25. 

The Hybrid scenario shows a steady increase in NPC across representative 

days. Notably, there's a 15.69% increase from 48 to 72 days, suggesting a 

higher cost implication as the number of days increases. This trend could 

indicate the increasing complexity of data management and processing in 

hybrid scenarios. 

The Only PV scenario demonstrates an upward trend in NPC, with a 

significant jump of 11.32% between 24 to 36 days. This indicates that PV data 

might become progressively complex or voluminous, impacting the cost. 

The Only Wind scenario is consistent with the other scenarios, there's an 

increase over time. A notable peak of 13.78% from 72 to 144 days implies that 

long-term wind data processing could become increasingly costly, possibly due 

to variability in wind patterns over extended periods. 
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Figure 25 Net Present Cost-kmeans 

K-medians Analysis 

The variation of the net present cost with respect to the representative days 

for different scenarios while using the k-medians algorithm can be visualised 

in figure 26. 

The only Hybrid scenario exhibits fluctuations with a significant rise of 

20.44% from 36 to 48 days. This could reflect the sensitivity of the K-medians 

algorithm to the data distribution in hybrid energy scenarios, especially when 

median values shift notably with new data. 

The Only PV scenario shows dramatic increases, especially a 49.68% rise from 

6 to 12 days. This might suggest that median values in the PV data 

significantly differ even with small increases in representative days, 

indicating a diverse or non-uniform dataset. 

The Only Wind scenario shows varying results, with a peak increase of 

27.82% from 72 to 144 days. This could mean that the wind data's median 

values are significantly affected over longer periods, possibly due to seasonal 

or other environmental factors. 
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Figure 26 Net Present Cost-kmedians 

K-medoids Analysis 

The variation of the net present cost with respect to the representative days 

for different scenarios while using the k-medoids algorithm can be visualised 

in figure 27. 

The only Hybrid scenario exhibits the most significant variability among the 

algorithms, with an enormous increase of 511.04% from 24 to 36 days. Such 

a dramatic rise suggests that the selection of actual data points as cluster 

centres in hybrid scenarios can lead to substantial cost differences as the 

dataset grows.  

The Only PV scenario demonstrates an extreme increase of 2007.30% from 12 

to 24 days, indicating a high sensitivity to changes in data representation. 

This could be due to the presence of significant outliers or highly diverse data 

in the PV scenario. 

The Only Wind scenario shows considerable fluctuations, with a 295.31% 

increase from 6 to 12 days, again indicating the algorithm's sensitivity to the 

dataset's characteristics. 
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Figure 27 Net Present Cost-kmedoids 

Best Suited Algorithm 

K-means: Exhibits a more stable and gradual increase in Net Present Cost, 

suggesting its suitability for scenarios where a steady prediction of costs is 

crucial. Its less changes make it a reliable choice for consistent data patterns. 

K-medians: Shows more variability than K-means but less than K-medoids. 

It could be suitable for scenarios where median values provide a more 

accurate cost prediction, especially in datasets with outliers. 

K-medoids: While this algorithm is robust to outliers, its high variability in 

NPC predictions makes it less suitable for stable cost estimation. However, it 

could be preferred in highly irregular or outlier-prone datasets where the 

robustness to extreme values is critical. 

In conclusion, K-means seems to offer the most stable NPC predictions, 

making it suitable for scenarios requiring consistent and gradual changes in 

cost estimations. K-medians could be used in situations where median values 

offer a more accurate prediction, and K-medoids is best suited for highly 

irregular datasets where outlier robustness is essential. 
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6.3 Relative error in total system cost 

 

K-means Analysis 

The variation of the relative error in total system cost with respect to the 

representative days for different scenarios while using the k-means algorithm 

can be visualised in figure 28. 

Beginning with k-means, the HYBRID method stands out with its consistent 

error reductions across repetition days. At 6 days, it exhibits a -25.83% error, 

which then steadily declines to -23.99% (12 days), -22.94% (24 days), -22.55% 

(36 days), and finally -18.13% (48 days). This demonstrates smooth 

refinement of cost modelling precision, with accuracy improvements of 7.2%, 

3.7%, and 20.1% respectively. By 72 days, accuracy is even higher at -5.28%, 

representing massive gains of over 370% from the original error.  

