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Abstract
This work aims to describe how the behaviour of an agent-based system changes

while the will to act collectively of its components is tuned. By tuning this quantity,
the equilibrium state that is reached by the system of agents changes, some theo-
retical phase diagrams that show this result for a variant of the Schelling model are
already present in the literature. The main result of this work is the computational
verification of these theoretical phase diagrams and a first step in the direction of
the generalization of the model with which the diagrams have been produced. The
framework in which this work is set is socio-physics: the model which has been used
as the reference agent-based model throughout our analysis is a Schelling-inspired
model for the problem of urban residential segregation. The analysis we performed
includes the definition of a useful order parameter for the segregation/crowding
problem and the construction of an algorithm which simulates the behaviour of
such a system. A possible application to economics and a more general discussion
on the topic will be given at the end of the report.
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Introduction
Agent-based models (ABMs) are computational models that try to simulate the behaviour of a
complex system describing its dynamics at the level of the individual element, the agent. This
very general definition makes it very easy to use this type of models in many different fields
of science. From ecology to economics, from social science to physics, with the more available
computational power of machines, ABMs started to spread from the 1950s onward. To simulate
an ABM means to create a virtual ensemble of agents that evolve following some rules. As
stated in [1], the outcome of ABMs can be either a cycle or an equilibrium distribution for the
agents’ state, characterized by its shape and the eventual presence of macroscopic structures or
patterns. The emerging of properties at the macroscopic/system level comes out from the direct
or indirect interactions between the individuals we considered in the model. The dynamics of
the agents is autonomous: there exists either an evolution equation for the single agent’s state
or a utility function that the agent has to maximize/minimize. The main difference with respect
to system-based models (such as the Ising model) is that in ABMs each individual component
tries to maximize its own utility, not the system’s one.

Usually physical systems behave in a system-based way: that happens for example in a
thermodynamic gas or in a magnet. In the work of V. Venkatasubramanian [2], the author
explains that a physical interacting system can be treated as an agent-based model if one can
find the proper individual evolution law, that is the one which explains the macroscopic emergent
properties of the global system. With this method one could consider even thermodynamics as
a game of many different individuals with the proper utility function. In [2] these physical
systems are referred to as 0% purposeful agent-based models, meaning that the agents (in this
case molecules or spins) do not have any intention in their actions. This is not the case in a
society of completely rational agents (100% purposeful agents). If indeed physics is the typical
framework in which we can find non purposeful agents, economics and game theory are the
classical environment for fully rational and intentional individuals.

Game theory is the theory which considers the most pure form of rational agents’ behaviour,
with agents analyzing the possibilities of all the other individuals playing and moving just
towards a rise of their own utility function. This decision criterion may be relaxed introducing
some noise or randomness such as in evolutionary game theory. Furthermore, for example the
description of active matter is instead individual-based but usually not competitive and rational,
it therefore represents a middle way between the physical and the game-theoretical cases [2].

With this perspective on these different approaches one deduces that a whole spectrum of
models would be covered just by the tuning of a parameter which describes the competition
between collective (physics-like) and purely competitive (game theory-like) dynamics (α in [3]).
The study of the behaviour of a system while tuning this parameter will be the main focus of
this work. During the analysis we will firstly introduce the problem of segregation in society
and the associated famous Schelling agent-based model, which will act as our reference ABM.
Once obtained some conclusion and result on a variant of this problem following [3], we will
discuss the phase transition which is driven by a competition between the collective and indi-
vidual components of the agents’ dynamics. We will then propose an algorithm to recover the
theoretical phase diagrams present in the literature. Finally some generalization results that
could improve the applicability of the model to a real situation will be obtained and the more
economics-related topic of Pigouvian taxes will be discussed. A general discussion on the tran-
sition between bottom-up approach and reductionism will be present in the conclusion of this
work as a wide generalization of the thesis’ topic.
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Premises

1 The segregation problem and the Schelling model
Even if the main focus of this work will not be the analysis of the Schelling model, it is important
to understand from what context and with what purpose this ABM has been created and why
it has become important in the physical context too.

Social segregation is the phenomenon characterized by the separation of two or more social
groups, which, depending on the cases, may have limited contacts, relations and interactions.
This phenomenon could cause an uneven distribution of individuals in cities (spatial segregation)
and an inhomogeneous use of services between different wage classes, nationalities or other social
groups. The issues arising from segregation are mostly the emergence of criminality in isolated
neighborhoods and the improved difficulty of social mobility [4]. This problem has therefore
been studied in order to improve political policies that might eradicate it. Historical examples
of the segregation problems are for example the Apartheid [4] or the racial segregation in the
United States. In particular, an example of why it is important to study this problem still today
is given by the situation in the USA. Even if american formal segregation is finished de jure in
1964 with the “Civil rights act”[5], it is still de facto present in the residential distribution in
cities and in the access of people to the health care system in America [6]. This is true also
in other contexts in which effective segregation in the past has caused a less visible residential
segregation which is still present.

The problem of segregation has in the recent years spread on the virtual platforms too, the
known phenomenon of echo-chambers in social networks creates de facto segregated communities
of people with respect to their access to information [7].

1.1 A brief history of the Schelling model
The most important model for the study of socio-spatial segregation is the Schelling model [8].
The relevance of the Schelling model in the description of the segregation phenomenon is due
to the manifest importance that the complex character of the described system assumes in this
model. The model is able to describe a phase transition between the mixed homogeneous case
and the segregated state for a schematized city; so it is able to correctly predict the emergence
of the macroscopic behaviour of the system.

This is an important result both from the physical perspective and from the sociological
point of view; that’s why, since when it has been proposed, literature about the Schelling model
has always been produced, introducing slight changes in the model and finding new results. We
will follow the work of Antoine Lucquiaud [9] in order to summarize the history of the Schelling
model in a few lines and in the next paragraph we will describe how the Schelling model works.
It’s fundamental to understand that most of the papers produced in the recent years actually
describe and study some slight variations of the original Schelling model [8], which are introduced
in order to be able to obtain stronger results.

H.P. Young [10] is the first one which studies the Schelling model using game theory and
Markov chains’ properties following the original evolution rules. Then a statistical dynamics
approach for slight variants of the model have been proposed both by M. Pollicott et H. Weiss
[11] and L. Gauvin et al. [12], in particular L.Gauvin et al. could obtain a proper empirical
phase diagram. In [13] Christina Brandt et al. find a proper probabilistic and mathematical
description of a one dimensional Schelling segregation, and Hagen Echzell et al. in [14] introduce
the possibility of having more than 2 types of agents in the city. After having introduced the
scheme of the Schelling model, in this section we will focus on the result of L.Gauvin [12]
(obtained in 2009), which is probably the most significant one for our scopes, then in the rest
of the paper we will mainly talk about the version introduced in [3], which is more focused on
the competition between collective and individual behaviour.
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1.2 The Schelling model and its phase diagram
The Schelling model as presented by its author in [8] is an evolution algorithm for the positions
of two types of agents placed randomly on some square grid representing a city. As said, the total
population is divided into two groups and placed on a stylized two-dimensional area leaving some
empty space, everyone’s membership in its group is permanent and recognizable. Everybody
cares about the type of people living in its neighbourhood in the same way, moreover everybody
in the model is capable of moving to an empty space if he is dissatisfied with the neighbourhood
in which he is. In order to define and quantify when an agent is discontent or unsatisfied with
its neighbourhood a tolerance parameter T is defined. This parameter depends on the number
of opposed-type and same-type agents present in the neighbourhood, as well as on the number
of empty spaces. There are many different ways in which tolerance can be defined: one could
ask that in a neighbourhood a minimum number of same-type agents is required in order for an
agent to be satisfied or one could define a content agent as one which has up to some threshold
number of opposed-type agents in its surroundings. In any case in the original model a discontent
individual moves to the nearest vacant spot that surrounds him with a neighborhood that meets
his demands.

