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Abstract

The dynamic evolution of mobile access networks, marked by increasing size and
complexity, necessitates innovative approaches to automatic anomaly detection and
resolution. Traditional manual methods prove insufficient in handling the complexi-
ties of modern networks. Consequently, network optimizers must shift focus towards
developing algorithmic solutions that enable automation.

This thesis emerges from the AI/ML Optimization Program 2024-2026, a collabo-
rative research initiative between Telefónica’s Radio Access Network Optimization
teams and the Universidad Politécnica de Madrid (UPM). The primary objective
is to develop an automated system for managing and monitoring access networks,
leveraging data analysis and Machine Learning (ML) techniques to optimize network
performance.

This project concentrates in studying the behavior of commonly used network Key
Performance Indicators (KPIs) under various typical issues, referred to as use cases,
with the goal of automatically suggesting appropriate adjustments. Specifically, the
thesis focuses on the development of a detection system for cell-range overshoot phe-
nomenon in LTE networks. Cell-range overshoot occurs when the coverage area of a
cell extends beyond its intended boundaries, leading to inefficient network resource
usage, degraded signal quality, and disrupted handover procedures.

This research, after reviewing basic LTE access procedures and optimization tech-
niques, introduces the cell-range case study. To this end, a detailed analysis of
commonly used Key Performance Indicators (KPIs) is addressed. Specifically, for
this study a carefully designed database of real KPIs collected from the actual
Telefónica’s LTE deployment in Spain has been created. This database also in-
cludes true labels of cell-range anomalies manually detected by current Telefónica
Optimization Teams. Several Machine Learning models have been designed and
evaluated to test their capabilities to automatically detect cell-range overshooting.

Key findings include the development of primary classification models capable of
detecting problematic cells. To this end, tree ensemble models (namely Random
Forest and eXtreme Gradient Boosting) are chosen both for their performance and
their ability to express the feature importance analysis on which the algorithms build
their classification criterion. The models are constructed and trained performing K-
fold cross-validation techniques over the KPIs database.

These models provide around 70% accuracy in detecting cell-range anomalies and
they have been deployed in a real testing probe by Telefónica.
This research study highlights the challenging task of automatically detecting specific
cellular anomalies, which are notably similar to one another and closely linked to
the intrinsic characteristics of access networks.
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Future research should focus on incorporating additional information specific to cell-
range overshooting to enhance detection mechanisms for this particular use case.

In summary, this thesis contributes to the ongoing efforts to automate and optimize
Telefónica’s mobile network management, showcasing the potential of ML techniques
to improve network performance and efficiency. The detection solutions developed
in this thesis are anticipated to extend seamlessly to Telefónica’s entire network
infrastructure, including future technologies like 5G.
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1. Introduction

This work stems from AI/ML Optimization Program 2024-2026, a research project
born in collaboration between various Radio Access Network Optimization teams
within Telefónica and a team from the Universidad Politecnica de Madrid (UPM),
which includes professors, researchers, PhD students and Master’s grad students,
based in the Escuela Técnica Superior de Ingenieros de Telecomunicación (ETSIT).

At its core lies the recognition that mobile networks generate an abundance of data
ripe for exploration through data analysis and Machine Learning (ML) techniques.
This exploration offers a multiple opportunities to challenge existing procedures and
elevate network optimization.

The dynamic evolution of access networks, expanding both in size and complex-
ity, necessitates a fresh approach. With the integration of a myriad of innovative
technologies, including slicing and virtual networks, the detection and resolution of
issues demand agile solutions. Traditional manual intervention proves inadequate in
facing the such complexity of modern networks.

The role of network optimizers must evolve to focus significant time and expertise on
developing and optimizing algorithmic solutions that facilitate automation. While
traditional optimization approaches remain relevant, the definition and development
of automatic optimization processes and algorithms will become fundamental to
daily optimization tasks.

The purpose of the project is to develop a system of optimization and automation
of access networks’ management and monitoring. This work aims at studying the
behavior of commonly-used network’s Key Performance Indicators (KPIs) under
several typical issues and problematics, called use cases, in order to automatically
suggest proper adjustments solutions.

In Chapter 1 a brief description of the framework in which the work of this thesis has
been developed will be provided, including an introduction to Telefónica company as
well as its project AI/ML Optimization Program 2024-2026. Additionally, Chapter
1 offers an overview of the cell-range use case, which is the main focus of the thesis.

Chapter 2 contains detailed background knowledge about general Long Term Evo-
lution (LTE) Access procedures, alongside exhaustive presentation of the use case
covered in this thesis, as well as a second use case involved during Testing Phase.
Additionally, in Chapter 2 presents a global view of current optimization techniques,
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1. Introduction

algorithms, and technologies used for random access networks in the telecommuni-
cations industry.

The work of the thesis is presented in Chapter 3 and Chapter 4. Specifically, Chapter
3 describes the initial phase of the work. It includes Machine Learning problem
framing, data processing and exploratory data analysis. Subsequently, in Chapter
4 the testing phase of the project is provided. It covers several tests carried out on
the models defined in the previous chapter.

Finally, in Chapter 5, conclusions are drawn and the results are comprehensively
discussed addressing possible interesting future research directions.

1.1 Telefónica

In the dynamic landscape of telecommunications, Telefónica is a pioneer in the
industry, leading technological interconnections advancements in Spanish territories
as well as worldwide.

Since its inception, Telefónica has been synonymous with innovation. Founded in
1924 in Spain, the company has achieved operating across Europe, Latin America,
and beyond. Through strategic investments in research and development, Telefónica
has pioneered groundbreaking technologies, such as the digital revolution and the
dawn of 5G connectivity.

At a time when technology is more present than ever in our lives, we can-
not forget that the most important connections are human connections.
[15]

Telefónica’s mission is to deliver reliable, high-speed connectivity in bustling urban
centers as well as remote rural areas.

As the digital era unfolds, Telefónica continuously seeks to optimize its mobile net-
work infrastructure, addressing challenges and maximizing efficiency at every level.
One such challenge lies in the optimization of access networks — a critical factor in
ensuring seamless coverage and optimal network performance across diverse areas
and environments. By refining algorithms, deploying advanced antenna technolo-
gies, and leveraging data analytics, Telefónica is willing to achieve highly-reliable
and robust cellular network infrastructures, withstanding the increasing weight of
demand.

1.2 AI/ML Optimization Program 2024-2026

The “AI/ML Optimization Program 2024-2026” seeks to address the escalating com-
plexity of access networks by embracing dynamic optimization strategies driven by
available data. With access networks becoming increasingly intricate, traditional
manual methods for problem detection and correction are quickly becoming inad-
equate and obsolete. As these networks grow in complexity, there’s a need for
automated optimization processes to efficiently manage them without a significant
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1.2. AI/ML Optimization Program 2024-2026

increase in resource allocation. Thus, the program aims to advance dynamic op-
timization techniques leveraging traditional cellular network’s KPIs, representative
of both network conditions and user experience, to proactively identify and resolve
issues. Through a combination of automated data-driven analysis and corrective
actions, the program envisions a future where optimization processes operate with
minimal human intervention. The project’s short-range (2024) objectives include
segmenting and clustering the access network elements based on specific scenarios
and issues, and implementing initial automated optimization algorithms across de-
fined use cases. This determination considers various factors such as geographic
location, topological features, capacity, traffic and mobility patterns, and spectrum
usage. By precisely understanding each cell’s nature and its impact area, optimiza-
tion efforts can be tailored more effectively. Through these objectives, Telefónica
aims to advance towards a more automated and efficient optimization framework for
its access networks.

Figure 1.1: Geographical areas covered by data in Spanish territory.

While the comprehensive objective of the program is to encompass Telefónica’s whole
network infrastructures, including the latest innovative network technologies and the
whole Spanish geographical area covered by Telefónica, the scope of this thesis is
specifically delimited to LTE networks over four specific regions. In Figure 1.1, the
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1. Introduction

geographical area covered in this thesis is reported in orange. Hence, four regions
are defined: “GRCyL” covering the territory of Castile and León, “GRSur” covering
Andalusia, “GRLevante” comprising Murcia, Valencia and Balearic Islands, and
finally “GRGaliciaAsturias” including Galicia and Asturias.
The decision to focus on these regions is based on the company’s internal policies,
which are not pertinent to discuss in this context.

It is important to notice that Telefónica’s mobile networks utilize equipment from
two different suppliers, each with its own specific KPI formulas. Moreover, in ac-
cordance with Telefonica’s privacy policies, the names of these two vendors will not
be disclosed. For the purposes of this thesis, these vendors will be referred to as
Vendor-A and Vendor-B, as this information is considered sensitive.
Therefore, for the sake of data consistency, the work of this thesis focuses exclusively
on Vendor-A.

It is presumed that the solutions developed in this thesis can be seamlessly extended
to encompass Telefónica’s entire network infrastructure in Spain, inclusive of 5G
technology and Vendor-B equipment. This adaptability is expected to be put into
action in the near future within the program’s framework.

1.2.1 Cell-range Use Case

Telefónica’s project itself defines several very general use cases to differentiate the
most common issues arising and affecting access networks. However, this thesis will
focus on one kind of such challenges, the problematic related to the concept of cell-
range overshoot, i.e. the situation where the coverage area of a cell extends beyond
its intended boundaries. This phenomenon typically occurs due to various factors,
including the configuration of cell-range parameters. When configuring the cell-range
parameters, network engineers aim to establish boundaries within which random
access procedures can reliably be performed to achieve connection of satisfactory
signal quality. However, if these parameters are not properly configured or if the
signal propagation characteristics are not accurately accounted for, User Equipments
(UEs) located beyond the intended coverage area may still attempt to connect to
the cell. The overshoot can lead to several issues within the network. For instance,
it can cause UEs located beyond the intended coverage area to mistakenly perform
random access procedure (more details in Section 2.1), sending preambles to the
erroneous base stations. This can result in inefficient use of network resources (and
higher power consumption), degraded signal quality and reduced quality of service
for users. Additionally, the overshoot phenomenon can complicate handover (HO)
procedures and disrupt the seamless transition of connections between cells, leading
to dropped calls or data transmission interruptions.

In the forthcoming Chapter 2, specifically within Section 2.2, a comprehensive ex-
amination of the potential challenges resulting from the overshooting phenomenon
is provided, offering detailed technical insights.

4 F. Fanelli



2. Background

As discussed in Section 1.2.1, overshooting phenomenon highly impacts overall net-
work performances. In particular, overshooting is an issue affecting the Random
Access Network (RAN), mistakenly reaching UEs located out of the intended cell-
range.

As already mentioned in Section 1.2, Telefónica’s network equipment is supplied
by Vendor-A and Vendor-B, and each supplier’s equipment has different - although
equivalent - configuration parameters. However, this work focuses on Vendor-A
telecommunication equipment.

This Chapter describes, in general terms, the procedures for a terminal to be able
to access an LTE-based network.

2.1 LTE Access Procedures

Before an LTE terminal can communicate with an LTE network it has to carry out
the following procedures [3]:

1. cell search: find and acquire synchronization to a cell within the network;

2. cell system information: receive and decode the information needed to com-
municate properly within the cell;

3. random access : request and obtain a connection setup.

The first procedure, cell search, is not only necessary at the initial access to the sys-
tem but rather, to support mobility; LTE terminals need to continuously search for,
and synchronize to neighboring cells. The reception quality of such cells is evaluated
and compared to the reception quality of the current cell, drawing conclusions about
a possible handover (HO) or cell reselection. At the end of this first step, a terminal
synchronizes to a cell, acquiring the physical-layer identity of the cell and detecting
the cell frame timing.

As second step, the terminal needs to acquire the cell system information to be
able to access the cell. Such information is enclosed in so-called System-Information
Blocks (SIBs) that are repeatedly broadcast by the network. The system information
(in particular, the SIB-2) includes, among other things, detailed parameters related
to random-access transmission. To this end, the main mechanism used in LTE

ML Optimization of Cell-Range Overshooting Detection in Real LTE Networks 5



2. Background

networks is by transmitting the SIBs through the Downlink Shared Channel (DL-
SCH).

Lastly, the terminals request a connection setup to the cell, commonly referred to as
random access. The main objective of this last procedure is to eventually establish
connection with the base station. Acquisition of uplink syncronization, i.e. timing
advance, is essential to this purpose. Either a contention-based or a contention-free
(dedicated) scheme can be used, depending on the purpose. As the names suggest,
contention-based procedure comes into play when multiple UEs attempt to access
the network simultaneously, while contention-free random access is initiated by the
network, specifically during a UE HO scenario.

Figure 2.1: Random Access step-procedure.

As shown in Figure 2.1, the random access is basically a four-step procedure, which
is initiated by the terminal sending a preamble (also known as message-1) through
the Physical Random Access Channel (PRACH). As second step, the evolved Node-
B (eNB) responds with message-2 which includes a timing advance command to
adjust synchronization and assigns uplink resources to terminal. Then, in case of
contention-based connection, the terminal transmits message-3 (RRC signalling)
sharing its unique identity with the network and requesting connection. As final step,

6 F. Fanelli



2.1. LTE Access Procedures

the eNB concludes the procedure with message-4, a contention-resolution message.
Except for the first step which uses physical-layer processing dedicated to random
access, the subsequent messages are sent through DL-SCH and UL-SCH, normally
used for data transmission. Although the procedure above is started by the terminal,
also the network could initiate a random access, using RRC signalling or so-called
PDCCH order (primarly intended for re-establishing uplink synchronization).

2.1.1 PRACH

[1] The Physical Random Access Channel is the time-frequency resource used to
transmit the random access preambles, whose main purpose is to indicate to the base
station the presence of random-access attempt. The PRACH resource information
is broadcast by the network in SIB-2.

In the frequency domain, the PRACH resource has a bandwidth of 1.08MHz. In the
time domain, the duration depends on the configured preamble format.

The general structure of a random access preamble is illustrated in the Figure 2.2.

Figure 2.2: Structure of random access preamble.

As the Figure 2.2 shows, the preamble consists of two parts: a cyclic prefix and
a preamble sequence. In addition, a guard period is used to handle timing un-
certainty. At the beginning of random access procedure, the terminal has already
acquired downlink synchronization through the cell search procedure, but uplink
synchronization has not been established yet. Hence, there is uncertainty in the
uplink timing due to unknown location of terminal within the cell.

The cyclic prefix is required to account for two aspects: the maximum delay spread,
i.e. the last delay spread component should arrive within the cyclic prefix period of
the first preamble component, as well as the maximum delay, i.e. addressing the case
of terminals at the edge whose transmission is affected by the cell range distance.
In the latter, the maximum delay is equal to the round trip time: one-way delay
accumulated at reception of prior PRACH and one-way delay due to transmission
of PRACH.

