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Abstract

This thesis investigates machine learning techniques for predicting indoor human move-
ment using data from capacitive sensors. Four models are evaluated: Long Short-Term
Memory Networks (LSTM), Qlattice, Multilayer Perceptrons (MLP), and Kolmogorov-
Arnold Networks (KANs). These models are assessed based on accuracy, computational
efficiency, and interpretability within a controlled 3 m x 3 m area where human-induced
electrical capacitance changes are monitored.

The study involves systematic data processing to train and test each model, uti-
lizing metrics like Mean Squared Error (MSE) to evaluate performance, computational
demands, and responsiveness. Findings indicate that LSTM and Qlattice offer high in-
terpretability and reasonable accuracy, making them suitable for scenarios requiring un-
derstandable model decisions. In contrast, MLP and KANs demonstrate superior perfor-
mance in handling complex movements but lack interpretability.

The research enhances understanding of indoor human trajectory prediction, suggest-
ing practical applications in smart home automation, security, and elderly care. Future
work aims to integrate more diverse sensor inputs and refine models for improved ac-
curacy and real-world applicability, advancing both theoretical insights and practical
applications in indoor human movement modeling.
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Chapter 1

Introduction

1.1 The Importance of Indoor Human Trajectory Analysis

The importance of indoor human trajectory analysis primarily lies in the management and
optimization of indoor spaces. By enhancing our understanding and predictive capabilities
of how people move within enclosed environments, we can better serve people’s indoor
living and improve the planning and design of indoor spaces, including enhancing safety
and convenience. The significance of indoor human trajectory analysis is especially evident
in the following areas:

e Medical monitoring in homes: As the aging population grows, more families need to
care for elderly members. However, due to most family members having their own
work and life commitments, it is challenging to provide comprehensive and real-time
care. In this context, the analysis and prediction of elderly movement trajectories
within the home become particularly important. Through indoor human trajectory
analysis, it is possible to monitor the health conditions of the elderly in real time,
thus enabling timely prevention and intervention of potential safety risks. This can
significantly enhance the safety of elderly people living alone at home.

e Safety management in public indoor settings: Trajectory analysis and prediction
can be applied in densely populated environments such as airports and shopping
malls. By understanding typical human movement patterns, potential threatening
actions can be detected, preventing accidents and effectively improving evacuation
and emergency measures in public settings. This plays a crucial role in accident
prevention.

e More rational planning for supermarkets and stores: By predicting and analyzing
consumers’ movement patterns within stores, supermarkets can adjust store lay-
outs and optimize product placement based on estimated trajectories and hotspots
of activity. Predictive analysis can also provide real-time feedback on the popu-
larity of various products within the store, enabling better stock management and
merchandise display planning.
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e Integration with smart homes and the Internet of Things: As smart homes increas-
ingly become a part of ordinary people’s lives, the analysis and prediction of indoor
movement trajectories become particularly important. By analyzing the movement
patterns and real-time trajectories of residents, intelligent management and control
of smart systems within rooms can be achieved, leading to automation in smart
homes. This not only enhances the comfort and convenience of people’s lives but
also improves energy efficiency by adjusting the usage patterns of smart home de-
vices.

In summary, indoor human trajectory analysis has numerous application scenarios that
can enhance safety, operational efficiency, and user experience in various environments.
With the development of artificial intelligence technologies, the impact and potential
applications of such analyses continue to grow, making indoor spaces safer and more
responsive, thus better serving humanity and meeting human needs more effectively.

1.2 Objectives of the Thesis

In this thesis, four methods LSTM, Qlattice, MLP, and KANs are used to implement the
prediction of indoor human trajectories. The performance of these methods is analyzed,
and the accuracy and performance differences between different methods are compared.
The objectives are as follows:

1. Assess the accuracy of each method: The main goal is to assess the accuracy
of predicting indoor human trajectories using LSTM, Qlattice, MLP, and KANs.
Firstly, the data has been collected and processed, and then the processed dataset
is applied to different models. By measuring the MSE, the accuracy of each model
is compared and evaluated. Additionally, each model will plot the predicted human
trajectory, which will be compared with the actual trajectory to assess the accuracy
and reliability of each method.

2. Analyze the computational efficiency of each model: Different models cor-
respond to different computing methods, and the computational efficiency of each
model is an important criterion for evaluating the feasibility of the model. In this
thesis, one of the main goals is to measure the time required to train and predict
trajectories for each method and assess the feasibility and priority of various meth-
ods under limited computing resources. By comparing the time taken to complete
the trajectory analysis tasks, an analysis comparison of the computational efficiency
of different models is achieved.

3. Compare the differences in interpretability between models: LSTM, MLP,
KANSs, and Qlattice are four distinct types of machine learning models, each with
unique features, particularly in terms of model interpretability. LSTM is a type of
recurrent neural network suitable for sequence data, with an internal gating mecha-
nism that can be understood as regulating the flow of information, but its complex
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multilayer structure reduces interpretability. MLP is a basic feedforward neural net-
work; although its structure is relatively simple, increased layer depth and the inter-
action between weights and activation functions also lower the model intuitiveness.
KANSs are based on the Kolmogorov-Arnold representation theorem, theoretically
capable of mapping any multidimensional function accurately with a small num-
ber of nonlinear transformations. While theoretically interpretable, practical inter-
pretability might be limited by understanding these transformations. Qlattice uses
symbolic regression to explore models across various hypothesis spaces, typically
producing models as concise mathematical expressions, thus providing the highest
interpretability among these models. Users can directly see the mathematical form
and relationships between variables.

1.3 Scope and Limitations

1.3.1 Scope of the Thesis

e Data Collection Scope: This study is limited to using capacitive sensors to collect
data, capturing indoor human position data through capacitive sensors. Capacitive
sensors are non-invasive sensors, characteristic of non-invasive sensors.

e Model Scope: This thesis is limited to using four different model methods to predict
data, namely genetic algorithms, quantum-inspired algorithms, and two different
neural networks.

e Application Environment Scope: The research is limited to indoor environments
where capacitive sensors can effectively monitor human trajectories, such as homes,
offices, or malls.

o Evaluation Metric Scope: In this thesis, the performance evaluation of each model
includes accuracy, computational efficiency, and interpretability.

1.3.2 Limitations of the Thesis

1. Limitations of Capacitive Sensors: Although capacitive sensors can be used for
non-invasive and privacy-respecting data collection, they also have their limitations.
They may not provide the same level of detail as visual sensors (such as cameras).
Meanwhile, capacitive sensors are severely affected by environmental disturbances
and have limited detection distances. They are also sensitive to the properties of
objects, such as size, shape, and dielectric constant. The use of capacitive sensors
may lead to certain limitations and unsustainability in sensor selection.

2. Scalability Limitations: This thesis may not fully address the scalability of mod-
els in larger or more complex environments beyond the scope of data collection. The
space is a 3 m x 3 m square space, and the situation and results may differ in more
complex environments. Additionally, the results of this thesis may be highly related
to the type and layout of indoor environments and the nature of data collected
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through capacitive sensors. Generalizing these results to other spatial environments
or different types of sensors may require additional modifications and testing.

3. Limitations of Specific Models

e The limitations of LSTM models primarily lie in the potential for vanishing
gradients when dealing with very long sequences and the need for extensive
tuning and training resources when predicting extremely complex or rapidly
changing data.

e Qlattice is powerful, requires careful tuning to ensure it does not overfit and
remains computationally feasible.

e MLP requires a large amount of data for training to achieve optimal results,
and its "black box" nature, compared to more transparent models like Gplearn,
makes it difficult to interpret.

e The main limitation of KANs is their high implementation complexity and
significant computational resource demands, making them challenging to scale
to large-scale or high-dimensional applications.

4. Ethical and Privacy Issues

Although capacitive sensors are less invasive, any form of human subject data col-
lection must adhere to strict ethical and privacy standards. Privacy concerns are
often paramount in data collection, and compliant data collection is an important
consideration.
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Chapter 2

Literature Review

2.1 Overview of Trajectory Regression Methods

Trajectory regression analysis is a significant area of study, particularly when dealing
with the prediction of human motion trajectories in indoor environments. It involves
various techniques and methods, ranging from traditional statistical approaches to ad-
vanced machine learning and deep learning technologies. The aim of these methods is
to enhance understanding of human motion trajectories, optimize environmental layout,
enhance safety, and offer practical applications in business and medical fields. Here are
some of the main methods currently used for trajectory regression:

1. Statistical Methods: Statistical approaches primarily include linear regression
and polynomial regression, which are based on mathematical formulas and predict
trajectories by minimizing error. These methods are usually suitable for situations
where data relationships are simple and predictable, but they may not be accurate
enough when dealing with complex nonlinear relationships.

2. Machine Learning Methods: Machine learning provides a way to automatically
learn and improve from data, enabling automated data handling and analysis, suit-
able for more complex trajectory prediction challenges. Here are some common
machine learning methods:

o Support Vector Machines (SVM): By finding the optimal boundary between
data categories, SVM can handle high-dimensional data and has shown good
performance in both classification and regression tasks.

e Decision Trees and Random Forests: These methods predict trajectories through
a tree-like structure of decision rules, especially random forests, which improve
prediction accuracy and stability by integrating multiple decision trees.

o k-Nearest Neighbor (KNN): This method, based on distance or similarity mea-
sures, predicts by finding the k closest neighbors to a test point, and is appli-
cable to various types of datasets.

