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Abstract

As a relevant concept in Physics, the role played by entanglement in quan-
tum information processing is paramount, as it is the main resource enabling
considerable technological achievements, such as quantum communication,
quantum cryptography, quantum computational speed-up and so on. Math-
ematically, Quantum entanglement is the most unbelievable non-classical
property of compound states that cannot be decomposed as a statistical mix-
tures of product states over subsystems, and it has a very complex structure,
encasing many features described by just as much entanglement measures.
Among all of them, the Quantum Conditional Mutual Information
is a particularly interesting one and represents the object this thesis is de-
voted to. The exact quantification of many information measures is tipycally
a daunting problem because it would involve a huge amount of computa-
tional resources that outstrip the capability on any existing computer : since
the eigenvalues and relevant entropies of a density matrix operator and its
subsystems are expected to be known, this task becomes quickly compu-
tationally demanding for large enough systems, setting itself as seemingly
unsolvable. For this reason, it behooves us to understand how we can keep
using them while endeavoring to devise some meaningful approximations.
The upshot is that we try to handle with the aforementioned quantity in
terms of lower and upper bounds, which can be obtained analytically in
a simple yet effective way. This purpose can be generalized to other im-
portant information measures and foreshadows a topic of great concern in
Quantum Information, i.e. the possibility to deal with operationally useful
entanglement measures without spectrum reconstruction. In particular, we
emphasize how our lower bound is tighter than the Carlen and Lieb’s one, a
well - known scientific result establishing a sharper refinement on the strong
subadditivity inequality of the Von Neumann Entropy. Moreover, we run
simulations over a suitable quantum state whose outcomes ostensibly val-
idate our proposal. However, hitting the bullseye comes up after drawing
a parallel between the classical and quantum worlds concerning some pre-
liminary notions of Information Theory, to which we will dedicate the first
and second chapter of this thesis, respectively. We will then proceed to the
analytical derivation of the bounds and subsequently apply them to a mixed
state in order to check their actual correctness.
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Introduction

Among all the fundamental aspects of Quantum Mechanics, viz. Inde-
terminism, Interference, Uncertainty, Superposition and Entan-
glement, the latter is not only the most intriguing phenomenon, being
inherently quantum and having no classical counterpart, but also the most
involved in the definition of some physical quantities we will take into ac-
count in the present discussion.

Strictly speaking, entanglement arises in some composite quantum systems
and refers to the property of their particles to exhibit quantum correlations
stronger than any classical ones. Despite its seemingly strange features
caused many scientists to be wary of a common misconception about the
comprehension of the world, leading them to doubt whether reality and local-
ity principles are consistent or not, Entanglement is a foundational concept
that turned out to be very useful in quantum computation and quantum
information.
Indeed, it has been widely recognized that quantum computers harnessing
entanglement can outperform classical ones in solving problems efficiently.
Moreover, it spawned a large area of research in Quantum Information: in
the framework of Quantum Information science, many quantum protocols
have been developed, e.g Quantum teleportation, that exploit the combi-
nation of entanglement and classical communication for the transmission
of quantum information, or Super dense coding, merging entanglement and
noiseless qubit channels for allowing the transmission of more classical in-
formation than would be possible with a noiseless qubit channel alone; both
tasks are thus amazing applications of Quantum physics to the realm of
Information theory which are far beyond the possibility of any classical im-
plementation.

Driven by the desire to achieve a deeper comprehension of these mecha-
nisms and a plethora of other ones we do not have time to mention, albeit
they are a firm underpinning for Quantum Physics, this goal of this the-
sis is to quantify entanglement by taking into account relevant correlation
measures that can be expressed in terms of the Von Neumann Entropy. Ex-
ploiting some well known results establishing lower and upper bounds for
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quantum entropy, our aim is to devise a methodological procedure for get-
ting the same kind of bounds for an important informational measure, i.e.
the Quantum Conditional Mutual Information (often referred to as
QCMI). We confirm our intuition trying to obtain further refinements of
the same results, in order to improve our computational accuracy and trying
to achieve better analytical outcomes.
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Chapter 1

Classical Information
Theory: A Mixed Appetizer

You cannot evade
quantity. You may
fly to poetry and
music, and quantity
and numbers will face
you in your rhytms
and your octaves
Alfred
North Whitehead

This chapter presents a simple introduction to
Classical Information Theory, outlining theoretical notions
and some useful concepts that provide the necessary background
for a deeper level of understanding of the subsequent sections.
Indeed, the development of Quantum Information Theory,
whom we will refer in the next chapter, has been hastened by the
combination of the features of Quantum mechanics and the aforementioned
key concepts. Neither mathematical rigor is a matter of concern nor we
cover all aspects of this field: the purpose is solely to provide a systematic
and not overly heavy guide for developing the essential toolkit, thus acting
as a stepping stone for further investigation.

1.1 The Shannon Entropy

Classical Information Theory hinges on the concept of Shannon entropy.
Given a random variable X, it quantifies how much information we gain on
average when we learn its value. It is worth mentioning that there is a sub-
stantial difference between the meanings given to the same term, as dictated
by the common sense and as set in the present discussion.
Here, the term ”information” refers to our prior ”ignorance” or ”uncertainty”
about X before learning it. Taken for granted these two complementary
views, one can thus employ the words ”uncertainty” and ”information” in-
terchangeably. The Shannon entropy associated with the probability distri-
bution

{p1, p2, . . . , pk}
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Figure 1.1: The Shannon binary entropy H(p)

is defined by

H
!
p1, p2, . . . , pk

"
≡ −

kØ
i=1

pi log pi

where the logarithm is written in base 2. A clarification of the insightful
discussion concerning the meaning of information in this framework is be-
stowed by the following special case in which k = 2. Upon defining
p1 = p and p2 = 1 − p (0 ≤ p ≤ 1

"
, the Shannon binary entropy can be

readily written as

H(p) ≡ H(p1, p2) = −p log p− (1 − p) log (1 − p)

A simple plot of H versus p shows that the entropy vanishes for both p = 0
and p = 1, whereas it attains its maximum value H = 1 when p = 1/2 (look
at the figure 1.1): this confirms what we stated above: the Shannon entropy
is a measure of our uncertainty. If we know we shall receive letter a1 for sure
(and therefore p = 1), then there would not be any information gain when
receiving that letter; the same argument holds when letter a2 will be given
with certainty (p = 0). However, when both letters are equiprobable (p =
1/2) we would gain the maximum information, namely a bit of information
(H(1/2) = 1) because our a priori ignorance is maximum.

Suppose X is a random variable that takes the value x from the alphabet
{a1, a2, . . . , ak}with probability p(x) ∈ {p1, p2, . . . , pk}.

Then the Shannon entropy H(p1, p2, pk) is also denoted as H(X) and we
can write

H(X) = −
Ø
x

p(x) log(p(x)) = −
kØ
i=1

pi log pi

Now we can proceed in further definitions of remarkable information
quantities.
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1.2 Joint Entropy
The Joint Entropy endows a generalization of the idea of uncertainty con-
cerning two discrete random variables X and Y taking values x and y with
probabilities p(x) and p(y), respectively. We can define the entropy of the
joint random variable (X,Y) :

Definition (Joint Entropy). Let X and Y be discrete random variables with
joint probability distribution p(x, y). The joint entropy H(X,Y) is defined
as

H(X,Y ) ≡ −
Ø
x,y

p(x, y) log p(x, y)

where p(x, y) is the probability that X = x and Y = y.