Figure 2.3 illustrates transmission of PRACH preamble received by an eNB from
two different UEs: one user located at short distance from the node, while the
other user at cell edge. It is possible to notice that the length of the cyclic prefix
is approximately equal to the length of the guard period, which should be enough

ML Optimization of Cell-Range Overshooting Detection in Real LTE Networks 7



2. Background

Figure 2.3: Cyclic Prefix allowing for both the maximum round trip time and maximum
delay spread.

to accommodate at least the round trip time. This limits any overlap into the
subsequent subframe i.e. only delay spread components overlap into the subsequent
frame. This is deemed to be acceptable because the overlap is into the cyclic prefix
region of the subsequent subframe.

According to Third Generation Partnership Project (3GPP) standards, there are 5
preamble formats presented in the Table 2.1. These are all based on the general
structure illustrated in the Figure 2.2, but have different durations of cyclic prefix
and guard time. Formats 0 to 3 can be used by either FDD and TDD.

In general, the radio network planner selects the appropriate format based upon
the cell range. Formats with longer cyclic prefixes and longer guard times are more

Table 2.1: PRACH format parameters.
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suitable for larger cell ranges, which tend to experience larger delays spreads and
have longer propagation channel round trip times. The drawback associated with
using longer PRACH duration is an increased PRACH overhead, i.e. an increased
number of resource blocks are allocated to the PRACH transmission.

Practically, the preamble format to be used within a specific cell is indicated using
the PRACH Configuration Index (broadcast in SIB2). This parameter also defines
the subframes during which the PRACH preambles can be transmitted.

In each cell, there are 64 preamble sequences available. These preambles allow
multiple UE to share the same Root Sequence Index (RSI) values. Two main sets
are defined to dedicate a larger number of preambles to contention-based purposes
and a smaller number of them for contention-free purposes.

Moreover, in case of contention-based attempt, two sub-subsets of sequences are
defined called group A and group B. Depending on the uplink data quantity to send
and the experienced coverage quality, the group to use is identified. Within that
group, the terminal selects at random one sequence. Instead, in case of contention-
free attempt, for example for handover procedure, the eNB explicitly indicates the
preamble sequence to use in order to avoid any collision.

3GPP standard specifies that preambles sequences are generated from a set of 838
root sequences (RSI), the Zadoff-Chu sequences, i.e. particular sequences charac-
terized by great uncorrelation. Each preamble sequence is generated from its root
sequence (RSI) by applying a cyclic shift. The zero-correlation (ZC) zone parameter
determines the size of the cyclic shift and the number of preamble sequences that can
be generated. A small zero-correlation zone means a small cyclic shift is used and
therefore a larger number of preambles sequences can be generated from a unique
root sequence. This would be suitable in case of a small cell range. The Table 2.2
shows the cell range as a function of the ZC zone.

It is beneficial to generate as many preamble sequences as possible from the same root
sequence because such procedure would ensure orthogonality among one sequence
and another. On the contrary, preamble sequences generated from different root
sequences are not orthogonal, which implies intra-cell air-interface. Furthermore,
generating a large number of preambles from the same root sequence also means that
each cell would require fewer root sequences to construct the set of 64 preambles.
Hence, this allows greater re-utilization of the set of 838 root sequences and make
it easier to ensure that the sets of root sequences assigned to neighboring cells are
mutually exclusive. However, the important drawback of generating large numbers
of preamble sequences from one single root sequence is that the maximum supported
cell range significantly decreases. The reason behind this lies in the challenges of
distinguishing a frequency offset from distance-dependent delay.

Consequently, the extent of the cell range is delineated by two constraining factors.
Primarily, a physical constraint arises from the guard time inherent in the selected
preamble format. A secondary constraint emerges from the level of reuse of root se-
quences, indicated in the configuration of PRACH Cyclic Shift (prachCS) parameter.
Additionally, the radio coverage of the cell must be taken into consideration, deter-
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Table 2.2: Cell range as a function of the Zero-Correlation Zone.

mining the actual signal level provided by the cell. Hence, the ultimate maximum
cell range is determined as the more stringent limit among such constraints.

Within Vendor-A’s infrastructure, the default configuration defines the use of Pream-
ble format 0 (max. cell range of 14.5km) for LTE-1800 frequency band and format
1 (max. cell range of 77.3km) for LTE-800 frequency band. However, the current
Vendor-A configuration of prachCS stands at 12 (max. cell range of 15.92km) for
the LTE-1800 and 13 (max. cell range of 22.78km) for the LTE-800. It is very no-
table that in the latter scenario, upon referencing Table 2.1 and Table 2.2, the cell
range dictated by the prachCS is significantly constrained compared to the threshold
delineated by the guard-time parameter of the relative preamble format.

2.2 Potential Overshoot Scenarios

This Section builds upon the foundational technical concepts established in the
previous Section, providing further elaboration of the possible consequent problem
scenarios arising due to the overshooting phenomenon [12].

Before delving into the possible scenarios, it is important to define two key concepts
which are often utilized in the following paragraphs. First, the term cell range is
determined by the configuration of prachCS parameter and represents the maximum
distance at which a UE should be able to connect to the cell. Hence, the cell
range is usually referred to as the “logical” coverage area of the node. On the
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Figure 2.4: Overshooting phenomenon example.

other hand, the term radio coverage defines the geographical area within which
the cell’s antenna must provide reliable radio signal to users. This latter concept,
determined by physical factors such as transmission power, antenna characteristics,
and surrounding environment, is often referred to as the “physical” coverage of the
node.

The overshooting phenomenon is illustrated in Figure 2.4. In the reported example,
a LTE-800 cell has a maximum cell-range of 23 km, defined by its configuration of
prachCS parameter. Anyway the actual radio coverage is 77 km. For this reason,
although messages of type 1 sent by an overshooting UE are received by the cell,
the significant time shift causes the preambles to be mistaken with another sequence
among the possible time shifts allowed for that RSI. In this scenario, the eNB will
respond with an incorrect Random Access Response (message-2), causing the RRC
Connection Request (message-3) not to be received by the eNB. As a result, the
connection attempt will fail, affecting the overall network performance.

In order to overcome overshooting issues, the idea is to force the cell to have match-
ing configured values of cell-range and a physical coverage. Hence, two possible
solutions are commonly implemented to meet such constraint. The first solution
implies (physically) adjusting the antenna tilt, i.e. the angle at which the antenna
is positioned relative to the ground, which alters the cell’s coverage area. By de-
creasing the tilt angle the antenna’s main radiation lobe is directed more towards
the ground, reducing coverage in distant areas and potentially mitigating overshoot.
This adjustment can help optimize coverage and minimize interference with neigh-
boring cells. On the other hand, a second solution consists in a “logical” adjustment
of the PRACH parameters, leading to an extended cell-range. Increasing the cell-
range allows UEs located further away to successfully access the network without
causing overshooting. However, this approach requires careful planning to ensure
optimal performance and minimal interference with neighboring cells.
Both of these approaches aim to optimize the coverage area of the cell and mitigate
overshoot effectively.
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2.3 Root Sequence Index Collisions

This Section expands on the fundamental technical concepts introduced in the
present Chapter (2), offering a general overview of the topic of RSI collisions that
may arise in the network [5].

As explained in Section 2.1.1, the parameter prachCS determines the level of reuse of
a RSI by specifying the number of cyclic shifts applied to the root sequence, thereby
determining the number of preambles created from that RSI.

Regardless of the prachCS configuration, each cell requires 64 preambles, leading to
the assignment of a set of possible RSIs for each cell.

The distribution of RSIs must consider several factors:

• the maximum cell range, as defined in Section 2.1.1;

• the number of RSIs needed per cell, depending on on the value of cyclic prefix
(and thus on prachCS);

• the set of 838 RSIs is divided into three subsets, based on different usage
scenarios: permanent network assignments, integration of new cells, and fem-
tocells.

Currently, the distribution of RSIs does not follow a standard procedure. However
it is important to note that in areas close to national borders the number of assigned
RSIs may be reduced, resulting in some RSIs being left unused.

In Section 2.1, it is discussed that UE must undergo the LTE random access pro-
cedure to connect to a LTE network, establish or re-establish a service connection,
perform HO, synchronize for uplink and downlink data transfers. The LTE random
access procedure offers two distinct approaches: contention-based and contention-
free (also known as dedicated). In the contention-free scenario, the eNB explic-
itly assigns a preamble sequence to the UE to prevent collisions. Conversely, in
contention-based attempts, the UE randomly selects a preamble from the available
set and transmits it to the node.

When neighbouring cells operate in the same frequency band and share the same RSI
parameter, connected UEs may calculate the same preambles, resulting in increased
occurrences of preamble collisions, commonly referred to as “RSI Collisions”. An
example is depicted in Figure 2.5.
This issue can lead to failed service establishments or re-establishments, as well as
failed handovers.
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Figure 2.5: RSI Collision phenomenon example.

2.4 State-of-the-art Analysis

As mobile networks expand and the demand for seamless connectivity continues to
surge, the optimization and automation of these networks have emerged as critical
tasks. To this end, anomaly detection, performance forecasting, and self-healing ca-
pabilities are indispensable components of network management strategies. Lever-
aging advanced techniques such as machine learning (ML) and data-driven opti-
mization, research is directed towards exploring innovative approaches to address
the complexities inherent in modern mobile networks.

Recent studies have focused on the feasibility of deploying adaptive ensemble-method
frameworks for modeling cell behavior, using KPIs to determine cell-performance
status. The abundance of operational data within mobile networks presents an op-
portunity to detect anomalies and predict performance accurately. Advanced ML
techniques applied to aggregated data from multiple sources enable the identification
of anomalous behavior and the forecasting of network performance. Novel frame-
works propose the aggregation of heterogeneous datasets and apply ML algorithms
for diagnosing network issues. Pattern identification and time-series forecasting
automatic algorithms efficiently detect spatial-temporal anomalies, predicting cus-
tomer impact accurately.

The paper On the feasibility of deploying cell anomaly detection in operational cellu-
lar networks [2] introduces the concept of “self-healing” within the Self-Organizing
Network (SON) framework. By utilizing KPIs, the adaptive ensemble-method frame-
work demonstrates a practical solution of automation of the detection of cell anoma-
lies with minimal computational overhead and detection delay.

Similarly, authors in paper Automatic Root Cause Analysis for LTE Networks Based
on Unsupervised Techniques [4] propose an automatic diagnosis system for LTE
networks, leveraging unsupervised techniques such as Self-Organizing Maps (SOMs).
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In the paper Big Data-driven Automated Anomaly Detection and Performance Fore-
casting in Mobile Networks [7], leveraging the vast amount of data available in op-
erational mobile networks, the proposed framework aggregates data from diverse
sources, including configuration, performance, inventory, locations, and user speeds,
applying ML algorithms for diagnosis and impact analysis.

Finally, the paper A canonical correlation-based framework for performance analysis
of radio access networks [8] introduces a framework based on Canonical Correlation
Analysis (CCA), which is a highly effective method for not only dimensionality
reduction but also for analyzing relationships across different sets of multivariate
data. It provides a case study on energy-saving through cell shutdown in LTE
networks, demonstrating the effectiveness of CCA to analyze the impact of capacity
cell shutdown on the KPIs of coverage cell in the same sector.

2.4.1 Current Operation Methodologies and Technologies

At Telefónica, the procedure for identifying overshooting issues relies on analyzing
the out-of-range signal reception rate of individual cells. The latter can serve as an
indicator of the severity of the overshooting occurrence.

Initially, a local filtering process is conducted within specific geographical regions
of Spain using a partially automated system implemented with the PowerBI1 tool
(in Figure 3.1). This system allows for the selection of telecommunication equip-
ment between Vendor-A or Vendor-B (as specified in Section 1.2) and the input of
the current “expected cell size”, which is defined by the current configuration of
PRACH parameters. Subsequently, the tool generates a list of cells along with their
significant characteristics such as current prachCS, out-of-range signal reception rate
(%), calculated-prachCS, and the corresponding calculated expected cell size. Note
the term “calculated”, which refers to the recommendations for parameter adjust-
ments that the tool provides based on current configuration data. PowerBI users
have the ability to filter the information geographically and by setting thresholds for
the out-of-range signal reception rate. The PowerBI tool is configured to update its
results daily, ensuring the integration of the latest available data into the analysis
process. However, it operates with a temporal depth of 14 days, i.e. insights and
visualizations presented are based on 2-weeks time span of historical data.

Once overshooting issues are identified, each case is individually assessed, and decision-
making is carried out manually by optimization engineers. This process takes into
consideration various factors including the topological characteristics of the cell (e.g.,
location, surrounding environment, network neighborhood). Additionally, consult-
ing appropriate KPIs, optimizators assess the actual impact of these issues on user
experience and network performance. One such KPI is the successful message-
3/message-1 accesses rate (%), which reflects the ratio of the number of success-

1Power BI is a business analytics tool created by Microsoft, aiming to facilitate the visualization
and analysis of organizational data. It enables users to connect with diverse data sources, such as
Excel spreadsheets, databases, and cloud services, consolidating information from disparate origins
into a unified and coherent interface.
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ful RRC signaling (message-3), transmitted consequently to the reception of UE’s
preambles, over the total number of preambles (message-1). Comparability between
these two quantities is crucial for representing cells that are functioning optimally.

Conversely, Telefónica’s Radio Optimization department is currently transitioning
certain operations to Databricks2, an analytics platform built on Apache Spark.

This project marks one of the initial steps in such technological transition towards
the field of data analysis.

Databricks, in comparison to the former Telefónica’s platform, offers greater po-
tential in scalability, advanced analytics, and real-time processing. Additionally, it
provides higher programming flexibility and integration, enabling the utilization of
big data databases. Its distributed architecture enables to effectively handle massive
data volumes, making it ideal for organizations dealing with big data or complex
data processing tasks. Additionally, Databricks support multiple programming lan-
guages (e.g. Python, R, SQL) and libraries commonly used in data science and
ML.

2Databricks is a unified, open analytics platform for building, deploying, sharing, and maintain-
ing enterprise-grade data, analytics, and AI solutions at scale. The Databricks Data Intelligence
Platform integrates with cloud storage and security in your cloud account, and manages and deploys
cloud infrastructure on your behalf.
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This Chapter delves into the initial phase of a project, which is dedicated to ML
problem framing, data processing and Exploratory Data Analysis (EDA).

Mobile network data ingestion, cleaning, and aggregation pose significant challenges
in terms of volume, diversity, and reliability. More in details, mobile network man-
agement data include Performance Management (PM), Inventory Management (IM)
and Configuration Management (CM) data. IM data primarily consists of static
equipment details, such as base station specifications and infrastructure inventory.
Within IM set, the subset of CM data encompasses crucial radio access network
parameters like eNB/cell ID, frequency bands, and neighbor relations. Conversely,
PM data includes a multitude of dynamic counters, generating raw measurements
across the network.