By iterating the process we reach a final state which can be either segregated or mixed
depending on the tolerance of the agents. At this level we do not quantitatively define the
distinction between segregated and mixed state as this depends on the order parameter of
segregation one considers. We will talk about this in section 3.2. The main result of the model
proposed by Schelling can be stated basically in one phrase: "a low tolerance is not necessary
for the emergence of segregation". This is a very strong result from the sociological point of
view as it explains that segregation can emerge also in a society which is highly tolerant. The
more physics-related result is instead the presence of a phase transition at a threshold level of
the tolerance control parameter. We can have a clearer view of this transition in the reported
phase diagram: in figure 1 we show the resulting phase diagram obtained by L. Gauvin et al.
for a slightly varied version of the original Schelling model. Even if this is not the diagram of
the original Schelling model, it is representative for many Schelling-like models at least for the
different phases that there appear.

In this model also content individuals are able to move to empty spaces and randomly chosen
agents could move to any vacancy which had a satisfying neighbourhood, not just the nearest
one. Moreover a content agent is in this case defined as one which has a number of unlike agents
Nd lower than (or equal to) a fixed proportion T of all the agents in the neighborhood, where
T is the aforementioned tolerance control parameter.

The diagram refers to 2 different parameters: the tolerance T and the vacancies density ρ,
which quantifies the number of empty places in the grid.
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The importance of this result is that it
shows the existence of four phases:

1. segregated state;

2. mixed state;

3. diluted segregation state;

4. frozen state

Moreover it describes the transitions be-
tween all of them (see [12]).
In order to recover this result some defi-
nitions of the proper order parameters for
the segregated state have been introduced.
We will talk about the problem of the order
parameter in segregation in section 3.2, fo-
cusing on the variant of the Schelling model
proposed in [3].

Figure 1: Phase diagram of the
Schelling model as found in [12]

2 Competition between individual and collective behaviour
After having introduced the Schelling model and its main features, we will now present a variant
of it which has been proposed in [3]. As we said before, we will use this variant of the Schelling
model as a reference ABM in order to study the transition that arise while tuning the parameter
that describe the collective will of the agents. In this version, the segregation problem will be
put aside in order to focus more on the main topic of this work. In this section we will explain
all the theoretical reasoning that brought S. Grauwin et al. in [3] to solve this variant of the
Schelling model, after this we will recover computationally the theoretical results and we will
work in the direction of the generalization of the model.

2.1 A Schelling-like model for the crowding problem
The main difference of the Schelling-like model introduced in [3] is that just one type of agent
(and not 2 or more) is present on the grid. That is because it is easier to find results for a 1-type
population and then generalize them to a population made up of a higher number of types of
agents, this has also been done in the same paper; in the final section the authors introduce a
second type of agent and find results about the segregation problem with this model. However,
as we will mainly focus on the results obtained for 1 type of agents it would be hard to think
about the segregation problem with just 1 type of individuals, we will consider this version as a
possible model of what we call a crowding problem, which we present here below.

Imagine that in a city agents would like to live in a neighbourhood in which the density has
an optimal value which is around half of the maximum number of people that a district can host.
Let’s also say that it is in general better for the agents to stay in an overcrowded neighbourhood
rather than in a very sparse one and that preference is quantified by an asymmetric parameter
m.

Then the simplest possible utility function that can describe the preferences of an agent
would be the one represented in fig. 2.
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The modeled city is divided into Q blocks, each
block containing H cells or flats, each cell can
contain at most one agent, the number nq of
agents in the block q satisfies nq ≤ H, the den-
sity of agents is ρq =

nq

H . The state x = {ρq}
represents the coarse-grained configuration of
the city; we will see afterwards that this is the
only useful information for the dynamics of the
agents because u depends just on ρ and not on
all the possible configuration of agents one may
have inside a district.

0.5 1

0.5

1

1.5

ρ

u u = 2ρ for 0 < ρ < 1
2

u = m+ 2(1−m)(1− x) for 1
2 < ρ < 1

Figure 2: Utility u(ρ)

The interaction with the other agents is in this model taken into account by the fact that the
utility function of an agent depends on the density of agents in the same neighbourhood, that is
to say that the presence of other agents in the same state may influence an agent’s behaviour.

In this case the analogue of the segregated state will be the concentrated state, meaning
that the population in that case will be mostly concentrated in a few number of neighbourhoods,
and the analogue of the mixed state will be a homogeneous state over all the districts of the
city.

As we will see, we will be able to show a transition between the two states which occurs
when we tune a parameter which represents the aim of an agent to act considering the effects
of its action on the others. Of course in this 1-type ABM we will not consider the tolerance
anymore, because of the fact that we just have one type of agent. α is confined between 0 and
1 and in the two extreme cases we have either all the people moving just according to their own
utility function (α = 0) or people moving just according to the improvement of the collective
utility function (α = 1), which is defined as the sum of all the utilities of the agents.

In the general case agents agents will have to consider doing a move according to the quantity:

G = ∆u+ α(∆U −∆u) (1)

That means that they move if G is positive.
If we want to introduce some irrationality/noise in the agents’ choice we can introduce

also the temperature parameter T (not to be confused with the tolerance parameter we talked
about before). This parameter quantifies the irrationality of the agents’choices, meaning that
if T is large, even if G is positive an agent may refuse to move (or viceversa) according to the
probability law defined below. At T = 0 the probability of accepting a proposed move from
neighbourhood x to neighbourhood y is 1 if G > 0 and 0 if G < 0.

At T ̸= 0 , the probability for an agent to move from a neighbourhood x to a neighbourhood
y is chosen to be:

Pxy =
1

1 + e−G/T
(2)

This probability distribution has been chosen according to some criteria:

1. the probability should be equal to 1 when G > 0 and T −→ 0

2. the probability should be equal to 1
2 for T −→ ∞ as in that case agents would just act

irrationally and G would not mean anything anymore
3. the exponential behaviour of such an acceptance rule for the proposed move between

district x and y is the typical one for Metropolis Monte Carlo algorithm, which will be the
one we will use in the computational analysis

A very strong and important point of the analysis which has been done in [3] is the fact
that we can re-write the quantity G as a difference of 2 different values of a potential function
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G = V (y) − V (x). We have been clearing this step in the theoretical demonstration in the
appendix section "Congestion and potential games".

By assigning a potential energy to the different configurations, we can make the analogy
with the physics of systems in thermal equilibrium. In particular we can define the following
function F , analogue to an effective free energy except the sign:

F (x) = V (x) + TS(x) (3)

where S(x) is the entropy of the configuration x = {ρq} (not to be confused with the neigh-
bourhood x we considered before), which represents the logarithm of the number of possible
rearrangements of agents in the cells, given x.

