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Abstract
The following thesis topic is about the development and testing of a Board working as ADCS
for a CubeSat. This project is part of a collaboration between the u3S Laboratory at the
University of Bologna and the STAR Laboratory at Politecnico of Turin for a distributed attitude
determination and control systems testing environment for CubeSats.

The developed system has the goal of performing a Dethumbling maneuver, controlling the
orientation of a 0.5U Cubesat composed of other Sub-Systems like the On-Board Computer and
Electrical Power System: it takes operative mode commands from a Ground Station composed
of a Personal Computer to reach a certain target in terms of angular speed, drives the actuators
and collect data about the internal state to send back to the Ground Station.

The thesis starts with a brief introduction to CubeSat’s history of launches, introduces the ADCS
systems principles, and provides some information about the standards in space environments.
Then, it explains in detail the Cubesat behavior from a system point of view; gives an in-depth
focus on hardware description, design, and prototyping with particular attention to the Mag-
netorquers and Electric Drivers design choices; then moves to a Firmware description of the board.

Finally, it describes the Facility in Forlì of the University of Bologna where the tests were
performed. It discusses the setup in preparation for the tests and the final results and achieve-
ments obtained.
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Chapter 1

Introduction to Cubesat

This Chapter is meant to introduce the world of CubeSats and their evolution throughout the
years.

1.1 Cubesat Standard
[1],CubeSat is a class of satellites that adopt a standard size and form factor, which unit is
defined as "U".
A 1U CubeSat is a 10 cm cube with a mass of up to 2 kg.
This standard primary objective is to provide specifications for the design of CubeSats ranging
from 1U to 12U. The standard secondary objective is to provide information on available CubeSat
dispensers and their corresponding interfaces.

Figure 1.1: The current Cubesat Family

CubeSats are typically built up from standard cubic units each measuring 10 cm x 10 cm x 10
cm. The number of units depends on the CubeSat’s mission, but tends to be between 2 and 16,
resulting in a mass of just 3–32 kg. These little satellites have a fraction of the mass, and cost,
of more traditional satellites.
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1.1.1 History of Cubesat in Brief
The CubeSat Standard was formed when two professors, Jordi Puig-Suari of California Poly-
technic State University and Bob Twiggs of Stanford University, proposed it in 1999 to allow
university students to design, build, test, and operate simple spacecraft. The first six Cubesats
were later launched in 2003, Russia’s Plesetsk launch site and the first NASA CubeSat was
GeneSat-1 – launched in 2006. GeneSat-1’s success was an important factor in the increase
of CubeSat popularity. Until 2013, CubeSats were a small field dominated by academia and
university projects.
After 2013, most of the CubeSats launched were for amateur or commercial purposes. As of
2012 only 72 of CubeSats were on orbit, but as of January 2019 over 900 have been successfully
deployed on orbit.
Cubesats were made possible by the ongoing miniaturization of electronics, which allows instru-
ments such as cameras to ride into orbit at a fraction of the size of what was required at the
beginning of the space age in the 1960s. The applicability of these satellites is being used more
and more every year.

[2],From the first launches in the late nineties till nowadays the launch of nanosats in or-
bit increased significantly. As can be seen in figure 1.2, it increased by almost 800% and the
counts for features compared to the total launches reduced a lot to nearly 0 from 2014 till now.
As reported on the "Nanosats Database" the number of nanosats and CubeSats launched in total
reach 5000 units and the trend is destined to arise in the future, considering for example that
the prediction of nanosats launches in 2024 doubles compared to the year 2022.

Figure 1.2: Nanosatellite launches and forecasts trend over the years
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Of all of these launches the majority of them nowadays(Figure 1.3) are carried out by companies,
but from the year 2013 the number of launches made by universities increased and the trend
probably will increasingly grow in the next years.

Figure 1.3: Nanosatellite launches by organisations over the years

1.2 Introduction to ADCS
Cubesats are composed of many sub-systems such as the Command and Data Handling(CDH),
Radio Frequency(RF)Communication and the Attitude and Determination Control System
(ADCS) [3]. Usually, the ADCS incorporates elements that are specific only to this sub-system
and not of others such as the processor(microcontroller), sensors, and dedicated actuators. ADCS
systems can use various methods for determining attitude, which are most commonly vector
observations of particular objects.
Different methods are employed for both determining and controlling a satellite’s attitude, the
most common of which are listed below:

• Sun sensors: are visible-light detectors widely used due to their limited dimension,
accuracy and reliability, which are used to estimate the Sun’s direction in the Satellite’s
Body Reference Frame (SBRF).
They can be pretty accurate but it depends on the availability of sunlight in space, for
example during eclipses their accuracy reduces a lot. CubeSat projects often use solar
panels such as sun sensors: each panel gives a different power output depending on the the
incident angle of the sun rays and the sun vector can be reconstructed using trigonometry
[4].
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Figure 1.4: Example of Sun Sensor

• Gyroscope: a spinning wheel, which retains the orientation of its spinning axis due to
the conservation of angular momentum. Modern gyroscopes are lightweight and measure
angular velocity and acceleration accurately.
However, due to axial precession and the fact that the gyroscope does not keep its orientation
when not spinning, gyroscopes alone cannot be used to determine a Satellite’s Attitude.

• Magnetic sensors(Magnetometer): measure the magnetic field and its strength in three
dimensions and therefore return the magnetic field vector. Comparing the magnetic field
reading to an onboard Earth’s magnetic field model can determine the satellite’s attitude.
The magnetometer allocation is based on the ADCS design and usually being placed on the
system’s printed circuit board (PCB) or an external sensor head.

For attitude control, satellites can use two types of actuation::

• Passive : such as Gravity Booms or Permanent Magnets

• Active : such as Magnetic Coils(Magnetorquers), Reaction Wheels(electrical mo-
tor),Thrusters(fuelled motor) , or Solar Sails

1U satellites mainly use active types of actuators, Magnetorquers and Reaction Wheels:

• Magnetorquers create a magnetic dipole that interacts with the Earth’s magnetic field and
creates a small external force(torque) on the satellite’s body.

• Reaction wheels,similar to DC motors in the concept, which can be spun to create an
internal force on the satellite’s body.
Concerning the first they can generate quick, sharp changes to the attitude of the CubeSat.
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1.3 PCI Standard and Boards Mechanical Dimension
To ensure mechanical compatibility between all electrical boards and with the whole mechanical
structure of a CubeSats an industrial standard was developed in 1992 by the PC/104 Consortium
: the objective was to incorporate a PCI bus[5] on the PC/104 form factor, which became to
be known as PC/104-Plus. This architecture provides a link to versatile legacy hardware while
meeting the high-speed requirements for present and future hardware.
Moreover, it provides some guidelines about the mechanical dimensions of boards.

Figure 1.5: Module Stack configuration before Figure 1.6: Module Stack configuration after

The two figures above (Figure 1.5 and 1.6) show a typical stackup configuration for the board
using the PCI-104 standard. To have a standard for the distances in vertical between boards
Spacers are used, starting from the bottom they are blocked to the board through a screw, and
for the last spacer, it is attached to the board with a bolt.
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Chapter 2

System Overview

In this chapter will be presented an overview about the board main elements and their role in
the system.

2.1 ADCS Block Scheme

Figure 2.1: System Block Diagram

As shown in figure 2.1 the systems is composed of:

• A Microcontroller, whose role is to take all the information coming from sensors to know
the actual position in the space and speed of the satellite, compare them with the desired
position and speed and provide an output to actuators, which will be the ones that will
correct the trajectory. In this sense the microcontroller is the main part of the Control
System;

• Temperature sensors and conditioning circuitry which will be used to monitor the
the temperature of actuators ic Drivers, solar sensors, and the microcontroller processor;
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• Solar Sensors which will be used to acknowledge the position of the Sun in space;

• Reaction wheels, one of the two types of actuators. These kinds of actuators are
responsible for the propulsion of the satellite in space;

• A Magnetorquer, the second type of actuator which will be used to provide a torque to
orientate the satellite with respect to the Earth’s Magnetic Field;

• Gyroscope and Magnetometer,whose,inside an IMU system, will provide measurements
about the dynamic state of the satellite in space(Angular speed and Magnetic Field).

2.2 Distributed Lab Interfaces and Telemetry exchange
The system that was implemented for this thesis is a Distributed Lab(DLab) and consists
of 3 main parts: an ADCS board, an On-Board Computer(OBC)board which embeds the
Electrical Power System(EPS) and the Ground Station (GS),which is a PC.
In figure 2.2 a general scheme of the DLab is shown.

Figure 2.2: OBC threads scheme and Interfaces between systems
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2.2.1 OBC

Figure 2.3: One of the available OBC PCBs

In figure 2.2 is shown the core software of the OBC: it automatically starts after every boot of
the board.
It’s a Python program subdivided into four threads:

• CDH thread: this is the “main” thread, whose purpose is, as the name suggests, getting
commands from the user and handling data from ADCS, implementing the communication
logic with the latter.

• Client thread: this thread is responsible for communication with the user, which is
performed through another program (Client) that uses a Unix socket as a channel, similarly
to how Telegraf does.

• Log thread: is the one responsible for logging data, both to Telegraf and optionally to a
local log file.

• ADC thread: manages and samples the OBC’s ADC.

The ADCS and OBC boards exchange data through the UART protocol, in particular :

• The OBC sends to ADCS OpMode(Operative Modes) packets and Target(desired angular
velocity) packets,together with info about internal power state(coming from its ADC)

• The ADCS sens to OBC packets about IMU readings, Temperature sensors, and Actuators
Currents.

2.2.2 ADCS Board
The ADCS board is a board to determine and control the attitude of a micro-satellite(CubeSat).
It takes operative commands by the OBC board(UART) to provide current to magnetorquers to
reach a determined orientation in the space. To do so a simple PD control law is implemented:
this law takes the desired angular velocity value sent by the OBC and converts the request
into a Duty Cycle to provide, through PWM signals, to the H-bridge ICs that drive the
Magnetorquers in the three Axis. There are 2 main Operative Modes(OpModes):

• OpMode 0: it is the IDLE and SAFETY state of the ADCS. In this state the ADCS stops
PWM command to Magnetorquers whenever a problem occurs during the tests(Overheating
of the ICs or Overcurrents in the Power lines);
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• OpMode 1: it is the state where control is implemented. For this experiment a Dethum-
bling maneuver is applied: given that the CubeSat spins with angular velocities different
from 0 the Dethumbling allows to stop the Cubesat, bringing the angular velocity to 0. In
alternative, it can be used to rotate the CubeSat with constant angular velocity from a
stationary condition.

We’ll see later that another OpMode was introduced for the Final Tests at the Facility.

2.2.3 Ground Station(GS)
To manage the communication between the OBC and the Ground station a data logging
infrastructure has been created: the GS hosts the database(InfluxDB) and the User Interface
(Grafana). On the OBC a Raspberry Pi is present, it serves as the Central unit of the OBC:
it produces metrics and sends them to GS via an InfluxDB agent (Telegraf).
The picture below shows the implementation infrastructure for the Ground Station:

Figure 2.4: Ground station infrastucture

InfluxDB is a time series database, which is suited to store data samples spanning over
time.