This phase involves ingestion of mobile network data, in particular PM data, from
different sources, followed then by EDA process. The ultimate goal is to understand
and identify relevant characteristics, which serve as indices of connection quality,
network performance and user experience, hence indicative of overshoot problems.

For this purpose, as anticipated in Section 2.4.1, the initial step involves extracting
information from Telefónica’s Power BI. Specifically, this tool has been previously
designed by Telefónica’s Radio Optimization department to identify cells marked as
cell-range problematic for specific dates.

Successively, this information enables for further query and extract relevant infor-
mation for these instances.

The work of this thesis explores the utilization of Azure Databricks, a managed ver-
sion of the Databricks platform within the Azure cloud environment. Specifically,
it leverages Spark1 sessions within Azure Databricks and the integration of PyS-

1Spark is an open-source distributed computing system for programming entire clusters with
implicit data parallelism and fault tolerance. It’s designed for big data processing and analytics,
offering in-memory computation and supporting various programming languages like Scala, Java,
Python, and R.
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park2 and Kusto Query Language3 (KQL) queries for efficient data manipulation
and analysis. Further details are provided in Appendix D.

3.1 ML Problem Framing

In a ML life cycle, the fist step is the so-called “ML problem framing”. It consists
in reframing the business problem under study into a ML problem. This first stage
involves the articulation of the problem statement, the identification of target vari-
able, pertinent features, context and limitations of the problem domain. The ML
problem must be framed taking into account the business objective, the theoretical
framework, and the current state-of-the-art.

As presented in Section 1.2.1, the work of this thesis mainly focuses on cell-range
overshooting use case. First, the objective is to implement a tool which, given some
KPIs as input variables, is able to identify the problematic occurrences related to
overshooting among the network.

With this under consideration, the business problem can be designed as a binary clas-
sification problem. Classification techniques enable the categorization of instances
based on their characteristics. This implies that cells will be classified according to
the values of their KPIs, aligning precisely with the objective.

Firstly. it must be clarified that, although a cell may operate on multiple frequencies
in real networks, in KQL queries each cell’s unique identifier represents a cell asso-
ciated to a specific frequency. Hence, for nomenclature reasons, in the entire thesis
the term “cell” will refers to a cell operating in one single, particular frequency.

Therefore, the dataset will comprises of a cell (sample) in each entry described by
a set of KPIs (features) and a binary label (1 for overshooting issue or 0 for no
overshooting issue). Each entry will correspond to a specific time frame during
which the KPI values are extracted for a cell operating at a specific frequency.

Accordingly, the problematic class (label 1) represents the cells experiencing cell-
range overshooting issues. On the other hand, the random class (label 0) identifies
the cells not experiencing cell-range overshooting issues. The term “random” aims
to highlight the uncertainty about the cell status. The reason behind this is to create
as comparison class a realistic network model comprehensive of cells well-behaving as
well as cells experiencing other types (and at different severity levels) of problems. In
this way, it is ensured robust training of the ultimate system to distinguish overshoot
issues within real - hence heterogeneous - network environment.

2PySpark is the Python API for Apache Spark, enabling to leverage Spark’s distributed com-
puting capabilities using Python.

3Kusto Query Language (KQL), developed by Microsoft, is a query language used to interact
with Azure Data Explorer for analyzing large volumes of data.
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3.2 Identification of Problematic Cells

Introducing the Data Processing stage, the initial step is the Data Acquisition which
focus on the identification of cells experiencing overshoot problems. To this end, all
network cells belonging to Vendor-A’s equipment (in the territory of Spain) are
monitored.

For the purpose, a Power-BI tool, previously developed in Telefónica, is leveraged,
which enables the detection of cells exhibiting an out-of-range signal reception rate
higher than a given threshold. In Figure 3.1, the Power-BI tool provides a geograph-
ical visualization of selected cells and among other information, the actual prachCS
and expected cell size (expected cell range corresponding to current prachCS) as
well as the calculated cell-size and PRACH parameters proposed configuration in
order to better serve the detected overshooting terminals. Details on the Power-BI
tool can be found in Section 2.4.1.

Figure 3.1: Power BI tool screen capture example.

During the stage of Data Processing, this Power-BI tool is exploited for the identifi-
cation of cells experiencing (in a particular date) problems related to overshooting.

Hence, filtering the result from such Power-BI tool using a minimum threshold of
2% for the out-of-range signal reception rate, a set of 1559 records is constructed,
serving as the ground truth 4 for the problematic class. Each record represents
one cell’s conditions in a given period of time during which it was experiencing
overshooting problems. The data collection spans the time window from March 12th

4Ground truth is defined as the labels associated with the data points that indicate whether the
data represents well-known problematic cell or not.
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to March 14th 2024, including the endpoint dates. Furthermore, the 2% filter allows
to exclude occurrences of overshooting with very low severity.

In contrast, the random class is composed by approximately 1540 cells, which are
randomly selected among the remaining cells over the entire Spanish territory cov-
ered by Vendor-A. Also for this class, the same time window is used for data collec-
tion.

In Figure 3.2 the geographical distribution of Training dataset is depicted. Figure
3.2 provides a capture of an interactive visualization (HTML file) generated using
plotly open-source library in Python. For sake of privacy considerations for sensible
information involved, only the captures of such visual outputs will be presented in
this thesis.

Figure 3.2: Training dataset geographical distribution.

It is important to clarify that the same cell observed in a different time window could
be in a completely different status and experiencing different conditions. Therefore,
the timing of the observation is fundamental. Beside that, during the Testing Phase
(Chapter 4), cells that have already been seen in the training dataset are excluded
from the testing datasets.

Finally, it is essential to specify that mobile networks exhibit a stringent dependency
on the movements and behavioral trends of individuals. Variations in seasons or
temporal periods significantly influence the distribution of population densities and
mobility patterns, thereby exerting notable fluctuations on network traffic dynamics.
Consequently, the operational performance of these networks is intricately tied to
temporal factors.
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3.3 Key Performance Indicators

The full set of Key Performance Indicators (KPIs) encompasses various aspects
of LTE-based access network, including Integrity, Accessibility, Retainability, and
Usage. For example, they can quantify the success rate of connection establishment,
the failure rate of Handover (or Handoff) (HO) procedures, or the drop rate of Voice
over LTE (VoLTE) connections. Traditionally and presently, these KPIs constitute
the primary metrics examined to assess network health and cell status.

The KPIs are defined by official formulas, which are functions of several variables
known as counters. The KPIs capture diverse network metrics, often with high
granularity (e.g., every 15 minutes). This results in vast volumes of time-series
data collected at various levels such as cell and neighbor relations. For instance,
counters track metrics like cell throughput at the cell level and handover statistics
per neighbor relation.

Considering the purpose of the project, prior knowledge and under the supervision
of optimizers from Telefónica, a restricted list of 49 KPIs is extracted.

These KPIs, relative to individual cells and 4G technology, span various aspects
of network operation, including the RACH procedure, access failures, drop ratios,
throughput-related integrity metrics, and HO procedures. In Appendix A a full
descriptive table of considered KPIs is provided.

3.3.1 KPIs Time Aggregation

As previously explained, the observed KPIs are very dynamic parameters that ef-
ficiently represent the instantaneous (15 minutes window) condition of a network
cell.

In order to have comprehensive overview of network cell status, a wider time window
observation is more representative of the overall behavior of each KPI. In this di-
rection, taking into account the fact that overshooting issues are currently resolved
after roughly a week from the detection (since it is partially manual procedure), it
is reasonable to consider the KPIs as time-aggregated values of three days over the
period in which the cell was experiencing the issues.

Aggregation is automatically performed in Databricks by PySpark computational
resources. The time aggregation consists in the computation of the KPI’s official
formula using as input variables the counters accounting for the entire given time
window.

Moreover, three-day aggregation approach addresses also the issue of NaN values
which sometimes are returned for some KPI in a specific 15-min output. Among
other reasons, this is due to the dynamic network management systems which fre-
quently involves cell reconfiguration or cell resizing, which could translate in null
values for small time windows. However, aggregation over a larger window of three
days resolves such challenge.
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Figure 3.3: Dataset division in Problematic and Random classes.

3.4 Training Dataset

In recapitulation, the dataset consists of approximately 3100 samples, roughly equally
divided into problematic and random classes (Figure 3.3) and 49 features, which are
three-day aggregated values of KPIs in the time window from March 9th to March
12th, 2024.

For sake of clarity and consistency, the dataset in question is henceforth referred to as
the Training dataset. This nomenclature will be consistently employed throughout
the remainder of this thesis to denote its role as the primary dataset for training
purposes.

3.5 Exploratory Data Analysis

The primary objective of the EDA process is to meticulously examine the dataset
in depth, analyzing its various attributes, patterns, and distributions, thereby gain-
ing comprehensive insights and understanding into the underlying structure and
characteristics of the data.

A well-balanced dataset holds significant importance for classification algorithms, as
it guarantees the effective learning of predictive patterns across all classes, mitigating
biases toward dominant ones. Conversely, in datasets skewed towards one class,
the model risks favoring the majority class, thereby compromising its ability to
effectively discern minority classes.

However, beyond mere class balance, it is crucial to delve into the homogeneity of
data records. Specifically, in this case, each record corresponds to a cell, making it
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imperative to study not only the overall balance but also how different “types” of
cells are represented within the problematic and random classes.

Therefore, the EDA process is divided into a first data examination related to the
network’s topology and physical aspects, and a second further statistical analysis of
the KPI measurements.

3.5.1 EDA of Cell Nature

The preliminary analysis of data primarily centers around examining various network-
related topological and physical factors.

Although the classification model depends on KPI features for pattern recognition
and issue identification, the observation of network aspects adds depth and context
to the problem under examination. The analysis of network-related information has
the potential to reveal hidden correlations, anomalies, or trends not emerging from
just KPI data. Furthermore, the inclusion of network data facilitates a cleansing
process, enhancing the overall integrity and balance of the dataset.

(a) Problematic class (b) Random class

Figure 3.4: Intra-class distribution of cells across geographical regions.

To begin with, it is crucial for the dataset to be representative and homogeneous
across the entire geographical territory. The objective is to prevent situations where,
for instance, problematic cells are concentrated in specific areas, which could intro-
duce bias in classifying their behavior within those regions rather than focusing on
their performance issues.

In Figure 3.4, it is reported, within each class, the distribution of samples across
different regions. The dataset exhibits near-equal distribution across the Spain-
Vendor-A territory.
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Figure 3.5: Comparison intra-class distribution of cells in terms of frequency bands.

Also, Figure 3.5 demonstrates almost symmetrical allocation of records across the
possible frequency bands, meaning that for each cell belonging to problematic class
there is (approximately) an instance of the same frequency band in the random class.

However, it must be recognised that the dataset is not equally divided across the
bands, exhibiting better representation within bands 800 MHz and 1800 MHz. This
aspect is further discussed and studied in Section 4.2.

Subsequent investigations were conducted to analyze the frequency band distribution
of problematic cells relative to the frequency bands employed by co-located cells.
The initial unverified hypothesis posited that overshooting incidents predominantly
occur in “external” cells, while occurrences in “internal” cells, co-sited with multiple
higher frequency bands, are rare. However, as illustrated in Figure 3.6, the findings
indicate no discernible correlation between the occurrence of overshooting incidents
and the frequency bands utilized within the cell site. Notably, a similar pattern is
observed when comparing the two cell classes.

Furthermore, similar observation is carried out considering the size of cells included
in the dataset. In particular, the prachCS parameter is exploited to calculate the
expected cell range (with respect to Table 2.2). As shown in Figures 3.7a 3.7b, is
mainly composed by records of cells with expected cell size of 30km and consistent
number of 10km/15km. Nonetheless, the dataset exhibits an overall acceptable
inter-class symmetry.

In conclusion, although the dataset presents a comparable composition within each
class without regional disparities, cells with varying characteristics are represented
non-uniformly.

With the aim of acknowledging these imbalances, during the Testing Phase (in
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Figure 3.6: Frequency bands distribution per different levels of internal placement with
respect to co-site cells. Comparison of problematic (P) and random (R) classes.

Chapter 4), results are analyzed for cells with different characteristics to detect
possible biases in classification performance.

This comprehensive approach enhances the robustness of the classification model,
enabling it to provide reliable insights into the network performance across diverse
parameters.
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(a) PrachCS

(b) Expected cell-range

Figure 3.7: Distribution of cells in terms of prachCS and expected cell-range.
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3.5.2 KPI EDA

The preliminary data analysis continues focusing on the KPIs included in the dataset.

Although the initial selected list comprises of 49 KPIs, not all these features con-
tribute equally to the classification process. Further analysis can allow identify the
most valuable KPIs, thus reducing both memory and computational costs.

For the purpose of gaining insights, an examination of the distribution of the KPIs
under study is conducted.

The histograms presented in Figure 3.8 facilitate a comparative analysis of the dis-
tribution of a specific KPI across the two classes. Figures 3.8a and 3.8b illustrate the
impact of the overshoot phenomenon on the ratios of message-3 to message-1 and
message-2 to message-1, respectively. These findings are consistent with theoretical
expectations, as overshooting often results in a higher frequency of connection estab-
lishment attempts that remain incomplete. Similarly, in Figure 3.8c and 3.8d, it is
noticeable the random cells’ better performance, which translates in higher success
rate of HO execution phase and higher average downlink throughput.

(a) Message-3 / Message-1 Success Rate (b) Message-2 / Message-1 Success Rate

(c) HO Execution Phase Success Rate (d) Average IP Scheduled DL Throughput

Figure 3.8: Histograms of Distribution of four KPIs.

In line with this, the Mann-Whitney U Test5 [9] performed on each KPI distribution
returns very low p-values which confirm the significant statistical difference between

5Mann-Whitney U Test is a non-parametric statistical tests used to assess whether two indepen-
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the random and problematic populations. In Appendix B a table reports the results
of Mann-Whitney U tests for the full list of considered KPIs.

In this regard, Feature Importance analysis (next Section 3.6) enables the ranking
of KPIs based on their level of information regarding overshoot problems.

3.6 Feature Importance Analysis

The Feature Importance Analysis procedure employs ML techniques to efficiently
determine the relevance of each KPI. Its aim is to quantitatively evaluate the impact
of each KPI on the predictive capability of our models. This method not only
corresponds with our current understanding but also offers a data-driven validation
of our hypotheses.

Feature Importance analysis process is carried out implementing two Tree-based clas-
sification algorithms, namely Random Forest (RF) and Extreme Gradient Boosting
(XGB). Therefore, prior to exploring Feature Importance analysis and its results,
such family of algorithms is introduced for sake of better clarification.

