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Abstract
Due to uncontrollable renewable generation, future households have to adapt
their consumption to match the production. This master’s thesis explores the
optimization of demand response for a prosumer equipped with distributed
energy resources (DER). The research focuses on solving the energy consumption
demand response problem for a household. In this study, the problem has been
formulated as an optimization task. To address the problem, a Python code
was written using the Pyomo optimization modeling language and the GLPK
solver for MILP-type optimization problems. The prosumer, located near
Helsinki, Finland, owns a villa, and the analysis spans an optimization window
with hourly resolution. Local climate data, including outdoor temperature
and irradiation, are incorporated to model environmental conditions affecting
renewable energy production and building energy consumption. The prosumer
system integrates various components, including photovoltaic (PV) panels,
whose generation was calculated using measured irradiance data, an electrical
energy storage system (BESS), an electric vehicle (EV) with a charging station,
and a storage and heating system for domestic hot water (EWH). Additionally, a
two-capacity thermal model for the building considers air conditioning through
an HVAC system with an air-to-water heat pump (HP) and thermal storage
(TESS). The prosumer interacts with the grid, adhering to governmental limits
on energy export and import. The optimization problem aims to minimize total
costs, factoring in energy prices based on market trends (Day-Ahead price)
and controllable variables. After outlining the prosumer’s energy model, the
thesis scrutinizes results obtained by modifying input data, facilitating the
identification of daily expenditure or gain based on the analyzed time periods.
This analysis enhances understanding of the impact of variables on system
behavior and identifies optimal strategies for energy resource management.
Conducted over the course of one year (2022 price data), the analysis code is
versatile and easily adaptable to obtain new analyzable results by adjusting
input data. Applicable to any prosumer scenario, the code holds potential
for broader community use, allowing communication among users producing
and consuming energy. Consequently, this thesis significantly contributes to
the field of energy optimization and the management of distributed energy
resources.
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Chapter 1

Introduction

The depletion of fossil fuel reserves and the exacerbation of global warming due
to the greenhouse effect have necessitated a paradigm shift in energy generation
towards renewable sources. Utilizing renewable sources, such as solar, wind,
hydro, and biomass, holds the promise of significantly reducing harmful gas
emissions, thereby supporting a more sustainable energy generation process
[1]. This shift is critical not only for environmental protection but also for
enhancing energy security and reducing dependence on imported fossil fuels.

Photovoltaic (PV) systems are a cornerstone of renewable energy generation.
They convert sunlight directly into electricity using semiconductor materials,
typically silicon-based. These systems can be installed on rooftops or in
larger-scale solar farms, making them highly versatile for both residential and
commercial applications. Within the scientific community, there is an increasing
interest in photovoltaic energy self-consumption by grid-connected residential
systems [2]. Self-consumption involves using the generated solar power directly
within the household, reducing the reliance on grid electricity and minimizing
transmission losses.

Given the reduction of subsidies for photovoltaic energy in various countries,
enhancing self-consumption through the integration of energy storage systems
could significantly boost the profitability of photovoltaic installations and
reduce the strain on distribution grids. Energy storage systems (ESS), such
as batteries, allow excess energy generated during peak sunlight hours to be
stored and used during periods of low or no sunlight, thus enhancing the overall
efficiency and reliability of PV systems.

As renewable energy infrastructures are typically decentralized and span

1



Chapter 1

vast geographical areas, research focus has shifted towards distributed gen-
eration. Distributed generation refers to electricity generation from sources
that are directly connected to the distribution network or the customer side
of the meter, rather than centralized power plants [3]. This approach offers
several benefits, including reduced transmission losses, improved reliability, and
enhanced resilience of the power grid.

The smart grid paradigm aims to harness secure bidirectional communication
technologies to facilitate the flow of critical information from generators through
distribution networks to end-user consumption [4]. Smart grids integrate
advanced sensing, communication, and control technologies to enable real-time
monitoring and management of the electricity grid. This integration allows for
better demand response, improved grid stability, and the incorporation of a
higher proportion of renewable energy sources.

Prosumers—customers who produce and share excess energy with the grid
and other users—are integral to smart grids. Prosumers not only contribute to
future smart grids but also play a pivotal role in peak demand management [5],
[6]. From an economic standpoint, prosumers benefit from the implementation
of autonomous, self-interested agents capable of making effective decisions
regarding the use of energy sources. This ensures that demand is met at the
lowest possible cost, or that profit is made by selling surplus electricity to other
entities [7].

In this context, the role of advanced algorithms becomes crucial. Opti-
mization algorithms, particularly Mixed-Integer Linear Programming (MILP),
are employed to address complex decision-making processes in energy manage-
ment. These algorithms can handle various constraints and objectives, such as
minimizing costs, maximizing profits, or ensuring the balance between energy
supply and demand. MILP is particularly suited for problems involving both
continuous and discrete variables, making it ideal for modeling energy systems
where binary decisions (e.g., whether to turn a device on or off) are required.

This study introduces an algorithm designed for prosumers to optimize the
operation of their generation and consumption devices, aiming to maximize
profits while contributing to the overall stability of the electrical grid. The
algorithm accounts for generation and recharge costs, as well as anticipated levels
of consumption and production, creating an operational plan that maximizes
the prosumer’s profitability. This work underscores the efficacy of MILP
optimization techniques in the smart grid domain, formulating a minimization

2
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problem solved using the Python programming language (Pyomo) in conjunction
with the GLPK solver.

The thesis is organized as follows:
Chapter 2 conducts a comprehensive review of the state of the art, detailing

existing codes and optimization algorithms in the energy sector and highlighting
current limitations. This chapter provides a critical analysis of contemporary
methodologies and identifies gaps in the literature. Chapter 3 introduces the
methodology employed to model the Finnish grid-connected prosumer using the
Pyomo optimization language in Python. This chapter begins with a geopolitical
and administrative contextualization of the prosumer, followed by a detailed
examination of the equations modeling various system components. Input
data are meticulously researched to ensure accuracy and relevance. Chapter 4
presents the results of the identified Base Case, offering a detailed analysis of
the different seasonal variations for the year 2022, which is the focal year for
this analysis. The chapter includes graphs illustrating the behavior of various
system components, accompanied by in-depth commentary and result analysis.
The objective is to understand the impact of Finland’s highly variable climate
on the optimization outcomes. Chapter 5 explores scenarios different from
the Base Case by considering various prosumer configurations. This includes
modifying the sizes of the photovoltaic (PV) system and the energy storage
system (BESS) to assess how different configurations affect user benefits. A
comprehensive comparative analysis is conducted across different scenarios
to determine optimal configurations under various conditions. Chapter 6
concludes the study and suggests directions for future research. This chapter
synthesizes the findings, underscores the contributions to the field, and proposes
potential areas for further investigation to enhance the optimization of prosumer
operations and smart grid management.

By thoroughly exploring these topics, this thesis aims to contribute signifi-
cantly to the understanding and optimization of prosumer operations in smart
grids, leveraging advanced optimization techniques to promote sustainable and
efficient energy management practices.
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State of the Art

2.1 Overview
In recent years, the term "prosumer" has emerged in the power system lexicon. A
prosumer is a consumer who, due to advancements in technology and attractive
feed-in tariffs for renewable energy-based power plants, installs micro-generation
systems (typically a few kilowatts) to meet their energy needs and sell surplus
electricity to the market, thereby also becoming a producer [8].

The model in this thesis is based on a Finnish rural house equipped with
both thermal and electrical storage systems. It incorporates common generation
systems, particularly photovoltaics (PVs), and electric vehicles (EVs), which
are becoming increasingly prevalent. In the context of Finnish households,
energy consumption typically includes heating for living spaces and domestic
water, as well as electricity for household appliances. It also involves the use of
natural gas and liquid gas for cooking, and wood and electricity for heating
saunas [9]. This model, along with the challenges it presents, aligns well with
the concept of optimization in the energy sector.

Optimization algorithms are becoming crucial for addressing complex issues
in specific sectors like the electricity market. In the context of a prosumer-grid
system, these algorithms are essential for efficiently managing electricity gen-
eration, consumption, and distribution. By applying optimization techniques,
stakeholders can enhance resource allocation, optimize energy trading strategies,
and balance supply-demand dynamics within the prosumer-grid framework.

These algorithms are particularly valuable for determining the optimal
configuration of energy resources for prosumers, taking into account factors
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like renewable energy sources, storage capacities, and demand patterns. Addi-
tionally, optimization algorithms enable dynamic pricing mechanisms, allowing
prosumers to make informed decisions based on real-time market conditions.
Integrating these algorithms into the prosumer-grid system promotes a more
resilient and adaptive electricity market, ensuring efficient resource utilization
and fostering sustainable energy practices.

The expansion of distributed generation from renewable sources is critical for
decarbonizing the economy, mitigating global warming, and reducing external
energy dependence in countries lacking indigenous fossil resources. However, this
transition presents unique challenges. Large-scale electricity storage for later
use remains a significant hurdle. Traditionally, electricity production is aligned
with real-time demand, leading to the underutilization of expensive power
plants designed to meet peak demands that occur sporadically throughout the
year. This practice increases maintenance and management costs, affects tariffs,
and raises expenses for consumers. The electrification of various sectors, such
as transportation, requires widespread implementation of chargers, including
fast and ultra-fast chargers. Comfort requirements in buildings increase air
conditioning loads. Consumers now play a more active role in managing
their own energy resources, becoming prosumers who should globally optimize
exchanges with the grid, load management, local microgeneration (especially
rooftop PVs), and storage resources (static batteries and electric vehicles).
The traditional grid paradigm of "supply follows the load" is evolving towards
smart grids that facilitate "load follows the supply" operations, supported by
widespread deployment of sensing and control equipment, especially in the
distribution network, including smart meters at customer residences that enable
bidirectional communication with the grid. This technological infrastructure,
along with the vast amount of data it allows to collect, enables more efficient
network management [10].

Demand Response (DR) emerges as a solution to these challenges, allowing
for the postponement of investments in new capital-intensive capacities and
providing a means to manage the transition until such capacities are fully oper-
ational. Additionally, DR helps reduce consumers’ electricity bills by offering
economic incentives for using electricity during times when prices are lower than
the marginal generation cost. According to the Agency for the Cooperation
of Energy Regulators (ACER), "Demand Response" fundamentally involves
changes in electricity consumption by customers (individually or collectively) in
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response to a market signal such as a change in electricity prices or a financial
incentive to increase, decrease, or shift the timing of their electricity consump-
tion [11]. Demand response can be categorized into two types: incentive-based
and price-based. The former is suitable for large industrial and commercial
customers, while the latter is popular among residential customers.

In this context, all tariff components (energy, power, network usage) can
become time-differentiated based on wholesale market price variability, renew-
able energy availability, and network conditions (e.g., congestion in distribution
transformers), inducing appropriate changes in consumption patterns. There-
fore, demand response programs play a key role in the energy transition,
offering potential benefits to multiple stakeholders. These programs involve
time-differentiated tariffs that can exhibit significant variations, prompting
consumers to adjust operating hours to achieve bill savings without compro-
mising comfort. Incentive-based programs include schemes such as direct load
control, interruptible load contracts, refunds during peak hours, emergency
offer/return programs, and capacity and ancillary service markets. Consumers
can reduce their electricity bills by adapting consumption patterns, leveraging
the integrated optimization of all energy resources based on their flexibility
in providing required energy services (lighting, hot water, electric mobility,
etc.). Retailers can profit by offering a portfolio of time-differentiated tariffs to
distinct consumer segments, exploiting the difference between wholesale and
retail prices. Aggregators can develop new business models to provide demand
response capacity as a service to the grid. Network operators can avoid power
peaks, reducing losses and deferring expensive network upgrades. Generators
can avoid operating costly and less environmentally friendly peak units.

Recently, there has been growing attention on energy consumption schedul-
ing algorithms for demand response by residential customers, who constitute
approximately 40% of the total demand.

In one study, a game theory-based approach [12] was employed to schedule
a group of residential customers with the aim of reducing the peak-to-average
ratio and individual bills. Another study [13] utilized real-time price forecasting
on the responsive tariff to decide on demand response in subsequent hours,
reducing appliance waiting times. Other approaches, such as the use of genetic
algorithms and particle swarm optimization, have been proposed to develop
demand response algorithms for residential customers. To address peak re-
bound issues, measures like imposing maximum hourly load constraints and
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random scheduling among customers have been suggested. The residential
load scheduling problem has been formulated in various ways, including as an
Integer Linear Programming (ILP) problem, Mixed-Integer Linear Program-
ming (MILP) problem, and Mixed-Integer Nonlinear Programming (MINLP)
problem [14], [15], [16]. The importance of demand optimization in conjunction
with energy storage devices such as batteries has been emphasized [17]. Finally,
parallel load optimization approaches have been proposed for aggregated cus-
tomer loads in the presence of renewable generation or customer-owned assets
[11].

The literature presents a wide range of simulation and optimization models
dedicated to demand response. Authors, such as those in [18], [19], [20], [21],
and others, provide comprehensive reviews, highlighting perspectives in the
field and presenting optimization models with various approaches regarding the
physical modeling of appliances. Common themes include cost and discomfort
assessment, with minimization of functional objectives and consideration of
consumer flexibility.

In particular, MILP optimization methods have become increasingly relevant
in the energy sector due to their ability to ensure global optimality [22].
Pyomo, a Python library for optimization problem formulation, and GLPK, a
software package for solving Linear Programming (LP) and MILP problems, are
fundamental tools in this field. Real-world applications of MILP optimization
include:

• Placement problems (PV system, wind system, charging station, etc.);
• Repair and maintenance problems (Wind farm, wind turbine, PV panels,

etc.);
• Electricity generation and scheduling problems (Unit commitment, eco-

nomic dispatch, etc.);
• Other (Gas storage, oil transmission, etc.)
The evolution of research on these optimization methods in the realm of

electrical balancing has led to significant progress. Optimization efforts focus on
linear mathematical models like MILP to ensure computational efficiency, bal-
ancing detailed modeling of load operations with implementation requirements
in economically feasible home energy management systems. The mixed-integer
aspect of these problems arises due to the integer or binary nature of some
variables, such as whether a PV system is installed at a node (1) or not (0).
This approach is crucial for accurately representing discrete decisions, such as
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the installation of a PV system, which directly influences the efficiency and cost-
effectiveness of home energy management systems. This research contributes to
the development of Advanced Home Energy Management Systems (AHEMS)
that optimize consumer energy resources. The application of complex models
supports tariff design and contributes to achieving efficient and sustainable
energy management.

2.2 Literature Gaps and Limitations
Demand Response (DR) in the residential sector is pivotal within the smart
grid framework due to the significant energy consumption during peak times
and the integration of local renewable energy generation with battery storage
devices. Despite its importance, several limitations and challenges persist in the
current state of demand response in homes equipped with distributed energy
resources (DERs):

• Optimization of Schedules: The optimization of energy distribution
schedules, which involves balancing local renewable sources, battery stor-
age utilization, and household appliance consumption while considering
both cost and comfort, remains a complex task [23].

• Uncertainty Modeling: Modeling parameter uncertainties, such as fluc-
tuating renewable energy generation and variable consumption patterns,
poses significant challenges. Users can mitigate energy consumption costs
by reducing usage or shifting demand to off-peak periods [24].

• Dynamic Modeling of Physics-Based Consumption: Accurate
dynamic modeling of energy consumption for various household appliances,
both individually and at aggregated community levels, continues to be
challenging.

• User Comfort: Minimizing inconveniences caused by delayed operation
of programmable appliances and maintaining comfortable thermal levels
for HVAC systems without exceeding user comfort limits is a significant
issue.

• Transition to Transactive Energy: Transactive energy, a generalized
form of DR that manages both supply and demand, requires real-time,
autonomous, and decentralized decision-making, making the transition
from traditional DR to transactive energy complex.
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The challenges in implementing demand response in homes with distributed
energy resources are numerous and multifaceted. Key challenges include:

• Technological Challenges: Integrating various technologies such as
smart meters, energy management systems, and communication infras-
tructures is complex. Ensuring interoperability among these technologies
is a significant hurdle.

• Regulatory and Policy Challenges: The lack of clear policies and
regulations regarding the operation and compensation of demand response
programs can hinder their widespread adoption.