 

 

Figure 28 Relative Error in total system cost kmeans 

 

 

 

K-medians Analysis 

The variation of the relative error in total system cost with respect to the 

representative days for different scenarios while using the k-medians 

algorithm can be visualised in figure 29. 
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As for k-medians, errors remain elevated across all categories. At 6 days, 

HYBRID sits at -40.78%, ONLY PV at -45.15%, and ONLY WIND at -42.99%, 

significantly higher than other algorithms. Subsequent gains also lag, with 

HYBRID only reaching -19.23% by 48 days versus -18.13% for k-means. 

However, by 144 days all methods converge on 0% error, affirming given 

sufficient data these unsupervised approaches can model system costs.  

 

 

Figure 29 Relative Error in total system cost kmedians 

 

 

 

 

K-medoids Analysis 

The variation of the relative error in total system cost with respect to the 

representative days for different scenarios while using the k-medoids 

algorithm can be visualised in figure 30. 

k-medoids fluctuates more drastically, especially the ONLY WIND results. 

Initially, HYBRID and ONLY PV show reasonable errors of -9.61% and -

15.11% at 6 days. However, ONLY WIND jumps to an egregious -30.11% 

indicating early struggles modelling wind parameters. This explodes further 
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to -55.44% at 12 days before precipitously improving to -8.88% (24 days), -

3.71% (36 days) and -3.62% (48 days). So, while accuracy rises over time, the 

oscillations reveal k-medoid's volatility.  

 

 

Figure 30 Relative Error in total system kmedoids 

 

 

 

Best Suited Algorithm 

K-means clustering provides the best precision for modelling total costs. Its 

accuracy improvements across days and sources are superior to the more 

volatile errors of k-medians and k-medoids. However, for rapidly iterative 

modelling, k-medoids faster convergence rate could justify its use once 

repetitive data reaches 36+ days. Regardless, some form of HYBRID 

clustering appears essential for managing the renewable energy cost 

modelling. 

Best Suited number of representative days according to the relative error in 

total system cost 

When assessing optimal days for minimized error across the k-means, k-

medians, and k-medoids clustering approaches, this analysis identifies 48 
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repetition days as the premier option. Specifically, the k-means (HYBRID) 

model, leveraging strengths of coupled solar photovoltaic (PV) and wind 

(WIND) source data, exhibits a -18.13% total system cost error rate at 48 

days. This signifies the most precisely learned model out of all techniques and 

configurations examined. While some alternatives like k-medoids HYBRID 

(1.52% error) show enhanced individual performance, from a comprehensive 

viewpoint weighing trade-offs, k-means HYBRID at 48 days delivers 

empirically superior accuracy. The finding indicates 48 data points produces 

a robust sweet spot before marginal improvements diminish approaching 

asymptotic limits. In conclusion, for holistic minimizing of renewable energy 

cost modelling uncertainties across unsupervised paradigms, cluster-

analysing 48 representative days datasets appears advisable based on the 

evidence. This hybrid k-means scenario provides optimal balancing of 

feasibility and performance.  

 

 

 

 

6.4 Sizing of components 

Photovoltaics 

Upon examining the photovoltaic (PV) capacity sizing outcomes, expressed in 

gigawatts (GW) from figures 31,32,33, notable disparities arise among the 

utilized techniques. The k-medians method consistently yields smaller PV 

sizes in comparison to its competitors across various repetition days. 

Particularly, for the HYBRID model at 6 representative days, k-medians 

proposes a capacity of 0.041 GW, which is roughly 40% less than the 0.069 

GW suggested by k-medoids and marginally less than the 0.043 GW by k-

means. This tendency of conservative sizing by k-medians persists across 

most time horizons, potentially leading to an underestimation of PV 

requirements. 

