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1 Introduction

Self-assembly is a process where individual components spontaneously combine to form larger
structures.

In the case of proteins, the shape and size of these aggregates directly influence their functional-
ity. Therefore, understanding the principles governing the formation of such aggregates is relevant
in practice. Of particular interest are fibers. This specific type of aggregate appears to be the most
common structure formed when the self-assembly process goes awry. For instance, pathological
diseases such as Alzheimer’s [6], Parkinson’s Disease, and type II Diabetes [4] are believed to be
caused by the formation of fibrillar aggregates instead of the biologically functional ones.

Self-assembly also holds significant importance as a construction technique for the development
of novel materials [3]. Particularly when dealing with minute building blocks necessitating precise
adjustments to attain specific material properties, self-assembly often is an interesting way to take.
Achieving the desired structure mandates finely tuning the interactions among the constituents. A
notable challenge in orchestrating self-assembled structures lies in ensuring they attain substantial
yet finite dimensions. This objective is facilitated by a phenomenon known as self-limitation.
Under attractive interactions, constituents continuously aggregate until exhaustion of available
material. Conversely, repulsive interactions tend to maintain the constituents in a dispersed state.
An intermediate regime exists wherein the structure self-limits its growth, reaching a critical size
beyond which further aggregation becomes unfavorable, naturally ceasing further expansion.

In experiments it has been often observed that many different proteins, tend to aggregate in
very similar aggregates. The process seem to be almost independent from the specifcities of each
biological process. A systematic in vivo study of supramolecular self aggregation [1] has showed
that across 73 different mutated proteins 30 of them aggregated in fibrils. This suggests that the
principles governing self-assembly might be independent of the details of each biological system.
For this reason it has been of large interest to describe the process of self-assembly using a physical
model, where all details of the specific biological system have been washed away.

Proteins are objects with a complex shape, this complexity is reflected in the interactions that
each protein has with other proteins. The location of different binding sites on the protein’s surface
can be highly anisotropic. Therefore the interaction between two proteins strongly depends on the
relative orientations of the two. When multiple proteins come together there is no guarantee that
all these complex objects with anisotropic interactions can fit perfectly together. This mismatch
related to incompatible interactions is what is generally called geometrical frustration. We propose
a model of self-assembly where geometrical frustration arises from the incompatible interactions
of simple particles. L. Koehler, a former member of our group, has already implemented a 2
dimensional version of the model to study self-aggregation for identical sub-units. In her Ph.D.
Thesis [2] she was able to observe many aggregate shapes reported before in experiments (crystals,
sponges, micelles, fibers etc.). Different aggregates correspond to ground state configurations of
particles with different interactions. In this work [2], the results were limited to systems with
identical particles.

However, in the cell, many different biological complexes populate the environment. All of
them in principle can come together and participate to the formation of multi components ag-
gregate. Therefore the case where only identical sub-units participate to the assembly is a rough
approximation of what actually happens in the self-assembly of real proteins complexes.

When multiple distinct species participate to the self-assembly process, they can take advantage
of the combinatorial freedom related to have multiple components and co-assemble. In other words
multiple species can relax the frustration arising from incompatible interactions by mixing. If the
number of different species is large enough, co-assembly can enable the mixture to combine its sub-
units in a way such that none of them is frustrated in the lowest energy state. How many distinct
species are required for this to happen will depend on how complex are the single sub-units, and
consequently their interactions.

The goal of this project is to study the interplay between complexity of the single sub-units,
and number of species. When the particles are simple enough, with a relatively small number of
distinct species we can expect that the system can relax all the frustration. The more complex the
single sub-units become, the larger the number of species required to ease all the frustration.

In this project we will try to address this goal using the framework of [2] and adapting it to
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binary mixtures. This is a first generalization of the problem of identical particles and will be used
as a benchmark for further studies.

First, we will look for those binary mixtures which use mixing to relax frustration. In order
to find them we will simulate different mixtures and look for their ground state configuration. We
will then try to classify these low energy states to understand which mixtures can ease all the
frustration combining their interactions. Moreover, we will be also interested in those pairs of
particles, that remain frustrated also with two components. The comparison between these two
cases might then provide some insights on what characteristics makes the group of species that
remain frustrated in binary mixtures more complex than the one which can relax all the frustration.

We will organize the discussion in 4 Sections. First in Section 2 we will explain the model used
in [2] and explain how we can adapt it to the case of mixtures of multiple components. Then in
Section 3 we will describe the algorithm that we used to simulate different binary mixtures and
how we optimized its parameters to look for low energy states. After that, in Section 4 we will
describe the variety of scenarios that we can observe for the equilibrium configurations. Finally in
Section 5 we will perform a classification of these scenarios in three main categories.

2 A model for mixtures of particles with complex interac-
tions

In this Section we will describe the theoretical framework used in this report to model mixtures of
two species of particles with complex interations.

The discussion is split in four main units. In Section 2.1 We describe in detail the model
introduced by Koehler [2] and the framework of Local Energy Landscape described by Ronceray
and Le Floch in [5]. The focus is on how we adapted the first to the case of mixtures of two species.
Then, in Section 2.2 we will present the two different ensembles in which we are going to study
the behaviour of binary mixture; the Canonical and the Grand Canonical ensemble. After that, in
Section 2.3 we describe the method that we implemented to to sample the huge space of possible
binary mixtures. Finally in Section 2.4 we will show how to use the symmetries of the model to
reduce further the size of the problem, eliminating equivalent mixtures.

2.1 The lattice model

This section will be dedicated to the description of the model proposed in [2] to describe the
behaviour of particles with complex interactions. To first get acquainted with the model we will
describe it in its original version, where all particles are identical.