• Economic Challenges: The economic viability of demand response
programs is a primary concern. High initial investments required for the
installation of necessary infrastructure can be a deterrent.

• Consumer Participation: Encouraging consumers to participate in
demand response programs is challenging. This requires educating con-
sumers about the benefits and providing incentives for participation.

• Privacy and Security: Protecting consumer privacy and ensuring the
security of communication networks used for demand response are critical
challenges.

• Network Stability: Managing network stability with high penetration
of renewable energy sources and the dynamic nature of demand response
is a complex task.

These challenges must be addressed to fully realize the potential of demand
response in homes with distributed energy resources.

Optimization codes are essential tools for addressing DR issues. These codes
manage and optimize energy usage, considering factors such as energy cost, the
availability of DERs, and consumer needs. Key points include:

• Optimization Techniques: Various optimization techniques have been
discussed in the literature for energy management problems, with hybrid
techniques showing better performance due to their faster convergence
speeds.

• Appliance Scheduling: Optimizing appliance scheduling strategies is
crucial for residential users, requiring consumer flexibility and awareness
[25].

• Demand Management: Demand management reduces energy acqui-
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sition costs and associated penalties by continuously monitoring energy
usage and managing appliance programs.

• Peak Issues: Optimizing energy demand for household appliances is
challenging for both utilities and consumers, especially during peak hours
when electricity consumption is highest [25].

These are just some ways optimization codes can address the challenges
and limitations of DR. However, the effectiveness of these codes depends on
various factors, including the quality of input data, the complexity of the energy
system, and specific consumer requirements.

Optimization methods for managing DR present several limitations:
• Computational Complexity: Some optimization methods can be

computationally intensive, particularly for large-scale problems [26].
• Uncertainty and Variability: The uncertainty associated with renew-

able energy resources and power system variability makes optimization
challenging.

• Demand Modeling: Precise modeling of energy demand is difficult due
to variability in consumer behavior.

• Conflicts Between Objectives: Multi-objective optimization problems
face difficulties in obtaining exact optimized solutions for all objectives
simultaneously [26].

• Information Access: Obtaining direct access to necessary information
for optimal coordination in a large, distributed, and dynamic system is
impractical and unnecessary.

• Limitations of Intelligent Algorithms: Intelligent algorithms used for
DR are limited by their capacity to handle parametric load uncertainty
associated with renewable energy sources (RES) and the power system
[27].

These limitations represent significant challenges that must be addressed to
enhance the effectiveness of optimization methods in managing DR.

Despite extensive literature on optimization models for DR, many models
presented involve simplifications that deviate from reality. Consequently, there
is a notable absence of effective models based on physical data. Most works
focus solely on load optimization to reduce consumer bills while maintaining
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comfort. Few consider the presence of renewable energy generation and battery
storage, which are now ubiquitous but often in a centralized manner, either
for a group of clients in an area or as part of microgrids [18]. For instance,
the article [11] addresses the optimization problem of residential homes by
considering them as microgrids equipped with smart appliances, distributed
storage, and distributed generation.

This thesis investigates the benefits of household participation in demand
response by adjusting loads. The household is equipped with an electrical
storage (BESS), a photovoltaic system (PV), an electric vehicle (EV), an
electric water heater (EWH) for hot water, and a thermal energy storage
system (TESS) connected to an air-to-water heat pump (HP). A two-capacity
heating model simulates the heating system’s response to demand. The BESS
smooths peaks in PV energy generation, while the TESS acts as a thermal
flywheel supporting the heat pump. The EV battery can also serve as an
additional intermittent storage system. A mixed-integer linear programming
(MILP) formulation is employed to solve the problem through a mathematical
programming approach. This formulation defines parameters, variables, and
constraints that work together to optimize the objective function by minimizing
the difference between the costs of imported power and the revenue from
exported power to benefit the user.

However, many challenges remain. For example, the resolution speed of
a MILP problem depends on the quality of the model formulation. If GLPK
takes too long to solve a problem, exploring other solvers such as CPLEX,
CBC from COIN-OR, SCIP, GUROBI, or IPOPT might be beneficial. In
conclusion, while recent advancements are promising, there is still much to be
done to fully harness the potential of MILP optimization methods in electrical
balancing. Further research and developments are expected to bring additional
improvements in this field [22], [28].

11



Chapter 3

Methodology

The methodology employed follows a systematic approach aimed at optimizing
the response to the needs of a prosumer with distributed energy resources.
The primary focus of this study is on the development of a Python code using
the Pyomo optimization modeling language and the GLPK solver, specifically
designed for MILP modeling the prosumer system and its connection to the
Finnish distribution network.

In Fig. 3.1, the logical flow followed by the code, from reading input data
and declaring decision variables to obtaining results, is depicted.

Figure 3.1: Main steps of the optimization code designed for the analysis.

The objective of this chapter is to model the system comprehensively.
Firstly, a detailed geographical context of the prosumer is provided, analyzing
energy market rules, with particular attention to the Day-Ahead price (DAp)
and energy constraints imposed by the Finnish government in the Uusimaa
region, the most densely populated area in the country. Subsequently, relevant
geographical data, including solar radiation and external temperature, are
examined, and the system’s schema on which the model is based is presented.
Following that, each key element of the prosumer model is examined in detail,
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analyzing every aspect and equation involved in its modeling. This chapter
primarily aims to present the complexity of the considered prosumer in a clear
and understandable manner, highlighting their energy consumption and demand
while contextualizing the analysis and research within a broader framework.
The ways in which the prosumer interacts with the distribution network and
dynamically operates in the context are explored. In summary, the chapter
aims to make the complexity of the considered user more accessible, providing
a comprehensive overview of their interactions with the energy system and the
surrounding context.

3.1 User Data and Localization
The user under examination is located in the Uusimaa Region of Finland
(Fig.3.2), the country’s most densely populated area, near the capital Helsinki
(60.32° North, 24.47° East - Time and Zone from Greenwich 2)1. The customer
owns a house situated at a distance from the urban center, allowing ample space
to install all the necessary equipment for the analysis. Additionally, they benefit
from a wide exposure to solar radiation, without hindrance from buildings
or surrounding obstacles; the topography of the region is predominantly flat,
characterized by small hills and extensive valleys, with numerous lakes and
rivers, but lacking mountain ranges.

Figure 3.2: Uusimaa Region, Finland [29]. The highlighted area in orange
represents the Helsinki district.

1Data source: IWEC Data 029740 WMO Station Number, elevation 56 m
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To simplify the calculation of power produced by the user’s solar panels, it
was assumed that they are oriented towards the south with an optimal angle,
utilizing input data for direct normal radiation.

Regarding the climate, the region experiences a cold temperate climate.
Winter temperatures can drop significantly, leading to a pronounced increase
in heating demand. In summer, temperatures are generally milder but still
cool compared to other European regions. Concerning solar irradiance, during
the southern Finnish summer, the sun can remain visible for many hours a day.
However, in winter, sunlight hours can be limited, with the sun rising for only
a few hours a day, impacting energy production during that period.

In the following sections, a detailed examination will be conducted on
climatic data for analysis, variations in the DAp, government energy constraints,
and the critical load across different months of the year.

3.1.1 Climate Data
The pertinent climatic data, intended for subsequent use as input in the
following chapters, has been collected and organized in .csv files. The data
reading process was conducted using Excel software. The collection of the
examined data occurred at an hourly resolution for each day of the year 2022
in the Helsinki area, utilizing the official data from the Finnish Meteorological
Institute [30].

The Finnish Meteorological Institute employs climatic data comprising 8760
annual hours, provided free of charge. The official website contains a detailed
list of historical climatic data retrieved and recorded from various weather
stations throughout Finland. All data can be easily downloaded, allowing for
clear and straightforward visual comprehension. Among the extensive dataset
analyzed for the city of Helsinki, specific data points extracted include the
outdoor temperature (T ext

h ) and irradiance (Gh). In Fig. 3.3 and Fig. 3.4,
the annual graphs depicting the outdoor temperature in °C and irradiance in
Wh/m2 are presented, respectively.
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Figure 3.3: Temperature trend in °C on an hourly basis, and monthly average
of T ext

h .

Figure 3.4: Irradiance trend in Wh/m2 on an hourly basis, and monthly
average of Gh.

It is crucial to emphasize that both figures contain duplicate graphs: for
each one, the first illustrates the annual hourly resolution, while the second
represents the monthly average. The inclusion of the monthly average has been
intentional to provide an immediate overview of the trends on a monthly basis,
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allowing for a clearer and visually comprehensible segmentation.
In Fig. 3.3, the marked variability of the external temperature (T ext

h )
throughout the year is evident, especially in the high-resolution hourly graph.
The external temperature appears generally unpredictable, effectively adapting
to the user’s geographical context. It is immediately clear that the external
temperature suits the user’s location. During the winter months, particularly
in January with an annual minimum of -22.1 °C and in December, there is
a considerable number of hours when the external temperature drops below
zero. In contrast, during the summer period, the external temperature reaches
moderately high values, peaking in June with an annual maximum of 30.6 °C.

The Fig. 3.4 illustrates the distribution of data related to irradiance (Gh)
throughout the same year. As known, in regions located well north (latitude
exceeding 60 degrees north relative to the equator), a complete scarcity of daily
sunlight hours occurs, often falling below 5 hours, particularly during autumn
and winter periods, with the opposite being true during spring and summer
seasons. Both graphs, especially the one depicting the monthly average of
irradiance (Gh), align perfectly with the external temperature trends. During
autumn and winter, characterized by reduced solar illumination, a typical
drastic drop in temperatures is observed, while the opposite occurs in the
summer period. In detail, the month of June stands out as the brightest period
of the year, undoubtedly favoring increased production from the installed
photovoltaic system. Furthermore, it is easily inferable that the months with
lower photovoltaic production will be January and December. During these
periods, it is conceivable that the user may need to import a greater quantity
of electrical energy from the distribution grid to meet energy demands.

In summary, the analyzed climatic data provide a comprehensive hourly
overview throughout the year. These data, including information from years
preceding 2022, serve as a valuable resource for deriving fundamental parameters
crucial for optimization. Examples include the hourly power output of the
photovoltaic system in watts, the maintenance of internal building comfort,
the Coefficient of Performance (COP) of the air-to-water heat pump, among
others.

It is important to highlight that the Finnish Meteorological Institute facil-
itates the collection of data from various meteorological stations in Finland.
However, the scope can also be extended to areas outside Finnish territory (for
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example, using softwre like Climate Consultant 6.0 software could be employed
to obtain representative climatic data for various regions of the world). Indeed,
the developed Python code is versatile, capable of performing the necessary
calculations and adapting to variations. Furthermore, the inclusion of historical
climatic data allows for a deeper understanding of long-term trends and varia-
tions, providing a comprehensive historical context for the climatic conditions
in the location under consideration anywhere in the world.

3.1.2 Day-Ahead Price Variations
In the context of the energy market, the "Day-Ahead" price (DAp) is a crucial
indicator that emerges from the daily implicit auction conducted by Nord Pool.
This market allows operators to buy and sell electricity for delivery the next
day. The price is determined based on the supply and demand for electric
power.

Market operators submit their bids to buy and sell electricity for each
hour of the following day. Nord Pool conducts an implicit auction, taking
into account both the electricity price and the available transmission capacity
between market areas. The auction establishes the electricity price for each
hour of the following day, known as the DAp.

The DAp can vary significantly depending on various factors (Fig. 3.5),
including the demand for electric power, the availability of generation capacity,
weather conditions (which can impact renewable energy production), and the
transmission capacity between market areas. Nord Pool, the leading energy
market in Europe, offers day-ahead and intraday markets to its customers.
This market allows operators to buy and sell electricity for delivery the next
day or on the same day. Nord Pool operates in 15 countries (included Finland)
and 21 bidding zones. Every day, more than 300 buyers and sellers place over
2000 orders. On an annual basis, approximately 500 TWh are traded. [31]
Nord Pool provides a wide range of order types for buyers and sellers and
publishes the available capacities on interconnectors and in the network at
10:00 CET. Buyers and sellers have until 12:00 CET to submit their final bids
to Nord Pool for the auction for delivery hours of the next day. Submitted
orders are matched with other orders in the pan-European market matching
process. Hourly settlement prices are typically announced to the market at
12:45 CET or later. [31] After the publication of prices, individual results are
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reported to each buyer and seller. The physical obligation to deliver/consume
the purchased or sold energy follows as Nord Pool nominates transactions to
the applicable imbalance settlement process in each country.

In the code, an optimization time window H has been implemented to
maximize efficiency within the scheduled interval for declaring the new price
list DAp. The data used for this analysis is derived from the 2022 hourly energy
prices, extracted from the ENTSO-e official website [32], as shown in Fig. 3.5.

(a) Season: Autumn (September, Octo-
ber, November)

(b) Season: Winter (December, January,
February)

(c) Season: Spring (March, April, May) (d) Season: Summer (June, July, August)

Figure 3.5: Hourly resolution time plots representing the variation of DAp in
€/kWh. Data divided by seasons in the year 2022 [32].

The time window is defined by (24 hours × number of days) in the code
is synchronized with the announcement of DAp prices at 12:00 CET by Nord
Pool. This aligns with the objective of the "day-ahead" market, which aims to
determine energy prices for each hour of the following day.

It is crucial to note that although the model can optimize based on DAp,
these prices are influenced by multiple real-time factors already included in
the 2022 ENTSO-e annual data. In 2022, electricity prices surged due to
geopolitical tensions, while in 2021, they experienced an upswing towards the
year-end owing to the energy crisis. In 2020, prices continued to align with the
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preceding years, maintaining lower levels. Presently, 2022 has been selected as
it holds the potential to yield improved model results, given the higher price
differentials observed on an hourly basis. These factors include fluctuations in
energy demand, the availability of generation capacity, weather conditions, and
transmission capacity between different market areas.

Furthermore, using historical data for hourly energy prices implies that
the model cannot predict future market prices. The model results should be
interpreted as an indication of how energy could have been optimized in 2022,
rather than as a forecast for the future. However, it is possible to conduct a
future study on price prediction and integrate it into the existing code.

The primary focus of the current work is not price prediction but rather
providing code applicable to various contexts, capable of optimizing energy
organization based on prices to maximize user benefit. Overall, the developed
code provides a solid foundation for future studies, including those related to
economics and accurate forecasting models.

3.1.3 Prosumer Critical Loads
In the residential context, the management of critical electrical loads is of
paramount importance to ensure energy efficiency and the safety of the dwelling.
Critical loads within a residence may encompass essential devices (such as
refrigerators, security systems, etc.) that must remain powered even in the event
of a power outage. Other loads, such as non-essential lighting or appliances,
can be temporarily deactivated to prevent overloads. A meticulous system
programming generally allows for the recording of energy consumption values,
providing statistical data on consumption based on users and time slots. These
pieces of information can be instrumental in further optimizing energy usage
within the dwelling.

For a comprehensive analysis of the case study, data on the user’s critical
loads (a family of 3-4 individuals) were collected throughout the entire year
of interest. In Fig. 3.6, the graph depicting the critical loads on an hourly
resolution for the entire year 2022 is presented, with a zoom on the first week
of January for a more detailed view.
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Figure 3.6: Customer critical load over time in W ; data from the first week
of January in the box.

The management of critical loads in the residential domain is a fundamen-
tal aspect in ensuring both energy efficiency and the safety of the residence.
Additionally, the incorporation of home automation systems could significantly
facilitate this management, allowing for automated control of energy consump-
tion and cost reduction.

3.1.4 Import/Export Energy Constraints
Promotion of the use of renewable energy is part of the energy and climate policy
that aims for sustainable energy production and consumption to curb climate
change. In Finland, the Energy Authority is responsible for the implementation
of the EU renewable energy policy and the national renewable energy policy.

The Energy Authority governs the feed-in tariff scheme for renewable energy
subsidies, arranges auctions for renewable energy subsidies and transport
infrastructure projects, as well as collects wind power charges. Furthermore, the
Energy Authority oversees compliance with the sustainability of biofuels and fuel
quality, the guarantee-of-origin system for renewable electricity and educational
establishments for mechanics involved in the installation of renewable energy
systems. The Energy Authority also provides energy advice for consumers,
municipalities and enterprises, as well as carries out impact assessments on
renewable energy policy actions and prepares related reports and statistics [33].