3. Deep Learning Methods: Deep learning techniques excel in handling complex
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and large-scale datasets and are particularly suitable for cases with large amounts
of data, making them ideal for trajectory prediction:

o Convolutional Neural Networks (CNN): Although primarily used for image
processing, CNN can also recognize spatial patterns in trajectory data.

o Recurrent Neural Networks (RNN) and LSTM: These networks are particu-
larly suited for processing sequential data, such as time series or continuous
trajectory points, capturing temporal dynamics in the data.

4. Symbolic Regression Methods: Symbolic regression, through the use of genetic
programming, seeks the best mathematical models to describe data. Unlike tradi-
tional numeric regression, symbolic regression provides deeper interpretability, and
has unique advantages in explainability.

2.2 Framework Overview: Indoor Human Trajectory Pre-
diction

Establishing a comprehensive analytical framework is crucial when addressing indoor
human trajectory prediction. This framework spans the entire process from data collection
to model deployment, ensuring the systematic and scientific integrity of the research. Here
is a detailed overview of the framework, involving key steps:

1. Data Collection: Data collection is the foundation of trajectory prediction, de-
termining the quality and depth of subsequent analysis. In an indoor environment,
human location data is collected using capacitive sensors, deploying four sensors
at the front, back, left, and right of a 3 m x 3 m square. These sensors sample
frequencies to provide continuous location data. It is crucial to note that the ac-
curacy of these data and the choice of sampling frequency directly impact model
performance.

o Sensor Placement: Sensors are strategically placed to cover key areas, ensuring
data continuity and completeness, completely covering a 3 m x 3 m square in
this thesis.

2. Data Preprocessing : The purpose of data preprocessing is to ensure data quality,
a necessary step to improve analysis efficiency. This includes:

e Data Cleaning: Removing or correcting erroneous data points and dealing with
missing values.

e Data Transformation: Converting raw data into formats suitable for analysis,
such as normalization or standardization, to mitigate the effects of differing
scales.

e Feature Extraction: Extracting features from raw data that aid in trajectory
prediction.

12
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3. Model Development and Training: Select appropriate machine learning or deep
learning models for trajectory prediction. In this thesis, four models were chosen
for analysis and prediction, including:

e Model Selection: Choosing suitable models based on data characteristics and
predictive needs, such as LSTM, Qlattice, MLP, and KANs.

e Model Training: Training models using a dataset of existing coordinates, ad-
justing model parameters based on output results to improve performance,
and performing steps like cross-validation to optimize model performance.

e Model Validation: Evaluating model predictive performance using a test set to
ensure good generalization capabilities and avoid overfitting.

4. Performance Evaluation: Evaluating model performance using various metrics,
including:

e Accuracy: The degree of alignment between predicted results and actual data.
In this thesis, model prediction accuracy is judged by comparing predicted
trajectories with actual trajectories, primarily through indoor pedestrian tra-
jectory plots.

o Efficiency: The speed at which models process data, which varies significantly
among different models and reflects model efficiency. Efficiency is a crucial
performance indicator, especially in scenarios requiring real-time predictions.

5. Result Analysis and Interpretation: Delving into model prediction results to
provide explanations of model behavior

e Result Visualization: Using charts and dynamic simulations to display predic-
tion results, aiding in a better understanding of model predictive behaviors.
In this thesis, charts primarily display prediction outcomes, comparing actual
and predicted trajectories to analyze model results.

o Result Interpretation: Explaining the underlying computational and analytical
logic of the results, elucidating the decision-making process of the models.

2.3 Integration of Machine Learning and Symbolic Regres-
sion

The integration of machine learning and symbolic regression represents a cutting-edge re-
search field, aiming to combine the data processing capabilities of machine learning with
the model interpretability of symbolic regression. This integrated approach leverages the
powerful learning capabilities of machine learning models while utilizing symbolic regres-
sion to generate interpretable mathematical models, thus offering deeper insights and
understanding. Here are some key aspects of integrating machine learning with symbolic
regression:

13
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1. Concept of Symbolic Regression: Symbolic regression is a regression technique
that uses genetic programming to discover the best symbolic expressions describ-
ing data. Unlike traditional numerical regression models, symbolic regression not
only predicts outputs but also seeks to uncover the underlying mathematical rela-
tionships in data. This allows the model to offer predictive capabilities along with
intuitive insights into the data generation process. Qlattice, as a representative of
this approach, offers a direct expression of the mathematical relationships underly-
ing data generation.

2. Motivation for Integration: While symbolic regression provides excellent inter-
pretability, its performance may be less optimal when dealing with large-scale or
highly complex data. Moreover, symbolic regression may struggle to capture all
the intricate data relationships directly. Thus, integrating machine learning models
with symbolic regression combines the strengths of both: the ability of machine
learning models to process and learn from complex data, while maintaining inter-
pretability. The complementary nature of the two can effectively compensate for
their respective weaknesses.

3. Integration Methods: The integration typically involves the following steps:

o Preprocessing and Feature Extraction: Use machine learning techniques, such
as deep learning networks, to process raw data and extract features. These
features capture complex patterns in the data, providing a richer input for
symbolic regression.

e Symbolic Model Generation: Input the extracted features into a symbolic re-
gression model like Qlattice. Utilize genetic programming techniques to find
the best model from thousands of possible mathematical expressions that de-
scribe the relationship between features and prediction targets.

e Model Optimization and Validation: Combine traditional machine learning
evaluation methods, such as cross-validation, to optimize and validate the per-
formance of the integrated model.

4. Application Example: For instance, an integrated model using deep learning and
Qlattice could first utilize a deep learning network to process complex patterns in
image or video data, and then employ Qlattice to generate a mathematical ex-
pression describing the relationship between these patterns and the final outcomes.
This approach not only enhances prediction accuracy but also provides intuitive
explanations of model decisions through symbolic expressions.

By integrating machine learning with symbolic regression, researchers can create pow-
erful and interpretable models, which is especially important for applications requiring
high transparency and verifiability, such as in medical diagnostics or financial analysis.
The development of this integrated method could help propel the widespread application
of machine learning technologies while enhancing user trust and understanding of model
predictions.

14



Chapter 3

Methodology

3.1 Source and Description of Experimental Data

The data used in this experiment originates from another project. [4] This project col-
lected human movement trajectories within a 3 m x 3 m indoor space using capacitive
sensors.

1. Data Collection Environment

The data collection environment for this project is a 3 m x 3 m laboratory, free
from any obstructions, simulating an open and controlled environment such as a
small office or home setting. This setup helps minimize external variables, ensuring
more accurate and consistent data collection. Consider the example of Fig. 3.1.

2. Data Collection Process

In this project, the authors used four capacitive sensors placed at the front, back,
left, and right positions within the indoor space. Each sensor was fixed at a specific
height from the ground to effectively capture the capacitive changes caused by
human movement. Consider the example of Fig. 3.2.

3. Types of Collected Data and Data Processing

The data in the project was sampled at a frequency of 3 Hz, meaning data was
collected three times per second. This sampling frequency balances the precision of
capturing human movement with the real time processing of the data. A moving
window is then established on this time series data to predict the next data point
outside the window based on the data within the window.

e Data Window: Data processing is performed within a 5 s window, containing
15 data points per window. This setup allows the capture of sufficient dynamic
information without overwhelming the processing speed with excessive data.

e The raw data undergoes preprocessing steps, including signal denoising and
data normalization, to ensure the accuracy of subsequent analysis. The prepro-
cessed data is then used for feature extraction, which is crucial for the training
of machine learning models and trajectory prediction.

15
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Figure 3.1. The laboratory space measures 3 m x 3 m [4]

3.2 Explanation of the Data Splitting Technique Used

The collected data is divided into three parts: the training set, the test set, and the
validation set. This division is designed to evaluate the model performance and prevent
overfitting. The training set comprises 60 % of the data, while the test set and the
validation set each comprise 20 %.

The training set is used to train the model, meaning it adjusts the model parameters
through learning from the training data. The validation set is used for model selection and
tuning of hyperparameters, serving as a tool to evaluate the model performance during
development. After the model development is complete, the test set is used to assess the
model final performance.
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Capacitiveles

Capacitive Sensor 4 _
Sensor 1 B

[

Figure 3.2. Capacitive Sensor Deployment [4]

3.3 Using Long Short-Term Memory Networks (LSTM),
Qlattice, Multilayer Perceptrons (MLP) and Kolmogorov-
Arnold Networks (KANs) for Data

For the collected and processed human trajectory data in an indoor environment, here
are the introductions and detailed steps for analysis and prediction using four methods:
LSTM, Qlattice, MLP, and KANs.