1.3 Conditional Entropy
Suppose X and Y are two discrete random variables sharing correlation be-
cause they are not statistically independent. Then the Conditional Entropy
H(X | Y ) describes the amount of uncertainty one has about X given the
value of Y. It can be shown that its expression is the following :

H(X | Y ) = −
Ø
x,y

p(x, y) log p(x | y)

where p(x | y) = p(x, y)/p(y) is the probability that Y = y provided X = x.
Indeed,

H(X | Y ) = H(X,Y ) −H(Y )
= −

Ø
x,y

p(x, y) log p(x, y) +
Ø
y

p(y) log p(y)

= −
Ø
x,y

p(x, y) log(p(y) p(x | y)) +
Ø
x,y

p(x, y) log p(y)

= −
Ø
x,y

p(x, y) log p(x | y)

(1.1)

where we exploited the marginalization over variable Y,Ø
x

p(x, y) = p(y),

and we gave the first line of equation 1.1 this simple meaning: given the
value of Y, H(Y) counts the number of bits of information about the pair
(X,Y); the residual ignorance about (X,Y) is associated with the residual
lack of knowledge about X, when the knowledge of Y is provided. Rather
conceivably, the conditional entropy H(X | Y ) should be less than or equal
to the entropy H(X): we expect this to happen, since having access to a side
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Figure 1.2: (a) The entropy H(X) is the uncertainty that Bob has about
random variable X before learning it. (b) The conditional entropy H(X | Y )
is the uncertainty that Bob has about X when he already possesses Y.

variable Y should only decrease the uncertainty about another variable X
it is related with. This compelling intuition is expressed in the following
statement :

Theorem (Conditioning does not increase entropy). The entropy H(X) is
greater than or equal to the conditional entropy H(X | Y ), and the inequality
is saturated if and only if X and Y are independent random variables:

H(X) ≥ H(X | Y )

1.4 Mutual Information
A third relevant quantity is the Mutual Information content of random vari-
ables X and Y:

Definition (Mutual Information). Let X and Y be discrete random vari-
ables with joint probability distribution p(x, y). The mutual information
I(X : Y ) is given by:

I(X : Y ) ≡ H(X) +H(Y ) −H(X,Y )
= H(X) −H(X | Y )

(1.2)

It quantifies the amount of common information shared by X and Y.
This can be devised by the the upper line of the above definition given to
I(X : Y ): when we add H(X), that is the information content of X to the
information content of Y, H(Y), overlapping information will be counted
twice, while information which is not common will be merely counted once.
Therefore, subtracting off the joint information of (X,Y), H(X,Y ), one has
the mutual (or common) information of X and Y. Although it is just a
consequence of the first line, the second expression has another nice inter-
pretation: knowledge of Y implies an uncertainty H(X|Y ) about variable
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Figure 1.3: Relationships between different entropies

X or, equivalently, accessing to Y supplies an information gain of H(X|Y )
bits about X, hence it reduces the entire uncertainty H(X) about X, the one
we do not have any side information on. An alternative expression of the
mutual information I(X : Y ) is provided below in terms of marginal and
joint probability density functions p(x), p(y) and p(x, y):

I(X,Y ) =
Ø
x,y

p(x, y)log( p(x, y)
p(x)p(y))

Here the logarithm is vanishing whenever p(x, y) = p(x)p(y) and since this
condition occurs for statistically independent random variables, in this cir-
cumstance the random variables X and Y possess zero bits of mutual infor-
mation. In other words, the knowledge of X does not provide any informa-
tion about Y when the two random variables are statistically independent.

1.5 Conditional Mutual Information
The last classical entropic quantity we present in this section is the Con-
ditional Mutual Information, which quantifies the common information be-
tween two random variables X and Y when we already have some side in-
formation provided by another random variable Z.

Definition (Conditional Mutual Information). Let X,Y and Z be discrete
random variables. The conditional mutual information is defined as follows:

I(X;Y | Z) = H(Y | Z) −H(Y | X,Z)
= H(X | Z) −H(X | Y,Z)
= H(X | Z) +H(Y | Z) −H(X,Y | Z)

(1.3)

Let us now consider the following statement. We shall later refer to it
in order to shed some light on the departure of quantum information theory
from the classical one:
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Theorem (Strong Subadditivity). The conditional mutual information
I(X;Y | Z) is non-negative:

I(X;Y | Z) ≥ 0,

and the inequality is saturated if and only if X - Z - Y is a Markov Chain
(i.e.,if p(x, y | z) = p(x | z)p(y | z)).

Proof. The proof follows straightforwardly from the non-negativity of the
mutual information. Consider the following equality:

I(X;Y | Z) =
Ø
z

p(z)I(X;Y | Z = z)

where I(X;Y | Z) is a mutual information with respect to the joint density
(x, y | z) and the marginal densities p(x | z) and p(y | z). Combining
non-negativity of both p(z) and I(X;Y | Z = z) we easily obtain the non-
negativity of I(X;Y | Z), with the saturation condition fulfilled in the
presence of saturation of I(X;Y | Z = z)(considering that the conditional
mutual information is a convex combination of mutual information).
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Chapter 2

Classical vs Quantum
Information Theory

You have nothing to
do but mention the
quantum theory, and
people will take your
voice for the voice of
science, and believe
anything
George Bernard Shaw

Shannon’s contribution to classical information theory is heralded as
one of the single greatest achievements in modern science, albeit it is not
sufficient for the purpose we are chasing, because it is now necessary to
delve into the convergence of information theory and quantum theory. In
principle, this task is seemingly overwhelming, since it is very difficult to
understand the quantum theory intuitively and the phenomena it predicts
are not amenable to daily experience. Nevertheless, we shall limit ourselves
to rephrase many previous concepts, enlightening their differences and com-
mon traits within the quantum scenario with respect to the classical one.
Driven by this motivation, we take into account some useful information
measures for quantifying the amount of information within composite quan-
tum systems and their correlations.

2.1 The Von Neumann Entropy
We pointed out that Shannon entropy refers to the uncertainty associated
with a classical probability distribution. In a similar fashion, we can en-
dow the Von Neumann entropy of the same meaning, with the caveat that
quantum states are described by density operators rather than probability
distributions. Since density operators settle the probabilities for the mea-
surement outcomes of any system and capture the notion of uncertainty
arising from the uncertainty principle, it is reasonable to express the quan-
tum measure of uncertainty as a function of density matrices. Therefore, it is
customary to represent the Von Neumann entropy associated to a quantum
system described by its own density matrix as follows:

S(ρ) = −Tr(ρ log ρ)
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As classical entropy gives a precise meaning to the notion of information
bit, the quantum entropy assigns a meaning to the information qubit.
The latter is a rather peculiar concept and despite it seems similar to that
of physical qubit, it is instead quite different: while the physical qubit de-
scribes a two-level quantum state belonging to any quantum object (such
as a photon or an electron), the information qubit reveals the amount of
information which is present in a quantum system. However, classical and
quantum measures of uncertainty are not always far one away from the
other. It turns out that the former is a special case of the latter. Consider
the following example.

Source of Orthogonal pure states
Let us suppose to deal with two orthogonal pure states for a qubit, namely
|0⟩ and |1⟩, providing a basis for the single qubit Hilbert space. Assuming
that the states |0⟩ or |1⟩ occur with probabilities p0 = p and p1 = 1 − p, and
given their relevant density matrices ρ0 = |0⟩⟨0| and ρ1 = |1⟩⟨1|, we can write

ρ = p0 |0⟩⟨0| + p1 |1⟩⟨1| =
C
p0 0
0 p1

D
Hence, the Von Neumann entropy is readily computed :

S(ρ) = −Tr(ρ log ρ)

= −Tr
3C
p0 0
0 p1

D C
log p0 0

0 log p1

D4
= −p0 log p0 − p1 log p1 = H(p0, p1)

(2.1)

This example showed that in the simplest case of orthogonal pure quantum
states, the situation is classical, from the perspective of information theory
(it is reasonable since orthogonal pure states are maximally distinguishable);
thus, in this case the Von Neumann entropy is the Shannon entropy in
disguise. As final remark of this section, we mention these two important
properties for quantum entropy, some of them being useful for the rest of
the discussion:

• The entropy is non-negative. It is zero if and only if the state is pure;

• Suppose a composite system AB is in a pure state. Then S(A) = S(B);

• The Von Neumann entropy is invariant under unitary temporal evo-
lution. Indeed, S(ρ) depends only on the eigenvalues of ρ, which are
basis-independent.Therefore, S(UρU †) = S(ρ);
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By analogy with the classical case, it is possible to define quantum joint
and conditional entropies and quantum mutual information for many-body
quantum systems.

2.2 Joint Quantum Entropy

Given the density operator associated to a bipartite system AB, i.e. ρAB ∈
D{HA ⊗ HB}, the Joint quantum entropy is defined as

S(AB) = −Tr{ρAB log ρAB}.