For this reason, considering that the feed-in tariffs are determined by the
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Energy Authority in Finland and may be adjusted to promote the adoption
of renewables, it would be challenging to obtain precise reference numbers for
the feed-in tariff. Consequently, the following logic has been hypothesized at
the user-grid connection point (Fig. 3.7). It is emphasized that, due to the
variability of the energy context, it is still possible to modify the methodology
by which the costs and tariffs for the purchase/sale of electricity from the grid
by the prosumer are considered and identified in Finland.

Figure 3.7: Hourly tariff assumed for the import and export of electricity in
€/kWh.

In the context of the Finnish energy landscape, it is important to note that
the acquisition of electrical energy from the grid is not exclusively limited to
the DAp; it also includes additional charges associated with distribution and
energy taxation, administered by the local distribution entity. In this study,
additional costs related to energy importation compared to the Day-Ahead
price have been hypothesized at 3 cents per kWh for both distribution and
energy taxation. These factors should be considered in the assessment of the
overall costs related to energy importation.

Concerning the sale of energy to the grid, the transaction also occurs at
the DAp but is subject to a specific deduction of 0.3 cents per kWh. This
reduction constitutes a penalty affecting the economic return for the prosumer.
It is essential to emphasize that these dynamics may vary depending on energy
policies and prevailing tariffs. Therefore, constant monitoring of regulatory and
tariff elements is recommended to ensure that the analysis and results closely
align with the reality of the situation.
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In Finland, the prevalent standard for electrical connections among distri-
bution system operators (DSOs) is typically 3 × 25 A. This selection is likely
informed by technical and safety considerations, alongside the usual power
demands of residential and small commercial structures. Such connections are
well-suited for properties like detached houses, semi-detached houses, leisure
dwellings, or community maintenance buildings. Determining the size of the
main fuse, typically set at 25 A per phase, should involve consultation with
an electrical designer or contractor. However, the specific rationales may vary
among different DSOs and depend on factors such as network capacity, regula-
tions, and customer requirements. These entities are part of a broader network
of DSOs in Finland, as outlined on the Energiavirasto website [33]. In the
context of a low-voltage three-phase network connection (which in Finland
operates at 400 V and 50 Hz), it can be asserted that the user can draw or
inject a maximum power, denoted as Pthreshold in kW . This power is calculated
based on the ampere limit set by the DSOs.
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3.1.5 Objective Function and Logic
The objective function in this Pyomo optimization model represents the total
cost associated with the power exchange between the building and the grid
over the specified optimization horizon. The objective function is defined as
the sum of the cost of importing power from the grid and the revenue from
exporting power to the grid at each hour, considering the day-ahead electricity
prices (DAp).

The expression for the objective function is represented by the Eq. 3.1:

Minimize
Ø
h∈H

[Pimp,h · (DAp,h + cimp) − Pexp,h · (DAp,h − cexp)] (3.1)

Where:
• cimp = 3 cents/kWh + 3 cents/kWh

• cexp = 0.3 cents/kWh

The objective function comprises two key terms: one addresses the cost
of imported power, represented by Pimp,h, which reflects the electrical power
at hour h drawn from the grid at an associated hourly cost. The expression
(DAp,h + cimp) captures this cost, with added variations for taxation.

Conversely, the second term concerns the profit from exported power,
denoted by Pexp,h, signifying power at hour h sent to the grid. The expression
(DAp,h − cexp) represents the total benefit, with a small additional negative
variation.

The logic underlying the analysis is based on minimizing an objective function
of the household. By defining the model and implementing the variables that
regulate it, it is possible to optimize energy management for the single. The
simulation period is denoted as H. The proposed model starts at hour h =
0. Input parameters for the subsequent hours are read. These parameters
are then used in the optimization model discussed in the following sections.
The input data is loaded into Pyomo for optimization. The optimization
process generates decision trajectories for the period, minimizing the objective
function dependent on the read DAp. Subsequently, the process is repeated,
with new input parameters read for each iteration. This approach allows for
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the optimization of decisions based on real data provided for each selected
hourly interval throughout the entire length of H. The model developed for
each user is represented in the block diagram in Fig. 3.8.

Figure 3.8: Block diagram for the proposed framework.

The objective is to minimize the total cost, which includes the cost of
imported power and the penalty/reward for exporting power. It was subject
to some technical constraints and limits which ensure convenience of the user.
The above-mentioned constraints will be explained in the next section by
thoroughly analyzing the components of the model representing the prosumer-
grid connection system.
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3.2 Prosumer-Grid Framework
The Prosumer-Grid integration system, implemented in the examined Finnish
house equipped with a PV system as a RES for generation, reveals an innovative
perspective towards a transition to a more sustainable and intelligent energy
network [34]. This interconnected ecosystem is based on a solid foundation
consisting of the Point of Common Coupling (PCC) and the MV/LV transformer.
The PCC is the point in the microgrid’s electrical circuit connected to the main
electrical grid. This system allows the villa to receive energy from the main
electrical grid, serving as a junction node between decentralized production
and centralized distribution of energy [35]. On the other hand, the MV/LV
transformer is a static electrical machine operating in alternating current
and based on the phenomenon of electromagnetic induction. This device is
responsible for converting voltage from one level to another, ensuring that
energy is transported and distributed efficiently in the local electrical network.
As is now known, with the presence of the photovoltaic system, the connection
system is further enriched. The solar panels are connected to an inverter,
essential for transforming the DC electrical energy generated by the panels
into AC usable in the domestic field and suitable for injection into the grid.
The inverter, therefore, constitutes the bridge between the self-produced solar
energy and the connection to the PCC and the MV/LV transformer. This
advanced configuration offers several advantages. Firstly, the house can benefit
from clean and locally produced renewable energy, reducing dependence on
conventional sources and contributing to environmental sustainability. Secondly,
the use of an energy storage system such as the BESS allows for storing excess
energy produced for future use, improving energy consumption efficiency. The
integration of technologies such as the TESS and the EWH adds a further layer
of flexibility and sustainability. Finally, the inclusion of an EV in the system
expands the possibilities of using solar energy. The EV can be recharged (and
discharged as needed) using self-produced energy, contributing to sustainable
mobility and reducing the use of fossil fuels. In this section, the comprehensive
scheme of the entire household and the equations that model it will be described.
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3.2.1 Prosumer Scheme: Model Description
Below in Fig. 3.9, the complexity of the prosumer’s structure connected to the
grid is depicted. It is specified that the electric power flows are highlighted in
black, while water flows are highlighted in red (for the sake of simplicity in the
diagram, the inverter has not been depicted and the return and the outgoing
have been represented as a single flow; furthermore, the HP is represented
internally as a single unit.).

Figure 3.9: Simplified scheme of the prosumer under examination connected
to the distribution grid.

The scheme depicts a typical house located, as mentioned, near Helsinki. It
is inhabited by a family, assumed to consist of 4 people. The house includes a
technical room where BESS, TESS, EWH and an air-to-water HP that powers
the building’s HVAC system are located. Air-to-water HP provides heat to
the heating water circulation system for heating, and absorbs heat from it
for cooling. On the roof, as mentioned, there is a PV system as a source of
on-site generation. Critical loads and domestic hot water (DHW) demand
are simply highlighted. It is assumed that the user has an Electric Vehicle
Charging Station (EVCS) outside the house. On the left, the transformer is
present with the subsequent connection to the national electrical grid. The
entire system communicates through the PCC and the meter that calculates
how much energy is imported and exported every hour. It is emphasized that
the diagram is simplified, and not all individual connections constituting the
electrical and heating/cooling systems of the building are represented.
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3.2.2 PV Modeling
A simple model for calculating the PV output was used in Ref. [36]. The model
is based on irradiance and temperature data, as well as PV characteristics,
which can be found in manufacturer’s datasheet. The model is presented in
Eqs. 3.2 and 3.3.

P P V
h = P P V

max · Gh

Gref

· ln(ISC)
ln( ISC

Gh
· Gref )

·
T P V

ref

T P V
h

(3.2)

T P V
h = T ext

h + NOCT − 20
80 · S (3.3)

The Eq. 3.2 calculates the output power of the photovoltaic module by
correcting for solar irradiance, short-circuit current, and temperature. The
second term in Eq. 3.3 represents the contribution to heating due to the
normal operating cell temperature and insulation level. The factor of 80 in
the denominator appears to be a normalization factor to scale the difference
between NOCT and 20 to a range that influences the heating contribution.

In order to investigate various evidences with different PV system sizes, the
hourly production in per unit (PU) has been computed (Fig. 3.10).

Figure 3.10: PV hourly production PU waveform.

Consequently, the values will consistently range between zero and one,
facilitating the maintenance of the proportionality of the waveform under exam-
ination for the analyzed year. However, it will be multiplied by a factor P P V

peak

to establish the maximum size of the system using the peak value obtainable
from market-supplied technical specifications provided by manufacturers. By
dynamically adjusting the peak-watt value of P P V

peak in the code, it becomes
feasible to conduct diverse experiments in distinct scenarios by manipulating
the installed plant size.
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Below, in Tab. 3.1, organized input data regarding the user’s PV in the
Base Case can be found. It is important to note that for subsequent cases, only
the P P V

peak value will be modified – the sole governing factor determining the
system size once the generation waveform in per-unit has been identified, as
explained earlier.

Table 3.1: PV data (Base Case).

Parameter Unit Value
Gref Wh/m2 1000
P P V

peak kW 5
ISC A 10
T P V

ref °C 25
NOCT °C 45
S mW/cm2 300

3.2.3 BESS Modeling
Electrochemical generators, or secondary batteries, harness electrical energy
from stored potential within electrochemical bonds. These rechargeable accu-
mulators boast efficiencies surpassing 90% [37]. Lithium-ion batteries dominate
modern energy storage, requiring caution against risks in electrical or thermal
overload, mandating meticulous cell voltage balancing and battery management
systems. A battery-equipped system regulates mismatches between electricity
load and PV generation by storing surplus PV power and discharging to meet
remaining demand. This achieves the goal of maximizing renewable energy use
and effectively reducing PV rejection rates [38], [39], [40].

In order to simulate the precise charging and discharging behavior of the
BESS system, the model employed in Ref. [41] was adhered to. The charging
and discharging power of the BESS is bounded in Eqs. 3.4 and 3.5, and
to prevent simultaneous charging and discharging, binary decision variables
are constrained as in Eq. 3.6. It is assumed that the nominal charging and
discharging power of the battery are equivalent to each other.

P BESS
ch,h ≤ bBESS

ch,h · P BESS
nom ∀h ∈ H (3.4)

P BESS
dch,h ≤ bBESS

dch,h · P BESS
nom ∀h ∈ H (3.5)
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bBESS
dch,h + bBESS

ch,h ≤ 1 ∀h ∈ H (3.6)

The State of Charge (SOC) of the BESS in any time slot h may be de-
termined by constraint 3.7 while Eq. 3.8 bounds the state of charge for the
purpose of increasing the life cycle.

SOCBESS
h = SOCBESS

h−1 + ϵBESS
c · P BESS

ch,h −
P BESS

dch,h

ϵBESS
d

∀h ∈ H (3.7)

SOCBESS
min ≤ SOCBESS

h ≤ SOCBESS
max ∀h ∈ H (3.8)

The Eq. 3.7 represents a SOC model for a BESS, where:
1. ϵBESS

c is the charging efficiency, representing the percentage of electrical
energy effectively stored in the battery during the charging phase.

2. ϵBESS
d is the discharging efficiency, representing the percentage of electrical

energy that can be effectively extracted from the battery during the
discharging phase.

These efficiencies take into account energy losses that occur during the
charging and discharging processes. For example, a portion of the electrical
energy supplied to the battery during charging is dissipated as heat due to the
internal resistance of the battery; moreover, it is important to also consider
losses from the converters used for the charging and discharging processes.
Similarly, during discharge, not all stored energy can be extracted due to
internal losses.

The Eq. 3.8 imposes a constraint on the SOC, specifying that the SOC
at each hour h must be within SOCBESS

min and SOCBESS
max . This constraint

ensures that the battery is neither overcharged nor excessively discharged, both
conditions that could potentially damage the battery and reduce its lifespan
[42], [43]. These limits have been set to mitigate: battery stress; battery
degradation (both full charge to 100% and complete discharge to 0% can lead
to faster battery deterioration); charge cycles (the number of charge cycles, i.e.,
a full charge and discharge of the battery, affects battery lifespan). For optimal
battery lifespan and performance, aim to keep the battery charge between 20%
and 80% of its nominal capacity.
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Given the objective of minimizing imports, the solver tends to discharge the
battery towards the end of this period. To prevent complete discharge at the
end of the last day, a condition is employed where the state of charge (SOC)
at the end equals that at the beginning. Specifically, the SOC of the BESS
is set to half of its maximum capacity at the end of the interval H. Without
this condition, the optimization model treats the energy charged initially as
"free" and utilizes it until the end. These additional constraints are outlined in
equation (Eq. 3.9).

SOCBESS
h=(first hour) = SOCBESS

h=(H−1) = 0.5 · CBESS
nom (3.9)

In the following table (Tab. 3.2), all the necessary data for modeling the
BESS in the Base Case are provided 2.It’s worth noting that the implemented
code enables real-time adjustment of multiple parameters to conduct supple-
mentary simulations as needed. This includes defining the battery size and
charge/discharge power according to the installed device. The model, as previ-
ously described, operates to minimize the objective function by adjusting the
BESS system’s charging and discharging in response to price fluctuations.

Table 3.2: BESS data (Base Case).

Parameter Unit Value
CBESS

nom kWh 13.5
P BESS

nom kW 5
SOCBESS

min , SOCBESS
max kWh (0.2 · CBESS

nom ), (0.8 · CBESS
nom )

ϵBESS
c , ϵBESS

d − 0.95, 0.90

In the realm of BESS sizing, similar to PV systems, adopting proper
sizing practices is crucial for significant energy savings. Oversizing the storage
system poses the risk of high investment costs that may not be economically
advantageous in the long run, considering the battery’s lifespan. However,
delving into the sizing and overall life cycle costs of storage systems alongside
PV installations is complex and isn’t the primary focus of this study.

2 BESS data source: Tesla Powerwall 2 datasheet
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3.2.4 EVCS Modeling
To model the charging profile of the EV, three parameters are essential: the
rated charging power, the plug-in time, and the state of charge of the battery
[44]. The power demand of the EV is also influenced by the Demand Response
(DR) control signal received from an external source, such as a home controller
or a utility considered by the code. Regarding the EV’s rated charging power,
EV driving patterns are used to determine the energy storage status, i.e., the
battery SOC. The assumed daily distance traveled by the EV in a distribution
circuit is fixed and determined by a decrease of approximately 50% of the
maximum capacity. It is presumed that the vehicle covers the same distance
during the non-connection period, arriving at the connection point with the
same SOC percentage each time (any brief recharges during the journey are
neglected).

In the experimental phase, annual hourly data of the available charging
power (ACP) were gathered for a generic user. The ACP is derived from the
time of the car being parked and connected to a charger. These data were
subsequently compiled in an additional .csv file, which was read by the input
code (as illustrated in Fig. 3.11).

Figure 3.11: Example: Available Charging Power for the EV, data from the
first week of January.

Before detailing the equations modeling the EVCS logic, let’s review a code
snippet that manipulates data concerning the EV’s connection to the charging
station, followed by a brief explanation of its functionality.
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Two lists of values are identified through a loop iterating over a set of
temporal indices (H):

• Tarrival represents a list containing the initial temporal index, initialized
with 0;

• Tdeparture is an empty list that will be used to store the temporal indices
when the available charging power transitions from a positive value to
zero, based on the dataframe containing the values of Electric Vehicle
Power (EVP).

The code’s loop checks if the current temporal index is greater than 0 and if
there is positive ACP at the current temporal index. If the condition is true,
and the ACP at the previous temporal index was zero, it adds the previous
index to Tarrival. This indicates the beginning of the connection.

The code then proceeds to identify the departure times (Tdeparture):
• It checks if the current temporal index is greater than 0 and if the charging

power at the current temporal index is zero;
• If the condition is true, and the charging power at the previous temporal

index was positive, it adds the previous index to Tdeparture. This indicates
the end of charging.

Finally, a binary representation of the charging state (wEV ) occurs: a list
wEV is created containing binary values (1 or 0) based on time the charging
power at each temporal index is greater than zero or not.

