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Preface

The preface to this thesis announces the trip into the world of cardiac
health monitoring via machine learning and electrocardiogram (ECG) anal-
ysis. In an era characterized by the proliferation of artificial intelligence
and its integration into numerous sectors, the medical industry stands out
as a beacon of innovation and revolution. In this setting, the diagnosis
of myocardial infarction, a serious cardiac ailment, emerges as a focus for
research and development efforts to improve diagnostic capabilities. The
following pages provide a thorough examination of the construction of a
machine learning pipeline designed for the identification of myocardial in-
farction using ECG data. The journey is divided into painstaking steps,
beginning with ECG data preparation and ending with sophisticated neu-
ral network training, all of which are carefully coordinated. The use of the
PTB-XL Database, a repository teeming with significant clinical data that
serves as the foundation for our scientific efforts, is vital to our undertaking.
Powered by Python and TensorFlow’s versatility and resilience, our imple-
mentation aims to bridge the gap between theory and practice, opening the
way for tangible advances in cardiac health monitoring. The diverse range
of neural network topologies exemplifies the spirit of innovation and explo-
ration that drives our pursuit for excellence. Each architecture represents
a node in the intricate web of possibilities, providing distinct insights and
opportunities for growth in the field of automated myocardial infarction
diagnosis. As we embark on our adventure, let us approach the challenges
ahead with unflinching determination and unbounded curiosity. We aim
to not only improve the art of detecting myocardial infarctions, but also to
push the frontiers of what is possible in the field of cardiac health monitor-
ing. May this prelude serve as a compass, leading us through the maze of
discovery and invention to a future in which healthcare knows no bounds
and every heartbeat echoes with the promise of hope and healing.
With deep anticipation,

Alessandro Masala
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Abstract

This thesis investigates the development of a robust machine learning
pipeline for the early detection of myocardial infarction (MI) using elec-
trocardiogram (ECG) data. Recognizing MI promptly is vital for effective
treatment, potentially saving lives by reducing the mortality and morbidity
associated with this condition. The research leverages the comprehensive
PTB-XL dataset, which includes a vast array of clinical ECG recordings
annotated by medical professionals, making it an ideal resource for train-
ing and validating the proposed neural network models. The methodology
encompasses several stages, starting with the preprocessing of ECG data
to enhance signal quality and remove noise and artifacts. Various neural
network architectures were explored, including Convolutional Neural Net-
works (CNNs), and LSTM networks, to determine the most effective model
for ECG analysis. The study employed data augmentation techniques such
as noise addition, time warping, and signal shifting to address the issue of
overfitting and improve the generalizability of the models. Training was
executed using Python and TensorFlow, with an emphasis on optimizing
the neural networks through meticulous hyperparameter tuning and the
application of advanced optimizers like Adam and SGD. The effectiveness
of different loss functions and learning rate schedulers was also evaluated
to enhance model training dynamics. The models exhibited high accuracy
and precision in detecting MI from ECG signals. The LSTM model, in
particular, showed a significant improvement in performance, achieving an
accuracy of 96%, under augmented data conditions. These results high-
light the potential of advanced neural networks in the automatic detection
of cardiac event. The machine learning pipeline developed in this thesis
marks an advancement in the automated detection of myocardial infarc-
tion using ECG data. The findings suggest that such models can be inte-
grated into clinical settings to provide real-time, accurate assessments of
MI, thereby facilitating prompt medical intervention. Future work will fo-
cus on ECG image analysis and introducing techniques such as fine-tuning
to potentially increase the pipeline’s utility in clinical settings.
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Chapter 1

Introduction

Cardiovascular diseases (CVDs) were the leading cause of deaths [1] un-
til few years ago, when cancer surpassed them in high-income nations [2].
There are plenty of different CVDs, but one of the most critic is the Myocar-
dial Infarction (MI), also known as heart attack [3]. Myocardial Infarction
occurs when there is a sudden blockage of blood flow to the heart, due
to the obstruction of a coronary artery by a blood clot. This obstruction
cause an interruption of oxigen and nutrients to the heart, leading to a
tissue damage or, in the most critical cases, to the death. This pathology
can occur in various forms, particularly we can distinguish between ST-
segment elevation myocardial infarction (STEMI) and Non-ST-elevation
myocardial infarction (NSTEMI); the main difference is that the STEMI is
a critical condition that needs quick actions, while the NSTEMI is harder
to detect and the treatment is indeed different. The aim of this project is
to identify STEMI cases based on electrocardiogram (ECG) analysis, since
it is the most common detection system.

1.1 Aim of the Project

In the past years, the development in deep learning methods applied to the
medicine are noteworthy. The ECG classification systems in the last years
showed results similar to the cardiologists for specific tasks [4][5], how-
ever the road to outperform the medical opinion is still long and tortuous
[6]. Hence, the thesis aims to develop a machine learning pipeline for the
fast and accurate detection of myocardial infarction through the analysis
of electrocardiogram (ECG) data, having in mind as a primary goal the
possibility of saving humal lives.
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1.2 Methodology

The key steps of the projects are the preprocessing the ECG data and train-
ing neural networks to achieve accurate recognition of myocardial infarction
using the PTB-XL dataset as the primary dataset. The implementation
will be in Python and TensorFlow, using various neural networks archi-
tectures for training and testing the models. The objective is to create a
codebase that is not only effective for the current study but also adapt-
able and reusable for future developments in cardiac health monitoring.
An overview of the method can be seen in Figure 1.1, and represents the
following steps:

1. Preprocessing

❼ Data Cleaning : Remove any artifacts or noise from the raw ECG
data to improve signal quality

❼ Annotation Handling : Extract and structure the annotations
provided in the PTB-XL dataset for effective utilization during
model training

2. Split

❼ Train-Test-Val Split : Split the dataset into training (80%), val-
idation (10%), and testing (10%) subsets to ensure the model is
trained and evaluated on separate data.

❼ Stratification: Ensure that each subset has a proportional rep-
resentation of different classes

3. Normalization

❼ Z-score Normalization: Apply Z-score normalization to the fea-
tures, scaling them to have a mean of 0 and a standard deviation
of 1. This helps in speeding up the training process and achiev-
ing better convergence

❼ Handling Outliers : Address any outliers in the data that might
skew the normalization process

4. Neural Networks

❼ Model Architectures : Experiment with different neural network
architectures such as CNNs (Convolutional Neural Networks),
RNNs (Recurrent Neural Networks), and hybrid models

9



Introduction

❼ Hyperparameter Tuning : Optimize model parameters such as
learning rate, batch size, number of layers, and neurons to im-
prove performance

5. Evaluation

❼ Metrics : Utilize metrics such as accuracy, precision, recall, and
F1-score to evaluate the models

❼ Cross-validation: Perform k-fold cross-validation to ensure ro-
bustness and generalizability of the model

6. Classification

❼ Predict New Data: Use the trained model to predict myocardial
infarction on unseen data

Figure 1.1: General overview of the methodology
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Chapter 2

Electrocardiography

Electrocardiography (EGC) [7] is undoubtedly the most famous field in
cardiology, providing useful information about the electrical activity of the
heart. ECG had, during the years, the ability to completely change the
understanding of the electrical impulses of the heart, providing valuable
information about cardiac function, rhythm and structure.

2.1 The Heart

The ECG is crucial to understand the physiological processes of the heart.
In fact, its electrical activity starts from specialized cells, that coordinates
the rhythmic contraction and relaxation of the cardiac fibers. Moreover,
this electrical activity is important for maintaining the heart’s pumping
function and allowing efficient blood circulation.

2.1.1 Structure and Physiology

The heart is specifically designed to pump blood thoughout the body and,
along with it, the oxigen and nutrients. Composed primarily of muscle
tissue, the heart consists of four chambers: two atria and two ventricles
(Figure 2.1).

11



Electrocardiography

Figure 2.1: Heart Atria and Ventricules [8]

The heart structure [9] is directly linked to the underlying cardiovascu-
lar physiology [10]. The kernel of the heart is the myocardium, a specialized
muscle tissue that generate the necessary force to pump the blood through
the circulatory system. It is divided in two layers: the outer epicardium and
the inner epicardium, that are responsible of the heart’s contractile func-
tion. Between the epicardium layers there is the myocardial layer, that is
made of cardiac muscle cells (cardiomyocytes), and is responsible of the
rapid transmission of electrical signals and coordinated contraction. The
heart’s chambers are separated by septa, or walls, that allows the blood
flow to stay undirectional. The internal septa divides the right and left
atria, while the interventricular septum separates the right and left ventri-
cles. Inside this complicated structure, it is also possible to find the valves,
responsible for regulating blood flow within the heart. The valves are di-
vided based on their functions, in particular the atrioventricular valves
(AV), represented by the tricuspid and mitral, prevent backflow of blood
from ventricles to atria during ventricular contraction. On the other hand,
the semilunar valves, the pulmonary and aortic, prevent blood to flow back
into the ventricules after contraction. Figure 2.2 visually show the heart
complete structure.
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Electrocardiography

Figure 2.2: Heart complete structure [11]

2.2 Electrocardiograms

ECG [12] analysis, is one of the most important task for cardiologists since
it gives them the possibility to detect cardiac abnormalities in real-time.
Furthermore, this allow fast interventions and treatment strategies in order
to increase the survival possibility of the patients. Moreover, continuous
ECG monitoring can facilitate the detection of transient or intermittent
abnormalities. Finally, ECG plays a crucial role in invasive cardiac pro-
cedures, ensuring safety and efficacy. Even if ECG is not the most recent
techniques, it is indispensable in modern cardiology practice, significantly
contributing to the diagnosis and management of cardiovascular diseases.

2.2.1 Wave Strucure and Description

The electrocardiogram (ECG) waveform [13] is a visual representation of
the electrical activity of the heart. Understanding the structure of the ECG
waveform is essential to understand how the abnormalities are detected and
handled. Figure 2.3 provide a visual representation of a standard wave.
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Figure 2.3: Standard ECG wave [14]

The cardiac cycle starts with a P wave, which represents atrial depo-
larization. Moreover, this is the reflection of the electrical impulses flowing
through the atria as they contract to pump the blood flow into the ventri-
cles. After the P wave, it normally appears the QRS complex, that repre-
sents ventricular depolarization and, particularly, the spread of electrical
activity through the ventricles, leading to their contraction and subsequent
ejection of blood into the pulmonary artery and aorta. Then the ST seg-
ment, that appears as a flat, isoelectric line that represents ventricular
depolarization and repolarization. In detecting the myocardial infarction
the ST segment is crucial, since every modification of this segment may
indicate myocardial infarction, ischemia, or injury. Finally the T wave
emerges, representing the ventricular repolarization.