If ρABC is a tripartite system, i.e. ρABC ∈ D{HA ⊗ HB ⊗ HC}, the entropy
S(AB) is defined in the same manner, with ρAB = TrC{ρABC}. The Joint
quantum entropy allows us to point out the first critical departure of quan-
tum theory from the classical world. Recall that the following inequalities
for classical entropy

H(X,Y ) ≥ H(X), H(X,Y ) ≥ H(Y )

hold rather intuitively because they state that we have more uncertainty
about the joint state of X and Y than that of X alone. A major stumbling
block which prevents the quantum theory from being understood via com-
mon sense is represented by the fact that this intuition fails for quantum
states. Let us consider a purely entangled bipartite system AB, whose state
is described by an EPR pair:

|β00⟩ =
!
|00⟩ + |11⟩

"
/

√
2

This is a pure state, hence S(A,B) = 0 by a previous property. However,
the marginal state on subsystem A is the maximally mixed state, because
its density operator is I

2 , thus its entropy in unitary. Indeed, the above Bell
state has density operator

ρ =
3 |00⟩ + |11⟩√

2

43⟨00| + ⟨11|√
2

4
= |00⟩ ⟨00| + |11⟩ ⟨00| + |00⟩ ⟨11| + |11⟩ ⟨11|

2

(2.2)
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After tracing out the second qubit we easily find the reduced density operator
of the first qubit:

ρ1 = tr2 (ρ)

=
tr2
!
|00⟩ ⟨00|

"
+ tr2

!
|11⟩ ⟨00|

"
+ tr2

!
|00⟩ ⟨11|

"
+ tr2

!
|11⟩ ⟨11|

"
2

= |0⟩ ⟨0| ⟨0|0⟩ + |1⟩ ⟨0| ⟨0|1⟩ + |0⟩ ⟨1| ⟨1|0⟩ + |1⟩ ⟨1| ⟨1|1⟩
2

= |0⟩ ⟨0| + |1⟩ ⟨1|
2

= I

2 .

(2.3)

2.3 Conditional Quantum Entropy
The most natural definition of Conditional quantum entropy and also the
most useful one in quantum information theory is the following simple one.

Definition (Conditional Quantum Entropy). Let ρAB ∈ D{HA ⊗HB}. The
conditional quantum entropy S(A | B) of ρAB is equal to the difference of
the joint quantum entropy S(A,B) and the marginal entropy S(B) :

S(A | B) ≡ S(A,B) − S(B)

By virtue of this definition, we can rephrase alternatively the result of
the previous subsection: for an entangled state, such as a Bell state, the
conditional quantum entropy can be negative. In particular, recall that for
the marginal state we found

ρ1 = tr2(ρ) = tr2

31 |00⟩ + |11⟩√
2

21⟨11| + ⟨00|√
2

24
= I

2

and since tr
1!

I
2
"22 = 1

2 < 1 and the joint state of the entangled system is a
pure state

!
S(A,B) = 0

"
, the quantity

S(B | A) = S(A,B) − S(A)

is negative. Stated otherwise, the joint state of the EPR pair is known ex-
actly because its associated entropy is vanishing, but being the first qubit in
a mixed state, i.e. a state about which we do not have maximal knowledge,
the marginal entropy is non-vanishing. This paradoxical property that the
joint state of a system can be completely known, yet we do not have a com-
plete knowledge of its subsystems, is a hallmark of quantum entanglement
and it is in stark contrast with our common sense, because the only reason
that conditional quantum entropy can be negative occurs when we are ac-
tually more certain about the joint state of a quantum system than we are
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about any of its individual parts. It is perhaps the very essence of the radical
departure between the classical and quantum world from an informational
point of view, definitely defying our intuition.

2.4 Coherent Information
Negativity of Conditional quantum entropy is overarching in the framework
of quantum information theory. Its importance is such that it is custom-
ary to employ another information quantity in its own right, namely the
Coherent Information, which we shall refer later in this discussion:

Definition (Coherent Information). The coherent information I(A > B) of
a bipartite state ρAB ∈ D

!
HA ⊗ HB

"
is defined as

I(A > B) ≡ S(B) − S(A,B)

where the Dirac symbol ’>’ is present to indicate that this is a quantum
information measure having no classical counterpart. Its expression, given
as the negative of the conditional quantum entropy, suggests that it is a
proper measure of the extent to which we know less about a part of the
system than we do about its whole.

2.5 Quantum Mutual Information
Just as the Mutual information measures classical correlations, the Quantum
Mutual Information is the information quantity that measures both classical
and quantum correlations.

Definition (Quantum Mutual Information). The quantum mutual infor-
mation of a bipartite state ρAB ∈ D

!
HA ⊗ HB

"
is defined as

S(A : B) ≡ S(A) + S(B) − S(A,B)
= S(A) − S(A | B)
= S(B) − S(B | A)

(2.4)

The second line of the above definition leads to the following relations
between coherent information and quantum mutual information :

S(A : B) = S(A) + I(A > B)
= S(B) + I(B > A).

(2.5)
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Chapter 3

Approximations to QCMI

It is the mark of
an educated mind to
rest satisfied with the
degree of precision
which the nature of
the subject admits
and not to seek ex-
actness where only
an approximation is
possible
Aristotle

This section can be conceivably considered the core of the discussion and
it copes with the problem outlined at the end of the introduction. Once
we stated the formal definition of QCMI, we will deal with its expression
made of an algebraic sum of entropic terms in order to get some insights on
the bounds we are looking for. Our aim is motivated by the fact that the
exact knowledge of the Von Neumann entropy requires the reconstruction
of the full spectrum of quantum states, which is clearly a computationally-
demanding task for which there is no known algorithmic speed-up, and since
much of information theory rests upon quantum entropy’s shoulders (we
could safely say that it is one of the bedrocks of Quantum Information The-
ory), as suggested by the fact that it stems from the definition of many
important information measures, it urges a clever method to measure en-
tropy efficiently, as well as all the other physical quantities related to it and
we are interested in.

As much as the Classical Conditional Mutual Information captures the no-
tion of information between two random variables while retaining additional
information gathered by a third random variable, we can assign the same
task to the Quantum Conditional Mutual Information:

Definition (Quantum Conditional Mutual Information). For any tripar-
tite state ρABC ∈ D

!
HA ⊗ HB ⊗ HC

"
, the quantum conditional mutual

information is defined as

I(A : C | B) ≡ S(ρAB) + S(ρBC) − S(ρB) − S(ρABC)

The QCMI quantifies the correlations established between A and C from
the perspective of B. Assuming B is quantum (otherwise I(A : C|B) would
be simply the average over the values b taken by B of the mutual infor-
mation for the conditional state on the system AC, QCMI is significantly
less known than its classical counterpart. In particular, its non-negativity
property is not obvious at all and deserves particular attention because it
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can be thought of as the consequence of a non trivial statement for the Von
Neumann entropy, namely the strong subadditivity property.
Before embarking into technical details, it is worth emphasizing that the
solution given to bound estimation problem for QCMI will be analogous to
the bound estimation problem’s solution given for the coherent information,
whose expression written below explicitly shows its dependence on the Von
Neumann entropy:

I(A > B) = S(ρB) − S(ρAB)

where A and B are subsystems and ρB = TrA
!
ρAB

"
is the reduced density

operator of subsystem B. As suggested by the definition, the exact knowledge
of I(A > B) requires to know the spectrum reconstruction of the system
state in order to compute the von Neumann entropy. However, here we
address a remarkable strategy based on Lagrange multipliers that allows
us to infer conceivable upper and lower bounds on the quantum entropy in
terms of global and marginal purity of the state, defined as the trace of the
squared density matrix:

P(ρ) ≡
dØ
i=1

λ2
i,ρ

where the sum runs up to d, i.e. the dimension of the quantum state which
admits a Schmidt decomposition

ρ =
dØ
i=1

λi,ρ |ψi⟩ ⟨ψi|

where λi are non-negative real numbers satisfying

λ1,ρ ≥ λ2,ρ ≥ · · · ≥ λd,ρ,
Ø

λi,ρ = 1

and |ψi⟩ , |ψj⟩ are two vectors drawn from an orthogonal basis fulfilling

⟨ψi|ψj⟩ = δi,j =
I

1 if i = j

0 otherwise

Disregarding the full derivation, which is faithfully reported in 4.3 it can be
shown that the spectrum {λMi,ρ} that maximizes

S(ρ) = −
dØ
i=1

λi,ρ log λi,ρ

is given by

λM1,ρ = 1
d

+
ó
d− 1
d

1
P(ρ) − 1

d

2
, λM2,ρ = · · · = λMd,ρ =

1 − λM1,ρ
d− 1
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whereas the spectrum {λmi,ρ} that minimizes the entropy S(ρ) is given by

λm1,ρ = λm2,ρ = · · · = λkρ−1,ρ = 1 − αρ
kρ − 1 , λmkρ,ρ = αρ, λ

m
kρ+1,ρ = · · · = λmd,ρ = 0,

where

αρ = 1/kρ −
ó1

1 − 1
kρ

21
P(ρ) − 1

kρ

2
and kρ is the integer such that

1
kρ

≤ P(ρ) < 1
kρ − 1

Provided the vectors solving the minimization and the maximization, that
are {λmi,ρ}, {λMi,ρ}, respectively, by minimizing (maximizing) the marginal
purity on subsystem B and maximizing (minimizing) the global purity, one
has lower(upper) bounds to the Coherent Information :