3.6.1 Tree-based Classification

Tree-based classification algorithms are ML algorithms that use a decision tree struc-
ture to classify instances into different classes based on their features. Decision
Trees (DTs) recursively split the feature space into regions, with each split based on
thresholding one selected feature [11].

Figure 3.9 offers a visual representation of the Decision Tree (DT) classifier applied
to the dataset used in this study. The output displays the structure of the decision
tree, including nodes and branches. By setting a maximum depth to a single branch,
one can better appreciate the logical criteria employed in the tree-based decision-
making process. Each node represents the split criteria, including the KPI used for
splitting and the threshold value, while the branches indicate the possible outcomes
of that decision. The leaf nodes of the tree represent assigned class labels. While DTs
are advantageously easy to interpret and visualize, a side effect is their proneness to
overfitting. Thereby, they may not perform well on high-dimensional data. This is
one of the reasons why more complex and highly-accurate tree-based classifiers are
implemented in this study.

dent samples originate from the same population or have different population medians. It yields
the U statistic value, which measures the extent of difference between the two samples, and cal-
culates the p-value. Typically, a low p-value (usually below 0.05) indicates a significant difference
between the populations, while a high p-value suggests little difference.
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Figure 3.9: Decision Tree Classification.

Random Forest (RF) and Extreme Gradient Boosting (XGB) are widely used ma-
chine learning algorithms for classification tasks. Their ability to effectively manage
complex patterns and high-dimensional data makes them such robust algorithms
against overfitting and noise [13].

Random Forest algorithm is an ensemble learning method that builds multiple deci-
sion trees and combines their predictions to improve accuracy and reduce overfitting.
Each tree is trained on a random subset of the data and features.

On the other hand, Extreme Gradient Boosting is an optimized implementation
of gradient boosting (another ensemble learning technique that builds a sequence
of decision trees) that includes additional features such as regularization, sparsity
awareness, and parallel computing.

RF and XGB offer distinct advantages over other classification algorithms like Lo-
gistic Regression (LR) and Support Vector Machine (SVM). For instance, LR relies
on the assumption of a linear relationship between features and the target variable,
which might not always hold true. SVM’s performance can be influenced by the
choice of kernel function, often necessitating meticulous hyperparameter tuning.

3.6.2 Feature Importance Analysis

With the aim of analysing the impact of each KPI in the classification, Feature
Importance methods allow to assign scores to KPIs, which are measures of their
contribution to the predictive power of the model.

In order to build the models, the two classification algorithms, Random Forest (from
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scikit-learn Python library) and XGB (from xgboost) are trained, cross-validated
and tested on the dataset previously presented in Section 3.4.

Both classification algorithms are trained performing K-fold cross-validation with
three folds (K = 3) on the whole dataset. Successively, Feature Importance analysis
is carried out.

In case of Random Forest, the attribute feature importances provides a measure
based on the Gini impurity6 [6]. The importance score for a KPI is calculated by
averaging the decreases in Gini impurity across all decision sub-trees in the forest.

On the other hand, the XGB offers an equivalent attribute (so-called feature importances )
which provides similar information, although not directly using Gini impurity. It
calculates the gain importance of each KPI, i.e. the average gain across all the
sub-trees in the model, where the gain is defined as the reduction loss achieved by
splitting on that feature.

In Figures 3.10 and 3.11, the graphs show sorted KPI importance scores for RF
and XGB. Whereas the sorting order differs, the most important KPIs are highly
placed in both results. It must be noticed that both XGB and RF consider the two
most important KPI as significantly more informative, while the subsequent KPIs
are deemed to have comparable (lower) relevance among themselves.

Finally, the results obtained by Random Forest and XGboost are combined to re-
trieve a unique list of features. In Table 3.1 the resulting list of KPIs, combined
respecting the descending importance order for both RF and XGB, is reported.

KPI

Complete Contention Based RACH Setup Success Rate N4

RACH Setup Completion Success Rate N4

Exitos de la fase de ejecucion del handover N4

S1 Initial Context Setup Attempts N4

Initial E RAB Accessibility N4

RRC Connection Setup FR N4

E RAB Setup Attempt N4

Number of successful Intra eNB Handover completions per neighbor cell relationship N4

Number of successful Inter eNB Handover completions per neighbor cell relationship N4

HO Success Ratio intra eNB N4

RRC Connection Setup Attempts N4

Average MCS used for TB transmission using Spatial Multiplexing transmission N4

RRC Connection Re establishment Attempts HO fail N4

Exitos de handover N4

Percentage of PDSCH transmissions using Low MCS Codes MCS 9 N4

PRB usage per TTI DL N4

6Gini Impurity is the probability of incorrectly classifying a randomly chosen element in the
dataset if it were randomly labeled according to the class distribution in the dataset.
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KPI

Inter Frequency HO Success Ratio N4

Average PDCP layer active cell throughput DL kbps N4

Average RSSI for PUSCH dBm N4

Averaged IP scheduled Throughput in DL QCI1 kbps N4

RACH Setup Attempts N4

PRB usage per TTI UL N4

E RAB Setup SR N4

HO Success Ratio intra eNB N4

Intra Frequency HO Success Ratio N4

Maximum Active UEs with data in the buffer per cell UL N4

Percentage of PDSCH transmissions using High MCS Codes MCS 20 N4

RRC Connection Re establishment rejection ratio N4

Maximum Active UEs with data in the buffer per cell DL N4

Initial Context Setup Failure Ratio due to Failed Radio N4

Number of Inter eNB Handover attempts per neighbor cell relationship N4

Radio Bearer Drop Ratio N4

Averaged IP scheduled Throughput in UL QCI1 kbps N4

E RAB Drop Ratio User Perspective N4

Total E UTRAN RRC Connection Re establishment Failure Ratio N4

Average RSSI for PUCCH dBm N4

MAX PRB usage per TTI UL N4

HO Preparation Success Ratio intra eNB N4

Exitos de la fase de preparacion del handover N4

Number of Inter eNB Handover failures per cause per neighbor cell relationship N4

MAX PRB usage per TTI DL N4

Number of Inter eNB Handover preparations per cause per neighbor cell relationship N4

E RAB active drop ratio with data in the buffer due to RNL Radio Connection with UE
Lost N4

Number of failed Inter eNB Handover preparations per cause per neighbor cell relationship N4

Average PDCP layer active cell throughput UL kbps N4

Number of failed Inter eNB Handover preparations per neighbor cell relationship due to
failures in [...]

Table 3.1: Ordered list of most important KPIs resulting from RF and XGB.

Successively, the resulting output list of KPIs is exploited to build the classification
models.

The cross-validation methodology is employed to further conduct Feature Impor-
tance Analysis (more details in Section 3.6.2) and identify the optimal set of fea-
tures, i.e. the smallest subset of most important KPIs allowing to achieve the highest
accuracy scores.
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Figure 3.10: Random-Forest Feature Importance sorted scores.
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Figure 3.11: XGBoost Feature Importance sorted scores.
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(a) Random Forest (b) XGBoost

Figure 3.12: Accuracy vs. number of most important KPIs used.

Cross-validation technique (cross val score from scikit-learn Python library)
is implemented in both cases on the whole dataset, in order to evaluate how well
the model generalizes to unseen data and can detect issues such as overfitting. This
technique involves dividing the dataset into 5 subsets, known as folds, and iteratively
training the model on a subset of the data while using the remaining subsets for
validation.

As results, Figure 3.12 provides the behavior of accuracy of the two classifiers against
the number of features considered (sorted in descending order of importance). It is
visible that the accuracy drastically increases using only the first most important
KPIs. Therefore, in Table 3.1, the optimal subsets of KPIs (i.e. the subsets allowing
to reach the highest accuracy) respectively for the models are highlighted with colors:
the KPIs considered by RF are in orange (23 out of 49); the selection of XGB is in
blue (25 out of 49); the KPIs common to both are indicated in bronze brown.

3.6.3 Models definition

After the completion of Feature Importance Analysis, the optimal subset of KPIs
is then considered to build the final best models of Random Forest (RF) and XGB
classifiers.

It is important to note that a standardized version of Training dataset is considered
to train the models, as well as conducting Feature Importance Analysis. Specifically,
z-score normalization is employed to ensure that the dataset has a mean of 0 and a
standard deviation of 1.

Both the models are trained (performing K-fold cross-validation) again on the dataset
considering only the optimal set of most important KPIs.

In Figures 3.14 and 3.13, for each classifier it is provided the relative estimated
confusion matrix along with the estimated Receiver operating characteristic (ROC)
curve.
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(a) RF Estimated Confusion Matrix (b) RF Estimated ROC curve

Figure 3.14: Estimated Confusion Matrices and ROC curves for Random Forest (perform-
ing cross-validation).

(a) XGB Estimated Confusion Matrix (b) XGB Estimated ROC curve

Figure 3.13: Estimated Confusion Matrices and ROC curves for XGBoost (performing
cross-validation).

Finally, as it results, both algorithms allow to reach acceptable predicting accuracy
(around 70%). Considering the average low level of severity of the False Negative
prediction, it can be concluded that the models are reliable tools to use for further
data analysis.
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In this Chapter the previously mentioned tree-based classification models, namely
Random Forest and Extreme Gradient Boosting, are further exploited and different
experiments are presented.

Mobile network performance is influenced by various factors inherent to the network
cells and the environments in which they are situated. Among these, traffic pat-
terns significantly impact network behavior. Similarly, cells operating on different
frequency bands exhibit distinct behaviors due to being subject to different stimuli.
Additionally, the surrounding environment, which is closely related to traffic and
frequency factors, presents diverse challenges to each specific cell.

Building upon the insights obtained from the EDA of Cell Nature conducted in Sec-
tion 3.5.1, which uncovers the heterogeneous nature of the dataset, attention is now
directed towards examining how these differences impact classification predictions,
identifying any biases or disparities due to these imbalances.

To accomplish the above, in the following diverse tests are presented to individually
examine each of these critical network aspects and assess their impact on classifica-
tion predictions.

Finally, the last test described in this Chapter aims to provide a deeper understand-
ing of the learnt targets developed by the two classification models, RF and XGB,
in their “Traffic-free” versions.

Specifically, the test presented in Section 4.4 challenges the classification models
with a particular dataset that includes both random instances and occurrences of
cells encountering another common network issue: the RSI collisions, as introduced
in Section 2.3.

4.1 Traffic impact on KPIs

As discussed in Section 3.2, mobile networks are particularly sensitive to seasonal or
temporal variations, and as a result, they experience fluctuations in traffic patterns.
Therefore, alterations in traffic dynamics could impact the networks, leading to
changes in certain KPIs.

Moreover, considering that KPIs are usually percentage measures, their values ob-
tained in higher-traffic circumstances might be more precise.
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Consequently, in pursuit of building generic classification models that do not capture
specific traffic patterns, a study is conducted on KPIs believed to be particularly
influenced by traffic dynamics.

Thank to the expertise of Telefónica’s optimizers and prior knowledge, a subset of
traffic-related KPIs is identified among the full set considered in Section 3.3.

Figure 4.1: Correlation matrix between traffic-related KPIs.

In Figure 4.1, such list of traffic-related features can be appreciated alongside the
correlation matrix of these variables. The Pearson correlation coefficients1 are com-
puted for all selected variables, revealing varying degrees of correlation, including in-
stances of very low correlation. Notably, the strongest correlation observed is among
four KPIs: “PRB usage per TTI UL N4”, “PRB usage per TTI DL N4”, “Maxi-
mum Active UEs with data in the buffer per cell UL N4”, “Maximum Active UEs -

1Pearson correlation coefficient is a statistic measure of linear correlation between two variables,
with values ranging from −1 to 1. A value of 1 indicates a perfect positive linear relationship, −1
a perfect negative linear relationship, while 0 indicates no linear relationship.
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with data in the buffer per cell DL N4”. Furthermore, these KPIs are highly corre-
lated with “Number of successful Inter eNB Handover completions per neighbor -
cell relationship N4” and “Number of successful Intra eNB Handover completions -
per neighbor cell relationship N4”.

Overall, the correlation matrix reveals varying directions of correlations and cases
of low correlation, indicating that while the selected KPIs capture traffic-related
aspects, they represent diverse information.

4.1.1 Traffic Index and Traffic-free Models

Undoubtedly, considering the full set of traffic-related KPIs would be optimal in
order to have an holistic view of traffic aspects, which impact on mobile network
performance. However, for the sake of comprehensiveness in our project, it could
be advantageous to develop a unified “traffic index” to consolidate the major traffic
information.

Successively, to achieve the above, Principal Component Analysis (PCA) is con-
ducted on the set of traffic-related KPIs.
PCA [14] is a widely used statistical technique employed for dimensionality reduction
and data visualization. By transforming original variables into a new set of uncor-
related variables known as principal components, PCA simplifies complex datasets
while preserving as much information as possible. It identifies the directions along
which the data varies the most, termed principal components, which are ordered by
the amount of variance they explain.

Figure 4.2: PCA Cumulative Explained Variance Ratio.
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After having applied z-score normalization to set Training dataset to zero-mean and
standard deviation of 1, PCA is employed on the set of traffic-related KPIs.
The PCA cumulative explained variance ratio2, in Figure 4.2, shows that the first
principal component (PC1) captures the 40% of total variance, while the second
(PC2) adds around the 20%.

Figure 4.3: PCA Loadings with respect to KPIs.

2Cumulative Explained Variance Ratio is a metric used to assess how much of the total variance
in the dataset is explained by each principal component, as well as by a combination of multiple
principal components.
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Additionally, in Figure 4.3, the PCA loadings depict the correlation coefficients be-
tween the original features (KPIs) and the principal components obtained through
PCA. The barplot illustrates how the correlation matrix is mirrored in the PCA
loadings. Specifically, the strongest correlation among the primary four KPIs men-
tioned earlier is evident in PC1, whose prominent loadings originate from these KPIs,
followed by the other two KPIs referenced above.

In conclusion, the PCA confirm that PC1 effectively encapsulates the primary traffic
information. While further analysis of the other principal components, capturing mi-
nor variances of traffic information, could be intriguing, PC1 is currently designated
as the “traffic index”.

Subsequently, the Random Forest and Extreme Gradient Boosting models are re-
trained following the entire procedure outlined in Section 3.6.3, with the exception
that the traffic-related KPIs are omitted from the feature set. For the sake of clarity
in nomenclature, this new version of the models is defined as Traffic-free throughout
this thesis.

Although the performance of the models do not seem to be significantly affected
by the removal of traffic-related KPIs, the final decision is to utilize the Traffic-free
models in the subsequent tests in order to ensure robustness against traffic dynamics.