2.2.2 Electrodes and Leads Placement

In a standard 12-lead electrocardiogram (ECG) [15], electrodes are strate-
gically placed (as shown in Figure 2.4) on specific locations of the patient’s
body to capture electrical signals originating from the heart. This specific
placement procedure is made to visualize the heart’s electrical activity from
different angles and perspectives. The leads can be divided in two main
groups: the limb leads (RA, LA, RL, LL) that provide information from
the frontal plane, and the precordial leads (V1-V6) that provide informa-
tion of the horizontal plane. The two groups of leads allow the cardiologists
to have a complete overview of the electrical activity of the heart.
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Figure 2.4: 12-lead ECG Placement [16][17]

2.2.3 Functionality

Heart’s functionality is a series of complex procedures that coordinates
rhythmic contraction and drive blood circulation [18]. The electrical im-
plulses travel among different sections of the heart; particularly, the origin
is the sinoatrial (SA) node, also known as the heart’s natural pacemaker
[19]. Then the impulse moves into the atrioventricular (AV) node and
finally reaches the ventricles. This flow coordinates the sequences of de-
polarization and repolarization phases of the cardiac cycles that are deter-
mined not only by the electrical impulses but also by a series of chemical
procedures. Furthermore, in the depolarization phase, the membrane be-
comes less negative because of the influx of sodium ions into cardiac cells;
this starts the contraction of the cardiac muscle fibers. Moreover, this
procedure is visible using the ECG, and it is linked to the P wave (atrial
depolarization). This procedure is followed by the ventricular depolariza-
tion, represented by the QRS complex on ECG, since the sodium ions flood
into ventricular cells, triggering their contraction. After the depolarization
phase, the repolarization occurs; represented by the T wave on ECG. In
this case, potassium ions exit the cardiac cells restoring cardiac membrane
potensial and preparing the heart for the next cycle of electrical activity.
A representation of the cardiac cycle is represented in Figure 2.5, which
enhances understanding and appreciation of cardiovascular physiology.
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Figure 2.5: Polarization-Depolarization cycle and related ECG [20]

2.2.4 Interpretation

ECG interpretation [21] might be seem as a simple task, since it only re-
quires the analysis of a wave; however, it requires a comprehensive under-
standing of cardiac physiology, electrical conduction pathways and wave-
form components. The analysis involves several key stages that allow the
cardiologist to determine the heart health or the presence of abnormalities:
shape, duration, amplitude, segment, rate, rhythm. The procedure con-
sists in analyzing the regularity of the waves between consecutive cardiac
cycles to detect abnormalities. Furthermore, irregularities in the different
segments of the wave may indicate the presence of different types of ab-
normalities. Particularly, irregularities between two different R segments
may indicate the presence of arrhythmias, while irregularities in the P seg-
ment may suggest atrial enlargement, conduction disturbances or ectopic
atrial foci. Moreover, QRS or U abormalities may indicate electrolite im-
balance or bundle branch blocks, while T segment problems may indicate
ventricular hypertrophy or intercranial pathology. Lastly, the ST segment
is evaluated for deviations from the baseline and it is the most important
analysis for the objective of this project. In fact, the ST elevation may
indicate myocardial infaction, myocardial ischemia or pericarditis, whereas
the ST depression may suggest myocardial ischemia or digitalis effect.

16



Chapter 3

Myocardial Infarction

Myocardial Infarction (MI) [22], also known as heart attack, is a critical
medical condition, characterized by sudden interruption of blood flow to a
part of the heart, causing tissue damage or death. This condition is among
the ones with the greates number of deaths worldwide, pointing out the
necessity for prompt recognition, diagnosis and intervention. There are
two types of myocardial infarction: STEMI with ST segment elevation and
NSTEMI without ST segment elevation [23]. The distinction and correct
diagnosis of the type of myocardial infaction is crucial in determining the
intervention strategy. The focus of this project will be on STEMI cases,
given their distinct clinical presentation, urgent need for reperfusion ther-
apy, and potential for significant myocardial damage if left untreated.

3.1 ST-elevation Myocardial Infarction

STEMI [24] is characterized by ST segment elevation on the ECG anal-
ysis, representing complete occlusion of a coronary artery and imminent
myocardial injury. This type of myocardial infarction has some common
symptomps (Figure 3.1): chest pain, shortness of breath, nausea and di-
aphoresis. Therefore, a prompt intervation is required, usually through
percutaneous coronary intervention (PCI) or thrombolytic therapy in or-
der to restore blood flow to the heart and minimize cardiac damage.

17



Myocardial Infarction

Figure 3.1: STEMI common symptoms and occlusion [25][26]

3.1.1 Etiology

The primary cause of STEMI [24] is the rapture of an atherosclerotic plaque
within a coronary artery, that creates a thrombus that occludes blood flow
(Figure 3.1). In the majority of STEMI cases, the thrombus is characterized
by the accumulation of a plaque composed of cholesterol, fatty deposit or
inflammatory cells.

3.1.2 Epidemiology

STEMI remains a leading cause of morbidity and mortality globally [27],
accounting for a significant burden of cardiovascular disease. While the
number of STEMI cases is decreased in high-income countries due to ad-
vancements in preventive strategies, it continues to represent a substantial
public health challenge, particularly in low- and middle-income regions
with limited access to healthcare resources.

3.1.3 Patophysiology

The pathophysiology of STEMI [28] involves the abrupt interruption of
blood flow to a segment of the myocardium, leading to ischemia and subse-
quent necrosis if left untreated. The occlusion of a coronary artery results
in an imbalance between myocardial oxygen supply and demand, triggering
a series of events that end up in cellular injury and death.

18



Myocardial Infarction

3.1.4 Diagnosis

Diagnosing a STEMI case [29] mainly involves ECG interpretation, since
it represents the most rapid way to identify ischemic changes and allow
prompt intervention. The ECG representation of ST segment elevation
(represented in Figure 3.2) is typically observed in at least two consecu-
tive leads and is often linked by a reciprocal changes such as ST segment
depression in leads opposite to the infarcted area.

Figure 3.2: ST-segment elevation [30]

Once the STEMI is diagnosed, it is also possible to determine its loca-
tion based on the on the lead that presents the irregularities. For instance,
ST elevation in the anterior leads (V1-V4) suggests involvement in the
left anterior descending (LAD) coronary artery, whereas elevation in the
inferior leads (II, III, aVF) may indicate the occlusion of the right coro-
nary artery (RCA) or left circumflex artery (LCx). Therefore, reciprocal
changes (ST depression) in the leads V1-V3 with posterior ST elevation,
suggest involvement of the posterior descending artery (PDA). The recog-
nition time in STEMI is crucial for the survival of the patient and current
guidelines suggest ECG analysis within 10 minutes from the patient ar-
rivals for individuals presenting the inquired symptoms. Repeat ECGs
may be performed at regular intervals to monitor for dynamic changes in
the ST-segment and to assess response to treatment. In Figure 3.3 the
visual representation of the evolution of a STEMI.

Figure 3.3: STEMI ECG evolution over time [31]
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3.1.5 Treatment

Immediate reperfusion therapy [32] is the most commont treatment for
STEMI, aimed at restoring blood flow to the ischemic myocardium and
saving as much tissue as possible. Primary percutaneous coronary inter-
vention (PCI) is the preferred method of reperfusion when available, as it
offers the best outcomes compared to fibrinolytic therapy [33]. Other medi-
cal therapies such as antiplatelet agents, anticoagulants, beta-blockers, and
statins are also administered to optimize outcomes and prevent recurrent
ischemic events.
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Chapter 4

Dataset

Neural Networks need a consistent number of records to be effective and to
effectively outperform healthcare professionals; however, it is not a simple
task to find a dataset composed of ECGs carefully annotated and organized
that can be used to perform a machine learning pipeline. Therefore, the
project analysis will focus on the PTB-XL dataset, which contains a multi-
tude of ECGs annotated by professionals, that is one of the most complete
dataset in terms of annotations and organization.

4.1 The PTB-XL Dataset

The PTB-XL dataset [34][35] is an exceptional resource for various research
related to the cardiac health analysis. It contains a total of 21,799 records
from 18,869 patients, containing clinical 12-lead ECGs [36]. One of the key
features of the PTB-XL dataset is its comprehensive annotation process;
in fact, each ECG record has been annotated by up to two cardiologists,
who assign the diagnostic class, form and annotated the rhythm aspects.
The annotations follow a standard, the SCP-ECG, that ensures clarity and
consistency in interpretation. Furthermore, the dataset contains metadata
regarding demographics, infarction characteristics and likelihoods for diag-
nostic class.

4.1.1 Data Acquisition

The data acquisition process described for the PTB-XL [36] dataset rep-
resents a robust and systematic approach to collect and organize electro-
cardiogram (ECG) data for research and clinical purposes. Firstly, the
recording and storage of raw signal data in a proprietary compressed for-
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mat highlight the importance of preserving data integrity while managing
storage requirements efficiently. By providing the standard set of 12 leads
with reference electrodes on the right arm, the dataset ensures consistency
and compatibility with established ECG recording conventions, facilitating
comparisons and analyses across different records. The inclusion of general
metadata such as age, sex, weight, and height of patients adds valuable
contextual information to the dataset; In fact, not only enables researchers
to stratify and analyze the dataset based on patient characteristics but
also allows for exploration of potential correlations between demographic
factors and ECG findings. The annotation process of each ECG record
has been made with a report string and converted into standardized SCP-
ECG statements. Providing structured annotations, the dataset enables
researchers to efficiently search for specific ECG characteristics and sup-
ports the development and validation of automated ECG interpretation al-
gorithms. Moreover, the extraction of additional clinical information such
as heart axis and infarction stadium enhances the clinical relevance of the
dataset, enabling more comprehensive analyses of cardiac conditions and
outcomes. The validation of records by cardiologists and technical experts
underscores the commitment to ensuring the accuracy and reliability of the
dataset. By subjecting a significant fraction of records to independent val-
idation, potential errors or inconsistencies in the annotation process can be
identified and addressed, thereby enhancing the overall quality and trust-
worthiness of the dataset. Additionally, validation by technical experts
focusing on signal characteristics helps ensure that recorded signals are
free from artifacts or anomalies that could confound analyses or interpre-
tations.

