

Politecnico di Torino

Masters degree Course in Computer Engineering
Masters degree Thesis

Analysis and Mitigation of Single
Event Transients (SET) effect on

RISC-V based FPGA

Supervisors:

Prof. Luca Sterpone

Candidate:

Aditya Garg

Academic Year 2023-2024

2

Declaration

I hereby declare that the contents and organization of this dissertation constitute my

own original work and do not compromise in any way the rights of third parties,

including those relating to the security of personal data.

Aditya Garg

2024

3

Index

TABLE OF FIGURES .. 5

ABSTRACT ... 6

1 INTRODUCTION ... 7

1.1 RISC-V OVERVIEW .. 7
1.2 SINGLE EVENT TRANSIENT ... 9
1.3 CIRCUIT-LEVEL AFFECT BREAKDOWN ... 11
1.4 DESIGN LEVEL MITIGATION STRATEGIES ... 14

2 TECHNOLOGY BACKGROUND ... 17

2.1 FPGAS .. 17
2.2 FPGA FEATURES ... 18
2.3 IMPLEMENTING RISC-V ON FPGAS FOR SPACE ... 20
2.4 FPGA PROGRAMMING ... 21
2.5 NEORV32 RISC-V PROCESSOR ... 23
2.6 PROASIC3 ... 25
2.7 FLASH TECHNOLOGY ... 27

3 ANALYSING AND HARDENING OF IMPLEMENTATION ... 29

3.1 PREPARING THE CIRCUIT .. 29
3.2 MANHATTAN CIRCUIT PLACEMENT TECHNIQUE ... 33
3.3 SET SIMULATION ... 37
3.4 MITIGATION PROCESS ... 39
3.5 DELAY CIRCUIT: INVERTERS AND AND GATES .. 40

4 EXPERIMENTAL ANALYSIS .. 43

4.1 RESOURCE UTILIZATION ANALYSIS ... 43

4

4.2 TIMING AND POWER CONSTRAINTS VERIFICATION ... 43
4.3 PRINCIPAL OBJECTIVE VERIFICATION ... 52

5 CONCLUSION .. 57

5.1 KEY FINDINGS AND CONTRIBUTIONS ... 57

6 FUTURE WORK ... 59

7 BIBLIOGRAPHY ... 60

8 APPENDIX ... 63

8.1 EXTRACTION AND INSERTING DELAY CIRCUIT .. 63

Table Of Figures
5

Table Of Figures

1 PARTICLE STRIKE PATH ACROSS A NMOS TRANSISTOR, CHARGE COLLECTION HAPPENS IN THREE STAGES 11
2 A PARTICLE STRIKE AT THE DRAIN OF THE INVERTER GATE CREATES A BURST OF CURRENT, CHANGING OUTPUT VOLTAGE VALUE

(5) ... 12
3 SET PULSE REACHES THE MEMORY ELEMENT AND ITS VALUE IS STORED CON- FIGURING A SEU (5) 13
4 FPGA BLOCK (16) ... 17
5 NEORV32 ARCHITECTURE (8) ... 24
6 PROASIC3 ARCHITECTURE (9) ... 25
7 FLASH GATE DESIGN (9) .. 27
8 SAMPLE APPLICATION CODE IN MACHINE LANGUAGE ... 31
9 CIRCUIT PLACEMENT BY LIBERO SOC ... 33
10 BIT-COUNT CIRCUIT MANHATTAN PLACEMENT .. 35
11 MATRIX MULTIPLICATION CIRCUIT MANHATTAN PLACEMENT .. 36
12 HELLO WORLD CIRCUIT MANHATTAN PLACEMENT ... 36
13 SET PROPAGATION BOX PLOT SHOWING PULSE WIDTH ELONGATION AT DIFFERENT INPUT PULSE 37
14 SET PROPAGATION OF VARYING WIDTH TO ANALYSE TREND ACROSS DIFFERENT WIDTH .. 38
15 EXAMPLE OF TYPE OF DELAY CIRCUIT INSERTED .. 41
16 MODIFIED CIRCUIT SNIPPET SHOWING DELAY CIRCUIT .. 42
17 BOX PLOT COMPARISON AFTER AND BEFORE INSERTING THE DELAY COMPONENT .. 53
18 CUMULATIVE DISTRIBUTION GRAPH ... 54

Abstract
6

Abstract

In the rapidly evolving field of electronics, Field-Programmable Gate Arrays (FPGAs)

have emerged as a cornerstone technology for a wide range of applications. The

versatility and programmability of FPGAs, combined with the increasing demand for

low-power, high-performance computing, have led to the widespread adoption of

Reduced Instruction Set Computing (RISC) architectures, notably the RISC-V, within

FPGA designs. This open-source architecture offers significant advantages in terms of

customization, scalability, and efficiency. However, the deployment of RISC-V based

FPGAs in radiation-prone environments, such as space, raises substantial reliability

concerns due to the potential effects of radiation-induced errors.

Radiation effects on semiconductor devices can lead to a myriad of operational

challenges, including transient faults, permanent damage, and functional disruptions.

For critical applications, these effects can compromise the integrity of the mission.

Therefore, understanding the susceptibility of RISC-V based FPGA architectures to

radiation is crucial for the development of effective mitigation strategies, ensuring

reliability and functionality in adverse conditions.

This thesis aims to delve into the intricate dynamics of radiation effects on NEORV32

Processor is a customizable microcontroller-like system on chip (SoC) built around the

open-source RISC-V compatible processor system that is written in platform-

independent VHDL. Effects are studies by simulating single even transient, exploring

the mechanisms behind radiation-induced failures and the implications for system

reliability. By conducting a comprehensive analysis of these effects, this work seeks find

ways to mitigate these effects. In summary, as the use of RISC-V based FPGA

architectures continues to expand into new frontiers, the significance of ensuring their

reliability under radiation exposure cannot be overstated.

Introduction
7

Chapter 1

1 Introduction

1.1 RISC-V Overview

RISC-V (pronounced "risk-five") is a free and open ISA enabling a new era of processor

innovation through open standard collaboration. Born at the University of California,

Berkeley, in 2010, RISC-V ISA delivers a new level of free, extensible software and

hardware freedom on architecture, paving the way for the next 50 years of computing

design and innovation. Unlike proprietary ISAs, RISC-V is available under open licenses

that do not require fees to use, making it appealing for various applications, from

embedded systems to massive parallel computing.

1.1.1 Advantages of RISC-V

• Open and Extensible: One of the core tenets of RISC-V is its openness and

extensibility. This means that any organization or individual can design,

manufacture, and sell RISC-V chips and software without the need for royalties

Introduction
8

or licensing fees. This openness fosters innovation and allows for custom

extensions to meet specific needs.

• Simplicity and Efficiency: The RISC (Reduced Instruction Set Computing)

approach emphasizes simplicity and efficiency. RISC-V instructions are

designed to be simple to understand and implement, which can lead to more

efficient processor designs, especially in terms of power consumption and

performance.

• Broad Support and Adoption: RISC-V has garnered widespread support from

both academia and industry. This broad support ensures a rich ecosystem of

tools, libraries, and resources, facilitating the development of RISC-V based

solutions.

1.1.2 RISC-V Appeal for Space Applications

• Customizability for Specific Missions: The open-source nature of RISC-V

allows for the creation of custom ISA extensions tailored to the unique

computational needs of space missions. This could include optimized

instructions for navigation, data processing, or communication, enhancing

efficiency and performance.