The function V (x) is a potential related to a “link” function L(x), connecting the individual
and collective levels, such that ∆u = ∆L. The function V would thus be given by

V (x) = (1− α)L(x) + αU(x) (4)

The existence of a potential is not in general guaranteed, but in the case of the model the
game is a congestion game, hence it is a potential game (again see appendix). By analogy to
the entropy, we assume that L(x) can be written as a sum over the blocks, namely L(x) =
H

∑
q l(ρq). Considering a move from a block at density ρ1 to a block at density ρ2, ∆L reduces

in the large H limit to l′(ρ2) − l′(ρ1), where l′ is the derivative of l. The condition ∆u = ∆L
then leads to the identification l′(ρ) = u(ρ), from which the expression of l(ρ) follows:

l(ρ) =

∫ ρ

0

u(ρ′)dρ′ (5)

From this result we directly get that

V (x) = αH
∑
q

ρqu(ρq) + (1− α)

∫ ρ

0

u(ρ′)dρ′ (6)

The quantity F (x) is important because if we consider all the possible configurations with
the same density distribution in the districts as equal, then the equilibrium probability of any
of this configurations is:

Π(x) =
1

Z
eF (x)/T (7)

where Z is the partition function which normalizes the probability distribution.
That is because the dynamics characterized by the transition probability defined in (2)

satisfies detailed balance with respect to this probability distribution for the states. There are
indeed eS(x) configurations of the system with the coarse grained configuration x, then the total
probability of passing from one particular configuration with coarse grained configuration x to
any of the single configuration that have y as coarse grained configuration one is: eS(y)Π(x)Pxy,
detailed balance writes:

eS(y)Π(x)Pxy = Π(y)Pyxe
S(x) (8)

from which, by using the definition of F (x) we find the function Π(x) as defined above.

Π(x)
Π(y)

= e(F (x)−F (y))/T (9)

The entropy has for large H the standard expression S(x) = H
∑

q s(ρq), with:

s(ρ) = −ρ ln ρ− (1− ρ) ln(1− ρ) (10)

The expression of F (x) is therefore:
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F (x) = H
∑
q

fq(ρq) (11)

f(ρ) = −Tρ ln(ρ)− T (1− ρ) ln(1− ρ) + αρu(ρ) + (1− α)

∫ ρ

0

u(ρ′)dρ′ (12)

The probability Π(x) is dominated by the configurations x = {ρq} that maximize the∑
q f(ρq) under the constraint of fixed ρ0 = Q−1

∑Q
q=1 ρq.

The objective here is to know if the stationary state, so the state associated to the absolute
maximum of the free energy, is homogeneous or not; in order to compute this we will use the
double tangent method, a common tool used to find transitions points in binary systems [15].
The state with the global density ρ0 is unstable if there exist ρ1 and ρ2 such that:

γf(ρ1) + (1− γ)f(ρ2) > f(ρ0) (13)

this does not mean that f is convex in the interval [ρ1, ρ2], because for that we would need for
any couple (ρ1, ρ2) inequality 13 to be true; but it corresponds to say that f(ρ) is a non concave
function.

The parameter γ corresponds to the number of neighbourhoods with density ρ1. The values
of ρ1 and ρ2 are obtained by optimizing the value of the quantity:

γf(ρ′1) + (1− γ)f(ρ′2) (14)

under the condition:
γρ′1 + (1− γ)ρ′2 = ρ0 (15)

Deriving 14 w.r.t. ρ′1 and ρ′2, we get to 2 equations that the function f has to satisfy.

∂γ

∂ρ′1
f(ρ′1) + γ

∂f

∂ρ′1
− f(ρ′2)

∂γ

∂ρ′1

∣∣∣∣
ρ′
1=ρ1

= 0 (16)

where from 15
∂γ

∂ρ1
=

(ρ2 − ρ0)

(ρ2 − ρ1)2
(17)

which gives
f(ρ2)− f(ρ1)

ρ2 − ρ1
=

∂f

∂ρ1
(18)

Identical computations give the result for the derivative w.r.t. ρ2

f(ρ2)− f(ρ1)

ρ2 − ρ1
=

∂f

∂ρ2
(19)

From this 2 equations it is possible to find the optimal values ρ1 and ρ2, note that the condition
given by the 2 equations is the same as requiring that the tangent to f at the values of ρ ρ1 and
ρ2 is the same, an illustration is shown just below.
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Figure 3: Geometrical illustration of the double tangent method, ρ1 and ρ2 for which
there exists the same tangent are the optimal values of γf(ρ′1)+(1−γ)f(ρ′2), credits:
[3]

In conclusion we can say that the maximum value of γf(ρ1) + (1 − γ)f(ρ2) is given by ρ1
and ρ2 which satisfy the conditions 18 19 and the segregated state is favoured if for the given
ρ0, 13 is valid.

2.2 the T = 0 case
The function f(ρ) for the particular asymmetric shape we have chosen for the function u in Fig
2 is given by:

f(ρ) = −T (ρ ln ρ+ (1− ρ) ln(1− ρ)) + (1 + α)ρ2 (20)

if ρ < 1
2 and by:

f(ρ) = −T (ρ ln ρ+ (1− ρ) ln(1− ρ))− (1 + α)(1−m)ρ2 + (2−m)ρ− (1− α)(2−m)/4 (21)

if ρ > 1
2 .

If we concentrate on the T = 0 case the 2 expressions simplify into:

f(ρ) = (1 + α)ρ2 (22)

if ρ < 1
2 and by:

f(ρ) = −(1 + α)(1−m)ρ2 + (2−m)ρ− (1− α)(2−m)/4 (23)

if ρ > 1
2 .

As the function f is in this case convex in [0, 1
2 ], inequality 13 is satisfied for any ρ0 ∈ [ρ1, ρ2]

with ρ1 < ρ2 and ρ1, ρ2 ∈ [0, 1
2 ]. Hence if ρ0 belongs to the interval [0, 1

2 ], then it is always
possible to find ρ1, ρ2 ∈ [0, 1

2 ] such that inequality 13 is valid, and so in this case the stationary
state is the segregated/concentrated one. Moreover in order to maximize the value of the free
energy γf(ρ1) + (1 − γ)f(ρ2) we take the extreme ρ1 = 0 for ρ1 and we take ρ2 >= 1

2 , this is
because the highest value of γf(ρ1) + (1− γ)f(ρ2) is reached by taking the extremes (at least)
of the range in which f is convex. Now that ρ1 is fixed to 0, we can compute the exact value of
ρ2 by using eq. 19, we get:

ρ2 =
1

2

√
(1− α)(2−m)

(1 + α)(1−m)
(24)
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Moreover, equation 13 becomes just:

f(ρ2) > f(ρ0) (25)

The function f is in this case (T = 0) monotonously increasing, therefore if ρ0 < ρ2 the
favoured state is the segregated one. The value of ρ2 is in this case always bigger than 1

2 because
the function f is convex in [0, 1

2 ].
ρ2 is in the range 1

2 < ρ2 < 1 if (and only if) the following conditions are satisfied:

3m− 2

6− 5m
= αt(m) < α < αc =

1

3− 2m
(26)

Hence for α ≥ αc(m), ρ2 sticks to the value ρ2 = 1
2 and for α ≤ αt(m), one has ρ2 = 1.

The conclusion for the T = 0 case is that for ρ0 < ρ2(α,m) the segregated state is the
equilibrium one, so in the city we will have just empty blocks and blocks of density ρ2. The
phase diagram representing this situation for m = 0.8 is shown in the top left corner of Fig. 4.