ℓe(ρAB) ≤ I(A > B) ≤ ue(ρAB),

where

ℓe(ρAB) =
1
λkρB

,ρB
− 1

2
log λm1,ρB

− λkρB
,ρB

log λmkρB
,ρB

+
1
1 − λM1,ρAB

2
log

1 − λM1,ρAB

d− 1 + λM1,ρAB
log λ1,ρM

AB

(3.1)

and

ue(ρAB) =
1
1 − λmkρAB,ρAB

2
log λm1,ρAB

+ λmkρAB
,ρAB

log λmkρAB
,ρAB

−
1
1 − λM1,ρAB

2
log

1 − λM1,ρB

dB − 1 − λM1,ρB
log λM1,ρB

(3.2)

Quantitative bounds to the conditional mutual information in terms of
purity functions can be obtained by a straightforward generalization of this
method. Given the spectra {λMi,ρ} and {λmi,ρ} maximizing and minimizing
S(ρ), respectively, by minimizing (maximizing) the first two terms and
maximizing (minimizing) the third and the fourth term of the expression
for I(A : C | B), one can obtain lower (upper) bounds to the conditional
quantum mutual information. Indeed, it is bounded as follows :

ℓI(ρABC) ≤ I(A : C | B) ≤ uI(ρABC),
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where

ℓI(ρABC) =
1
λk

m
ρAB ,ρAB

− 1
2

log λm1,ρAB
− λmkρAB,ρAB

log λmkρAB,ρAB

+
1
λmkρBC ,ρBC

− 1
2

log λm1,ρBC
− λmkρBC ,ρBC

log λmkρBC ,ρBC

+
1
1 − λM1,ρB

2
log

1 − λM1,ρB

dB − 1 + λM1,ρB
log λM1,ρB

+
1
1 − λM1,ρABC

2
log
11 − λM1,ρABC

dABC − 1
2

+ λM1,ρABC
log λM1,ρABC

(3.3)

and

uI(ρABC) =
1
λM1,ρAB

− 1
2

log
1 − λM1,ρAB

dAB − 1 − λM1,ρAB
log λM1,ρAB

+
1
λM1,ρBC

− 1
2

log
1 − λM1,ρBC

dBC − 1 − λM1,ρBC
log λM1,ρBC

+
1
1 − λmkρB

,ρB

2
log λm1,ρB

+ λmkρB
,ρB

log λmkρB
,ρB

+
1
1 − λmkρABC ,ρABC

2
log λm1,ρABC

+ λmkρABC ,ρABC
log λmkρABC ,ρABC

.

(3.4)

In the next section, we delve into the problem of showing that ℓI(ρABC)
constitutes a suitable refinement for another lower bound to the QCMI.
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Chapter 4

Further refinements to
QCMI’s bounds

A mathematical prob-
lem should be diffi-
cult in order to entice
us, yet not completely
inaccessible, lest it
mock at our efforts.
It should be to us
a guidepost on the
mazy paths to hid-
den truths, and ulti-
mately a reminder of
our pleasure in the
successful solution
David Hilbert

The Strong Subadditivity Inequality for Quantum Entropy, which
is the statement that for all tripartite states ρ123 ∈ D

!
H1 ⊗ H2 ⊗ H3

"
, the

Conditional Mutual Information of 1 and 2 given 3 is non-negative,

I(1, 2 | 3) ≡ S13 + S23 − S123 − S3 ≥ 0, (4.1)

sets naturally a lower bound to QCMI. However, the clarity of this result
should not beguile us into false complacency: indeed, RHS of equation 4.1
does not represent the only lower bound existing, as many tighter lower
bounds are possible too. One of them is a nice result by Eric A. Carlen
and Elliot H. Lieb (see also [9]), who obtained a lower bound which follows,
in a relatively simple manner, from strong subadditivity and it is dubbed
Extended Strong Subadditivity. The main thrust of this chapter is to
demonstrate that our bound 3.3 is also tighter than the Carlen and Lieb’s
one and we will prove its sharpness on a particular case study.

4.1 A fundamental bound to QCMI

Recall that the irrefutable positivity of the conditional entropies in classical
probability theory, namely

S12 − S1 ≥ 0 and S12 − S2 ≥ 0

has no analog in quantum mechanics, where entanglement ensures that the
failure of either one of these inequalities can occur. This sentence turns into
the sharp inequality

E ≥ max{S1 − S12, S2 − S12, 0},
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where E denotes either Ef or Esq (take a look at [7]), the latter (Squashed
Entanglement) being a non-negative minorant of the former (Faithful
Entanglement), defined by

Esq(ρ12) = 1
2 inf{I(1, 2 | 3) : ρ123 is any tripartite extension of ρ12} (4.2)

Equation 4.2 immediately implies an extension of 4.1, as dictated by the
following result:

Theorem (Extended strong subadditivity). For all tripartite states ρ123,

I(1, 2 | 3) ≥ 2max{S1 − S12, S2 − S12, 0}.

The inequality I(1, 2 | 3) ≥ λmax{S1 −S12, S2 −S12, 0} can be violated for
all λ > 2.

The connection between this section and its sibling, the next one, occurs
with the proof of the above statement, as the final conclusion is centered on
it.

Proof. The theorem resorts to a widely used tool in Quantum Information,
i.e. Purification (see section on pag.35) and to the following useful result
(already mentioned in section 2.1 on page 15): the marginal entropies S(A)
and S(B) of a pure bipartite state |ϕ⟩ are equal:

S(A)ϕ = S(B)ϕ, (4.3)

while the joint entropy S(AB) vanishes:

S(AB)ϕ = 0.

This statement also applies to several systems, provided a bipartite cut
of them. Therefore, the following equations (as many others obtained by
permuting subscripts) hold for the state |ψ⟩ABCDE :

S(A)ψ = S(BCDE)ψ (4.4a)
S(AB)ψ = S(CDE)ψ (4.4b)

S(ABC)ψ = S(DE)ψ (4.4c)
S(ABCD)ψ = S(E)ψ (4.4d)

This fact brings us to the right stance for building the proof. Consider any
purification ρ1234 of ρ123. Being ρ1234 pure, then S23 = S14 andS123 = S4,
by virtue of equation 4.3. As a consequence, we can set the equality

S12 + S23 − S1 − S3 = S12 + S14 − S124 − S1, (4.5)
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proving that S12 +S23 ≥ S1 +S3, because the right hand side of equation 4.5
is non-negative by 4.1. By adding S12 + S23 ≥ S1 + S3 and S13 + S23 ≥
S1 + S2 we obtain

S12 + S13 + 2S23 ≥ 2S1 + S2 + S3 (4.6)

At the end, by using S12 = S34, S23 = S14 and S2 = S134 and rear-
ranging terms in equation 4.6, we can write

S13 + S34 − S134 − S3 ≥ 2
!
S1 − S14

"
,

which is nothing but the same equation in the theorem with different indices.

4.2 A case study
The importance of this theorem lies in its dual effectiveness: first of all, it
allows to limit the Quantum Conditional Mutual Information from below,
which notably involves at least three subsystems, by means of a function
that ostensibly depends only on two subsystems, disregarding the third.
Secondly, it undoubtedly constitutes a step forward in improving the lower
bound established by 4.1, as it admits a quantity that can be potentially
greater than zero. This premise was necessary to tackle the actual problem,
that is to plot the upper and lower bounds of I(A : B | C) as the probability
p ∈ [0, 1] varies for the following three-qubit mixed state:

ρ = p ρW + (1 − p)(ρEPR ⊗ ρ1)

= p |W ⟩ ⟨W | + (1 − p)
1
|ψEPR⟩ ⟨ψEPR| ⊗ |1⟩ ⟨1|

2 (4.7)

In this case,

|W⟩ =



0
1√
3

1√
3

0
1√
3

0
0
0


shares entanglement among the three subsystems A,B and C, whereas the
second term encloses a state where C is not correlated with AB. It consists
of

|ψEPR⟩ =


1√
2

0
0
1√
2
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also dubbed Bell state or EPR pair and of the one-state:

|1⟩ =
A

1
0

B

Since the dimension of any possible n-qubit subsystem is given by 2n, we
have:

dρ = 8
dρAB = dρBC = dρAC = 4
dρA = dρB = dρC = 2

Now the idea is to raise the stakes, showing that lower bound 3.3 is
tighter than the Carlen and Lieb’s one, thus improving their Extended Strong
Subadditivity. That said, it was relatively simple to draw the figure showing
the behaviors of both the lower bound obtained by the two physicists and
the QCMI itself, as provided in the output of the first code at pag.36:

Figure 4.1: QCMI and its lower bound provided by the Extended strong
subadditivity.