In summary, the code processes data on charging power, identifies the start
and end times of charging events, and creates a binary representation of the
charging state (wEV ).

The equations, similarly to the BESS case, that model the behavior for the
charging and discharging power of the EV are as follows (Eqs. 3.10, 3.11, 3.12);
it is assumed that the nominal charging and discharging power of the battery
are equivalent to each other:

P EV
ch,h ≤ bEV

ch,h · P EV
nom ∀h ∈ H (3.10)

P EV
dch,h ≤ bEV

dch,h · P EV
nom ∀h ∈ H (3.11)
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bEV
dch,h + bEV

ch,h ≤ 1 ∀h ∈ H (3.12)

In addition, it was necessary to consider a constraint ensuring that both the
charging and discharging powers of the EV remain consistently lower than the
ACP each hour(P ACP

h ). Consequently, the vehicle cannot charge or discharge,
in favor of the user, a power quantity exceeding that available each hour. This
is identified in Eqs. 3.13, 3.14:

P EV
ch,h ≤ P ACP

h ∀h ∈ H (3.13)

P EV
dch,h ≤ P ACP

h ∀h ∈ H (3.14)

Once the vector wEV is identified, it will be possible to determine the time
intervals during which the electric vehicle is connected or disconnected. The
aforementioned vector contains only binary values (0 and 1). The two different
scenarios expressed in the system 3.15 are explored (it is considered that for
the first iteration, the SOC of the EV is set equal to the value SOCEV

in ):


SOCEV

h = SOCEV
h−1 + ϵEV

c · P EV
ch,h − P EV

dch,h

ϵEV
d

if : wEV [h] = 1

P EV
ch,h + P EV

dch,h = 0 if : wEV [h] = 0
(3.15)

The first equation in 3.15 represents a SOC model for a EV battery, where
(similarly to the BESS model, energy losses occurring during the charging and
discharging processes are taken into account):

1. ϵEV
c is the charging efficiency, representing the percentage of electrical

energy effectively stored in the EV battery during the charging phase.
2. ϵEV

d is the discharging efficiency, representing the percentage of electrical
energy that can be effectively extracted from the EV battery during the
possible discharging phase.

Furthermore, in the second equation in 3.15, when the vector wEV has a zero
entry, the sum of the charging and discharging powers from the perspective of
the charging station is necessarily zero since the vehicle is not connected.

To identify that the vehicle is consistently discharged by the same percentage
of SOC, it has been established that for each Tarrival, it holds that (Eq. 3.16):
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SOCEV
h = SOCEV

in ∀h = Tarrival and ∀ h ∈ H (3.16)

Furthermore, it is desired that the EV battery is fully charged in the last
hour before departure, ensuring that the user has the vehicle fully charged
when needed. For each Tdeparture, it holds that (Eq. 3.17):

SOCEV
h = SOCEV

max ∀h = Tdeparture and ∀ h ∈ H (3.17)

For the same reasons explained earlier in section (3.2.3), being that it is,
in any case, an electric storage system, it imposes a constraint on the SOC,
specifying that the SOC of EV at each hour h must be within SOCEV

min and
SOCEV

max (Eq. 3.18).

SOCEV
min ≤ SOCEV

h ≤ SOCEV
max ∀h ∈ H (3.18)

Below, in Tab. 3.3, the data for an electric vehicle are presented 3, featuring
a nominal capacity of 50 kWh and a maximum AC charging power of 11 kW

[45]. The value 7.36 kW represents the upper limit set by the charging station
(maximum value in the ACP set). It is possible to make changes by modifying
the EV data based on the specific model owned by the user (for other typical
values, it is possible to refer to [45]).

Table 3.3: EV data (Base Case).

Parameter Unit Value
CEV

nom kWh 50
P EV

nom kW 11
SOCEV

in kWh 0.6 · CEV
nom

SOCEV
min, SOCEV

max kWh (0.2 · CEV
nom), (0.8 · CEV

nom)
ϵEV

c , ϵEV
d − 0.95, 0.90

3EV data source: Tesla Model 3 datasheet

34



Chapter 3

3.2.5 EWH Modeling
In this section, an examination of the EWH model will be conducted. The
DHW profile is depicted in Fig. 3.12. According to statistics provided in [46],
the total daily DHW consumption considered here is well suitable for a dwelling
occupied by 3–4 persons in Finland.

Figure 3.12: Daily DHW consumption profile of a household in liters/h.

The physical model proposed in Refs. [41], and [47] is followed in this
work. The temperature of DHW at hour h inside a tank may be calculated
as in Eq. 3.19. A distinction from the model proposed in the papers lies in
the consideration of thermal losses through the tank enclosure in this study.
The DHW usage action triggers the operation of EWH to maintain the DHW
temperature inside the tank. However, the users may allow a small deviation
from the set point to participate in the DR program offered by the aggregator.
In this regard, the EWH may be scheduled at any time slot regardless of the
usage profile concerning the comfort levels of each user. The DHW temperature
must remain in specified comfort limits as in Eq. 3.20. For simplicity, it
is assumed that EWH can operate at any continuous level bounded by the
maximum rating in Eq. 3.21.

T DHW
h =

T DHW
h−1 · (1 − ϕEW H

T

100 ) · (V EW H − V DHW
use,h · ∆h)

V EW H
+

+
T EW H

in · V DHW
use,h

V EW H
· ∆h + P EW H

h

(cw/3600) · V EW H
· ∆h

60 min/h
∀ h ∈ H

(3.19)
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T DHW
min ≤ T DHW

h ≤ T DHW
max ∀h ∈ H (3.20)

0 ≤ P EW H
h ≤ P EW H

max ∀h ∈ H (3.21)

Below, in Tab. 3.4, all data related to the electric water heater model
is presented (Base Case). It is noteworthy that the system type is that
of an electric boiler equipped with an internal resistance to heat the water
when necessary, in order to comply with Finnish regulations on buildings [48]
regarding the temperature of domestic hot water. It should be emphasized
that the tank is connected to the aquifer, ensuring a constant replenishment
to maintain a water level above a certain limit. In general, the temperature
of the water from the aquifer can vary, depending on external conditions and
geographic location. For simplicity, a temperature of 10 °C has been assumed.
Furthermore, the temperature inside the tank must be controlled and sufficiently
high to limit the risk of legionella and scaling, as referenced in [49], thereby
enabling the safe use of domestic hot water by the users. It was decided to set
a preferred range between 58 and 60 ◦C.

Table 3.4: EWH and DHW data (Base Case).

Parameter Unit Value
cw J/kg/°C 4186
T DHW

min , T DHW
max °C 58, 60

T DHW
in °C 10

V EW H l 200
P EW H

max kW 2
ϕEW H

EHW − 0.5%
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3.2.6 TESS Modeling
Regarding the TESS model, the choice has been made to incorporate a tank
that operates simultaneously with the building’s HVAC system. Various types
of systems are available, and it has been chosen to utilize a mode similar to
those shown in Refs. [50], [51]. The only difference is that the tank can be
heated via direct electricity to address peak loads, especially during the coldest
periods of the year. Positioned in series with the HP, as illustrated in Fig. 3.9,
this tank aligns with the model presented in a simplified form in [52]. More
specifically, it has been decided to show the connection between the tank and
the heat pump used, as depicted in Fig. 3.13.

Figure 3.13: Design detail for air-to-water HP with electrical resistance [53].

The tank serves as a thermal reservoir, akin to a flywheel. It can be heated
during the charging phase, typically when energy prices are favorable. Later,
as needed, the tank releases hot water to the terminals, utilizing the stored
thermal energy. The advantage of this heating system lies in its cost efficiency,
attributed to the COP of the heat pump, which makes heating the water in the
tank economical. In extremely cold weather, when the COP drops, an electric
heater assists in maintaining the water temperature. The heat pump uses a
thermodynamic cycle to capture thermal energy from the external air, even at
lower temperatures, and transfer it to the water in the internal heating system.
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Ultimately, the heat transfer fluid from the heat pump provides additional
thermal energy to the TESS, improving the overall efficiency of the system.
The heated water can be used to warm the environment, for example, through
a heating system, and then it is sent to the terminals. Even when heating is
not active (summer period), the heat pump is used to cool indoor spaces. In
this case, the tank could serve as a thermal reservoir for the heat removed from
the spaces during the cooling process.

In the Nordic energy market system, an aggregator is mandated to com-
municate the power proposal for the upcoming day to the corresponding DSO
ahead of the actual energy delivery phase. The tank contains warm water with
a temperature ranging from 30°C to 90°C. Exploring efficient interaction in
the context of a smart grid between a residential customer and an electric
aggregator, the latter serves as an intermediary for electricity procurement,
facilitating mechanisms for triggering demand response. Equipped with a
system of heating with flexible charging capacity, the customer, with the aid
of the established communication infrastructure and a smart meter, receives
communicated prices for the next 24 hours from the aggregator. This orches-
trated system empowers users to identify optimal times to minimize imported
power from the grid, strategically drawing power during periods of lower market
prices. Consequently, the system meets energy needs while offering support
for heating during peak pricing, fostering significant energy savings. Responsi-
bility for flexible load planning at the customer level is entrusted to a home
energy management system, contributing to a cohesive and responsive energy
consumption strategy.

At the beginning it’s possible to identify the constraints for tank charging
and discharging power, considering that the water temperature in the tank
remains within the specified limits T T ESS

min and T T ESS
max , ensuring it stays within

an acceptable temperature range. The charging power and discharging power
in each time interval h cannot exceed the maximum rated power of the TESS
system when the binary variables are equal to 1 (Eqs. 3.22, 3.23). The sum of
the coefficients indicating the decision to charge the tank and the decision to
discharge the tank in each time interval cannot exceed 1, implying that only
one of the two operations can occur at a time (3.24).

P T ESS
ch,h · bT ESS

ch,h ≤ P T ESS
max ∀h ∈ H (3.22)

38



Chapter 3

P T ESS
dch,h · bT ESS

dch,h ≤ P T ESS
max ∀h ∈ H (3.23)

bT ESS
ch,h + bT ESS

dch,h ≤ 1 ∀h ∈ H (3.24)

Regarding the constraint for tank energy balance in the time intervals, the
tank’s SOC is determined based on the previous interval’s value, charging
power, discharging power, and heat losses through the tank (Eq. 3.25). For the
first interval, the initial tank’s SOC is set proportionally to the half of tank’s
capacity in liters and this represents the initial preparation of the system.

SOCT ESS
h = SOCT ESS

h−1 · (1 − ϕT ESS
T ) + (P T ESS

ch,h − P T ESS
dch,h ) · ∆h ∀h ∈ H

(3.25)
The state of charge in Wh is upper-bounded by the maximum capacity (Eq.

3.26).

SOCT ESS
h ≤ V T ESS · cw · (T T ESS

max − T T ESS
min ) · 1

3600 ∀h ∈ H (3.26)

The state of charge of the tank at the last hour, is set to be equal to the
initially calculated state of charge to ensure appropriate continuity in the model
(Eq. 3.27).

SOCT ESS
h=(first hour) = SOCT ESS

h=(H−1) =

= V T ESS

2 · cw · (T T ESS
max − T T ESS

min ) · 1
3600 (3.27)

It is emphasized that a 1-1 conversion has been adopted for the thermal and
electrical power of charge and discharge from the TESS due to the appropriate
level of detail for the work context. It is underscored that the efficiencies of
the heating systems and storage losses depend on the house structure, heat
distribution, and the storage unit’s location.

TESS heat losses contribute partially within the building envelope, reducing
overall losses. However, it is acknowledged that there are also small losses in
the heat distribution system. It is concluded that the mentioned simplifications
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partially offset each other, influencing the overall efficiency.
In the following table (Tab. 3.5), all relevant values for modeling the TESS

system (Base Case) are summarized and grouped. It is emphasized that the
tank in question is used exclusively for the plant water (PW) and not for the
DHW.

Table 3.5: TESS data (Base Case).

Parameter Unit Value
cw J/kg/°C 4186
T T ESS

min , T T ESS
max °C 30, 95

V T ESS l 500
P T ESS

max kW 4
ϕEW H

EHW − 0.5%

In summary, the model dynamically regulates the charging and discharging
of a thermal tank within the context of an HVAC system, balancing the water
temperature in the tank and adhering to the maximum charging and discharging
capacities of the HVAC system.
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3.2.7 Building Thermal Model
A wide range of thermodynamic models has been proposed in the literature
to estimate heating or cooling loads. Complex models are burdensome for
practical applications, while overly simple models do not yield accurate results.
Therefore, it is necessary to strike a balance between accuracy and simplicity. In
this work, two-capacity building model is employed to estimate the heating or
cooling requirements by analyzing the variation in indoor temperature relative
to the external temperature [54], [41], [55].

Figure 3.14: Two-capacity building model prototype.

As depicted in Fig. 3.14, this model utilizes two thermal capacities. One
capacity is assigned to the building mass, Cm, while the other is distributed to
the indoor air, Ca. This model involves two unknown temperatures, Ta,h and
Tm,h. It is assumed that the HVAC unit, responsible for conditioning flows, is
set to operate at a constant temperature, Tx. The generated air is of convective
type and is allocated to the indoor air node. For heat flows, Tg needs to be
considered. The windows installed in the building have a small thermal mass
compared to the building structure. Nodes Te, Ta, Tm, Tg, in Fig. 3.14, and the
HVAC unit are interconnected through thermal conductance or, in the presence
of heat flow, they are connected through thermal capacity. The building mass
node is positioned at an undefined depth within the building and thus embodies
the mean temperature of the building mass. The energy balance of this model
is represented by a simplified discrete form as follows in Eqs. 3.28, 3.30.
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Ta,h =
Ta,h−1 + ∆h

Ca
·
1
HmTm,h−1 + HeT

ext
h + HgTg + HxTx + QT OT

h

2
1 + ∆h

Ca
(Hm + He + Hg + Hx)

∀h ∈ H

(3.28)
Where:

QT OT
h = QHV AC

h − P T ESS
ch,h + P T ESS

dch,h (3.29)

Tm,h =
Tm,h−1 + ∆h

Cm
(HmTa,h + HyT ext

h )
1 + ∆h

Cm
(Hm + Hy)

∀h ∈ H (3.30)

In Finland, the indoor temperature of residences is consistently maintained
at a comfortable level throughout the year. During the winter months, when
the external temperature drops below freezing, the interior of a Finnish home is
consistently kept at approximately 21°C [48]. This practice contributes to the
creation of a comfortable and welcoming indoor environment, notwithstanding
the severe winter temperatures prevalent in the country. Constraint 3.31 bounds
the indoor temperature in a predefined dead band tunable by the occupants.
HVAC unit can consume any power level between 0 and maximum level as
expressed in Eq. 3.32.

Ta,min ≤ Ta,h ≤ Ta,max ∀h ∈ H (3.31)

0 ≤ |QHV AC
h | ≤ QHV AC

max ∀h ∈ H (3.32)

For a more detailed analysis of the air conditioning system, consideration
has been given to the variation of the COP of the heat pump. It is hypothesized
that there is an air source HP with external air intake, exhibiting a variable
COP. This factor significantly influences the conversion of thermal power to
electrical power. In the case of an air source HP, where the temperature
of the low-temperature heat source undergoes more pronounced variations,
an averaging expression is employed. Drawing on a recent study [56], which
compared nine brands of commercial air source HPs, an equation for averaging
(Eq. 3.33) with a high coefficient of determination (R2 = 0.983) can be derived
for external air temperature (°C).
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COP HP
h = 3.45 · exp(0.03 · T ext

h ) (3.33)

Heat pumps represent an innovative technology in the field of heating
and environmental conditioning, exploiting the principle of heat transfer from
a source at a lower temperature to a source at a higher temperature. The
assessment of the efficiency of such systems is often expressed through the
COP, which quantifies the ratio between the delivered thermal power and the
absorbed electrical power. The fundamental formula governing the conversion
of thermal power to electrical power in a heat pump is given by the generic Eq.
3.34:

Pel = Qth

COP
(3.34)

The application of this formula provides a measure of the energy efficiency
of the system, highlighting the performance in the transformation of thermal
energy into electrical energy. In the following graph, shown in Fig. 3.15, the
trend of the COP of the heat pump is depicted in relation to the external
temperature. A higher value indicates greater efficiency, emphasizing the heat
pump’s ability to generate a significant amount of thermal power compared
to the amount of electrical power absorbed. It is important to note that this
ideal calculation does not account for any energy losses or inefficiencies in
the system, which may result from various sources, such as heat dissipation
or electrical resistances. Therefore, actual performance may vary based on
operational conditions and the specific design of the HP.