In the case ρ0 < ρ2(α,m) the value of the normalized collective utility function increases
with α and it is:

U∗(x) = γu(ρ1)+(1−γ)u(ρ2) = u(ρ2) =


m, α ≤ αt

2−m−
√

1−α
1+α (2−m)(1−m), αt ≤ α ≤ αc

1, α > αc

(27)

In the case ρ0 > ρ2(α,m), the equilibrium state is the homogeneous one and the value of
U∗(x) is:

U∗(x) = u(ρ0) = 2−m− 2(1−m)ρ0 (28)

2.3 the T ̸= 0 case
Let’s now describe the T ̸= 0 case starting from the high T case. The high T case is the simplest
to analyze. If T is high enough the second derivative of the function f never becomes positive.
Indeed for

2T

1 + α
≥ max

[0,1]
4ρ(1− ρ) = 1 (29)

f is concave on the whole interval [0, 1] as it is concave on the two intervals [0, 1/2[ and
]1/2, 1] where it is regular and at the singular point ρ = 1

2 , f ′( 12
+
) > f ′( 12

−
).

So in the case T > 1+α
2 the equilibrium phase is the homogeneous one, with density ρ0. In

the opposite case 0 < T
1+α < 1/2 the function f is convex just on the interval for which

1

2

(
1−

√
1− 2T

1 + α

)
< ρ <

1

2
(30)

As the function is convex in this interval and it has a positive (negative) infinite slope for
ρ = 0 (ρ = 1), then if we search for the optimal values ρ1 and ρ2 for sure we will have that:

ρ1 < 1
2

(
1−

√
1− 2T

1+α

)
and ρ2 > 1

2 .

In general the 2 values of the densities ρ2 and ρ1 are coupled by the 2 nonlinear equations
18 and 19 that can be numerically solved.

Once we have the values of ρ1 and ρ2 at a given temperature T , then the equilibrium state
will be the segregated one with these 2 densities if 13 is satisfied.

From the theoretical analysis, the results for the phase diagram that we get are the following:
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Figure 4: Theoretical phase diagrams obtained for different values of the temperature
T at m = 0.8, credits: [3]

If we compare the results obtained for low T with the T = 0 case the main difference is
the appearance of another homogeneous phase for ρ0 < 1/2 for small values for the parameter
T . But whereas for ρ0 > 1/2 homogeneity corresponds to the best interest of the agents, for
ρ0 < 1/2, collective utility is not maximized in a homogeneous city. This homogeneous region is
here purely induced by noise/temperature/irrational choices of the agents. Note that an increase
in α tends to reduce this noise region, while it tends to increase the homogeneous domain for
rho0 > 1/2.

In the rest of our work we will not change the value of the asymmetry parameter m as we
don’t want to focus on the consequences of the tuning of this parameter, but on the ones caused
by the tuning of α.
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Methods and Results

3 The computational analysis
The first step of our work is related to recover the phase diagram of the model by simulating
the behaviour of the agent-based system. While doing this, we will see that some enrichment
in the description is needed in order to correctly come to the same result: in particular we will
have to face the problem of the dependence of the result from the initial configuration of the
system and the non-trivial definition of the right order parameters for the segregation/crowding
problem.

First of all we will try to recover the results for the case T = 0 and after that we will
introduce the parameter T in the model.

3.1 The simulation
The first simulation of the model will make use of a vector of Q components, each of which
represents a district of the city, that can have a maximum value of H, which is the maximum
number of people that a district can host. The number of people in each neighborhood will be
initialized according to a random placement of a total number of ρ0 ·H ·Q agents in a neighbour-
hood. ρ0 defines the initial density of the whole city without specifying if it is homogeneously
distributed or not, the definition of ρ sets also the total number of people in the city, which
does not change all over the simulation. For the relative high values of the parameters Q and
H we will use (Q = 36, H = 100), the randomized initial assignement of the district to each
agent is basically equivalent to a uniform starting distribution of the agents onto the different
neighbourhoods; we will see in a few lines why the initial distribution we consider for the agents
has a strong relevance.

After having initialized the system, the agent’s moves from a district to another are proposed
randomly and accepted using the probability rule 2 as it usually happens when using Metropolis
Monte Carlo algorithms [16].

If we run a simulation and plot each component of the vector on a square grid we would
obtain results according to the parameters we set. We show here the results obtained starting
from the configuration 1 in 2 different cases after 100 runs (i.e. a total number of 100 ·Q moves)
with Q = 36,H = 100, m = 0.8, ρ0 = 0.6, T = 0.

(a) Initial density distribu-
tion (random uniform)

(b) Result of the run with
α = 1 (non concentrated)

(c) Result of the run with
α = 0(concentrated state)

By changing the values of α and ρ0 from 0 to 1 we can get the empirical phase diagram if
we are able to reach the equilibrium for our system and if we find an order parameter to use to
describe how much a population is segregated/concentrated.
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3.2 The order parameter problem: how to measure segregation?
The problem of measuring segregation/concentration has been already considered in the litera-
ture, it is indeed not easy to quantify segregation even if one may find trivial to decide if a city
is in the segregated state or not.

In [17] a full analysis of all the indices that should be taken into account in order to cor-
rectly describe segregation is available. In particular Massey and Denton in [17] conclude that
the following quantities (with related quantitative indices) give a complete description of the
phenomenon.

1. evenness: it quantifies the differential distribution of 2 social groups among areal units in
a city

2. clustering: refers to the degree of assemblage of same-type agents in space

3. concentration: it refers to the space occupied by a minority in the city

4. exposure: it represents the degree of potential contact between 2 members of 2 different
groups

We will not consider centralization, which is instead present in [17], because no preference
has been given in our model to one district with respect to another.

From [9] we take the following diagram showing in a qualitative way the importance of each
index in the description of the different realizations of segregation.

Figure 6: Qualitative representation of the meaning of the order parameters of seg-
regation as found in [9]

In order to have a simpler (with a lower number of order parameters) description of the level
of segregation we could also consider other types of quantities.

In [12] Gauvin et al. combine 2 quantities in order to distinguish between the 4 different
phases we saw in 1.

The first order parameter is linked to the definition of segregation as the grouping of agents
of the same type and the exclusion of the other type in a given area. It basically quantifies what
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we firstly referred to as "clustering" and in particular it is defined in the following way:

s =
2

(L2(1− ρ))2

∑
c

n2
c (31)

Where Ntot = L2(1−ρ) is the total number of agents, nc is the number of agents in cluster c and
a cluster is defined such that 2 agents belong to the same cluster if they are nearest neighbors.
This order parameter is equal to 1 if there are just 2 clusters (complete segregation), it vanishes
if the cluster dimensions remain finite when the system dimension L goes to infinity. The second
one (which we do not report here) instead allows to distinguish between the homogeneous state
at low tolerance and the one at high tolerance. All the parameters we have been considering up
to now refer to a 2-types agents’ system, they are not therefore useful to describe the problem
as we considered it in chapter 2: what we called the crowding problem.

In the theoretical analysis we discussed above, there was no need to introduce an order
parameter which quantifies a segregation state because just two possibilities were considered:
either the system is in the segregated state if there exist 2 different densities ρ1 and ρ2 for which
Eq.13 is valid, or the system is in the homogeneous state. There were no intermediate states
and therefore a system with ρ1 = 0.49 and ρ2 = 0.51 would be considered segregated as much
as a system with ρ1 = 0 and ρ2 = 1. In order to effectively quantify the segregation from the
output of our simulation there are several types of order parameters one can think of.

We will consider 2 parameters which may quantify segregation by relating it to the "distance"
from the homogeneous state.