4.1.2 Data Protection

The PTB-XL dataset demonstrates a particular concern to data privacy
and security, [36] essential considerations in contemporary medical re-
search, especially when dealing with sensitive patient information such as
electrocardiogram (ECG) data. By assigning unique identifiers (ecg id and
patient id) to ECGs and patients, the dataset ensures efficient data man-
agement while preserving patient anonymity. This practice aligns with best
practices in data protection, allowing researchers to analyze the data with-
out compromising patient confidentiality. Moreover, the pseudonymization
of personal information in the metadata, including the names of validat-
ing cardiologists, nurses, and recording sites, underscores a commitment
to safeguarding the identities of individuals involved in the data collec-
tion process. This approach minimizes the risk of unauthorized access
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or unintended disclosure of sensitive information, thereby maintaining pa-
tient trust and confidentiality. Furthermore, the random offset applied to
ECG recording dates adds an additional layer of protection against re-
identification, making it more challenging for adversaries to link specific
records to individuals. This practice aligns with principles of data mini-
mization and privacy by design, mitigating the risk of unintended disclosure
and enhancing the overall security of the dataset. Adherence to the SCP-
ECG standard for annotating ECG records ensures consistency and inter-
operability across the dataset, facilitating collaboration and comparison
among researchers and healthcare professionals. By following established
standards, the dataset promotes transparency and reproducibility in ECG
analysis, thereby advancing the development of automated interpretation
algorithms and diagnostic tools. In conclusion, the PTB-XL dataset sets a
high standard for data privacy and security in medical research, incorpo-
rating measures to protect patient confidentiality while enabling valuable
insights into cardiovascular health. By prioritizing privacy and adhering
to established standards, the dataset serves as a valuable resource for ad-
vancing scientific understanding and improving patient care in the field of
cardiology.

4.1.3 Data Description

The PTB-XL dataset represents a substantial and meticulously curated
collection of clinical 12-lead ECG records, [36] offering insights into car-
diac health and pathology across a diverse patient population. With 21,799
ECG records from 18,869 patients, the dataset provides a rich repository of
cardiac data spanning a wide range of ages, genders, and clinical conditions.
The distribution of patients by gender reflects a balanced representation,
while the age distribution covers the entire spectrum from infancy to older
adulthood, with a median age of 62 years and an interquartile range of
22 years. One of the remarkable features of the PTB-XL dataset is its
comprehensive coverage of various cardiac pathologies alongside a signif-
icant proportion of healthy control samples. This diversity in pathology
enriches the dataset and facilitates the exploration of complex relation-
ships between different cardiac conditions and their corresponding ECG
manifestations. The inclusion of conditions such as myocardial infarction,
ST/T changes, conduction disturbances, and hypertrophy ensures that re-
searchers have access to a wide array of clinical scenarios for analysis and
interpretation. The waveform files stored in WaveForm DataBase (WFDB)
format provide high-fidelity ECG data with 16-bit precision and a sampling
frequency of 500Hz, ensuring detailed signal representation suitable for in-
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depth analysis and algorithm development. Additionally, the availability
of downsampled versions of the waveform data at a sampling frequency of
100Hz enhances accessibility and computational efficiency for users with
varying computational resources. Metadata stored in ptbxl database.csv
offers a wealth of information essential for contextualizing and interpreting
the ECG records. From demographic details such as age, sex, height, and
weight to recording metadata including nurse, site, device, and recording
date, the dataset provides a comprehensive framework for understanding
the clinical context surrounding each ECG recording.
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Chapter 5

Preprocessing

The strength of the PTB-XL dataset is not only the consistent number
of records, but also in the diversity of pathologies and the inclusion of
healthy control samples. With a distribution of diagnoses comprehending
Normal ECG, Myocardial Infarction (MI), ST/T Change, Conduction Dis-
turbance, and Hypertrophy, the dataset offers a complete overview over
cardiac conditions. In this context, the focus will be on particular sub-
sets of the data, such as normal and MI cases, for targeted analysis and
algorithm development.

5.1 Dataset Inspection and Preparation

Dataset inspection and preparation are key stages in a machine learning
pipeline, since the process may lead to accurate model predictions. Dataset
inspection involves a comprehensive examination of the data’s characteris-
tics, including size, structure, quality, and distributions of variables. There-
fore, dataset preparation techniques such as cleaning and transformtions
ensure that the data is suitable for analysis and modeling tasks.

5.1.1 Demographic Characteristics

Characteristics such as sex, age, height, and weight are often referred to
as demographic or biometric attributes. These attributes provide essential
information about individuals within a dataset and are commonly used
in various analyses. In this project, demographic characteristics play a
crucial role in comprehending the impact of Myocardial Infarction (MI) on
the population and in identifying and addressing potential outliers if they
exist. Particularly, the focus is on the distributions of sex and age to gain

25



Preprocessing

insights into how MI affects different demographic segments. Moreover,
investigating the distributions of sex and age allows us to identify any
anomalies or outliers that may skew the analysis results,

Sex

Understanding the sex distribution in myocardial infarction (MI) is impor-
tant for comprehending the epidemiology and clinical manifestations of this
cardiovascular condition. The analysis of sex distribution provides insights
into potential disparities in disease prevalence, risk factors, and outcomes
between males and females. Moreover, the sex distribution in MI might
lead to tailored prevention and intervention strategies Historically, studies
have consistently shown that males have a higher prevalence of MI com-
pared to females, particularly at younger ages [37]. This discrepancy in
prevalence is often attributed to biological differences, including hormonal
influences, genetic predispositions, and lifestyle factors such as smoking
and dietary habits. Additionally, males tend to exhibit certain risk factors
more prominently, such as hypertension and hypercholesterolemia, which
contribute to the increased prevalence of MI in this demographic group.
This discrepancy is also visible in the dataset and particularly in Figure
5.1.

Figure 5.1: Sex distribution in the dataset.

Age

Age plays an important role in myocardial infarction (MI), with its inci-
dence rising with the advance of the age. Analyzing age distribution within
MI datasets offers insights into the epidemiology and risk factors associated

26



Preprocessing

with this cardiovascular condition. Research consistently demonstrates
that MI becomes increasingly prevalent with age, with individuals over the
age of 65 [38] facing a significantly higher risk compared to younger age
groups. This age-related trend can be attributed to various factors, includ-
ing cumulative exposure to cardiovascular risk factors, progressive arterial
aging, and age-related changes in cardiac structure and function. More-
over, older adults often present with a higher prevalence of comorbidities
such as hypertension, diabetes, and obesity, which further exacerbate their
susceptibility to MI. Figure 5.2 shows the age distribution in the dataset
showing how the age bucket between 61 and 80 is the most populous one.

Figure 5.2: Age distribution in the dataset.

In order to find age outliers the violin plot, that is a powerful visualiza-
tion tool, has been used. This plot combines the features of a box plot and
a kernel density plot, providing a comprehensive representation of the dis-
tribution of ages among individuals with MI. In the context of MI research,
age outliers may represent individuals who experience the condition at un-
usually young or old ages. Additionally, age outliers may warrant further
investigation to assess their clinical significance, potential contributing fac-
tors, and implications for treatment and prevention strategies. Figure 5.3
represents the violin plot of the age distribution.
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Figure 5.3: Violin plot of the distribution of the age.

It’s evident from the violin plot that there are outliers within the
dataset, notably individuals are aged over 300 years, an occurrence that de-
fies biological plausibility. These extreme outliers, probably deriving from
annotation mistakes, challenge the integrity of the dataset and underscore
the importance of rigorous data validation and cleaning procedures. There-
fore, these outliers has been removed from the dataset (Figure 5.4).

Figure 5.4: Violin plot of the age distribution after the removal of the
outliers.
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5.1.2 Electrodes Problems and Burst Noise

In the context of biomedical signal processing, records contaminated by
electrode problems and burst noise often require careful consideration re-
garding their inclusion in the dataset. Due to the potential distortion
and inaccuracies introduced by the noise, removing such records from the
dataset is a common practice. By eliminating records affected by electrode
problems and burst noise, researchers can mitigate the risk of erroneous
conclusions, improve the quality of data-driven insights, and enhance the
validity of research findings.

Electrodes Problems

Electrode problems encompass issues such as poor electrode-skin contact,
electrode detachment, or electrode impedance mismatches, which can re-
sult in signal distortion, artifact contamination, and reduced signal qual-
ity. These problems often manifest as baseline drift, signal saturation, or
irregular waveform shapes, compromising the accuracy and reliability of
physiological measurements. As shown in Table 5.1 the number of records
with some electrodes problems is really tiny. Therefore, the records are
removed from the dataset.

No Problems Malfunctions

21479 29

Table 5.1: Number of records with and without electrodes problems.

Burst Noise

Burst noise, refers to short-duration, high-amplitude spikes or disturbances
superimposed on the signal, and might be caused by various sources, in-
cluding electromagnetic interference, power line fluctuations, or electronic
equipment malfunctions. In biomedical signal processing, burst noise can
obscure important physiological information, introduce false alarms, and
impair the interpretability of signals.
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Figure 5.5: Number of records with and without burst noise.

As shown in Figure 5.5 and Table 5.2 the number of records with burst
noise is not significantly large. Hence, the records are removed from the
dataset.

No Problems Burst Noise

20905 609

Table 5.2: Number of records with and without electrodes problems.

5.1.3 Superclass Distribution

The superclass distribution within the dataset, comprising diagnoses rang-
ing from Normal ECG to various cardiac conditions including Myocardial
Infarction (MI), ST/T Change, Conduction Disturbance, and Hypertrophy,
offers a rich and diverse perspective on cardiac health (Figure 5.6).
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Figure 5.6: Superclass distribution in the dataset.

The aim of the project focus on Myocardial Infaction (MI). Therefore,
all the records not labelled as NORM or MI will be discarded and the final
dataset will contain only two labels as in Figure 5.7.

Figure 5.7: Superclass distribution of the diagnostic classes of interest.

5.2 Final Dataset

After meticulous cleaning and inspection, the final dataset emerges as a re-
fined repository of myocardial infarction data, comprising a total of 15,222
records. Within this finalized dataset, 8,780 records represent instances of
Normal ECG, while 6,442 records correspond to cases of Myocardial In-
farction (MI). These subclass distributions provide valuable insights into
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the prevalence and distribution of cardiac conditions within the dataset.
The significant number of records dedicated to both Normal ECG and MI
cases underscores the dataset’s representativeness and its potential to yield
comprehensive insights into cardiac health and disease processes.
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Chapter 6

Train-Test Split

The train-test split methodology is a common practice used to assess the
performance of machine learning models. It involves dividing the available
dataset into two distinct subsets: the training set and the test set [39].
The training set is utilized to train the model, allowing it to learn patterns
and relationships within the data. Meanwhile, the test set serves as a
proxy for unseen data, enabling the evaluation of the model’s performance
on data it hasn’t encountered during training. By splitting the dataset
into separate training and test sets, it is possible to see how well models
generalize to new, unseen data. This process helps to detect overfitting,
where the model learns to memorize the training data rather than capturing
underlying patterns. Overfitting can lead to poor performance when the
model is deployed in real-world scenarios [40].