Finally, the “traffic index” attribute is leveraged in the following Section to delve
deeper into the impact of traffic on the classification models.

Figure 4.4: Three traffic levels defined by the 25th and 75th percentiles of the Training
dataset’s “traffic index” distribution.

Hence, based on the distribution of the “traffic index” in the Training dataset, three
different traffic levels are defined, as shown in Figure 4.4.
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Therefore, in Figure 4.5 shows the Training dataset’s instances grouped by traffic
level, with differentiation among the classes. Notably, within each traffic level, the
class ratio is similar, with the percentage of each class being around 50%. Moreover
a higher number of occurrences is observed in the High-Traffic level.

Figure 4.5: Classes Distribution of Training dataset by Traffic level.

4.1.2 Testing on Semana Santa dataset

The performances of two classification models, namely Random Forest and Extreme
Gradient Boosting - Traffic-free version (Section 4.1.1) - , are further assessed using
a specialized dataset comprising overshooting incidents recorded in date April 2nd.

Semana Santa Traffic patterns

The chosen time window falls in the Easter period of the year: the holiday of Sem-
ana Santa is widely celebrated in Spain, therefore the dataset is expected to exhibit
unique traffic patterns. In fact, the dataset is estimated to be particularly repre-
sentative of the traffic dynamics and behaviors, since that the temporal variation in
traffic patterns during this week poses a considerable challenge to network perfor-
mance.

Therefore, to validate the hypothesis of traffic changes during Semana Santa period,
we analyze the probability density functions associated with both Training and
Semana Santa datasets. As shown in Figure 4.6, comparing the distributions reveals
a slight difference between the datasets.

Additionally, the difference is confirmed also by performing the Mann-Whitney U
Test with resulting p-value of 1.528e − 11 (more details about the applied test in
Appendix B).
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Figure 4.6: PC1 Probability Density Function Comparison Training versus Semana Santa
datasets.

Although the traffic actually changes during this particular period, the anticipated
expectations are of more substantial traffic dynamics. Given the highly heteroge-
neous circumstances in which cells are situated, this modest change may result from
the specific selection of cells included in the dataset. Future testing may involve
larger datasets to better represent the territory.

However, despite the slight traffic change, it reaffirms the effectiveness of the PC1
feature as the “traffic index” once again.

Semana Santa Test

Hence, in the following, the Traffic-free version of the RF and XGB models, trained
on the Training dataset presented in Section 3.4, are tested on different never-seen
samples from Semana Santa dataset.

Indeed, testing the models on new dataset, z-score normalization (more details in
Section 3.6.3) is consistently applied on Semana Santa dataset using the mean and
standard deviation derived from the Training dataset prior to model testing.

Respecting the format of the training dataset, the Semana Santa dataset encom-
passes 3-days aggregation (from March 31st to April 2nd) values of all the used
KPIs and comprises 3020 network cells, belonging to problematic (1641) and ran-
dom (1379) classes. The problematic cells are identified through the same PBI tool
mentioned in Section 2.4.1, following the same procedural steps employed for the
construction of the training dataset.

Figure 4.7 presents the visual output generated using plotly library in Python,
depicting the geographical distribution of Semana Santa dataset.
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Figure 4.7: Geographical distribution of Semana Santa dataset.

The Random Forest classifier achieved an accuracy score of 69%, while the XGBoost
classifier yielded 67%. These scores are slightly lower but consistent with their
accuracy relative to the original dataset.

In Figures 4.9 and 4.8, the confusion matrices and the estimated ROC curves are
presented, showing the predictions of RF and XGB classifiers on the Semana Santa
dataset. By observing both confusion matrices, in Figures 4.9a and 4.8a, it is evident
that there is a higher number of False-Negative (i.e. problematic samples predicted as
random) compared to the False-Positive (i.e. random cells predicted as problematic).

(a) XGB confusion matrix (b) XGB Estimated ROC curve

Figure 4.8: Confusion Matrices and ROC curves of XGB predictions on Semana Santa
dataset.
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(a) RF confusion matrix (b) RF Estimated ROC curve

Figure 4.9: Confusion Matrices and ROC curves of RF predictions on Semana Santa
dataset.

One of the requirements set by Telefónica is to maintain a low number of False-
Positives, as these are considered significantly more problematic than False-Negatives.
False-Positives imply incorrectly identifying cells without actual failures as problem-
atic, leading to unnecessary corrections and to a consequent waste of resources.
On the other hand, False-Negatives, while still undesirable, typically correspond to
low-severity issues that might not immediately impact users and can be addressed
later if they escalate. Therefore, having a low number of False-Positives is advan-
tageous as numerous false alarms can have detrimental consequences on network
management.

In Figures 4.10 a geographical distribution of RF predictions is provided. In Figure
4.10b, it can be noticed that False-Positives appear closer to urban areas, while
True-Positives are well spread, even in rural zones.

(a) (b)

Figure 4.10: Geographical distribution of RF predictions.

In order to address the high number of False-Negatives, the distribution of the
percentage of out-of-range access attempts, as retrieved from the initial PBI tool,
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are further examined. Figure 4.11 presents a comparison between the distributions
relative to False-Negatives and True-Positives. Although the distributions appear
very similar, False-Negatives exhibit a consistently lower average value of out-of-
range access attempts rate, indicative of a minimal severity of overshooting instances.

(a) Random Forest (b) XGBoost

Figure 4.11: Distribution of the percentage of out-of-range access attempts of False-
Negatives and True-Positives.

Moreover, the Mann-Whitney U Test (more details in Appendix B) is performed on
both pairs of distributions and returns very low p-values (Table 4.1) as confirmation
of the significant statistical difference between False-Negative and False-Positive
populations.
These results are favorable since very low severity levels of overshooting issues likely
have no significant impact on user experience and can therefore be disregarded.

p statistic

RF 2.699e-06 366448

XGB 2.046e-4 342788

Table 4.1: Mann-Whitney U test results comparing distribution of out-of-range access
attempts of False-Negatives and False-Positives.

Additionally, considering the results from RF classification model (however similar
results can be obtained from XGB model), the predictions on Semana Santa dataset
are examined in terms of traffic levels in Figure 4.12.
At first sight, it can be noticed that the Average-traffic level is the most represented
in the case of Semana Santa.
Moreover, it is visible that similar proportions of confusion matrix elements are
repeated among the traffic levels. Likewise, it can be observed that the within-
level class ratio is similar to that of Training dataset (Figure 4.5), with each class
representing approximately 50%.
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Figure 4.12: Traffic levels distribution of Semana Santa dataset (grouped by False-
Negatives, False-Positives, True-Negatives, True-Positives from RF).

Furthermore, a closer examination is proposed in Table 4.2, which reports the values
of precision, recall and specificity per traffic level, alongside the classes’ percentages
and total counts. Detailed explanations of these performance metrics can be found
in Appendix C.

Traffic Level Precision Recall Specificity Problematic
(#)

Random
(#)

Average 0.64 0.75 0.74 801 668

High 0.65 0.74 0.73 511 432

Low 0.69 0.76 0.74 329 282

Table 4.2: Precision, Recall and Specificity per traffic level (RF model)

Considering the results reported in Table 4.2, the values of precision, recall and
specificity are very similar across each traffic level, reflecting the results visualized
in Figure 4.12. This indicates that, traffic dynamics do not significantly affect clas-
sification performance.

Finally, although traffic patterns slightly influencing the traffic-related KPIs, they
do not appear to significantly affect the overall set of KPIs. Hence, the Traffic-free
version demonstrates greater robustness against traffic dynamics.

4.2 Within-band Classification

To gain a deeper understanding of the effects of inherent network aspects on clas-
sification performance, the following Section presents a study on frequency bands
within which the cells operate.
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As anticipated in the introduction of this Chapter, network cells are exposed to a
wide range of stimuli, which vary depending on the specific frequency band in which
they operate.

Specifically, higher frequency bands are selected when connection quality is high,
while the primary mechanism employed by networks in response to a decrease in
quality is switching to the lower band (if feasible at that site).

Indeed, network cells performing in the lowest frequency bands, i.e. the lower end of
the frequency spectrum offered in that site, also referred to as “border” frequency,
usually operate in highly critical situations, which implies registering numerous and
diverse issues. This is often the case of band 800MHz, which is the most common
border band.

Semana Santa Test

To begin with, the results from classification test carried on Semana Santa dataset
(Section 4.1.2) are further examined in terms of frequency bands.

Thus, Figure 4.13 examines the distribution of Semana Santa dataset in terms of
frequency bands, with a focus on the predictive results of the RF classifier. However,
similar results can be obtained from XGBoost. At first sight, it is noteworthy that
the majority of samples belong to 1800MHz and 800MHz bands. This aligns with
the frequency band distribution of the Training dataset, as illustrated in Figure 3.5,
where these bands encompass a larger number of instances.

Figure 4.13: Frequency Bands distribution of Semana Santa dataset (grouped by False-
Negatives, False-Positives, True-Negatives, True-Positives from RF).
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Furthermore, a closer examination is proposed in Table 4.3, which reports the values
of precision, recall and specificity per band.
Notably, in band 2600MHz, highlighted in blue, anomalous values of precision and
specificity (both equal to 1) are observed, due to the absence of True-Positives. This
scarcity stems from the limited representation of the 2600MHz band in the dataset,
reflecting the sparse network coverage in that frequency range.

Band
(MHz)

Recall Precision Specificity Problematic
(#)

Random
(#)

800 599 432

700 0.71 0.79 0.52 117 46

2100 0.65 0.83 0.82 255 188

2600 0.55 75 132

900 0.54 0.72 0.75 245 202

1800 0.78 0.85 0.87 350 379

0.63 0.60 0.53

1 1

Table 4.3: Precision, Recall and Specificity per band (RF classifier)

Additionally, attention is drawn to the notably low values observed for the 800MHz
band, highlighted in orange, contrasting with the high performance of the 1800MHz
band.
Specifically, within the 800MHz band, False-Positives account for approximately
20%, while True-Negatives comprise 22%, resulting in a specificity of 0.53 and True-
Positives constitute the 37%, resulting in a precision of of 0.65. Similarly, the low
recall value (0.63) is attributed to False-Negatives, which constitute around 21% of
the observations.

Thereby, although the band 800MHz is well represented in the Training dataset, it
exhibits the poorest predictive performance in terms of precision, recall and speci-
ficity.
Anyway, this poor performance stems from inherent characteristics of the mobile
network itself. The band 800MHz typically operates as “border” frequency, i.e. the
lower end of the frequency spectrum offered in that site, making cells operating in
this band particularly critical and prone to various issues.

Consequently, the classifiers detect anomalous KPI behaviours, which, however, do
not necessarily stem from cell range problems.

Finally, in Figure 4.14 the distribution of out-of-range access attempts rates for
False-Negatives and True-Positives within the band 800MHz is presented.
Unsurprisingly, these distributions closely resemble those shown in Figure 4.11,
which depicts overall distributions, as band 800MHz is the major contributor to
both False-Negatives and True-Positives.

Further details regarding this aspect are provided in the subsequent Section, where
it is extensively evaluated within the context of the within-band classification per-
formance study.
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Figure 4.14: Distribution of out-of-range access attempts rate of False-Negatives vs. True-
Positives of Semana Santa dataset (only in band 800Mz).

In conclusion, the prediction performances of both models on Semana Santa dataset
confirm our expectations. While the models are influenced by the characteristics
of the mobile network they are still capable of accurately identifying instances of
medium and high severity overshooting occurrences.

4.2.1 Low-Band versus High-Band Models

In pursuit of constructing robust and unbiased classification models, the following
experiment involves dividing the data into Low and High Bands to build band-
specialized classification models.

Consequently, the original “Traffic-free” models, encompassing all bands, are com-
pared to these band-specialized classification models. The objective of this study is
to determine whether the original models exhibit bias towards the most represented
frequency bands.

Therefore, the Low-Band case focuses on band 800MHz, which is the best repre-
sented band. The choice of removing bands 700MHz and 900MHz is motivated by
the relative scarcity of data.
Conversely, the High-Band case comprehends bands 1800MHz and 2100MHz. Sim-
ilarly to low bands, the band 2600MHz is not considered for lack of enough data.

Hence, employing the same training procedure utilized in constructing the “Traffic-
free” RF and XGB models (more details in Sections 4.1.1 and 3.6.3), the Low-Band
RF and High-Band RF models are built. The decision to exclusively work with RF
stems from the notable similarity in results between RF and XGB. Thus, for this
phase of observation, it is sufficient to conduct experiments purely with RF.

Initially, the Feature Importance Analysis is obtained using the same process out-
lined in Section 3.6.2. In Figure 4.15, the normalized results from Low-Band and
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High-Band models are compared. The KPIs are arranged according to the order of
importance in the Low-Band model.

Notably, the two models only concur on the first and second most important KPIs,
which are message-2/message-1 success ratio and message-3/message-1, relatively.
However, the Feature Importance Analysis results reveal remarkably different pat-
terns.

On one hand, the Low-Band model presents an importance order that closely mirrors
that of the original RF model (Figure 3.10). Moreover, it assigns similar importance
values to the majority of KPIs. On the other hand, the High-Band models assign
notably high importance scores to the first two most significant features, creating a
substantial gap with the remaining KPIs.

Subsequently, always accordingly to the model-construction procedure of Section
3.6.2, the cross-validation methodology is employed to identify the highest achievable
accuracy and the relative optimal subset of most important KPIs.

Thus, the evolution of the accuracy of the two band-specialized classifiers as function
of the number of most important KPIs is provided in Figure 4.16.

(a) Low-Band RF model (b) High-Band RF model

Figure 4.16: Accuracy vs. number of most important KPIs used.

In Figure 4.16, it is important to highlight the significant differences in perfor-
mance between the Low-Band and High-Band models. Firstly, the Low-Band model
achieves a lower accuracy (64%) compared to the High-Band model (78%). More-
over, the Low-Band model requires the first 14 most important KPIs to achieve its
best score, while the High-Band model needs to select the first 25 features.

Furthermore, considering both the Feature Importance (Figure 4.15) and the ac-
curacy evolution (Figure 4.16), it becomes evident that the Low-Band model faces
significant challenges posed by the instances. Consequently, despite assigning com-
parable importance scores to the majority of KPIs, it fails to enhance its predictive
performance. In contrast, the High-Band model succeeds in attaining a notable ac-
curacy score, even with only the initial few most important KPIs, and continues to
marginally improve its performance by incorporating the less important features.
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Figure 4.15: Comparison Low-Band versus High-Band RF Feature Importance.
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Finally, the two band-specialized models are tested on Semana Santa dataset and
the performances are compared, including also the original “Traffic-free” RF model.