Contrarily, k-medoids tends to propose the largest PV capacities, potentially 

leading to an overbuilt system. Its sizing curve is the most aggressive, 

reaching a peak of 0.102 GW in the HYBRID model at 144 representative 

days, which is 57% and 32% more than the capacities suggested by k-means 

and k-medians, respectively. The gradual increase in k-medoids' sizing may 

indicate a more accurate rightsizing of PV capacity over time.  

K-means, conversely, offers a more balanced approach, with its PV sizing 

curve gently ascending from 0.043 GW to 0.070 GW in the HYBRID model. 

This method demonstrates a consistent temporal sizing pattern, avoiding 

significant under sizing or oversizing seen with the other techniques. 
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In conclusion, the k-means clustering algorithm is recommended for PV 

capacity sizing. 

 

 

Figure 31 Sizing of PV Kmeans 

 

 

Figure 32 Sizing of PV Kmedians 
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Figure 33 Sizing of PV Kmedoids 

Wind Power 

The analysis of wind capacity sizing reveals a pattern as seen in figures 

34,35,36 where k-medians tends to oversize wind capacity,. At  6 

representative days, k-medians proposes a capacity of 0.132 GW for ONLY 

WIND, which is more than six times the 0.020 GW suggested by both k-means 

and k-medoids. K-medians continues to allocate aggressively, recommending 

0.064 GW by 36 representative days, while the other methods maintain a 

capacity of 0.020 GW. At 72 representative days, k-medians peaks at nearly 

0.059 GW, compared to 0.029 GW for k-medoids and 0.020 GW for k-means. 

In contrast, k-means adopts a much more conservative approach to wind 

capacity sizing, maintaining a steady 0.020 GW through 48 representative 

days for all sources. It is only at the 72 representative day mark that the 

capacity for ONLY WIND specifically increases by 29% to 0.028 GW, 

reflecting a cautious and consistent strategy that avoids overbuilding over 

extended periods.  

K-medoids, like k-medians, initially sizes wind capacity aggressively, 

planning for a substantial 0.137 GW in HYBRID at 6 representative days. 

Nevertheless, it adjusts to more reasonable levels between 0.020-0.042 GW 

as more data becomes available. Despite early spikes that may cause concern, 

k-medoids exhibits an ability to self-correct, with its later conservative 

growth more closely aligning with k-means. 
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In summary, for wind power modelling, the k-means clustering algorithm is 

recommended as the most suitable approach. It avoids being overly 

aggressive, as seen with k-medians, and the volatility of early k-medoids 

sizing.  

 

 

Figure 34 Figure 32 Sizing of Wind Kmeans 
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Figure 35 Sizing of Wind Kmedians 

 

 

Figure 36 Sizing of Wind Kmedoids 
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Lithium-ion Battery Technology 

From the results obtained from battery sizing using different clustering 

algorithms as shown in figures 37, 38, 39, it becomes evident that there are 

substantial disparities in the recommended capacities, which could result in 

either a shortfall in supply or an overabundance of investments. The analysis 

shows that k-medians tends to significantly undersize battery storage, not 

allocating any capacity in HYBRID scenarios until it reaches 0.017 GW at 48 

representative days. On the other hand, k-means begins with a 0.011 GW 

allocation at 6 representative days and progressively increases to 0.025 GW 

in HYBRID at 72 representative days, indicating a stronger conviction in the 

necessity for battery storage. 

K-medoids, in contrast, is inclined to overestimate storage needs, which may 

lead to an overbuilt capacity. Starting with an initial sizing of 0.021 GW in 

HYBRID, it escalates to 0.040 GW at 72 representative days, significantly 

exceeding the 0.025 GW peak of k-means and the 0.039 GW of k-medians. 

Although this approach ensures reliability, the aggressive scaling could 

impose financial burdens due to underutilization. 

K-medians exhibits uneven fluctuations over time, with a notable jump from 

0 GW to 0.039 GW in HYBRID between 48 and 144 representative days. 

These abrupt changes in sizing could introduce market instability, in contrast 

to the more gradual and predictable increases observed with k-means and k-

medoids. 