6.1 Static Dataset Division

In order to build a robust and reliable machine learning model, it’s essential
to partition the dataset into three distinct subsets: the training set, the
validation set, and the test set. This division allows for rigorous model
development, evaluation, and fine-tuning, ensuring the model’s ability to
generalize well to unseen data.

6.1.1 Training Set

The training set constitutes the largest portion of the dataset and serves
as the foundation for model development. It is used to train the machine
learning model by exposing it to labeled examples of input data along with
their corresponding target outputs. During the training process, the model
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learns to recognize patterns, extract features, and make predictions based
on the provided input-output pairs.

6.1.2 Validation Set

The validation set plays a crucial role in the model development pipeline
by serving as a mechanism for hyperparameter tuning and model selection.
While the training set is used to train the model’s parameters, the valida-
tion set is employed to assess the model’s performance on unseen data and
to fine-tune its hyperparameters. By evaluating the model’s performance
on the validation set, it is possible to iteratively adjust hyperparameters,
such as learning rate, regularization strength or change the network archi-
tecture, to optimize performance and prevent overfitting.

6.1.3 Test Set

The test set is the final benchmark for evaluating the model’s generaliza-
tion performance. Unlike the training and validation sets, the test set re-
mains untouched during the model development and hyperparameter tun-
ing phases. It contains unseen data that the model has not seen during
training or validation. By evaluating the model on the test set, it is possible
to assess its ability to generalize to new, unseen data and make unbiased
estimates of its performance in real-world scenarios.

6.2 Folds Distribution

The dataset has been labeled and bucketed, by the authors, into ten dis-
crete buckets. The objective is to ensure that each bucket contains an equal
distribution of records (as shown in Figure 6.1), in order to prevent biases
and skewed representations in the training process. Achieving a balanced
distribution across buckets is essential for model training to prevent the
dominance of specific classes and ensure comprehensive learning across all
categories.
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Figure 6.1: Distribution of the fold division.

It’s imperative to allocate these buckets strategically to ensure effective
model training and validation. Therefore, the classes representation inside
each bucket is approximately the same, as represented in Figure 6.2.

Figure 6.2: Distribution of the fold division by class.
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6.2.1 Allocation Strategy

Train

The majority of the dataset, comprising eight out of the ten buckets, will
be allocated for training purposes. This allocation allows the model to
learn from a diverse range of examples across multiple categories.

Validation

One bucket will be exclusively reserved for validation purposes. This vali-
dation set serves as a crucial component in the model development process,
enabling the assessment of model performance and the fine-tuning of hy-
perparameters.

Test

Finally, one bucket will be set aside for testing the trained model. This
test set remains untouched during the model development and validation
phases, ensuring an unbiased evaluation of the model’s performance on
unseen data.

6.3 Stratified K Fold

In machine learning, particularly when dealing with classification tasks,
ensuring that the distribution of classes remains balanced across different
folds of data is crucial. Stratified K-Fold Cross Validation (SKF-CV) [41] is
a technique used to achieve this balance, especially when dealing with im-
balanced datasets. Stratified K-Fold Cross Validation involves partitioning
the dataset into K equal-sized folds while ensuring that each fold main-
tains the same class distribution as the original dataset. This technique
addresses the challenge of maintaining class balance, which is essential for
accurate model evaluation, especially in cases where certain classes are
underrepresented [42].

6.3.1 Utilization

In the project, Stratified K-Fold Cross Validation is employed to evaluate
the performance of the machine learning model across multiple folds of the
data.
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❼ Stratified Split: Before applying the Stratified K-Fold technique, the
dataset is stratified, meaning that it’s divided into training and test
sets while preserving the original class distribution.

❼ Stratified K-Fold Split: Once the dataset is stratified, Stratified K-
Fold Cross Validation is applied by splitting the training set into K
distinct folds. Each fold contains a balanced representation of classes
similar to that in the original training set.

6.3.2 Allocation Strategy

Train

The majority of the dataset, comprising eight out of the ten buckets, will
be allocated for training purposes in each fold. This allocation allows the
model to learn from a diverse range of examples across multiple categories,
fostering robustness and adaptability to various data patterns.

Validation

One bucket will be exclusively reserved for validation purposes in each fold.
This validation set serves as a crucial component in the model development
process, enabling the assessment of model performance and the fine-tuning
of hyperparameters.

Test

Finally, one bucket will be set aside for testing the trained model in each
fold. This test set remains untouched during the model development and
validation phases, ensuring an unbiased evaluation of the model’s perfor-
mance on unseen data.

6.4 Rationale for Allocation

6.4.1 Prevention of Overfitting

The allocation of distinct training, validation, and test sets helps mitigate
the risk of overfitting, where the model learns to memorize training data
rather than capturing underlying patterns. A separate validation set facil-
itates early detection of overfitting and gives the possibility to implement
corrective measures as needed.
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6.4.2 Evaluative Rigor

The division of the dataset into training, validation, and test sets ensures
rigorous evaluation of the model’s performance at each stage of the devel-
opment process. This systematic approach gives the possibility to make
informed decisions regarding model architecture, feature selection, and op-
timization strategies.
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Neural Networks

In this chapter, the architecture and functionalities of neural networks are
explored comprehensively. Understanding these elements is fundamental
to understand the complexities of neural network models and their applica-
tions across diverse domains. Through a systematic examination of neural
network architecture and functionalities, it is possible to gain insights into
the underlying principles and operational dynamics that drive the learning
and predictive capabilities of these powerful computational systems.

7.1 CNN

Convolutional Neural Networks (CNNs) [43] are a class of deep neural net-
works specifically designed for processing structured grids of data. They
have proven to be highly effective in various tasks such as image classifica-
tion, object detection, and even natural language processing.

7.1.1 Basic CNN

The first CNN architecture (Figure 7.1) is a basic yet effective model for
tasks like sequence classification or time-series analysis.
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Figure 7.1: Basic CNN architecture.

Input Layer

The model begins with an input layer that receives data in the form of
sequences. The input shape parameter defines the shape of the input data
that the model expects.

Convolutional Layers

The network consists of two convolutional layers, each followed by a max-
pooling layer [44]. Convolutional layers are fundamental building blocks
in CNNs, responsible for learning spatial hierarchies of patterns within the
input data [45].

❼ The first convolutional layer has 64 filters with a kernel size of 3 and
uses the ReLU (Rectified Linear Unit) activation function. ReLU
introduces non-linearity to the network and helps in learning complex
patterns.

❼ The second convolutional layer has 128 filters with a kernel size of 3
and also utilizes the ReLU activation function.

❼ Max-pooling layers are inserted after each convolutional layer to
downsample the feature maps, reducing the spatial dimensions and
computational complexity while retaining the most relevant informa-
tion.
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Flattening Layer

After the convolutional layers, a flattening layer is added to reshape the 2D
feature maps into a 1D vector, which can be fed into the fully connected
layers.

Fully Connected Layers

Following the flattening layer, there are two fully connected (dense) lay-
ers. These layers are responsible for learning high-level features from the
representations obtained by the convolutional layers [46].

❼ The first dense layer has 64 units and uses the ReLU activation func-
tion.

❼ The final dense layer consists of a single neuron with a sigmoid acti-
vation function, which outputs a probability indicating the likelihood
of a binary classification (0 or 1).

The architecture can be seen in Figure 7.2 [47].

Figure 7.2: Basic CNN structure.

In conclusion, this basic CNN architecture offers a simple yet effective
approach for tasks involving sequence data, such as time-series analysis or
sequence classification. It leverages convolutional layers to learn hierarchi-
cal representations of input sequences and utilizes fully connected layers
for high-level feature learning and classification.
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7.1.2 Enhanced CNN

The Enhanced Convolutional Neural Network (CNN) architecture (Figure
7.3) is built on the basic principles of CNNs while incorporating additional
layers and techniques to improve its performance and robustness.

Input Layer

Similar to the basic CNN, the model starts with an input layer that receives
data in the form of sequences. The input shape parameter defines the shape
of the input data [48].

Convolutional Layer

The network includes three sets of convolutional layers, each followed by
max-pooling layers.

❼ The first set consists of two convolutional layers with 64 filters each
and a kernel size of 3. Both layers utilize the ReLU activation func-
tion.

❼ The second set follows the same pattern with two convolutional layers
having 128 filters each and a kernel size of 3.

❼ The third set comprises two convolutional layers with 256 filters each
and a kernel size of 3.

❼ Max-pooling layers are inserted after each set of convolutional layers
to downsample the feature maps and reduce spatial dimensions.

Dropout Layer

Dropout layers are incorporated to mitigate overfitting, a common issue in
deep neural networks. A dropout rate of 0.5 is applied after the first and
second sets of convolutional layers, as well as after the first fully connected
layer.

Flattening Layer

After the convolutional layers, a flattening layer reshapes the 2D feature
maps into a 1D vector as input to the fully connected layers.
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Figure 7.3: Enhanced CNN structure.

Fully Connected Layer

Two fully connected (dense) layers follow the flattening layer.

❼ The first dense layer has 128 units with the ReLU activation function.

❼ Another dropout layer with a dropout rate of 0.5 is added after the
first dense layer.

❼ The final dense layer consists of a single neuron with a sigmoid ac-
tivation function, producing a probability for binary classification
tasks.

The Enhanced CNN architecture provides a more sophisticated frame-
work for processing sequential data, offering increased model capacity and
robustness compared to the basic CNN. By incorporating additional con-
volutional layers, dropout regularization, and deeper network structures,
the enhanced model is capable of learning more intricate patterns and
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achieving better generalization on various tasks involving sequential data
analysis. The architecture can be seen in Figure 7.4.

Figure 7.4: Enhanced CNN architecture.

7.2 ConvNetQuake

ConvNetQuake is a convolutional neural network (CNN) [49] architecture
designed for seismic data analysis, particularly for earthquake detection
and prediction (Figure 7.5). The model utilizes a series of convolutional
layers to extract hierarchical features from seismic signals and provides a
binary classification output indicating the presence or absence of earth-
quake activity. However, in this project it will be tested on ECG data
analysis.
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Figure 7.5: ConvNetQuake structure.