In Figure 4.17, the Low-Band, High-Band and original RF models are compared in
terms of precision versus recall.

Figure 4.17: Model Comparison in terms of Precision and Recall (Low-Band versus High-
Band versus Original RF).

Based on these results, the High-Band specialized model appears to be an improve-
ment over the original RF model, which encompasses all frequency bands.

However, a more detailed examination of the band-specialized models is conducted
by comparing the performance of each model to that of the original model within
the corresponding frequency band.

Therefore, in Table 4.4, the within-band performances of the different models are
reported in terms of precision, recall and specificity.

Model Band
(MHz)

Precision Recall Specificity

Low Band 800 0.63 0.61 0.44

High Band
1800 0.8 0.86 0.88

2100 0.69 0.78 0.73

All

800 0.63 0.60 0.53

1800 0.8 0.86 0.88

2100 0.62 0.82 0.82

Table 4.4: Precision, Recall, Specificity of Low-Band RF, High-Band RF and original RF
models
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Additionally, Figures 4.18 show the metrics and the relative confidence intervals of
the band-specialized models, in comparison to the original “Traffic-free” RF model.

(a) Low-Band RF vs. original RF

(b) High-Band RF vs. original RF

Figure 4.18: Confidence intervals of Precision, Recall, Specificity of Low-Band RF, High-
Band RF versus original RF.

In conclusion, in both cases, the band-specialized models perform very similarly to
the original RF model. These results indicate that the original RF model is not
biased towards any specific band, and its performance accurately reflects the true
predictive potential within each band.

Thus, the original “Traffic-free” RF model is demonstrated to be functioning prop-
erly and at its highest potential. Consequently, the instances from the 800 MHz
band are shown to be inherently challenging.
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Continuing in this line of research, an interesting study could involve including band
information as an additional feature in the dataset used by the model. However, this
approach is not included in this thesis due to the current unavailability of balanced
datasets across bands, as previously shown in Figures 3.5 and 4.13).

4.3 Rural versus Urban Classification

To further delve into the behavior of mobile networks and understand the effects of
inherent network aspects on classification performance, this section presents a third
study examining the surrounding environment in which the cells operate.

Mobile network performance changes significantly based on the characteristics of the
territory in which the network is placed. Thereby, another factor that particularly
affects cells is the surrounding environment. This aspect is closely related to traffic
dynamics and frequency bands, as, for example, an open area is expected to have
lower levels of traffic and few, sparsely placed cells operating at low frequency bands
(large cell range).
However, in this study, this factor is treated in isolation, and its impact on net-
work cells is measured in terms of the predictive performance of ground-specialized
classification models, as in the previous experiment.

In this study, the data is split into “rural” and “urban” categories, based on the
characteristics of the area.

Specifically, to define the terms “rural” and “urban”, the Spanish electoral census
partitioning is considered.
In Spain, each electoral census section contains at most 2000 residents, representing
small towns or parts of larger cities. To determine whether a cell falls within a “rural”
area or an “urban” one, the number of overlapping sections within a geographical
cell-range of 5km is taken into account. While the exact population within these
sections is not known, a higher number of overlapping sections suggests a more urban
environment.
Hence, by establishing an arbitrary threshold of 10 overlaps, the term “rural” defines
the areas below this threshold while “urban” areas contains at least 11 overlapping
electoral census sections.

For the sake of clarity, these definitions will be consistently applied throughout
this Section, evaluating the influence of the surrounding environment on network
performance.

Therefore, the Training dataset as well as the Semana Santa dataset are split ac-
cordingly into “rural” and “urban” categories.

Figures 4.19 provides a capture of an interactive visualization (HTML file) generated
using the Python plotly open-source library.
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(a) Training dataset (b) Semana Santa dataset dataset

Figure 4.19: Geographical distribution of “rural” and “urban” cells.

As previously mentioned in the earlier Chapters, for sake of privacy considerations for
sensible information involved, only the captures of such visual outputs are presented
in this thesis.

Additionally, considering both Training and Semana Santa datasets, Table 4.5 re-
ports the number of instances in “rural” and “urban” categories per class. The
smaller number of instances in the “urban” category is noticeable and should be
considered when discussing the final results of the Urban-specialized model.

Area type Dataset Problematic Random

Rural
Training 1384 1258

Semana Santa 1431 1061

Urban
Training 172 279

Semana Santa 209 315

Table 4.5: Total counts of instances in Training and Semana Santa datasets for “rural”
and “urban” categories per class.

Accordingly, Figure 4.20 provides class distribution within “rural” and “urban” cat-
egories, respectively. It shows an almost balanced class distribution in “rural” cat-
egory, while “urban” category comprises of an higher number of random instances
than problematic ones.

Moreover, Figure 4.21 shows the percentage of instances within each frequency band
for both rural and urban categories. It is visible that, as expected, the lowest band
700 MHz is almost absent in “urban” areas while the higher bands are more present
in these areas. Moreover, bands 800 MHz and 1800 MHz, being the most used bands,
are significantly present in both zones.

56 F. Fanelli



4.3. Rural versus Urban Classification

(a) “Urban” category (b) “Rural” category

Figure 4.20: Class division of “rural” and “urban” cells.

It is noteworthy that while the concept of rural-urban categorization is closely as-
sociated with frequency bands, the distribution of “rural” and “urban” categories
within each band, as depicted in Figure 4.21, illustrates that “rural” areas are not
exclusively served by low frequency bands, nor do “urban” areas solely consist of
high frequency bands. This is because an antenna may be positioned facing either a
tall building or an open field, regardless of falling in “urban” or “rural” areas. The
distinction lies only in the likelihood of encountering low or high bands within the
specific rural or urban category.

Figure 4.21: Within-band distribution of “rural” and “urban” categories.
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4.3.1 Rural versus Urban Models

As in Section 4.2.1, in pursuit of constructing robust and unbiased classification
models, the following experiment involves building specialized classification models,
focusing on “rural”-“urban” categorization.

Consequently, the original “Traffic-free” RF model, encompassing all bands, is com-
pared to these band-specialized classification models. The objective of this study is
to determine whether this categorization leads or not to higher classification perfor-
mances.

Hence, as in Section 4.2.1, employing the same training procedure utilized in con-
structing the “Traffic-free” RF model (in Sections 4.1.1 and 3.6.3), the Rural RF
and Urban RF specialized models are built.

As first step, Feature Importance Analysis is obtained (same procedure as in Section
3.6.2). In Figure 4.22 the normalized results from Rural RF and Urban RF are
compared. The KPIs are arranged according to the order of importance in the
Rural RF model.

Notably, the two models differ significantly in assigning importance values to KPIs.
However, as highlighted by the semi-transparent orange color in Figure 4.22, it is
important to keep in mind that the Urban-specialized model uses a much smaller
dataset.

Predictably, the Rural-specialized model presents an importance order that closely
mirrors that of the original RF model (Figure 3.10). This outcome aligns with
expectations, as the Rural category comprises more than 80% of the total data.

Consistently, the KPIs related to message-2/message-1 and message-3/message-1
success ratios are identified as the most important features, creating a significant
gap with the rest of the KPIs.

In contrast, the Urban-specialized model assigns similar importance values to the
majority of KPIs, while still placing the two previously mentioned KPIs among the
top features.

Subsequently, always accordingly to the model-construction procedure of Section
3.6.2, the cross-validation methodology is employed to identify the highest achievable
accuracy and the relative optimal subset of most important KPIs.

Finally, the Urban and Rural specialized models are tested on Semana Santa dataset
and the performances are compared, including also the original “Traffic-free” RF
model.
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Figure 4.22: Comparison Rural versus Urban RF Feature Importance.
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Figure 4.23: Model Comparison in terms of Precision and Recall (Rural versus Urban
versus Original RF).

In Figure 4.23, the Rural, Urban and original RF models are compared in terms of
precision versus recall.

Based on these results, the Urban-specialized model appears to be improve in terms
of recall over the original RF model, which encompasses both categories. Conversely,
the Rural-specialized model appears to perform significantly worse compared to the
others.

However, a more detailed examination of the Urban and Rural specialized models
is conducted by comparing the performance of each model to that of the original
model within the corresponding category.

Therefore, in Table 4.6, the within-band performances of the different models are
reported in terms of precision, recall and specificity.

Model Precision Recall Specificity

Rural 0.77 0.67 0.72

Urban 0.52 0.60 0.68

Original
rural 0.77 0.67 0.72

urban 0.64 0.54 0.80

Table 4.6: Precision, Recall, Specificity of Rural RF, Urban RF and original RF models

Additionally, Figures 4.24 show the metrics and the relative confidence intervals of
the Urban and Rural specialized models, in comparison to the original “Traffic-free”
RF model, considered within the relative category.
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(a) Rural RF vs. original RF

(b) Urban RF vs. original RF

Figure 4.24: Confidence intervals of Precision, Recall, Specificity of Rural RF and Urban
RF versus the original RF (within the relative category).

In conclusion, in both cases, the Urban and Rural specialized models perform very
similarly to the original RF model. These results suggest that the original RF model
is not biased towards any specific category, and its performance accurately reflects
the true predictive potential within each band.

However, as anticipated at the beginning of this Section, the significantly smaller
number of instances in the “urban” category should be considered when discussing
the final results within this category.
Thus, although this study demonstrates that the original “Traffic-free” RF model
is functioning properly and at its highest potential, without being influenced by
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the specific surrounding environment of the network cells, the same test should be
repeated with a larger number of samples from the “urban” category.

Hence, continuing in this line of research, an interesting study could involve including
the area category information as an additional feature in the dataset used by the
model. However, this approach is not included in this thesis due to the current
unavailability of balanced datasets between rural and urban categories, as previously
shown in Table 4.5.

4.4 Testing with RSI dataset

As anticipated in Section 1.2, Telefónica’s overall project aims at targeting a variety
of common issues that arise and affect access networks.

Although this thesis is focused on cell-range overshooting issues, which define the
studied problematic class, a similar study is conducted in parallel to address another
common issue: RSI collisions (detailed in Section 2.3).

As the final study presented in this thesis, a testing experiment is held exploiting a
dataset comprising cells experiencing issues related to RSI collisions.

Similarly to the format of the Training dataset (Section 3.4), the RSI dataset en-
compasses 3-days aggregation (from 19th to 22nd of February) values of all the used
KPIs for each sample.
The chosen RSI dataset consists of 831 samples: 406 RSI collision occurrences and
425 non-problematic cells. Thus, regarding the binary classification of problematic
versus random within the study, the entire RSI dataset belongs to random class.

The output of this final test retrieves that Random Forest and Extreme Gradient
Boosting classifiers fail to accurately predict RSI collision occurrences, as approxi-
mately half of them are misclassified as problematic cells. It is important to clarify
that the term problematic adheres to the original definition provided in Section
3.2, representing overshooting occurrences. Hence, RSI collision is another type of
phenomenon affecting cells.

In the following, the RF model’s predictions on RSI collisions instances are further
examined. The Figure 4.25 depict the confusion matrices resulting from the pre-
dictions of both models. In the true labels, the value “−1” (highlighted in red)
denotes the RSI collision occurrences, which constitute a distinct class. Moreover,
in the matrices, the coral box highlights the misclassifications (as problematic oc-
currences) while the box in aquamarine emphasizes the correctly classified instances
(as random).
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(a) Random Forest (b) XGBoost

Figure 4.25: Confusion matrix of RF and XGB predictions on RSI dataset.

Furthermore, in Figure 4.26 misclassified and correctly-predicted RSI collisions in-
stances are grouped and the percentage per frequency band is depicted. It is evident
that there is a substantial disparity between the percentage of misclassification (58%)
and correctly-classified instances (31%) in band 800MHz. Also, it is worthy to notice
the high performance of the model in band 1800MHz.

Figure 4.26: Distribution of RF predictions on RSI collisions per frequency band.

Both results confirm, once again, the same conclusions retrieved from testing with
Semana Santa dataset (Section 4.1.2). On one side, the cells in 800MHz, being
critical samples of mobile networks, are difficult to analyze for the models, which
also in this case are unable to distinguish the type of KPI anomaly. On the other
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hand, the models exhibit high predictive capabilities for the 1800MHz band and
demonstrate acceptable performance for the rest. Nevertheless, these bands are less
represented in datasets and in the network itself.

The primary goal of this test experiment is to verify whether the RF and XGB
models effectively identify the specific issue of overshooting phenomenon. However,
it’s important to note that RSI collisions are closely associated with the concept of
cell-range, which is inherently linked to the overshooting issue.
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In this final chapter, conclusions are drawn by revisiting the tests conducted during
the Testing Phase (Chapter 4), with a focus on addressing the associated research
limitations. Consequently, an overview of potential research directions for the near
future is presented.

5.1 Conclusions

The increasing demand for seamless connectivity, coupled with the enormous ex-
pansion of mobile networks, has led to the urgent necessity for optimization and
automation of these networks. In response, the world of machine learning (ML)
offers powerful and innovative technologies to aid in this endeavor.

In the dynamic evolution of access networks, the traditional manual intervention of
optimizers must transition towards the exploration and development of automatic
optimization tools for detection, performance forecasting, and self-healing processes.

This work, conducted within Telefónica’s research project, the AI/ML Optimization
Program 2024-2026, focuses on the development of an automatic system for detecting
cell-range overshooting in LTE networks.

In the initial phase, the study on available KPIs leads to the identification of a
subset that proves to be informative about the status of cells. Consequently, primary
classification models are designed and trained. These initial tools yielded promising
results, demonstrating a good capability to detect instances of cells experiencing
problems.

Subsequently, during the second testing phase, various test experiments are designed
to address different aspects of mobile network performance that could influence
detection.

Ultimately, the set of KPIs observed in this thesis proves to be informative regarding
the status of cells, as the classification models successfully identify the majority of
problematic cells. However, as demonstrated in Section 4.4, the developed classifi-
cation models do not specifically detect overshooting issues; instead, they identify
more general problematic behaviors.

Therefore, the primary focus of future research should involve investigating addi-
tional information specifically related to cell-range overshooting occurrences. This
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effort will facilitate the development of specialized detection mechanisms tailored to
identifying problematic cells for specific use cases.

5.2 Research Limitations and Future Work

As previously discussed, mobile networks are highly sensible to a diverse range of
factors. Among these, traffic patterns, frequency bands and the surrounding envi-
ronment of cells are examined through specialized testing experiments presented in
Chapter 4.

In Section 4.1, the study on traffic impact reveals the influence of traffic on KPIs.
The study demonstrates the varying behavior of KPIs in cells based on the level of
traffic experienced.

It is important to note that traffic patterns change significantly throughout the year,
influenced by user movements and behavioral trends. Traffic dynamics are a direct
consequence of population density distribution and mobility patterns, which vary
considerably with seasonal or temporal changes.
Consequently, the operational performance of these networks is intricately linked to
seasonality.