Furthermore, for the sake of completeness, we cannot exempt ourselves
from representing all the quantities involved, in order to exhibit their mutual
relationships, as the following Julia figure attempts to supply:
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Figure 4.2: Joint representation of ℓI(A:B|C), uI(A:B|C), I(A : B | C) and
the Carlen-Lieb lower bound for the density operator
ρ = p ρW + (1 − p)(ρEPR ⊗ ρ1) as p varies in [0, 1].

4.3 Theoretical justifications

We cannot say to get all things done yet, until an explanation of the relation
between I(A : B | C) and the lower bound refinement by Carlen and Lieb
is given. This topic deserves more attention, so in this section we delve
into the problem of finding a justification of what figure 4.1 shows. Let
us focus on the lower bound: the function decreases as p ∈ [0, 1] increases
or, equivalently, when the correlations supplied by the kronecker product
between ρEPR and ρ1 exceed the entanglement provided by the W-state, for
the qubits A and B. It seems that the more the system tends to be separable
in its components, the closer the QCMI gets to zero; conversely, the more
entangled a system is, the further the QCMI moves away from vanishing
values. In other words, we can say that the Quantum Conditional Mutual
Information corresponds to the amount by which Strong Subadditivity of
quantum entropy fails to be saturated.
Our observations can be justified theoretically because they agree with a
widely recognized result involving the separability of quantum states and
Quantum Conditional Mutual Information. It can be shown (see [6] for
further details) that Quantum Mutual Information

I(A : B) = S(A) + S(B) − S(AB)
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obeys to the inequality

I(A : B)ρ ≥ 1
2 log 2 ∥ρAB − ρA ⊗ ρB∥2 (4.8)

Thus, a bipartite state has a zero Mutual Information if and only if it has
no correlations (i.e. it is a product state). As for Mutual Information, one
can ask which states have zero Conditional Mutual Information. A state
ρABC has I(A : B | C) = 0 if and only if it is a Quantum Markov
Chain, i.e. it admits a decomposition of the C system vector space

HC =
n
j

HCL
j

⊗ HCR
j

into a direct sum of tensor products such that

ρABC =
Ø
j

pjρACL
j

⊗ ρBCR
j

with states ρACL
j

on HA ⊗ HCL
j

, ρBCR
j

on HB ⊗ HCR
j

and probabilities
pj [5]. There is an equality analogous to 4.8 for the Conditional Mutual
Information, whose right hand side is related to the lower bound of Squashed
Entanglement, in terms of a suitable distance to separable states. This
distance to the set of separable states is measured in terms of the one-way
LOCC : by analogy with the definition of the trace norm as the optimal
probability of distinguishing two quantum states, the following result takes
into account a norm that quantifies the distinguishability of quantum states
under measurements that are restricted by local operations and one-way
classical communication. Writing the distance from a state ρAB to the set
SA:B of separable states on A : B as

∥ρAB − SA:B∥ = minσ∈SA:B ∥ρAB − σ∥

we can write for the Squashed Entanglement of every state ρAB

Esq ≥ 1
16 log 2 ∥ρAB − SA:B∥2

LOCC Ô→, (4.9)

where the Squashed Entanglement is defined as follows:

Esq(ρA:B) ≡ inf {1
2 I(A : B | C) : ρABC is an extension of ρAB} (4.10)

Since ∥∗∥LOCC Ô→ is a norm, 4.9 implies the faithfulness of the Squashed
Entanglement, i.e. its property of being strictly positive on every entangled
state. Moreover, combining 4.9 and 4.10, we can firmly write that for every
tripartite finite-dimensional state ρABC ,

I(A : B | C) ≥ 1
8 log 2 ∥ρAB − SA:B∥2

LOCC Ô→,

thus strengthening 4.1 by relating it to a distance-like entanglement mea-
sure and showing that if a tripartite state has a small Conditional Mutual
Information, its AB reduction is close to a separable state.
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Appendix A

In this section, some detailed derivations concerning useful results belonging
to the previous parts are shown.

Derivation of the bounds for Von Neumann entropy
The knowledge of the bounds for the coherent information I(A > B) relies
on the following strategy for bounding the quantum entropy of a quantum
state ρ in a d-dimensional Hilbert space with a function of the state purity
P(ρ) ≡ Tr(ρ2) (see also [4]). Given the spectral decomposition of the quan-
tum state, ρ = qd

i=1 λi |ψi⟩ ⟨ψi|, where {|ψi⟩} is an orthogonal basis of the
d-dimensional Hilbert space, our task is to solve the following variational
problem:

max /minS(ρ) = −
dØ
i=1

λi log (λi)

such that

dØ
i=1

λ2
i = P(ρ)

dØ
i=1

λi = 1

0 ≤ λi ≤ 1, ∀i

Maximization

For d = 2, the maximization problem would be trivial. Therefore, let us
consider the special case d = 3, which can be shown to be straightforwardly
generalized to any value of d. Assuming WLOG λ1 ≥ λ2 ≥ λ3, we turn the
problem into

maxS(ρ) = −λ1 log λ1 − λ2 log λ2 − λ3 log λ3

such that
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λ2
1 + λ2

2 + λ2
3 = P(ρ)

λ1 + λ2 + λ3 = 1
1 ≥ λ1 ≥ λ2 ≥ λ3 ≥ 0

We prove that the maximum is reached with the following Lemma.

Lemma 1. The solution to the maximization problem is given by

λ1 = 1
3 +

ò
2
3
1
P(ρ) − 1

3
2

(4.11)

λ2 = λ3 = 1 − λ1
2 (4.12)

Proof. Differentiating the entropy function S(ρ) and the other constraints
one has

dS = −(1 + log λ1)dλ1 − (1 + log λ2)dλ2 − (1 + log λ3)dλ3

and

λ1dλ1 + λ2dλ2 + λ3dλ3 = 0 (4.13)
dλ1 + dλ2 + dλ3 = 0 (4.14)

respectively. A simple algebra immediately leads to

dλ1 = −λ2
λ1
dλ2 − λ3

λ1
dλ3 = −λ2

λ1

1
−dλ1 − dλ3

2
− λ3
λ1
dλ3 =⇒

dλ1 = λ2dλ1 + λ2dλ3 − λ3dλ3
λ1

=⇒

dλ1
1
λ1 − λ2

2
= dλ3

1
λ2 − λ3

2
=⇒ dλ1 = λ2 − λ3

λ1 − λ2
dλ3

and

λ2dλ2 = −λ3dλ3 + λ1dλ1 = −λ3dλ3 − λ1
1
−dλ2 − dλ3

2
=⇒ dλ2 = −λ3dλ3 + λ1dλ2 + λ1dλ3

λ2
=⇒

dλ2
1
λ2 − λ1

2
= dλ3

1
λ1 − λ3

2
=⇒ dλ2 = λ1 − λ3

λ2 − λ1
dλ3.
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Plugging these two expressions for dλ1 and dλ2 into the differential of the
entropy we obtain

dS(ρ) = −(1 + log λ1)dλ1 − (1 + log λ2)dλ2 − (1 + log λ3)dλ3

= −dλ1 − dλ2 − dλ3 + dλ3
λ1 − λ2

3!
λ3 − λ2

"
log λ1 +

!
λ1 − λ3

"
log λ2 +

!
λ2 − λ1

"
log λ3

4
= −

!
dλ1 + dλ2 + dλ3

"ü ûú ý
=0

+ dλ3
λ1 − λ2

3
(λ3 − λ2) log λ1 + (λ1 − λ3) log λ2 + (λ2 − λ1) log λ3

4

= (λ2 − λ3)ü ûú ý
≥0

3 log λ2 − log λ1
λ1 − λ2

+ log λ3 − log λ2
λ3 − λ2

4
ü ûú ý

≥0

dλ3

(4.15)

where the under-braced terms within the last line stem from the concavity
of the function log λ for λ ∈ [0, 1], which leads to

log λ1 − log λ2
λ1 − λ2

≤ log λ3 − log λ2
λ3 − λ2

for λ1 ≥ λ2 ≥ λ3. This means that dS(ρ)/dλ3 ≥ 0 and therefore the
maximum of S(ρ) occurs when λ3 is maximum, i.e. when λ2 = λ3. Thus
from the constraints we can writeI
λ2

1 + λ2
2 + λ2

3 = P(ρ)
λ1 + λ2 + λ3 = 1

=⇒

I
λ2

1 + 2λ2
2 = P(ρ)

λ1 + 2λ2 = 1
=⇒

I
λ2

1 + 2
!1−λ1

2
"2 − P(ρ) = 0

λ2 = λ3 = 1−λ1
2

=⇒

λ1 = 1+
√

2(3P(ρ)−1)
3 = 1

3 +
ò

2
3

1
P(ρ) − 1

3

2
λ2 = λ3 = 1−λ1

2

Rather intuitively, the generalization of these results for the maximiza-
tion problem to any value of d proceeds in the same manner, as shown
below.