Telegraf is the standard agent for InfluxDB, its purpose is to serve as an entry point for
data to be sent to the database, potentially without directly writing queries or code. To do so
it provides a huge variety of input/output plugins that can automatically gather metrics from
the computer or systems or interface with all kinds of Web services. In this thesis, it is used
simply as a bridge to send data to InfluxDB using its line protocol format (strings containing
the measurements) using the socket_listener input plugin.

Grafana is a Dashboard making package that is typically used together with InfluxDB, its
purpose is to create nice-looking graphs, charts, and all sorts of visualization for data stored in
influxDB.
Below is shown how the Dashboard presents itself on Grafana:
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Figure 2.5: Dashboard visualization on Grafana

2.3 Control - Dethumbling
Normally, attitude control has two stages which have the De-Tumbling phase before the
attitude pointing phase. The Tumbling of the satellites is induced by the rotation of launchers.
The De-Tumbling is necessary to reduce the rotation rate of the satellites released from the
launchers: it is the first task of the ADCS before any attitude control after entering the orbit[6].
This thesis aims to develop a PCB board to control actively the attitude of a 0.5U Cubesat.In
particular, only the Dethumbling phase will be considered and an Attitude Control Algorithm
will be implemented. It means that actuators will use only three Magnetorquers to control
the orientation of the CubeSat.
This control algorithm will be then tested in the structure present at the Facility of the University
of Bologna in Forlì, to be validated.

2.3.1 Control Model
During the design phase at the system level, it was decided to use a simple PD controller to
implement the Dethumbling: since we implement a Dethumbling maneuver we need to stop from
a condition where the satellite is spinning, so starting from the Desiderd Attitude composed of
the only desire angular speed, coming from the Ground Station directive, the actuation of the
Magnetorquers is done and the feedback comes from the readings of the IMU device. The error
between the desired target( target angular speed) and the one read by the IMU will produce an
error that will be given to a PD controller which will define which is the mechanical torque to
develop at the actuator level to adjust the trajectory, in particular, to reduce the angular speed
of the system.
It means the controller is a speed controller. Now it is reported a simple block scheme of the
control:
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Figure 2.6: PD control block scheme

Every "desired" variable will be indicated with an asterisk.
Starting from the desired angular speed: the GS will send to the OBC an Opmode command
equal to 1 to say that the control mode will be started. Once it is received it will send to the
OBC the desired angular speed:

e⃗AT T = ω⃗∗ − ω⃗ (2.1)
As written in equation 2.1 the desired angular speed is compared to the one coming from the
IMU reading and an error is produced.
Then the derivative of the error is calculated as in equation 2.2:

de⃗AT T

dt
= ω⃗∗ − ω⃗

dt
(2.2)

The desired torque will be produced as a combination of the P and D control parameters and
the values previously calculated in 2.1 and 2.2 as in equation 2.3:

τ⃗ ∗ = P · e⃗AT T + D · de⃗AT T

dt
(2.3)

where the matrixes P and D are diagonal matrixes: P =

Px 0 0
0 Py 0
0 0 Pz

 and D =

Dx 0 0
0 Dy 0
0 0 Dz

.

From this the desired produced Magnetic Dipole ([7]) by the Magnetorquer is found as:

M⃗∗ = τ⃗ ∗ · B⃗

∥B⃗∥2
(2.4)

Notice that to calculate this last vector the readings of the Magnetic Field from the IMU are used.

Then it is used to calculate the needed current to have that Magnetic Dipole:

I⃗∗ = M⃗

N · A
(2.5)

where N is the number of turns of the Magnetorquer and A is the Magnetorquer coil’s area.
Finally, knowing the Magnetorquer equivalent Resistance and its Supply Voltage it is possible to
calculate the desired Duty Cycle:

D⃗C
∗

= I⃗ ∗ RMagn

V dd
(2.6)
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It is clear that this control law doesn’t take into account all the nonidealities of the system, it is
not complete: it doesn’t use the angular acceleration measured by the IMU and there is no inner
current loop control or external position control loop. However, this must be seen as a starting
point for future works: the P and D parameters of the controller will be found by tentatives in
the test and are not intended to be found theoretical if not as starting reference values to find
the best ones.
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Chapter 3

Hardware Description

In this chapter the design and components choices will be discussed:

3.1 Requirements for the ADCS Board
In this section requirements at system-level regarding the board are discussed:

• Mechanical Dimensions:In figure 3.1 the main mechanical sizes are indicated. The most
important dimensions to consider are the board’s dimension which must be 90x96 mm,
the holes for the spacers and screws must be of type M3(3mm), the distance between the
place for the PCI bus(whose dimensions are indicated in figure 3.2 and 3.3) and the spacers
hole(on the left), as well as the distance from the board margin(as indicated in the figure),
must be respected for all the stacked-up boards. These dimensions are essential to be
respected in the PCB design phase otherwise the couldn’t be a possibility for a correct
assembly and integration of the boards.

Figure 3.1: Board Mechanical Dimensions
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Figure 3.2: PCI Connector Mechanical dimen-
sions A

Figure 3.3: PCI Connector Mechanical dimen-
sions B

• Bus Signals Assignments: the PCI Connector has a total of 120 pins organized in 4
columns of 30 pins every pin has its label, which means that the power signals(Vcc, GND)
as well as communication signals, etc... must be put in the same pins for every board who’s
stuck-up.
Below(Figure 3.4) a table of all the signals is shown.

Figure 3.4: PCI Bus Signal Assignments

• Power Supply: To evaluate which voltage regimes to adopt for the ADCS board, it is
necessary to consider what the Electrical Power System(EPS) provides in terms of
voltage and current regimes. Once this is done, a decision can be made on whether to use
converters to lower or raise the available voltage levels;

• Communication Protocol Interfaces: In a CubeSat, it is crucial for subsystems to
exchange data to monitor each one’s status, read sensor measurements, decide on the type of
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maneuver to be performed, and generally manage the operational state of the CubeSat. Since
our ADCS board is supported by an On-Board Computer(OBC), which communicates
with a Ground Station(GS), it is necessary first to establish which communication
protocol to use to allow communication between the two systems. Subsequently, during the
selection of the integrated circuits to be mounted on the board, it is important to understand
which of these have a digital communication interface and thus determine whether it is
necessary to use additional communication lines in addition to the one already mentioned.
In general, various communication protocols can be used in a CubeSat, but the ones used
essentially are two:

– 1) SPI ;
– 2) UART: .

• Microcontroller: To evaluate which microcontroller to choose some aspects must be taken
into account:

– Power Requirements in terms of voltages and currents;
– Communication Interfaces(how many lines available and variety of communication

protocols adopted);
– Type of ICs, sensors, and in general circuitry present on the board(Analog or Digital);
– Performance of the CPU.

• Drivers and Magnetorquers: Magnetorquers must generate enough magnetic moment
to interact with the Earth’s Magnetic Field and produce the desired torque for Attitude
Control. Moreover, they must be realized with coils good enough to support the maximum
amount of delivered current without experiencing Overheating.
Whereas electronic drivers must be able to support a wide range of supply voltage and
current, together with a good range of driving control frequency for the H_bridge transistors;

3.2 Microcontroller
After considering all of these aspects the STM32L452RE Nucleo Board was chosen([8]). Some
details about the board:

• It mounts and Arm 32-bit Cortex-M4 processor with fpu which can reach frequencies up to
80Mhz;

• The power supply range is between 1,71 and 3.6 V;

• There are up to 83 fast I/Os, most 5 V-tolerant;

• 12 timers are available: a 16-bit advanced motor-control timer, a 32-bit and three 16-bit
general purpose timers, two 16- bit basic timers, two low-power 16-bit timers (available in
Stop mode),2 watchdogs and a SysTick timer;

• There are plenty of analog peripherals:

– One 12-bit ADC 5 Msps, up to 16-bit with hardware oversampling, 200 µA/Msps;
– One 12-bit DAC output channel, low-power sample and hold;
– One operational amplifier with built-in PGA;
– Two ultra-low-power comparators;
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– Accurate 2.5 V or 2.048 V reference voltage buffered output.

• 17 communication interfaces are available:

– A USB 2.0 full-speed crystal less solution with LPM and BCD
– One SAI (serial audio interface)
– Four I2C FM+(1 Mbit/s), SMBus/PMBus
– Three USARTs (ISO 7816, LIN, IrDA, modem)
– One UART (LIN, IrDA, modem)
– One LPUART (Stop 2 wake-up)
– Three SPIs (and 1x Quad SPI)

Figure 3.5: Nucleo Board L452RE Pinout Figure 3.6: Nucleo Board L452RE

3.3 ADC and Multiplexer
To read the temperature coming from NTC sensors a chain of multiplexers plus an external
ADC was chosen.

3.3.1 ADC
The AD7788 from Analog Devices([9]) was chosen, which is a low-power, low-noise front end
for low-frequency measurement applications. It contains a low-noise 16-bit sigma-delta adc. It
operates from an internal clock. Therefore, the user does not have to supply a clock source to
the devices: its output rate is 16.6 HZ, which gives simultaneous 50Hz/60Hz rejection.
Its functional block diagram is:

Figure 3.7: ADC Functional Block Diagram
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The device operates with a single power supply from 2.5 V to 5.25 V. This external ADC is chosen
against the internal one provided by the Nucleo board because it has a higher resolution(Nucleo’s
ADC has a 12-bit resolution) and as will be shown later the ports available on the Nucleo board
are not sufficient to access its internal ADC channels.

Pin Configuration and Function Description

Figure 3.8: Pin configuration

There is a total number of 10 pins on the ICs :
• PIN 1: SCLK(Serial Clock Input) = for Data Transfers to and from the ADC. The

serial clock can be continuous, with all data transmitted in a continuous train of pulses.
Alternatively, it can be a noncontinuous clock with the information being trans- mitted to
or from the ADC in smaller batches of data.

• PIN 2: CS(Chip Select Input) = This is an active low logic input used to select the
ADC. CS can be used to select the ADC in systems with more than one device on the
serial bus or as a frame synchronization signal in communicating with the device. CS can
be hardwired low, allowing the ADC to operate in 3-wire mode with SCLK, DIN, and
DOUT/RDY that is used to interface with the device.

• PIN 3: AIN(+)(Positive Analog Input) = it is the positive terminal of the fully
differential analog input.

• PIN 4: AIN(-)(Negative Analog Input) it is the negative terminal of the fully
differential analog input.

• PIN 5: REFIN(+)(Positive Reference Input) = it ranges between VDD and GND
+ 0.1 V. The nominal reference voltage (REFIN(+) - REFIN(-)) is 2.5 V, but the device
functions with a reference from 0.1 V to VDD.

• PIN 6: REFIN(-)(Negative Reference Input) = it ranges between GND and VDD -
0.1 V.

• PIN 7: GND = Ground Reference Point.

• PIN 8: VDD = Supply Voltage between 3 V or 5 V nominal.

• PIN 9: DOUT/RDY = The DOUT/RDY falling edge can be used as an interrupt to a
processor, indicating that valid data is available. With an external serial clock, the data
can be read using the DOUT/RDY pin. With CS low, the data/control word information
is placed on the DOUT/RDY pin on the SCLK falling edge and is valid on the SCLK
rising edge. The end of a conversion is also indicated by the RDY bit in the status register.
When CS is high, the DOUT/RDY pin is three-stated, but the RDY bit remains active.