Particles are hexagons that sit on the vertices of a triangular lattice. The reason to use a
triangular lattice is that on the triangular lattice frustration due to incompatible interaction can
arise with only three sites. One famous example of this is the antiferromagnetic Ising model. Once
we choose the lattice, the shape of the particle is the shape of its Wigner-Seitz cell. In this way,
it will be possible to perfectly tile the the plane placing hexagonal particles on the vertices of the
lattice. Each particle can be described by the set of its six faces which we will label as a, b, c...
which are represented by different colors in Figure 1. When particles sit on nearest neighbouring
sites of the lattice they interact putting in contact a pair of faces, three different examples are
shown in Figure 1.

(a) pair of faces (a, b) (b) pair of faces (b, a) (c) pair of faces (c, a)

Figure 1: Three examples of particles interacting through a pair of faces. (a) and (b) correspond to the
same local structure, instead (c) is a different one.
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Figure 2: Interaction map for identical particles. Arrows indicate different orientations of each particle.
In grey we highlighted all the distinct local structures.

Each particle can have 6 distinct orientation while occupying the same lattice position. There-
fore two particles can face 36 possible pair of faces (a, b) while sitting on neighbouring sites.
However the energies of interaction between these 36 pair of faces are not all independent. The
pair (a, b) and (b, a) will be associated with the same interaction energy. Using the nomenclature
of the Local Energy Landscape framework introduced in [5] we can say that the pairs (a, b) and
(b, a) are the same local structure.

In this model we can define a local structure as an unordered pair of faces. Only distinct local
structures will be associated with different energies. This makes sense, for example we expect that
the energies of interaction between two proteins will depend only on the nature of the binding sites
that participate in the bond.

We can store all energies that define a system of identical particles in a symmetric 6×6 matrix.
We will call this matrix interaction map (Figure 2).

We can use the energies of the single local structures s to construct the total energy of a specific
configuration s, which can be calculated as

H(s) =
X
s

NsEs, (1)

where Es are the energies of each local structure and Ns is how many local structures s partic-
ipate to the configuration s.

We want to generalize this framework to study binary mixtures. In particular we want to use
this model to study the mixing mechanism that comes into play when multiple species are present.
To achieve the latter, it is interesting to study the model in its dense limit, meaning the limit in
which all lattice sites are occupied by a particle. In this way we forbid that particles minimize
the energy of the system adapting the global shape of the aggregate. The remaining methods
that the system can adopt to relax frustration are two: modify its internal structure by orienting
the particles; and mixing, exploiting the combinatorial freedom associated with the presence of
multiple components.

We will explain the procedure to extend the model to two different species. The same procedure
generalize for any number N of species.

When we have two particle types A and B, we have 12 distinct faces type, a, b, etc. for species
A and a′, b′, etc for species B, we can visualize this by the different face colors of the particles of
Figure 3. There are two types of interaction: between particles of the same species (A − A and
B−B), and between particles of different species (A−B). Each of these can be fully parametrized
by a 6× 6 interaction map storing all possible pairs of faces that two particles can have in contact
when sitting on neighbouring sites. In the case of interactions within the same species (A−A and
B − B) the interaction map is symmetric and only 21 local structures per species correspond to
an independent values of the energy. Instead, faces belonging to different species are all distinct,
which makes all 36 pairs of faces made by two particles of different species independent local
structures. For example, the (a, b) and (b, a) are equivalent if the two particles are identical but
(a, b′) is different from (b, a′).

We can use these 6 × 6 blocks to construct the interaction map for a binary mixture as a
12× 12 matrix where the block on the nth row and mth column describes the interaction between
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Left : Two distinct species, A in
green and B in purple.
Right : Interaction map for a bi-
nary mixture of particles. Each
block is of the form of Figure 2.
Blue indicates negative interaction
energy for a given face pair while
red stands for a positive one. The
shade is proportional to the en-
ergy’s magnitude.

Figure 3: Binary mixture.

particles of species n and m. In conclusion, to fully specify a binary mixture, we have to define 36
parameters for the interaction map that parametrize the A−B interaction, and 2 · 21 parameters
for the A−A and B −B interactions. In total we need 78 real parameters.

2.2 Using different ensembles answers different questions

The model defined in Section 2.1 can be studied both in the Canonical and in the Grand Canonical
ensemble

The equilibrium configuration of the mixtures in the Canonical ensemble can display phase
separation. Indeed in the Canonical ensemble the number of particles of each species is fixed. If
the relative density imposed on the two species does not correspond to any stable phase we will
observe the formation of two or more phases. Therefore performing simulations in the Canonical
ensemble can provide insights on which mixtures phase separate and which don’t at different values
of the relative densities. There is no strong argument to say a priori which value of the density
would be the most insightful. We can suppose that the probability of observing the formation of
multiple phases will be higher if we fix the relative density close to one with respect to having one
of the two species which is very rare. In this project we only considered mixtures in the Canonical
ensemble where the number of particles for each species is the same.

In the Grand Canonical ensemble we will allow particles of one species to mutate into particles
of the other species. In this case the relative density of the two particle types is allowed to change
in time. The equilibrium configuration in the Grand Canonical ensemble will display only the
most stable phase. Grand Canonical results will allow us to understand which mixtures use the
combinatorial freedom that arises from having more than one components to ease the frustration
caused by incompatible interactions. In this ensemble we can have different values for the chemical
potential of two species. Although there is no strong argument that we can use to fix the difference
in chemical potential of the two species. Therefore we will start by setting it to zero.

Once we made a choice for the relative density in the Canonical ensemble and for the difference
of the chemical potential in the Grand Canonical one, a mixture is completely specified defining
the two species that compose it. Therefore in the following mixtures of species A and B will be
considered the same system as mixture of B and A.

2.3 Patchy particles

The space of all possible binary mixtures is R78, one real parameter for each local structure.
This space is computationally impossible to explore exhaustively. In this Section we will tackle
this problem by focusing on a specific subset of interaction maps: interaction maps associated to
patchy particles.
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Figure 4: The fourteen distinct hexagonal patchy particles with two patch colors. Dark and light patches
are represented as dark and light slices.