Theorem 1. Suppose that λ1 ≥ λ2 ≥ . . . λd. The solution to the maximiza-
tion problem is
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λ1 = 1
d

+
ó
d− 1
d

1
P(ρ) − 1

d

2
(4.16)

λ2 = λ3 = · · · = λd = 1 − λ1
d− 1 (4.17)

Proof. The proof is done by contradiction. By absurd, suppose the maxi-
mization problem is not provided by λ2 = λ3 = · · · = λd. We will show that
a change in their values would increase S(ρ), thus proving that a configu-
ration for which (3.11) is not true does not provide the maximum entropy.
This can be shown by slightly modifying the values of λ1, λ2, λd while keep-
ing all the other values fixed, i.e λ3, λ4, . . . , λd−1. Setting new constraints
for λ1, λ2 and λd we have

λ2
1 + λ2

2 + λ2
d = a (4.18)

λ1 + λ2 + λd = b (4.19)
equivalently re-written as follows :

λ′2
1 + λ′2

2 + λ′2
d = a/b2 (4.20)

λ′
1 + λ′

2 + λ′
d = 1 (4.21)

upon rescaling λ′
1 = λ1/b, λ

′
2 = λ2/b, λ

′
d = λd/b. The entropy function is

S(ρ) = −
dØ
i=1

λi log λi

= S1,2,d(ρ) + Sr(ρ),
(4.22)

where S1,2,d(ρ) = −λ1 log λ1−λ2 log λ2−λd log λd and Sr(ρ) = −
qd−1
i=3 λi log λi.

Since Sr(ρ) is fixed, we need to maximize S1,2,d(ρ), which can also be rep-
resented as
S1,2,d(ρ) = −bλ′

1 log
!
bλ′

1
"

− bλ′
2 log

!
bλ′

2
"

− bλ′
d log

!
bλ′
d

"
= b

1
−λ′

1 log λ′
1 − λ′

1 log b− λ′
2 log λ′

2 − λ′
2 log b− λ′

d log λ′
d − λ′

d log b
2

= b
1
−λ′

1 log λ′
1 − λ′

2 log λ′
2 − λ′

d log λ′
d −

!
λ′

1 + λ′
2 + λ′

d

"ü ûú ý
=1

log b
2

= b
1
−λ′

1 log λ′
1 − λ′

2 log λ′
2 − λ′

d log λ′
d

2
− b log b

(4.23)
Denoting S′

1,2,d(ρ) ≡ −λ′
1 log λ′

1 − λ′
2 log λ′

2 − λ′
d log λ′

d, we recover the
same optimization problem for d = 3, whose solution (the maximum of
S′1, 2, d(ρ)) is reached when λ′

2 = λ′
d, as dictated by Lemma 1. It turns

out that the maximum of S1, 2, d(ρ) given the constraints (3.14) and (3.15)
is saturated with λ2 = λd, hence contradicting the assumption λ2 > λd.
Therefore, the solution to the maximization problem is given by equations
(3.10) and (3.11), as we set out to show.

32



Minimization

Next we consider the solution to minS(ρ). As in the maximization problem,
consider the special case with d = 3 and λ1 ≥ λ2 ≥ λ3,

minS(ρ) = −λ1 log λ1 − λ2 log λ2 − λ3 log λ3

such that

λ2
1 + λ2

2 + λ2
3 = P(ρ)

λ1 + λ2 + λ3 = 1
1 ≥ λ1 ≥ λ2 ≥ λ3 ≥ 0

Lemma 2. The solution to the minimization problem is reached either when
λ1 = λ2 or λ3 = 0

Proof. From the proof of Lemma 1, it is known that dS(ρ)/dλ3 ≥ 0. There-
fore, the lower bound of S(ρ) is reached when λ3 takes its minimum. A
lower bound for λ3 is readily obtained as follows :

2
!
λ2

1 + λ2
2
"

≥
!
λ1 + λ2)2

=⇒ 2
!
P(ρ) − λ2

3
"

≥
!
1 − λ3

"2
=⇒ λ3 ≥ max{0, 1 −

ð
6P(ρ) − 2

3 }

Thus, when P(ρ) ≥ 1/2, the minimal possible value for λ3 is 0; when 1/3 ≤
P(ρ) < 1/2, the minimal possible value for λ3 is 1−

√
6P(ρ)−2
3 and λ1 = λ2 =!

1 − λ3
"
/2.

The general solution, which encompasses this particular case, follows
straightforwardly.

Theorem. Suppose λ1 ≥ λ2 ≥ . . . λk, the solution to the minimization
problem is

λ1 = λ2 = · · · = λk−1 = 1 − α

k − 1 , (4.24)

λk = α, (4.25)
λk+1 = · · · = λd = 0. (4.26)

where
α = 1

k
−
ñ!

1 − 1/k
"!

P(ρ) − 1/k
"

and k is the integer such that 1
k ≤ P(ρ) ≤ 1

k−1 .
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Proof. By absurd, suppose the solution is not provided by

λ1 = λ2 = · · · = λk−1, λK , λk+1 = · · · = λd = 0

Then, there must exist three λi, λj , λk such that λi > λj ≥ λk and λk ̸= 0
obeying to the constraints

λ2
i + λ2

j + λ2
k = c (4.27)

λi + λj + λk = γ (4.28)

equivalently re-written as

λ′2
i + λ′2

j + λ′2
k = c/γ2 (4.29)

λ′
i + λ′

j + λ′
k = 1 (4.30)

upon rescaling λ′
i = λi/γ, λ′

j = λj/γ and λ′
k = λk/γ. The entropy function

is

S(ρ) = −
dØ
i=1

λi log λi

= Si,j,k(ρ) + SR(ρ),
(4.31)

where the entropies Si,j,k(ρ) ≡ −λi log λi−λj log λj−λk log λk and SR(ρ) ≡
−
qd
ℓ ̸=i,j,k λℓ log λℓ have been defined. Since SR(ρ) is fixed, our goal is to

minimize Si,j,k(ρ), which can also be represented as

Si,j,k(ρ) = −γλ′
i log

!
γλ′

i

"
− γλ′

j log
1
γλ′

j

2
− γλ′

k log
!
γλ′

k

"
= γ

!
−λ′

i log λ′
i − λ′

j log λ′
j − λ′

k log λ′
k

"ü ûú ý
≡Sresc

i,j,k(ρ)

−γ log γ (4.32)

Hence, we recover the optimization problem encountered for d = 3, whose
solution ( the minimum of Sresc

i,j,k(ρ) ≡ −λ′
i log λ′

i − λ′
j log λ′

j − λ′
k log λ′

k

) is reached either when λi = λj or λk = 0, contradicting the assumption
λi > λj ≥ λk.We are now in the right position to write

(k − 1)λ2
1 + λ2

k = P(ρ)
(k − 1)λ1 + λk = 1

k ≤ d

and show that there is only a single integer value allowed for number k.
Indeed,

k[(k − 1)λ2
1 + λ2

k] ≥ [(k − 1)λ1 + λk]2

≥ (k − 1)[(k − 1)λ2
1 + λ2

k]
(4.33)
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that is

kP(ρ) ≥ 1 ≥ (k − 1)P(ρ)

=⇒ 1
P (ρ) ≤ k ≤ 1

P(ρ) + 1

=⇒ 1
k

≤ P(ρ) ≤ 1
k − 1

Purification
Purification [1, p.109] is a very useful tool in Quantum Information Theory.
Suppose to describe a quantum system A by mean of the density matrix
ρA. It is always possible to introduce a new fictitious system R, through
which we define the pure state |AR⟩ for the joint system AR, such that
ρA = TrR[|AR⟩ ⟨AR|]. In order to show how to apply this procedure to any
system A, let us consider a system in the state ρA which admits a spectral
decomposition ρ = q

i pi |iA⟩⟨iA| and let R be a system having the same
space state as A and basis state |i⟩R. Let us define a pure state for system
AR:

|AR⟩ =
Ø
i

√
pi |iA⟩ |iR⟩

Computing the reduced density operator for subsystem A we recover the
density matrix ρA :

TrR[|AR⟩ ⟨AR|] =
Ø
i,j

√
pi pj |iA⟩ ⟨jA| Tr[|iR⟩ ⟨jR|]

=
Ø
i,j

√
pi pj |iA⟩ ⟨jA| δij

=
Ø
i

pi |iA⟩ ⟨iA| = ρA

(4.34)

Hence, Purification is the procedure which allows to build any mixed state,
having no maximal knowledge, by using a pure state, having maximal knowl-
edge, by using the partial trace operation.
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Appendix B

You say that I pay
too much attention to
form. Alas! It is
like body and soul:
form and content to
me are one; I don’t
know what either is
without the other
Gustave Flaubert

Despite its subsidiary importance, this section gathers the main scripts,
drawn from the whole code, giving the required plots as output. In order to
customize my code, I preferred to switch over Python, by slightly modifying
Julia language’s syntax, because is expected to be easier for handling syntax
highlighting.