¢ Introduction of input data and a brief description of the training process for the four
models: The input data during the training process consists of real trajectory data
from the training set, which has been segmented from the larger dataset. A window
of 15 data points in length is established, and each training session involves feeding
the data information of these 15 positions within the window into the model. The
goal is to predict the position of the next point based on the positional information
of these 15 points. The complete training process involves progressively moving the
window forward point by point across the training set, continuously predicting the
position of the next point.
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3.3.1 Long Short Term Memory Networks (LSTM)

LSTM is a type of RNN designed to effectively model temporal sequences and capture
long-term dependencies in data. It addresses the limitations of traditional RNN, such as
the vanishing gradient problem, by introducing a memory cell and gating mechanisms.
Here is an overview of LSTM and its application methods

1. Introduction: LSTM networks use a specialized structure that includes memory
cells and gates to regulate the flow of information. These components enable LSTM
to retain and utilize information over long sequences, making them well-suited for
tasks such as time series forecasting, natural language processing, and sequence
classification.

Cell state

i ‘ht

Ct-1,~ @ @ 2 S ”
Ct
tanh
®| Gr= x
S
(0)

ht

ht-1

Figure 3.3. LSTM cell [2]

2. LSTM Architecture Fig. 3.3

e Memory Cell: The core component that maintains the cell state over time,
preserving information from previous time steps.

e Gates: Three gates control the flow of information in and out of the memory
cell:
— Forget Gate: Decides what portion of the cell state should be discarded.

— Input Gate: Determines which new information should be added to the
cell state.

— Output Gate: Regulates the information to be outputted based on the cell
state.

18
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3. Key Steps in Using Long Short-Term Memory Networks (LSTM)

e Data Preparation: Read the training data from files and select appropriate
feature columns and target variables. Sequence data often requires careful pre-
processing, such as normalization and sequence padding.

e Model Configuration: Instantiate an LSTM model using a deep learning frame-
work (e.g., TensorFlow or PyTorch). Configure its parameters based on the
problem complexity, such as the number of layers, units per layer, activation
functions, and dropout rates.

e Training the Model: Train the LSTM model using the prepared training data.
Typically, optimization algorithms like Adam are used to update the model
weights.

e Model Validation and Testing: Evaluate the model performance using valida-
tion and test datasets. Common metrics include accuracy, MSE, and Mean
Absolute Error (MAE).

o Results Analysis: Analyze the model predictions and understand its behavior
by visualizing the learned patterns and comparing them with actual data.

4. Evaluation Metrics

e Similar to other machine learning algorithms, LSTM evaluation metrics include
loss functions that measure the difference between predicted and actual values.
Common loss functions for LSTM include: MAE,MSE,Root Mean Squared
Error (RMSE).

« For consistency, the same error function (MSE) can be used to compare LSTM
with other methods like gplearn.
5. Typical Process
o Initialization: Start by initializing the LSTM network with appropriate hyper-
parameters, such as the number of hidden layers, units, and dropout rates.

e Training: During training, the model learns by updating its weights based on
the loss calculated at each time step. This process involves backpropagation
through time.

e Optimization: Use techniques like learning rate scheduling and early stopping
to optimize the model performance and prevent overfitting.

e Hyperparameter Tuning: Experiment with different configurations to find the
optimal set of hyperparameters for the given data.

6. Parallel Computing

e Scalability: LSTM models can be computationally intensive, especially with
large datasets and long sequences. Leveraging parallel computing and hardware
accelerators like GPUs can significantly speed up the training process.
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e Frameworks: Use deep learning frameworks that support parallel computing
and distributed training to handle large-scale data efficiently.

By following these steps, LSTM networks can effectively model and predict sequential
data, providing powerful insights into time-dependent patterns and relationships. Despite
their complexity, LSTM models offer significant advantages in tasks requiring temporal
understanding and long-term dependency modeling.

3.3.2 Qlattice

Qlattice is a quantum-inspired algorithm developed by Feynman Artificial intelligence
(AI), designed for automatically discovering patterns and relationships in data. [1] Here
is a basic overview of how Qlattice is typically used

e Data Preparation: Similar to gplearn, prepare your data by defining features and
targets.

e Connect to Qlattice: Set up a connection to Qlattice and define your model query.

e Model Search: Explore potential solutions through Qlattice to find the models that
best describe the data.

e Model Optimization: Select several of the best models for further optimization and
validation.

o Evaluation and Testing: Assess the performance of the selected models on an inde-
pendent test dataset.

¢ Result Application: Interpret the model outputs and apply them to practical prob-
lems or further analysis.

Qlattice operates within the Feyn framework, inspired by quantum mechanics, which
evaluates the most probable models for a given problem and then selects and tests the
best models. The data used in this thesis are positional time series data, which are utilized
to train the Qlattice model to solve regression problems and predict the next position
points of human trajectories indoors. Qlattice has a promising future in the field of deep
learning research.

To some extent, to understand Qlattice, one could view it as a probability distribution
from which models continuously sample. After each training batch, the distribution is
updated with the best structures, removing poorly performing models. This selection
process aims to make room for new, more competitive models.

In terms of setting parameters for Feyn, you can restrict the search to specific functions
and impose limits on model complexity and other similar constraints by setting Feyn’s
parameters.

In Feyn, models are visualized as diagrams, which are easy to read. These diagrams
transform mathematical formulas into input-to-output conversion flows, depicted as left-
to-right, unidirectional flowcharts that illustrate the relationships between the features

20
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used in each model. They also show how these features interact to produce results. Feyn’s
visualization and interpretability are particularly strong, offering unique features such as
evaluating the relationship between one feature and another and identifying biases within
the model. Consider the example of Fig. 3.4

-\ 1
multiply
i/
add

Figure 3.4. Qlattice models are visualized as diagrams [1]

In Qlattice, there are a variety of functions available for use in model calculations,
known as interactions. Interactions are the basic computational units of each model,
receiving data, transforming it, and then outputting it to the next model. Consider the
example of Fig. 3.5.

It’s important to highlight the advantages of Qlattice as a supervised machine learning
algorithm for symbolic regression. Qlattice allows users to decide which models are useful,
which should be enhanced, and how to limit the decision space. To some extent, Qlattice
involves users more directly and makes the model training process more comprehensible.
Overall, here are the advantages of using the Qlattice method:

o Fewer nodes and connections are needed.
e Some functionalities are not typically seen in neural networks.
o The models are easier to inspect, simpler, and less prone to overfitting.

e The models are mathematical formulas, allowing you to infer the consequences of
hypotheses.

e A diverse range of models have been tried, ensuring that nothing is missed during
the training process.

3.3.3 Multilayer Perceptrons (MLP)

MLP is a deep learning method well-suited for addressing non-linear problems involving
large amounts of complex data. [3] Here is the basic process for utilizing MLP.

e Data Preprocessing: Normalize or standardize the data to ensure effective input to
the network.
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Figure 3.5. Unctions available for use in model calculations [1]

e Building the Network: Construct an MLP model using frameworks like TensorFlow

or PyTorch, configuring multiple hidden layers and nodes.

e Model Training: Train the model on the training data, optimizing performance by

adjusting parameters such as learning rate and batch size.

e Validation and Testing: Adjust model parameters on the validation set to avoid

overfitting, then evaluate the model performance on the test set.

e Result Analysis: Analyze and interpret the model predictive results, assessing the

model performance on unknown data.

The full name of MLP is multilayer perceptron, a deep learning model based on feed-
forward neural networks, consisting of multiple layers of neurons, each fully connected to
the preceding layer. multilayer perceptrons are used to solve machine learning problems

such as classification, regression, and clustering.

Each layer of the MLP is composed of numerous neurons: the input layer receives fea-
tures, the output layer provides final predictions, and the intermediate hidden layers are
used for extracting features and performing non-linear transformations. Each neuron re-
ceives output from the previous layer, processes it through complex weighted sums and
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activation functions, and produces the output for the current layer. Through iterative
training, MLP can autonomously learn complex relationships between input features and
make predictions on new data.

In Python, various deep learning frameworks are available to implement MLP modeling.
In this thesis, the deep learning framework used is PyTorch. Developed by Facebook,
PyTorch differs from other frameworks by utilizing a dynamic graph, which facilitates
easier debugging and development.

Here are some advantages of MLP.

o Expressive Power: MLP have strong expressive capabilities, able to handle non-
linear issues and high-dimensional data.

o Backpropagation Training: MLP can be trained through the backpropagation algo-
rithm to autonomously learn features and patterns.

e Multiclass and Regression Problems: MLP are capable of handling both multiclass
classification and regression problems, demonstrating good generalization capabili-
ties.

e Overfitting Prevention: Techniques like regularization and dropout can be employed
to prevent overfitting in MLP.

3.3.4 Kolmogorov-Arnold Networks(KANs)

KANSs is a deep learning method appropriate for handling large volumes of complex data
involving nonlinear problems. [5] Below is the basic workflow for KANs

e Parameter Initialization: Initialize all parameters.

e Dynamic Update of Spline Grids: As spline functions are defined within bounded
regions and activation values during training may exceed predefined intervals, KANs
dynamically updates grid points upon receiving new input activations to ensure all
possible activation values are covered.

e Model Training and Symbolization: KANs training is similar to conventional neu-
ral networks, with activation functions based on spline expressions. After training,
nodes are automatically pruned to simplify the network structure. Once all ac-
tivation functions are symbolized, training continues until the loss is minimized,
indicating that the correct symbolic expressions have been found.

e Validation and Testing: Adjust model parameters on the validation set to prevent
overfitting, then assess the model performance on the test set.

e Result Analysis: Analyze and interpret the model prediction results, evaluating its
performance on unknown data.