Patchy particles is the name given to a large class of particles characterized by a discrete number
of short-range and highly directional interaction sites. Interactions sites are represented as patches
attached on the particles’ surface. In the general case the patches can be of any given number
of colors. Each of them can be thought as a different interaction that the units of a biological
system can implement to interact with each other. Each patch can be positioned in any point of
the surface of the particle.

Here we decided to study the simplest case, only two possible interaction sites; represented with
dark or light patches. We can imagine them as representing hydrophobic and hydrophilic residues
in a protein for example.

Moreover, we decided to position patches on the vertices of the hexagons. This is only one
of the possible choices, one other possibility is to locate the interaction sites on the faces of the
particles. Within these constraints all possible hexagonal patchy particles that we can construct
are showed in Figure 4.

From now on, we will refer to binary mixtures as (N1, N2), where N1 and N2 will always refer to
Figure 4. We can use patchy particles to build up an interaction map if we define how the patches
interact between each other. One of the possible choices is to build the interaction energies such
that the patches of the same colors will stick while mismatching ones will repel. If all lattice sites
are occupied, the magnitudes of the interactions between patches does not matter to determine
the ground state configuration. Instead what matters is only their relative values. The smallest
energy will be the favourable interaction and the other will be unfavourable. Therefore we can
achieve attraction between matching patches if we define the energy of each local structure as

Es = αns (2)

where ns is the number of mismatching patches in the local structure s. We fix α = 10. In the
dense limit the magnitude of α does not influence the behaviour of the system. The only constraint
if we want to have attraction between patches of the same color it that α must be positive.

With this definition for the energy of a local structures there are only three possible energies
which are showed in Figure 5.

(a) Bond of energy 0 (b) Bond of energy α (c) Bond of energy 2α

Figure 5: Examples of the three different possible energy costs of a bond in the patchy particles framework.

The patchy particles framework makes the problem more tractable reducing the space of all
possible binary mixtures. Now the entries of the interaction map are completely determined by the
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choice of the particle. To fully characterize a mixture, we do not need anymore to choose 78 real
parameters. We need to only choose the two particles out the ones of Figure 4. The total number
of mixtures that we can define in this way is 196 (142). If we consider only mixtures in which the
two particles are different we have 182 possible mixtures. Furthermore, for the reasons explained
in Section 2.2 we do not need to consider as distinct the mixtures in which the two species are
taken in a different order. Therefore we are left with 91 possible mixtures.

Left : Two patchy particles
Right : Interaction map for a bi-
nary mixture of patchy particles.
Now only three colors are present.
White for 5a, red for 5b, and dark
red for 5c.

Figure 6: Binary mixture of patchy particles .

2.4 The symmetries of the system reduce the number of non-equivalent
mixtures

The 91 mixtures that we found using the patchy particles framework are not all distinct.
Consider the transformation that exchanges all dark patches of a particle with light ones and

viceversa. We will refer to this transformation as color exchange. Now imagine to apply color
exchange simultaneusly to both particles of the mixture. An example is showed in Figure 7. This

(a) Mixture (4,9) (b) Mixture (11,2)

Figure 7: Examples of two equivalent mixtures under color exchange

mapping leaves the interaction map invariant (Figure 8). Therefore two mixtures A and B that
are mapped one into the other by color exchange share the same Hamiltonian. This means that
for each configuration of A there exists one of B with the same Boltzmann weight which can be
obtained color exchanging each particle in the system. Pairs of mixtures that are linked by color
exchange will be referred as equivalent for the rest of this Section.

For the consideration made above it is redundant to consider in our simulations both mixtures in
a pair of equivalent ones. Therefore we will only simulate one representative mixture for each pair.
The total number of non-equivalent mixtures can be calculated using the following considerations.
There are 7 mixtures which remain unchanged under color exchange. This can happen for two
reasons, both species are invariant under color exchange as in Figure 9a, or color exchange is
equivalent to transform the first species into the other and vice-versa as it happens in Figure 9b.
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(a) Original interaction map for
the (4,9) mixture

(b) Interaction when the mixture
is color exchanged into (11,2)

Figure 8: Symmetry of the interaction map under color exchange

The remaining 84 species form 42 pairs of equivalent mixtures. Adding up the 7 invariant to the
count we remain with 49 distinct mixtures.

(a) Particles invariant under color
exchange

(b) Particles mapped int one an-
other by color exchange

Figure 9: Examples of invariant mixtures under color exchange

3 Optimization of Monte Carlo simulated annealing to find
low energy configurations

The number of possible configurations of our system increases exponentially with the system size.
To search the equilibrium configuration in this vast space we use the Monte Carlo simulated an-
nealing algorithm. In this Section we will describe the algorithm, and the methods we implemented
to optimize its parameters to look for the ground state configurations.

In Section 3.1 we will describe how to implement the algorithm to simulate binary mixtures.
Then we describe how we searched for the optimal values of the algorithm parameters; the initial
temperature in Section 3.2 and the number of Monte Carlo steps in Section 3.3.

3.1 The algorithm and its implementation

The core idea of the algorithm is to slowly cool down the system from a high temperature Tstart

to a lower one Tend. At each temperature, the system updates its configuration for a fixed number
of Monte Carlo steps Nsteps. The temperature affects the transition rates between different config-
urations which are calculated using the Metropolis rule. Namely at each step a new configuration
is proposed and the probability to accept it is

min
h
1, e−

∆E
T

i
.

With ∆E the difference between the energies of the proposed, and the current configuration.
At high temperatures the algorithm is basically rejection free and the system can explore

extensively the space of configurations. At lower temperatures the probability to move from a
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given configuration to another of higher energy decreases. When the temperature is equal to zero
the system cannot increase its energy anymore and falls in the closest local minimum.

The temperatures at which these regimes take place are set by the energy scale that we impose
on the system. Indeed the relevant quantity that appears in the transition rates is −∆E

T . In our
model this scale of energy is set by the value of α fixed in Section 2.3.