Input Layer

The model starts with an input layer, which accepts seismic data in the
form of sequences. The input shape parameter specifies the shape of the
input data.

Convolutional Layers

ConvNetQuake employs a sequence of convolutional layers, each equipped
with 32 filters and a kernel size of 3. Stride 2 and ’same’ padding are
employed to effectively reduce spatial dimensions while preserving crucial
information. The Rectified Linear Unit (ReLU) activation function follows
each convolutional operation, introducing non-linearity and enabling the
model to capture intricate patterns within the ECG signals.

Flattening Layer

After the convolutional layers, a flattening layer is introduced to transform
the 3D feature maps into a 1D vector. This transformation facilitates
seamless connectivity with subsequent dense layers.
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Fully Connected Layers

ConvNetQuake incorporates a single dense layer comprising 128 units, ac-
companied by the ReLU activation function. This layer is instrumental in
capturing high-level features from the flattened representations of the ECG
signals.

Output Layer

The final layer comprises a single neuron with a sigmoid activation func-
tion, producing a binary output indicative of earthquake activity. While
ConvNetQuake was initially tailored for seismic data analysis, its architec-
tural principles and deep learning techniques can be repurposed for ECG
analysis. Electrocardiograms (ECGs) also involve sequential data with dis-
tinct patterns and features that signify cardiac events. By retraining Con-
vNetQuake on ECG datasets, the model can learn to identify abnormalities,
detect arrhythmias, and predict cardiac events. Reusing ConvNetQuake
architecture in ECG analysis offers a promising avenue for improving car-
diovascular health monitoring and diagnosis. The architecture can be seen
in Figure 7.6.

Figure 7.6: ConvNetQuake architecture.

While originally designed for seismic data analysis, ConvNetQuake’s
architectural principles and deep learning techniques are readily adaptable
for ECG analysis tasks. By retraining ConvNetQuake on ECG datasets,
the model can effectively identify abnormalities, detect arrhythmias, and
predict various cardiac events based on distinctive patterns and features
present in ECG signals.

7.3 LSTM

Long Short-Term Memory (LSTM) [50] [51] networks (Figure 7.7) are a
type of recurrent neural network (RNN) architecture designed to capture
long-term dependencies in sequential data [52]. LSTMs are particularly
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effective in tasks involving time-series prediction, sequence classification,
and natural language processing.

Figure 7.7: LSTM structure.

Input Layer

The model begins with an input layer that receives sequential data in the
specified input shape. In this case, the input data is expected to be in the
form of sequences.

LSTM Layers

Two LSTM layers are stacked sequentially:

❼ The first LSTM layer has 64 units and is configured to return se-
quences. This allows the LSTM to output sequences instead of a
single output, which is useful when stacking LSTM layers.

❼ The second LSTM layer also has 64 units and is configured to return
only the final output of each sequence.

Dense Layers

Following the LSTM layers, there are two dense layers:

❼ The first dense layer consists of 64 units with a ReLU activation
function. ReLU introduces non-linearity, allowing the model to learn
complex patterns in the data.

❼ A dropout layer with a dropout rate of 0.5 is applied after the first
dense layer to mitigate overfitting, a common issue in deep neural
networks.
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❼ The final dense layer consists of a single neuron with a sigmoid activa-
tion function, which produces a probability indicating the likelihood
of a binary classification (0 or 1).

The architecture can be seen in Figure 7.8.

Figure 7.8: LSTM architecture.

The LSTM architecture offers a powerful framework for processing se-
quential data and making predictions. By leveraging the memory cell struc-
ture and gating mechanisms, LSTMs can effectively capture long-term de-
pendencies and learn temporal patterns in the data. The model presented
here demonstrates the application of LSTM networks in binary classifica-
tion tasks, where it learns from sequential input data and produces binary
predictions based on the learned patterns.
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Model Training

The training process of machine learning models plays an important role
in developing accurate and reliable diagnostic tools. The training pipeline
begins with the selection of appropriate deep learning models tailored to
handle ECG data. These models encompass a variety of architectures
ranging from Convolutional Neural Networks (CNNs) to Long Short-Term
Memory networks (LSTMs), each designed to capture key aspects and
patterns inherent in ECG waveforms. Furthermore, the training process
involves crucial decisions regarding hyperparameters such as learning rate,
batch size, and optimizer selection, which directly influence the convergence
and performance of the models. The choice of loss functions, optimizers,
and learning rate schedulers are meticulously configured to ensure efficient
model training and convergence towards optimal solutions. Moreover, the
training pipeline incorporates techniques such as data augmentation, which
enriches the training dataset by generating synthetic variations of ECG
signals. This augmentation process enhances the model’s ability to gener-
alize and adapt to diverse patterns present in real-world ECG recordings.
Throughout the training phase, comprehensive monitoring and evaluation
mechanisms are employed to assess the model’s performance and conver-
gence. Techniques such as early stopping and model checkpointing ensure
that the training process is efficiently managed, preventing overfitting and
ensuring the selection of the best-performing model.

8.1 Data Augmentation

Data augmentation plays a crucial role in improving the robustness and
generalization capabilities of machine learning models, especially in do-
mains like electrocardiogram (ECG) analysis. This chapter describes the
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significance of data augmentation techniques within the context of ECG
analysis and explore various methods used to augment ECG data effec-
tively. ECG signals are susceptible to variations caused by factors such
as noise, artifacts, and baseline shifts, which can make it challenging for
models to learn meaningful patterns. Data augmentation techniques of-
fer a solution by generating diverse and realistic variations of ECG sig-
nals, thereby enabling models to learn more robust representations. In the
project, various data augmentation techniques are implemented to enhance
the performance of ECG analysis models. These techniques (Figure 8.1)
are applied to the training data to generate augmented samples, which are
then used to train the model alongside the original data.

8.1.1 Adding Noise

Random noise addition introduces variability in the signal, simulating real-
world conditions where ECGs may contain noise due to environmental
factors or equipment limitations.

8.1.2 Time Warp

Time warping involves shifting the temporal structure of the signal, mim-
icking slight variations in the duration of cardiac cycles or the pacing of
heartbeats.

8.1.3 Signal Shifting

Shifting the signal along the time axis helps model to learn invariant fea-
tures irrespective of the signal’s temporal position, making the model more
robust to temporal variations.
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Figure 8.1: Different augmentation techniques.

8.2 Optimizers

8.2.1 Adam

Adam optimizer [53], short for Adaptive Moment Estimation, is a popu-
lar optimization algorithm widely used in training deep neural networks
[54]. It combines the advantages of both AdaGrad and RMSprop, offering
adaptive learning rates and momentum. The Adam optimizer computes
adaptive learning rates for each parameter by maintaining two moving aver-
ages of gradients and squared gradients [55]. It calculates the first moment
(mean) and the second moment (uncentered variance) of the gradients.
These moments are then used to update the parameters in an adaptive
manner, allowing for faster convergence and better generalization. Adam
optimizer exhibits several advantages such as fast convergence, adaptive
learning rates, and robustness to noisy gradients. However, it may suffer
from certain limitations such as sensitivity to learning rate and momentum
hyperparameters, which require careful tuning to achieve optimal perfor-
mance.

8.2.2 AdamW

AdamW optimizer [56] is an extension of the Adam optimizer that intro-
duces weight decay regularization to mitigate potential overfitting issues.
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Similar to Adam, AdamW maintains two momentums for the gradients
and squared gradients. However, it incorporates weight decay directly into
the parameter updates, resulting in more stable optimization and improved
generalization performance. AdamW addresses the weakness of Adam by
effectively handling weight decay, which is crucial for preventing overfitting
in deep neural networks. However, it may introduce additional computa-
tional overhead due to the incorporation of weight decay terms.

Weight Decay - Description

Weight decay is a regularization technique used to prevent overfitting by
adding a penalty to the loss function based on the magnitude of the weights.
This penalty term discourages the model from assigning too much impor-
tance to any single feature, leading to more generalized learning.

Weight Decay - Mechanism

Below, it is described the mechanism behind the AdamW optimizer and
its benefits in detail:

1. Weight Decay Term

❼ Traditional Weight Decay Term: In traditional weight decay, a
term proportional to the weights is added to the loss function.
This term is controlled by a hyperparameter, often denoted as
λ. The modified loss function L becomes:

Ltotal = Loriginal + λ
X
i

ω2
i

❼ In AdamW : In the AdamW optimizer, weight decay is directly
incorporated into the parameter updates, rather than being ap-
plied through the loss function. This direct integration helps
in maintaining the separation between the optimization of the
model parameters and the regularization

2. Update Rule

❼ The parameter update rule in AdamW modifies the traditional
Adam update by including the weight decay term:

θt+1 = θt − η(
m̂t√
v̂t + ϵ

+ λθt)
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8.2.3 Adagrad

AdaGrad [57], short for Adaptive Gradient Algorithm, is an optimization
algorithm designed to address the challenges of training neural networks
with sparse data. AdaGrad adapts the learning rates of individual pa-
rameters based on the historical gradients encountered during training. It
allocates larger updates to infrequent parameters and smaller updates to
frequently occurring parameters, effectively mitigating the issues associ-
ated with sparse gradients. Adagrad advantages are the ability to handle
sparse data and its automatic adjustment of learning rates. However, it
may suffer from diminishing learning rates over time, which can lead to
slow convergence or premature convergence in certain scenarios.

8.2.4 SGD

Stochastic Gradient Descent (SGD) [58] is a fundamental optimization al-
gorithm widely used in training neural networks and machine learning mod-
els. SGD updates model parameters by computing gradients on a subset of
training examples (mini-batch) and adjusting the parameters in the direc-
tion of the negative gradient. It employs a fixed or decaying learning rate
to control the magnitude of parameter updates during training. The ad-
vantages of SGD are its simplicity, scalability, and ability to handle large
datasets. However, it may suffer from issues such as slow convergence,
sensitivity to learning rate tuning, and susceptibility to local minima.