Kolmogorov-Arnold Networks challenge traditional multilayer perceptron designs by
moving activation functions from nodes to edges, enhancing model performance and in-
terpretability. The core of KANs is that all weight parameters are replaced by univariate
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spline functions, which adaptively adjust based on training data, offering greater flexibil-
ity and adaptiveness than fixed activation functions.

The Kolmogorov-Arnold theorem states that for any continuous function f(z1,...,x,)
defined on the closed interval [0,1]", there exists an integer 2n + 1 and a series of one-
dimensional continuous functions ¢, , and ®,, such that the multivariate function can be
expressed as

2n+1 n
[, an) = Z 4 Z Ggp(p)
q=1 p=1
o The function ¢4, maps individual variables z;, to real numbers.
o The function ®, processes the sum of the mappings by ¢ .

e The 2n + 1 represents the minimum number of functions required to represent any
continuous function in this form.

Model | Multi-Layer Perceptron (MLP) | Kolmogorov-Arnold Network (KAN)

Theorem Universal Approximation Theorem Kolmogorov-Arnold Representation Theorem
. ) Me) 2n+1 n
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Figure 3.6. Comparison chart between MLP and KANs [5]

Unlike MLP, where fixed activation functions are placed at the nodes (neurons),
KANSs places learnable activation functions at the edges (weights). Thus, Kolmogorov-
Arnold Networks entirely lack a linear weight matrix: each weight parameter is replaced
by a learnable one dimensional spline function. Nodes in KANs simply sum input signals
without performing any nonlinear processing and generally allow a smaller computational
graph than MLP. Consider the example of Fig. 3.6.

To better understand KANs, let’s consider the diagram on the left showing the network
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layered architecture and data flow, and on the right, a key component the B-spline ac-
tivation function is detailed, showing how to switch between coarse and fine grids using
"grid expansion techniques."Consider the example of Fig. 3.7

. ~
. N
~ N
\
7 k=3 N
’ \
/ 7 \
’

W= Y B

i=0

\

‘ ] G =5
Tato gty By 4y G5l bt
i
: lgridextension : 12 o
LW =) B

! i=0 /

y

i
\
} /
\ — et G,=10
% ﬁﬂ/z W M M (’«N N ’ﬁ/:\ M M \ Pyt 6 b6 6 6 1 6 & figh 0y 2 )
\
\
\

X0,1 X0,2

Figure 3.7. KANSs network structure diagram [5]

The left diagram displays the layered architecture of a KANs. Each layer includes a
set of nodes, each processing input data through a specific set of functions, outputting
to the next layer. Small icons on each node indicate the type of activation function, here
represented by B-spline functions.

The right diagram demonstrates an activation function ¢(x), parameterized as a B-spline
function. It also shows how the granularity of the function can be adjusted by changing
the number of knots (also called control points) in the B-spline.

This illustration corely showcases how KANs uses B-splines as activation functions, com-
bined with the network’s multi-layer structure and dynamic adjustment of activation
functions (grid expansion techniques), to handle complex, high-dimensional data. This
design allows the network not only to adapt to different data resolutions but also to
optimize performance by adjusting the precision of the activation functions.

The image below illustrates the training process of the KANs model. Consider the
example of Fig. 3.8

Performance Advantages

e Accuracy Improvement: Compared to MLP of the same or even larger scale, KANs
demonstrates higher accuracy in data fitting and partial differential equation solving
tasks. Research also shows that even small-scale KANs can match or exceed the
performance of large-scale MLP.

e Neural Scaling Rate: KANs exhibits a better neural scaling rate than MLP, meaning
that as the number of models increases, KANs performance significantly improves.
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Figure 3.8. KANSs model training flow chart [5]

o Enhanced Interpretability: The structure of KANs allows for intuitive visualization,
enabling users to actively participate in optimization and debugging, which is par-
ticularly beneficial in tasks like symbolic regression. Users can even manually specify
or have the system suggest appropriate symbolic functions to represent activation
functions, resulting in more readable expressions.

Due to similarities between KANs and MLP, although KANs might seem to have a
higher parameter magnitude than MLP, it often achieves better generalization capabil-
ity with a smaller N-value, thereby reducing parameter quantity to enhance the model
interpretability and versatility. As a formidable competitor to MLP, KANs not only
demonstrates enormous potential in terms of accuracy and interpretability in deep learn-
ing but also offers stronger adaptability and robustness in non-symbolic function learning
processes.
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Chapter 4

Thesis Setup

4.1 Hardware and Software Requirements for the Thesis

The design involves processing human trajectory data collected through capacitive sensors
using four methods: LSTM, Qlattice, MLP, and KANs. To effectively execute these tasks,
specific hardware and software configurations are required to support data collection,
processing, and analysis.

4.1.1 Hardware Requirements

1. Data Collection and Processing Unit

e Computer System: A high-performance computer is necessary, with sufficient
processor speed and memory (recommended 16 GB or more) to handle and
analyze data. Consider the example of Fig. 4.1

o Storage Device: A high-speed Solid State Drive (SSD) for storing data and
models.

2. Network Facilities

e High-Speed Internet Connection: For software updates, remote access, and
potential use of cloud computing resources.

o Internal Network: A stable Local Area Network (LAN) or Wi-Fi for the wireless
transmission of sensor data.

4.1.2 Software Requirements

1. Operating System

e Compatibility: Windows 10, depending on the chosen analysis software and
personal preferences.
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¥ DirectX Diagnostic Tool

System Display Sound1 Sound2 Input

This tool reports detailed information about the DirectX components and drivers installed on your system.

If you know what area is causing the problem, click the appropriate tab above. Otherwise, you can use the "Next Page" button below to
visit each page in sequence.

System Information

Current Date/Time: Saturday, July 20, 2024, 4:26:25 PM
Computer Name: PC-LSE-1862
Operating System: Windows 11 Pro 64-bit (10.0, Build 22631)
Language: English (Regional Setting: English)
System Manufacturer: HP
System Model: HP EliteDesk 800 G4 TWR
BIOS: Q01 Ver. 02.06.03
Processor: Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz (12 CPUs), ~3.7GHz
Memory: 16384MB RAM
Page file: 14146MB used, 3040MB available
Directx Version: Directx 12

B :Chack for WHQL digital signatures

- DxDiag 10.00.22621.3527 64-bit Unicode Copyright © Microsoft. All rights reserved.
Help Save All Information... Exit

Figure 4.1. Computer equipment information

2. Data Analysis and Machine Learning Tools

e Python: A widely used programming language, supporting various data pro-
cessing and machine learning libraries.

e Scientific Computing Libraries: NumPy and Pandas for data manipulation;
Matplotlib and Seaborn for data visualization.
e Machine Learning Libraries
— Scikit-learn: Provides extensive support for traditional machine learning
algorithms.
— TensorFlow or PyTorch: For building and training complex neural net-
works (such as MLP and KANSs).
— gplearn: A library for implementing genetic programming, used for sym-
bolic regression.

e Qlattice Software: Specialized software provided by Feynman Al, which may
require integration with the Python environment through an API.
3. Software Development Environment
« IDE: Visual Studio Code, offering code editing, debugging, and version control.
The choice of IDE depends on personal preferences.

e Version Control System: Such as Git, used for code management and collabo-
ration.
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4.2 Comparative Evaluation Criteria

When comparing the accuracy of LSTM, Qlattice, and MLP and KANs, it is crucial
to choose appropriate evaluation criteria to fairly assess their performance in human
trajectory prediction tasks. In this thesis, Mean Squared Error (MSE) is selected as the
comparative evaluation standard.

Definition: Mean Squared Error is the average of the squares of the differences between
the predicted values and the actual values. It is a commonly used metric for assessing the
accuracy of models. The formula for MSE is:

1 & A
MSE = =% (¥ - V3)°
nis

This metric provides a clear quantitative measure to evaluate how well each model
predicts human trajectories by penalizing larger errors more significantly than smaller
ones, thereby ensuring that models with lower MSE values are more precise in their
predictions.
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Chapter 5

Results and Discussion

5.1 Presentation of Results

5.1.1 Long Short-Term Memory Networks (LSTM)

LSTM is a type of recurrent neural network used in deep learning, excelling at learning
from data sequences. With its unique architecture that combines memory cells and gates,
LSTM can effectively capture long-term dependencies within data. This capability allows
it to discern complex relationships and patterns, making it crucial for tasks such as time
series forecasting, natural language processing, and sequence classification.

From the process information of the training output for an LSTM model, several
important insights and trends can be observed regarding the model learning performance
across multiple epochs. Here’s a detailed analysis. Consider the example of Fig. 5.1

1. Epoch Count and Duration

o Each line in the log represents one epoch of training, where the model processes
the entire training data.

e The time per step and overall duration for each epoch are consistently short,
indicating efficient computation, likely due to a manageable dataset size or
efficient hardware.