All the mixtures found in Section 2.3 have been simulated using this algorithm. The simulations
have been performed for 24× 24 lattice sites systems with periodic boundary conditions. This size
allows, while remaining computationally accessible, to accommodate repetitive patterns with a
wide range of different periodicities (2, 3, 4, 6, 8, and 12). Allowing the highes number of possible
periodicities increases to observe periodic patterns. For example, if a mixture is able to relax all
frustration in a pattern of period p, and the size of the system is not a multiple of p, we might not
observe the pattern because of the defects caused by this mismatch. We carried out the simulations
both in the Canonical and in the Grand Canonical ensemble, with the values of relative density
and chemical potential discussed in 2.2.

In the case of the Canonical ensemble, at each step we can either choose a particle at random
and change its orientation, or we choose two particles and exchange their lattice positions. At each
step one of these two operations is performed with equal probability. In the case of the Grand
Canonical ensemble, in addition to these moves, particles can also change type. At each step one
of the three moves is executed with probability 1

3 .
It is important to check that each allowed move leaves the Hamiltonian, and as a consequence

the whole energy landscape, invariant. This requirement is met if the operations that are performed
during the move derive from symmetries of the Hamiltonian itself. This is the case for all the moves
described above. Changing particles’ orientations reflects the invariance of the interaction map
under 6-fold discrete rotations. The exchange of two particles’ positions instead is allowed because
the interaction map is position independent. Lastly, the possibility to switch type depends on the
fact that the energies of the local structures do not specifically depend on the relative densities of
particles in the system.

The moves that we chose are delocalized, meaning that the position and orientation of each
particle at a given step is completely uncorrelated with the one at the next step. This allows
a faster exploration of the phase space. However, this type of move prevents us from inferring
anything on the dynamics and on the possible effects of kinetics on the final configuration.

Another thing that we should take into account is that for the system is easier to find the
ground state in the Grand Canonical ensemble. This can be under stood in terms of acceptance
probability of Monte Carlo moves. More precisely looking at the two moves that change the species
of the particle sitting on a given lattice site. In the Grand Canonical case a particle can mutate,
meaning that it can change species without affecting the configuration at any other lattice site. In
this case the maximum energy difference ∆E between final and initial configuration is 120 (using
α = 10). Conversely in the Canonical ensemble we have to exchange two particles, meaning that
two sites will contribute to ∆E. This doubles the maximum value that the energy difference can
take; as a result the acceptance rate is way smaller. To summarize, for this model local changes
in the configuration result into higher acceptance rates with respect to non local ones. For this
reason we will use Canonical simulations to look for optimal parameters. The optimized values
found in this ensemble will also work in the Grand Canonical one.

3.2 Choosing the starting temperature

Very often the free energy landscape on the possible configurations is an extremely complicated
function. More precisely, the number of local minima is very large. Finding the global minimum
in such a landscape can become a computationally hard task. One necessary requirement that
our algorithm must satisfy, is that the final result must be as independent as possible from the
initial condition. Therefore, it is very important to be sure that in the first steps of the simulation
the system is allowed to reach any configuration, independently form where it starts. If this
condition is not satisfied, the simulation trajectory will remain confined in a subset of all the
possible configurations and, if the global minimum does not belong to this subset, we will never be
able to observe it. At infinite temperature, the transition rates between each pair of configuration
are always one, meaning that all configurations are accessible. Practically, we will never achieve

9



infinite temperature, but the idea is to find the value of Tstart for which the energy difference
between states has a negligible effect on the transition rates; in this way we will ensure that the
final configuration won’t be determined by the location of the initial configuration.

The next two Sections will describe the two methods that we implemented to choose a value of
a starting temperature.

In Section 3.2.1 we will use the entropy as a measure of how much the simulation is free to move
across all configurations. Then in Section 3.2.2 we will understand why, in the case the system has
a crossover at a given temperature, it is important to start at a larger one.

3.2.1 The entropy as a measure of mobility in phase space

At infinite temperature, because of how transition rates between different configurations are calcu-
lated, each state is equally accessible. Therefore we expect that the probability to observe a given
pair of faces in the system, averaged over an ensemble of configurations, will be the same. In other
words, the infinite temperature probability distribution over the possible ordered pair of faces will
be uniform. Considering that the total number of ordered pair of faces is 144, one for each entry
of the interaction map, each of them will have a probability of 1

144 . Using this information we can
calculate the infinite temperature probability distribution over the local structures. Local struc-
tures, as we defined them in 2.1, are pairs of unordered faces. Therefore not all local structures
will be equiprobable. The local structures that correspond to diagonal entries of the interaction
map in Figure 3 will have half the probability of the off diagonal ones, which correspond to two
distinct ordered pairs of faces. Then the infinite temperature distribution for the local structures
will be

p∞(s = (a, b)) =

(
1

144 if a = b
1
72 if a ̸= b

. (3)

With (a,b) an unordered pair of faces and s a given local structure. Increasing the temperature
we expect that the probability distribution over the local structures pT (s) approaches p∞(s) up to
the temperature T ∗ where the two distribution become indistinguishable.

The specific value of the temperature for which this happens is of course pair dependent,
although the energy scale of the interactions is the same for every mixtures. As we discussed the
transition rate depends only on the ratio between energy and temperature thus we can expect
that there won’t be large differences in the value of T ∗ for different mixtures. Therefore, in this
Section we will get a qualitative idea of the value of T ∗ performing our analysis on one specific
mixture, (mixture (2,8)). In the next Section we will instead consider all mixtures to confirm the
conclusions obtained here.

Figure 10: Empirical distribution over local structures at T=200. Bins have been sorted in increasing
order. The dashed lines correspond to 1

144
(the lower) and 1

72
(the higher)
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Figure 11: Entropy as a function of temperature. In yellow the value of S∞.