8.2.5 RMSprop

RMSprop (Root Mean Square Propagation) [59] is an optimization algo-
rithm designed to address the limitations of traditional stochastic gradient
descent (SGD) in training deep neural networks. RMSprop adapts the
learning rates for individual parameters by dividing the learning rate by
the root mean square of past gradients for each parameter. This adaptive
learning rate mechanism allows RMSprop to handle sparse gradients and
non-stationary objectives more effectively. The advantages of RMSprop are
the ability to converge fast and the robustness to noisy or sparse gradients.
However, it may suffer from issues such as hyperparameter sensitivity and
difficulties in tuning the decay rates [60].
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8.2.6 Lion

The Lion optimizer [61] is a novel optimization algorithm inspired by the
hunting behavior of lions in the wild. The Lion optimizer simulates the
hunting behavior of lion prides, where lions collaborate to track and capture
prey. It employs a combination of exploration and exploitation strategies,
including random walk and memory-based search, to navigate the search
space and find optimal solutions. The advantages of Lion are the ability to
escape local optima, its adaptability to different optimization landscapes,
and its potential for parallelization. However, it may require extensive
parameter tuning and computational resources.

8.2.7 Optimizers Comparison

The previously described algorithms has been tested using the Basic CNN
model in terms of training and validation accuracy and loss over 10 epochs
with a static train-test split (Figure 8.2).

❼ Training Accuracy : All optimizers improve in performance over time.
ADAM and ADAMW have the highest final accuracies, while SGD
has the lowest final accuracy.

❼ Training Loss : The loss decreases for all optimizers as epochs in-
crease. However, ADAGRAD has a higher loss compared to others.

❼ Validation Accuracy : There are fluctuations in all lines indicating
variance in performance during validation. ADAM and ADAMW
outperform others.

❼ Validation Loss : There is an increase in loss after initial epochs for
most optimizers except LION which maintains a steady decline.
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Figure 8.2: Comparison of optimizers.

In general, ADAM and ADAMW seem to perform better in terms of both
accuracy and loss. However, it’s important to note that the performance of
the optimizer can depend on various factors. Therefore, testing all the op-
timizers and tuning the parameters is a gold standard in machine learning;
but this comparison provides a first indication on which optimizers might
perform better on the tasks.

8.3 Schedulers

8.3.1 Constant

The constant learning rate scheduler is a simple yet fundamental technique
used in optimizing machine learning models. The constant learning rate
scheduler maintains a fixed learning rate throughout the training process,
ensuring that the model parameters are updated with consistent magni-
tudes at each iteration. This straightforward approach allows for stable
training but may require careful selection of the learning rate hyperparam-
eter. Advantages of the constant learning rate scheduler include simplicity,
stability, and ease of implementation. However, it may suffer from limita-
tions such as sensitivity to the initial learning rate choice and difficulties
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in finding an appropriate balance between convergence speed and model
performance.

8.3.2 PolynomialDecay

The polynomial decay learning rate scheduler [62] is a dynamic technique
used to adjust the learning rate during the training process based on a
polynomial function. The polynomial decay scheduler gradually decreases
the learning rate according to a polynomial function over the course of
training epochs. It allows for fine-tuning the learning rate schedule to
match the convergence behavior of the optimization landscape, potentially
improving convergence speed and final performance. The advantages of
the polynomial decay scheduler are flexibility, adaptability, and ability to
handle complex optimization dynamics. However, it may introduce ad-
ditional hyperparameters that require tuning and may suffer from slower
convergence rates compared to more aggressive decay schedules.

8.3.3 CosineDecay

The cosine decay learning rate scheduler [63] is a cyclic technique used to
modulate the learning rate based on the cosine function over the course of
training epochs. The cosine decay scheduler gradually reduces the learning
rate following a cosine curve, allowing for periodic adjustments that mimic
the cyclical nature of optimization dynamics. It enables the exploration
of diverse regions in the optimization landscape while maintaining stable
convergence behavior. The advantages of the cosine decay scheduler are its
ability to escape local minima, its regularization effect, and its potential
for improving generalization. However, it may require careful tuning of
hyperparameters such as cycle length and initial learning rate.

8.3.4 ExponentialDecay

The exponential decay learning rate scheduler [64] is a widely used tech-
nique for adjusting the learning rate during the training process based on
an exponential function. The exponential decay scheduler decreases the
learning rate exponentially over the course of training epochs, allowing for
aggressive reductions in the learning rate magnitude. It facilitates fast
convergence in the initial training stages while gradually stabilizing the
learning process to prevent overshooting. The advantages of the expo-
nential decay scheduler are its simplicity, efficiency, and effectiveness in
accelerating convergence. However, it may suffer from limitations such as
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sensitivity to the decay rate hyperparameter and potential for premature
convergence.

8.4 Loss

8.4.1 BinaryCrossEntropy

Binary Cross-Entropy loss function [65], also known as log loss, is a fun-
damental component in training binary classification models within the
realm of deep learning. The Binary Cross-Entropy loss function measures
the discrepancy between the predicted probabilities and the true labels in
binary classification problems [66]. It calculates the logarithm of the pre-
dicted probability of the correct class, penalizing misclassifications with
higher magnitudes for greater prediction errors. The loss function is math-
ematically expressed as the negative log-likelihood of the true class. The
advantages of the Binary Cross-Entropy loss function are its ability to
handle imbalanced datasets, its smooth gradient properties, and its effec-
tiveness in optimizing models for binary classification tasks [67]. However,
it may suffer from limitations such as sensitivity to class imbalance and
difficulties in interpretation.

8.5 Hyperparameters

8.5.1 Epochs

The choice of the number of epochs plays a critical role in training deep
learning models effectively. Epochs represent the number of times the entire
dataset [68] is passed forward and backward through the neural network
during training [69]. It determines the number of iterations the model un-
dergoes to learn from the data and adjust its parameters accordingly. the
advantages of tuning epochs, including the ability to control the duration
of training and achieve convergence to an optimal solution. However, ex-
cessive epochs can lead to overfitting [70], while insufficient epochs may
result in underfitting, impacting the model’s performance. The advantages
of tuning epochs include the ability to control the duration of training and
achieve convergence to an optimal solution. However, excessive epochs
can lead to overfitting, while insufficient epochs may result in underfitting,
impacting the model’s performance.

57



Model Training

8.5.2 Batch Size

Batch size is a crucial hyperparameter in deep learning optimization, influ-
encing the efficiency and effectiveness of model training. Batch size refers
to the number of samples processed by the model in a single iteration dur-
ing training. It affects the stability of the optimization process, the qual-
ity of parameter updates, and the utilization of hardware resources. The
advantages of optimizing batch size include faster convergence, reduced
memory requirements, and improved generalization. However, excessively
small batch sizes may lead to noisy gradients, while excessively large batch
sizes may hinder convergence and limit model capacity.

8.5.3 Learning Rate

The learning rate is a fundamental hyperparameter in training deep learn-
ing models, influencing the speed and quality of optimization. The learning
rate determines the step size of parameter updates during optimization, af-
fecting the magnitude of adjustments made to the model weights. It plays
a critical role in balancing the trade-off between convergence speed and
convergence quality. The advantages of fine-tuning learning rates include
improved convergence, enhanced model generalization, and robustness to
optimization challenges. However, selecting an inappropriate learning rate
can lead to slow convergence, oscillations, or divergence during training.

8.6 Callbacks

8.6.1 EarlyStopping

The EarlyStopping callback is a powerful technique used to prevent overfit-
ting and improve the generalization performance of deep learning models.
The EarlyStopping callback monitors the validation loss or a specified met-
ric during training and halts the training process when the performance on
the validation set stops improving. It allows for early termination of train-
ing to prevent overfitting and save computational resources. The advan-
tages of the EarlyStopping callback include its ability to prevent overfitting,
improve model generalization, and facilitate efficient hyperparameter tun-
ing. However, it may halt training prematurely if the validation metric
fluctuates or plateaus without significant improvement.
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8.6.2 ModelCheckPoint

The ModelCheckpoint callback is a valuable tool used to save model weights
during training and facilitate model restoration and deployment. The Mod-
elCheckpoint callback periodically saves the model weights to disk during
training, allowing for model snapshots to be captured at specific intervals or
based on certain criteria such as validation performance. It enables model
recovery, fine-tuning, and deployment without retraining from scratch. The
advantages of the ModelCheckpoint callback include its ability to preserve
model progress, prevent data loss in case of interruptions, and facilitate
model ensembling and transfer learning. However, it may consume addi-
tional storage space and computational resources.
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Model Testing

The testing phase of machine learning models is a critical step in assessing
their generalization capabilities and evaluating their performance on un-
seen data. The testing process consists in passing the trained deep learning
models to real-world electrocardiography (ECG) signals to ascertain their
diagnostic accuracy and robustness. The testing pipeline begins by feed-
ing unseen ECG signals into the trained models, which have been previ-
ously trained on a diverse dataset encompassing various cardiac conditions.
These ECG signals are typically partitioned into a separate validation or
test set to simulate real-world scenarios where the models encounter new
and unseen data. During the testing phase, the models’ predictive ca-
pabilities are evaluated based on predefined performance metrics such as
accuracy, precision, recall and F1Score. These metrics provide quantitative
measures of the models’ ability to correctly classify ECG signals into dif-
ferent diagnostic categories, including normal rhythms and various cardiac
abnormalities. In addition to quantitative metrics, qualitative assessment
of the models’ predictions is also conducted to identify potential areas of
improvement and examine the models’ interpretability. Visualization tech-
niques such as confusion matrices and ROC curves provide intuitive rep-
resentations of the models’ performance, facilitating the identification of
strengths and weaknesses. Moreover, rigorous testing procedures help mit-
igate the risk of overfitting and ensure that the trained models generalize
well to unseen ECG data from diverse patient populations. By subjecting
the models to rigorous testing protocols, healthcare practitioners can make
informed decisions regarding the models’ suitability for clinical deployment
and diagnostic support.
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9.1 Evaluation Metrics

Evaluation metrics [71] are essential tools for quantifying the performance
of machine learning models. By understanding and interpreting these met-
rics, practitioners can make informed decisions about model selection, pa-
rameter tuning, and optimization strategies. It is crucial to choose eval-
uation metrics that are relevant to the specific task and objectives of the
machine learning project. Additionally, considering multiple metrics pro-
vides a comprehensive view of model performance and helps identify areas
for improvement.

9.1.1 Accuracy

Accuracy measures the proportion of correctly classified instances out of
the total instances [72].

Accuracy =
TP + TN

TP + TN + FP + FN

Accuracy gives an overall view of how well the model performs across all
classes. However, it can be misleading if the classes are imbalanced.

9.1.2 Precision

Precision measures the proportion of true positive predictions out of all
positive predictions [73].

Precision =
TP

TP + FP

Precision focuses on the accuracy of positive predictions. It is useful when
the cost of false positives is high.

9.1.3 Recall

Recall measures the proportion of true positive predictions out of all actual
positive instances [74].