• PIN 10: DIN(Serial Data Input) = to the Input Shift Register on the ADC. Data
in this shift register is transferred to the control registers within the ADC; the register
selection bits of the communications register identify the appropriate register.
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Internal(On-Chip) Registers

The ADC is controlled and configured via a number of on-chip registers which are: Communica-
tion Register(CR), Mode Register(MR), Status Register(SR) and Data Register(DR).

• Communication Register
The Communications Register is an 8-bit, WRITE-ONLY register. All communications
to the device must start with a write operation to the communications register. The data
written to the communications register determines whether the next operation is a READ
or WRITE operation, and to which register this operation takes place.

• Mode Register
The mode register is an 8-bit register from which data can be read from or written to. This
register is used to configure the ADC for range, to set unipolar or bipolar mode, or to place
the device into power-down mode.

• Status Register
The status register is an 8-bit, read-only register. To access the ADC status register, the
user must write to the communications register, select the next operation to be read, and
load Bit RS1 and Bit RS0 with 0.

• Data Register
The conversion result from the ADC is stored in this data register. This is a read-only
register. On completion of a read operation from this register, the RDY bit/pin is set.

For further details about the register’s contents the datasheet() is available.

Digital Communication Interface

In order to operate this ADC a digital interface is available, in fact, it is possible to communicate
with this ADC considering different protocols:

• SPI

• QSPI

• MICROWIRE

In our case, we chose to use the SPI protocol since it is available on the Nucleo Board. As
described in the datasheet there are mainly three conversion modes:

• Continuous conversion Mode

• Single conversion Mode

• Continuous Reading Mode.

Continuous conversion Mode

This is the default power-up mode. The ADC continuously converts, and the RDY pin in the
status register goes low each time a conversion is complete. If CS is low, the DOUT/RDY line
also goes low when a conversion is complete. To read a conversion, the user can write to the
communications register, indicating that the next operation is a read of the data register. The
digital conversion is placed on the DOUT/RDY pin as soon as SCLK pulses are applied to
the ADC. DOUT/ RDY returns high when the conversion is read. The user must ensure that
the data register is not being accessed at the completion of the next conversion or else the new
conversion word is lost.
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Single conversion Mode

In single-conversion mode, the ADC is placed in power-down mode between conversions. When
a single conversion is initiated by setting MD1 to 1 and MD0 to 0 in the mode register, the ADC
powers up, performs a single conversion, and then returns to power-down mode. The devices
require 1 ms to power up and settle. It then performs a conversion, requiring a time period
of 2tADC . DOUT/RDY goes low to indicate the completion of a conversion. When the data
word has been read from the data register, DOUT/RDY goes high. If CS is low, DOUT/RDY
remains high until another conversion is initiated and completed.

Continuous Reading Mode

Rather than write to the communications register each time a conversion is completed to access
the data, the ADC can be placed in continuous read mode. By writing 001111XX to the
communications register, the user needs only to apply the appropriate number of SCLK cycles to
the ADC, and the data word is automatically placed on the DOUT/RDY line when a conversion
is complete. When DOUT/RDY goes low to indicate the end of a conversion, sufficient SCLK
cycles must be applied to the ADC, and the data conversion is placed on the DOUT/RDY line.
When the conversion is read, DOUT/RDY returns high until the next conversion is available.
In this mode, the data can be read only once. Also, the user must ensure that the data word is
read before the next conversion is complete.

3.3.2 Multiplexer
The Multiplexer is an SN74HC4851PWR from Texas Instruments [10] which is an 8-channel
analog multiplexer/demultiplexer with injection-current effect control, which allows signals at
disabled analog input channels to exceed the supply voltage without affecting the signal of
the enabled analog channels and this eliminates the need for external diode/resistor networks
typically used to keep the analog channel signals within the supply-voltage range.

Figure 3.9: SN74HC4851PWR Pinout

3.3.3 Temperature Sensor
[11],The choosen temperature sensor is a NTCLE203E3103FB0 from Vishay [12]. This thermistor
has a nominal resistance at 25 °C of 10 kΩ(R25) with a tolerance of ±1% and a B = 3977 K
with a tolerance of ±0.75%, which is the material constant expressed in Kelvin. This parameter
controls the RT slope, and allows computing the thermistor characteristic curve, as explained in
Vishay application note [13].
Figure 3.10 shows a typical curve behavior of the Resistance of an NTC sensor as a function of
the temperature(K).
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Figure 3.10: Typical resistance as a function of temperature for an NTC temperature sensor

The equation to retrieve the B value is:

BT 1/T 2 = ln (R1

R2
) · 1

1
T1

− 1
T2

(3.1)

Where Tx and Rx represents a chosen absolute temperature in Kelvin and the corresponding
thermistor resistance value at that temperature in Ω.
From this equation and by knowing the thermistor resistance value at 25 °C from the datasheet,
we can compute the thermistor resistance variation with temperature using the following equation:

R1 = R2 ∗ e
( 1

T1
− 1

T2
)∗B (3.2)

3.3.4 Measurement chain

Figure 3.11: Measurement Chain for the Ther-
mistor

[11], The Measurement chain is made up of
8 NTCs which together with a resistor each
form a voltage division that goes as input to a
Multiplexer which selects one reading among
all the voltages and puts it in input to the
ADC. For this reason, the ADC is exploited
in a Single-ended configuration.
A capacitor is put in parallel to the thermistor
to help filter out high-frequency noise. In the
figure (3.11) the conditioning circuitry for the
Thermistors is shown, inserted in the overall
Measurement Chain. This is clearly a simple
schematic, where only two sensors are con-
nected, the real circuit will be shown later.
Now let’s proceed to calculate the equivalent
Voltage that will be put in input the ADC to
be converted for every thermistor and then re-
trieve the inverse formula for the Temperature
to be used even in the Firmware code.
The equivalent voltage, as said before, is a
voltage division between the thermistor and
the resistor:
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Veq = Vdd ∗ RNT C

RNT C + Rx

= Vdd ∗ 1
1 + Rx

R25
∗ e( 1

298.15 − 1
T

)∗B
(3.3)

The equivalent resistance seen by the input of the Mux is:

Req = RNT C//Rx = RNT C ∗ Rx

RNT C + Rx

= Rx

1 + Rx

R25
∗ e( 1

298.15 − 1
T

)∗B
(3.4)

Inverting the 3.3 we obtain as expression for the Temperature:

T = 298.15K ∗ B

B − 298.15K ∗ ln[(Vdd

Veq
− 1) ∗ R25

Rx
]

(3.5)

3.4 IMU
The Inertial Measurement Unit(IMU) is a crucial element for an ADCS board since it provides
measurements to understand the state of the system and make decisions on the movement
to perform in terms of rotation and/or "propulsion". For this project the IMU used is the
MTi-3 from Xsens [14] (figure 3.12). This device is essentially a SOC(System-On-Chip), it is a
self-contained Attitude and Heading Reference System (AHRS) as a 12.1 x 12.1 mm module, so
it is easily integrable in a board due to the small dimensions. It integrates a magnetometer, a
gyroscope, and an accelerometer whose technical specifications are:

• Gyroscope: standard full range of measurement of 2000 deg/s;

• Magnetometer: standard full range of measurement of +/- 8 G(Gauss);

• Accellerometer: standard full range of measurement of 16 g;

Figure 3.12: The component

It allows the exchange of data using three communication protocols(SPI, UART, I2C) and it has
its own Software Suite (MT Manager, Firmware updater, Magnetic Field Mapper) where it is
possible to perform self-calibration for all three integrated types of sensors.
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Figure 3.13: IMU Pin Configuration

The user can select which communication protocol interface to employ for the IMU through
the peripheral selection pins PSEL0 and PSEL1. The hardware reads the state of these pins
at start-up and configures its peripheral interface according to the figure 3.11. To change the
selected interfaces, the user must first set the desired state of the PSEL0 and PSEL1 pins, and
then reset the device. The IMU has internal pull-ups on the PSEL0 and PSEL1 pins so if these
pins are left unconnected, the peripheral interface selection defaults to I2C (PSEL0 = 1.PSEL1
= 1).

Figure 3.14: IMU Peripheral selection

The MTi uses a right-handed coordinate system as the basis of the sensor frame(figure 3.15).
The accelerometer determines the origin of measurements. Figure 3.16 shows the location of the
accelerometer of the MTi 1-series.

Figure 3.15: IMU Reference Plane

Figure 3.16: Origin of IMU reference plane
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3.5 Magnetorquers
The objective of the actuation is to control the orientation of satellite faces in the 3 axis. So
three Magnetorquers have been designed.

3.5.1 Theoretical introduction
The type of Magnetorquer([15]) we are using, referred to as air core magnetorquer(figure
3.17), is basically an electromagnetic actuator that consists of a multi-turned coil which uses an
external applied magnetic field to develop a magnetic torque when current flows through its wire.
This lately will allow to orient the face of the Cubesat in which the magnetorquer is allocated.

Figure 3.17: An air core magnetorquer with squared shape

The magnetic moment of a coil with N turns is given by the equation 2.6 below, where n⃗ is a
unit vector perpendicular to the coil’s plane, N is the number of turns, A is the coil’s area, and I
is the current flowing in the coil.

m⃗ = NA⃗I = NAIn⃗ (3.6)

The dipole moment created by the magnetorquer m⃗ interacts with the magnetic field B⃗ and
the developed magnetic torque is represented by the formula 3.7, this means that the magnetic
torque is perpendicular to both the magnetic field and the magnetic dipole moment.

τ⃗ = m⃗ × B⃗ (3.7)

Considering the square coil as an ideal electrical conductor with constant section and uniform
distribution mass, the resistance of the wire R may be calculated using the Second Ohm’s Law,
considering that the length L of the wire will be the number of turns times the perimeter of the
square(in figure 3.18 there’s a descriptive image([16]) of the dimensions of the magnetorquer,
considering it a square the two sides of the square are equal and so w = h = a):

R = ρ
L

S
= ρ

4aN

S
(3.8)

From which the turns variable N is explicit:

N = RS

4aρ
(3.9)
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Where ρ is the electrical resistivity of the coil, a is the side length of the squared magnetorquer
and S is the section of the wire which is calculated as S = π ∗ r2 where r,(which is equal to 0,315
mm), is the radius of the section of the file which can be approximated as a circle.