Excerpts from Julia codes
Carlen-Lieb’s lower bound
The following snippet realizes the Carlen-Lieb’s lower bound plot for QCMI,
plotted with I(A : B|C) itself.

import qutip
qutip.about()
from qutip import *
import numpy as np
import matplotlib.pyplot as plt
import math
ψ_EPR = (tensor(basis(2,0), basis(2,0))
+ tensor(basis(2,1),basis(2,1))).unit()
ψ1 = basis(2,0)
ψW = (tensor(basis(2,0), basis(2,0),basis(2,1))
+ tensor(basis(2,0), basis(2,1), basis(2,0))
+ tensor(basis(2,1), basis(2,0), basis(2,0))).unit()
ρ1 = ket2dm(ψ1)
ρ_EPR = ket2dm(ψ_EPR)
ρW = ket2dm(ψW)
ρ_joint = tensor(ρ_EPR,ρ1)

# Range of probability values
p_values = np.linspace(0, 1, 1000)
# Function to compute the density matrix
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def mixed_state_density(p):
return p * ρW + (1 - p) * ρ_joint

# Compute the entropies for different values of p
S_A = []
S_B = []
S_C = []
S_AB = []
S_AC = []
S_BC = []
S_ABC = []

for p in p_values:
# Compute the density operator and its
# reduced density matrices
ρ_tot = mixed_state_density(p)
ρ_A = ptrace(ρ_tot,0)
ρ_B = ptrace(ρ_tot,1)
ρ_C = ptrace(ρ_tot,2)
ρ_AB = ptrace(ρ_tot,[0,1])
ρ_AC = ptrace(ρ_tot,[0,2])
ρ_BC = ptrace(ρ_tot,[1,2])

# Compute the entropies associated with the
# density matrices
S_A.append(entropy_vn(ρ_A,2))
S_B.append(entropy_vn(ρ_B,2))
S_C.append(entropy_vn(ρ_C,2))
S_AB.append(entropy_vn(ρ_AB,2))
S_AC.append(entropy_vn(ρ_AC,2))
S_BC.append(entropy_vn(ρ_BC,2))
S_ABC.append(entropy_vn(ρ_tot,2))

# Calculate the function
2 * max{0, S(A) - S(A,B), S(B) - S(A,B)}
max_function_values =
2 * np.maximum(0, np.array(S_A) - np.array(S_AB),

np.array(S_B) - np.array(S_AB))

# Range of probability values
p_values = np.linspace(0, 1, 1000)

# Array storing the values for Quantum Conditional
# Mutual Information I(A:B|C)
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QCMI = np.zeros_like(p_values)

# von Neumann entropy function
def von_Neumann_entropy(rho):
evals = rho.eigenenergies()
return - np.sum(np.nan_to_num(evals * np.log2(evals)))

# Function realizing the plot of QCMI's exact value
for i,p in enumerate(p_values):

ρ_tot = p * ρW + (1 - p) * ρ_joint
ρ_AC = ρ_tot.ptrace([0,2])
ρ_BC = ρ_tot.ptrace([1,2])
ρ_C = ρ_tot.ptrace([2])

# This first method accomplishing the task of computing
# Quantum entropy either uses a customized function,
# called "von_Neumann_entropy" or relies on the
# function enabled by QuTip, i.e. "entropy_vn":
# 1:I)

#S_C = von_Neumann_entropy(ρ_C)
#S_AC = von_Neumann_entropy(ρ_AC)
#S_BC = von_Neumann_entropy(ρ_BC)
#S_ABC = von_Neumann_entropy(ρ_tot)

# 1:II)

#S_C = entropy_vn(ρ_C,2)
#S_AC = entropy_vn(ρ_AC,2)
#S_BC = entropy_vn(ρ_BC,2)
#S_ABC = entropy_vn(ρ_tot,2)

#QCMI[i] = (S_AC + S_BC - S_C - S_ABC)

# A second method to compute the QCMI relies on its
# expression in terms of Quantum Mutual Information:
# I(A:B|C) = I(A:BC) - I(A:C). Here the function
# "entropy_mutual"
# receives 4 arguments : I) The density matrix for
# composite quantum systems;
# II) an intger or a list highlighting the selected
# density matrix components;
# III) An integer or a list denoting the components
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# we want to condition over and IV) the
# base of the logarithm (base{2,math.e}).

#2)
I_A_BC = entropy_mutual(ρ_tot, 0, [1,2],2)
I_A_C = entropy_mutual(ρ_AC, 0,1,2)

QCMI[i] = I_A_BC - I_A_C

# A third method hinges on the computation of the QCMI in terms
# of conditional entropies:
# I(A:BC) = S(AC) + S(BC) - S(ABC). Here the function
# "entropy_conditional" receives 3 arguments:
# I) The density matrix of a composite object;
# II) The selected components for the density matrix we
# want to condition over and
# III) The base of the logarithm (base{2,math.e})

# S_A_conditioned_to_C =
# entropy_conditional(ρ_AC,1, 2)
# S_B_conditioned_to_C =
# entropy_conditional(ρ_BC,1, 2)
# S_AB_conditioned_to_C =
# entropy_conditional(ρ_tot,2, 2)

# 3)
#QCMI[i] = ((S_A_conditioned_to_C +
# S_B_conditioned_to_C - S_AB_conditioned_to_C))

plt.figure(figsize = (10,5))
plt.subplot(2,2,1)
plt.plot(p_values, QCMI)
plt.xlabel('p')
plt.ylabel('I(A:B|C)')
plt.title('QCMI versus p')
plt.grid()

plt.subplot(2,2,2)
plt.plot(p_values, max_function_values,color = 'yellow')
plt.xlabel('p')
plt.ylabel('max{0,S(A) - S(A,B), S(B) - S(A,B)}')
plt.title('Carlen-Lieb Lower Bound ')
plt.grid()
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Upper-Lower bounds refinements
A tighter lower bound and also an upper bound for QCMI also exist. In
order to highlight their relation with Carlen-Lieb’s lower bound and the
exact value of I(A : B|C), these four quantities are plotted together: the
following code accomplishes this task.

import qutip
qutip.about()
from qutip import *
import numpy as np
import matplotlib.pyplot as plt
import math

ψ_EPR = (tensor(basis(2,0), basis(2,0))
+ tensor(basis(2,1),basis(2,1))).unit()

# ψ_Bell = ((tensor(basis(2,0), basis(2,1))
# + tensor(basis(2,1),basis(2,0))).unit())
# ψ0 = basis(2,1)
ψ1 = basis(2,0)
ψW = (tensor(basis(2,0),basis(2,0),basis(2,1))
+ tensor(basis(2,0), basis(2,1), basis(2,0))
+ tensor(basis(2,1), basis(2,0), basis(2,0))).unit()

# ρ0 = ket2dm(ψ0)
ρ1 = ket2dm(ψ1)
# ρ_Bell = ket2dm(ψ_Bell)
ρ_EPR = ket2dm(ψ_EPR)
ρW = ket2dm(ψW)
ρ_joint = tensor(ρ_EPR,ρ1)

# Range of probability values
p_values = np.linspace(0, 1, 1000)

# Function to compute the density matrix
def mixed_state_density(p):

return p * ρW + (1 - p) * ρ_joint

# Compute the purity of a given density matrix
def purity(rho):

return (rho * rho).tr()

# Compute the entropies for different values of p
S_A = []
S_B = []
S_C = []
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S_AB = []
S_AC = []
S_BC = []
S_ABC = []

for p in p_values:
# Compute the density operator and its
# density opeators
ρ_tot = mixed_state_density(p)
ρ_A = ptrace(ρ_tot,0)
ρ_B = ptrace(ρ_tot,1)
ρ_C = ptrace(ρ_tot,2)
ρ_AB = ptrace(ρ_tot,[0,1])
ρ_AC = ptrace(ρ_tot,[0,2])
ρ_BC = ptrace(ρ_tot,[1,2])