We performed numerical simulations at a fixed temperature for values of T equal to 10, 20,50,100
and 200. At each temperature we sampled 1000 configurations. Between each sample we performed
a number of Monte Carlo steps equal to the size of the system (24× 24). At each temperature we
calculated the empirical distribution pT (s) over local structures. By visual inspection we confirmed
that pT (s) approaches p∞(s) when we increase the temperature. In Figure 10 we show the empirical
distribution calculated for T=200.

In order to better visualize the fact that the empirical distribution approaches the theoretical
one we decided to use the Shannon’s entropy, which given the probability distribution, can be
calculated using

S(p) =
X
s

p(s)ln[p(s)] (4)

For the infinite temperature distribution the entropy is S∞ = 4.33nats. We performed numerical
simulations at a fixed temperature for values of T in the range (1− 200) and at each temperature
we calculated the entropy of the empirical probability distribution. The entropy as a function of
temperature is plotted in Figure 11.

As we could have expected from Figure 10, the entropy measured for the empirical distribution
at T=200 and for the theoretical one is practically the same. This holds down to a much lower
temperature. By visual inspection we can suggest that at T=40 the system is still able to move
across all configurations of phase space. We are going to test this value for Tstart in the next
section.

3.2.2 Locating the crossover temperature

The discussion made in Section 3.2.1 seems to suggest that increasing the value of Tstart is always
advantageus. However, an excessively large value of the starting temperature has its drawbacks.
When the temperature is high, each configuration is equivalent, consequently, the system wanders
in phase space without focusing on any specific region. As a result, if the time spent at high
temperature is too long, the simulation will spend a lot of computational resources to ineffectively
visit high energy regions of the phase space. The goal is to find a temperature high enough to not
remain confined, but also small enough to waste as little computations as possible.

We can understand these two regimes as two different states of the system. The high tempera-
ture state, in which the thermal energy will allow the system to attain every possible configuration,
irrespective of its energy. Here the entropic contribution will dominate and the system will most
likely be disordered. Instead, in the low temperature state, the energy of the configuration will
replace the entropy as the main contribution of the configuration’s free energy. Therefore, at low
temperature most configurations will be inaccessible to the system. In the low temperature state
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Figure 12: Heat capacity against temperature for mixtures (3,5), (2,9) and (4,11).

most particles will be frozen and we won’t expect qualitative changes in the configuration. In be-
tween these two states, there will be some cross-over temperature at which the simulation switches
from the high-T regime to the low-T one.

These considerations suggest that the optimal value for the starting temperature must be above
the crossover, to navigate the full phase space, but not much higher, in order to not waste several
computations.

In order to spot the crossover temperature, we calculated the heat capacity using the fluctuation
dissipation theorem

Cv =
1

L2T 2
(⟨E2⟩ − ⟨E⟩2). (5)

Where L2 is the number of lattice sites.
At the crossover temperature the fluctuations in the energy are known to diverge, therefore we

expect the specific heat to have a peak at the crossover.
To confirm this we performed numerical simulations for all 49 mixtures annealing them from

Tstart = 40 to Tend = 0. For each mixture we performed 50 independent simulations. In each of
them we calculated the specific heat as a function of temperature using Equation 5. We averaged
the curves of the 50 simulations for each of the mixtures and plotted the resulting curve. Three
examples are presented in Figure 12.

By visual inspection of the specific heat curves for all mixtures we see that the crossover
temperature happens below T=40 for all of them.

Therefore we decided to use Tstart = 40 for all the simulations.

3.3 The number of Monte Carlo steps

In this section we will discuss how, fixed the starting temperature, we can still improve the algo-
rithm’s ability to look for equilibrium equilibrium configurations. In particular in this section we
are going to optimize over the number of Monte Carlo steps that the simulation performs at each
temperature, and on the number of temperatures steps performed to cool down the system (NT ).
As in the case of the starting temperature we need to balance performances and computational
costs. Having enough steps at every temperature is essential to equilibrate the system at each of
them. If we cool down too fast, the simulation will not have the time to explore all the configura-
tions accessible to each single temperature. On the other hand spending too many steps at a given
temperature is just a waste of computational power. The same reasoning holds for the number of
temperature steps.

The optimal number of steps for each temperature will depend on the system’ size, for this
reason we will define 1 Monte Carlo update as a number of Monte Carlo steps equal to the system
size. We will look for an optimal value of Nupdates.

The optimal value for Nupdates will also depend on the mixture. To understand which mixtures
requires more updates we simulated one system for all 49 mixtures using Nupdates = 1000 and
NT = 100. These values have been chosen to be able to perform all simulations in a reasonable
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(a) (6,7) (b) (2,8)

Figure 13: Configuration for two representative mixtures obtained with Nupdates = 1000 and NT = 100.

computational time. Looking at the snapshots of the final configurations that the algorithm found
for all different mixtures we can make the following considerations. Some mixtures have reached
their ground state, for example the mixtures (0,13), (0,8) or (0,1). In these cases the single species
could tile the plane with zero energy, therefore the ground state, which is the situation that we
observe in the snapshots, is a complete phase separation.

When the species composing the mixture become less symmetric, it is not intuitive what the
ground state will look like. There are two different hint that we can use, when looking at a snapshot,
to suppose that the ground state configuration has not been reached. These two situations are
exemplified in Figure 13.

In the mixture of Figure 13a, it seems that the system could tile the plane with a repetitive
ordered pattern. Although, because of a too small Nupdates we observe many distinct domains
separated by defects. Maybe increasing the annealing time we could observe a perfectly ordered
structure.

In the case of Figure 13b, we observe phase separation. There are two signs that the simulation
might have been carried out too fast. First, there are multiple clumps of the brown phase; what we
expect is to see one single cluster. Second, the blue phase seems to be rich of frustrated particles;
namely, particles that cannot match all their patches.