In summary, k-means emerges as the balanced choice, methodically and 

scaling up storage deployment. This approach avoids the need for significant 

adjustments later, ensuring a stable progression. While k-medoids offers a 

guarantee of supply, the potential costs may not justify the reliability benefits 

when compared to the provisions of k-means. For a sustainable and 

economically sound approach to storage capacity planning, k-means is the 

preferred option. 
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Figure 37 Sizing of Battery Technology Kmeans 

 

 

Figure 38 Sizing of Battery Technology Kmedians 
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Figure 39 Sizing of Battery Technology Kmedoids 

Lithium-ion Battery Storage 

The examination of sizing of battery storage as shown in figures 40, 41, 42 

highlights k-medoids notably aggressive approach, which carries the risk of 

overbuilding. In the HYBRID scenario, k-medoids proposes a substantial 

0.060 GWh capacity at just 6 representative days, which is more than five 

times the 0.010 GWh suggested by k-means. This disparity is maintained over 

time, as evidenced at the 144 representative day mark, where k-medoids 

sizing remains at 0.014 GWh, compared to k-means 0.026 GWh and k-

medians 0.010 GWh. 

Despite its initial tendency to oversize, k-medoids adjusts its allocations in 

response to new data. After an initial peak in battery allocation at 0.035 GWh 

for HYBRID at 48 representative days, it revises the capacity down to 0.021 

GWh by 72 representative days, reflecting an ability to self-correct based on 

additional information. 

In contrast, k-medians are characterized by its consistent under sizing of 

storage, maintaining a zero GWh allocation in HYBRID scenarios until 48 

representative days, when it finally allocates a mere 0.010 GWh three times 

less than the other methods. This conservative sizing could lead to supply 

deficits and raise concerns about system reliability. Nevertheless, k-medians 

does exhibit a positive upward trend in later stages as more data becomes 

available. representative 

K-means, on the other hand, exemplifies a cautious and balanced approach, 

moderately increasing battery capacity from 0.010 GWh at 6 representative 

days to 0.026 GWh in HYBRID at 144 representative days.  



57 
 

In conclusion, the k-means methodology is the most appropriate for modelling 

lithium-ion storage adoption, striking the optimal balance between capacity 

and demand. While k-medoids tends to over allocate, and k-medians risks 

unreliability due to undersupply. 

 

 

Figure 40 Sizing of Battery Storage Kmeans 

 

Figure 41 Sizing of Battery Storage Kmedians 
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Figure 42 Sizing of Battery Storage Kmedoids 

 

 

 

 

Hydrogen Fuel Cell 

The results of sizing of fuel cell as shown in figures 43, 44, 45 reveals that k-

medoids consistently recommends significantly larger capacities than other 

methods, which could lead to substantial overbuilding. In the HYBRID 

scenario at 6 representative day, k-medoids suggests a capacity of 0.056 GW, 

which is nearly double the 0.057 GW proposed by both k-means and k-

medians. This trend of aggressive capacity growth continues at 48 

representative days, with k-medoids at 0.104 GW compared to k-means 0.064 

GW, and it remains pronounced as time progresses. 

Although k-medoids approach may ensure system reliability and the ability 

to self-correct downwards in ONLY WIND scenarios, indicating a capacity to 

adapt based on additional data after initial overestimations. 

K-means, in contrast carefully and incrementally expands its fuel cell 

capacity, as seen in the HYBRID scenario where sizing increases from 0.057 

GW to 0.079 GW between 6 and 144 representative days. The k-means aims 

to meet supply demands sustainably, without incurring unnecessary 

expenditure risks.  
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On the other hand, k-medians displays a degree of volatility, as evidenced by 

an unexplained drop to 0.016 GW in HYBRID at 36 representative days, 

disrupting the overall upward trend. Such unpredictable shifts challenge the 

reliability of growth planning, an issue that k-means' fuel cell modelling 

strategy successfully mitigates. However, over time, k-medians shows a 

decline in errors, suggesting a gradual alignment with cluster-based learning 

observed in other methods. 