Figure 3.18: Air-cored magnetorquer’s dimensions

3.5.2 Design choices
To design the magnetorquers there were to consider some things:

• Available copper coil: there where limited availability for the coil;

• Maximum deliverable current: as will be explained later the maximum current that could
flow through the actuator is 2 A;

• Minimum equivalent resistance: for the same reason for which we want the current to
be under 2 A we want the resistance to be at least 6 Ω in order to have a maximum
current surely under the current max threshold. Moreover, higher resistance means even
less possibility to overheat for the magnetorquers at the equal value of current;

It was chosen to optimize the number of turns of the magnetorquers N according to the maximum
value of generated torque and magnetic field(considered at the equator), so the generated dipole
moment was supposed constant and the best combination of a number of turns and current was
chosen.
In particular, for the max generated Mechanical Torque it was chosen a value of 0.1 ·10−3N · m,
and for the magnetic field, a value of 30 µT , calculated at the equator, resulting in a max
Magnetic Dipole for the Magnetorquers of 33.3333 A · m2.
Moreover, it was considered for the side a length of 8.5 cm, so the area A of the actuator is
0.07225 m2, fixed.

m[A · m2] 33.3333 33.3333 33.3333
N[-] 462 308 231

A[m2] 0,007225 0,007225 0,007225
I[A] 1 1.5 2

Table 3.1: Values for magnetorquer dipole moment
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The thread-off between a good number of turns and a maximum current value, not higher than
2 A, leads to a value of Turns of about 300, with a peak current value of 1.5 A. So this resulted
to be the chosen parameters configuration for all the magnetorquers.

After finding the optimal number of turns the 3 magnteorquers were realized. In Figure
3.19 the realized magnetorquers assembled to the CubeSat structure are shown. Moreover, the
frame of reference of the IMU is indicated in the picture

Figure 3.19: Magnetorquers for every axis + IMU frame Reference

Their realization encountered a problem that where told before: the copper coil wasn’t enough to
obtain three magnetorquers of 300 turns each, so after realizing the magnetorquers we obtained
two of them of 300 Turns each and one of 210 Turns.
Considering the last Magnetorquer, if we calculate the possible generated magnetic dipole looking
at the current we obtain the values shown in the table 3.2

m[A ∗ m2] 33.3795 22.7586
A[m2] 0,07225 0,07225
I[A] 2.2 1.5

Table 3.2: Values for the magnetorquer of 210 Turns

This means that we could have 2 possibilities: to have the same magnetic dipole the current
should increase over the limit we imposed of 2A, in the other hand to have the same maximum
current of the other magnetorquers we should account for a reduced magnetic dipole, which in
turns leads to a lower developed magnetic torque.
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Since we can’t afford a too high driving current we have to accept the third magnetorquer to
develop less torque. As we’ll see later in the final tests this will create some problems.

3.5.3 Electrical characterization
Equivalent resistance

Now let’s discuss the equivalent resistance of the built magnetorquers. To estimate this value we
refer to the formula 3.8, since we know that the coil is made of copper its resistivity constant ρ
is equal to 1.68 ∗ 10−8Ωm. Putting in a table the obtained values we have:

Magnetorquer X Magnetorquer Y Magnetorquer Z
N 300 300 210

ρ [Ω· m] 1.68 × 10−8 1.68 × 10−8 1.68 × 10−8

a [m] 0.085 0.085 0.085
r [m2] 3.15 3.15 3.15
S [m2] 3.115 × 10−7 3.115 × 10−7 3.115 × 10−7

Ideal R [Ω] 5.5 5.5 3.85
Real R [Ω] 30.7 30.7 23

Table 3.3: Resistance values for the magnetorquers

As it can be seen the ideal value of resistance resulting from the formula doesn’t correspond
to the real one measured using a multimeter. This is because of many reasons: non-optimal
construction of magnetorquers since they were made by hand, the wires were attached using a
special glue for aerospace application only with hands. Moreover, the total length of the wire is
an approximated value, it is approximately near the one used for the calculations. Considering
that, the constraint on the equivalent real resistance in all three cases is respected: it exceeds
the 6 Ω which is important if we want to keep the maximum current under the 2 A.
However, the optimum design of magnetorquer resistance is out of the scope of this thesis work

Resonant frequency

In order to drive correctly a magnetorqer some things must be taken into account. The amount
of current injected into a magnetorquer must be enough to not let it heat due to the joule
effect, still allowing it to provide the maximum magnetic dipole possible useful for the control.
Moreover, since a Magnetorquer can be characterized as an RL circuit, the resonant frequency
must be evaluated. As explained in this article [16], providing a PWM square wave with a
frequency close to the resonant frequency minimizes the ripple which is the AC side of the Square
wave signal provided by the driver to the Magnetorquer. So, after the design and realization of
the magnetorquers, their resonant frequency has been evaluated using a signal generator and an
oscilloscope: depending on the driving circuit, the driving voltage of a Magnetorquer can have a
ripple with associated amplitude and frequency. Its response to the ripple voltage depends on its
impedance for that specific frequency, in fact, a Magnetorquer can be modeled as an RL circuit
without the back-emf voltage typical of mechanical actuators(DC motor, Stepper motor, etc..).
In figure 3.20 is provides a typical inductor Impedance Magnitude and Phase plot considering a
span of frequencies and it is valid even for Magnetorquers.

Depending on the driving frequency the Magnetorquer can express a dominant capacitive
impedance behavior for low frequencies, where its equivalent impedance has a prevalent nega-
tive imaginary part or it can manifest a dominant inductive impedance behavior for high
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frequencies, it means it’s equivalent impedance has a prevalent positive imaginary part.
The peak on the graph instead is an intermediate and "equilibrium" situation where no dominance
is present from one side or the other but the imaginary part of the impedance is a combination
of the two natures.

The frequency at which this happens is called a Self-Resonant Frequency. At the Res-
onant Frequency, the ripple current is lowest in magnitude. Both, ripple voltage and ripple
current, must be avoided due to related EMI. While the effects of the ripple voltage can be
significantly reduced using conductive shields, the ripple current is more problematic: Magnetor-
quers generate a relatively strong variable magnetic field, proportional with the ripple current,
that spreads over a large volume and this cannot be accepted if the task of a Magnetorquer is to
generate a Magnetic Dipole to provide in turns a good Mechanical Torque interacting with a
magnetic field.
Additionally, the power associated with the ripple components is dissipated, with no contribution
to the dipole moment, resulting in a reduction of the power efficiency.

Figure 3.20: Typical impedance profile of an inductor

For this reason the Self-Resonant Frequency of the three the Magnetorquer was evaluated. To do
so we have to consider the concept behind the frequency response of the Magnetorquer: since at
the Resonant Frequency there’s a peak in the Impedance response it means that the voltage peak
of the magnetorquer will be the highest at that frequency. Exploiting this concept we performed
this experiment in the laboratory : We connected a Magnetorquer to a signal generator and
we generated a 50%, 12 V square wave starting from a low frequency. In the meantime, the
two poles of the magnetorquer were connected to an oscilloscope to plot the wave and print its
peak-to-peak amplitude voltage. We increased gradually the frequency of the input signal from
a few Hz and we saw that the amplitude of the signal on the magnetorquers started to rise, till a
specific value. Passed that value the amplitude started to decrease continuing to increase the
frequency.
That frequency value is the Resonant Frequency and figure 3.21 shows a simplified scheme of
the setup in the laboratory.

We used a 50% square because at equal frequency the ripple is higher at that Duty Cycle
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so minimizing the ripple at 50% will automatically minimize it for all the other Duty Cycles.

Figure 3.21: Test in laboratory to find the resonant frequency

The table below shows the found Resonant Frequencies and we can notice that since two over
three magnetorquers have the same number of turns and characteristics it was expected that
they had approximately the same resonant frequency.

Magnetorquer X Magnetorquer Y Magnetorquer Z
N 300 300 210

Resonant Frequency [Hz] 70 70 123.5

Table 3.4: Found Resonant frequencies values for the three Magnetorquers

Obtaining these values we achieved an important result: as it will be explained in the next
section the drivers of the magnetorquers can be subjected to a driving PWM frequency not
higher than 200 KHz. Finding these values we are quite below this threshold so we can exploit
the ripple minimization without problems.

3.6 Actuators Driver
To select the motor driver IC some points were taken into account:

• The motor driver should have required a few external components in order not to use too
much space on the surface of the board since 5 of them are needed;

• It should drive the motors and magnetorquer, so should have been electrically compatible
with them, and in the meantime, the current flowing through actuators should have been
measured.

Due to these motivations, the choice is made on the DRV8251A from Texas Instruments([17]),
which is an integrated motor driver with N-channels H-bridge, charge pump, current sense
feedback, current regulation, and protection circuitry.
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Figure 3.22: DRV8251A Pinout

3.6.1 Pin Description
In figure 3.22 the driver pinout is shown. The pins are respectively:

• PIN 1: IPROPRI = Analog current output proportional to load current;

• PIN 2 e 3: IN2 e IN1 = Logic inputs, they control the H-bridge output and have internal
pulldowns;

• PIN 4: VREF = Analog input, can be applied a voltage between 0 and 5 V;

• PIN 5: VM = The 4.5 V to 48 V power supply. Connect a 0.1µF bypass capacitor to
ground, as well as sufficient bulk capacitance, rated for the VM voltage.

• PIN 6 e 8 = OUT1 e OUT2 = H-bridge outputs, connect them directly to the motor or
other inductive load.

• PIN 7 : GND = Device power ground;

• PIN 9 : PAD = Thermal pad.

3.6.2 Internal Circuitry Description
An internal current mirror architecture on the IPROPRI pin implements current sensing and
regulation. This eliminates the need for a large power shunt resistor, saving board area and
reducing system cost.
The IPROPRI current-sense output allows a microcontroller to detect motor stalls or changes in
load conditions. The external voltage reference pin, VREF, determines the threshold of current
regulation during start-up and stall events without interaction from a microcontroller
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Figure 3.23: Functional Block Diagram

3.6.3 Bridge control
The DRV8251A output consists of four N-channel MOSFETs that are designed to drive high
current. These outputs are controlled by the two logic inputs IN1 and IN2.

Figure 3.24: H-Bridge Control Table

According to the table 3.24 in order to drive the component it must switch between the driving
phase(Forward or Reverse) and the slow-decay phase(Brake). It means that for example if we
want to drive with forward mode at 70% duty cycle IN1 must remain high all the time(100%
duty cycle) and IN2 must be a PWM 50% square wave.
This is the way we will drive our actuators.

Figure 3.25: H-Bridge Current Paths
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Figure 3.25 shows the current path in the three operating modes of the drive. Since we’ll change
between the Forward and Reverse modes we can notice that the current flows always from up to
down, as we will describe soon this is crucial in the choice of the conditioning circuitry for the
Current Sensing.

3.6.4 Current Sensing
The IPROPI pin outputs an analog current proportional to the current flowing through the
low-side power MOSFETs in the H-bridge scaled by AIPROPI:

IPROPI = IM ∗ AIPROPI (3.10)
Where IPROPI is measured in µA, IM is the current flowing in the load and as described in the
datasheet AIPROPI has a value of 1575 µA/A.
The motor current is measured by an internal current mirror architecture on the low-side FETs
which removes the need for an external power sense resistor as shown in 3.26. The current mirror
architecture allows for the motor winding current to be sensed in both the drive and brake
low-side slow-decay periods allowing for continuous current monitoring in typical bidirectional
brushed DC motor applications

Figure 3.26: Integrated Current Sensing

The IP ROP I pin should be connected to an external resistor (RIP ROP I) to ground in order to
generate a proportional voltage (VIP ROP I) on the IP ROP I pin with the IP ROP I analog current
output. This allows for the load current to be measured as the voltage drop across the RIP ROP I

resistor with a standard analog to digital converter (ADC). The RIP ROP I resistor can be sized
based on the expected load current in the application so that the full range of the controller
ADC is utilized.
Additionally, the DRV8251A device implements an internal IP ROP I voltage clamp circuit to limit
VIP ROP I with respect to VV REF on the VV REF pin and protect the external ADC in case of
output overcurrent or unexpected high current events.
The corresponding IPROPI voltage to the output current can be calculated as:

VIPROPI = IPROPRI ∗ RIPROPI (3.11)

3.6.5 Current Regulation
The DRV8251A device integrates current regulation using a fixed off-time current chopping
scheme. This allows the devices to limit the output current in case of motor stall, high torque,
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or other high current load events without involvement from the external controller.
The current chopping threshold (IT RIP ) is set through a combination of the VV REF voltage

(VREF ) and IP ROP I output resistor (RIP ROP I). This is done by comparing the voltage drop
across the external RIP ROP I resistor to VREF with an internal comparator.