(a) (6,7) (b) (2,8)

Figure 14: Average energy per particle during the annealing for mixtures (6,7) and (2,8). The overline
indicates that the curves are obtained averaging over the ensemble of simulations. All simulations use
NT = 100 apart from the green curves which have NT = 200.
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For frustrated systems, where the degeneracy of the energy levels becomes large, it is hard to
find the exact global minimum because of the several local ones.

We are going to use these mixtures to optimize the value of Nupdates. To quantitatively eval-
uate the performance of the algorithm, we used the average energy per particle ⟨ε⟩ of the final
configuration. For both mixtures, we simulated an ensemble of 50 systems, and for each of them,
we kept track of ⟨ε⟩(T ). The results for different values of Nupdates are showed in Figure 14.

The curves show that the mixture (6, 7) consistently reduces the final energy per particle when
the value of Nupdates is increased; furthermore, also doubling the value of NT seems to improve the
algorithm performances. On the other hand, for mixture (2, 8), the value of ⟨ε⟩ at zero temperature
seems to scarcely improve when Nupdates increases above 5000. To have an idea of how the final
configurations changed, we can again look at a snapshot obtained with the largest values of the
parameters: Nupdates = 10000 and NT = 200 (Figure 15).

(a) (6,7) (b) (2,8)

Figure 15: Representative final configurations obtained for the test mixtures using 200 temperatures and
Nupdates = 10000.

In opposition to what we observed in Figure 13 mixture (6, 7) creates two large crystalline
domains and (2, 8) forms a single cluster of brown particles.

The formation of crystalline domains in mixture (6, 7) is related to the existence of three
equivalent ground states with different orientations of the ”stripes”. If at the crossover, the system
starts nucleating domains with different orientations in different locations, it will be hard for the
algorithm to rotate all of them in the same orientation. This difficulty could be overcome if instead
of using single particle moves, one introduces cluster moves, namely Monte Carlo moves that change
the position of many particles at the same time.

At this stage, the mixed phase observed in (2, 8) does not seem to order. The reason might
be related to finite size effects. Indeed, once the brown cluster is formed, it imposes some specific
boundary conditions on the blue phase. These conditions might not match the periodicity of the
presumed ordered phase, which consequently will remain disordered. One idea could be to use
algorithms such as the Gibbs Ensemble algorithm, which are specifically tuned to study phase
separation.

The snapshots of Figure 15 might not be the ground states of the mixtures. However they
clarify what is the behaviour with respect to mixing for of both of them. Mixture (6, 7) tends to
mix in an ordered pattern, instead mixture (2, 8) clearly wants to phase separate and we don’t
expect an abrupt change in the behaviour in the ground state.

Therefore we can consider the values Nupdates = 1000 and NT = 200 good enough for the
purposes of this work. We will use these values in all the following discussion.
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4 The Phenomenology of the Patchy Particle Model

We simulated all the different mixtures in both the Canonical and Grand Canonical ensemble. We
simulated 50 independent realizations for each mixture to have a sufficient number of systems. In
this way we try to eliminate the effects of configuration-to-configuration fluctuations. In Figures
16 and 17, we present one representative snapshot for each mixture.

This Section will be dedicated to comment all the different scenarios observed in the simulation
results. In Section 4.1, we will address the results obtained in the Canonical ensemble. Instead in
Section 4.2 we will discuss the Grand Canonical ones.

From now on, in the whole Section 4, we are going to refer to the mixtures of Figure 16 as
(C,N1,N2) and of Figure 17 as (G,N1,N2) where C and G stand for Canonical and Grand Canonical,
and N1 and N2 are row and column numbers, respectively. The mixture (C/G,0,0) will then be
the top left corner.

4.1 Results in the Canonical Ensemble

In the Canonical ensemble, some mixtures tend to mix in a uniform phase while others form two
distinct phases. We are going to refer to these two stereotypical situations as ”mixed” and ”phase
separated” systems.

Phase separated systems can be classified into two broad categories. First, the ones that sepa-
rate into two pure phases, meaning phases composed of only one species. For example, the mixtures
(C,0,1) and (C,2,3). Second, the ones that form mixed phases, where both species participate. This
is the case of (C,1,1) and (C,1,4). These mixtures seem to suggest that the reason behind phase
separation is the fact that the proportion of the two species in the mixed phase is not the same as
the one imposed on the system, in this case 1:1.

One clear example of this is system (C,3,6). In this case, the mixed phase is ordered, thus we can
calculate the relative proportion of particles using the unit cell of the pattern. Out of four particles,
only one must be brown to perfectly tile the plane with the mixed phase; therefore, the remaining
ones end up forming a second pure brown phase. Another example is (C,4,3). In this case, the
particles in excess (particle 4) do not fit well together as particles 8 did in (C,3,6), therefore they
do not come together in a single clump. Instead, the superfluous particles become ”star-shaped”
defects of the crystalline mixed phase. What we can expect from the Grand Canonical simulations
of this system is to find an ordered phase with a value of the relative density different from 1.

If a given system admits a stable mixed phase where both particles are equally present, then we
can observe it in the Canonical ensemble. This is the case, for example, for (C,2,4) or for (C,0,5).
The former presents a crystalline ground state. For the same reasons mentioned in Section 3.2 for
the mixture (6,7), there are multiple crystalline domains corresponding to equivalent equilibrium
configurations. Conversely, (C,0,5) does not display any sign of ordering, and multiple particles
remain frustrated.