The average distance of the local density: this parameter is an order parameter which
we propose as a possible measure of segregation/concentration of agents. It is defined in the
following way:

D =
1

Q

∑
q

|ρq − ρ0| (32)

where ρq is the density of district q obtained after the simulation and ρ0 is the density of the
city, which should be reached in any district in the homogeneous case.

The distance from the global homogeneous utility: this parameter is a possible order
parameter for concentration/segregation and it is defined as:

B = |U − Uhom| (33)

where U is the global utility of the agents after the simulation (sum of all the individual utilities)
and Uhom is the global utility in the homogeneous case, so

Uhom = Q ·H · ρ0 · u(ρ0) (34)

3.3 First results for T = 0

Once defined the order parameters and the algorithm of the code, after some tuning of the fixed
parameters we should get all the right results. However if we run the code as defined in section
3.1 with m = 0.8, H = 1000, Q = 36, what we obtain are the following phase diagrams (each
for one of the 2 order parameters):
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(a) Phase diagram with D as order parameter (b) Phase diagram with B as order parameter

Figure 7: Simulated phase diagrams for T = 0 (uniform initial distribution)

As we can see from the resulting diagrams, we do not actually get the same results as the
theoretical ones. This may be caused by several factors, as we discuss in the next section.

In order to get a more quantitative evidence of the difference of this result from the theo-
retical one, we introduce a new parameter C as follows:

C =
∑

{α},{ρ}

|U∗
sim,α,ρ − U∗

th,α,ρ| (35)

where the quantities we introduced are defined in the following way:

1. {α}: the discrete set of values of α we considered in the simulation

2. {ρ}: the discrete set of values of ρ we considered in the simulation

3. U∗
sim,α,ρ: the normalized global utility function obtained with the simulation

4. U∗
th,α,ρ: the theoretical normalized global utility function, as in (27)

The higher the value of C, the higher the effective distance from the result we got from the
one we would like to reproduce.

In the case of Fig. 7 we get the value C = 17.723.
If we plot the quantity |U∗

sim,α,ρ − U∗
th,α,ρ| for all the values of {α} and {ρ} we get the

following result:
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Figure 8: Plot of the quantity |U∗
sim,α,ρ − U∗

th,α,ρ| for T = 0, m = 0.8

As we can conclude from this last plot, the fact that C is not equal to 0 is basically due to
the fact that in particular in the region of high ρ0 and small α the simulated and theoretical
diagram do not coincide.

3.4 Discussion

One of the differences between our simulation re-
sults and the theoretical diagram reported here
on the right is the dependence on α of the equi-
librium state, we can indeed see that from our
results it seems that if the final state is seg-
regated/concentrated or homogeneous depends
just on the parameter ρ0. The main causes of
this may be:

1. a dependence on the initial distribution
of agents that may have made the system
end up in a local minimum

2. the fact that in our simulation H��−→∞,
but it is fixed at 1000

3. the order parameter does not represent
correctly the idea of segregation of the
theoretical result

4. the equilibrium state hasn’t been reached.

Figure 9: Theoretical
phase diagram obtained
for T = 0, m = 0.8, H −→
∞

We can already discard the second hypothesis by performing a simulation with a higher number
of H. The diagram with a higher value of H turns out identical to figure 7, hence we do not
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represent it here, but we can conclude that the reason behind such different results is not the
finite value of H.

Talking about the order parameters, as we can see from the graph, the parameter D is equal
to 0 in a region in which the city should have the segregated state as equilibrium state. If the
parameter D is 0, then we are sure to be in a homogeneous city, because it means that no
district has a different density than ρ0. This does not mean that the parameter D is the perfect
parameter in the description of segregation, because when it is high it is not given that we are
in a segregated/concentrated state as there may be few non-homogeneous districts which make
the value of D increase. However we can conclude that in this case the problem is not due to the
choice of the order parameter, because surely the region with low α and high ρ in the simulation
is associated to the homogeneous case, which is not what we would expect from theory. Also,
increasing the runs (and so the number of proposed moves for the agents) the diagram does
not change, therefore we exclude also the third reason. The only possibility is that with the
simulation we have been ending in a local minimum.

The idea is that if a system is already in the homogeneous case, it will hardly segre-
gate/concentrate as in order to segregate it has to empty a lot of districts (that is because
at T = 0 ρ1 = 0). That is not difficult when ρ0 is low, because there are less people in each
neighbourhood, so that it is easy to empty them and it is easier to accumulate them in other
district as the threshold of H people is further from the starting density. If instead ρ0 is higher,
let’s say it is equal to 0.95, it is very unlikely to empty an entire district and also all the other
neighbourhoods are already almost full, therefore the system is most likely frozen in its uniform
state. We can think at this as the 1-type agent generalization of what we described for the
Schelling model in Figure 1.

In order to see if this problem is really related to the starting conditions, we try to run a code
with a different starting distribution, in particular a truncated normal distribution, centered in
the central districts with a variance of 3

2Q.
The result we get in this case is the following (H = 100):

(a) Phase diagram with D as order parameter (b) Phase diagram with B as order parameter

Figure 10: Simulated phase diagrams for T = 0 (truncated normal starting
distribution)

If we print the diagrams with truncated normal starting distribution we can see that in
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the region in which we should have the resulting segregated state (according to the theory) we
obtain a slight concenetration, so according to our order parameters, a slight distance from the
homogeneous case.

As in the theoretical diagram, even a very slight change from the homogeneous case is
considered segregation, then we have to change the way in which we represent this diagram in
order to compare it to the theoretical one. In particular the following picture represents better
the improve we made by starting from a normal distribution.

(a) Phase diagram with D as order parameter,
the white part represents values for which D = 0

(b) Theoretical phase dia-
gram for T=0

Figure 11: Simulated phase diagram for T = 0 (truncated normal starting
distribution, saturated) and comparison with the theoretical one

As we can now more clearly see, at least qualitatively we get actually closer to the theoretical
result found in [3]. We now have a dependence of the equilibrium state from the parameter α
and also a very similar slope of the segregated equilibrium distribution.

Quantitatively the quantity C is now equal to C = 17.130 and the diagram of the error is:
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Figure 12: Plot of the quantity |U∗
sim,α,ρ − U∗

th,α,ρ| for T = 0, m = 0.8, Truncated
Norm

Even if there is an improvement in the result, it is not quantitatively meaningful. However
the most important result of this trial is that it manifestly shown the very strong dependence
of the phase diagram on the initial distribution of the system. We are not yet sure we have
reached the equilibrium distribution associated to the global minimum of the free energy though,
we therefore will study in the next section how to reach this state using Simulated Annealing
(SA).

3.5 Results for T = 0 with Simulated Annealing
There are several algorithms that face the problem of reaching the global equilibrium distribution
of some system [18]. One of those is probably the most known physics-inspired algorithm:
Simulated annealing. The simulated annealing algorithm is inspired by the annealing process,
a heat treatment used in metallurgy that alters the physical properties of a material to increase
its ductility and reduce its hardness, so that it becomes more workable.

If the cooling of the system happens slowly enough, at each temperature T the system
is able to reach equilibrium. If instead the cooling is too fast then the system does not reach
equilibrium at each step and some defects crystallize inside it giving rise to a amorphous phase, in
a meta-stability condition. The simulated annealing algorithm is nothing more than a sequence
of Metropolis algorithms evaluated for decreasing values of a parameter, which assumes the
role of the physical temperature. This parameter in our case is T , which is associated to the
irrationality/noise in the agents’ choices.