ITRIP ∗ AIPROPI = VVREF

RIPROPI
(3.12)

3.6.6 Current Sensing Conditioning Circuitry
The possibility of using a simple resistor to read indirectly the actuator current makes the design
of the circuit extremely simple. However, the ranges in terms of currents and voltages involved
must be respected. In particular, since the resistor will be connected to the ADC channel of the
Nucleo board, the maximum voltage it can experience must be 3.3V.

Figure 3.27: Schematic of the conditioning circuitry for the reading of actuator current

As shown in figure 3.27 the current flowing through the resistor can be seen as a current generator
whose value is the actuator current(IM) scaled of the current mirror ratio AIPROPI(=1575 µ/A)
.
From the datasheet [17], reading the table on recommended operating conditions, that the
maximum deliverable output current from the driver is 4.1 A(Iout) when the motor voltage(Vm)
is higher than 5.5v, and we have 12 v. Knowing that the current that flows through the resistor
is te motor current scaled of a factor of AIPROPIwe expect that the maximum current flowing
on the resistor can be of about 6.4 mA. However, the datasheet suggests to arrive a maximum of
3 mA. This puts a lower boundary in the choice of the range for the resistor value. But let’s
proceed with order:
First, we must have clear the range of current our mechanical load can tolerate. This requirement
was explained in the section 3.5, where a maximum value of 1.5 A was calculated, considering
the number of turns and the characteristics of the wire. However, this value should be in the
middle of the current range because that is the best value for the resulting mechanical torque.
So we set a range, for every magnetorquer of about 1A÷2A, this is the maximum current range
we want for our mechanical loads. We choose to have a range on the maximum output current
to add flexibility to the available mechanical torque. In order to be able to obtain this range the
simplest choice is to adoperate a potentiometer in series with a resistor: in this way when the
potentiometer resistance is 0 the current will flow only through the fixed resistor. The value
chosen for the resistors are 1 kΩ for the fixed resistor and the same 1 kΩ for the potentiometer,
so that the resistor range is 1kW÷ 2kΩ. In the following, the calculation for this result is shown:
Since the chosen Magnetorquer current range is referred to as the maximum we must consider
that it is a range on IT RIP which is the upper limit applied by the driver hardware for the current
output. So from 3.12 we explicit and calculate the IT RIP range corresponding to the RIP ROP I

range:
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ITRIP = VVREF

RIPROPI ∗ AIPROPI
(3.13)

• ITRIPmax = 2.1 A

• ITRIPImin = 1.05 A

So we almost obtained the same range we wanted. Clearly, the result is not the same because
we choose commercial resistor values and not the exact values needed to obtain 1A÷2A.
So now we can proceed to calculate which is the range obtained in terms of current on the
resistor IIPROPI. We apply the 3.10 and we obtain for the current :

• IPROPImax = 3.3 mA

• IPROPImin = 1.64 mA

And for the maximum voltage across the resistor, applying 3.11:

• VIPROPI = 3.3 v

• VIPROPI = 3.28 v

Putting the results in a table for the max and min cases we finally have:

MIN MAX
ITRIP 0 A 2.1 A

VIPROPI 0 V 3.3 V
IPROPI 0 mA 3.3 mA

Table 3.5: Case of RIP ROP I = 1kW

MIN MAX
ITRIP 0 A 1.05 A

VIPROPI 0 V 3.28 V
IPROPI 0 mA 1.64 mA

Table 3.6: Case of RIP ROP I = 2kW

As we can notice the maximum value for the IPROPI in the case of a resistance of 1kΩ exceeds
the suggested value by the datasheet of 3 mA. However these are all ranges so the equivalent
total resistance sensed by the ADC channel will be fixed in a specific value and in case of need it
will be changed manually, so it is not probable to arrive at a maximum current of 2.1 A for the
experiment we perform.
To conclude the 3.2 will be inverted, expliciting the current, to retrieve it in the Firmware code,
since VIP ROP I is the voltage converted by the ADC.

3.6.7 Device Functional Modes
There are mainly three functional modes:
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• Active Mode: After the supply voltage on the VM pin has crossed the undervoltage
threshold VUV LO, the INx pins are in a state other than IN1 and IN2 = 0, and tW AKE has
elapsed, the device enters active mode. In this mode, the H-bridge, charge pump, and
internal logic are active and the device is ready to receive inputs;

• Low-Power Sleep Mode: When the IN1 and IN2 pins are both low for time tSLEEP , the
device enters a Low-Power sleep mode. In sleep mode, the outputs remain High-Z and the
device draws minimal current from the supply pin (IV MQ). If the device is powered up
while all inputs are low, it immediately enters sleep mode. After any of the input pins are
set high for longer than the duration of tW AKE, the device becomes fully operational;

• Fault Mode: The device enters a fault mode when a fault is encountered. This is utilized to
protect the device and the output load. The device behavior in the fault mode is described
in figure 3.24 and depends on the fault condition. The device will leave the fault mode and
re-enter the active mode when the recovery condition is met.

Figure 3.28: Summary Table of the modes of operation of the Driver

Figure 3.29: Fault Conditions Summary Table

3.7 PCB Design
In this section, the choices made in terms of PCB design will be explained.
The board was developed by using the open source software KIcad(version 7.0) which allows for
creating the schematic, then realizing the relative PCB, and generating the Gerber files useful
for the manufacturer to produce the board.

Figure 3.30 shows the overall schematic in Kicad but in this section, every component will be
explored and explained in terms of design choices.
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Figure 3.30: ADCS Board General Schematic

Figure 3.31: PCB front face on Kicad Figure 3.32: PCB back face on Kicad

In the picture below the main blocks discussed in 2.1 of the ADCS board are highlighted. The
board is constituted of many components, however only the top layer is occupied, in fact, we
can see that at the bottom part(figure 3.32) there’s only the PCI bus connector.
In particular, the board is made up of(Figure 3.33):

• Blue part: Five Electronic Drivers, with for each driver a potentiometer in series with a
resistor, a bulk capacitor, a connector for the actuator, and some decoupling capacitors;

• Pink part: One PCI bus connector;

• Yellow Part: Thermistors connector and its conditioning circuit with, and ADC and a mux,
with other capacitors and resistors;

• Red part: Two connectors for the ST Morpho connectors.
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Figure 3.33: PCB Blocks

3.7.1 Connectors
The most important connectors of the board are the ones for the communication with the
OBC(PCI Bus) and for the connection of the Nucleo Board.

PCI Bus and Nucleo Connectors

• PCI Bus Connectors: As described in the chapter 1 this bus is a standard for many
applications and in particular is widely used for CubeSats. The OBC board works as EPS
too so it provides all the power to the ADCS. There are 3 main lines: 3.3 v, 5 v, and 12
v. The 3.3v line is not used and motivations will be explained later, instead the 5v line is
used to supply the Nucleo Board whereas the 12 v line(coming directly from the battery) is
provided straight to the actuators(drivers). Since there are 3 different voltage regimes the
choices made for their traces must take into account the amount of current they carry.

36



Hardware Description

Figure 3.34: PCI BUS component

Figure 3.35: PCI BUS schematic

• Nucleo Connectors: For this PCB design, it was chosen for simplicity to connect the
Nucleo Board provided by STMicroelectronics directly to the ADCS board. To do so it was
needed to use 2 connectors to attach to the Nucleo ST Morpho connectors CN7 and
CN10 (see figure 3.5). The connector used is the one in figure 3.37 and in the figure below
instead are shown all the labels in every pin of the morpho connectors.

Figure 3.36: Nucleo Pin Sockets Schematic
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Figure 3.37: Samtec 2x19 Pin Socket for the Nucleo

Thermistors and their connectors

Regarding the connector of NTC thermistors the SAMTEC one in figure 3.38 was used, it is the
one soldered in the front-left side of the PCB. To connect it to all the 8 thermistors a female
connector(figure 3.39), produced by Amphenol FCI was chosen. This connector can be opened
from the bottom side in the image and it has a system that allows to embed wires inside it, after
the removed part is attached again, The result can be seen in the figure next to it.

Figure 3.38: Male Connector for NTC thermistors

Figure 3.39: Female Connector for NTC ther-
mistors Figure 3.40: Female Connector for NTC thermistors

+ cable
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The thermistors were soldered on Teflon wires that are strong enough to resist the enclosure of
the connector on itself.

Other Connectors - Pin Headers

All the other connectors are, as indicated in figure 3.45, j1, j2, and j3 which are respectively
the connectors for an external solar cell, the Nucleo debug interface, and Nucleo serial console
interface(using one of the 4 UART available by the Nucleo):

• Solar cell connector: the idea is to use this connector to provide communication via
UART to a microcontroller, for example, a PIC from a Microchip, that acquires the signal
coming from a solar cell, appropriately conditioned, and sends them to the Nucleo Board
to process them for the Attitude Control. However, this thesis work was not expected to
use a Solar Cell;

Figure 3.41: Sun Sensor Pin Header

• Debug and Serial console interface: This is an important part of the design of the PCB.
As the Nucleo Board stands, it is cumbersome and occupies a big space considering a plane
parallel to the PCB surface. Thanks to the Nucleo pin sockets it is lifted vertically and
doesn’t bother any component except for the male pin header of the NTC thermistors: in
fact, the ST-Link part of the Nucleo is placed exactly in correspondence with that connector
and this means that the Nucleo board cannot be plugged completely inside the pin sockets
because it leans on the connector. So during the design phase, it was chosen to detach the
St-Link from the Nucleo Board.
This means that the connection to the USB port of the computer is disabled since the
St-Link is the means to upload/debug the firmware using the CUBEIDE software and use
the serial port to "visualize" printfs on the PC monitor. To overcome this problem some
precautions were taken:

Figure 3.42: Pin Header DEBUGGER inter-
face

Figure 3.43: Pin Header Serial Console interface

To allow the connection of the detached ST-Link it was decided to add two pin headers,
one for the debugging interface and one for the serial port. In figures 3.42 and 3.43 are
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presented the two pin headers.
These pin headers are connected to the Nucleo connectors in the following way(the Debugger
Pin Header and Serial Pin Header enumerations refer to the figure 3.45):