4.2 Results in the Grand Canonical Ensemble

In the Grand Canonical ensemble, the relative density of the two species is not fixed. For this
reason, the equilibrium configurations will display only one phase of the system, more precisely the
lowest energy one. Many mixtures end up being in a single pure phase. This is often the case when
one of the two particles can tile the plane without any mismatching patch; as for example particle
0 or particle 8. Among the mixtures whose equilibrium state comprises only one species, (G,3,6)
is particularly interesting. If we look at its canonical counterpart we see that both phases, the
pure and the mixed, could tile the plane with zero total energy. Although in all Grand Canonical
simulations of the mixture (5,8) we only observe the pure brown phase. This behavior can be
understood by the following entropic argument. Particle 8 has only two distinct configurations,
each of them corresponding to three different orientations. Instead, for particle 5 all six orientations
correspond to distinct state. This results in a higher degeneracy of the pure brown phase with
respect to the mixed one. Consequently, it becomes improbable to observe the mixed phase for
(G,3,6) even if it is energetically equivalent to the pure one.
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Beyond pure phases, we observe that a non-negligible subset of systems mixes at equilibrium.
We can distinguish two categories of mixed phases. Crystals, in which the particles tile the whole
plane with a periodic pattern; and amorphous phases where there is no evidence of ordering. The
results for mixture (G,4,3) confirm the hypothesis we made using its Canonical equilibrium state.
The system periodically tiles the lattice with an ordered phase where the relative densities of blue
and brown particles are 2:1 relaxing all defects.

Crystalline phases do not present multiple domains in the Grand Canonical simulations; in
contrast with what happens instead for their Canonical equivalents. This supports the suppositions
that we made in Section 3.1.

Figure 16: Representative configuration for each mixture after the annealing in the Canonical ensemble
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Figure 17: Representative configuration for each mixture after the annealing in the Grand Canonical
ensemble

5 Classification of different phases

The discussion made in Section 4 showed how the different equilibrium configurations can form two
qualitatively different phases; pure and mixed. Furthermore, we observed two distinct behaviors
of mixing: crystalline patterns and amorphous ones.

The main goal of this section will be to make a quantitative classification of the mixtures
based on their equilibrium phases obtained in the Grand Canonical ensemble. In Section 5.1 we
distinguish between mixed and pure phases. After that, in Section 5.2 we find a scalar parameter
to discern between amorphous and crystalline configurations.

5.1 Pure or Mixed?

In pure phases, one of the two species has completely disappeared from the lattice. On the contrary,
in mixed phases, both particles participate in the equilibrium configuration. Therefore, one natural
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parameter that allows us to distinguish between these two scenarios is the density of the sparsest
particle ρs. The strength of this indicator is that it does not distinguish which species disappears,
thus removing the symmetry between pure brown phases and pure blue phases.

The classification of each system has been done using the ensemble average of ρs over fifty
independent simulations. One phase is classified as pure if ρs ≤ 0.01. We set the threshold just
above zero to take care of rare fluctuations which could cause a misclassification of some mixtures.

In Figure 18, we can observe all the systems ordered by their value of ρs.
Pure and mixed phases are correctly distinguished. This can be understood by looking at the

different snapshots in Figure 18. On the left, for values of ρs close to zero, we have phases composed
by only one species, which we classify as pure. On the right instead, we have the phases in which
both species are present.

Among mixed phases, there seems to be a lack of a preferred value for the equilibrium density
and the value of ρs spans uniformly the range form 0.01 to 0.5.

Figure 18: Density of the sparsest particle in increasing order for all the 49 mixtures. Overline means
average over all the equilibrium configurations obtained for each system in the Grand Canonical ensemble.

5.2 Crystalline or Amorphous?

This section will be dedicated to the search for a parameter able to discriminate between crystalline
and amorphous phases. Crystals present a high degree of ordering and the pattern that tiles the
plane is periodic. Instead, amorphous states seem to lack of any degree of correlation between
local environments in different locations of the lattice. We can quantitatively rephrase these two
statements using the real space correlation function. To this purpose, it is useful to define

Θ1(i) =

(
1 if site i is occupied by species one

0 otherwise
. (6)
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Then the real space correlation function for a given mixture is defined as

G(ri − rj) = ⟨Θ1(i)Θ1(j)⟩. (7)

However, the system has discrete translational invariance, thus Equation 7 can be simplified to
G(r) = ⟨Θ1(0)Θ1(r)⟩.

This function expresses the probability of finding a particle of species one in position r given
that a particle of the same species is in the origin. G(r) is the same for both species up to a
constant shift. Indeed, we have that Θ2(i) = 1−Θ1(i) and

⟨Θ2(i)Θ2(j)⟩ = 1− ⟨Θ1(i)⟩ − ⟨Θ1(j)⟩+ ⟨Θ1(i)Θ1(j)⟩ = ⟨Θ1(i)Θ1(j)⟩+ const. (8)

Therefore it makes no difference to talk about the correlation function of one species or of the
other. For this reason we can refer to G(r) as the real space correlation function of the mixture. In
Figure 19 we plot G(r) for two mixtures, (3,7) and (6,7), for which the equilibrium configuration
in the Grand Canonical ensemble are an amorphous phase and a crystalline one respectively.

(a) (3,7) (b) (6,7)

Figure 19: Real space correlation function G(r) for an amorphous and a crystalline phase. The origin is in
the center of the lattice. Bright sites correspond to higher probability compared to the darker ones. The
color coding is normalized with respect to the highest peak.

Figure 7 shows that in amorphous phases the correlation function decays as the distance from
the origin increases. Instead for crystalline phases, even far away from the origin there are some
sites which the probability of having the same species as the one sitting in the origin is still
high (bright spots). This comes from the fact that correlation function is calculated over the 50
configurations. Therefore in amorphous states, where there is not a well defined pattern the fact
that a particle sits in the origin does not increase the probability that, in a random equilibrium
configuration, one of the same species sits on any other specific lattice site. Instead when there
is crystalline order, there are a finite number of crystalline configurations that repeat. These are
for example the 3 equivalent ground states for mixture (6,7). In those specific configuration each
particle has well defined position. Therefore, in a random equilibrium configuration, some sites
have a higher probability to have the same species as the one sitting in the origin.