2. Loss and Validation Loss

e Training Loss

This metric represents the MSE of the model on the training dataset. It’s
calculated as the average of the squared differences between the predicted
values and actual values. The training loss decreases significantly from the
first epoch (0.1345 m?) to the last reported epoch (0.0023 m?), which suggests
that the model is learning effectively and adapting well to the training data.

e Validation Loss

This metric shows the MSE on the validation dataset, which is used to evaluate
the model generalization ability, i.e., how well it performs on unseen data.
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Epoch 1/58

super()._ init (**kwargs)
16/16 31ms/step ss: O. val loss: ©.8321
Epoch 2/58
16/16 14ms [step ss: B. val loss: 8.8141
Epoch 3/50
16/16 13ms/step ss: 0.0 val loss: ©.0888
Epoch 4/50
16/16 13ms/step ss: B. val loss: ©8.8075
Epoch 5/50
16/16 13ms/step ss: O. val loss: ©.8184
Epoch 6/50
16/16 13ms/step ss: B. val loss: ©.8082
Epoch
16/16 14ms/step ss: O. val loss: ©.0064
Epoch
16/16 13ms/step ss: B. val loss: ©.8050
Epoch ¢
16/16 13ms/step ss: O. val loss: ©.8853
Epoch 18/58
16/16 13ms/step ss: B. val loss: 9.8041
Epoch 11/5@
16/16 13ms/step ss: O. val loss: ©.8841
Epoch 12/58
16/16 13ms/step ss: ©.805 val loss: ©.8047
Epoch 13/5@
16/16 14ms/step ss: O. val loss: ©.8845
Epoch 508/5@
16/16 13ms/step ss: O. val_loss:
1e/1e 25ms/step
1e/1e 3ms/step

Figure 5.1. Training process information of LSTM model

Similar to the training loss, the validation loss also decreases over time, starting
from 0.0321 m? in the first epoch and reducing to 0.0010 m? in the last reported
epoch.

3. Convergence of Model

e Both the training and validation losses show a steady decline, which is a pos-
itive indicator of model convergence. The model does not show signs of over-
fitting, as the validation loss decreases in tandem with the training loss, and
actually reaches lower values in some epochs.

e The convergence rate, indicated by the difference in loss between successive
epochs, stabilizes after initial larger drops, suggesting that early epochs make
the most significant adjustments to the model weights.

4. Performance Considerations
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5.1 — Presentation of Results

e The similar and low values of training and validation losses in later epochs
suggest that the model has achieved a good balance between learning the
training data characteristics and generalizing to new, unseen data.

e The final epochs indicate very low MSE, demonstrating high accuracy and
precision in the model predictions relative to the scale of data values (assuming
typical scaled data for LSTM usage).

5. Potential Next Steps

o If this trend continues beyond the 50 epochs, the model might be close to
optimal performance for this particular architecture and dataset. However,
monitoring for more epochs could be useful to ensure stability in loss reduction.

o Experimenting with further hyperparameter tuning (e.g., learning rate adjust-
ments, more LSTM units or layers) could potentially squeeze further improve-
ments or efficiencies out of the model.

o Evaluating the model on a separate test set would be crucial to truly assess
its performance and ensure that it has not memorized the validation dataset.

Overall, the results are promising, showing effective learning and good generalization.
The detailed decrease in loss values indicates a successful training process with potential
for practical application deployment.

LSTM Model - Actual vs Predicted on Test Set

2301 — Actual

— Predicted
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Figure 5.2. Testing trajectory of the LSTM model

Following the predictions made on the test set with the trained model, let’s delve
deeper into the comparison of the model-predicted trajectories against the actual trajec-
tories. Consider the example of Fig. 5.2.
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o Detailed Analysis of Long Short-Term Memory Networks (LSTM) Model Perfor-
mance

1. Trajectory Tracking Accuracy

— Path Alignment
The LSTM model closely follows the overall path of the actual trajectory
in most parts of the dataset. This demonstrates a strong capability to
model time dynamics, indicating that LSTM effectively captures the main
patterns and behaviors in the trajectory data.

— Local Deviations
From the predictions on the test set, it is evident that there are deviations
between the predicted trajectory and the actual data, particularly notice-
able at sharp turns or where the trajectory direction changes abruptly.
These deviations may reflect the model limited responsiveness to rapid
changes or sensitivity to initial conditions.

2. Key Performance Characteristics

— Consistency in Open Areas
The model performs well in parts of the trajectory that are smoother
and simpler. This consistency in simpler sections suggests that LSTM can
reliably handle linear or slightly curved sequences.

— Challenges in Complex Areas
Areas with tight loops and overlapping paths pose challenges for the
LSTM. Here, the model struggles to replicate precise paths, often sim-
plifying or smoothing out the features of the trajectory. This may indicate
the model generalization behavior, where it opts for a path that minimizes
overall error across the dataset rather than capturing every detail.

3. Precision and Accuracy

— Start and End Points
The model accurately predicts the start and end points of the trajectory.
This precision in capturing the endpoints of sequences highlights LSTM
capability to effectively initialize and terminate sequences.

— Variations in the Middle of Sequences
Some differences in the middle of sequences indicate the model inability
to dynamically adjust to sudden changes in direction or speed. These ar-
eas (especially where trajectories intersect or deviate sharply) highlight
potential limitations in the model ability to learn complex dependencies
or temporal resolutions.

4. Dataset Generalization

— Overall Fit
The LSTM model generally fits well with the test data, indicating effective
learning and generalization from the training phase. The close tracking of
actual trajectories for most of the test set indicates that the model is well-
trained and capable of handling various patterns and trajectory behaviors.
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5.1 — Presentation of Results

— Error Distribution
Areas with significant errors are sporadic and localized, which can be
attributed to inherently challenging aspects of the data that are difficult
to model, such as sudden changes in direction and overlapping trajectory
segments.

e Analysis Summary

A detailed examination of the LSTM model performance reveals its strong capa-
bility to predict complex trajectories with high precision, particularly evident in
its tracking of major path trends and correct identification of sequence endpoints.
While there are local deviations, especially in areas of the dataset involving complex
movements and rapid changes, the overall performance of the model is commend-
able. These insights showcase the strengths of LSTM in modeling time series and
highlight its potential utility in applications requiring precise trajectory predictions.

LSTM Model - Actual vs Predicted on Validation Set
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Figure 5.3. Validation trajectory of LSTM model

Based on the LSTM model performance on the validation set, we will conduct a
detailed analysis of the trajectories predicted by the model, drawn in red, compared to
the actual trajectories, drawn in blue. This will be contrasted with the model performance
on the test set to comprehensively understand the model generalization capabilities and
potential areas for improvement. Consider the example of Fig. 5.3.

e Detailed Analysis of LSTM Model Predictions on the Validation Set

1. Overall Trajectory Alignment

— General Consistency
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Similar to the test set, the LSTM predictions generally align with the
actual trajectory overall path. The model has successfully captured broad
trends and movements, indicating robust learning of the sequence patterns
present in the validation set.

— Curve Following Precision
The model closely follows the actual path on smoother and more gentle
sections, demonstrating its effectiveness in learning from medium dynamic
sequences.

2. Significant Deviations

— Sharp Turns and Sudden Changes
The model struggles with sharp turns and sudden changes in trajectory
direction, with the red line separating from the blue at approximately x
= 1.75 m, y = 2.25 m, and again near the top of the graph at x = 2.25 m.
This reaffirms issues observed in the test set, indicating ongoing challenges
in the model ability to adapt to rapid directional changes.

— Error Concentration in Complex Areas
Errors are more pronounced in areas where the trajectory undergoes com-
plex maneuvers. For example, near the bottom of the graph at x = 0.75
m,y = 1.0 m and x = 1.25 m, y = 1.25 m, the model predicted path is
simpler compared to the actual complex movements.

3. Comparison with Test Set Performance

— Similar Error Patterns
Both the validation and test set results indicate that the LSTM model
struggles to accurately predict trajectories when there are overlapping
paths or paths nearing a return to previous ones. This suggests poten-
tial limitations in the model memory or state management, struggling to
distinguish closely occurring sequence features.

— Model Consistency
The consistent error patterns across both datasets suggest systemic issues
in the model or data representation, possibly failing to capture all nuances
required for precise predictions in complex scenarios.

4. Impact on Model Generalization

— Good Adaptation to Overall Trends
The LSTM model shows good fit to overall trajectory patterns, indicating
that it has effectively generalized the main dynamic behaviors from the
training phase to unseen data in both test and validation sets.

— Generalization Across Datasets
The similar performance in general trajectory tracking and specific mis-
alignment areas on both test and validation sets supports the model ro-
bustness and reliability for general trajectory prediction tasks.

e Analysis Conclusion
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The detailed comparison of the LSTM model performance on both test and valida-
tion datasets highlights its ability to model complex trajectories with high accuracy
in terms of overall trends. The recurrent issues observed in predicting sharp turns
and complex paths highlight inherent challenges in the LSTM architecture or train-
ing methods, which may be focal points for further research or model improvements.

5.1.2 Qlattice

The training results obtained using the Qlattice model, with the following parameters
explained.

e Epoch Information

— Epoch: Each epoch in this context represents a complete cycle through the
training dataset. The model training involves trying different models or vari-
ations to optimize performance.

— Tried Models: This number indicates how many different models or model
configurations were evaluated during each epoch. It shows the complexity and
the exploration capability of the Feyn library, which attempts numerous models
to find the best fitting one.