In order to better define how the code with simulated annealing will work, we have to
determine some parameters:

1. initial temperature: the initial temperature should be high enough in order to be sure
that starting from any point in the phase space, at that T any other point in reachable

2. decreasing step ∆T :the decreasing of the temperature should follow a function which
ensures that in particular at low T the systems cools slowly
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3. number of iterations at a fixed temperature T :the number of iterations at each
temperature T should be high for low values of T , where it is more important to actually
reach the optimal value and lower for high values of T , where it is more important to select
the right region of the phase diagram.

According to the theory, an initial temperature of T = 1 should be high enough as from
what we can see in the phase diagrams in Fig. 4, at that value of T the system is in its maximal
disordered phase, with no case stabilizing in the segregated state.

In order to satisfy point 2 and 3 after some trials and some tuning of these parameters, we
choose an exponential behaviour for the decreasing temperature, with a linear increase in the
number of iterations while the temperature decreases.

If we run the simulation with those values of the parameters and m = 0.8, Q = 40, H = 100,
we obtain the following result:

(a) Phase diagram with D as order pa-
rameter and comparison with the ex-
pected theoretical result

(b) Phase diagram with B as order pa-
rameter and comparison with the ex-
pected theoretical result

Figure 13: Phase diagrams for T = 0 obtained through simulated annealing

In this case C = 14.981, it has a significant improvement with respect of before. This is also
recognizable in the error diagram:
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Figure 14: Plot of the quantity |U∗
sim,α,ρ − U∗

th,α,ρ| for T = 0, m = 0.8, SA

3.6 Discussion of the results for T = 0 with SA
The result we got is not qualitatively different from what we obtained in the case of a starting
normal distribution of the agents, but in this case we obtain high values of segregation order
parameters also in the region of ρ0 > 0.5. This is the best result we can get with the limited
computational power. The obtained diagram is qualitatively similar to the theoretical one, the
main differences may be due to the following considerations:

1. the parameters of the simulated annealing do not bring the system to the right equilibrium
state

2. H and Q are finite, so for systems at very high ρ0 it is very unlikely to reach the segregation
state.

To improve the result one should increase the values of H and Q and refine the temperature
decrease. This increases a lot the time required by the simulation to finish.

3.7 Results and discussion for T ̸= 0

We will try in this section to recover the phase diagrams for T > 0 still using the same code we
used before (without simulated annealing as T ̸= 0 now). If the temperature is different from 0,
entropy gives an important contribution to the potential to minimize, so the system may now
behave differently with respect to before.

Actually if we perform some simulation considering T ̸= 0 what we obtain is not very similar
with respect to the theoretical results. We show our results in the following figures:
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(a) T=0.4 (b) T=0.6 (c) T=0.8 (d) T=1

Figure 16: Comparison between theoretical and computational results for the
phase diagrams at T ̸= 0 with the same code used for the case T = 0 and B
as order parameter

That is due to the fact that by just considering a neighbourhood as we did in the case
for T = 0, so by associating it to just the number of residents, we actually lose the difference
between a state with a number of residents equal to H (just one possibility) and a state in which
the number of residents is equal to H

2 (many possibilities, maximum entropy). We are in this
case de facto neglecting entropy, which was not really a problem before as T was equal to 0,
but it is an issue now. In order to avoid this we will now run a code in which to each district it
is associated a vector (and not anymore just a number) of possible places, so a string of values 1
and 0 representing the occupied places and the empty ones in the neighbourhood; the placement
in a place with respect to another in the same district is chosen randomly.

If we run the code exploiting this we get the following results:

(a) T=0.4 (b) T=0.6 (c) T=0.8 (d) T=1
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Figure 18: Comparison between theoretical and computational results for the
phase diagrams at T ̸= 0 with the new code and B as order parameter

In this case, we can actually see that there is a better match between theoretical and
numerical results. Moreover, here we have not considered “saturated” diagrams because ρ1 is
not anymore equal to 0 as T ̸= 0.

We perform again the whole analysis at T = 0 using this code in order to check that the
non-consideration of entropy does not imply a qualitative change in the result obtained with the
simulated annealing algortihm.

As the result we obtain with the new code for T = 0 is the same with respect to the one
obtained with in [fig:seconda2], we do not report it here and we will continue using the old
code while at T = 0 as the one considering entropy is much more computationally expensive.

4 Generalization of the model to non-identical agents
In this section we will focus mostly on the second goal of this work: the generalization of
the model to non identical agents. Because we are studying the phase transition between the
segregation/concentration state and the homogeneous one by tuning the α parameter, in this
section by non-identical agents we do not mean to include a difference between agents in the
"segregation sense", so to create different types of agents, but just to include some possible
difference in the willing of agents of acting in a collective way to admit that different agents
may have a different value of α. This is very important in order to build a model which closer
represents a real social system. If we think at a society of individuals making everyday choices
according to some global known condition, we can surely understand that it is very unlikely
that they all have the same will of acting in favour of the community. Taking for example the
frame of climate change: people have different opinion about it, a vegetarian acting in order to
reduce the pollution coming from the intensive farming in this model would have a higher value
of α with respect to the others as their acting would cause a positive externality (see chapter 5)
on the rest of the population.

What we want to do with this work is to qualitatively and computationally show that the
same result we obtained before for the phase diagram at T = 0 may be recovered if the control
parameter α represents the average value of the collective will of the agents and therefore it is
not a fixed number for the whole population.

This would give also a first clue that a generalization of the model which considers the
average α as control parameter may be possible.

4.1 Results and discussion for 2 types of agents
Before considering many different α values distributed according to some probability rule, in
order to have a first insight on the problem, we may want to consider a population made up by
2 types of individuals, each with a different fixed value of the parameter α. We will analyze the
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phase diagrams we get in 2 different situations. In the first case we will have a 2-type population:
one part of the agents will have α = α1 and the other part will have α = α2, in the second case
we will have a 1-type population with a value of α which is the weighted average of the 2 values
of the first case.

In the following diagrams we will fix the proportion between agents with α = α1 and agents
with α = α2 to 1

4 and we will represent the results for the segregation/concentration order
parameter obtained for every value of α1 and α2. The results of the comparison between the 2
diagrams for different values of the proportion between the 2 populations are very similar. In
order to better see the dependence form the α parameter, we take a value of the initial/global
density ρ0 which is fixed to ρ0 = 0.6 in this simulation; this value of the density ensures (based
on the results obtained in the case of a 1-type population at T = 0 in the previous paragraphs)
that there is a visible dependence on α. The simulation makes use of the Simulated Annealing
method in this case too.

(a) Segregation values for a population
made up by 20% of the agents with α =
α1 and 80% of the agents with α = α2

(b) Segregation values for a population
made up by just 1 type of agents with
α = α1 · 0.20 + α2 · 0.80 ∀α1, α2

This result shows that between the case of a 2-types population and the 1-type one there
is not (at least qualitatively) a big difference in the final equilibrium state reached for different
values of these parameters. This is an important step in our generalization procedure, as it
shows that we could go further and make each agent have a different value of α, distributed
according to some probability rule and that the important parameter to study the transition
may be the average value of α and not the fixed α value.

4.2 Results and discussion for highly heterogeneous agents
If we don’t require anymore the agents to have the same α, but we just impose its distribution
to be a truncated normal distribution with fixed average < α >= ᾱ, then we obtain a phase
diagram which is very similar to the one we obtain for a 1-type population with fixed α.