Now we want to use the information contained in the correlations to quantitatively distinguish
between the two phases. Employing G(r) for this purpose turned out to be challenging. Instead,
we found that correlations in reciprocal space are the most suitable for our goal. The equivalent
of the function G(r) in reciprocal space is the structure factor

S(q) = ⟨bΘ(q)bΘ(q)∗⟩ (9)

whereˆdenotes the Fourier transform and ∗ complex conjugation.

19



The structure factor takes values on the wave vectors q of the triangular lattice’s Brillouin
zone. Its peaks correspond to the characteristic wave vectors of the pattern that tiles the lattice.
Therefore, we expect that crystalline phases will display well-defined peaks for specific values of
q, the so-called Bragg peaks; instead, amorphous phases will show a much broader range of wave
vectors with a non zero value of S(q). In Figure 20, the structure factors are presented for the
same mixtures as in Figure 19.

(a) (3,7) (b) (6,7)

Figure 20: Structure factor S(q) for an amorphous and a crystalline phase. Color coding is the same as
employed in Figure 19. The color coding is normalized with respect to the highest peak. We set the q = 0
mode to 0.

We want now to extract from this correlation function, a scalar parameter, that is able to
distinguish between crystalline and amorphous configurations. We will first rewrite S(q) as a
function q, the absolute value of q. This can be simply done by summing over all the values of
q which are at the same distance from the origin. Then in order to compare structure factors of
different mixtures we will normalize the function S(q) such as its integral is equal to one.

(a) (3,7) (b) (6,7)

Figure 21: Structure factor S(q) for an amorphous and a crystalline phase. The title of the figure is the
height of the tallest peak.

In crystalline phases, S(q) will be sharply peaked on its Bragg peaks. Instead, in amorphous
states, the structure factor will be non-zero over a wider range of wavevectors. Also in amorphous
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states, different degrees of ordering are reflected in their structure factors; the more the structure
factor is peaked on some specific values of q the more ordered we expect the configuration to be.
Ordering is not the only aspect we can perceive in the structure factor. For example, chiral S(q)
corresponds to chiral phases, meaning phases in which one of the two species exhibits a defined
chirality (species 6 and 7). Additionally, peaks at small wavevectors indicate the formation of
single species’ clusters.

In crystal phases, the mass of the function S(q) will be all concentrated on the Bragg peaks,
whose height approaches 1; instead in amorphous phases it will shared between different values
of q. Therefore we can expect that the maximum of S(q) in amorphous states is much smaller
than one. These considerations are supported by the curves in Figure 21. We then try to use the
height of the tallest peak in the structure factor as an indicator to discern between crystals and
amorphous phases. In Figure 22, we plotted the cumulative distribution of mixtures against the
height of the tallest peak. In other words, the curve in Figure 22 indicates, for any given height,
what fraction of systems has a tallest peak shorter than that.

Figure 22: Height of the tallest peak in the structure factor S(|q|).

We can clearly distinguish between two groups of mixtures. On the right the crystalline phases,
whose maximum is almost the only nonzero value of S(q). On the left instead the amorphous
phases, where the support of the structure factor spans a wider range. The maximum of the struc-
ture factor can be successfully used as a classification parameter to distinguish between amorphous
and crystalline phases.

21



6 Discussion

In the Introduction, we stated that mixtures of multiple species could ease frustration by exploiting
the combinatorial freedom that derives form having various component. In this work we tried to
understand this mechanism in the framework of binary mixtures of patchy particles. Simulating
the system in the Grand Canonical ensemble we were able to distinguish three types of ground
state configurations (Figure 17).

Some systems were able to fully relax frustration, finding a zero energy ground state, using
only one species. We named pure phases the ground states of those systems. Some examples
are the ground states formed by particle 0 and particle 8. In these cases one of the two species
participating to the mixture is able to tile the plane in a configuration of zero energy.

In other cases instead, we found that the ground state configuration is a co-participation of both
species. We were able to use the information contained in the correlation functions to distinguish
two classes of these mixed phases; crystalline and amorphous (Section 5.2).

In the crystalline phase, the two species cooperate to form a periodic pattern. Interestingly,
particles forming this kind of phases cannot tile the plane in an unfrustrated ground state when
taken independently. Instead when taken in pairs of particles whose interactions are somehow
compatible they can relax all the frustration and find a zero energy ground state. One further
consideration that we can make on these phases is that almost all crystalline phases, with exception
of mixture (2,4), are mixtures of two species which transform into each other by color exchange
(Figure 7). This information might be relevant to further investigate what makes the interaction
between two sub units compatible, and therefore able to optimally relax frustration.

The last category of phases, are the amorphous ones. Conversely to what happens for crystalline
phases, in these cases the frustration is not fully relaxed and some particles remain with unsatisfied
interactions. These phases suggests that, for those mixtures, the combinatorial freedom gained by
adding one particle type, is not enough to fully balance the complexity of the two species. We
might expect is that some of them, increasing the number of species in the mixture will be able to
fully relax frustration.

In future works, we will investigate further these three scenarios to understand which char-
acteristics make a species more or less complex. These question can be addressed by studying
mixtures of a larger number of species. An interesting question could be, for given species, what
is the minimum number of particles that we need to add to completely relax frustration. This
question could be helpful to understand what makes some particles more complex than others.

Computationally speaking, simulating mixtures with multiple particles will become more and
more expensive. Having some analytical framework would be of great help to at least make some
educated choices about what species might be interesting among all the ones present in the vast
space of all possible mixtures. At the moment, in our group, we are trying to develop a mean field
theory of the model that we presented. The simulations carried out in this project will serve as a
validation set for the predictions made with such model.
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[1] Héctor Garćıa Seisdedos, Charly Empereur-mot, Nadav Elad, and Emmanuel Levy. Proteins
evolve on the edge of supramolecular self-assembly. Nature, 548:244, 08 2017.

[2] Lara Koehler. Principles of self-assembly for particles with simple geometries and complex
interactions. Thesis, Université Paris-Saclay, Jul 2023.
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