— Elapsed Time: This is a running tally of time spent as the training progresses.
It provides an estimate of how long the training is taking and updates dynam-
ically as more data about the training duration becomes available.

e Incremental Updates

— The updates you see from epochs 1 to 10 show an increase in the number of
models tried. This increment suggests that the library is either expanding its
search space based on prior findings or simply processing through a predefined
list of model configurations.

— The time "est." (estimated completion time) adjusts as the system gains more
insight into how long the computations are taking, providing a more accurate
forecast of the total duration as the process unfolds.

o Interpreting the Output

— Efficiency and Exploration: The increasing number of models tried indicates a
thorough exploration of the model space. Feyn is likely using a method akin
to evolutionary algorithms or other heuristic searches that progressively try to
improve the models based on prior iterations’ performance.

— Performance Considerations: The elapsed and estimated times provide insight
into the computational demands of the model training. If the times are longer
than desirable, it might be necessary to adjust the model complexity, the
number of epochs, or the hardware used for training.
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e The Following Is the Trained Model
X =0.674-(0.457—0.892-x13)-tanh(1.04-2140.827)+0.674-(2.39—1.67-214)-(0.0040044-y5—1.41)+1.97
Y = —0.664 - (0.725 — 0.00396 - z2) - (0.464 - y10 — 2.52 - y14 + 4.21) + 2.033

e Understanding the Variables
L13, L1, T14, L2

These variables represent specific features in data that have been numerically in-
dexed. These variables depend on the context of data.

Y5,Y10, Y14

Similarly, these are other features in the dataset.

Next, use the trained model to make predictions on the test and validation datasets,
and compare the actual data with the predicted results.

Predicted vs Actual Trajectories on Test Data

2.25 == Actual Trajectory
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1.25
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1.00 H
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0.50

0.75 1.00 1.25 1.5@ 1.75 2.00 2.25
X Coordinate

Figure 5.4. Testing trajectory of Qlattice model

We make a comparison between the predicted trajectory and the actual trajectory
based on test data evaluated by the Qlattice model. The diagram illustrates two trajec-
tories plotted on a coordinate system, where the x-axis represents the X coordinates, and
the y-axis represents the Y coordinates. Consider the example of Fig. 5.4
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5.1 — Presentation of Results

e Plot Description

— X-axis and Y-axis: The chart plots trajectories in a two-dimensional space,
where "X coordinate" represents the horizontal position, and "Y coordinate"
represents the vertical position.

— Red Line (Actual Trajectory): This line represents the actual path or motion
recorded in the test data. It shows the movement trajectory of a person in
indoor space during the observation period.

— Blue Line (Predicted Trajectory): This line displays the trajectory predicted
by the QLattice model based on the input data from the given test set. It
represents the model best guess of the motion based on its training.

o Plot Analysis

— Overall Fit: The predicted trajectory (blue line) generally follows the shape
and path of the actual trajectory (red line), indicating that the model has a
reasonable understanding of the dynamics and patterns in the data.

— Specific Observations

* Tight Matching: In several segments of the trajectory, the predicted path
closely matches the actual path, indicating strong performance by the
model in these areas.

* Deviations: There are significant deviations between the predicted trajec-
tory and the actual path in some areas. These deviations are key focus
areas, as they represent inaccuracies in the model predictions.

o Insights and Further Analysis

— Model Strengths

The model captures the overall trend and major turns or transitions in the
trajectory well.

— Model Weaknesses

x Precision and Accuracy: The deviations suggest that the model may strug-
gle with certain conditions or specific types of motion. This could be due
to a variety of factors, such as insufficient training data covering these con-
ditions, inherent limitations of the model complexity, or noise and outliers
in the training data.

x Overfitting or Underfitting: If the model is too simple (underfitting), it
may not capture complex patterns adequately. Conversely, if the model is
too complex (overfitting), it may react too strongly to noise in the training
data and not generalize well.

We make a comparison between the predicted and actual trajectories based on valida-
tion data evaluated by the QLattice model. The diagram shows two trajectories plotted

39



Results and Discussion

Predicted vs Actual Trajectories on Validation Data
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Figure 5.5. Validation trajectory of Qlattice model

on a coordinate system, where the x-axis represents the X coordinates and the y-axis
represents the Y coordinates. Consider the example of Fig. 5.5

e Plot Description

— Red Line (Actual Trajectory): This line represents the actual movement or
behavior recorded in the validation dataset. It shows the true path walked by
a person indoors over a period of time.

— Blue Line (Predicted Trajectory): This line represents the trajectory predicted
by the trained QLattice model based on the learning from the training dataset.
It represents the model best guess of the walking path of indoor personnel.

e Plot Analysis

— General Observations

* Overall Fit: The predicted trajectory is very close to the actual trajectory
in several segments, indicating that the model effectively captures the
underlying patterns and dynamics of the dataset.

* Deviations: There are noticeable differences between the predicted and ac-
tual trajectories at certain points, especially in areas where the trajectory
makes sharp turns or changes direction.
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e Detailed Observations and Insights

— Alignment and path following: The model appears to follow the general path
well but lacks accuracy on a finer scale, particularly during rapid changes.

— Model strengths: The model performs well in smooth or linear segments, ac-
curately capturing the general direction and length of movement.

— Model weaknesses: Predictions of sharp turns and complex movement patterns
are not very accurate. This may be due to the model limited ability to infer
complex dynamics from the features provided or possibly due to overfitting
simpler patterns seen in the training data.

5.1.3 Multilayer Perceptrons (MLP) and Kolmogorov-Arnold Networks(KANs)

The following is the model training and data prediction process of MLP and KANs. In
order to better compare the two models, the final predicted trajectory graphs of the two
models are placed in the same figure.

MLPpredict = ClassifierMLP([3@, 10, 2]).to(device).double()

count_parameters(MLPpredict)

dummy_input = torch.randn(1, 30, dtype=torch.double).to(device)

measure_inference_time(MLPpredict, dummy_input, 10000)

train_losses_mlp, val_losses_mlp = train_regressor_early stop(MLPpredict, device, train_loader, val_loader, t¢

/ 3m338s Python

Number of parameters: 332

Average inference time: ©.000305 seconds

Train Loss: ©.0007710515 | Val Loss: ©.0005255911: 1eo%|[ M| 100¢/100e [e3:30<ee:00, 4.75it/s]
No early stopping after 1000 epochs, with a best validation loss of ©.00048333472874618946. Patience: 11
Test Loss: ©.0012853653

Figure 5.6. The training process of MLP

KANregressor = classifierkAN_efficient([3@, 10, 2], grid_size=1, spline_order=1).to(device).double()
count_parameters(KANregressor)

dummy_input = torch.randn(1, 3@, dtype=torch.double).to(device)

measure_inference_time(KANregressor, dummy_input, 10000)

train_losses_kan, val_losses_kan = train_regressor_early_stop(KANregressor, device, train_loader, val_loader,

/' 4m49.0s Python

Number of parameters: 1280

Average inference time: ©.003023 seconds

Train Loss: ©.0007011381 | Val Loss: 0.0605875399: 56%| [N | 559/1000 [04:18<03:24, 2.16it/s]
Early stopping triggered after 559 epochs, with a validation loss of ©.0005575757888142611

Test Loss: ©.0013664973

Figure 5.7. The training process of KANs

41



Results and Discussion

Consider the training processes for both models, which are implemented using custom
neural networks in PyTorch. For activation functions, MLP employs the ReLLU activation
function, while the essence of KANs is that the activation function is learned during
training. For loss functions, MSE is chosen as the criterion for both models. Here are the
detailed training outcomes for KANs and MLP. Consider the example of Fig. 5.6 and
Consider the example of Fig. 5.7

The formula for the total number of parameters of MLP is:

P = (ninput X nhidden) + (nhidden X noutput) + NMhidden + TNoutput

Dinput : Number of neurons in the input layer

Nhidden : Number of neurons in the hidden layer

Noutput : Number of neurons in the output layer

In this study, multiple experiments were conducted to set different parameters for
both MLP and KANs models. When the number of parameters in the KANs model was
equal to that of the MLP model, the KANs model demonstrated significantly poorer
fitting capability and trajectory prediction accuracy compared to the MLP. Therefore, in
the following experiments, the number of parameters in the KANs model was increased
beyond that of the MLP. Under these conditions, the difference in validation loss between
the two models was negligible. Consequently, the focus shifted to comparing the accuracy
of trajectory predictions.

1. Kolmogorov-Arnold Networks(KANs)

o Number of Parameters (1,280): The model has 1,280 trainable parameters,
indicating a relatively small model. This is generally beneficial for quick train-
ing and inference times but can sometimes restrict the capability to capture
complex data patterns.

o Average Inference Time (0.00302 ms): The inference time is quite fast, approx-
imately 0.0026 ms per sample, making it efficient for applications requiring
rapid responses.

o Training and Validation Losses

— Train Loss: 0.000701 m?

— Val Loss at Early Stopping: 0.000557 m?