We can see this result here for the case in which the variance σ of the normal distribution
is σ = 0.25:
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(a) Phase diagram with D as order pa-
rameter obtained for different agents with
< α >= ᾱ

(b) Phase diagram with B as order pa-
rameter obtained for different agents with
< α >= ᾱ

Figure 20: Resulting phase digram for an ensamble of different agents with < α >= ᾱ

The value of σ is chosen so that the distribution is not too much spread. Indeed as the
truncated gaussian must have a domain which is [0, 1], a high spread of the distribution would
cause the impossibility of having values of the average of α very close to the extremes of the
domain. Even with the chosen σ some values of ᾱ have been excluded, but the excluded domain
is small enough to still be able to get the necessary result. The 2 phase diagrams are once
again very similar to the ones obtained in Fig. 13. This suggests that we could generalize
the theoretical model in order to obtain a more interesting result, moreover with respect to an
application to social science, in which the constraint of identical agents would be very limiting.
In order to actually conclude that the control parameter might be ᾱ =< α > instead of α, some
modification to the theoretical model should be done. What we found is a strong clue that
a more general result may be obtained. This could be a possible future work to improve the
validity range of the model.

It is clear that a different value of α for each agent would complicate a lot the theoretical
analysis. But a clue to start working on this model with heterogeneity may be to relate it with
other models in which parameters are distributed according to some probability law, such as the
Random Field Ising Model (RFIM). Of course this would be just a clue which may exploit the
theory of disordered systems. The evident difference would be that in this case the probability
distribution is related directly with the control parameter and not to a different parameter
present in the model such as in the RFIM.

5 A possible application: the economic concept of Pigou-
vian tax

This section will be dedicated to the description of the economic concept of Pigouvian tax.
Economics indeed is another possible field in which the main characteristics of the model we
used for segregation/crowding may be used. The objective of this work was indeed to describe
the transition in the final equilibrium state by tuning a parameter which describes how much
the agents act in a collective way; this aspect may be easily generalized in many fields. In
particular, the control parameter we are considering (α) from an economic point of view may
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be considered as a way in which what is called "internalization of externalities" is quantified.
Let’s better describe this concept before even defining an economics-related problem.
An externality is an indirect cost or benefit for an agent which is caused by the action of

others in an indirect way. The typical example of externality is pollution. In a society everyone
is damaged by the production of pollution of some factory, but neither the producer of the good
neither the consumer pay in order to compensate the collective damage it is causing: this is
what is called a negative externality. An example of positive externality can be found instead in
[19]: people living in an apartment which is placed above a bakery get free heat during winter
without compensating back the baker. In this example it is not the collectivity to benefit from
the action of a private, but another private.

There are many other examples in society in which externalities appear. Positive externali-
ties are caused for example by a beekeeper, as it contributes to the pollination of the surrounding
environment, by the restoration of historical buildings, as it may cause an increase in the com-
mercial activity of the neighbourhood. Negative externalities may also be passive smoking or
traffic congestion. In order to take these aspects into consideration governments decide to act
by introducing a re-equilibrating taxation or subsidy, which has as objective the internalization
of such externalities. By taxating a factory which produces indirect costs for the collectivity
one should be able to limit the production of such externalities and at the same time it should
gather enough money to compensate the collectivity of the damage caused. These type of taxes
are called Pigouvian taxes as they were firstly introduced by the british economist Arthur Cecile
Pigou in his "The economics of welfare" [20] in 1920.

Pigouvian taxes (in order to be fare and to compensate the externalities caused by some
action) are set equal to the external marginal cost of the negative externalities, so to the change
in the cost to parties other than the producer or buyer of a good due to the production of an
additional unit of the good or service.

Let’s consider the example of pollution: the factory considers the pollution as an input
of the production and as usual this input has a price. This price is equal to 0 if no tax has
been imposed. By imposing a taxation, so that the price of the pollution increases, the factory
will produce less of it. In order to impose the right taxation and find the optimal quantity
of pollution we have to internalize all the externalities according to the price of one unit of
pollution.

The goal is to minimize the total societal cost, which is the sum of the cost of reducing
pollution and the total damage caused by the pollution. If x is the quantity of pollution, Di(x)
is the damage caused by the pollution on agent i and C(x) is the cost of the reduction of
pollution. The quantity to minimize (total societal cost) is:

C(x) +

n∑
i=1

Di(x) (36)

This quantity is minimized when the marginal cost of the reduction of one pollution unit is
equal to the marginal damage of one unit of pollution more (derivative equal to 0)

n∑
i=1

D′
i(x∗) = −C ′(x∗) (37)

The marginal cost is indeed equal to the derivative of the function C and the same is true for
the function D. The optimal pollution level (which takes into account the negative externalities
is therefore x∗. The Pigouvian tax p∗ is set equal to the marginal cost of reducing pollution at
the optimal level x∗ : p∗ = −C ′(x∗)

This tax effectively internalizes the externality by making the polluter bear the cost of the
marginal damage their pollution causes. Thus, the polluter has an economic incentive to reduce
pollution to the optimal level x∗.
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5.1 The relation with the model
The concept of Pigouvian tax is closely related to our model because in some sense the parameter
α acts as a taxation parameter, which if set to 1 means the actual internalization of all the
externalities and prevents the agent of acting individualistically. α can be seen not just as the
natural willing of agents of acting in a way such that the collectivity ameliorates, but as the sum
of 2 different aspects: one that starts from each agent and it is its natural propension to work
for the collectivity and one imposed tax which aims to set a minimum value for the collective
will an agent can have.

As in our model we have come to the result that even with many different agents what
counts is the average value of α, the introduction of a tax on the most individualistic agents
would be useful just in the shift in the average value it causes; it would not make a difference
to apply such a tax at random or to the less altruistic agents.

By introducing the concept of Pigouvian tax we have seen how there is the possibility of
tuning such a lower bound in many different possible systems. Moreover, if as we said in the
beginning of the work, an α value of 1 is associated to physical systems, we might also conclude
that a Pigouvian taxation aims to bring an agent free-market model more close to how a physical
system behaves.

If one wants to build up a more economics-oriented model which has the Pigouvian taxation
t as parameter, they may find that by tuning it there are phase transitions occuring. One may
therefore find what is the optimal value of the taxation in order to come to the wanted final
state and study its stability.

In the theoretical model we used for example one result could be the consideration that it
is convenient to increase the value of α just in some cases and in any case just to a threshold
level. After this value the increase of the parameter does not change the configuration anymore.

By the way in our model an increase of the value of α just leads to a better result for
the collectivity, this might not be the case in a more complex economic model in which the
individual-collective behaviour parameter actually describes the Pigouvian tax. The building
up of such a model may be an idea for a future work describing an agent-based society which
includes recompensation for indirect damages.

Conclusions and future work
Even if the project has started by considering the segregation problem and the Schelling model,
its focus was not just oriented towards the description of that particular situation. The last
paragraph of the report (chapter 5) is crucial to understand the generality and the potentiality
of the description of the behaviour of a social system while regulating the will of its agents to act
collectively. Indeed it not only shows an application to economics, but also a way in which the
parameter we have been tuning in the whole work could be effectively modified and controlled
in a real society.