In this thesis, the data is concentrated within the temporal window between March
and April. This aspect must be considered when discussing the obtained results, as
it represents a research limitation.

As a primary future direction, the classification models developed in this thesis
should be tested over an annual temporal window. This aims to validate the results
across a wide variety of seasonal traffic patterns.

Subsequently, leveraging the extensive available data, it may be feasible to create
a balanced training dataset by ensuring an equal number of instances within each
traffic level.
As consequence, another possibility would be to incorporate the level of traffic as
additional information, introducing it as a new feature into the classification model.
This approach could enhance the model’s ability to directly discern between different
traffic levels.

Conversely, in Section 4.2, the testing experiment addressing frequency bands also
reveals distinct KPI behaviors within each frequency band.
Specifically, the band 800MHz proves to be very challenging with respect to the
others due to its intrinsic characteristics.

Therefore, also in this case, a possibly optimal approach could be introducing the
frequency band as explicit information for the classification model. Thereby, similar
to the approach taken with traffic levels, leveraging a more extensive dataset and
ensuring balance across frequency band categories may facilitate the incorporation
of frequency band information as a new feature. This approach would enable the
classification model to directly differentiate between cells operating in different fre-
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quency bands.
Such effort could assist in addressing the challenge of accurately classifying instances
within the 800MHz band, which has been identified as particularly critical.

Finally, in Section 4.3, the concept of network cell surrounding environment is in-
troduced. Within a network, cells behaviors are highly affected by the surrounding
environment characteristics, which are strictly related to other factors, e.g. traffic
patterns.
Particularly, the study proposed in this thesis defined the “rural” and “urban” cat-
egories, dividing Telefónica’s Spain-Vendor-A territory accordingly.
Although the results of such study are promising, suggesting a correct behavioral
distinction between “rural” cells and “urban” ones, the scarcity of “urban” data
must be addressed.

Hence, in the near future, taking advantage of more ample available data, it would be
possible to comprehensively analyze the cellular surrounding environment by exam-
ining KPI behaviors in both “rural” and “urban” areas in more reliable studies. This
methodology may confirm notable distinctions between these two settings. Conse-
quently, similar to the previous considerations, this additional information could
also be integrated as a new feature for observation by classification models.
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A. List of KPIs

In this Appendix the full list of considered Key Performance Indicators (KPIs) is
presented. For each KPI, the first column of the table reports the full original name
as well as the simplified name, i.e. the unique string used within the datasets
during the development and testing phases of the classification models.

KPI Description Group

This counter provides the average MCS
used for TB transmission using Spatial
Multiplexing transmission. (#) N4 [Aver-
age MCS used for TB transmission using
Spatial Multiplexing transmission N4]

Average Modulation Cod-
ing Scheme used for TB
transmission using Spatial
Multiplexing

Usage

Average PDCP layer active cell
throughput DL (kbps) N4 [Aver-
age PDCP layer active cell throughput DL
kbps N4]

Average Packet Data Con-
vergence Protocol through-
put in Downlink (kbps)

Usage

Average PDCP layer active cell
throughput UL (kbps) N4 [Aver-
age PDCP layer active cell throughput UL
kbps N4]

Average Packet Data Con-
vergence Protocol through-
put in Uplink (kbps)

Usage

Average RSSI for PUCCH (dBm) N4 [Aver-
age RSSI for PUCCH dBm N4]

Average Received Signal
Strength Indicator in
PUCCH channel (dBm)

Integrity

Average RSSI for PUSCH (dBm) N4 [Aver-
age RSSI for PUSCH dBm N4]

Average Received Signal
Strength Indicator in
PUSCH channel (dBm)

Integrity

Averaged IP scheduled Through-
put in DL, QCI1 (kbps) N4 [Aver-
aged IP scheduled Throughput in DL QCI1
kbps N4]

Average scheduled IP
throughput in Downlink
with QoS Class Identifier 1
(kbps)

Integrity

Averaged IP scheduled Through-
put in UL, QCI1 (kbps) N4 [Aver-
aged IP scheduled Throughput in UL QCI1
kbps N4]

Average scheduled IP
throughput in Uplink with
QoS Class Identifier 1
(kbps)

Integrity
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KPI Description Group

E-UTRAN Complete Contention Based
RACH Setup Success Rate (%) N4 [Com-
plete Contention Based RACH Setup Suc-
cess Rate N4]

Ratio of received message-
3 over message-1. Suc-
cess rate (%) of contention-
based connection setup

Accessibility
Random
Access

E-UTRAN E-RAB active drop ratio
with data in the buffer due to RNL Ra-
dio Connection with UE Lost (%) N4
[E RAB active drop ratio with data in the
buffer due to RNL Radio Connection with UE Lost N4]

Drop rate (in case of
data in the buffer) due to
the loss of Radio Network
Layer connection with UE

Retainability
E-RAB

E-UTRAN E-RAB Drop Ratio, RAN View
(%) N4 [E RAB Drop Ratio RAN View N4]

Drop Rate (%) of E-RAB
connections from network
perspective

Retainability
E-RAB

E-UTRAN E-RAB Drop Ra-
tio, User Perspective (%) N4
[E RAB Drop Ratio User Perspective N4]

Drop Rate (%) of E-RAB
connections from user per-
spective

Retainability
E-RAB

E-UTRAN E-RAB Setup Attempt (#) N4
[E RAB Setup Attempt N4]

Total number of E-RAB
setup attempts

Accessibility
E-RAB

E-UTRAN E-RAB Setup SR (%) N4
[E RAB Setup SR N4]

Success Rate of E-RAB
setup attempts

Accessibility
E-RAB

Éxitos de handover (%) N4 [Exi-
tos de handover N4]

Success rate (%) of HO
procedure

Mobility
HO

Éxitos de la fase de ejecución
del handover (%) N4 [Exi-
tos de la fase de ejecucion del handover N4]

Success rate (%) of HO ex-
ecution phase (including all
HO types)

Mobility
HO

Éxitos de la fase de preparación
del handover (%) N4 [Exi-
tos de la fase de preparacion del handover
N4]

Success rate (%) of HO
preparation phase (includ-
ing all HO types)

Mobility
HO

E-UTRAN HO Preparation Suc-
cess Ratio, intra eNB (%) N4
[HO Preparation Success Ratio intra eNB
N4]

Success rate (%) of HO
preparation phase (specific
of intra-eNB)

Mobility
HO

E-UTRAN HO Success Ratio, intra eNB (%)
N4 [HO Success Ratio intra eNB N4]

Success rate (%) of intra-
eNB HO procedure

Mobility
HO

E-UTRAN Initial Context Setup Fail-
ure Ratio due to Failed Radio N4 [Ini-
tial Context Setup Failure Ratio due to
Failed Radio N4]

Failure rate (%) of Ini-
tial Context Setup (due to
Failed Radio Interface Pro-
cedure)

Accessibility
S1

Initial E-RAB Accessibility (%) N4 [Ini-
tial E RAB Accessibility N4]

Success rate (%) of E-RAB
connection establishment?

Accessibility
E-RAB
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E-UTRAN Inter-Frequency HO
Success Ratio (%) N4 [In-
ter Frequency HO Success Ratio N4]

Success rate (%) of inter-
frequency HO procedure

Mobility
HO

E-UTRAN Intra-Frequency HO
Success Ratio (%) N4 [In-
tra Frequency HO Success Ratio N4]

Success rate (%) of intra-
frequency HO procedure

Mobility
HO

MAX PRB usage per TTI DL (%) N4
[MAX PRB usage per TTI DL N4]

Maximum Physical Re-
source Block usage per
TTI DL

Usage

MAX PRB usage per TTI UL (%) N4
[MAX PRB usage per TTI UL N4]

Maximum Physical Re-
source Block usage per
TTI UL

Usage

Maximum Active UEs with data in
the buffer per cell DL (#) N4 [Maxi-
mum Active UEs with data in the buffer
per cell DL N4]

Maximum data in the
buffer of cell (from active
UE in Downlink)

Usage

Maximum Active UEs with data in
the buffer per cell UL (#) N4 [Maxi-
mum Active UEs with data in the buffer
per cell UL N4]

Maximum data in the
buffer of cell (from active
UE in Uplink)

Usage

MIN PRB usage per TTI DL (%) N4
[MIN PRB usage per TTI DL N4]

Minimum Physical Re-
source Block usage per
TTI UL

Usage

MIN PRB usage per TTI UL (%) N4
[MIN PRB usage per TTI UL N4]

Minimum Physical Re-
source Block usage per
TTI UL

Usage

Number of failed Inter eNB Handover
preparations per cause per neigh-
bor cell relationship (#) N4 [Num-
ber of failed Inter eNB Handover prepara-
tions per cause per neighbor cell relation-
ship N4]

Counter of failed inter-eNB
HO preparations (aggre-
gated per cause and per
neighbour cell)

Mobility
HO

Number of failed Inter eNB Handover prepa-
rations per neighbor cell relationship due to
failures in the HO preparation (#) N4 [Num-
ber of failed Inter eNB Handover prepara-
tions per neighbor cell relationship due to
failures in the HO preparation N4]

Counter of failed inter-eNB
HO preparations due to
failure in HO preparation
(aggregated per neighbour
cell)

Mobility
HO
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KPI Description Group

Number of failed Inter eNB Handover
preparations per neighbor cell rela-
tionship due to the expiration of the
respective guarding timer (#) N4 [Num-
ber of failed Inter eNB Handover prepara-
tions per neighbor cell relationship due to
the expiration of the respective guarding
timer N4]

Counter of failed inter-
eNB HO preparations due
to expiration of guard-time
(aggregated per neighbour
cell)

Mobility
HO

Number of Inter-eNB Handover attempts
per neighbor cell relationship (#) N4 [Num-
ber of Inter eNB Handover attempts per
neighbor cell relationship N4]

Counter of inter-eNB HO
attempts (aggregated per
neighbour cell)

Mobility
HO

Number of Inter eNB Handover
failures per cause per neighbor
cell relationship (#) N4 [Num-
ber of Inter eNB Handover failures per
cause per neighbor cell relationship N4]

Counter of failed inter-
eNB HO procedures (ag-
gregated per cause and per
neighbour cell)

Mobility
HO

Number of successful Inter-eNB
Handover completions per neigh-
bor cell relationship (#) N4 [Num-
ber of successful Inter eNB Handover com-
pletions per neighbor cell relationship N4]

Counter of successful
inter-eNB HO completions
(aggregated per neighbour
cell)

Mobility
HO

Number of successful Intra-eNB
Handover completions per neigh-
bor cell relationship (#) N4 [Num-
ber of successful Intra eNB Handover com-
pletions per neighbor cell relationship N4]

Counter of successful
intra-eNB HO completions
(aggregated per neighbour
cell)

Mobility
HO

Percentage of PDSCH transmissions using
Low MCS Codes (MCS¡=9) (%) N4 [Percent-
age of PDSCH transmissions using Low
MCS Codes MCS 9 N4]

Percentage (%) of Down-
linklink transmissions
with Modulation Coding
Scheme loweror equal to 9

Usage

E-UTRAN Percentage of PUSCH
transmissions using High MCS
Codes (MCS¿=20) (%) N4 [Percent-
age of PUSCH transmissions using High
MCS Codes MCS 20 N4]

Percentage (%) of Uplink
transmissions with Mod-
ulation Coding Scheme
higher or equal to 20

Usage

E-UTRAN Percentage of PUSCH
transmissions using Low MCS
Codes (MCS¡=9) (%) N4 [Percent-
age of PUSCH transmissions using Low
MCS Codes MCS 9 N4]

Percentage (%) of Uplink
transmissions with Mod-
ulation Coding Scheme
lower or equal to 9

Usage
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KPI Description Group

PRB usage per TTI DL (#) N4
[PRB usage per TTI DL N4]

Average Physical Resource
Block usage per TTI DL

Usage

PRB usage per TTI DL (#) N4
[PRB usage per TTI UL N4]

Average Physical Resource
Block usage per TTI UL

Usage

E-UTRAN RACH Setup Attemps (%) N4
[RACH Setup Attempts N4]

Total number of received
Random Access preambles
(message-1).

Accessibility
Random
Access

E-UTRAN RACH Setup Com-
pletion Success Rate (%) N4
[RACH Setup Completion Success Rate N4]

Ratio of received message-
2 over message-1. Suc-
cess rate (%) of transmit-
ted message-2 after recep-
tion of message-1

Accessibility
Random
Access

E-UTRAN Radio Bearer Drop Ratio (%) N4
[Radio Bearer Drop Ratio N4]

Drop rate (%) of E-RAB
connection

Accessibility
E-RAB

RRC Connection Re-establishment
Attempts, HO fail (#) N4
[RRC Connection Re establishment At-
tempts HO fail N4]

Total number of RCC
conection re-establishment
attempts due to HO fails

Retainability
RCC

RRC Connection Re-establishment
rejection Ratio (%) N4
[RRC Connection Re establishment reje-
ction Ratio N4]

Rejection rate (%) of
RCC connection re-
estabishments

Retainability
RCC

RRC Connection Setup Attempts (#) N4
[RRC Connection Setup Attempts N4]

Total number of RCC
conection setup attempts

Retainability
RCC

E-UTRAN RRC Connection Setup FR (%)
N4 [RRC Connection Setup FR N4]

Failure rate (%) of RCC
connection setup

Retainability
RCC

E-UTRAN S1 Initial Con-
text Setup Attempts (#) N4
[S1 Initial Context Setup Attempts N4]

Total number of S1 initial
context setup attempts

Accessibility
S1

Total E-UTRAN RRC Connection Re-
establishment Failure Ratio (%) N4 [To-
tal E UTRAN RRC Connection Re esta-
blishment Failure Ratio N4]

Failure rate (%) of
RCC connection re-
estabishments

Retainability
RCC
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B. Mann-Whitney U Test

This Appendix introduces the Mann-Whitney U Test, which is employed in Chapter
3 and Chapter 4 of this thesis.
Moreover, in this Appendix the full list of results of the Mann-Whitney U tests of
the considered KPIs is reported.

The Mann-Whitney U Test1 is a non-parametric test of the null hypothesis that
the distribution underlying one sample x is the same as the distribution underlying
on other sample y. It is often used as a test of difference in location between
distributions.

Calculation of Mann-Whitney U test

U = n1 ∗ n2 +
n2 ∗ (n2 + 1)

2
−

n2X
i=n1+1

Ri (B.1)

In the context of the Mann-Whitney U test, the U statistic is a measure of the
extent of difference between the two samples. The p-value represents the probability
of obtaining a test statistic at least as extreme as the observed value, assuming the
null hypothesis is true. Typically, a low p-value (usually below 0.05 to ensure 95%
confidence interval) indicates a significant difference between the populations, while
a high p-value suggests little difference.