— These losses are quite low, suggesting good model performance on both
training and validation datasets. The slightly higher validation loss, while
still improving, indicates potential for further training benefits, provided
overfitting is controlled.

o Early Stopping: Early stopping was triggered after 559 epochs due to a lack
of improvement in validation loss. This strategy helps prevent overfitting and
unnecessary computations. Adjusting the patience parameter might allow for
further improvements without leading to overfitting.

o Test Loss (0.00137 m? ): The test loss is higher than both training and vali-
dation losses, which is expected as the test set should ideally contain unseen
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examples, presenting a tougher challenge. However, the increase in loss suggests
some degree of overfitting or a lack of generalization to new data compared to
training and validation sets.

2. Multilayer Perceptrons (MLP)

o Number of parameters (332): With 332 parameters, the model is compact,
aiding in maintaining low training and inference times but may sometimes
limit learning complex data patterns.

o Average inference time (0.000305 ms): The inference time is extremely fast,
about 0.000305 ms per sample, excellent for applications requiring real-time
predictions.

o Training Process

— Train Loss: 0.000771 m? . This is relatively low, indicating effective learn-
ing from the training dataset.

— Validation Loss: 0.000483 m? . The best validation loss being lower than
the training loss after 1000 epochs suggests excellent model performance
without overfitting.

— The training reached 1000 epochs without triggering early stopping, set
with a patience of 11 epochs, implying that the model continued to improve
or at least did not degrade significantly over many epochs.

o Test Loss (0.00128 m? ): The test loss is higher than both the training and
validation losses. While an increase is typical since it assesses the model on
unseen data, the difference indicates potential overfitting or a need for better
tuning to generalize beyond the training and validation sets.

Even with the number of parameters in the KANs model being significantly greater
than that of the MLP, the accuracy of trajectory prediction remained higher for the MLP.

Consider the results of predictions made by two different machine learning mod-
els, MLP and KANs, compared against actual data (ground truth). Here is a detailed
explanation and analysis. Consider the example of Fig. 5.8:

o Axis Explanation

o Curve Explanation: Blue Curve (with circular markers) represents the actual test
set data (ground truth), which is the true indoor human walking trajectory captured
in the test set. Orange Curve (with X shaped markers) represents the predictions
made by the KANs model, which are the results predicted from the trained KANs
model using the test set data. Green Curve (with + shaped markers) represents
the predictions made by the MLP model, which are the results predicted from the
trained MLP model using the test set data.

e Analysis

— Prediction Accuracy: Overall, the MLP model (green) aligns well with the
actual data, especially in the left half of the graph. This suggests that for some

43



Results and Discussion

—&— groundtruth
—=— predicted-KAN
—— predicted-MLP

2.25 A

2.00

1751

1.50 1

1.251

1.00 4

0.75 1

0.50 4

T T T T T T T T
0.75 1.00 125 1.50 175 2.00 2.25 2.50

Figure 5.8. Test set trajectory prediction for MLP and KANs

of the test set data, the MLP model may provide more accurate predictions.
The KANs model (orange) shows significant deviations from the actual data
in certain areas (such as the right half of the graph), which may indicate poor
predictive performance in these regions.

— Model Stability: The MLP model appears to be more stable across most areas,
especially where there are significant data variations. This can be observed
from the smoothness of the curve and its ability to follow the actual data.
The KANs model shows greater fluctuations in areas with sharp data changes,
which might be due to the model sensitivity to noise or variability in the data.

— Model Suitability: Based on this graph, the MLP model may be more suitable
for handling this type of data, especially in applications where high accuracy
and stability are required. The KANs model may need further tuning or opti-
mization to improve its predictive accuracy and stability.

Consider the comparative results of predictions made by two machine learning models
MLP and KANs against the actual data from a validation set. Below is a detailed analysis
of the content and performance of these models. Consider the example of Fig. 5.9

o Axis Explanation: Horizontal Axis (X-axis) and Vertical Axis (Y-axis) represent
spatial coordinates within a 3 m x 3 m square.
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Figure 5.9. Validation set trajectory prediction for MLP and KANs

Curve Explanation: Blue Curve (with circular markers) represents the ground truth
from the validation set, which is the actual trajectory of indoor human movement.
Orange Curve (with "X" shaped markers) represents the predictions made by the
KANSs model, which are derived from the trained model applied to the validation set
data. Green Curve (with "+" shaped markers) represents the predictions made by
the MLP model, which are derived from the trained model applied to the validation
set data.

e Analysis

— Prediction Accuracy: blue curve shows the true path or distribution of the

validation data, while the green and orange curves demonstrate the predictive
capabilities of the two models. In most areas, both the MLP and KANs models
approximate the true data path well, but there are noticeable deviations at
some critical nodes, particularly at the inflection points and extremes of the
curves.

Comparative Model Performance: The MLP model (green) appears to closely
follow the actual data, exhibiting higher accuracy and lower deviations overall.
The KANs model (orange) shows greater deviations in certain areas, especially
in the middle and top complex structures of the graph.
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— Generalization and Stability: The overall trend indicates that the MLP model
exhibits better stability and generalization capabilities, likely due to its con-
sistent performance across a variety of data points. The KANs model may
require further adjustments, especially in areas with sharp changes or strong
nonlinearities in the data.

— training loss
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Figure 5.10. Training losses and validation losses of MLP

o Graph analysis: The graph shows two curves, representing the training loss (orange)
and the validation loss (blue) across epochs. Consider the example of Fig. 5.10

— Trends and Patterns

x Training Loss: This curve displays a general downward trend, indicative of
the model ability to learn and improve from the training data. There are
minor fluctuations, but the overall decrease is consistent, which is expected
behavior as the model optimizes its weights to minimize the error on the
training set.

* Validation Loss: While it tracks closely with the training loss and also
shows a downward trend, it exhibits several sharp spikes. These spikes
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could suggest episodes of overfitting where the model learns specific pat-
terns or noise in the training data that do not generalize well to new,
unseen data represented by the validation set.

— Loss Values

* The initial sharp decline in both training and validation loss suggests that
the most significant learning occurs in the early epochs, which is typical
as the model corrects major inaccuracies in its initial random weights.

* The continuation of training shows diminishing returns on loss reduction,
a common phenomenon as the model begins to converge to a minimum in
the loss landscape.

— Spikes in Validation Loss: The sudden increases in validation loss at certain
points (notably around epochs 200, 400, 600, 800) could be a result of several
factors, such as an inadequate learning rate (perhaps too high during these
periods), mini-batch selection during training, or other stochastic elements in
the training process.

e Model Metrics

— Number of Parameters: The model is relatively small with 332 parameters,
which helps in faster computation but could limit the complexity of functions
it can learn.

— Average Inference Time: Extremely quick at 0.000305 ms, making the model
very efficient during the deployment phase, especially in environments where
decision speed is crucial.

— Loss Metrics

* Training Loss at 1000 Epochs: 0.000771 m? , indicating the model effec-
tiveness on training data.

* Validation Loss at 1000 Epochs: 0.000526 m? | slightly higher than the
best recorded validation loss of 0.000483 m? but still indicative of good
generalization.

% Test Loss: 0.001285 m? , which is higher than both training and validation
losses, suggesting some degree of overfitting or the presence of previously
unencountered patterns or noise in the test set.

e Graph Analysis
The graph shows training loss (orange) and validation loss (blue) trends over 559
epochs. Consider the example of Fig. 5.11
— Trends and Patterns:

* Training Loss: This curve starts high and exhibits a rapid decrease initially,
reflecting quick learning from the training data. The curve then shows a
more gradual decline, indicating a slower rate of improvement as the model
starts to converge.
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Figure 5.11. Training losses and validation losse of KANs

* Validation Loss: Mirroring the training loss trend, the validation loss de-
creases significantly at the beginning but displays sharper fluctuations
throughout the training process. Notably, the validation loss has more
pronounced spikes than the training loss, suggesting that the model may
occasionally overfit to the training data or react sensitively to certain
batches of data.

— Spikes and Dips: The graph displays significant spikes in validation loss at
several points, which are higher than corresponding spikes in training loss.
These deviations suggest the model occasional struggle to generalize from the
training data to the validation data, potentially due to overfitting.

e Model Metrics and Performance

— Number of Parameters: With 1280 parameters, the model is larger than the
previously discussed MLP model, likely having more complexity and capacity
to learn detailed features. Although the parameters of KANs are larger than
those of MLP in this thesis, but KANs have different ways of calculating the
parameters.
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— Average Inference Time: At 3.02 ms, the inference time is longer than the pre-
vious model but still within a range suitable for many real-time applications.

— Loss Metrics

* Training Loss at Last Epoch: 0.000701 m? | reflecting the model capability
to fit the training data relatively well.

* Best Validation Loss: 0.000558 m? , the trigger for early stopping, indicat-
ing the lowest loss achieved on validation data before overfitting became
more pronounced.

* Test Loss: 0.00136 m? , higher than both training and validation losses,
echoing the potential overfitting problem where the model does not per-
form as well on unseen test data.

o Early Stopping

Implementation and Impact: Early stopping was employed after 559 epochs when
the validation loss did not improve beyond 0.000558 m? . This mechanism helps
prevent further overfitting by halting the training when the validation performance
ceases to improve, preserving the model state that generalizes best to unseen data.

5.2  Applicability of Indoor Trajectory Analysis Results

After discussing in detail their individual characteristics, advantages, limitations, and
optimal application scenarios, here we delve deeper into analyzing and comparing the
suitability of MLP, KANs, Qlattice, and LSTM for trajectory prediction tasks in the
field of machine learning.