The main goal of this work was to simulate a system whose components behave in the same
way as in [3] in order to verify the theoretical results referred mostly to the phase diagrams of
the model. We worked mainly on 2 aspects that in the theoretical analysis had not been taken
into account: the problem of measuring segregation by defining a proper order parameter and
the problem of reaching the global minimum/maximum computationally by avoiding the local
stationary points. The second aspect we worked on was the generalization of the computational
model to the case in which the agents are not all equal, but have different aims of acting
collectively. The result for 2 and for many different values of α have been shown: qualitatively
the phase diagram does not change. That means that if we have a population made up by just
1 type of agents (with the same α) or a population of many different agents with α distributed
has a Gaussian with average ᾱ there seem not to be a difference in the phase diagram. This
result is very important as it gives some hope that the theoretical model may be generalized
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in such a way that it becomes closer to reality. Indeed it is unlikely that a real social system
could be well described as an ensemble of identical individuals. An example may be how much
a person changed their behaviour according to some external issue that involve everyone such
as the climate crisis. Of course not every person has the same sensibility on this topic so there
may be people with a very high level of collective aim and people with a lower one. In order
to describe such a situation of course the model we used should be modified as ours was still
related to the crowding/segregation issue, but in any social model in which a collective aim may
be taken into consideration by the agents what we did may be helpful. An idea of a future
work may be therefore to explain from the theoretical point of view the results obtained by our
simulation towards a more general model with respect to the one proposed in [3].

Another idea would be to build up a model on a particular economics-related topic which
actually aims to find what is the best Pigouvian tax (the tuning parameter α) in a society of
producers and consumers in order to have an economic growth which limits the production of
pollution (which would represent the externality).

For any complex system, it is of fundamental importance to describe any situation in which
the state of the global system is taken into consideration by the single agent. As we read in
[2], it is possible, using the frame of potential game theory (see appendix), to do the opposite
of what we have seen in the theoretical analysis, finding what rule the single follows given that
the whole shows some emergent phenomenon. This could give some insight on the perception
of the individual and could be an important thing to look in order to understand the choice of
purposeful agents. Interesting are the cases presented in [2], in which, starting from a probability
distribution, one could recover the agents’ utility function of the corresponding game. This is
what is typically called the bottom-up approach, which aims to derive the behaviour of the
single from the macroscopic phenomena we observe in the global system; it is in open contrast
with the reductionist approach which is usually considered in science. Both the approaches may
be of importance in different situations, with a non trivial extension the transition we described
could be interpreted as a transition between a parts-to-whole model to a whole-to-parts one.
In the case α = 0 the agents act as selfish individual, the whole’s behaviour comes after their
choices, but it doesn’t determine them. Instead in the case α = 1 all the choices of the agents
are completely determined by the whole system, it is the system as a whole that has a physical
relevance in this case, not the agents anymore. That’s why the transition we described is not
constrained to the particular topic where it firstly arose, but it is very general and may be
also useful in a process that may describe the genesis of a complex system, starting from the
"aggregation" of individual parts.

Appendix

Congestion and potential games
In the theoretical analysis of the model we considered, many concepts related to game theory
have been used. In particular in our work we have passed from an agent-based view (by the
definition of a utility/payoff function) to a system-based one (with the introduction of a potential
to maximize). This is a general method used for a particular type of games, which are called
potential games, and it is very useful when the number of players is huge. In potential games
even if the will of the agents leads them to improving their payoff, the global result from the
point of view of the system is the maximization of a potential function. The maximum of this
potential corresponds to the Nash equilibrium of the game. However, it is not possible to find
such a potential for any game. Let’s give a definition of potential game and report some theorem
in order to understand why in the case we considered we could say that such a potential existed.

A potential game is a particular type of game in game theory in which it is possible to find a
potential function that captures the behaviour of the agents being directly linked to their payoff
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function. In a game G = (N, {Si}i∈N , {ui}i∈N ) with:

1. N: set of players

2. Si: set of possible strategies for player i

3. ui: utility function (payoff) for player i

is an ordinal potential game if there exist Φ : S → R, where S = S1×S2×· · ·×SN is the set
of combined strategies of the players such that for any player i and for any couple of strategies
si, s

′
i ∈ Si with the strategies of the other players fixed s−i ∈ S−i we have that:

ui(s
′
i, s−i) > ui(si, s−i) −→ Φ(s′i, s−i) > Φ(si, s−i) (38)

it is an exact potential game if under the same assumptions:

ui(s
′
i, s−i)− ui(si, s−i) = Φ(s′i, s−i)− Φ(si, s−i) (39)

it is a weighted potential game if:

ui(s
′
i, s−i)− ui(si, s−i) = ωi(Φ(s

′
i, s−i)− Φ(si, s−i)) (40)

This implies that a variation of the utility function of the agent is linked to a variation in
the global potential function, with the different relations we have shown above according to the
different type of potential game. Even with this definition it is not easy to verify that in our case
we have a potential game, but luckily some theorems help us with this. In particular theorem
3.1 in [21] states: "Every congestion game is a potential game"; the proof is shown in the same
paper. If we prove that our agent-based model is a congestion game, we have then reached the
goal of proving that to find a potential is always possible for our model. A congestion game is
a game where each player’s payoff depends on how congested some shared resources are. In a
congestion game other then the set of N players and the set of strategies Si defined as before,
one has to define a set of resources R = {r1, r2, ..., rm} and the utility function u becomes the
sum of all the congestion functions cr for each resource r. The congestion function depends on
how many agents are already "consuming" that resource.

In our case the resources are the places in neighbourhood q, and we require our agents to just
choose one type r of resource (direct correspondence between strategy and resources), then the
utility function of the agents coincides with the congestion function of that resource. Moreover,
in our case all the congestion functions (for different resources/neighbourhoods) are equal, then
the utility is just the unique congestion function defined as in Fig. 2. As the utility in our model
depends just on the occupation number of the district, that is on how much the resource "places
in that district" is congested, our game is a congestion game.

Let’s now see how it is possible to find the potential of our game.
As we read in [2], when the utility function of an agent on site q just depends on the density

ρq of that site (so when α = 0), we have that for an exact potential it is possible to find the
potential in the folowing way (case T = 0):

Φ =
∑
q

∫ ρ

0

u(ρ′q)dρq (41)

where we suppose that u(ρq) is already derived with respect to the strategy q. So when the
utility function is u(ρq) (α = 0) the potential is

∑
q

∫ ρ

0
u(ρ′q)dρq ∝ L(x), with L(x) defined as

in the first paragraph of the appendix.
If then we introduce the parameter α ̸= 0, it is not anymore possible to find the potential

Φ in such a way. Let’s see how the added term to u changes the global potential.
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If u changes in the following way:

ũi(x) = ui(x) + a

N∑
j=1

uj(x) (42)

the potential changes accordingly:

P̃ (x) = P (x) + a

N∑
j=1

uj(x) (43)

The modified game with the new utility functions ũi(x) is still an exact potential game as:

ũi(x
′
i, x−i)− ũi(xi, x−i) =

ui(x
′
i, x−i) + a

N∑
j=1

uj(x
′
i, x−i)

−

ui(xi, x−i) + a

N∑
j=1

uj(xi, x−i)


(44)

Becomes:

ũi(x
′
i, x−i)− ũi(xi, x−i) = [ui(x

′
i, x−i)− ui(xi, x−i)] + a

 N∑
j=1

uj(x
′
i, x−i)−

N∑
j=1

uj(xi, x−i)


where ui(x

′
i, x−i) − ui(xi, x−i) is equal to P (x′

i, x−i) − P (xi, x−i). So the new relation for the
potential is:

ũi(x
′
i, x−i)− ũi(xi, x−i) = [P (x′

i, x−i)− P (xi, x−i)] + a

 N∑
j=1

uj(x
′
i, x−i)−

N∑
j=1

uj(xi, x−i)


which is what we found in the first chapter.
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