Figure 3.15: Charts representing respectively the trend of COP HP
h and T ext

h

throughout time, and the relationship between COP HP
h and T ext

h .
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It is worthwhile to note that QHV AC
h can take both positive and negative

values depending on the external temperature. Positive values of QHV AC
h in Eq.

3.28 indicate that the HVAC unit is operated in heating mode, while negative
values represent the cooling operation when the external temperature is higher
than the HVAC set point temperature [55].

The model initially takes the form of a challenging MINLP model, where
existing methods or commercial solvers struggle to guarantee a global solution,
despite the potential for a high-quality outcome. To address this, the MINLP
model is transformed into a more manageable MILP model, suitable for seamless
integration into a AHEMS. The conversion of a product involving binary and
continuous variables into linear expressions is straightforward. However, to
linearize the nonlinear term associated with the absolute function, two positive
auxiliary variables are introduced. Binary variables, ensuring the precision of
the linearization technique, are incorporated as the absolute value is not part
of the objective function [41], [55]. The procedural details are outlined in Eqs.
3.35, 3.36, 3.37, 3.38, 3.39.

QHV AC
h = Qa

h − Qb
h ∀h ∈ H (3.35)

|QHV AC
h | = Qa

h + Qb
h ∀h ∈ H (3.36)

Qa
h ≤ ba

h · QHV AC
max ∀h ∈ H (3.37)

Qb
h ≤ bb

h · QHV AC
max ∀h ∈ H (3.38)

ba
h + bb

h ≤ 1 ∀h ∈ H (3.39)

The considered house was a two-floor building with a total floor area of 200
m2 and the parameter values of the two-capacity model for this house are listed
in Tab. 3.6. Please note that the given parameters regarding the building itself
(without consider the plant size) are applicable to Finnish detached houses
only.
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Table 3.6: Building thermal model data (Base Case).

Parameter Unit Value
He, Hy, Hm, Hx, Hg W/◦C/m2 0.29, 0.33, 5.16, 0.48, 0.05
Ca, Cm Wh/◦C/m2 3.616, 31.14
Tg, Tx °C 10, 18
Ta,min, Ta,max °C 21, 22
QHV AC

max kW 6

In conclusion, the proposed model provides an approach for the thermal
management of the building in Finland in question, utilizing air-source heat
pump technology, hot water storage tanks, and conditioning terminals [57].
This system enables the optimization of the building’s energy efficiency while
simultaneously reducing environmental impact.

3.2.8 Power Balance
To conclude the modeling equations for the system, it is imperative to elucidate
the electrical power balance equation at the PCC (Eq. 3.40). It is noteworthy
that the charging and discharging powers of the tank for plant water have
already been encompassed within the HVAC system power. In other words,
the power required by the system to maintain the desired indoor temperature
for comfort purposes is already calculated to include the power needed by the
heat pump in series with the tank.

P P V
h + P BESS

dch,h + P EV
dch,h + Pimp,h =

= P BESS
ch,h + P EV

ch,h + P EW H
h + P HV AC

h + P crit
h + Pexp,h ∀h ∈ H

(3.40)

This equation represents the balance for the individual hour h under con-
sideration and accounts for all elements that play a specific role in the system.
It must be satisfied throughout the entire interval H.

The models were solved on a laptop equipped with an Intel(R) Core(TM)
i7-8750H processor, featuring a base frequency of 2.20 GHz and a maximum
frequency of 2.21 GHz, and 16.0 GB of RAM. The MILP optimization compu-
tation was carried out using the Python programming language, utilizing the
Pyomo library. The solver used, in this case GLPK, ensures that this equality
is verified for each hour. If this were not the case for even a single hour, the
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optimal solution would not be found, leading to an infeasible condition.
The power calculated hour by hour represents the average instantaneous

consumption or generation of energy in each hour of the day. The code sets up a
mathematical optimization model to optimize energy management considering
all the factors mentioned above over a specified time horizon covering one or
more days.

3.2.9 Performance Index
To discuss the performance of the entire system, the Load Matching Index
(LMI) is used. This index is a metric used to evaluate how well an energy system
is able to meet energy demand with the available production. It measures
the effectiveness with which renewable energy production (such as solar, as
analyzed in this case) aligns with energy demand, helping determine how much
reliance on conventional or backup energy sources is necessary. A higher LMI
indicates better correspondence between production and energy consumption.
The LMI is calculated using Eq. 3.41.

LMI = 1
H

·
Ø
h∈H

min

A
1; gh + bbh

lh

B
(3.41)

The term H denotes the considered time interval, which is significantly
influenced by the duration and frequency of the time intervals used for the
calculation. This underscores the importance of precise temporal definition
within the analysis context. Moreover, the components of the numerator, gh and
bbh, play a crucial role in determining the index value. The former, gh, represents
the energy generation from renewable sources (RES) in hour h, highlighting
the contribution of sustainable energy resources in the system. The latter, bbh,
indicates the balancing provided by electrical storage systems, reflecting the
effectiveness of storage technologies in optimizing energy utilization. Meanwhile,
the term in the denominator reflects the total load during hour h, resulting
from the sum of all power demands of the system at that time. This measure
represents the overall level of energy demand, emphasizing the importance of
aligning energy supply with the system’s requirements within a specific time
interval.
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Results

4.1 Base Case Power Flows
In this chapter, graphical representations and outcomes related to the Base
Case, in accordance with the facility sizes outlined in the preceding section, will
be presented. These visuals are structured seasonally, aligning with the format
depicted in Figure 3.5. The exhibited solutions underscore the proficiency of
the implemented code in minimizing the objective function 3.1. The primary
goal is to narrow the cost difference between imported and exported power, by
implementing energy management strategies to optimize utilization, enhance
efficiency, and align production and consumption, thus minimizing reliance
on higher-cost energy imports or lower-cost energy exports. The overarching
goal is to maximize the economic value of energy while concurrently reducing
comprehensive costs associated with procurement and disposition. Graphs will
illustrate exported and imported energy quantities between the electrical grid
and the user, as well as the SOC for BESS, EV batteries, and TESS, along
with their associated charging and discharging power values. Furthermore,
graphical representations will be generated to depict the electrical power pro-
files of EWH and the HVAC system. The extraction of graphical data and
results is accomplished through the combined use of the Pandas and NumPy
libraries in the Python environment. Pandas, specialized in the processing
and analysis of tabular data, synergistically integrates with NumPy, which
provides advanced data structures and mathematical functions for numerical
and scientific operations. The values of decision variables are obtained using
the GLPK solver, adopting a MILP approach. GLPK is an open-source library
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specialized in solving linear and mixed-integer linear programming (LP, MILP)
problems, making it relevant for the present case. Pyomo, an optimization
framework in Python, provides an interface for the definition and solution of
mathematical optimization models, including linear and integer ones. The
Pyomo’s interface allows users to code tasks in algebraic form, simplifying the
process of model formulation and solution.

Before proceeding with the detailed analysis of the results, it has been
chosen to closely examine the results for the temporal sequence of the first 3
days of May. In this context, BESS, TESS, and EV can actively engage with
the distribution network through the PCC. It is noteworthy that the ability to
exchange power with the grid via a PCC is contingent upon the design and
specific configuration of each system. Consequently, all outcomes presented
herein result from simulations applied to the aforementioned scenario.

Battery Energy Storage System The chart depicting the BESS sys-
tem’s charging and discharging power, along with the corresponding SOC (Fig.
4.1), shows a consistent trend influenced by energy prices. The green curve
represents charging power, while the red curve represents discharging power.
It’s worth noting that the SOC curve of the battery is closely linked to both
charging and discharging powers through equation 3.7. The optimized system
effectively maintains the battery’s charge level between maximum and minimum
thresholds, as explained earlier, allowing charging during excess production and
favorable energy prices. The impact of charging and discharging efficiencies
is visible in the slope of the SOC hourly segments. Higher efficiency would
facilitate faster charging and discharging, benefiting the end-user.

Electric Vehicle A similar rationale is applied to the electric vehicle battery.
The only difference from the BES system is that the EV is not always available
and simultaneously acts as a load for the user and a potential source of flexibility.
As depicted in Fig. 4.2, the vehicle is connected and disconnected from the
charging station during predefined hours highlighted by the blue and magenta
pins, respectively. Once connected, the vehicle has an SOC equal to the
maximum possible value reduced by the portion consumed during the traveled
distance. The connection to the station does not automatically initiate charging;
the vehicle may be charged or discharged, as evident and possibly, to balance
loads and minimize the imposed objective function. However, it becomes a
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Figure 4.1: Results of the BESS for the three days of May (hourly time
resolution).

periodically fixed load as it is required to reach the maximum allowable capacity
before departing, ensuring that the user always has a fully charged vehicle
whenever it is needed. Additionally, it is noted that as a constraint, the charging
and discharging powers cannot exceed the ACP, and the SOC is calculated as
zero during the period when the vehicle is not connected to the station.

Figure 4.2: Results of the EV for the three days of May (hourly time
resolution).

Thermal Energy Storage System Regarding the use of the tank for
PW, it is observed in Fig. 4.3, that the charging and discharging powers
and SOC operate similarly to the two previous systems. The main difference,
already evident in the plots of the selected days but also extended in a broader
analysis, is that the tank utilization decreases with the increase in external
temperature: Colder periods require greater support for the heating system and,
consequently, a more dynamic utilization of the tank itself. Furthermore, the
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SOC will never remain stable due to system losses through the tank enclosure.

Figure 4.3: Results of the TESS for the three days of May (hourly time
resolution).

HVAC and Electric Water Heater In Fig. 4.4, there is a noticeable
substantial variation in the power required by the HVAC system. The dark
green curve highlights the inclusive power of both charging and discharging
of the TESS support to the heat pump. An increase in power demand is
observed when the external temperature drops, and a decrease is noted when it
rises, all aimed at maintaining the desired indoor temperature. Regarding the
power of the EWH for hot water, it follows a similar pattern over the 24 hours,
as explained in the modeling chapter of this system. It is clarified that the
plotted power fraction related to the heat pump is the electrical power already
converted through the COP of the heat pump itself.

Figure 4.4: Results of the HVAC and EWH for the three days of May (hourly
time resolution).
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To gain a clearer understanding based on seasons instead, it has been chosen
to analyze how the power demand of the system varies according to external
conditions and the analysis period. It was preferred to separately analyze the
months divided into seasons. This is justified by the fact that the results of
a single day are not yet fully comparable due to the variability of external
conditions and energy prices. This reflects on the variation in terms of the
power generated locally by the PV and a significant fluctuation in the loads
and power demanded by the system as a whole.

4.1.1 Autumn
For the autumn period, Fig. 4.5 is examined, comprising a stacked bar chart
illustrating the demand mix and a pie chart displaying the percentage breakdown
of generation for the autumn season.

Figure 4.5: Results for energy demand and PV generation for the autumn
period.

In the left graph, it’s notable that the power demand of the HVAC system
displays the most pronounced variability, with a significant increase observed
from September to November. This surge is primarily attributed to a cor-
responding drop in external temperatures during this period. Concurrently,
there’s a noticeable decline in the energy generated by the photovoltaic sys-
tem, largely due to reduced solar irradiance. To illustrate, the total power
output declines significantly from 209.20 kWh in September to 13.14 kWh in
November.
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4.1.2 Winter
During the winter season, a graph akin to the one before is generated. As
depicted in Fig. 4.6, there’s a notable average seasonal surge in total demand,
amounting compared to autumn.

This increase is largely attributed to the heightened usage of heating systems.
Given the harsh and frigid winter conditions in Finland, external temperatures
plummet significantly during this period.

Figure 4.6: Results for energy demand and PV generation for the winter
period.

When it comes to photovoltaic generation, no significant differences are
observed among the three winter months. This is largely due to Finland’s limited
sunlight availability during this period, coupled with meteorological conditions
that inhibit sunlight penetration through dense cloud cover. As evidenced,
there’s a marked reduction compared to the autumn period: throughout winter,
the total generation amounts to 81.90 kWh over the three months, whereas in
autumn, a significantly higher value of 293.02 kWh is recorded.

It’s evident that during this timeframe, the SOC percentage of storage
systems such as BESS, which rely directly on photovoltaic power, reaches its
lowest point for the entire year. This underscores the significant challenges
imposed by winter conditions on both renewable energy generation and storage
within the region, highlighting the need for robust solutions to mitigate these
seasonal fluctuations.
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4.1.3 Spring
For the spring period, reference is made to the graphs presented in Fig. 4.7.
These graphs provide valuable insights into the trends and patterns observed
during this transitional season.

Figure 4.7: Results for energy demand and PV generation for the spring
period.

After an initial rise in energy demand from HVAC systems starting in March,
there’s a gradual decline leading up to the beginning of summer. Despite lower
energy demand in May, the total demand for this month exceeds that of the
two previous months due to fewer weekends, impacting electric vehicle charging
demand and raising the overall demand to 944.16 kWh. This emphasizes the
importance of efficient energy management strategies to ensure a reliable power
supply during peak periods.

For photovoltaic generation, there’s a gradual percentage increase from
March to May, correlating with the expected rise in daylight hours during
this period. Specifically, the total generation is as follows: 245.78 kWh in
March, 380.12 kWh in April, and 458.83 kWh in May. This upward trend in
photovoltaic generation corresponds with the declining power demand in May,
suggesting a surplus of renewable energy that could be stored or efficiently uti-
lized to optimize energy consumption and lessen dependence on non-renewable
sources during peak periods.
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4.1.4 Summer
For the upcoming summer period, analogous graphs to those employed pre-
viously will be utilized. Distinctions are less discernible during transitional
seasons but are markedly pronounced during diametrically opposite periods,
notably winter and, indeed, summer. Reference is made to Figure 4.8.

Figure 4.8: Results for energy demand and PV generation for the summer
period.

It is immediately apparent that there is a significantly low percentage of
energy demanded by HVAC relative to the total energy consumption. Ad-
ditionally, the overall demand is observed to be lower compared to previous
months. Specifically, there is around 84% reduction in the total amount of
energy required by HVAC from the winter period to the summer period. This
substantial decrease underscores the seasonal variation in power usage and
highlights the efficiency of HVAC systems during warmer months.

In terms of generation, there’s been a significant surge from winter, where
the total amount was 81.90 kWh, to 1542.21 kWh during summer. June and
July stand out as the most productive months, contributing to around 73.1% of
the total quarterly production. This increase highlights the seasonal variability
and the importance of maximizing solar energy utilization during peak months,
aligning with the input data shown in Fig. 3.4 and emphasizing the significance
of strategic planning in optimizing renewable energy production.
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4.1.5 Whole Analyzed Year
To provide a comprehensive overview of the two analyzed quantities, it has
been decided to incorporate the annual comprehensive graph (Fig. 4.9). This
graph vividly illustrates the smooth, variable trend of the load demanded by
HVAC. Moreover, upon examining the generation graph, one can discern that
the highest percentage of generated energy relative to the annual total occurs
during the months of June and July, with nearly identical percentage slices.
Moreover, it is interesting how BESS is more active during summer months
due to the excess of PV generation, which requires charging.

Figure 4.9: Results for energy demand and PV generation for the analyzed
year.

Conducting a preliminary comparative analysis was imperative to under-
stand the distribution of power required by the user across the months, which
have been further categorized into seasons. This preliminary exploration serves
as an essential foundation for subsequent, more in-depth analysis in the fol-
lowing section. In the upcoming analysis, the imported and exported energy
amounts will be examined in detail, alongside the net costs incurred by the
user. Furthermore, the analysis will showcase how optimization strategies can
effectively alter the demand, aiming to align it as closely as possible with
generation patterns. This will provide valuable insights into optimizing energy
usage and cost-efficiency.
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4.2 Deep Analysis of Optimized Results
In this section, the achieved results are analyzed, and considerations are made
regarding the main differences observed among the different periods of the year
(price data for 2022).