• Reduced Power Consumption: Space missions critically need to manage power

consumption due to limited energy resources aboard spacecraft. RISC-V's

efficient instruction set can be optimized further for low-power operations,

making it ideal for such constrained environments.

• Enhanced Reliability and Fault Tolerance: The simplicity of RISC-V facilitates

the design of processors with inherent reliability and fault tolerance, crucial

Introduction
9

for handling the radiation-induced errors common in space. Coupled with

FPGA's reconfigurability, systems can be designed to adapt and respond to

failures, enhancing mission resilience. (1)

1.2 Single Event Transient

A Single Event Transient (SET) refers to a temporary change in the electrical state of

a device due to the passage of a single ionizing particle. When this particle strikes a

semiconductor material, such as those found in circuits and microchips, it can generate

a localized charge along its path. This sudden generation of charge can momentarily

change the state of transistors or other electronic components, leading to transient

pulses in the output signals of the affected circuits. SETs are particularly significant in

space applications due to the high-energy particles found in cosmic rays and solar flares,

which are not shielded by Earth's atmosphere as they are at the surface. (2)

1.2.1 How SETs Affect Circuits in Space

• Transient Faults: Unlike permanent faults, which damage the physical structure

of the device, SETs cause temporary malfunctions. These can result in erroneous

data outputs or unexpected behaviour in digital circuits, potentially leading to

critical errors in spacecraft operations, satellite communications, and other space-

based systems.

• System Disruptions: In complex systems, such as onboard computers and

sensors, a single transient can propagate through the system, leading to cascading

failures or system resets. This is especially problematic in space missions, where

reliability and autonomous operation are paramount.

Introduction
10

• Increased Error Rates: The prevalence of high-energy particles in space means

that circuits are continually exposed to conditions that can cause SETs. This

increases the overall error rate, necessitating robust error detection and correction

mechanisms to ensure data integrity and system reliability.

• Design Challenges: To mitigate the effects of SETs, space-bound electronic

systems must be designed with radiation-hardened components and architectures.

This includes the use of redundant systems, error detection and correction codes,

and specific circuit design techniques to minimize the impact of transients.

However, these measures often result in increased complexity, weight, and cost.

• Operational Considerations: SETs can affect not only the hardware but also the

software running on space systems. Software algorithms may need to include

checks for plausibility and redundancy to handle transient-induced errors

gracefully, ensuring that critical operations can continue even in the presence of

SETs.

The understanding and mitigation of SETs are critical components of designing

electronic systems for space. By considering the potential impact of these transients,

engineers can create more reliable and resilient systems capable of withstanding the

harsh conditions encountered beyond Earth's atmosphere. This is an area of ongoing

research, as the continued miniaturization of electronics and the push for more powerful

computing capabilities in space present new challenges in the management of SETs and

other radiation-induced effects. (2)

Introduction
11

1.3 Circuit-Level Affect Breakdown

A Single Event Transient (SET) affects digital circuits by causing a temporary,

unintended change in the state of the circuit, which can disrupt its normal operation.

This phenomenon occurs when a high-energy particle, such as a neutron or a proton

from cosmic rays or solar flares, strikes a semiconductor material used in the circuit.

Here's a breakdown of how an SET impacts a circuit: (3) (4)

1.3.1 Generation of Charge

• Ionizing Particle Strike: When the high-energy particle collides with the

semiconductor material, it ionizes atoms along its path, generating electron-

hole pairs.

• Charge Collection: The generated charge carriers (electrons and holes) are

collected by nearby junctions, potentially causing a significant, localized

change in voltage.

1 Particle strike path across a NMOS transistor, charge collection happens in
three stages

Introduction
12

1.3.2 Transient Pulse Formation

• Pulse Generation: This localized voltage change can create a transient pulse in

the electronic signal. The transient's amplitude and duration depend on several

factors, including the particle's energy, the semiconductor material's properties,

and the circuit's design.

• Propagation: The transient pulse can propagate through the circuit, affecting

logic states, analog signal levels, or both. (5)

1.3.3 Effects on Circuit Operation

• Logical Errors: In digital circuits, an SET can lead to bit flips (changing a 0

to a 1 or vice versa) in memory elements or logic gates. This can cause errors

in data processing or storage, potentially leading to incorrect outputs or

system behaviour.

2 A particle strike at the drain of the inverter gate creates a burst of current,
changing output voltage value (5)

Introduction
13

• Signal Disturbance: In analog circuits, an SET can temporarily alter signal levels,

potentially leading to misinterpretation of the signals or triggering false

conditions.

• System Disruption: Critical systems, such as those used in aerospace,

automotive, and medical applications, may experience malfunctions, leading to a

failure in performing essential tasks. (5)

3 SET pulse reaches the memory element and its value is stored con- figuring
a SEU (5)

Introduction
14

1.4 Design Level Mitigation Strategies

To counteract the effects of SETs, several mitigation strategies are employed in circuit

design and system architecture:

• Redundancy: Implementing redundancy in critical components or circuits is a

common strategy for mitigating radiation effects. Techniques like Triple Modular

Redundancy (TMR) involve tripling critical logic and then voting on the outputs

to ensure correctness, effectively filtering out transient errors caused by radiation.

• Hardened-by-Design (HBD): This approach involves modifying the physical

layout and electrical properties of integrated circuits to enhance their resistance

to radiation effects. Techniques include increasing the critical charge required for

a bit flip, using guard rings to prevent lateral charge collection, and designing

latches and flip-flops that are inherently more resistant to SETs.

• Time Redundancy: Time redundancy involves performing critical operations

multiple times and comparing the results to identify and correct errors. This can

be effective for mitigating SETs but may not be suitable for time-sensitive

applications due to the increased latency. (4)

Introduction
15

1.4.1 Component-Level Techniques

• Radiation-Hardened Components: Using components specifically designed to

withstand radiation is a straightforward approach to mitigate its effects. These

components are manufactured using specialized materials and processes to

enhance their tolerance to Total Ionizing Dose (TID), Single Event Upsets

(SEUs), and SETs.

• Error Detection and Correction (EDAC): EDAC circuits, such as parity checkers

and Hamming codes, are used to detect and correct errors in data storage and

transmission. While more commonly associated with SEUs in memory, these

techniques can also be adapted to address transient errors in logic circuits.

1.4.2 System-Level Techniques

• System Architecture Adjustments: Adjusting the overall system architecture can

enhance resilience to radiation. This includes designing systems with fail-safe

states, isolation of critical subsystems, and employing non-volatile memory for

essential data storage to prevent corruption.

• Software Mitigation: Software techniques, including watchdog timers, periodic

system resets, and software-based error detection and correction algorithms, can

also mitigate radiation effects. These methods are particularly useful for correcting

transient errors and ensuring system reliability without requiring hardware

modifications.

Introduction
16

• Dynamic Reconfiguration: For systems based on reconfigurable hardware like

FPGAs, dynamic reconfiguration can be used to correct radiation-induced errors.