Debugger Pin Header Nucleo Connector Pin
PIN 1 - 3.3V CN7 - PIN 5

PIN 2 - SWCLK CN7 - PIN 15
PIN 3 - GND CN7 - PIN 8

PIN 4 - SWDIO CN7 - PIN 7
PIN 5 - RESET CN7 - PIN 14
PIN 6 - SWD -

Table 3.7: Connection of Debugger pin header to the Nucleo Connectors

Serial Console Pin Header Nucleo Connector Pin
PIN 1 - UART_TX CN10 - PIN 35
PIN 2 - UART_RX CN10 - PIN 37

Table 3.8: Connection of Serial Interface pin headers to the Nucleo Connectors

To connect the external ST-Link to the Nucleo board the configuration is the one described
in the Table below and in the image 3.44 it is shown the connection between the ST-Link
and The Nucleo connectors when they are separated.
The Nucleo connectors are internally connected to the Pin headers in the ADCS board as in
table 3.7, which then are the ones actually to connect to the ST-Link using external cables:

ADCS - Debugger Pin Header ST-Link CN4 Pin Header
PIN 1 - 3.3V CN4 - PIN 1

PIN 2 - SWCLK CN4 - PIN 2
PIN 3 - GND CN4 - PIN 3

PIN 4 - SWDIO CN4 - PIN 4
PIN 5 - RESET CN4 - PIN 5

ADCS - Serial Console Pin Header ST-Link CN3 Pin Header
PIN 1 - UART_TX CN3 - PIN 1
PIN 2 - UART_RX CN3 - PIN 2

Table 3.9: Connection of pins between ST-Link and Pin Headers on ADCS board
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Figure 3.44: Connections between detached ST-Link and Nucleo Board

To conclude other two modifications must be taken:

• External Power Supply: Since, with the ST-Link attached the Nucleo was powered via the
USB cable when it was plugged into a PC, now that it is detached the Stand-alone Nucleo
board doesn’t have access to the power supply. To provide a 5 v power supply there’s a
3-pin jumper in the connector JP5 normally attacked to the U5V(USB5v) configuration,
because that connection takes the supply directly from the USB in the ST-Link. Now the
jumper must be put in E5V(External5V) since the Nucleo board will be powered via the
E5V pin(PIN 6 of the CN7 morpho connector on the Nucleo Board);

• Connection of UART pin to the MCU in the Nucleo Board: with the ST-Link connected
normally the Serial interface is created using the UART in the MCU present in the ST-Link.
Now that the ST-Link is detached it must be provided the connection between PA2 and
PA3 connectors of CN10 morpho Pin Header and the MCU of the Nucleo board this time.
To do so two solder jumpers, the SB62 and the SB63 must be soldered.

In the picture below the LED diode is shown too, it is only a red LED to indicate that the board
receives correctly the 5v supply voltage from the OBC board.
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Figure 3.45: Other Connectors+diode schematic

3.7.2 Power Lines
Power in the ADCS board is distributed following the scheme in figure 3.46:

Figure 3.46: Power Lines schematic

• 12 V line: Starting from the battery, it is a Lithium-Ion one composed of 3 cells ([18]) and
is capable of delivering current up to 2Ah.
Its wires are connected through a connector to the OBC board. The connector is the one
shown in Figure below 3.47, which is a screw connector with 4 screws to block the wires
from one side and the other side once they make contact. From one side the connector
blocks the soldered wires coming from the OBC board, on the other side it is possible to
attach or detach the wires of the battery using a screwdriver.
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Figure 3.47: Battery connector

The 12 v line then goes directly to the ADCS board through the PCI bus and supplies all
actuators from Drivers. Before being distributed among the drivers it passes through a fuse,
which is the one on the top right in the figure 3.35. It is a fuse from LittleFuse [19], with a
nominal current of 5A and a nominal voltage of 32 V. It was chosen, with that nominal
current value, to suppose the case when all drivers would absorb 1 A of current. This is a
remote case but since the board could be used to drive even Reaction Wheels other than
Magnetorquers this is not a so borderline scenario.

• 5 V line: the 5v line is obtained through a voltage regulator in the OBC board that
converts the 12 v line. The regulator is a MAX20404AFOC/VY+ from Analog Devices
[20], and as indicated in the datasheet it’s a buck switching regulator capable of delivering
up to 6A with an input voltage range from 3v to 36v. This line goes directly to the Nucleo
Board E5V pin.

• 3.3 V line: The 5V line comes directly to the Nucleo board regulator that provides the 3.3
v level to all the ADCS board components. This last regulator, as stated in the datasheet
[21], is a quiescent current and low noise voltage regulator capable of delivering up to 500
mA of current when the input voltage ranges between 1.5 v and 5 v. These last lines power
actually all the components present in the ADCS board: IMU, Drivers block, and NTC +
Conditioning Circuitry Block.

3.7.3 IMU
In 3.48 is shown the circuitry for the IMU. As described in [22] the MTi has two supply pins: VDDA

and VDDIO. They can be supplied independently or tied together to adapt to the application:

• Main supply voltage (VDDIO) : The VDDIO pin is the main supply of the device. This pin is
connected to all the digital IO’s and powers the processor.

• Analog supply voltage (VDDA): The VDDA pin of the MTi is connected to all the power
supply pins of the sensing elements. There is no low-dropout regulator (LDO) on this type
of device.

• Single power supply configuration: the VDDA and VDDIO supply pins can be connected to
the same power supply. When the device is supplied with a single power supply source,
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in this case with a 3.3 v supply, it is strongly recommended to decouple the VDDA and
VDDIO supply pins, for example with a Resistor, for the best sensor performance. This way
the digital circuitry will not influence the analog sensing part. Considering the minimum
operating voltage for VDDA, the single supply voltage VDD should be at least 2.2 V, due
to the voltage drop across the resistor.

In this case, a low pass filter circuit is used, with a 27 Ω resistance and a capacitor of 470 nF
which allows a cutoff frequency of 10 kHz(considering the internal 100 nF capacitor). Moreover,
a 100 nF capacitor is put near the MTi VDDA and VDDIO pin on the PCB to improve the
decoupling.

Figure 3.48: IMU Schematic

Regarding the PSEL1 and PSEL0, as described in the table 3.14 at least PSEL1 must be put to
Ground always, instead PSEL0 can be high or low depending on the type of UART you want to
use. Since both the pins are pulled up if nothing is attached to them their state is put to High.
So PSEL1 is put directly to GND instead PSEL0 is connected to a pin header that can create a
path to GND using a jumper or left as it is to keep a High state. Due to this last consideration,
it can be seen that the signals taken for the UART communication are either the usual Tx and
Rx and the two signals CTS and RTS for the full-duplex mode.

3.7.4 Drivers
Here the schematic of the actuator’s driver is presented. In particular, the implementation of the
design choices previously discussed in the 3.6.6, is shown. The most important things considered
for this schematic are:

• 1) Connection between the resistor and potentiometer

• 2) Capacitors connected to VM pin.

For the first point, it must be possible to vary the potentiometer value between 0 and its maxi-
mum value. To do so two of the three pins are tied together so that the potentiometer becomes
a two-poles device and then connected in series with the resistor. So when the potentiometer
has a 0 value across the two elements the corresponding value is the one of the resistor and
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otherwise it is the sum with the resistor.

For the second point, two capacitors are connected to the VM pin, which is the actuator
supply voltage line (12 v). Due to the high current path (orders of 1-2 A), a 47 uF capacitor is
the Bulk Capacitor, whose design choice will be discussed later, and the other one, a 100 nF
capacitor, is the one for the decoupling.
In the figure 3.50 the overall schematic of the Drivers Block is shown, in particular, specific
attention must be paid to the capacitors put between the two output driver pins. In fact, it
is suggested to have always at least one decoupling capacitor ranging between 0.01÷0.1uF as
close as possible to the actuator wire if the mechanical load is a DC Motor for example, to
protect the motor from undesired radio frequency EMI caused by arcing between the brushes
and commutator.
To have the best effect the capacitors should be placed on the actuator, otherwise this is less
effective at higher frequencies because the wires from the board to the motor will still be able to
radiate EMI.
In any case, it’s better to have them even for Magnetorquers that, as we have seen have long
wires.
So that’s why two parallel 10 nF and 100 nF are placed.

Figure 3.49: Single Driver Schematic
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Figure 3.50: Drivers Block Overall Schematic

3.7.5 ADC+MUX
The most important thing to say about the chain MUX + ADC is that since the selected signal
of the MUX comes from a simple voltage division conditioning circuit(for the NTC sensors), the
signal is referred directly to the ground and no Differential Input configuration is needed for the
ADC. So, as can be seen in the figure 3.51 the ADC mux has:

• The REFIN(+) pin to Vcc and the REFIN(-) pin to GND to VREF of the ADC ranges
between 0v and 3,3v;

• The AIN(+) pin connected directly to the output of the MUX and the AIN(-) pin to
GND: these two pins represent the actual analog input signal of the ADC, coming from the
conditioning circuitry of the selected NTC;

• Two decoupling capacitors for the supply voltage connected to the VDD pin;

• Chip Select(CS*),Serial Clock(SCLK), DOUT and DIN connected to the Nucleo Board.
All of these signal lines form the lines for the SPI communication.

The 4 select signals of the MUX are connected to 4 digital output pins of the Nucleo board but
only 3 of them are used to select one of the input pins(Yi) from the first to the eighth: in figure
3.52 the functional table of the mux from its datasheet [10] tells that the forth select signal must
be used only to disable the outputs and so it is not used in the application.
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Figure 3.51: ADC+MUX schematic

Figure 3.52: Mux Function Table

3.7.6 PCB Layout
In this subsection, it will be described all the choices made in terms of signal traces, power
traces, and power plane size. The PCB is made of two layers, the top and the bottom. On the
top, there are all the components (SMD and Through Hole), instead on the bottom only the pin
socket for the PCI bus(figures 3.53 and 3.54).
Two power planes are present in both faces, the top has the 3.3v plane plus a section dedicated
to the ground plane and the bottom has the ground plane. The two ground planes are connected
through vias.
The figures showed before 3.31 and 3.32, which are the ones of the last PCB project on KIcad,
have the 4 holes near the top and bottom corner with a greater diameter with respect to the
actually printed board: in fact, due to an error the PCB was printed with the holes of M2
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type(2 mm), instead, the last images are modified by the project to have M3 holes(3mm) which
is the standard to stack one over the other all the electrical boards of a CubeSat.
To overcome the problem a driller was used to enlarge the 2mm holes.