4.2.1 Net Cost fot the User
The data presented in Table 4.1 provides a comprehensive overview of monthly
variations in both imported and exported energy, accompanied by their corre-
sponding financial implications for the user. Additionally, the table includes the
monthly financial impact on the user, where a negative figure signifies an actual
financial gain in the context of electrical energy. The management system is
intricately designed to efficiently navigate energy dynamics, specifically geared
towards maximizing cost savings for the user. It is important to emphasize that
the costs referred to here are those stated in the objective function, specifically
electricity bills. The analysis does not include the cost of equipment and
installation. More details in Appendix B (Tabs. B-2, B-3, B-4).

Table 4.1: Summary of energy and cost metrics per month (Base Case).

Total Total Total Cost Total Revenue Net Cost
Imported Exported of Imported from Exported for the
Energy Energy Energy Energy User
[kWh] [kWh] [€] [€] [€]

September 1721.27 758.16 289.26 282.05 7.21
October 1406.36 313.20 166.18 85.30 80.88
November 1641.54 287.00 321.45 80.50 240.94
December 1912.12 284.48 460.85 116.00 344.85
January 1875.00 235.97 235.88 42.36 193.52
February 1663.25 265.98 171.18 37.85 133.33
March 1565.22 308.99 173.76 70.62 103.15
April 1207.04 273.46 123.60 53.74 69.85
May 1539.52 771.53 182.04 175.63 6.42
June 1155.37 736.99 123.10 172.74 −49.64
July 1310.34 781.51 180.37 212.91 −32.53
August 1340.04 741.45 223.24 332.50 −109.26

Tot. 18 337.07 5758.72 2650.91 1662.20 988.72
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From the table analysis, it is evident that colder months with lower sunlight
exposure, such as winter months, incur a higher net cost compared to warmer
months. This phenomenon can be attributed to the higher and more prolonged
irradiance values and external climate conditions, which lead warmer months
to entail lower air conditioning loads and higher local photovoltaic production.
While these observations are intuitive, they are not the sole reasons for the
monthly variation in net cost.

Indeed, the monthly DA price trend varies, as depicted in Fig. 3.5. To
provide a more immediate yet less detailed overview, the monthly average
values of DAp for 2022 are represented in Fig. 4.10. Simultaneously, the curves
of the total cost of imported energy and the total revenue of exported energy
are also depicted monthly, which exhibit a close correlation with DAp (0.838
and 0.792 respectively are the correlation coefficients). Additionally, to offer
a comprehensive view, the user’s net cost is represented monthly as well. It
is noticeable that this cost will be higher in colder months, decreasing and
becoming negative in warmer months, indicating a higher quantity of energy
being sold to the grid (there is a high negative correlation coefficient of -0.801
between the user’s net cost and the exported energy in kWh). This signifies a
strong negative correlation between the two variables. In other words, there is
a significant opposite trend between the amount of exported energy and the net
cost. Such a strong negative correlation suggests that higher exported energy
is associated with a substantial reduction in the overall net cost.

Figure 4.10: Variation of the monthly user net cost for the year 2022 (Base
Case).
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The monthly results of exported and imported energy are depicted in the
chart in Fig. 4.11. It is evident that the exported energy (negative) never
exceeds the imported energy (positive). However, the optimized system is
capable of managing energy in such a way that, when possible, the user may
not incur any expenses at the end of the month, or even generate a profit
through exportation during periods of favorable prices (such as June, July, and
August).

Figure 4.11: Total imported and exported energy variation for the year 2022
(Base Case).

For a comprehensive overview of the energy exchange dynamics and total
demand throughout different seasons with daily average resolution for the Base
Case, please refer to Appendix A. (Figs. A-1, A-2, A-3, A-4).

4.2.2 Load Matching Index
Another conducted analysis involves the Load Matching Index. The LMI
assesses the alignment or equilibrium between PV generation and local demand.
Specifically, it quantifies the proportion of the total load met by on-site genera-
tion. The LMI was computed for simulated loads and PV generation using Eq.
3.41, with the results depicted in Fig. 4.12. In this particular case, the LMI
was notably low due to reduced PV generation during winter and autumn. The
diurnal cycle of PV posed a constraint, preventing the complete satisfaction
of the load exclusively through PV, even in the summer and spring seasons.
Furthermore, it is emphasized that all generation was effectively managed to
minimize user costs and promote savings.
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It should be reminded that the LMI value depends on the number of intervals
considered. It has been chosen to calculate the LMI for the seasons to provide a
summary view of how it is influenced by external conditions. Indeed, from the
calculation of correlation coefficients, it is found that the correlation between
the average monthly generation and the monthly LMI value is 0.908.

Figure 4.12: LMI comparison for different seasons in Base Case.

In general, LMI index values tend to decrease when energy management
efficiency is low. Subsequently, a case will be examined where the absence
of systems enhancing system flexibility leads to a drastic drop in LMI values.
Consequently, the values obtained from the baseline case analysis not only
appear acceptable, as they surpass the scenario without flexibility systems, but
also align with the trend of photovoltaic production. For instance, a percentage
increase of 59.57% is observed from the winter period (characterized by lower
LMI) to the summer period (characterized by higher LMI), or a decrease of
-26.16% from the transition from summer to autumn. It is noteworthy that an
increase in LMI value indicates a greater system capacity to effectively manage
the increase in photovoltaic production. Furthermore, as renewable energy
production becomes more predominant, the utilization of storage systems and
DR becomes more dynamic and exerts a positive impact on the index itself.
These systems can help adapt energy load more efficiently to renewable energy
availability and demand variations. Another factor influencing the index is the
total load, which, being in the denominator in equation 3.41, tends to increase
the LMI value during periods of lower load and decrease it during periods of
higher load.
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4.2.3 Optimized Load Balance
In order to explain how decisions are made within the system, it was decided to
analyze a three-day timeframe for the sake of clarity and visual understanding.
Three days in the month of May were selected (the same pattern is visible in any
analyzed time interval, with appropriate deviations due to external conditions).
The first graph essential for understanding how optimization works is a zoom
on the trend of DAp for these three analyzed days (Fig. 4.13).

Figure 4.13: DAp variation for a three-day timeframe of May.

These three days were selected because they exhibit clear fluctuations
in energy prices. The price oscillates between high and low values rapidly,
even within hourly intervals. However, this extreme variability is not as
pronounced on the first day, for instance. The consequence of this selection
is that it allows for an analysis of how the system responds to significant
fluctuations in energy prices. This enables the evaluation of optimization
strategies’ effectiveness in managing such fluctuations and stabilizing the system,
particularly compared to periods with lower price variations. Additionally, it
provides a more comprehensive overview of the overall system performance in
volatile energy market conditions.

For comprehensive analysis, it is essential to plot the graph to demonstrate
the true benefits of the conducted analysis. It was chosen to represent two
graphs in Fig. 4.14 depicting the load balance of the household. The first graph
without optimization and the second graph optimized as explained earlier.
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Figure 4.14: Respectively, the load balance of the household without opti-
mization and with optimization is depicted in the three-day timeframe.

As detailed in the legend, the total demand is represented by the magenta
curve. With the optimized version, it is observed that the load curve is
adjusted to overlap with the generation from RES whenever possible. Load
peaks primarily arise from the need to charge the electric vehicle, which are
quite evident since, for the remaining hours, being May a relatively warm
month compared to others, it is not characterized by a high heating load.

Examining the illustration depicted in Figure 4.13, it is evident that in the
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optimized approach (while always adhering to imposed constraints), energy
import occurs during time slots characterized by low selling prices. This stands
in contrast to the non-optimized approach, where such optimization does not
occur. The significant reduction in costs for the user becomes apparent when
considering the trend of the curve representing exported power.

In the non-optimized scenario, power is exported only when necessary based
on the availability of generation exceeding the load, and when the electric
vehicle, once connected, relinquishes power to meet the load. Subsequently,
the vehicle proceeds to charge with the maximum available power to be fully
charged (at 100% fot the EV battery SOC) an hour before departure. This
behavior is not dynamic but rather mechanical, as the system merely aims
to fulfill imposed constraints without considering energy optimization for the
user’s benefit.

Conversely, in the optimized scenario, the electric vehicle only discharges
when it serves to reduce the overall net cost for the user (as indicated by the
absence of the second peak of exported power). Both scenarios witness proper
functioning of energy storage systems, albeit in the optimized system, they
assume a central and dynamic behavior. When discharging, if the price is
favorable, they export a percentage to the grid to achieve greater and more
sensible revenue. Furthermore, observing the LMI value for this time interval, it
is evident how the optimized energy usage promotes a much more pronounced
adherence between generation and load compared to the non-optimized scenario.
In the former scenario, the load is not adjusted to follow the generation, although
the user could benefit from on-site generation facilitating potential exports.
However, this advantage is not exploited, rendering the system significantly
less energy-efficient. By adopting the DR technique, a drastic increase in the
LMI is observed. For example, such an increase is already noticeable over the
three days analyzed, with a value of 55.26%. The final evaluation emerges from
the analysis of the user’s net cost at the end of the three days (which can be
extended to any time interval). Over the three non-optimized days, the net
cost for the user stands at 12.90€, while in the optimized case, the value is
2.03€. Therefore, the user adopting an optimized energy management system
as described transitions from an expenditure to a gain. Hence, the user has a
percentage gain of approximately around -84.34%, indicating a reduction in
net cost compared to the non-optimized scenario. The percentage is negative
because the transition is from a loss to a gain.
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4.3 Discussion on Research Limitations
Despite the model’s satisfactory performance, several limitations must be
considered. Below, we examine the relevant constraints in detail:

• Model Complexity: The implemented code is based on a rather intri-
cate model that incorporates numerous variables and constraints. This
complexity necessitates significant computational resources for optimiza-
tion. Computation times increase substantially with larger time intervals
H, posing challenges for practical applications requiring real-time or
near-real-time solutions.

• Simplified Assumptions: The model relies on simplified assumptions
regarding data and parameters. For instance, it assumes the electric load
for the EWH repeats periodically over 24 hours, while actual demand
may fluctuate based on user behavior. Fixed departure and arrival
times, routes, and SOC percentages for electric vehicles are considered,
which might not reflect real-world variability where users have dynamic
schedules and energy consumption patterns. Additionally, critical loads
and heating/cooling demands are influenced by numerous unpredictable
factors, including user comfort preferences. The model focuses solely on
energy consumption to maintain internal temperatures within specified
bounds, ignoring other consumption sources like electrical equipment,
lighting, and occupancy. Furthermore, potential variations in yields or
losses not accounted for in the model introduce additional uncertainty
into the analysis.

• Data Representation: The model reads data from a .csv file, making
the quality and completeness of this data crucial to the results. Errors or
omissions in the data can significantly impact the model’s performance.
Additionally, the model does not predict future data, only considering a
fixed time interval, which limits its applicability in scenarios requiring
long-term planning and adaptation to dynamic conditions.

The limitations extend beyond technical and code-related aspects, encom-
passing choices related to the system itself:

• Geolocation: This study is confined to the Finnish context, utilizing user
geolocation data specific to Finland. Ground temperature and weather
conditions, which can vary considerably across different geographical

63



Chapter 4

locations, significantly influence the efficiency and management of energy
systems. Building insulation characteristics also directly impact heating
and cooling needs, affecting overall energy consumption. Therefore, analy-
ses conducted in other geographical regions must account for these factors
to provide accurate assessments of energy dynamics and optimization
opportunities.

• User Isolation: The model does not account for participation and
cooperation within a renewable energy community. Consequently, the
analyzed user cannot share and optimize energy collaboratively, missing
out on the benefits of shared renewable energy resource management. In
a community energy context, users can coordinate to balance energy pro-
duction and consumption, enhancing the efficiency of resource utilization.
Operating in isolation prevents users from fully exploiting optimization
potential, thus forfeiting economic and environmental benefits associ-
ated with collaborative energy management. User isolation represents a
significant limitation in maximizing the efficiency and sustainability of
renewable energy resources.

• Variety of Renewable Sources: The current model relies solely on pho-
tovoltaic generation, limiting the consideration of other renewable sources
such as wind energy. Dependence on a single RES source reduces the
flexibility and resilience of the energy system, as diverse sources can offer
complementary advantages regarding energy availability and production.
Incorporating other technologies, such as wind energy, could facilitate
more efficient management of energy resources and enhance overall system
stability, particularly given variations in Finnish sunlight availability and
weather conditions. Expanding the model to include multiple renewable
sources would likely improve the resilience and sustainability of the energy
system.
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Sensitivity Analysis

In the chapter concerning sensitivity analysis, four cases with variations made
to the base model will now be examined. The main deviations will be analyzed,
and a discussion will be conducted on the best and most cost-effective model
for the user. This type of analysis is necessary as it aims to provide an
order of magnitude regarding the benefits resulting from more or less efficient
configurations of the prosumer model. It is intended to demonstrate how the
advantage of an optimization system is not only vertical but also horizontal,
favoring both greater economic return and a more heterogeneous utilization of
the installed technological resources.

5.1 Load Flexibility and Plant Sizes
The research aimed at achieving a genuine advantage in understanding the
optimal configuration for household continues with the modification of the
parameters involved. A wide range of scenarios is being explored to assess the
benefits and drawbacks of different configurations. Initially, a baseline case
without the implementation of flexibility systems and without considering DR
is examined. Subsequently, other cases involving variations in the size of the
installed PV system and the nominal capacity of the BESS are considered, as
well as the possibility of not utilizing the TESS to support the HP.

For an overview of all the analyzed cases, Table 5.1 highlights the main
differences among them. Elements such as the size of the heat pump or the
volume of the EWH, which are not included in the table, remain unchanged
across all cases.
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Table 5.1: Summary table of the analyzed cases.

Base Case Case 1 Case 2 Case 3 Case 4
DR Yes No Yes Yes Yes

PV size [kWp] 5 5 5 2 10
BESS size [kWh] 13.5 / 13.5 6.4 16
BESS Pnom [kW] 5 / 5 3.3 10.24
EV size [kWh] 50 50 50 50 50
EV Pnom [kW] 11 11 11 11 11

TESS Yes No No Yes Yes

To gain insight into the annual generation curve trends with varying plant
sizes on a monthly resolution compared to the average of monthly irradiance
values, please refer to Appendix A (Fig. A-5).

5.1.1 Case 1
The first scenario presented concerns a user who lacks devices for thermal and
electrical flexibility, thus being a producer-consumer without storage capacity.
The user only has a photovoltaic system as a production source, but does not
have access to the TESS thermal storage system to support the HP, nor the
BESS system. The electric vehicle solely acts as a load, and therefore the
charging station is set only to charge the vehicle’s battery. Additionally, the
case where the DR is not active is also considered, hence the demand will not be
adjusted as much as possible to the generation. The power of the photovoltaic
system is 5 kW peak, while the maximum power for the HVAC system remains
unchanged compared to the Base Case, which is 6 kW .

It is important to note that in this configuration, the absence of DR causes
exportation only when generation is lower than load. The system does not take
into account market prices or user needs. The user’s demand will therefore
remain unchanged due to the absence of flexibility systems. The decision was
made to keep the electric vehicle as a load to ensure a more accurate comparison.
However, it should be noted that if the owned vehicle were not electric but
traditional, the net annual cost would certainly be lower as a result of the
system, but it would not include the monthly expenses incurred by the user for
fuel, which combined with the bill costs would definitely exceed those of other
cases, due to the higher prices of fuels compared to electricity. An appreciable
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rise in the annual net cost for 2022 is anticipated relative to the Base Case,
alongside a notable decrease in the LMI across all seasons (for instance, a
reduction of the winter LMI compared to the Base Case amounts to 83.60%).

For completeness, the annual graph with hourly resolution of the demand
for Case 1 is shown in Figure 5.1.

Figure 5.1: Hourly load of the household for analyzed year (Case 1).

5.1.2 Case 2
The second scenario involves utilizing the same user configuration as in the
baseline case but without TESS support for the air-to-water HP. A system with
a TESS supported by an air-to-water HP and a system with only a HP can differ
in several aspects. Firstly, the TESS-enabled system has the ability to store
thermal energy in a thermal storage tank, allowing for energy accumulation
when it is abundantly available (such as during off-peak hours or when there is
excess renewable energy) and release it when needed. A system with only a HP
lacks this thermal energy storage capacity. Additionally, thanks to its storage
capability, the TESS-supported system can be more flexible in adapting to
variations in energy demand or the availability of energy from renewable sources.
It can be programmed to utilize stored energy when energy prices are higher or
when there is a need to reduce the load on the grid. Its usage can improve the
overall system efficiency (affecting LMI values) as it enables optimal utilization
of available energy (on average, the TESS system is effectively utilized to store
or release thermal energy for a value ranging monthly between 70% and 80%).
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The system can be designed to operate optimally, for example, by reducing the
need to run the HP during peak hours when energy costs are higher.