In conclusion, k-means is recommended as the optimal approach for 

hydrogen-based renewable energy modelling, avoiding the extremes of severe 

undersupply or excessive overbuilding.  

 

Figure 43 Sizing of Fuel Cell Kmeans 
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Figure 44 Sizing of Fuel Cell Kmedians 

 

Figure 45 Sizing of Fuel Cell Kmedoids 

Hydrogen Electrolyser 

The results of sizing of electrolyser as shown in figures 46, 47, 48 reveals that 

k-medoids tends to scale up capacity more uniformly than other methods, 

which could lead to expensive overbuilds. In the HYBRID scenario at 6 

representative days, k-medoids proposes a capacity of 0.071 GW, which is 

almost equivalent to the 0.072 GW by k-means and the 0.070 GW by k-

medians. However, by the 144 representative day mark, k-medoids capacity 
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increases aggressively, reaching 0.112 GW, which is 57% higher than the 

0.099 GW sized by k-medians. 

K-medoids demonstrates an ability to adjust its recommendations by 

tempering the initial high allocations based on further data analysis. The 

capacity for self-correction after initial overestimations is a positive sign, as 

seen with other technologies. 

K-means, on the other hand, adopts a more measured approach, carefully and 

progressively expanding electrolyser capacity. For instance, in ONLY WIND 

scenarios, k-means increases capacity from 0.087 GW at 6 days to 0.103 GW 

at 144 representative days, showcasing a consistent and non-reactive 

approach to capacity modelling. This strategy ensures a sustainable and 

balanced integration of electrolyser technology, avoiding overspending and 

undersupply. 

Conversely, k-medians displays a level of unpredictability, as evidenced by an 

unexplained reduction to 0.016 GW in HYBRID at 36 representative days, 

which interrupts the overall upward trend. Although k-medians does 

incrementally increase hydrogen system sizing over time, such uneven shifts 

can compromise the reliability of growth planning, a challenge that k-means 

steady electrolyser modelling strategy overcomes. Nonetheless, a decrease in 

errors over time suggests that k-medians, like its counterparts, is capable of 

learning from accumulated data. 

In conclusion, the k-means method is recommended for the optimal adoption 

of hydrogen electrolysers. It avoids the overbuilding tendencies of k-medoids 

and the fluctuations of k-medians.  
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Figure 46 Sizing of Electrolyser Kmeans 

 

Figure 47 Sizing of Electrolyser Kmedians 
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Figure 48 Sizing of Electrolyser Kmedoids 

 

 

 

Hydrogen Storage 

The results of sizing of hydrogen storage as seen in figures 49, 50, 51 shows 

k-medoids tends to recommend larger capacities than other methods, which 

could lead to significant overbuilding. In the HYBRID scenario at 6 

representative days, k-medoids suggests a storage size of 0.0099 GWh, which 

is 29% larger than the 0.0089 GWh allocated by k-medians and slightly higher 

than the 0.0094 GWh by k-means. This trend of upsizing continues at various 

stages, such as at 144 representative days, where k-medoids plan for 0.013 

GWh is 26% greater than that of k-medians. 

While k-medoids approach may ensure a robust energy supply, it carries the 

risk of installing more storage infrastructure than necessary, especially when 

simpler solar or wind solutions could provide sufficient flexibility. 

Nonetheless, k-medoids demonstrates an ability to adjust its allocations by 

tempering initial high recommendations based on further data analysis, as 

observed in the ONLY WIND scenario. This capacity for adaptation is a 

positive aspect, despite the initial overestimations. 

K-means, in contrast, offers a more balanced and moderate strategy, carefully 

scaling up hydrogen storage integration. The method shows a controlled 6% 

decrease from 0.0101 GWh in ONLY WIND at 6 representative days to 0.0073 

GWh at 144 representative days, indicating a deliberate scaling back to 
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sustainable levels. This approach aims to meet energy needs reliably without 

the risk of unnecessary expenditure. 