# Compute the entropies associated with the
# density matrices
S_A.append(entropy_vn(ρ_A,2))
S_B.append(entropy_vn(ρ_B,2))
S_C.append(entropy_vn(ρ_C,2))
S_AB.append(entropy_vn(ρ_AB,2))
S_AC.append(entropy_vn(ρ_AC,2))
S_BC.append(entropy_vn(ρ_BC,2))
S_ABC.append(entropy_vn(ρ_tot,2))

# Compute the QCMI
QCMI = (np.array(S_AC) + np.array(S_BC)

- np.array(S_C) - np.array(S_ABC))

# Calculate the function max{0, S(A) - S(A,B),
# S(B) - S(A,B)}
max_function_values =

2 * np.maximum(0, np.array(S_A) - np.array(S_AB),
np.array(S_B) - np.array(S_AB))

# Function computing ℓ s.t. 1/ℓ<= P(ρ) < 1/ℓ - 1)
def find_ell(P):

ℓ = 2
while 1/ℓ > P:

ℓ += 1
return ℓ
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# Function to compute the global state purity for a given p
def global_state_purity(p):

ρ = p*ρW + (1-p)*ρ_joint
return purity(ρ)

# Function to compute ρ_C's state purity
# for a given p
def ρ_C_purity(p):

ρ = p*ρW + (1-p)*ρ_joint
ρ_C = ptrace(ρ,2)
return purity(ρ_C)

# Function to compute ρ_AC's state purity for given p
def ρ_AC_purity(p):

ρ = p*ρW + (1-p) * ρ_joint
ρ_AC = ptrace(ρ,[0,2])
return purity(ρ_AC)

# Function to compute ρ_BC's state purity for a given p
def ρ_BC_purity(p):

ρ = p * ρW + (1 - p) * ρ_joint
ρ_BC = ptrace(ρ,[1,2])
return purity(ρ_BC)

# Function to compute λ_k_ABC_m
def lambda_k_ABC(p,ℓ):

α_ABC = 1/ℓ- np.sqrt
((1 - 1/ℓ) * (global_state_purity(p) - 1/ℓ))
return α_ABC

# Function to compute λ_k_AC_m
def lambda_k_AC(p,ℓ):

α_AC = 1/ℓ - np.sqrt((1 - 1/ℓ)
* (ρ_AC_purity(p) - 1/ℓ))

return α_AC

# Function to compute λ_k_BC_m
def lambda_k_BC(p,ℓ):

α_BC = 1/ℓ - np.sqrt((1 - 1/ℓ)
* (ρ_BC_purity(p) - 1/ℓ))

return α_BC

# Function to compute λ_k_C_m
def lambda_k_C(p,ℓ):
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α_C = 1/ℓ - np.sqrt((1 - 1/ℓ)
* (ρ_C_purity(p)- 1/ℓ))

return α_C

# Function to compute λ_1_ABC_m
def lambda_1_ABC(p,ℓ):

α = lambda_k_ABC(p,)
return (1 - α)/(ℓ - 1)

# Function to compute _1_AC_m
def lambda_1_AC(p,ℓ):

β = lambda_k_AC(p,ℓ)
return (1 - β)/(ℓ - 1)

# Function to compute λ_1_BC_m
def lambda_1_BC(p,ℓ):

γ = lambda_k_BC(p,ℓ)
return (1 - γ)/(ℓ - 1)

# Function to compute λ_1_C_m
def lambda_1_C(p,ℓ):

δ = lambda_k_C(p,ℓ)
return (1 - δ)/(ℓ - 1)

# Function to compute Λ_ABC_M
def Lambda_ABC(p,d):

return 1/d + np.sqrt((d - 1)/d
* (global_state_purity(p) - 1/d))

# Function to compute Λ_AC_M
def Lambda_AC(p,d):

return 1/d + np.sqrt((d - 1)/d
* (ρ_AC_purity(p) - 1/d))

# Function to compute Λ_BC_M
def Lambda_BC(p,d):

return 1/d + np.sqrt((d - 1)/d
* (ρ_BC_purity(p) - 1/d))

# Function to compute Λ_C_M
def Lambda_C(p,d):

return 1/d + np.sqrt((d-1)/d
* (ρ_C_purity(p) - 1/d))
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# Overall Lower Bound
def lower_bound(p):

ρ = p * ρW + (1 - p) * ρ_joint
ℓ_AC = find_ell(ρ_AC_purity(p))
ℓ_BC = find_ell(ρ_BC_purity(p))
rho_C = ptrace(ρ,2)
d_C = ρ_C.shape[0]
d_ABC = ρ.shape[0]
λ_k_AC_m = lambda_k_AC(p,ℓ_AC)
λ_k_BC_m = lambda_k_BC(p,ℓ_BC)
λ_1_AC_m = lambda_1_AC(p,ℓ_AC)
λ_1_BC_m = lambda_1_BC(p,ℓ_BC)
Λ_C_M = Lambda_C(p,d_C)
Λ_ABC_M = Lambda_ABC(p,d_ABC)

ℓ_I = ((λ_k_AC_m - 1) * np.log2(λ_1_AC_m)
- λ_k_AC_m * np.log2(λ_k_AC_m)
+ (λ_k_BC_m - 1) * np.log2(λ_1_BC_m)
- λ_k_BC_m * np.log2(λ_k_BC_m)
+ (1 - Λ_ABC_M)

* np.log2((1 - Λ_ABC_M)/(d_ABC - 1))
+ Λ_ABC_M * np.log2(Λ_ABC_M)
+ (1-Λ_C_M)*
np.log2((1 - Λ_C_M)/(d_C - 1))
+ Λ_C_M * np.log2(Λ_C_M))

return ℓ_I

# Overall Upper bound
def upper_bound(p):

ρ = p * ρW + (1 - p) * ρ_joint
ℓ_ABC = find_ell(global_state_purity(p))
ℓ_C = find_ell(ρ_C_purity(p))
ρ_BC = ptrace(ρ,[1,2])
ρ_AC = ptrace(ρ,[0,2])
d_AC = ρ_AC.shape[0]
d_BC = ρ_BC.shape[0]
λ_k_C_m = lambda_k_C(p,ℓ_C)
λ_k_ABC_m = lambda_k_ABC(p,ℓ_ABC)
λ_1_C_m = lambda_1_C(p,ℓ_C)
λ_1_ABC_m = lambda_1_ABC(p,ℓ_ABC)
Λ_AC_M = Lambda_AC(p,d_AC)
Λ_BC_M = Lambda_BC(p,d_BC)
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u_I = ((Λ_AC_M - 1)
* np.log2((1 - Λ_AC_M)/(d_AC - 1))

- Λ_AC_M * np.log2(Λ_AC_M)
+ (Λ_BC_M-1) * np.log2((1 - Λ_BC_M)/(d_BC-1))
- Λ_BC_M * np.log2(Λ_BC_M)
+ (1 - λ_k_C_m) *np.log2(λ_1_C_m)
+ λ_k_C_m * np.log2(λ_k_C_m)
+ (1 - λ_k_ABC_m) * np.log2(λ_1_ABC_m)
+ λ_k_ABC_m * np.log2(λ_k_ABC_m))

return u_I

# Range of probability values
p_values = np.linspace(0, 1, 1000)

lowerbound_values = [lower_bound(p) for p in p_values]

upperbound_values = [upper_bound(p) for p in p_values]

plt.figure(figsize = (10,5))
plt.subplot(2,2,1)
plt.plot(p_values, QCMI)
plt.xlabel('p')
plt.ylabel('I(A:B|C)')
plt.title('QCMI versus p')
plt.grid()

plt.subplot(2,2,2)
plt.plot(p_values,max_function_values,color='yellow')
plt.xlabel('p')
plt.ylabel(' 2 * max{0,S(A) - S(A,B), S(B) - S(A,B)}')
plt.title('Carlen-Lieb Lower Bound ')
plt.grid()

plt.subplot(2,2,3)
plt.plot(p_values, lowerbound_values)
plt.xlabel("p")
plt.ylabel("|$\ell$|_I(A:B|C)")
plt.title('QCMI Lower Bound')
plt.grid()
plt.show()

plt.subplot(2,2,4)
plt.plot(p_values, upperbound_values)
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plt.xlabel("p")
plt.ylabel("u_I(A:B|C)")
plt.title('QCMI Upper Bound')
plt.grid()
plt.show()
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