Assumptions of Mann-Whitney U test

Non-parametric tests, also known as distribution-free tests, are utilized when the
data within the populations of interest do not adhere to a normal distribution. The
Mann-Whitney U-test serves as a non-parametric counterpart to the unpaired Stu-
dent’s T-test2, which is employed under the assumption that the two populations
being compared follow a normal distribution, characterized by their means and stan-
dard deviations.

Key assumptions for the Mann-Whitney U Test include the following:

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.

mannwhitneyu.html
2https://www.technologynetworks.com/informatics/articles/

paired-vs-unpaired-t-test-differences-assumptions-and-hypotheses-330826
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B. Mann-Whitney U Test

• The variable under comparison between the two groups must be continuous.
This requirement stems from the test’s reliance on ranking observations within
each group.

• The data are presumed to follow a non-normal (or skewed) distribution.

• Although the data in both groups are not expected to be normally distributed,
it is assumed that the data exhibit a similar shape across the two groups.

• The samples should consist of two randomly selected independent groups, with
no interrelation between them.

• A sufficient sample size is necessary for the test’s validity, typically requiring
more than five observations in each group.

These assumptions ensure the appropriate application and interpretation of the
Mann-Whitney U Test.

As shown in the graphic visualization of the distributions in Chapter 3, the consid-
ered KPIs prove to be non-normally distributed. Moreover, it is assumed that the
two classes, namely problematic and random, are independent groups, with very low
interrelation between them.

In conclusions, the Mann-Whitney U Test is the appropriate to perform the compar-
ison of the problematic and random populations under consideration in this thesis.

Mann-Whitney U tests of Problematic versus Ran-

dom KPI Distributions

The results of the Mann-Whitney U tests for the full list of considered KPIs are
reported in the following table.

KPI p statistic

Average PDCP layer active cell throughput DL (kbps)
N4

< 0.001 1351182

Average PDCP layer active cell throughput UL (kbps)
N4

< 0.001 1446754

Average RSSI for PUCCH (dBm) N4 0.02856 1254959.5

Average RSSI for PUSCH (dBm) N4 < 0.001 1473436

Averaged IP scheduled Throughput in DL, QCI1 (kbps)
N4

0.0046 1129778.5

Averaged IP scheduled Throughput in UL, QCI1 (kbps)
N4

< 0.001 1408884

E-UTRAN Complete Contention Based RACH Setup
Success Rate (%) N4

< 0.001 1728854
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KPI p statistic

E-UTRAN E-RAB Drop Ratio, RAN View (%) N4 < 0.001 885074.5

E-UTRAN E-RAB Drop Ratio, User Perspective (%)
N4

< 0.001 887257.5

E-UTRAN E-RAB Setup Attempt (#) N4 < 0.001 1487654.5

E-UTRAN E-RAB Setup SR (%) N4 < 0.001 1501339

E-UTRAN E-RAB active drop ratio with data in the
buffer due to RNL Radio Connection with UE Lost (%)
N4

< 0.001 897039

E-UTRAN HO Preparation Success Ratio, intra eNB
(%) N4

< 0.001 1048302.5

E-UTRAN HO Success Ratio, intra eNB (%) N4 < 0.001 1554976

E-UTRAN Initial Context Setup Failure Ratio due to
Failed Radio N4

< 0.001 915922

E-UTRAN Inter-Frequency HO Success Ratio (%) N4 < 0.001 1555893

E-UTRAN Intra-Frequency HO Success Ratio (%) N4 < 0.001 1547623.5

E-UTRAN Percentage of PUSCH transmissions using
High MCS Codes (MCS >= 20) (%) N4

< 0.001 1462345

E-UTRAN Percentage of PUSCH transmissions using
Low MCS Codes (MCS <= 9) (%) N4

< 0.001 956962

E-UTRAN RACH Setup Attemps (%) N4 0.2691 1227954.5

E-UTRAN RACH Setup Completion Success Rate (%)
N4

< 0.001 1715613

E-UTRAN RRC Connection Setup FR (%) N4 < 0.001 802276

E-UTRAN Radio Bearer Drop Ratio (%) N4 < 0.001 874858

E-UTRAN S1 Initial Context Setup Attempts (#) N4 < 0.001 1484997.5

Initial E-RAB Accessibility (%) N4 < 0.001 1575624.5

MAX PRB usage per TTI DL (%) N4 0.9920 1200635.5

MAX PRB usage per TTI UL (%) N4 0.0886 1239639

Maximum Active UEs with data in the buffer per cell
DL (#) N4

< 0.001 1416103.5

Maximum Active UEs with data in the buffer per cell
UL (#) N4

< 0.001 1385457.5

Number of Inter eNB Handover failures per cause per
neighbor cell relationship (#) N4

< 0.001 1004520.5

Number of Inter-eNB Handover attempts per neighbor
cell relationship (#) N4

< 0.001 1365211.5
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B. Mann-Whitney U Test

KPI p statistic

Number of failed Inter eNB Handover preparations per
cause per neighbor cell relationship (#) N4

0.0710 1242077.5

Number of failed Inter eNB Handover preparations per
neighbor cell relationship due to failures in the HO
preparation (#) N4

0.0031 1219361

Number of failed Inter eNB Handover preparations per
neighbor cell relationship due to the expiration of the
respective guarding timer (#) N4

0.3772 1218302

Number of successful Inter-eNB Handover completions
per neighbor cell relationship (#) N4

< 0.001 1373572.5

Number of successful Intra-eNB Handover completions
per neighbor cell relationship (#) N4

< 0.001 1510015

PRB usage per TTI DL (#) N4 < 0.001 1362877.5

PRB usage per TTI UL (#) N4 < 0.001 1289764

Percentage of PDSCH transmissions using Low MCS
Codes (MCS <= 9) (%) N4

0.7094 1209711

RRC Connection Re-establishment Attempts, HO fail
(#) N4

< 0.001 901396.5

RRC Connection Re-establishment rejection Ratio (%)
N4

< 0.001 1289654

RRC Connection Setup Attempts (#) N4 < 0.001 1473430.5

This counter provides the average MCS used for TB
transmission using Spatial Multiplexing transmission.
(#) N4

0.0057 1131641.5

Total E-UTRAN RRC Connection Re-establishment
Failure Ratio (%) N4

< 0.001 1107305.5

Éxitos de handover (%) N4 < 0.001 1530418.5

Éxitos de la fase de ejecución del handover (%) N4 < 0.001 1595462.5

Éxitos de la fase de preparación del handover (%) N4 0.0617 1155605.5
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C. Performance Metrics and
Confidence Intervals

In this Appendix, the methodology used to compute the performance metrics -
precision, recall and specificity - are described.

Furthermore, the bootstrap resampling technique utilized to estimate the confidence
intervals relative to the previously mentioned performance metrics is presented in
details.

Performance Metrics

In this thesis three different performance metrics are exploited during the testing
phase of the project, presented in Chapter 4.

Specifically, precision, recall and specificity are utilized to measure and compare the
classification performances.

Precision

Precision measures the accuracy of positive predictions. It is the fraction of true
positive results among all positive results predicted by the model.

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)
(C.1)

Recall

Recall measures the model’s ability to identify all relevant instances. It is the fraction
of true positive results among all actual positive instances.

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)
(C.2)

Specificity

Specificity measures the model’s ability to identify only the relevant negative in-
stances. It is the fraction of true negative results among all actual negative instances.
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C. Performance Metrics and Confidence Intervals

Specificity =
True Negatives (TN)

True Negatives (TN)) + False Positives (FP)
(C.3)

Bootstrap Method for Confidence Intervals

[10] To estimate the 95% confidence intervals for the previously mentioned perfor-
mance metrics, the bootstrap resampling technique is employed.

The bootstrap method provides a reliable means of estimating confidence intervals
for performance metrics without assuming a specific distribution. By leveraging this
non-parametric method, the robustness of interval estimates is ensured.

Bootstrap Method Steps

1. Resampling: generate a large number of bootstrap samples (specifically, n =
10000) from the original dataset by random sampling with replacement.

2. Metric Calculation: for each bootstrap sample, compute the desired perfor-
mance metric.

3. Confidence Interval Estimation: determine the confidence interval by find-
ing the appropriate percentiles from the distribution of the bootstrapped met-
ric values. For a 95% confidence interval, the 2.5th and the 97.5th percentiles
are used.
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D. Key Technologies

This Appendix provides a comprehensive overview of the key technologies employed
in this thesis.

As Telefónica’s Radio Optimization department transitions certain operations to
Databricks, this project represents an initial step in this technological shift towards
advanced data analysis.

The work of this thesis utilizes Azure Databricks, leveraging PySpark and Kusto
Query Language (KQL).

Azure Databricks

Azure Databricks is a managed version of the Databricks platform within the Azure
cloud environment. Databricks is a unified, open analytics platform built on Apache
Spark, designed for creating, deploying, sharing, and maintaining enterprise-grade
data, analytics, and AI solutions at scale. The Databricks Data Intelligence Platform
integrates with cloud storage and security in the user’s cloud account, managing and
deploying cloud infrastructure on their behalf.

Databricks offers scalability, advanced analytics, and real-time processing capabil-
ities. It provides high programming flexibility and integration, enabling the use
of big data databases. Its distributed architecture effectively handles massive data
volumes, making it ideal for organizations dealing with big data or complex data pro-
cessing tasks. Additionally, Databricks supports multiple programming languages
(e.g., Python, R, SQL) and libraries commonly used in data science and ML.

Specifically, for the purpose of this thesis, among others, Python sklearn1 library
and xgboost2 package are exploited to develop the classification models, alongside
sciPy3 library which is employed to perform the statistical Mann-Whitney U test.

The following sections detail the data accessible from the Databricks platform at
Telefónica.

Firstly, topological and physical information about network cells can be extracted,
filtering by supplier (e.g., Vendor-A or Vendor-B) and geographical region or tech-

1https://scikit-learn.org
2https://xgboost.readthedocs.io/en/stable/python/python_intro.html
3https://scipy.org
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D. Key Technologies

nology employed (e.g., 3G, 4G/LTE or 5G). Each record represents a cell, and each
field provides specific information about that cell. It is recommended to filter by
registration date to ensure accurate information at a specific time.

Additionally, a different database can be consulted to provide information about
specific Key Performance Indicator (KPI)s. Each record includes the KPI name,
the formula defined to calculate it, and the counters involved.

As previously explained, KPIs are functions of several counters captured every 15
minutes. The KPI computation time window can be expanded by specifying the time
aggregation parameter. Time aggregation involves computing the official formula
using the sum of all counters related to the same metric over the entire specified
time window.

Finally, a third database can be queried to obtain cells’ KPIs for a specific date. This
is the primary database used in this thesis to query records for various datasets. A
particular function implemented in Python takes the list of requested cell names,
the desired KPIs, the query date, and the time aggregation as inputs. It processes
this information and returns a PySpark DataFrame with entries representing KPI
values for specific cells operating in a particular frequency band.

Spark and PySpark

This thesis leverages Spark sessions within Azure Databricks and integrates PySpark.

Spark is an open-source distributed computing system for programming entire clus-
ters with implicit data parallelism and fault tolerance. It is designed for big data
processing and analytics, offering in-memory computation and supporting various
programming languages like Scala, Java, Python, and R.

PySpark is the Python API for Apache Spark, enabling users to leverage Spark’s
distributed computing capabilities using Python.

Kusto Query Language

To access Telefónica’s data sources, Kusto Query Language (KQL) is used for defin-
ing queries. KQL queries are defined and integrated with PySpark commands to
retrieve and store the results in a PySpark DataFrame, facilitating further data
processing and analysis within the Azure Databricks environment.

Kusto Query Language (KQL), developed by Microsoft, is a query language used to
interact with Azure Data Explorer for analyzing large volumes of data.

KQL provides a rich set of operators and functions for filtering, aggregating, and
transforming data. It supports complex queries involving joins, unions, and sub-
queries.

In KQL, operators are sequenced by a — (pipe), and the data is filtered or manip-
ulated at each step before being fed into the following step. This sequential piping
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of information makes the order of query operators important, which can affect both
results and performance.

An example KQL query might look like the following:

cells_new

| where tech_id == ‘4’ and registration_date >= datetime(‘2024-02-02’)

| project cell_name, supplier, region, province, site_name, site_id,

band, transmit_power, longitude, latitude, azimuth, registration_date

| summarize arg_max(registration_date, *) by cell_name

This example query filters records within a specific registration date and technology
of LTE (4G), returning a selection of attributes aggregates the data by category,
and sorts the results in descending order based on the total value.
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Acronyms

Acronyms

3GPP Third Generation Partnership Project. 8, 9

CCA Canonical Correlation Analysis. 14

CM Configuration Management. 17

DL-SCH Downlink Shared Channel. 6, 7

DT Decision Tree. 28

EDA Exploratory Data Analysis. 17, 22, 23, 37

eNB evolved Node-B. 6, 7, 9, 11, 12

FDD Frequency Division Duplexing. 8

HO Handover (or Handoff). 4–6, 12, 21, 27

IM Inventory Management. 17

KPI Key Performance Indicator. v, xviii, 1, 4, 13, 14, 18, 21–23, 27–31, 34, 37–41,
43, 47, 49, 51, 58, 62, 65–67

KQL Kusto Query Language. xvii, xviii, 18

LR Logistic Regression. 29

LTE Long Term Evolution. 1, 3, 5, 12–14, 65

ML Machine Learning. xvii, 2, 15, 17, 18, 28

PCA Principal Component Analysis. 39–41

PDCCH Physical Downlink Control Channel. 7

PM Performance Management. 17

PRACH Physical Random Access Channel. 6, 7, 9, 11, 14, 19

prachCS PRACH Cyclic Shift. 9–12, 14, 19, 24

RACH Random Access Channel. 21
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Acronyms

RAN Random Access Network. 5

RF Random Forest. 28–30, 34, 37, 41–46, 48, 50, 51, 53, 54, 58, 60–62, 64

ROC Receiver operating characteristic. 34

RRC Radio Resource Control. 6, 7, 11, 15

RSI Root Sequence Index. 9, 11, 12, 37, 62, 64

SIB System-Information Block. 5–7

SOM Self-Organizing Map. 13

SON Self-Organizing Network. 13

SQL Structured Query Language. xvii, 15

SVM Support Vector Machine. 29

TDD Time Division Duplexing. 8

UE User Equipment. 4–7, 9–12, 15

UL-SCH Uplink Shared Channel. 7

XGB Extreme Gradient Boosting. 28–30, 34, 37, 41–44, 46, 50, 62, 64
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