Faulty logic blocks can be reconfigured or bypassed, allowing the system to

recover from SETs and SEUs without manual intervention

• Environmental Shielding: Although not a direct mitigation technique for the

circuit itself, providing environmental shielding can significantly reduce the

radiation exposure of electronic components. Materials like lead, aluminium, and

hydrogen-rich compounds are commonly used to shield electronics from high-

energy particles. (4)

Technology Background
17

Chapter 2

2 Technology Background

2.1 FPGAs

Field-Programmable Gate Arrays (FPGAs) are a class of semiconductor devices that

offer a unique blend of versatility, performance, and adaptability, distinguishing them

4 FPGA Block (16)

Technology Background
18

from traditional fixed-function integrated circuits. An FPGA consists of an array of

programmable logic blocks, interconnected by programmable routing channels. These

logic blocks can be configured and reconfigured, even after manufacturing, to perform

a wide variety of digital functions. This reconfigurability allows FPGAs to be customized

for specific applications or to be updated post-deployment to enhance functionality or

correct errors.

FPGAs find a prominent place in the pantheon of space electronics due to a confluence

of their intrinsic features and the exigent requirements of space missions. The

formidable environment of space, characterized by extreme temperature variations, high

vacuum, and, most critically, intense radiation levels, presents unique challenges for

electronic systems. These challenges demand solutions that not only withstand these

conditions but also offer flexibility, high performance, and reliability—qualities inherent

to FPGAs. (6)

2.2 FPGA Features

2.2.1 Performance and Efficiency

FPGAs excel in executing parallel processing tasks, a capability that is particularly

beneficial for the data-intensive operations common in space applications, such as image

processing, signal processing, and onboard data analysis. Their architecture enables

them to handle multiple processes simultaneously, dramatically reducing the time

required for data processing and analysis, a critical factor in time-sensitive missions and

when communicating with Earth-based systems.

Technology Background
19

2.2.2 Radiation Tolerance

Space is a hostile environment filled with ionizing radiation from solar flares, cosmic

rays, and the Van Allen belts. This radiation can cause severe damage to electronic

circuits, leading to data corruption, system malfunctions, or even complete failure.

Radiation-hardened FPGAs are specifically designed to resist such effects, incorporating

design features and manufacturing processes that enhance their resilience to single-

event upsets (SEUs), single-event transients (SETs), and total ionizing dose (TID)

effects. These features make FPGAs an indispensable choice for reliable operation in

space environments.

2.2.3 Reduced Size, Weight, and Power (SWaP)

The constraints of launching and operating systems in space necessitate stringent

control over size, weight, and power consumption. FPGAs contribute significantly to

SWaP optimization by integrating the functionalities of multiple discrete components

into a single device. This integration not only reduces the physical footprint and weight

of electronic systems but also enhances power efficiency, a paramount consideration for

satellite and spacecraft designers.

2.2.4 Customization and Application-Specific Optimization

The programmable nature of FPGAs allows for the tailoring of their logic to meet the

precise requirements of specific applications, enabling optimal performance for

particular tasks. This level of customization is particularly advantageous in space

applications, where specific processing algorithms, control logic, and data handling

procedures can be implemented directly on the FPGA, reducing the need for external

components and streamlining system architecture.

Technology Background
20

2.3 Implementing RISC-V on FPGAs for Space

The combination of RISC-V and FPGA technologies for space applications provides a

powerful platform for developing highly adaptable and efficient computing systems.

FPGA’s inherent flexibility allows for on-the-fly reprogramming and adaptation to

changing mission requirements or in response to hardware failures.

• Rapid Prototyping and Testing: Utilizing FPGAs for RISC-V implementation

enables rapid prototyping of spaceborne processors, allowing for extensive

testing and iteration in the development phase. This is critical in ensuring

that the final design meets the stringent reliability and efficiency requirements

of space missions.

• On-Mission Reconfigurability: The dynamic nature of space missions often

necessitates adjustments to computational strategies. FPGAs allow for such

reconfigurability in space, enabling adjustments to RISC-V based processors

for optimized performance throughout the mission lifecycle.

• Radiation Hardening: While FPGAs are inherently susceptible to radiation,

specialized radiation-hardened FPGAs combined with RISC-V's adaptable

architecture can lead to the development of processors that are both resilient

to space conditions and capable of recovery from radiation-induced faults. (7)

Technology Background
21

2.4 FPGA programming

FPGA programming, unlike traditional software development, involves configuring a

Field-Programmable Gate Array (FPGA) to perform specific digital computations. An

FPGA consists of an array of programmable logic blocks and a hierarchy of

reconfigurable interconnects that allow these blocks to be wired together—somewhat

like a blank canvas for digital circuits. Programming an FPGA involves defining how

these blocks and interconnects work together to perform a desired function. This

process transforms the FPGA into a hardware implementation of your specific

requirements, whether it be a custom processor, a digital signal processing algorithm,

or any other digital system.

• Hardware Description Languages (HDLs): FPGA programming is primarily done

using Hardware Description Languages, such as VHDL (VHSIC Hardware

Description Language) and Verilog. These languages allow developers to describe

the hardware functionality and logic at a high level of abstraction.

• Synthesis: The HDL code is synthesized, meaning it is compiled and translated

into a configuration that specifies how the FPGA's logic blocks and interconnects

should be configured. This step essentially converts your design from a high-level

description into a map of logic gates and connections.

• Simulation: Before loading the design onto an FPGA, it is crucial to simulate it

to ensure it behaves as expected. Simulation tools allow developers to test their

designs under various conditions without the need for physical hardware.

• Implementation: This phase involves placing and routing, where the synthesized

design is fitted onto the FPGA's physical layout. The software tools allocate

Technology Background
22

specific logic blocks for the design's components and connect them according to

the design's needs, while optimizing for performance and resource utilization.

• Bitstream Generation: Once the design is implemented, the toolchain generates

a bitstream file. This file contains the binary configuration data that will be loaded

onto the FPGA, physically configuring its logic blocks and interconnections to

realize the design.

• Configuration: Finally, the bitstream is loaded onto the FPGA, configuring it as

per the design. This step is where the FPGA becomes the digital circuit that you

designed. The configuration can be volatile, meaning it needs to be reloaded if

the FPGA loses power, or non-volatile, depending on the FPGA type and the

configuration method used. (6)

Technology Background
23

2.5 NEORV32 RISC-V Processor

The NEORV32 RISC-V Processor presents a comprehensive, open-source system

compatible with the RISC-V architecture, designed for seamless integration as an

auxiliary processor within broader System-on-Chip (SoC) designs, or as a dedicated,

tailor-made microcontroller. This processor system stands out for its extensive

configurability, offering a suite of optional peripherals such as built-in memory modules,

timers, serial communication interfaces, general-purpose input/output (GPIO) ports,

and an external bus interface for the addition of custom Intellectual Property (IP)

elements like memory blocks, Network-on-Chips (NoCs), and various peripherals.

Additionally, it supports both online and in-system debugging through a debugger that

is compatible with OpenOCD/gdb, accessible via a JTAG interface.

A key priority of the NEORV32 system is execution safety, aiming to ensure consistent

and predictable performance under all circumstances. To this end, the CPU is designed

to confirm all memory accesses and to reject any invalid or malformed instructions. In

the event of an unforeseen issue, the system is engineered to notify the application code

through hardware exceptions, maintaining operational integrity.