Figure 3.53: Top layer Figure 3.54: Bottom layer

Traces and Planes

Since on the board are present signal and power lines, their sizes differ due to the amount of
current they carry.
In table 3.10 are shown all the widths of the traces: as expected the one for the signal is thinner
than the power traces.
To calculate trace width an industry standard was considered, the IPC 2221 [23]: this standard
provides some guidelines for the design of rigid printed circuit boards, so it is taken as a point of
reference for the design of this PCB. It provides a formula for the calculation and a single graph
to compute the current of traces. Moreover, a site is available([24]) for the calculation online of
the trace width according to some parameters, following the IPC 2221 guidelines.
The formula for the current (in Ampere) is:

I = K · ∆T B · AC , (3.14)

where K = 0.0048, ∆T measures the Temperature Change in Degree Celsius[°C], the values of
B and C parameters are respectively 0.44 and 0.725, adimensional. K, B, and C are constants
resulting from IPC-2221 curves. Finally, the area of the trace’s cross-section is represented by
the symbol A, measured in mils2.
Knowing the amount of current I flowing through the line it is possible to invert the 3.14 to
obtain the area of the trace cross-section A:

A = c

ó
I

K · ∆T B
(3.15)

From this last value, knowing the weight of the copper the trace width is then calculated as:

W = A

Thickness · 1.378 , (3.16)

where the Thickness of the PCB,realized by JLCPCB, is 1 oz and the number 1.378 is measured
in mils/oz. The found width value is then converted to mm. It is an indication of the minimum
width required to limit the temperature change under the set ∆T value.
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Referring to the cited site for the calculation of the Trace width for the power lines a minimum
trace width of 0.781 mm was found. Since it is a minimum value it was fixed to 0.8 mm and
used for all power lines. The reason is that, as explained in subsection 3.7.2, the 12v battery is
the only line that carries all the current to the boards: the OBC converts the 12v line to the 5v
line with a voltage regulator. This line is then brought to the Nucleo voltage regulator which
brings the 3.3v regime to all the ADCS circuitry. For the signal traces the width should oscillate
between 0.17 and 0.30 mm depending on the case. However, we choose the use the highest value
to carry the most possible current amount.
Here a summary of the trace widths is shown:

Signals 3.3v line 5v line 12v line Gnd
Width 0.3 mm 0.8 mm 0.8 mm 0.8 mm 0.8 mm

Table 3.10: Traces widths

For the 3.3v line, the width is the same as the other voltage regimes but as can be seen in figure
3.57 only a few traces were used, which were the ones to connect the 3.3v line to the drivers
since they are surrounded by the side ground plane section. Moreover having a power plane
simplifies the routing since all the pins connected to that line in the schematic are automatically
connected by Kicad once the plane is designed.

Figure 3.55: 5v line Figure 3.56: 12v line

Figure 3.57: 3.3v Top Power
plane and Traces
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The same situation of the 3.3v applies to the GND plane which is spread throughout the bottom
layer and in the side right portion of the top layer(figures 3.58 and 3.59) and only a few traces
were needed to connect some pins to ground.

Figure 3.58: GND Top Plane e Traces Figure 3.59: GND Bottom Plane e Traces

Drivers

• Potentiometer dimension : Dimension of resistor and potentiometer forming the RIP ROP I

For the first thing, the problem is that potentiometers are usually not so small due to
technological process choices to guarantee good performance. However as will be explained
later the space available for both the resistor and potentiometer is limited, considering a
total of 10(two per driver) must be soldered.
So the chosen potentiometer must be small enough to be easily placeable on the board and
easily accessible to be able to change the resistance value

• Bulk Capacitance Design: in the datasheet [17], in the Application information sec-
tion(Typical Application) is suggested to use a bulk capacitance of 47 uF if the VM ranges
in the 4.5÷48 V interval.

• Layout choices : In the datasheet [17] some suggestion are given about the layout choices.
The driver integrates MOSFETs capable of driving high currents, so particular attention
should be paid to the layout design and external component placement. Some of the
suggestions are:

– 1) Low ESR ceramic capacitors should be utilized for the VM to GND bypass capacitor.
X5R and X7R types are recommended;

– 2) The VM power supply capacitors should be placed as close to the device as possible
to minimize the loop inductance.

– 3) The VM power supply bulk capacitor can be of ceramic or electrolytic type, but
should also be placed as close as possible to the device to minimize the loop inductance.

– 4) VM , OUT1, OUT2, and GND pins carry high currents. So thick metal routing should
be utilized for these traces as is feasible.

– 5) The device thermal pad should be attached to the PCB top layer ground plane and
internal ground plane (when available) through thermal vias to maximize the PCB
heat sinking.
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– 6) The copper plane area attached to the thermal pad should be maximized to ensure
optimal heat sinking.

All of these suggestions have been applied to the PCB section of the driver to reduce risks of
damage or overheating. The result is shown in the zoomed image below.
As mentioned before this plane, which is a ground one connected to the Thermal Pads(Figure
3.60) of the drivers is connected through vias to the bottom ground plane so the space for correct
thermal dissipation should be enough.

Figure 3.60: Drivers Top Layer Section

IMU

About the layout of the IMU, the only caution to be taken was to leave the space under the
component free, as stated in the document [22], to prevent the current flowing underneath from
altering the performance of the Device.

Figure 3.61: IMU Footprint Figure 3.62: IMU Top Layer zoom
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Chapter 4

Firmware Description

In this chapter will be presented the Environment used to develop the firmware of ADCS
board, the main flow charts and an insight about the choices made on tasks management and
synchronization.

4.1 CubeIDE Environment
STM32Cube [25] is an STMicroelectronics original initiative to significantly improve designer
productivity by reducing development effort, time, and cost. STM32Cube covers the whole
STM32 portfolio,it includes a set of user-friendly software development tools to cover project
development from conception to realization, among which are:

• STM32CubeMX : a graphical software configuration tool that allows the automatic
generation of C initialization code using graphical wizards

• STM32CubeIDE, an all-in-one development tool with peripheral configuration, code
generation, code compilation, and debug features

4.2 FreeRTOS
FreeRTOS is a class of RTOS that is designed to be small enough to run on a microcontroller or
microprocessor but it is used widely in many other applications.

4.2.1 FreeRTOS memory management
In Freertos,[26] it is possible to decide how to use memory: whether it is preferable to use static
or dynamic memory allocation depends on the application, and the preference of the application
writer:

• Dynamic Memory : The possibility to create objects dynamically allows to reduce
complexity(fewer function parameters are required) and RAM usage. The memory allocation
is done automatically and its scheme can be chosen to fit the specific applications needings.

• Static Memory : Create objects allocated statically gives more control to the application
writer and he must not worry about memory allocation fealures. RTOS objects can be
placed at specific memory allocations.

There are 5 implementations of memory allocation scheme and depending on the necessity the
user can use one of these schemes or create its own:
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• HEAP 1: used in small embedded systems, it only creates tasks and other kernel objects
before the scheduler starts. Fragmentation is not possible and memory remains allocated
until the applications expires its lifetime. Each created task requires a task control block
(TCB) and a stack to be allocated from the heap.

• HEAP 2: widely used for backward compatibility, but its use is not recommended for new
designs.As in HEAP 1 an array is allocated at run-time. It does not combine adjacent free
blocks into a single larger block, so it is more susceptible to fragmentation. It is suitable
for applications that create and deletes tasks repeatedly, provided the size of the stack
allocated to the created tasks.

• HEAP 3: it uses the standard library malloc() and free() functions. Its size is defined
by the linker configuration. It makes malloc() and free() thread safe by temporarily
suspending the FreeRTOS scheduler.

• HEAP 4: It is an improvement of HEAP 2 but with tow differences:

– It uses the first free block of memory that is large enough to hold the number of bytes
requested

– Combines portion of free memory to eliminate fragmentation.

The heap contains three blocks of free memory that, in the order in which they appear in
the array, are 5 bytes, 200 bytes, and 100 bytes, respectively.

• HEAP 5: it uses the same algorithm of HEAP 4 to allocate and free memory and it
is not limited to allocating memory from a single statically declared. Useful when the
RAM provided by the system on which FreeRTOS is running does not appear as a single
contiguous (without space) block in the system’s memory map array

4.2.2 Tasks Management
Every application built using FreeRTOS consists of many tasks. Each task that runs can exists
in 2 main states as shown in Figure 4.1:

• Running: only one task can be in the Running state;

• Not Running: all the other tasks that aren’t running stay in this state.

Figure 4.1: The two main states of a Task

When a Task is in the Running state the processor executes its code,instead in the other state
the Task is in "Idle",waiting to get its turn to be runned.
The Not Running Task status is saved to be ready to resume execution the next time the
scheduler decides it should enter the Running state,so when a Task resumes execution, it does
from the instruction it was about to execute before it last left the Running state.
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The FreeRTOS scheduler is the only entity that can switch a task in and out. In FreeRTOS
priorities among tasks are important and 9 levels of priority are defined (es: osPriorityNone =
0,osPriorityIdle = 1,osPriorityLow = 8, osPriorityBelowNormal = 16, osPriorityNor-
mal = 24, osPriorityAboveNormal = 32, osPriorityHigh = 40,etc...),each level than has 7
sub-levels.

When the scheduler gives the "context" to a specific Task, between the execution of a Task and
the other there’s a time interval to wait. This time interval is so small in real life that it seems
like every task is running concurrently but at cpu time it is not. This time interval is obtained
relaying on a "tick interrupt" which is a periodic interrupt: the length of the time slice is set by
the tick interrupt frequency,configurable in FreeRTOS.
The Scheduler decides which Task through tasks priorities,in particular the highest prority
Task occuring after that time slice expires is the one that will get processor attention to be
executed. So it is important,depending on the application and on what that Task will perform
in terms of operations, to determine which are the priorities of each task. This can lead to a
problem called Task Starvation : if a task with higher priority never stops , a lower priority
task will never be executed.
In order to avoid Task Starvation usually tasks are designed to be Event Driven:they perform
their operations based on an event and after the execution they will wait for the next event.
A task that is waiting for an event is said to be in the Blocked state: it is a Sub state of the
Not Running state Tasks can enter the Blocked state to wait for two different types of events:

• Temporal(time related) events: the event being either a delay period expiring, or an
absolute time being reached. For example, a task may enter the Blocked state to wait for
10 milliseconds to pass;

• Synchronization events: where the events originate from another task or interrupt. For
example, a task may enter the Blocked state to wait for data from a peripheral.

It is possible for a task to block on a synchronization event with a timeout. For example, a task
may choose to wait for a maximum of 10 milliseconds for data to arrive from a peripheral. The
task will leave the Blocked state if either data arrives within 10 milliseconds, or 10 milliseconds
pass with no data arriving.
Suspended is also a Sub-state of the Not Running state. In the Suspended state Tasks are
not available to the scheduler. The only way to enter the Suspended state is through a call to
osThreadSuspend().The only way out is a call to the osThreadResume().
Most applications do not use the Suspended state.
Tasks that are in the Not Running state but are not Blocked or Suspended are said to be in the
Ready state. They are able to run, and therefore "ready" to run, but are not currently in the
Running state.
In figure 4.2 a general Block scheme of all the states is shown:
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Figure 4.2: State Diagram

It is possible to place a task in the Blocked state for a specific time to avoid Starvation due
to Busy-waiting(and polling): osDelay(uint32_t ticks)can be used to put the task in the
blocked state for a specific amount of ticks(1 tick = 1 ms).
As it can be imagined it is not possible to not have at least one task running, so there must be
always one Task in the Running state: FreeRTOS always creates by default a Task called Idle
Task which will run after every actually implemented task finish its execution. It is possible to
use the Idle Task to perform some operations anyway:Idle task performs some operation related
to the OS. For example, it is responsible for cleaning up kernel resources after a task has been
deleted.

4.2.3 Tasks Synchronization mechanisms
RTOS provides various mechanisms of concurrency and synchronization, such as mutexes,
semaphores, queues, events, signals,and message passing. In this discussion we will
concentrate only on the first three. These mechanisms allow tasks or threads to communicate,
share data, synchronize execution, and avoid race conditions or deadlocks.