On the other hand, k-medians displays some volatility, as seen by an 

unexpected drop to 0.006 GWh in HYBRID at 48 representative days. 

Although k-medians does increase system sizes incrementally over time, such 

unpredictable changes can compromise the reliability of growth planning, an 

issue that k-means more consistent hydrogen storage modelling strategy 

addresses. However, a decline in errors over time indicates that k-medians, 

like its counterparts, benefits from cluster-based learning. 

 

In conclusion, the k-means method is recommended for the optimal adoption 

of hydrogen storage and is the most reliable and economically sound sizing 

strategy. 

 

Figure 49 Sizing of Hydrogen Storage Kmeans 
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Figure 50 Sizing of Hydrogen Storage Kmedians 

 

Figure 51 Sizing of Hydrogen Storage Kmedoids 

 

6.4 Relative error in sizing of components 

 

Photovoltaics 

The evaluation of photovoltaic capacity sizing across various methodologies 

as shown figures 52, 53, 54 reveals that K-means consistently underestimates 
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the necessary capacity for both hybrid and solar-only systems at all 

considered time horizons. With relative errors reaching as low as -49.2%, 

there is a clear indication of significant under sizing by the K-means 

technique. K-medians presents a more varied performance, with some 

instances of oversizing by over 10% and others of under sizing by as much as 

-56.9%, which raises concerns about its erratic sizing results. 

K-medoids demonstrates the most consistent sizing, maintaining errors 

within a +/- 6% range for solar-only systems at shorter time horizons. 

However, its precision diminishes as the planning horizon extends, 

suggesting a decrease in accuracy for long-term planning. 

 

The suboptimal performance of K-means can be linked to its sensitivity to 

outliers, which is a consequence of its reliance on arithmetic means. This 

characteristic can cause cluster centres to be skewed by extreme load profiles, 

resulting in poor generalizability. K-medians, which utilizes median values, 

is more robust against outliers, but the selection of discrete median values 

likely contributes to the observed fluctuations in sizing accuracy. K-medoids, 

by choosing actual load profiles as cluster centres, likely avoids such 

skewness and achieves more accurate capacity sizing. 

Given its relative consistency, K-medoids is deemed the most appropriate 

method for selecting representative days, particularly for shorter planning 

terms. The increased errors observed beyond 48 representative days suggest 

that load profile variability intensifies with longer planning terms, a 

complexity that none of the three techniques can sufficiently capture. The 

data supports a recommendation for a planning term between 36 to 48 

representative days using K-medoids, as it maintains errors below 6.5% for 

both types of systems. In conclusion, K-medoids outperforms as the clustering 

algorithm of choice, especially for planning terms up to 48 representative 

days. 
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Figure 52 Error in sizing of Photovoltaics Kmeans 

 

 

Figure 53 Error in sizing of Photovoltaics Kmedians 
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Figure 54 Error in sizing of Photovoltaics Kmedoids 

 

Wind Power 

The analysis reveals the relative sizing error (%) for wind power systems as 

visualised in figures 55, 56, 57 utilizing three clustering algorithms - K-

means, K-medians, and K-medoids. These algorithms generate 

representative load profiles over 6 to 144 representative days for wind-only 

and wind-hybrid systems. 

K-medoids exhibits substantial oversizing for the 6-day horizon, reaching 

584% for hybrid and 386% for wind-only systems. However, this oversizing 

quickly diminishes for extended planning periods. Beyond 36 representative 

days, errors remain under 0.5%, signifying robust accuracy in sizing even at 

longer durations. 

Contrastingly, K-means consistently underestimates around -29% for wind-

only systems. For the hybrid system, its 0% errors might suggest a total 

failure in modelling load variability. K-medians yield inconsistent results, 

with extreme oversizing up to 386% and under sizing up to -26%. These 

anomalies persist but gradually decrease over longer planning durations. 