Technology Background
24

On the software front, the NEORV32 ecosystem is equipped with a robust framework

that includes application-specific makefiles, libraries supporting all CPU and processor

functionalities, a bootloader, a runtime environment, and a variety of example

programs. This suite even features a version of the CoreMark microcontroller

benchmark and the official test suite for RISC-V architecture, ensuring comprehensive

testing capabilities. The default toolchain for software development is the RISC-V GCC,

with prebuilt versions also available, facilitating a wide range of development and

implementation scenarios. The NEORV32 is not based on another RISC-V core. It was

build entirely from ground up (just following the official ISA specs. (8)

5 NEORV32 Architecture (8)

Technology Background
25

2.6 ProASIC3

The ProASIC3 FPGA, developed by Microsemi (now part of Microchip Technology),

represents a significant advancement in FPGA technology, especially suited for

applications demanding high reliability, low power consumption, and stringent security

requirements. In the context of space applications, ProASIC3 FPGAs offer a compelling

choice due to their non-volatile, flash-based technology, which inherently provides better

resistance to radiation effects compared to SRAM-based FPGAs. This makes them

particularly well-suited for the harsh environments of space, where radiation can cause

bit flips and other errors. (9)

6 ProASIC3 Architecture (9)

Technology Background
26

2.6.1 Key Features of ProASIC3 FPGA

• Non-volatile and Instant-on: Unlike SRAM-based FPGAs, ProASIC3 devices

are non-volatile, meaning they retain their configuration even after power is

removed. They also feature instant-on capability, significantly reducing the

initialization time after power-up, which is critical for time-sensitive space

applications.

• Radiation Tolerance: ProASIC3 FPGAs are designed with inherent tolerance

to radiation, making them less susceptible to Single Event Upsets (SEUs) and

other radiation-induced failures. This is crucial for space missions, where

exposure to high levels of cosmic rays and solar radiation is a significant

concern.

• Low Power Consumption: These FPGAs are optimized for low power

operation, which is essential for space missions that often operate on limited

power budgets. Their flash-based technology contributes to lower static power

consumption compared to other FPGA technologies.

• Security Features: ProASIC3 FPGAs come with advanced security features,

including built-in AES encryption and a unique FlashLock technology, which

provides a method to secure the FPGA configuration against unauthorized

access. This is particularly important for missions that handle sensitive data

or require secure communication.

• High Performance and Density: Despite their focus on reliability and low

power, ProASIC3 FPGAs do not compromise on performance. They offer a

range of densities and support high-speed digital signal processing, making

them suitable for complex computational tasks in space applications. (9)

Technology Background
27

2.7 Flash Technology

The superior density, performance, and security features distinguishing ProASIC3/E

Flash-based FPGAs from traditional SRAM-based FPGAs stem from their innovative

Flash-based LVCMOS process that incorporates seven metal layers. Utilizing

conventional CMOS design approaches for logic and control functions, these devices

achieve remarkable efficiency. The blend of fine-grained architecture, improved flexible

routing capabilities, and plentiful Flash switches facilitates unmatched logic utilization

rates, ensuring devices maintain excellent routability and performance. Central to

ProASIC3/E devices is their Flash programming element, which is designed around a

dual-transistor structure.

Flash switches, strategically integrated throughout the device, enable non-volatile and

reconfigurable interconnect programming, setting Flash FPGAs apart from SRAM-

based counterparts, which often struggle with place-and-route efficiency beyond 70%

utilization. Flash FPGA architecture allows for near-total core utilization for a wide

range of designs. Moreover, comprehensive on-device programming circuitry supports

swift (3.3 V) programming through an IEEE1532 JTAG interface, enhancing the

ProASIC3/E devices' convenience and accessibility. (9)

7 Flash Gate Design (9)

Technology Background
28

Contrastingly, SRAM-based FPGAs typically require four to six transistors for each

programming element, leading to a larger die area. Consequently, to be cost-

competitive, SRAM FPGAs need to be manufactured using smaller, more advanced,

and thus more costly and power-intensive process technologies.

Flash technology underpins the ProASIC3/E devices, offering significant benefits over

SRAM-based FPGAs. These include reduced system costs due to the elimination of

external components, the inclusion of user-accessible non-volatile memory, enhanced

security features, lower power requirements, immediate operation upon power-up, and

robustness against firm errors, contributing to their appeal in cost-sensitive and

reliability-critical applications.

2.7.1 Integration with RISC-V

The integration of RISC-V cores into ProASIC3 FPGAs for space applications leverages

the FPGA's reliability and performance features while benefiting from RISC-V's

flexibility and customizability. This combination allows for the development of highly

specialized computing solutions that can be optimized for specific mission requirements,

from enhanced data processing capabilities to improved fault tolerance.

Analysing and Hardening of Implementation
29

Chapter 3

3 Analysing and Hardening of

Implementation

In the initial phase of my thesis research, I embarked on a comprehensive process to

prepare and evaluate a digital circuit designed to withstand the harsh conditions of

space, particularly focusing on the mitigation of radiation effects such as Single Event

Transients (SETs). The foundation of my work involved leveraging the NEORV32 RISC-

V Processor, a versatile, open-source processor system compatible with the RISC-V

architecture, renowned for its adaptability and efficiency in custom and stand-alone

microcontroller applications.

3.1 Preparing the Circuit

The methodology commenced with deriving my circuit from the base Register Transfer

Level (RTL) VHDL files provided by the NEORV32 framework. A pivotal element of

this phase was the development of a succinct test program designed to perform matrix

multiplication. This program was initially composed in C, subsequently compiled into

Analysing and Hardening of Implementation
30

instruction memory data utilizing the RISC-V GCC toolchains for Linux provided by the

NEORV32 suite. This translation from a high-level programming language to machine

language was a critical step, ensuring the program's compatibility with the intended

hardware environment.

Detailed Steps:

• Derivation of Circuit: The base RTL VHDL files from the NEORV32 framework

were used as the starting point. These files define the hardware architecture and

behaviour of the NEORV32 processor.

• Development of Test Program: A test program performing matrix multiplication

was developed in C. This program served as a benchmark to evaluate the

performance and functionality of the NEORV32 processor within the FPGA

environment.

• Compilation to Machine Language: Using the RISC-V GCC toolchains for Linux,

the C program was compiled into machine language, specifically into instruction

memory data compatible with the NEORV32 processor. The RISC-V GCC

toolchains translate the high-level C code into RISC-V assembly language and

then into binary instructions that can be executed by the NEORV32 processor.

• Loading into Instruction Memory: The compiled machine language instructions

were loaded into the instruction memory of the NEORV32 processor within the

FPGA. This step ensured that the test program could be executed by the

processor during the subsequent phases of the methodology.

By meticulously following these steps, the foundation was laid for the subsequent

phases of circuit design, testing, and modification aimed at mitigating the effects

of radiation induced Single Event Transients (SETs). This initial setup was crucial

Analysing and Hardening of Implementation
31

for validating the processor’s functionality and performance under normal operating

conditions. (8)

Following the program compilation, the RTL description was synthesized using the

Libero SoC software, targeting a ProASIC3 FPGA platform. This choice of hardware

was deliberate, selected for its capability to accommodate the demands of the compiled

program, aligning with the specific requirements dictated by the foundational program

structure. A thorough examination of timing and space utilization reports ensued,

providing an analytical basis for subsequent modifications aimed at enhancing radiation

resilience.