« MLP

— High Precision Requirements: MLP is well-suited for scenarios that require
high precision and complex data handling, such as robotic navigation and
advanced indoor positioning systems, where it can accurately predict complex
paths and dynamic changes.

— Resource-Rich Environments: Given that MLP requires substantial compu-
tational resources and data, it is more applicable in environments that can
provide these resources, such as research facilities with robust computing ca-
pabilities or commercial applications.

o KANs

— Applications Requiring High Real-Time Performance: KANs has advantages
in speed and simplicity, making it suitable for applications that need quick
responses but can tolerate relatively higher errors, such as real-time crowd
monitoring systems and preliminary event response systems.

— Large-Scale Monitoring: KANs simplicity and speed make it ideal for extensive
area monitoring and trajectory prediction, where overly detailed trajectory
specifics are not necessary.
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e Qlattice

— Moderately Complex Environments: Qlattice performs well in environments
with moderate complexity, suitable for personnel tracking in settings like malls,
schools, or hospitals.

— Highly Adaptable Scenarios: Due to Qlattice good adaptability to environ-
ments, it can be applied in frequently changing settings, such as convention
centers or large scale event venues.

« LSTM

— Temporal Data Analysis: LSTM excels in handling sequential and temporal
data, making it highly suitable for applications involving time-series trajec-
tory predictions, such as tracking the movement of people over time in indoor
spaces.

— Complex Sequence Prediction: LSTM ability to remember long-term depen-
dencies makes it ideal for precise monitoring in dynamic environments where
understanding the sequence of events is crucial, such as in advanced security
systems and detailed activity recognition.

— Trajectory Smoothing: Although LSTM may not provide the most accurate
real-time predictions, it can produce smoother trajectories within an accept-
able error range, making it valuable for applications where trajectory smooth-
ness is important.

e Overall Comparison

— MLP: Offers high-precision trajectory predictions but requires extensive data
and computational resources, making it suitable for scenarios where computing
resources are abundant, and high accuracy is crucial.

— KANSs: More suited for fast and extensive applications, sacrificing some accu-
racy for speed and simplicity. Compared to MLP, KANs perform poorly both
in terms of parameter complexity and trajectory prediction accuracy.

— Qlattice: Strikes a balance between accuracy and adaptability, making it suit-
able for environments with medium complexity and frequent changes. It per-
forms well in trajectory prediction accuracy.

— LSTM: Excels in sequential and temporal data analysis, making it highly ef-
fective for dynamic environments that require understanding long-term depen-
dencies. Although it may not provide the most accurate real-time predictions,
it can produce smoother trajectories within an acceptable error range.

In the context of indoor human trajectory prediction, LSTM, while not the most
accurate in real-time predictions, provides smoother trajectories within acceptable er-
rors. Both MLP and Qlattice show good accuracy in trajectory prediction, with MLP
performing particularly well in high-precision tasks. Conversely, KANs, despite their sim-
plicity and speed, do not perform well in terms of parameter complexity and trajectory
prediction accuracy compared to MLP.

50



5.2 — Applicability of Indoor Trajectory Analysis Results

In this thesis, we conducted a simple comparison of four models LSTM, Qlattice, MLP,
and KANs based on their performance in solving the trajectory regression problem. The

metrics considered were accuracy, inference time, model size, and explainability, each
evaluated using three levels.5.1

LSTM Qlattice MLP KAN
Accuracy Average Good Good Average
Inference time Moderate Short Long Moderate
Size Medium Medium Large Small
Explainability Average Good Poor Good

Table 5.1. Comparison of different models

51



52



Chapter 6

Conclusion and Future Work

e Conclusion This thesis has systematically explored the application of four different
machine learning techniques LSTM, Qlattice, MLP and KANs in predicting indoor
human trajectories using capacitive sensor data. Each method was evaluated on its
accuracy, computational efficiency, and interpretability.

— LSTM demonstrated excellent capability in handling sequential and temporal
data, making it suitable for dynamic environments requiring long-term de-
pendencies. However, its real time prediction accuracy was lower, though it
produced smoother trajectories.

— Qlattice balanced accuracy and adaptability, performing well in medium com-
plexity environments with frequent changes. It was found to be effective in
moderately complex trajectory predictions but less so in highly dynamic set-
tings.

— MLP provided high precision trajectory predictions, excelling in environments
where computational resources were abundant and high accuracy was crucial.
Its requirement for extensive data and computational resources, however, was
a limiting factor.

— KANS offered simplicity and speed, making them ideal for applications requir-
ing quick responses and large scale monitoring, although their accuracy was
lower compared to other models.

Overall, the thesis has shown that while no single model is superior in all aspects,
each has distinct advantages and limitations depending on the specific application
scenario. This work contributes valuable insights into the strengths and weaknesses
of different machine learning approaches in indoor human trajectory prediction.

e Future Work

— Data Collection Expansion: Future studies could incorporate additional sensor
types, such as visual or thermal sensors, to enrich the dataset. Combining
these with capacitive sensors could improve model robustness and accuracy by
providing more comprehensive data.
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— Algorithmic Enhancements: There is potential for enhancing the algorithms
used in this study. Techniques such as automatic feature engineering and the
integration of more advanced machine learning methods could better handle
high dimensional data and improve prediction accuracy.

— Real-World Testing: While this study was conducted in a controlled environ-
ment, future research should validate the models in various real-world indoor
settings, such as hospitals, shopping malls, and office spaces. This would test
the models’ effectiveness under dynamic conditions and provide more practical
insights.

— Ethical and Privacy Considerations: As the technology for tracking human
movement indoors advances, it is crucial to address ethical implications and
privacy concerns. Future research should focus on developing methods that
ensure data collection and analysis are conducted in a manner that safeguards
individual privacy and complies with ethical standards.

— Hybrid Models: Exploring the development of hybrid models that leverage
the strengths of multiple machine learning techniques could yield better per-
formance. For instance, combining the temporal analysis capability of LSTM
with the interpretability of Qlattice might offer a more balanced approach.

— Scalability and Generalization: Further research should investigate the scala-
bility of these models in larger and more complex environments. Additionally,
efforts should be made to generalize the results to different types of sensors
and spatial environments, ensuring the models’ applicability across diverse
settings.

In conclusion, the research has laid a solid foundation for the advanced analysis of indoor
human trajectories using capacitive sensors. Future advancements in this field could lead
to significant improvements in automated environmental control, security monitoring,
and resource management in various indoor settings.

54



Bibliography

1]

2]

abzu ai. Qlattice-clinical-omics: Machine learning framework for clinical omics data
analysis. https://github.com/abzu-ai/QLattice-clinical-omics, 2024. Ac-
cessed: date-of-access.

Rebeen Jaff. What is lstm? introduction to long
short-term memory. https://medium.com/Qrebeen. jaff/
what-is-1lstm-introduction-to-long-short-term-memory-66bd3855b9ce,

2019. Accessed: yyyy-mm-dd.

rcassani. mlp-example: Example implementation of a multilayer perceptron. https:
//github.com/rcassani/mlp-example, 2024. Accessed: date-of-access.

Osama Bin Tariq, Mihai Teodor Lazarescu, and Luciano Lavagno. Neural networks for
indoor human activity reconstructions. IEEE Sensors Journal, 20(22):13571-13584,
2020.

Kind Xiaoming. Pykan: Simple kanban board tool. https://github.com/
KindXiaoming/pykan, 2024. Accessed: date-of-access.

55


https://github.com/abzu-ai/QLattice-clinical-omics
https://medium.com/@rebeen.jaff/what-is-lstm-introduction-to-long-short-term-memory-66bd3855b9ce
https://medium.com/@rebeen.jaff/what-is-lstm-introduction-to-long-short-term-memory-66bd3855b9ce
https://github.com/rcassani/mlp-example
https://github.com/rcassani/mlp-example
https://github.com/KindXiaoming/pykan
https://github.com/KindXiaoming/pykan

	Introduction
	The Importance of Indoor Human Trajectory Analysis
	Objectives of the Thesis
	Scope and Limitations
	Scope of the Thesis
	Limitations of the Thesis


	Literature Review
	Overview of Trajectory Regression Methods
	Framework Overview: Indoor Human Trajectory Prediction
	Integration of Machine Learning and Symbolic Regression

	Methodology
	Source and Description of Experimental Data
	Explanation of the Data Splitting Technique Used
	Using Long Short-Term Memory Networks (LSTM), Qlattice, Multilayer Perceptrons (MLP) and Kolmogorov-Arnold Networks (KANs) for Data
	Long Short Term Memory Networks (LSTM)
	Qlattice
	Multilayer Perceptrons (MLP)
	Kolmogorov-Arnold Networks(KANs)


	Thesis Setup
	Hardware and Software Requirements for the Thesis
	Hardware Requirements
	Software Requirements

	Comparative Evaluation Criteria

	Results and Discussion
	Presentation of Results
	Long Short-Term Memory Networks (LSTM)
	Qlattice
	Multilayer Perceptrons (MLP) and Kolmogorov-Arnold Networks(KANs)

	 Applicability of Indoor Trajectory Analysis Results

	Conclusion and Future Work
	Bibliography