Recall =
TP

TP + FN

Recall is sensitive to the model’s ability to correctly identify positive in-
stances. It is useful when the cost of false negatives is high [75].
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9.1.4 F1-Score

F1-score is the harmonic mean of precision and recall, providing a balance
between the two metrics.

F1 − Score =
2 × (Precision×Recall)

Precision + Recall

F1-score combines precision and recall into a single metric, making it useful
for tasks where both false positives and false negatives are equally impor-
tant.

9.2 Test Procedure

9.2.1 Hyperparameters Tuning

The strategy for tuning hyperparameters involved a systematic and itera-
tive approach. Initially, the process began with selecting a set of baseline
values for key hyperparameters such as learning rate, batch size, and the
number of epochs. These values were chosen based on common practices
in the field and initial experimentation (e.g., learning rate = 1e-3, batch
size = 32, epochs = 100). Moreover, the parameters were associated with
the different combinations of Optimizers and Schedulers. Particularly, the
tuning process involved the following steps:

1. Grid Search: A coarse grid search was conducted over a predefined
range of values for each hyperparameter. This helped identify regions
of the hyperparameter space that yielded better performance

2. Random Search: Following the grid search, a more fine-grained ran-
dom search was applied within the identified regions to pinpoint more
optimal values

3. Bayesian Optimization: To further refine the hyperparameter val-
ues, Bayesian optimization was employed. This method balances
exploration and exploitation, utilizing previous evaluation results to
predict the performance of new sets of hyperparameters

4. Cross-Validation: Throughout the tuning process, an 8-fold cross-
validation approach was used to ensure robustness and generaliz-
ability of the selected hyperparameters. This method also helped in
assessing the model’s performance more comprehensively by splitting
the data into multiple folds
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9.2.2 Betas and K-Fold

The initial values for the beta parameters in the Adam optimizer were set
as β1 = 0.9 and β2 = 0.999. These values are standard and commonly used
due to their effectiveness in various machine learning tasks. Furthermore,
an 8-fold cross-validation was chosen based on a balance between computa-
tional efficiency and thoroughness in performance evaluation. This specific
choice was influenced by:

❼ Empirical Evidence: Previous experiments and suggested that 8-fold
provides a good trade-off between bias and variance. It allows for
sufficient training data in each fold while ensuring a comprehensive
validation process

❼ Dataset Size and Structure: Given the dataset’s size and structure,
8-fold cross-validation was determined to maximize the utilization of
available data without excessive computational cost

9.2.3 Data Augmentation

After establishing a baseline with K-Fold cross-validation, data augmenta-
tion techniques were introduced to enhance the model’s ability to general-
ize to unseen data. Augmentation techniques, such as noise addition, time
warping, and signal shifting, were applied to increase the diversity of the
training dataset. Moreover, parameter tuning and iterative optimization
were conducted based on observed performance metrics, such as accuracy,
recall, and loss.

63



Chapter 10

Results

Through a meticulous examination of the obtained results, the aim is to
provide a comprehensive understanding of the efficacy of the used ap-
proaches in addressing the research objectives. From the initial exploration
of baseline models to the comprehensive evaluation of optimized architec-
tures, this chapter encapsulates the essence of the work to develop robust
and accurate solutions for the task at hand.

10.1 Basic CNN

Considering the myocardial infarction detection in electrocardiograms, the
performance of a basic CNN model remains noteworthy. Even though some
other architectures may perform better, the Basic CNN shows the ability of
efficiently classify instances of myocardial infarction. While more intricate
architectures exist, the basic CNN. Although achieving the highest levels of
accuracy may necessitate more specialized models tailored to this specific
task, the basic CNN serves as a dependable starting point.

10.1.1 No Data Augmentation

The findings presented here are derived from experiments conducted with-
out the use of data augmentation techniques. This underscores the raw
performance of the basic CNN model in MI detection, unaided by addi-
tional training data generated through transformations. Despite the ab-
sence of augmentation, the basic CNN demonstrates commendable perfor-
mance across various experimental configurations. The Table 10.1 shows
the best combinations of parameters and results.
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Model Optimizer LR Batch
Size

Scheduler StratKFold

Model 1 AdamW 1e-3 32 Polynomial
Decay

True - 8

Model 2 AdamW 1e-3 64 Polynomial
Decay

True - 8

Model 3 RMSprop 1e-3 64 Constant True - 8
Model 4 Lion 1e-3 64 Polynomial

Decay
True - 8

Table 10.1: Best combination of hyperparameters, Basic CNN - No Aug-
mentation.

Particularly, the best models reach 91% of accuracy as shown in the
boxplot in Figure 10.1, while precision and recall metrics exhibit variability
across configurations but generally fall within acceptable ranges for medical
diagnosis tasks. Table 10.2 shows the metrics score for the different models.

Model Accuracy Precision Recall F1Score

NORM, MI NORM, MI NORM, MI

Model 1 0.91 0.90, 0.92 0.95, 0.85 0.92, 0.88
Model 2 0.91 0.90, 0.93 0.96, 0.84 0.93, 0.88
Model 3 0.91 0.91, 0.90 0.94, 0.87 0.92, 0.89
Model 4 0.91 0.90, 0.92 0.95, 0.84 0.92, 0.88

Table 10.2: Metrics results, Basic CNN - No Augmentation.
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Figure 10.1: Comparison of optimizers accuracy, Basic CNN - No Augmen-
tation.

10.1.2 Data Augmentation

The integration of data augmentation techniques into the training pipeline
normally influences the performance models. In this case, the analyzed
metrics remains stable. The Table 10.3 shows the best combinations of
parameters with the data augmentation applied.

Model Optimizer LR Batch
Size

Scheduler StratKFold

Model 1 AdamW 1e-3 32 Polynomial
Decay

False

Model 2 AdamW 1e-3 32 Polynomial
Decay

True - 8

Table 10.3: Best combination of hyperparameters, Basic CNN - Augmen-
tation.

As previously said, the metrics remains stable with data augmentation
techniques (Results in Table 10.4 and Figure 10.2). This behavior can be
explained looking at the näıve architecture of the considered CNN. In fact,
the choice of model architecture and optimization strategy can influence the
extent to which data augmentation enhances performance. While CNNs
are generally robust to variations in input data, the capacity of the model
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to learn and generalize from augmented examples may vary depending on
its complexity and capacity to capture relevant features.

Model Accuracy Precision Recall F1Score

NORM, MI NORM, MI NORM, MI

Model 1 0.91 0.89, 0.94 0.96, 0.83 0.92, 0.88
Model 2 0.91 0.91, 0.90 0.94, 0.86 0.92, 0.88

Table 10.4: Metrics results, Basic CNN - Augmentation.

Figure 10.2: Comparison of optimizers accuracy, Basic CNN - Augmenta-
tion.

10.2 Enhanced CNN

Compared with the results of the Basic CNN, this architecture demon-
strates to be more accurate and precise. This was an expected result,
since the architecture is more complex and more intricate than the pre-
vious one. Furthermore, the Enhanced CNN had the ability fo efficiently
and accurately detect instances of myocardial infarction without sacrificing
performances.
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10.2.1 No Data Augmentation

The results of this section are the ones without the use of data augmenta-
tion; therefore, this point out the raw performances of the Enhanced CNN.
The best combination of parameters are reported in Table 10.5.

Model Optimizer LR Batch
Size

Scheduler StratKFold

Model 1 Adam 1e-3 64 Polynomial
Decay

True - 8

Model 2 AdamW 1e-3 32 Polynomial
Decay

True - 8

Model 3 RMSprop 1e-3 32 Polynomial
Decay

True - 8

Model 4 RMSprop 1e-3 64 Polynomial
Decay

True - 8

Table 10.5: Best combination of hyperparameters, Enhanced CNN - No
Augmentation.

Particularly, the best models reach 94% of accuracy, as shown in the
boxplot in Figure 10.3, while (as in the Basic CNN) the other matrics
shows some variabilities across the tests, but are consistent for similar per-
formances. Results for the accuracy and for the other metrics are reported
in Table 10.6.

Model Accuracy Precision Recall F1Score

NORM, MI NORM, MI NORM, MI

Model 1 0.94 0.93, 0.96 0.98, 0.90 0.95, 0.93
Model 2 0.94 0.95, 0.94 0.96, 0.93 0.95, 0.93
Model 3 0.94 0.94, 0.94 0.96, 0.91 0.95, 0.92
Model 4 0.94 0.94, 0.95 0.97, 0.91 0.95, 0.93

Table 10.6: Metrics results, Enhanced CNN - No Augmentation.
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Figure 10.3: Comparison of optimizers accuracy, Enhanced CNN - No
Augmentation.

10.2.2 Data Augmentation

In this case the integration of data augmentation techniques bring a no-
ticeable result for all the metrics considered. Table 10.7 report the best
hyperparameters combination.

Model Optimizer LR Batch
Size

Scheduler StratKFold

Model 1 AdamW 1e-3 32 Constant False
Model 2 RMSprop 1e-3 64 Polynomial

Decay
False

Model 3 RMSprop 1e-3 64 Polynomial
Decay

False

Model 4 AdamW 1e-3 64 Polynomial
Decay

True - 8

Table 10.7: Best combination of hyperparameters, Enhanced CNN - Aug-
mentation.

The Table 10.8 and Figure 10.4 show the results obtained after the
augmentation of the data, comfirming the utility of applying augmentation
techniques to the data.
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Model Accuracy Precision Recall F1Score

NORM, MI NORM, MI NORM, MI

Model 1 0.95 0.94, 0.96 0.98, 0.90 0.95, 0.93
Model 2 0.95 0.94, 0.96 0.97, 0.91 0.95, 0.93
Model 3 0.95 0.93, 0.95 0.96, 0.90 0.95, 0.93
Model 4 0.95 0.95, 0.95 0.97, 0.92 0.96, 0.94

Table 10.8: Metrics results, Enhanced CNN - Augmentation.

Figure 10.4: Comparison of optimizers accuracy, Enhanced CNN - Aug-
mentation.

10.3 ConvNetQuake

This Neural Network provides results that are very similar to the ones of the
Enhanced CNN in terms of metrics. On the other hand, it shows better
performances in terms of training time without sacrificing the accuracy.
Even though this architecture was initially design to detect earthquakes,
it shows to be suitable for ECG analysis.