8 Sample application code in machine Language

Analysing and Hardening of Implementation
32

9 Compile Options in Libero SOC

10 Compile Report Example of final resource usage

Analysing and Hardening of Implementation
33

9 Circuit Placement by Libero SOC

The next phase involved the exportation of the project's netlist, facilitating the

transition to the physical layout stage. At this juncture, the circuit's layout was

meticulously organized using a variety of parameters to pre-emptively address potential

radiation-induced challenges. A novel approach was employed using a script to calculate

the optimal placement of components based on the average Manhattan distance,

constrained by a predetermined maximum spatial allowance for the circuit. This script

ingeniously allocated all components within a specified average Manhattan distance,

effectively optimizing the layout for radiation resistance. (10)

3.2 Manhattan Circuit Placement Technique

The Manhattan placement technique, often referred to in the context of integrated

circuit design and particularly FPGA layouts, involves arranging circuit components in

a grid-like pattern that resembles the street layout of Manhattan, New York. This

method optimizes the physical placement of components to minimize interconnect

lengths and improve overall circuit performance. (11)

Analysing and Hardening of Implementation
34

3.2.1 Implementation Steps

• Initial Component Placement: Start by placing the most critical components at

strategic locations within the grid. These are typically components with the

highest connectivity or those that are sensitive to delays. Subsequent components

are placed relative to these critical nodes to ensure minimal interconnect distance.

• Heuristic Algorithms: Heuristic algorithms, such as simulated annealing or genetic

algorithms, can be employed to find an optimal placement that minimizes the

Manhattan distance. These algorithms iteratively adjust component positions to

improve the overall placement efficiency.

• Spacing and Alignment: Ensure that components are aligned with grid points,

maintaining uniform spacing to facilitate orthogonal routing. Adjust spacing to

account for component sizes and connectivity requirements, ensuring that there

is sufficient space for routing interconnects without congestion.

• Routing Optimization: Once components are placed, routing algorithms are used

to connect them, following the grid paths to maintain the orthogonal routing

structure. The routing process must ensure that all connections are made without

violating design rules, such as maximum allowed wire length or crosstalk limits.

Analysing and Hardening of Implementation
35

• Performance Evaluation: Evaluate the placement and routing for key performance

metrics, including signal delay, power consumption, and overall circuit area. Use

simulation tools to validate the functionality and performance of the placed and

routed design. (12)

10 Bit-Count Circuit Manhattan Placement

Analysing and Hardening of Implementation
36

11 Matrix Multiplication Circuit Manhattan Placement

12 Hello World Circuit Manhattan Placement

Analysing and Hardening of Implementation
37

3.3 SET Simulation

With the physical design layout (PDD file) established, the focus shifted towards

simulating the impact of radiation on the circuit's integrity. A Python script was

developed for this purpose, ingeniously designed to simulate the effect of radiation by

specifying parameters such as the maximum radiation pulse width (in picoseconds) and

its amplitude. This simulation targeted the sensitive nodes within the circuit, identifying

every connection as a potential vulnerability to SETs. The execution of this script

culminated in a detailed report, elucidating the simulated radiation's impact on the

circuit's operational efficacy. The report highlighted the extent of data transmission

width expansion across sensitive nodes, a metric crucial for evaluating the circuit's

resilience to SETs. (13)

13 Set Propagation Box Plot showing pulse width elongation at different input pulse

Pu
ls

e
Br

oa
de

ni
ng

, p
s

Input SET Pulse, ps

Analysing and Hardening of Implementation
38

This foundational work sets the stage for the exploration of strategies to mitigate the

adverse effects of radiation on the circuit, ensuring its reliability and performance in

environments susceptible to high levels of ionizing radiation. The results derived from

these initial experiments are instrumental in guiding the development of robust,

radiation-hardened digital circuits capable of operating within the demanding conditions

of space and other radiation-rich environments.

14 Set Propagation of Varying Width to analyse trend across different width

Pu
ls

e
Br

oa
de

ni
ng

, p
s

Number of nodes

Analysing and Hardening of Implementation
39

3.4 Mitigation Process

Upon obtaining the diagnostic reports from the previously executed Single Event

Transient (SET) simulation script, our methodology progresses to a meticulous analysis

of each sensitive node within the circuit. This entails evaluating the extent of pulse

broadening induced by the simulated SETs and cataloguing the unique identifiers of

affected nodes. To facilitate this analysis, a specialized script was developed to parse

through the data, extracting the pertinent information regarding the breadth of impact

on each node.

Subsequent to this analytical phase, our approach leverages the Libero SoC software

suite to generate a Verilog netlist of the circuit, specifically the iteration subjected to

SET analysis across varying pulse widths. In response to the insights garnered from the

SET impact reports, another bespoke script was conceived. The core objective of this

script is to amend the circuit design in a manner that effectively mitigates the observed

radiation effects. The proposed modification entails the integration of a delay

mechanism, ingeniously constructed from a series of inverters coupled with an AND

gate. This configuration exploits the inherent gate delays to introduce a corrective

temporal offset when an SET event is detected, thereby averting potential bit flips and

preserving the integrity of the circuit's operation in accordance with the specified

parameters.

Analysing and Hardening of Implementation
40

3.5 Delay Circuit: Inverters and AND Gates

Delay circuits introduce a controlled delay in the signal path, effectively filtering out

transient pulses that are short-lived. The combination of inverters and AND gates can

create such delays (14). Here’s a breakdown of how these components work together

to mitigate SET effects:

Inverters

• Inverting Logic State: An inverter flips the logic state of a signal (e.g., from 0

to 1 or 1 to 0). (14)

• Introducing Delay: Each inverter introduces a small propagation delay due to the

time it takes for the signal to travel through the transistor gate. By chaining

multiple inverters, you can achieve a significant cumulative delay.

AND Gates

• Logic Condition: An AND gate outputs a 1 only if all its inputs are 1; otherwise,

it outputs 0. (14)

• SET Filtering: By using an AND gate in conjunction with delayed signals, you

can effectively filter out transient pulses. The idea is that a transient pulse on

one input will not align with the delayed signals on other inputs, thus preventing

an incorrect output.

Analysing and Hardening of Implementation
41

3.5.1 Implementation Strategy

 Signal Delaying with Inverters:

• Delay Line: Create a delay line using a series of inverters. The number of inverters

determines the total delay introduced to the signal.

• Delayed Signal: The output of the delay line provides a version of the original

signal delayed by a specific amount of time.

 Combining Signals with an AND Gate:

• Original and Delayed Signals: Feed both the original and delayed signals into an

AND gate.

• Pulse Filtering: Since an SET-induced pulse is typically very short, it will not

appear on both the original and delayed signals simultaneously. The AND gate

will output a logic high only when both signals are high, effectively filtering out

the transient pulse.

The implementation strategy involves a precise identification of each component within

the Verilog netlist, followed by the extraction of its input signal. The mitigation circuitry

characterized by a calculated sequence of inverters designed to match the maximum

observed pulse broadening—is then inserted at strategic points within the circuit. This

modification process takes the original signal from each identified component and

15 Example of type of Delay Circuit Inserted

Input

Delayed Input

Analysing and Hardening of Implementation
42

subjects it to a controlled delay, effectively replicating the initial signal with a calculated

temporal displacement. The modified signal is then rerouted to the input of the affected

component, thus providing a robust countermeasure against the disruptive effects of

SETs.