Regarding economic differences, a TESS system tends to have higher initial
costs compared to a system with only a HP (typically initial costs including
purchase and installation hover around 1000€, looking at current market prices),
due to the addition of the thermal storage tank and associated control systems.
However, in the long run, it can offer significant savings on operational costs
due to better energy management. For example, from the simulation, it is
obtained that annually, the total savings for the year are 101.97€; this value
represents the total net savings for the user throughout the year using the TESS
system instead of not using it. Assuming that the installation and purchase
have an initial expense of 1000€ and that the savings trend is constant annually,
the payback period will be approximately 10 years, a time still shorter than
the average lifecycle of a tank which is typically around a minimum of 20 years.
For Case 2, the reduction in LMI compared to the Base Case is present in all
seasons but less pronounced than the deviation that Case 1 exhibits from the
Base Case (for example, there is a reduction of just over 1% compared to the
Base Case in summer). In summary, adding a TESS to a HP system can lead
to greater operational flexibility, improve overall energy efficiency, and offer
long-term economic benefits, although it entails higher initial costs.

5.1.3 Case 3
The third scenario involves using a system identical to the baseline case but with
smaller photovoltaic and battery energy storage system capacities. Specifically,
a PV system with an installed capacity of 2 kWp and a BESS with a nominal
capacity of 6.4 kWh with a charge and discharge nominal power of 3.3 kW .
were used1. By reducing the capacities compared to the baseline case, one can
expect lower photovoltaic generation and energy storage capacity, potentially
leading to an unsatisfactory load fulfillment with power primarily sourced from
the grid rather than on-site generated power, and certainly reducing energy
export (approximately 30% relative to the Base Case). The overall system
efficiency decreases due to the reduced capacity, impacting the user’s net cost
with greater grid dependence and influencing the total energy cost. Indeed, for
Case 3, there is a notable decrease in investment costs compared to the Base

1BESS data source: Tesla Powerwall 1 datasheet
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Case. The analyses suggest that, given the assumptions made, the net annual
cost for 2022 will rise by approximately 98.66% compared to the Base Case.

5.1.4 Case 4
The fourth scenario aims to highlight the system’s behavior with larger PV
and BESS capacities. It represents the opposite case of Scenario 3. Indeed,
with an increase in both PV system and BESS capacities, one can expect
greater photovoltaic generation and energy storage capacity. This could result
in decreased energy import from the grid and potentially increased energy
export. The overall system efficiency might improve due to the expanded
capacity, potentially reducing the user’s net cost by decreasing grid dependence
and positively impacting the total energy cost. Specifically, the PV system size
would be 10 kWp, and the BESS nominal capacity would be 16 kWh 2, with a
charge and discharge nominal power of 10.24 kW . In contrast to Case 3, the
investment costs for a larger-scale facility (Case 4) have increased by 38.46%
compared to the Base Case. However, there is a significant reduction in the
net annual costs for 2022. This is primarily due to the increased capacity of
both the photovoltaic system and the BESS. Additionally, the exported energy
in the same year has increased by 42.43% compared to the Base Case, while
the imported energy remains nearly unchanged.

For all scenarios, the same set of input data for critical loads, price conditions,
temperature, and irradiance, as well as the same geographical location, were
assumed. This was done to ensure a focused analysis on system organization
and management to determine which configuration best meets the user’s needs.
Therefore, it is effectively an analysis in favor of the user, as it will be their
choice how to design the system and allocate expenses accordingly.

2BESS data source: RJ-Tech LiFePO4 Manufacturer, model: RJ-LFP51314-F
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5.2 Analysis of Parameters Deviations
The analysis of deviations will now be conducted. Differences across various
domains will be examined through the deviations recorded from the results
obtained for the various cases analyzed.

5.2.1 Self-consumption of PV Energy
The LMI extends beyond simply measuring how well the system balances energy
demand and supply; it aims to reflect a broader concept of systemic efficiency.
This index not only assesses the system’s ability to meet energy demands but
also evaluates how efficiently this process operates, both operationally and
economically. In practice, a higher load matching index not only indicates
better alignment between energy demand and supply but also suggests more
efficient management of the system as a whole. This implies that the system
not only delivers energy when required but does so optimally, minimizing waste
and costs while maximizing overall operational and economic efficiency. In
summary, systemic efficiency is integrated into the analysis of the load matching
index, which evaluates not only the alignment between energy demand and
supply but also the system’s capability to manage this balance efficiently on
both operational and economic fronts. In Fig. 5.2, the LMI values for the
four seasons analyzed across the four cases discussed previously are depicted in
comparison to the Base Case.

Figure 5.2: Comparison of LMI in seasonal resolution among the various
cases analyzed and the Base Case.

From the same graph, it’s readily apparent how the absence of storage
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systems significantly impacts the LMI. Focusing on the difference between the
Base Case and Case 1, indeed, there’s a substantial reduction observed in every
season, affecting the overall system efficiency.

In Table 5.2, the percentage increments or decrements of the LMI relative
to the Base Case are reported for the cases studied. This table has been created
to provide a better understanding of how the LMI values are influenced by the
system configuration.

Table 5.2: Increase or decrease of the LMI compared to the Base Case, in
percentage.

Change in LMI from the Base Case
Season Case 1 Case 2 Case 3 Case 4
Autumn -68.74% -2.90% -7.89% +16.59%
Winter -92.73% -2.99% -19.38% +4.59%
Spring -56.75% -1.28% -14.73% +3.18%
Summer -40.31% -1.36% -13.88% +3.04%

The reduction in LMI in Case 2 without TESS underscores a dependency on
thermal energy management within the energy system. The lack of flexibility is
evident: TESS balances the supply and demand of thermal energy, preventing
discrepancies that would otherwise diminish the LMI. Without TESS, additional
resources would be needed to regulate temperature or provide thermal energy
as required, thereby increasing system costs and complexity, with negative
impacts on LMI. Furthermore, TESS balances energy demand by utilizing excess
thermal energy when needed. Without this capability, adapting production to
load fluctuations would be more complex, adversely affecting LMI. In general,
the absence of TESS would limit the energy system’s ability to adapt to demand
fluctuations, resulting in greater discrepancies between thermal energy supply
and demand, thus impacting LMI.

The sizing of energy storage systems, referring to Cases 3 and 4, can influence
the Load Matching Index (LMI) in various ways:

• Adequate sizing: Properly sized energy storage systems can reduce
the gap between energy supply and demand. They store excess energy
during times of surplus and provide it during peak demand, potentially
improving the LMI.
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• Insufficient sizing: Undersized energy storage systems may fail to store
enough energy to cover demand peaks or balance intermittent renewable
energy production. This could lead to a decrease in LMI as the system
struggles to meet demand optimally.

• Excessive sizing: Oversized energy storage systems may incur extra
costs and resource wastage. However, efficient management can help align
energy demand and supply, potentially improving the LMI despite the
excess capacity.

For the analyzed cases, the effect of the sizing of energy storage systems on
LMI depends on their ability to balance intermittent energy production from
renewable sources with energy demand. Plant sizes in Case 3, in fact, show a
reduction in the capacity to adapt the load to generation, while in Case 4, a
plant sized larger than the Base Case leads to a more accurate management of
energy and improves overall energy efficiency and the system’s LMI. However,
increasing the size of both the PV system and the BESS excessively becomes
very costly for the user, who must bear higher investment costs, and does not
bring obvious benefits either in terms of savings or LMI.
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5.2.2 Cost Analysis
Transitioning to cost analysis, a comparison is sought among Cases 1, 2, 3,
and 4 with the Base Case. To adequately analyze costs for the purpose of
achieving as realistic an assessment as possible, despite employing simplifying
assumptions (see, for instance, Fig. 3.7 and Eq. 3.1), initial investment cost
ranges for different configurations have been sought.

It has been chosen to report in Tab. 5.3 the net costs to the user in the
year 2022 for comparable Cases 1, 2, 3, 4. For a better understanding of how
useful it is to have a system like the one analyzed, a consumer case with the
same loads as the Base Case but without any generation and TESS has also
been calculated.

Table 5.3: Comparison of the net costs across different configurations for the
year 2022.

Net cost for the user [€]

Months Consumer Base Case Case 1 Case 2 Case 3 Case 4

September 301,89 7,21 236,67 28,95 122,68 -69,51
October 206,06 80,88 198,32 95,84 136,47 59,36
November 338,62 240,94 342,42 247,32 290,13 223,05
December 467,48 344,85 275,95 356,73 392,96 307,58
January 272,21 193,52 470,61 201,36 229,16 166,78
February 197,31 133,33 195,18 138,62 172,43 105,47
March 211,56 103,15 134,07 110,29 163,94 53,84
April 177,59 69,85 130,69 74,16 143,27 9,09
May 214,93 6,42 134,07 12,53 109,11 -93,98
June 189,55 -49,64 74,86 -45,60 70,64 -175,03
July 232,82 -32,53 114,60 -28,73 91,25 -163,11
August 307,92 -109,26 176,08 -100,78 42,24 -265,94

Tot. 3117,94 988,72 2483,52 1090,69 1964,28 157,60

Through a personal market analysis and consultation with industry experts
(Tesla, GreenPower, Otovo), tables of costs for each type of installation have
been compiled, selecting an indicative average final investment cost for each
range. In all cases, the presence or absence of the TESS system has been taken
into account with a hypothesized overall relative cost, as mentioned earlier, of
1000€, Tab. 5.4. Furthermore, for better comprehension, the Base Case has
been compared to the consumer case, without any RES or storage system but
with identical loads.
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Table 5.4: Initial investment costs (indicative values).

User PV Plant Range [€] BESS Range [€] Total Initial
Configuration size [kWp] size [kWh] Investment

(i.v.) [€]

Consumer * [-] / [-] / 0
Base Case 5 6000-7500 13,5 17550-20250 26650
Case 1 * 5 6000-7500 [-] / 6750
Case 2 * 5 6000-7500 13,5 17550-20250 25650
Case 3 2 2400-3000 6,4 8320-9600 12600
Case 4 10 12000-15000 16 20800-24000 36900

In addition to estimating the investment cost for PV, BESS, and TESS
installations3, it is important to consider that these costs do not include those
related to HP, EWH, EV installations, and the construction of the building
itself, as it is assumed that such costs are uniform across all configurations.

After conducting simulations, the monthly net costs for all configurations
throughout the year 2022 have been calculated. Consequently, an annual net
cost has been obtained for each configuration. Assuming that this net cost
repeats annually without variations (such as reductions in solar panel efficiency,
battery storage capacity, or changes in weather conditions), it is possible to
generate the four comparison graphs illustrated in Figure 5.3.

For the analysis of cumulative costs, a discount rate of 3% has been adopted
until 2022, based on [58]. The reference point is 2021 (the year of investment),
indicated by a dashed black vertical line. With actual data available for 2022,
discounting has been performed from this year starting from 2023 until the
last expected year of the facilities’ useful life. The discount rate is a crucial
parameter used in financial analysis to calculate the present value of future cash
flows. It represents the rate at which future cash flows are discounted to their
present value. This rate takes into account the time value of money, reflecting
the opportunity cost of investing funds elsewhere or the cost of financing. By
updating the discount rate beyond 2022, the analysis takes into account possible
changes in economic conditions, inflation rates, and other factors that may
influence the cost of capital and the time value of money. This approach ensures
that the analysis remains, albeit simplified, relevant and reflects the financial
implications of the investment for the entire duration of its useful life.

3The marked cases in the table indicate the absence of TESS and its initial cost
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Figure 5.3: Cumulative costs over a 20-year plant lifecycle, comparison across
different configurations.

The above graphs represent the annual cumulative net costs incurred by the
user in different configurations. The colored band around each curve represents
the error of ± 5% because the exact trend of prices in future years is not known.
Each graph analyzes the trend of cumulative costs over the typical lifespan of
the installation, which is assumed to be 20 years from installation. Therefore,
an installation is hypothetically assumed to commence operations from first
day of January, 2022. In all scenarios, each configuration guarantees final
cumulative costs lower than those of the consumer configuration case. This
implies that despite necessitating higher initial financial outlays, it remains
economically advantageous to invest in order to realize savings on the bill.

In (a), spanning the sixteenth to the twentieth year, the cumulative costs
incurred by the consumer configuration exceed those of the Base Case; moreover,
after the eleventh year, the cumulative costs of Case 1 start to exceed those of
the Consumer configuration due to the presence of generations systems.

In (b), from the midpoint of the tenth year through the twentieth, as previ-
ously mentioned, the savings relative to Case 2 confirm that the implementation
of TESS still provides an advantage, albeit proportionally minimal in economic
terms.
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In (c) and (d), it’s possible to observe the two instances of system size
modification (referred to as Case 3 and Case 4). In the former, a lower initial cost
is evident; however, after the seventeenth year, there is an increase in cumulative
costs compared to the Base Case. Conversely, for the Case 4 configuration,
a very slight slope of the tangent to the curve is observed, attributed to the
system’s ability to export energy more efficiently during advantageous periods,
thanks to larger system sizes relative to the Base Case.

At the conclusion of the 20-year period, a lower cumulative cost relative
to the Case 4 is evident. Nevertheless, this is accompanied by a significantly
larger initial investment. Therefore, the decision regarding the extent and
manner of investment is left to the user, considering their economic resources.
It is essential to note that the assumptions of no system wear or performance
degradation, as well as maintenance expenses, have been excluded. However,
for a more informed decision-making process, these factors should be duly
considered. More details in Appendix B (Tab. B-1).

5.2.3 Power Trade Framework
In the following section, analysis will be conducted on how the system employs
the distribution network as a source for drawing energy when necessary or
convenient for users, as well as a medium for exporting excess energy. The
discrepancies in imported and exported energy on a monthly basis are depicted
in Figs. 5.4 and 5.5, respectively.

Figure 5.4: Imported energy bar chart per each case in year 2022.
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Figure 5.5: Exported energy bar chart per each case in year 2022.

The results show the configurations that stress the network the most. In
the year 2022, indeed, by grouping all the monthly data and organizing them
in Fig. 5.6, it can be observed that the main difference among the various cases
lies in the export capacity.

(a) (b)

Figure 5.6: Total imported (a) and exported (b) energy in year 2022.

Total Import : Case 4 (PV 10 kWp and Storage 16 kWh) and the Base
Case, which is very similar to Case 2, have the highest total importation. This
is likely due to the significant variability in prices. Having storage systems with
higher capacities makes them rely more on the grid to fulfill their objective,
resulting in larger energy exchanges and putting more strain on the grid.
However, this increased reliance on the grid also efficiently benefits the user.
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Although these cases have higher importation compared to others, the monthly
quantity is not significantly higher than the other cases (except for Case 1 due
to the absence of storage systems).

Total Export : In Case 4, there is a significantly higher energy export
compared to other cases. This is attributed to both the increased generation
capacity and storage capacity, enabling the system to accumulate excess energy
during periods of overproduction or low prices, to be released when needed.
There is a notable disparity across almost all months of the year in Fig. 5.5,
relative to other cases; this trend is also reflected in Fig. 5.6 (b). Additionally,
it is observed that Case 1 is capable of exporting a truly minimal amount
of energy, particularly evident during winter months; this system behavior is
entirely contingent upon the non-programmability of renewable sources.

Case 4 appears to exert higher stress on the grid in terms of total importation,
yet it significantly contributes to the grid by exporting excess energy. Conversely,
Case 1 seems to impose the least stress on the grid regarding importation,
albeit making a lesser contribution to energy exportation. It could potentially
represent a more balanced configuration concerning grid load.

Further exploration is warranted into how these configurations may affect
grid efficiency and stability. Configurations with higher energy importation may
strain grid components such as transformers and transmission lines during peak
periods. Should multiple users exhibit similar behavior concurrently, this could
necessitate additional investments to reinforce such components to manage
demand effectively.