Given the data, K-Medoids stands out as the preferred technique for wind-

based representative day selection due to its adaptability and improving 

accuracy over longer planning terms. Beyond 36 representative days, sizing 

errors gradually decrease despite some initial anomalies. Compared to K-

means and K-medians, it offers a more dynamic modelling approach for 

variable wind-driven loads. 
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Figure 55 Error in sizing Wind Power Kmeans 

 

 

Figure 56  Error in sizing Wind Power Kmedians 
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Figure 57  Error in sizing Wind Power Kmedoids 

 

Lithium-ion Battery Technology 

The data illustrates the relative sizing error (%) for lithium-ion battery 

systems as shown in figures 58, 59, 60 utilizing K-means, K-medians, and K-

medoids clustering algorithms over 6 to 144 representative days.  

For most representative days, K-medoids exhibits the most consistent 

performance, with errors falling within a +/- 60% range for standalone battery 

systems. When applied to hybrid renewable energy configurations, the 

accuracy of K-medoids significantly improves beyond 36 representative days, 

with sizing errors less than 16%. Contrarily, K-means and K-medians 

persistently struggle with over or under estimation issues. Extreme outliers, 

characterized by oversizing up to 300% and under sizing up to 100%, 

underscore these algorithms' limitations in accurately representing day 

selections. 

Given its consistent performance across a variety of system configurations, 

K-medoids is recommended as the preferred technique. Its ability to stabilize 

battery sizing accuracy from a 36 representative day planning duration 

underscores the effectiveness of using past demand patterns for profiling. 

Compared to other methods, a maximum error of less than 50% demonstrates 

K-medoid's capability in capturing load changes. 
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Figure 58  Error in sizing Battery Technology Kmeans 

 

 

Figure 59 Error in sizing Battery Technology Kmedians 
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Figure 60 Error in sizing Battery Technology Kmedoids 

 

Lithium-ion Battery Storage 

The data illustrates the relative sizing error (%) for lithium-ion battery 

storage systems as shown in figures 61, 62, 63 utilizing K-means, K-medians, 

and K-medoids clustering algorithms.  

Among the three clustering algorithms, K-medoids exhibits the most 

consistent performance across various storage systems and planning 

durations. For instance, in the case of a battery-only system, sizing errors 

remain within the range of +/- 50%, even at shorter time horizons. The 

accuracy of K-medoids further enhances for the hybrid configuration, with 

less than 25% misestimation observed beyond 24 representative days. 

Contrarily, K-means and K-medians continuously display over or under 

sizing across storage system types, with extreme instances exceeding 600%. 

Given its dependable sizing estimates across a variety of storage scenarios, 

K-medoids emerges as the preferred technique. Its swift performance 

stabilization from 24 representative day terms suggests effective load 

profiling using historical demand patterns. When compared to the other 

methods, the controlled errors underscore K-medoids adaptability in 

modelling renewable-storage dynamics. 
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Figure 61 Error in sizing Battery Storage Kmeans 

 

Figure 62 Figure 61 Error in sizing Battery Storage Kmedians 
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Figure 63 Figure 61 Error in sizing Battery Storage Kmedoids 

 

Hydrogen Fuel Cell 

The data illustrates the relative sizing error (%) for hydrogen fuel cell as 

shown in figures 64, 65, 66 utilizing K-means, K-medians, and K-medoids 

clustering.  

K-medoids exhibits the most stable performance, with sizing errors typically 

falling within +/- 30%. Beyond 36 representative days, there is a consistent 

improvement in accuracy, often around +/- 5%, indicating the technique's 

effectiveness for long-range modelling. Contrarily, K-means and K-medians 

display recurring over or under estimation issues, occasionally producing 

extreme outliers exceeding 70% even at extended planning ranges. 

K-Medoids is better due to its use of actual load profiles rather than statistical 

averages. This allows for a more accurate adaptation to the variability and 

long-term shifts in renewable generation and fuel cell loads. In contrast, the 

fixed means and medians used by K-Means and K-Medians struggle to 

capture these seasonal dynamics. 
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Figure 64 Error in sizing Hydrogen Fuel Cell Kmeans 

 

 

Figure 65  Error in sizing Hydrogen Fuel Cell Kmedians 
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Figure 66  Error in sizing Hydrogen Fuel Cell Kmedoids 

 

Hydrogen Electrolyser 

The data illustrates the relative sizing error (%) for hydrogen fuel cell as 

shown in figures 67, 68, 69 utilizing K-means, K-medians, and K-medoids 

clustering.  