16 Modified Circuit snippet showing delay circuit

However, it is pertinent to note that this mitigation technique is contingent upon the

magnitude of the pulse broadening observed at each node. Given the practical

limitations of introducing delay elements, this strategy is selectively applied to

components exhibiting a maximum delay exceeding a predefined threshold. This ensures

that the corrective measures are both feasible and effective, targeting the most

susceptible components within the circuit while maintaining overall system performance

and reliability. (15)

Experimental Analysis
43

Chapter 4

4 Experimental Analysis

Once the circuit placement and the selective implementation of the mitigation strategies

were completed, as determined from the previously gathered reports, a thorough

analysis of the modified circuit was conducted across various critical parameters.

4.1 Resource Utilization Analysis

The first step involved assessing the additional resource requirements introduced by the

mitigation strategies. This step was crucial to ensure that the FPGA had sufficient

capacity to accommodate the extra hardware components, such as the inverters and

AND gates, integrated for delay-based SET mitigation. The analysis focused on

quantifying the increase in logic elements, interconnect usage, and any other relevant

resources. The goal was to verify that the enhancements did not exceed the FPGA's

resource limits and could be seamlessly integrated into the existing design framework.

4.2 Timing and Power Constraints Verification

Following the resource utilization analysis, the next phase involved verifying that the

modified circuit met the stringent timing and power constraints necessary for its

intended operational environment.

Experimental Analysis
44

4.2.1 Timing Analysis

This included checking setup and hold times, propagation delays, and overall

timing closure to ensure that the circuit performed its functions within the

required temporal parameters. Given the low power and high precision demands

of space applications, it was imperative that the timing analysis confirmed the

circuit’s ability to operate without timing violations despite the introduced delays

for SET mitigation.

Experimental Analysis
45

Upon conducting a comprehensive resource analysis, it was determined that the

incorporation of the delay circuits into the original design resulted in a minimal increase

of approximately 6% in the core components. This modest increment was deemed

acceptable given the substantial benefit of enhancing the circuit's resilience against

Single Event Transients (SETs).

 Original Circuit Modified Circuit

Core Components 4634 4917

COMB Circuit 3992 4275

Frequency 44.226 50.566

Max Delay (ns) (Register

to Register)

22.428 19.348

Max Clock-To-Out (ns) 7.387 3.912

Max delay (Input to

Output)

5.132 3.907

Min Clock-To-Out (ns) 2.178 2.218

Experimental Analysis
46

4.2.2 Negligible Impact on Timing Delay

The strategic insertion of delay circuits at specific, critical points within the circuit

architecture was executed with precision, ensuring that these modifications did not

introduce significant timing delays. As a result, there were no violations of the minimum

timing requirements essential for the circuit's operation. This meticulous placement

ensured that the overall timing integrity of the circuit was maintained.

During the simulation phase, it was observed that the automated optimization processes

inherently adjusted the circuit frequency upwards. This adjustment was seamlessly

integrated into the simulation workflow, confirming that the circuit could handle the

increased frequency without adverse effects on power consumption. This indicates a

well-balanced design where the benefits of added delay elements for SET mitigation are

realized without detracting from the circuit’s overall power efficiency.

4.2.3 Power Analysis:

In evaluating the power consumption of FPGA technologies, it is important to consider

it from a system point of view. Generally, the overall power consumption should be

based on static, dynamic, inrush, and configuration power. Few FPGAs implement ways

to reduce static power consumption utilizing sleep modes.

ProASIC3/E Total Power Consumption = Pstatic + Pdynamic

Experimental Analysis
47

Mode Power Supplies / Clock Status Needed to Start Up

Active On – All, clock Off – None N/A (already active)

Static

(Idle)

On–All

Off – No active clock in FPGA

Optional: Enter User Low Static (Idle) Mode by

enabling ULSICC macro to further reduce power

consumption by powering down FlashROM.

Initiate clock source.

No need to initialize

volatile contents.

Sleep

On – VCCI

Off – VCC (core voltage), VJTAG (JTAG DC

voltage), and VPUMP (programming voltage)

LAPU enables immediate operation when power

returns. Optional: Save state of volatile contents in

external memory.

Need to turn on

core.

Load states from

external memory.

As needed, restore

volatile contents

from external

memory.

Experimental Analysis
48

Shutdown

On – None

Off – All power supplies

Applicable to all ProASIC3E, all ProASIC3 nano, and

the A3P030 and A3P015 devices, cold-sparing and

hot-insertion allow the device to be powered down

without bringing down the system. LAPU enables

immediate operation when power returns.

Need to turn on

VCC, VCCI.

Power consumption was scrutinized to ensure the modifications did not lead to excessive

power usage, which could compromise the low power requirements crucial for

spaceborne and other energy-sensitive applications. This involved both static and

dynamic power analysis to capture the complete power profile of the modified circuit.

Experimental Analysis
49

At 30 Deg Celsius

 Active Sleep Static

Total Power 8.705 0.104 8.220

Static power 8.220 (94.4%) 0.104 8.220

Dynamic Power 0.485 (5.6%) 0 0

At 70 Deg. Celsius (Worst)

 Active Sleep Static

Total Power 44.947 0.235 44.370

Static power 44.370 (98.7%) 0.235 44.370

Dynamic Power 0.577 (1.3%) 0 0

Experimental Analysis
50

At 0 Deg (Typical)

 Active Sleep Static

Total Power 8.156 0.104 7.755

Static power 7.755 (95.1%) 0.104 7.755

Dynamic Power 0.401 (4.9%) 0 0

Breakdown by Type

 Power (mW Percentage

Type Net 0.000 0.0%

Type I/O 0.401 4.9%

Type Core Static 6.555 80.4%

Type Banks Static 1.200 14.7%

Experimental Analysis
51

To offset any minor timing adjustments introduced by the delay circuits, the circuit's

operating frequency was slightly increased. Remarkably, this frequency increment did

not result in an appreciable rise in power consumption. Simulations demonstrated that

the circuit could operate at the enhanced frequency without exceeding the predefined

power budget. This outcome is particularly advantageous, as it signifies that the circuit

can achieve improved performance metrics while simultaneously mitigating SET effects

without compromising power efficiency.

Experimental Analysis
52

4.3 Principal Objective Verification

The final and most critical parameter was to determine the efficacy of the implemented

mitigation strategies in achieving the principal objective of the thesis: reducing the

impact of SETs without overburdening the system.

4.3.1 SET Mitigation Effectiveness

This was evaluated by simulating SETs on the modified circuit and comparing the

results to the baseline circuit without mitigation. The key metrics included the

frequency and severity of bit flips and other transient faults. The analysis aimed to

confirm that the mitigation measures successfully reduced the occurrence and impact

of SETs on sensitive nodes.

The highest value of 550 picoseconds for the Single Event Transient (SET) impact

width was selected for this study, as it necessitated the insertion of the greatest number

of delay circuits. Delay circuits were strategically implemented at points where the SET

radiation impact exceeded the minimum inverter delay threshold, resulting in the

integration of delay circuits at 170 critical locations within the circuit.

Experimental Analysis
53

4.3.2 Analysis of Delay Circuit Effectiveness: Box Plot

Comparison

The attached graph illustrates the comparative impact of SET radiation on the circuit

before and after the insertion of delay circuits. Notably, the nodes experiencing delays

above the minimum inverter delay threshold of 4200 picoseconds were effectively

mitigated in the modified circuit.