Cases incorporating storage systems (Base Case, Case 2, Case 3, and Case
4) demonstrate greater capacity to balance load and contribute to the grid
through excess energy exportation. This leads to enhanced grid stability, as
mentioned earlier, and improved demand management.

Although Case 4 appears to stress the local grid more in terms of imports,
its significant contribution to energy exports results in higher revenues for the
system owner. Consequently, optimizing to minimize the gap between import
costs and export revenues reflects a prudent strategy to maximize the overall
economic value of the system and ensure efficient utilization of generated energy.

This means that the algorithm plans imports when prices are low and
exports when they are high, thus following market indications. Market prices
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are determined by the bids of generators and consumers, as well as potential
congestion on the transmission network. Therefore, by buying when prices
are low and selling when they are high, one contributes to optimizing the
transmission network and the production system. However, it is important to
note that this strategy may not be suitable for the local distribution network,
which may be overloaded at certain times. Currently, prices do not reflect local
distribution issues.

In conclusion, while the algorithm’s market-driven approach appears to
enhance revenue generation and grid efficiency at the macro level, localized
challenges within the distribution network warrant separate consideration and
management to ensure overall system stability and reliability.

5.3 Connection Capacity
Until now, all results have been attained while maintaining a constant Pthreshold

of 3 × 25 A (considering a cosϕ ≈ 0.95 the value is around 16 kW ), serving
as both import and export limits. Currently, the focus is on examining how a
reduction in the electrical grid’s capacity affects the hourly power import and
export quantities, consequently impacting the overall net cost to users across
diverse configurations. A fluctuation in Pthreshold precipitates a discernible
effect even within truncated time spans, such as 24 hours. For instance, Fig.
5.7 illustrates the import and export power dynamics, respectively, during
the initial week of May, exhibiting variations in threshold power values. At
first glance, it is evident that modifying the threshold power values results in
variations across all analyzed cases, except for Case 1. The latter does not
involve any DR or energy storage mechanisms, thus remaining unaffected by
variations as long as the threshold value in a specific hour is lower than the
corresponding load value. This translates into the infeasibility to meet the
constraints (no optimal solution found) in the code.

Five measurements were carried out, including the case with 16.5 kW , each
with progressively lower values of Pthreshold. Some cases do not have a total
of five points, resulting in a shorter curve, indicating that no solution can be
calculated for that value of Pthreshold. Only Case 4 has five points because,
despite having a limit of 4 kW , it manages, with a larger system, to handle
the limited power exchange capability with the grid.
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Figure 5.7: Respectively: imported energy (a) / exported energy (b) varying
with the threshold value for the first week of May.

Except for Case 1, which, as mentioned earlier, remains unchanged by
threshold adjustments, all other cases exhibit a significant decrease in imported
energy throughout the week, particularly noticeable in graph (b) for exported
power. Consequently, by varying the threshold power limit and observing the
exported or imported energy data, the graph depicted in Figure 5.8 illustrates
the fluctuation in the user’s net cost.

Figure 5.8: Net cost for the user varying with the threshold value for the first
week of May.

Observing the above graphs, several considerations can be made. Reducing
the maximum power limit that the prosumer system can draw from or inject
into the electrical grid can influence various aspects:

• Operational system capacity: A reduced limit decreases the maximum
amount of power the system can exchange with the electrical grid. This
limits the ability to draw energy from the grid when needed or to sell
excess generated energy.
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• Flexibility in energy usage: A reduced limit restricts flexibility in
energy usage; one is no longer fully able to utilize electricity from the
grid when prices are low or when there is a shortage of energy from other
renewable sources.

• Financial effects: Limiting the amount of power to be drawn or injected
has financial impacts. It reduces the opportunity to save money by
purchasing energy from the grid when prices are low, but also reduces
the opportunity to generate revenue from selling excess energy.

• Network stability: However, by reducing the maximum power limit,
the local electrical grid may become more stable, as lower limits decrease
the likelihood of overloads or other load management issues. However, it
may also limit the grid’s ability to absorb energy spikes or respond to
sudden fluctuations in energy demand.

In general, reducing the maximum power limit entails a trade-off between
operational flexibility and network stability. Naturally, the lower the threshold
value, the greater the stability of the grid, reducing the risk of potential issues
associated with it. However, this comes at the expense of the user’s system,
which has fewer means to freely manage the energy needed to meet loads,
resulting in increased energy bill prices. The results obtained for this analyzed
time interval have implications for every chosen time interval, highlighting the
importance of optimally balancing these factors based on the specific system
needs and conditions of the local electrical grid. It’s important to consider the
issue of network congestion. Due to DR, some power flows will be shifted in
time, potentially leading to multiple households shifting their load to the same
hour. This can cause a power spike, creating congestion issues. While this
analysis focuses on one household, it’s crucial to anticipate the broader effects
across multiple households. In addressing this, it’s suggested that network
connection capacities could be temporarily reduced below 16.5 kW in order
to alleviate congestion. The analysis conducted demonstrates that certain
strategies are more tolerant to reduced capacity than others. For instance,
lowering the threshold power may not significantly affect imported and exported
power, depending on the extent of the threshold reduction. This highlights
the need for careful consideration and balancing of strategies to mitigate both
immediate and potential future grid challenges.

81



Chapter 6

Conclusions

The focal point of this research has led to a deeper understanding of manag-
ing energy through Demand Response to promote households equipped with
distributed energy resources. Utilizing previously discussed rigorous method-
ologies and the GLPK solver for MILP optimization, a comprehensive analysis
of input data for a residence located in the Uusimaa region, Helsinki district,
Finland, was conducted. The research primarily focused on analyzing a Base
Case in the year 2022: the user is equipped with a photovoltaic system for local
generation, an energy storage system, a thermal storage system with integrated
electric resistance connected to a variable COP air-to-water heat pump, which,
along with terminals, constitutes the HVAC system, an electric vehicle as an
alternative to a traditional one, and an electric water heater for domestic hot
water. This complex system takes into account loads generated to meet user
needs, such as supplying domestic hot water at predetermined times, main-
taining indoor temperature within a defined temperature range, considering a
building’s two-capacity thermal model, full electric vehicle charging, critical
loads such as lighting, appliances, and more. The system is grid-connected
through the Point of Connection to Distribution (PCC), adhering to legal limits
set at 3 × 25 A for both energy withdrawal and injection into the grid. Hourly
average power flows are managed and calculated to ensure power balance at
the PCC and minimize the objective function. The latter aims to minimize the
hourly difference between the cost of imported energy and the cost of exported
energy, considering Day-Ahead energy prices and their respective buying and
selling modes discussed in the main body of this work.

Initially, optimization results were examined in terms of hourly average

82



Chapter 6

power. Through a detailed analysis of the first three days of May 2022, the
State of Charge (SOC) trend and the charge and discharge power of the fol-
lowing components (Figs. 4.1, 4.2, 4.3): BESS, EV, and TESS were examined.
Subsequently, the study also included the HVAC system demand graph, inte-
grating support from the tank for plant water and the EWH (Fig. 4.4). These
results confirm the robustness of the proposed methodology: all prosumer
system elements synergistically operate to minimize the objective function,
respecting the limits defined during the composition of the Python code. Data
collected for the Base Case were aggregated seasonally and annually. A trend
in energy demand for heating/cooling emerged consistent with annual tempera-
ture variations, with a peak of 824 kWh recorded in January. Additionally, it
was observed that the most significant component of monthly energy demand
is represented by electric vehicle charging, averaging 40% of the total. It is
also noteworthy that the BESS is more active during summer months due
to increased photovoltaic generation during that period. Subsequently, Table
4.1 was presented to analyze the user’s monthly net costs. These costs stem
from the difference between the cost of imported energy and the gain from
exported energy, both strongly correlated with the monthly average energy
price. At the end of 2022, the user incurred a net cost of approximately 988€.
It is interesting to note that despite the amount of exported energy being
less than imported energy each month, the user’s net costs can be negative
(indicating a gain) thanks to optimization. Furthermore, maintaining seasonal
breakdown, a decision was made to evaluate the load matching index to provide
an assessment of self-consumption effectiveness. The obtained values were in
line with expectations: intermediate for spring and autumn, with a minimum
of 42.86% during winter and a maximum of 68.43% during summer. To further
emphasize the importance of energy optimization, a comparison was made
between optimized and non-optimized systems for the first three days of May.
Compared to the non-optimized case, an increase in the load matching index
from 36% to 59% was recorded, accompanied by reduced net costs, shifting
from positive (indicating an expense) to becoming a gain.

The main conclusions of the study highlight how the developed code has the
capability to optimize load management to adapt and align as closely as possible
with the local generation curve (Fig. 4.14), thus maximizing self-consumption
and generating a higher percentage value of the load matching index compared
to a non-optimized scenario. The method employed also allows for effective
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management of significant fluctuations in Day-Ahead price values, enhancing
system flexibility.

Further investigations were conducted to evaluate the impact of different
configurations compared to the base case on self-consumption, costs, and
quantities of energy exported and imported. Four distinct configurations were
selected based on installation size, use of demand response mechanisms, and
presence of a thermal storage system. It was found that the presence or absence
of the thermal storage system (Case 2) has minimal impact on these variables.
Conversely, installation sizes of the photovoltaic and energy storage system
(Cases 3 and 4) are more significant: a smaller size compared to the base
case leads to reduced self-consumption and grid export, despite lower initial
costs. On the contrary, a larger installation size has a greater capacity for
grid export, positively influencing user net costs, increasing self-consumption
percentage but requiring a higher initial investment. A substantial difference
was noted when the demand response mechanism is not active (Case 1). In
this scenario, the monthly net amount is significantly lower compared to the
base case, with considerably higher monthly costs and exports occurring only
when photovoltaic production exceeds load. Subsequently, an analysis was
focused on a week in May, assessing import/export variations and consequently
net costs as the connection power limit decreases. It was concluded that by
reducing the power limit imposed at the grid connection point, there is a
decrease in energy exchanged with the grid and an increase in net costs for the
user. Moreover, the more flexible the user, the greater the potential to reduce
the power limit. In the analysis of different configurations, more specifically,
a particularly low Load Matching Index (LMI) was observed in Case 1, with
a winter minimum of only 3.21% and a summer maximum of 70.24% in Case
4. All examined configurations, except for Case 4, showed a reduction in LMI
compared to the Base Case, highlighting that demand response mechanism and
plant capacity increase favor self-consumption, but achieving an LMI index of
100% is not feasible. Regarding costs, the Case 4 has the lowest net cost at the
end of 2022, although with an initial investment of around 37000€. Evaluating
discounted cumulative costs for the average system lifespan, all configurations
were more cost-effective compared to the decision of not installing any system,
with cumulative costs at the end of the twentieth year amounting to 49505€.
This highlights how the presence of a flexibility system positively influences
both the user and the distribution network. Closely tied to cost analysis is the
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examination of quantities of energy exchanged with the electrical grid. Case
4 stands out for the highest total of imported (19662.68 kWh) and exported
(8202.75 kWh) energy compared to other cases considered in the analyzed
year. Although Case 4 appears to put more pressure on the local grid in
terms of imports, its significant contribution to energy exports translates into
higher revenues for the system owner, highlighting that, despite energy system
optimization aiming to maximize revenues following market indications, local
challenges in the distribution grid require separate management to ensure
overall system stability. The impact of reducing the value of Pthreshold led to an
increase in net costs for all cases involving demand response. Analyzing the first
week of May, an increase in net costs for all cases was observed, with particular
emphasis on Case 2. Consequently, an investigation was conducted on how
the capacity of the common connection point (PCC) could influence potential
demand response and locally generated PV energy utilization. By reducing the
size of the PCC connection, operational issues for DSOs (Electricity Distribution
System Operators) could be avoided, primarily voltage rise and network capacity.
However, reducing the size of the connection could create a bottleneck and
lead to curtailment of energy produced by both large-scale and local systems.
In summary, the results analysis confirmed the effectiveness of the proposed
methodology in optimizing prosumer energy systems, highlighting significant
improvements in demand management and cost reduction. Seasonal and annual
data revealed patterns consistent with climatic variations, emphasizing the
predominant role of electric vehicle charging in the overall energy balance.
Optimization showed a positive influence on self-consumption and profitability
even in the presence of substantial initial investments, as seen in Case 4.
However, cost and network requirements analysis underscored the complexity
of local energy management and the need to balance user interests with system
stability needs. Finally, parameter variations, such as Pthreshold, emphasized
the importance of carefully considering the implications of such changes on
operational management and network safety.

The code developed to support the analyses presents a complex model
to optimize an integrated energy system, which includes renewable sources,
energy storage, electric vehicles, and thermal management of buildings. This
approach to energy optimization is highly promising for the future, aiming to
maximize the efficiency and sustainability of available energy resources. Looking
ahead, further developments in this field can be expected. With advancing
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technology and increasing availability of real-time data, optimization models
will become increasingly sophisticated and accurate. For example, integrating
machine learning algorithms could allow the system to dynamically adapt to
operating conditions and learn from historical data to improve performance over
time. Moreover, with growing interest in transitioning towards a low-carbon
economy, demand for energy optimization solutions is expected to increase.
Governments, businesses, and communities are increasingly adopting ambitious
clean energy and emission reduction goals, and models like the one presented
can play a crucial role in supporting such efforts. Finally, ongoing technological
innovation is expected to lead to more convenient, scalable, and accessible
solutions for energy optimization. This could include developments in the field
of storage batteries, integration of electric vehicles with the electric grid, and
automation of smart buildings. The future of energy optimization solutions is
very promising, and they are expected to play an increasingly important role
in achieving global energy sustainability goals.

In summary, the research examines the optimal management of energy
resources in a Finnish household, focusing on the role of the prosumer. It is
acknowledged that what is optimal for individual users may not always be
advantageous for the local distribution grid. Additionally, the importance
of a flexible system that promotes self-consumption is emphasized, as this
leads to greater overall system efficiency and savings on the energy bill. These
conclusions are of significant importance in the context of optimized energy
management, suggesting possible directions for further studies and practical
applications. This situates the current master’s thesis work in an extremely
relevant and timely context.
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Appendix A

Figure A-1: Exchange of power and total demand for the Base Case winter.

Figure A-2: Exchange of power and total demand for the Base Case spring.
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Figure A-3: Exchange of power and total demand for the Base Case summer.

Figure A-4: Exchange of power and total demand for the Base Case autumn.

Figure A-5: Graph showing the average monthly irradiance and photovoltaic
production for different system sizes.
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Appendix B

Table B-1: Cumulative Costs for different configurations.

Initial Investment [€]
Year 2021 0 26650 6750 25650 12600 36900

Cumulative Costs [€]
Year Cons. Base Case Case 1 Case 2 Case 3 Case 4
2022 3117,94 27638,72 9233,52 26740,69 14564,28 37057,60
2023 6145,07 28598,64 11644,70 27799,61 16471,35 37210,61
2024 9084,02 29530,61 13985,66 28827,69 18322,87 37359,16
2025 11937,38 30435,42 16258,43 29825,83 20120,46 37503,39
2026 14707,63 31313,89 18465,01 30794,89 21865,70 37643,41
2027 17397,19 32166,77 20607,31 31735,73 23560,11 37779,36
2028 20008,42 32994,81 22687,22 32649,17 25205,16 37911,35
2029 22543,59 33798,73 24706,55 33536,00 26802,30 38039,49
2030 25004,92 34579,23 26667,07 34397,00 28352,92 38163,90
2031 27394,56 35337,00 28570,48 35232,92 29858,38 38284,69
2032 29714,60 36072,70 30418,45 36044,50 31319,99 38401,96
2033 31967,07 36786,97 32212,60 36832,43 32739,02 38515,81
2034 34153,93 37480,44 33954,49 37597,42 34116,73 38626,35
2035 36277,09 38153,71 35645,64 38340,13 35454,31 38733,67
2036 38338,42 38807,37 37287,54 39061,20 36752,93 38837,86
2037 40339,71 39442,00 38881,62 39761,28 38013,73 38939,02
2038 42282,70 40058,13 40429,27 40440,96 39237,80 39037,23
2039 44169,11 40656,32 41931,84 41100,84 40426,22 39132,58
2040 46000,57 41237,09 43390,64 41741,51 41580,03 39225,15
2041 47778,69 41800,95 44806,96 42363,51 42700,23 39315,03
2042 49505,01 42348,38 46182,03 42967,40 43787,81 39402,29
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