10.3.1 No Data Augmentation

Raw performances of ConvNetQuake (without Data Augmentation) are
reported in Table 10.9 along with the best combination of hyperparameters.
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Model Optimizer LR Batch
Size

Scheduler StratKFold

Model 1 Lion 1e-3 32 Polynomial
Decay

False

Model 2 Lion 1e-3 64 Polynomial
Decay

False

Model 3 Lion 1e-3 32 Polynomial
Decay

True - 8

Model 4 Lion 1e-3 64 Polynomial
Decay

True - 8

Table 10.9: Best combination of hyperparameters, ConvNetQuake - No
Augmentation.

In particular, performances in this case reach 95% of accuracy for the
best model, showing a small improvement compared to the Enhanced CNN.
The results are shown in the boxplot in Figure 10.5 and in Table 10.10.

Model Accuracy Precision Recall F1Score

NORM, MI NORM, MI NORM, MI

Model 1 0.94 0.95, 0.92 0.95, 0.92 0.95, 0.92
Model 2 0.94 0.94, 0.94 0.96, 0.91 0.95, 0.93
Model 3 0.95 0.93, 0.96 0.98, 0.90 0.95, 0.93
Model 4 0.94 0.93, 0.86 0.97, 0.89 0.95, 0.92

Table 10.10: Metrics results, ConvNetQuake - No Augmentation.
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Figure 10.5: Comparison of optimizers accuracy, ConvNetQuake - No Aug-
mentation.

10.3.2 Data Augmentation

Data augmentation techniques in this case demonstrates to be effective
since the overall performances increased; however, the top performances
remain stable. Best combination of hyperparameters are reported in Table
10.11.

Model Optimizer LR Batch
Size

Scheduler StratKFold

Model 1 Adam 1e-3 32 Polynomial
Decay

False

Model 2 Lion 1e-3 32 Polynomial
Decay

False

Model 3 Lion 1e-3 64 Polynomial
Decay

False

Model 4 AdamW 1e-3 32 Polynomial
Decay

True - 8

Table 10.11: Best combination of hyperparameters, ConvNetQuake - Aug-
mentation.

Performances remains arounf 95% of accuracy, with other metrics con-
sistent across the various hyperparameters combination. Results are shown
both in Figure 10.6 and Table 10.12.
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Model Accuracy Precision Recall F1Score

NORM, MI NORM, MI NORM, MI

Model 1 0.95 0.93, 0.95 0.97, 0.90 0.95, 0.93
Model 2 0.95 0.97, 0.90 0.93, 0.95 0.95, 0.92
Model 3 0.94 0.98, 0.89 0.93, 0.97 0.94, 0.92
Model 4 0.95 0.97, 0.90 0.94, 0.95 0.95, 0.93

Table 10.12: Metrics results, ConvNetQuake - Augmentation.

Figure 10.6: Comparison of optimizers accuracy, ConvNetQuake - Aug-
mentation.

10.4 LSTM

The results of this neural network are the most promising. Particularly,
the results are slightly better to the ones obtained with the previous ar-
chitecture, demonstrating the efficiency of LSTM in ECG analysis and
abnormalities detection.

10.4.1 No Data Augmentation

Raw performances along with the best combination of hyperparameters are
reported in Table 10.13.
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Model Optimizer LR Batch
Size

Scheduler StratKFold

Model 1 Lion 1e-3 32 Polynomial
Decay

False

Model 2 Lion 1e-3 32 Constant True - 8
Model 3 Lion 1e-3 32 Polynomial

Decay
True - 8

Model 4 Lion 1e-3 64 Polynomial
Decay

True - 8

Table 10.13: Best combination of hyperparameters, LSTM - No Augmen-
tation.

Particularly, the results for LSTM are around 94% for the best combi-
nations of hyperparameters. Results can be seen in Figure 10.7 and Table
10.14.

Model Accuracy Precision Recall F1Score

NORM, MI NORM, MI NORM, MI

Model 1 0.94 0.94, 0.95 0.97, 0.91 0.95, 0.93
Model 2 0.94 0.93, 0.96 0.98, 0.89 0.95, 0.93
Model 3 0.94 0.93, 0.95 0.97, 0.89 0.95, 0.92
Model 4 0.94 0.94, 0.95 0.97, 0.90 0.97, 0.90

Table 10.14: Metrics results, LSTM - No Augmentation.
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Figure 10.7: Comparison of optimizers accuracy, LSTM - No Augmenta-
tion.

10.4.2 Data Augmentation

For this Neural Network the data augmentation shows an important im-
provement, that represents the best result obtained in this project. Table
10.15 shows the best combination of hyperparameters.

Model Optimizer LR Batch
Size

Scheduler StratKFold

Model 1 AdamW 1e-3 64 Constant False
Model 2 AdamW 1e-3 32 Polynomial

Decay
False

Model 3 RMSprop 1e-3 32 Constant False
Model 4 RMSprop 1e-3 64 Polynomial

Decay
True - 8

Table 10.15: Best combination of hyperparameters, LSTM - Augmentation.

In particular, the accuracy is 96% for the best combination of hyper-
parameters. The other metrics show better results compared to the other
architectures, enhancing the effectivness of this Neural Network for time-
series analysis. The results are shown in Figure 10.8 and in Table 10.16.
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Model Accuracy Precision Recall F1Score

NORM, MI NORM, MI NORM, MI

Model 1 0.96 0.95, 0.95 0.97, 0.92 0.96, 0.93
Model 2 0.96 0.95, 0.96 0.97, 0.93 0.97, 0.93
Model 3 0.95 0.95, 0.92 0.95, 0.93 0.95, 0.93
Model 4 0.95 0.95, 0.94 0.96, 0.92 0.95, 0.93

Table 10.16: Metrics results, LSTM - Augmentation.

Figure 10.8: Comparison of optimizers accuracy, LSTM - Augmentation.

10.5 Discussion

10.5.1 Hyperparameters and Optimizers

The selection and tuning of hyperparameters and optimizers are critical
in deep learning to ensure optimal model performance. In this study, sev-
eral hyperparameters were fine-tuned using a combination of grid search,
random search, and Bayesian optimization techniques.

Hyperparameters

Considering the used hyperparameters:

❼ Learning Rate: The learning rate was adjusted within the range of
1e-5 to 1e-3. Lower learning rates generally provided more stable
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convergence, while higher rates accelerated training but risked over-
shooting minima.

❼ Batch Size: Various batch sizes (16, 32, 64, 128) were evaluated.
Smaller batch sizes led to noisier updates and potentially better gen-
eralization, while larger batch sizes offered more stable and faster
training

❼ Number of Epochs : The models were trained for up to 100 epochs,
with early stopping based on validation loss to prevent overfitting

❼ Optimizer Choice: Different optimizers, including Adam, AdamW,
and SGD, were tested. Adam and AdamW typically provided bet-
ter convergence rates and final performance due to their adaptive
learning rate mechanisms

Optimizers

Considering the used optimizers:

❼ Adam: Adam optimizer was selected for most models due to its abil-
ity to handle sparse gradients and adaptive learning rate, leading to
faster convergence

❼ SGD : Stochastic Gradient Descent (SGD) was also tested but gener-
ally required careful learning rate scheduling to achieve competitive
performance

❼ RMSprop and AdamW : RMSprop and AdamW were used in specific
models where their benefits in handling non-stationary objectives and
weight decay, respectively, were advantageous

10.5.2 Impact of Data Augmentation

Data augmentation played a crucial role in enhancing the model’s ability to
generalize to unseen data. By artificially expanding the training dataset,
the models learned to recognize patterns invariant to common transforma-
tions and noise. Considering the used techniques:

❼ Adding Noise: Random noise was added to ECG signals to simulate
real-world variability and improve robustness

❼ Time Warp: Temporal distortions were applied to the signals to
help the model become invariant to timing variations in the ECG
waveforms
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❼ Signal Shifting : Signals were shifted along the time axis to teach the
model to handle slight misalignments in the data

10.5.3 Models Comparison

Analyzing the performance of different neural network architectures re-
vealed valuable insights. Particularly, the Enhanced CNN showed superior
performance compared to the Basic CNN, particularly when data aug-
mentation was applied. The additional layers and complexity of the En-
hanced CNN allowed it to capture more intricate patterns in the ECG
signals, resulting in higher accuracy and better generalization. While Con-
vNetQuake, originally designed for seismic data, adapted well to ECG
analysis, LSTM networks were particularly effective in capturing tempo-
ral dependencies within the ECG data. However, LSTMs required more
computational resources and longer training times.

10.5.4 Error Analysis

A detailed error analysis was conducted to understand the misclassifica-
tions made by the models: By examining the instances where the models
incorrectly predicted the presence or absence of myocardial infarction, pat-
terns and common features among these errors were identified. This anal-
ysis highlighted areas where the models could be improved, such as better
handling of noisy or ambiguous signals. For instance, many false positives
were observed in cases where the ECG signals had significant noise or arti-
facts that mimicked the features of myocardial infarction. Similarly, false
negatives often occurred in cases where the infarction signs were subtle
or atypical. Addressing these issues could involve enhancing the prepro-
cessing steps to better clean the data and developing more sophisticated
feature extraction methods to capture subtle patterns more effectively.
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Chapter 11

Conclusions

In conclusion, this project aimed to develop and evaluate deep learning
models for myocardial infarction (MI) detection using electrocardiogram
(ECG) data. Through the implementation of various models, training pro-
cedures, and evaluation techniques, several key findings and insights have
been obtained.

11.1 Key Findings

The results revealed performance differences across the evaluated archi-
tectures. While Basic CNN provided a solid foundation, Enhanced CNN
demonstrated superior performance, leveraging deeper architectures and
enhanced feature extraction capabilities. ConvNetQuake, originally de-
signed for earthquake detection, surprisingly exhibited adaptability to ECG
analysis, rivaling the performance of the Enhanced CNN. Notably, LSTM
networks emerged as standout performers, particularly adept at capturing
temporal dependencies inherent in ECG signals. Although there is room
for improvement, the evaluated metrics showed promising results, defining
a strong baseline for future development.

11.2 Future Directions

Moving forward, there are a multitute of different paths that can be taken
to improve the project results and findings. Particularly, one possible de-
velopment might be the possibility to use a pretrained model as a feature
extractor or for fine tuning. Although this is not a complicated task, it is
not straightforward to find a model that is suitable for the ECG classifica-
tion. Another future development is represented by the possibility of using
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images for ECG classification. However, this might have some problems
related to the quality, format and quantity of the images. Furthermore, the
possibility to acquire a great quantity of data related to ECGs to integrate
into the PTB-XL database is another option to follow in order to create a
stronger dataset to work with. In conclusion, the study will serve as base
for future developments and improvements, having always as key objective
the possibility to save more human lives.
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