Before Delay Circuit Implementation:

Significant impact of SET radiation was observed at several nodes, with delay values

often exceeding the threshold, indicating susceptibility to transient radiation effects.

17 Box Plot Comparison after and before inserting the delay component

Pu
ls

e
Br

oa
de

ni
ng

, p
s

Experimental Analysis
54

The distribution before delay circuit insertion shows a higher median delay and a wider

interquartile range, demonstrating greater variability and susceptibility to SETs.

After Delay Circuit Implementation:

The impact of transient radiation at several critical nodes was substantially reduced.

The delay circuits successfully filtered out transient pulses, thereby enhancing the

circuit's robustness against SETs. The distribution of delays after implementing delay

circuits shows a lower median value and a tighter interquartile range compared to the

non-delayed circuit. The median delay is significantly reduced, indicating a successful

mitigation of SET effects.

 The whiskers for the delayed circuit are shorter than those for the non-delayed circuit,

suggesting that the range of delays experienced by the delayed circuit is more

constrained and controlled.

18 Cumulative Distribution Graph

Pu
ls

e
Br

oa
de

ni
ng

, p
s

Number of nodes

Experimental Analysis
55

The provided graph depicts the cumulative distribution of SET-induced delays in the

circuit, comparing scenarios before and after the insertion of delay circuits. The x-axis

represents the different nodes in the circuit, while the y-axis shows the delay in

picoseconds. The blue line indicates the delayed circuit (after delay circuit insertion),

and the orange line represents the non-delayed circuit (before delay circuit insertion).

4.3.3 Key Observations

• Overall Trend

Both lines exhibit a similar trend initially, with minimal differences in

delays up to approximately 300 nodes. This indicates that, for a

significant portion of the circuit, the impact of SETs is either low or well-

managed in both scenarios.

• Divergence Point

The lines start to diverge noticeably after the 300-node mark. This

divergence indicates the point where the impact of SETs begins to differ

significantly between the delayed and non-delayed circuits.

• Delayed Circuit Performance

o The blue line (delayed circuit) shows a generally smoother and more

gradual increase in delays, suggesting a more consistent handling of SETs

across the nodes.

o The presence of the delay circuits effectively mitigates the impact of

SETs, leading to fewer instances of extreme delay spikes.

• Non-Delayed Circuit Performance

56

o The orange line (non-delayed circuit) shows a sharper increase in delays

beyond the 300-node mark, indicating higher susceptibility to SET-

induced delays.

o This sharper increase is indicative of more frequent and severe SET

impacts in the absence of delay circuits.

• Peak Delays

o At the upper end of the graph, the delayed circuit (blue line)

demonstrates a plateau, suggesting that the maximum delay introduced

by SETs is capped at a lower level compared to the non-delayed circuit.

o The non-delayed circuit (orange line) shows more variability and higher

peak delays, reflecting greater vulnerability to SETs.

Conclusion
57

Chapter 5

5 Conclusion

This thesis aimed to address the critical challenge of mitigating the impact of Single

Event Transients (SETs) on digital circuits, particularly within the context of space

applications where radiation-induced errors can significantly compromise system

reliability. The approach involved integrating delay circuits strategically within the

circuit design to counteract the effects of transient pulses caused by high-energy

particles.

5.1 Key Findings and Contributions

5.1.1 Implementation of Delay Circuits

 The study began by deriving the circuit from the base RTL VHDL files of the

NEORV32 framework and developing a matrix multiplication test program in C,

compiled into instruction memory data using the RISC-V GCC Toolchains for Linux.

Conclusion
58

 Delay circuits, comprising inverters and AND gates, were inserted at specific

points where the SET impact was significant, as determined from detailed analysis

reports.

5.1.2 Resource Utilization and Performance

 The resource analysis revealed that the inclusion of delay circuits resulted in a

minimal 6% increase in core components, which was within acceptable limits given the

substantial benefits in SET mitigation.

 Timing analysis confirmed that the delay circuits did not introduce significant

timing delays, nor did they violate minimum timing requirements. The slight increase

in operating frequency, automatically adjusted during simulation, did not lead to

additional power consumption.

5.1.3 Effectiveness of SET Mitigation

 The implementation of delay circuits effectively reduced the impact of transient

radiation on critical nodes. The comparative analysis of the cumulative distribution

graph and the box plot demonstrated a significant reduction in both the median delay

and the number of severe outliers after the delay circuits were introduced.

 These findings validated that the delay circuits provided a robust defence against

SETs, resulting in a more stable and predictable circuit performance.

Future Work
59

6 Future Work

The successful mitigation of SETs using delay circuits has significant implications for

the design of radiation-hardened electronic systems, particularly in space applications.

This methodology provides a practical and efficient approach to enhancing circuit

reliability in radiation-prone environments.

In this research, we focused on testing the reliability and hardening of the entire circuit.

However, in real-world applications, each process and application is unique, utilizing

different components and configurations. Depending on the specific use case, future

work could target different parts of the system selectively. Some components might be

critical to the mission's success, while others may be less significant. By identifying and

prioritizing critical components for targeted hardening, we can optimize resource usage

and enhance overall system reliability more efficiently. This approach will allow for

tailored mitigation strategies that address the specific needs of different applications

and operational environments.

Future work could explore the following areas:

• Optimization Techniques: Further optimization of the delay circuit design to

minimize resource usage and enhance performance.

• Advanced Mitigation Strategies: Combining delay circuits with other

mitigation strategies, such as redundancy and error correction codes, to

further improve reliability.

• Field Testing: Conducting field tests in actual radiation environments to

validate the effectiveness of the delay circuits in real-world scenarios.

Bibliography
60

7 Bibliography

1. The Case for RISC-V in Space. Mascio, Stefano Di. 2019, Applications in

Electronics Pervading Industry, Environment and Society.

2. Petersen, . Single-Event Effects in Aerospace. [book auth.] Edward Petersen. s.l. :

John Wiley & Sons, 2011, pp. 13-102.

3. Fleetwood, and Schrimpf, . Radiation Effects and Soft Errors in Integrated

Circuits and Electronic Devices. s.l. : World Scientific Publishing, 2004.

4. Baumann, R. C. Radiation-induced soft errors in advanced semiconductor

technologies. Transactions on Device and Materials Reliability. s.l. : IEEE, 2005.

Vol. 5, pp. 305-316. https://ieeexplore.ieee.org/abstract/document/1545891.

5. Single Event Transient on Combinational Logic: An Introduction and their

Mitigation. Henrique, , et al. 3, s.l. : Journal of Integrated Circuits and Systems,

2022, Journal of Integrated Circuits and Systems, Vol. 17.

6. Advanced FPGA Design: Architecture, Implementation, and Optimization. [book

auth.] S. Kilts. Advanced FPGA Design: Architecture, Implementation, and

Optimization. s.l. : John Wiley & Sons, 2007.

7. Wirthlin, . High-Reliability FPGA-Based Systems: Space, High-Energy Physics,

and Beyond. Proceedings of the IEEE. s.l. : IEEE, 2015. Vol. 103.

8. NEORV32. NEORV32 Project Documentation. [Online]

https://stnolting.github.io/neorv32/.

Bibliography
61

9. Actel. ProASIC3/E Production FPGAs. [Online]

https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/Produ

ctDocuments/SupportingCollateral/pa3_e_tech_wp.pdf.