Among the various system types and planning durations, K-medoids exhibits 

the most stable performance, with sizing errors predominantly falling within 

the +/- 10% range. Beyond 36 representative days, the accuracy continues to 

improve, settling at +/- 5%, indicating its proficiency in long-term modelling. 

Conversely, K-means and K-medians display recurring over or under sizing 

trends across configurations, with outliers reaching up to 80% even at 

extended planning ranges. 

Given its dependable estimates across a variety of renewable-hydrogen 

systems, K-medoids emerges as the preferred method. The gradual reduction 

of errors from 24 representative day terms suggests effective load profiling 

using historical data. When compared to the other techniques, the controlled 

accuracy underscores K-Medoids’ aptitude for capturing the complexities 

inherent in electrolyser modelling. 
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Figure 67 Error in sizing Hydrogen Electrolyser Kmeans 

 

 

Figure 68 Error in sizing Hydrogen Electrolyser Kmedians 
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Figure 69 Error in sizing Hydrogen Electrolyser Kmedoids 

 

Hydrogen Storage 

The data illustrates the relative sizing error (%) for hydrogen storage systems 

employing K-means, K-medians, and K-medoids clustering.  

In terms of system types and planning durations, K-medoids exhibits the 

most stable performance, with sizing errors predominantly falling within +/- 

50%. Beyond 36 representative days, the accuracy continues to improve to +/- 

10%, signifying its efficacy for long-term modelling. Conversely, K-means and 

K-medians reveal recurrent over or under sizing trends across storage 

scenarios, with outliers exceeding 70% even at extended planning ranges. 

Given its dependable estimates across a variety of renewable-hydrogen 

storage systems, K-medoids stands out as the optimal technique. The 

reduction in errors from 24-day terms suggests adequate load profiling based 

on historical data patterns. When compared to other methods, the confined 

accuracy underscores K-Medoids' aptitude for handling the complexities 

inherent in storage modelling. 
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Figure 70 Error in sizing Hydrogen Storage Kmeans 

 

Figure 71 Error in sizing Hydrogen Storage Kmedians 
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Figure 72 Error in sizing Hydrogen Storage Kmedoids 

 

7. CONCLUSION 

 

To sum up, this investigation significantly advances our understanding of 

energy system modelling, particularly in relation to island energy systems 

such as Favignana. The comprehensive assessment of various clustering 

algorithms in terms of computational efficiency, financial implications, and 

their ability to accurately depict energy systems under a range of conditions 

offers substantial insights. The findings from the investigation are listed 

below: 

 

• The K-means algorithm consistently proves to be a more efficient 

option in terms of computational duration and cost-efficiency. 

• K-means algorithm is the best suited for modelling total costs. Its 

suitable for scenarios where a steady prediction of costs is crucial. 

• The K-medoids algorithm is more efficient when the data is robust and 

has many variations.  

• Also, when it comes to modelling storages considering representative 

days the K-medoids algorithm suits the best as it gives less error when 

compared to the actual number of days. 
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• The K-medians is more suited for the datasets that has a significant 

non-normal distribution, especially in the PV data. 

• The number of representative days modelled is directly proportional to 

the computational time and the quality of results.  

• The examination of the ideal number of representative days reveals 

that employing 48 representative days can effectively encapsulate the 

requisite variability in renewable energy systems without incurring 

excessive computational burdens. 

In essence, the research emphasizes the significance of choosing suitable 

clustering algorithms and the quantity of representative days in energy 

system modelling, especially for systems rich in renewable energy sources. 

These methodological decisions are instrumental in striking a balance 

between computational efficiency, cost, and accuracy, thereby facilitating the 

creation of robust and reliable energy models for policy and planning 

objectives. 
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