10. Microchip. Libero SOC User Guide. [Online]

https://ww1.microchip.com/downloads/aemdocuments/documents/fpga/Product

Documents/UserGuides/libero_v116_ug.pdf.

11. Brown, Stephen Dean. Routing Algorithms and Architectures for Field-

Programmable Gate Arrays. 1992.

12. Sarrafzadeh, and & Wong, C. K. An Introduction to VLSI Physical Design.

s.l. : McGraw-Hill, 1996.

13. Analysis of SET Propagation in Flash-Based FPGAs by Means of Electrical

Pulse Injection. L., , N., and V., . 2010 : IEEE Transactions on Nuclear Science,

Vol. 54, pp. 1820-1830.

14. Microsemi. Using the BUFD and INVD Delay Macros. [Online]

https://www.microsemi.com/document-portal/doc_view/129887-ac147-using-

the-bufd-and-invd-delay-macros.

15. Weste, N. H. E. and Harris, . CMOS VLSI Design: A Circuits and Systems

Perspective. 2010.

16. Punia, . [Online] 2023. https://www.logic-fruit.com/blog/fpga/fpga-design-

architecture-and-applications/.

17. Waterman, . The RISC-V Instruction Set Manual, Volume 1. [Online] May 2014.

http://www2.eecs.berkeley.edu/Pubs/ TechRpts/2014/EECS-2014-54.html.

Bibliography
62

18. A Technique to Reduce Glitch Power during Physical Design Stage for Low

Power and Less IR Drop. Murti sarma, Nimushakavi Satyanarayana.P, Vasantha.

s.l. : International Journal of Computer Applications, 2012.

Appendix
63

8 Appendix

8.1 Extraction and Inserting Delay Circuit

First Step- It extracts where to insert the delay circuit by checking if propagation value

is greater than minimum delay of circuit to be inserted.

Second Step- Finding corresponding component in Verilog circuit netlist and modify it

to insert the desired circuit to mitigate the effect.

import csv
import re
Replace 'path_to_your_file.txt' with the path to your SET report file
file_path = '/Users/adi/untitled folder 2/SET_report_552ps.txt'
Specify the path to your folder containing Verilog Netlist file
folder_path = '/Users/adi/ts/neorv32_top_original.v' # Update with your file
path

def extract_pdd_and_pulse(file_path):
 pdd_pulse_data = []

 with open(file_path, mode='r') as file:
 reader = csv.reader(file, delimiter=';')
 for row in reader:
 if len(row) > 1: # Ensure the row has multiple elements
 pdd_name = row[0].strip()
 if pdd_name.startswith("neo"):
 max_pulse = row[-3].strip() # Assuming the last value is
the max pulse width
 pdd_pulse_data.append((pdd_name, max_pulse))

 return pdd_pulse_data

def extract_signal_pdd(pdd_name):
 # Find the last occurrence of '/'
 last_inst_index = pdd_name.rfind('_inst')

Appendix
64

 return pdd_name[last_inst_index+6:]

def generate_inverter_chain_with_and(input_signal, num_inverters,
final_output_signal):
 verilog_code = ""
 previous_signal = input_signal

 # Generate the chain of inverters
 for i in range(num_inverters):
 current_signal = f"\intermediate_{i}_{final_output_signal}"
 verilog_code += f"INVD \inverter_{final_output_signal}_{i}
(.A({previous_signal}), .Y({current_signal}));\n"
 previous_signal = current_signal

 # Add an AND gate that takes the output of the last inverter and the
original input signal
 verilog_code += f"AND2 \\and_{final_output_signal}_gate (.A({input_signal}
), .B({previous_signal}), .Y(\{'Delayed_'+ final_output_signal}));\n"

 return verilog_code

def generate_inverter_chain_with_and2(input_signal, num_inverters): # Signal
declarations list
 signal_declarations = []

 # Generate the declarations of the inverters
 for i in range(num_inverters):
 current_signal2 = f"intermediate_{i}_{input_signal}"
 signal_declarations.append(current_signal2)
 signal_declarations.append(input_signal)
 wire_declarations = " ,\\".join(signal_declarations)
 wire_declaration_code = f" \{wire_declarations} ,"
 return wire_declaration_code

def parse_vhdl_entity_names(folder_path,signal,max_pulse):
 entities = set()
 with open(folder_path, 'r') as file:
 content = file.read() # Read the whole file into a single string
 if signal != None:
 escaped_signal = re.escape(signal)
 flexible_pattern = r'\\' +re.sub(r'_', r'[._]', escaped_signal) +
r' ' # Putting both _ as . for search pattern
 pattern = re.compile(flexible_pattern)

 match = pattern.search(content)
 # Find first occurance
 if match:

 find_output_insert = content.rfind(';\n',0, match.start())+1

Appendix
65

 find_output_signal_index = content.find('), .',
match.start(),match.start()+40)
 if find_output_signal_index != -1:
 find_output_signal_index_start=
content.rfind('(',find_output_signal_index-25,find_output_signal_index)
 insertion_index1 = content.rfind('wire',0,match.start())+5 #
Index to find where to declare

 if find_output_signal_index_start !=-1:

 signal_name_chain =
content[find_output_signal_index_start+1:find_output_signal_index]
 signal_name_chain2= signal_name_chain.replace("\\", "") #
Removing spaces and tabs
 signal_name_chain2= signal_name_chain2.replace("\t", "")
 signal_name_chain2= signal_name_chain2.replace("\n", "")
 signal_name_chain2= signal_name_chain2.replace(" ", "")
 signal_name_chain2= signal_name_chain2.replace("\n", "")
 if signal_name_chain2:

 delay_ps = float(max_pulse)
 num_inverters = round(delay_ps/4200)*2 # Adding filter for
minimum gate date
 if num_inverters != 0:
 #print(delay_ps)
 #print(num_inverters)
 verilog_code =
generate_inverter_chain_with_and(signal_name_chain ,
num_inverters,signal_name_chain2) # Generate Code of chain
 verilog_codeS =
generate_inverter_chain_with_and2('Delayed_'+ signal_name_chain2 ,
num_inverters, signal_name_chain) # Generate Signal Declarations

 updated_content = content[:insertion_index1] +
verilog_codeS +"\n" +content[insertion_index1:find_output_insert+1] + "\n"+
verilog_code +
"\n"+content[find_output_insert+1:find_output_signal_index_start+1]
+'\Delayed_' + signal_name_chain2 + ' ' + content[find_output_signal_index:]

 with open(folder_path, 'w') as file:
 file.write(updated_content)
 return entities

def perform_analysis(signal,max_pulse):
 entity_names = parse_vhdl_entity_names(folder_path,signal,max_pulse)
 return -1

signals=[]
data = extract_pdd_and_pulse(file_path)

Appendix
66

Assuming 'data' is the list of tuples with PDD names and max pulses extracted
from the file
for pdd_name, max_pulse in data:
 #last_part = extract_last_part_of_pdd(pdd_name) To find which component
signal belong to
 signal= extract_signal_pdd(pdd_name)
 perform_analysis(signal,max_pulse)

 #signals.append((signal, max_pulse))
For parallelezing the code
#Parallel(n_jobs=1,prefer="threads")(delayed(perform_analysis)(signal,max_pulse
)for signal,max_pulse in unique_signals_list)