Mutexes

In a multitasking system there is potential for error if one task starts to access a resource, but
does not complete its access before being transitioned out of the Running state.
If the task leaves the resource in an inconsistent state, then access to the same resource by any
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other task or interrupt could result in data corruption, or other similar issue.
To ensure data consistency of a resource that is shared between tasks, or between tasks and
interrupts, must be managed using a mutual exclusion technique.
Once a task starts to access a shared resource that is NOT thread safe(safe for use from
multiple threads; operation is protected by an RTOS primitive and can be used from multiple
threads, but will cause problems if used from an interrupt service routine), the same task has
exclusive access to the resource until the resource has been returned to a consistent state. The
best way to avoid this issues is to not share resources, but it is not always possible.

Critical sections are regions of code that are executed blocking the scheduler:in this way it is
sure that this code is not interrupted by the scheduler and task transition is avoided. Critical
section MUST be very short and during their execution Interrupts are not disabled.
If an interrupt requests a context switch while the scheduler is suspended the request is held
pending and is performed only when the scheduler is resumed. However Suspending the scheduler
is not the optimal solution: specific kernel objects can be used to perform Mutual Exclu-
sion(Mutex) on data or resources.

The mutex can be thought of as a token that is associated with the resource being shared. A
task can access the shared resource only after taking the token it must give back the token when
the resource is no longer needed. Only when the token has been returned, another task can
successfully take the token, and then safely access the same shared resource.
Infact mutexes are very similar to binary semaphores: the main difference is that the task that
takes a mutex have to give it back. With semaphores, normally, another task will release the
semaphore, and the one that took it will simply wait to be able to take it again.

A potential problem using mutexes could be: there are 2 Tasks running in an application
and the higher priority Task 2 must wait for the lower priority Task 1 to give up control of the
mutex. A higher priority task being delayed by a lower priority task in this manner is called
priority inversion.
To overcome this problem Mutexes include a basic priority inheritance mechanism that is
not present in Semaphores. Priority inheritance is a scheme that minimizes the negative effects
of priority inversion: it ensures that the inversion is always time bounded. However Priority
inheritance complicates system timing analysis, and it is not good practice to rely on itfor correct
system operation.

It works by temporarily raising the priority of the mutex holder to the priority of the highest
priority task that is attempting to obtain the same mutex. The low priority task that holds the
mutex "inherits" the priority of the task waiting for the mutex. The priority of the mutex holder
is reset automatically to its original value when it gives the mutex back. It’s prerogative fo the
application writer to enable priority inheritance, from the attributes structure.

Queues

Queues provide a task to task, task to interrupt, and interrupt to task communication
mechanism. A queue can hold a finite number of fixed size data items. The lenght of a queue is
the maximum number of elements a queue can carry.
Queues are normally used as FIFO(First In First Out) buffers,It is also possible to write to the
front of a queue, and to overwrite data that is already at the front of a queue.
There are two ways in which queue behavior can be implemented:

• Queue by copy: the data sent to the queue is copied byte for byte into the queue
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• Queue by reference: means the queue only holds pointers to the data sent to the queue,
not the data itself

FreeRTOS uses the queue by copy method.

Queues can be accessed by any task or ISR that knows of their existence: any task can
write to the same queue and likewise any task can read from the same queue. However it’s more
common for a queue to have multiple writers than multiple readers.

A task can block for a timeout when trying to read from a queue,instead a task in the Blocked
State is automatically moved to the Ready State when another task or interrupt places data
into the Queue. The task will be moved automatically from the Blocked State to the Ready
State if the specified block time expires before data becomes available.

A task can optionally specify a block time when writing to a queue. If the queue is already full,
the task will go in the Blocked State. The block time is the maximum time the task should be
held in the Blocked State to wait for space to become available on the queue.

An important thing to consider is that a queue can have multiple writers, so it is possible
for a full queue to have more than one task blocked on it waiting to complete a send operation:
only one task will be unblocked when space on the queue becomes available and that task will be
always the highest priority task that is waiting for space.If the blocked tasks have equal priority,
then the task that has been waiting for space the longest will be unblocked.

Semaphores

Queues are used in case of data transmission. A more efficient way for synchronization when no
data transfer is needed is available: Binary and Counting semaphores.

Semaphores are abstract type used to control access to resources by different threads. From the
practical point of view they consist in a shared variable that is incremented and decremented, or
toggled.
Semaphores which allow an arbitrary resource count are called counting semaphores.
Semaphores which are restricted to the values 0 and 1 are called binary semaphores.
The action of requesting access to the resources is normally referred to as "taking" or acquiring"
the semaphore: take a semaphore means decrement its value. The action of freeing the resources
is normally referred to as "giving" or "releasing" the semaphore: give a semaphore means
increment its value.

Binary Semaphore can be used to unblock a task each time a particular interrupt occurs:the
interrupt event processing is implemented within the synchronized task(only a very fast and
short portion of code is in the ISR). The deferred task will try to take the semaphore, blocking
if it is not available. The ISR will give the semaphore, moving the deferred task in the ready state.

It is possible to specify a timeout to take or give a semaphore. The thread will exit from
the blocked state if the semaphore is released before the timeout or when it is reached. In-
definite timeouts are normally bad practice in real applications, because they make it difficult
to recover from an error. It is possible to check for the return status to detect if a timeout occurred.

When a semaphore is created it is possible to set a parameter for the maximum count it
can reach to a value greater than one In this case it is a counting semaphore. A counting
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semaphore can be taken more than one time, until it gets to 0. Counting semaphores are
typically used for two things:

• Counting event: Counting events: an event handler will "give" a semaphore each time an
event occurs. A task will " take" a semaphore each time it processes an event.

• Resource management:Resource management: the count value indicates the number of
resources available. To obtain control of a resource, a task must first obtain a semaphore.
When the count value reaches zero, there are no free resources. When a task finishes with
the resource, it "gives" the semaphore back.

4.3 ADCS FreeRTOS Tasks Management and Code
In this section it will be discussed the choices made about Tasks Management. In particular the
role that every Task has and the type of synchronization used between tasks.

It was decided to divide the application among 4 different tasks:

• 1)CHECK/SAFETY Task : this is the most important task, it is used to acquire
measures of temperature from NTC sensors and to collect data about the currents in the
actuators. Than it will monitor,depending on the values, to let the scheduler continue to
work or interrupt it in case of high values of currents or overheating of some ICs. In this
case an interrupt system will be used to manage all emergencies ;

• 2)OBC-COMM Task : this is the Task for communication with the OBC through the
UART line ; It is used for data reception and sampling from the OBC board(Raspberry Pi)
and data trasmission to the OBC board in order to visualize them on Grafana.

• 3)Control Task : this is the Core Task, where the alghoritm for the attitude control is
executed ;

• 4)IMU Task : this is the Task for reading and collecting data about Angular Speed and
Magnetic Field measurements from IMU.

4.3.1 ADCS Flow Chart
In this sub section the details about Tasks Flow Chart will be showed:

CHECK TASK

As explained at the beginning of this section this is the most critical Task,used to monitor the
housekeeping parameters. In case of non-safety values some action must be taken in order to
bring the systems in a safer state. In particular as the ADCS board stands, two kind of problems
could overcome:

• Actuator Overcurrent: the task monitors all the currents of the actuators attached to
the board, in particular in this application we have 3 Magnetorquers. Due to the fact that
we have limited power resources(the battery cannot generate all the current that we want
but it is limited and its capacity is not high) we must ensure that enough current is driven
to every driver ,considering that we have a 3D application,so all the three Magnetorqeurs
are active.
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• IC Overheating: this is an extremely important question. Over heating of electronics
parts is a huge problem in space electronics application and if not managed well it can lead
to damages potentially irreversible to the board functioning. Given that, the task monitors
the temperature of critical ICs too:

– Nucleo board Processor(1): the processor is the most important part in this case because
it is the core of the board, the scheduler cannot stop working due to an hardware
damage since it is not possible to replace the damaged processor while the Cubesat is
working. So if somehow the processor exceeds a critical temperature the board and so
the whole system must be put in a temporary IDLE/SAFE state;

– Actuator Drivers (5): as mentioned earlier of the 5 drivers available, 3 are actually used
so 3 over 5 NTC sensors values are monitored. The overheating of the drivers is strictly
linked with the overcurrent problem, the more current flows though an electronic devices
the higher the temperature rises. This problem is managed reducing the amount of
current given to a specific driver ,controlling the Duty Cycle of the PWM signals to
that driver.

However,as mentioned here 3.6.7 the device enters a safe state every time there’s an overcome of
the junction temperature or an overcurrent, but we must ensure to not let the device enter in
this mode because the CubeSat could be moving in the space and so the movement could be
compromised due to this "auto-protection" of the drivers.
In figure 4.3 a simple Flow Chart of the code of the Task is showed. In particular the two
problems of Overheating and Overcurrents are named respectively "Problem A" and "Problem
B".
If no problem occurs or they are solved, the Tasks sends data(through queues) to the OBC task.
These data are the Local HouseKeeping Data of the ADCS.

Figure 4.3: CHECK Task Flow Chart
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In 4.4 is shown the flow chart of the management of the problem of overheating.

Figure 4.4: Problem A Flow Chart

Regarding the Problem A,as mentioned before there are 2 type of ICs whose temperature
is monitored.

• For the Nucleo, to manage the overheating problem, putting the Board in a safe state,
the board offers 7 options depending on the needing[8]:Sleep mode,Low-power run
mode,Low-power sleep mode,Stop 0, Stop 1 and Stop 2 modes,Standby mode,
Shutdown mode.
Of all the options the one considered is the Sleep mode:In Sleep mode, only the CPU
is stopped. All peripherals continue to operate and can wake up the CPU when an
interrupt/event occurs.
In this case the interrupt coincides with the return of the temperature to a normal value.

• For the Drivers,we know that the power dissipation is realted to the temperture. From
its datasheet [17] the power dissipation is calculated summing up the contributions:
PV M , PSW , PRDS. The first contribution is essentially constant because depends on the
nominal voltage and current specification of the motor power supply(in this case the battery),
the second depends on the motor power supply,switching frequency and average output
current and the last on the average output current. but this entails that the produced
magnetic dipole and so the resulting torque will decrease, or by reducing the switching
frequency. This last choice doesn’t change the average output current but could increase
the ripple on the current if the switching frequency is not close to the resonant frequency of
the magnetorquer[16]. The safer choice so seems to be the frequency reduction, relaying on
the fact that the control could overcome the added noise on the current.
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Considering the Overcurrent problem(Problem B) in figure 3.57 we have a maximum cur-
rent that can be given to the drivers, which is divided among the three actuators depending on
their equivalent resistance (3.5),considering the maximum current deliverable by the battery. So
the task checks that none of each driver takes too much current from the battery and in case of
exceeding the current threshold the action to perform is reducing the Duty Cycle since it is the
only way to reduce the current amount. After the current comes back to a safe value we can
again increase it accordingly.

Figure 4.5: Problem B Flow Chart

OBC TASK

Figure 4.6: OBC Task Flow Chart

As explained the OBC task is responsible
of acquiring all the Data sent by the OBC
board and at the same time send to it
local Housekeeping and Telemetry Data.
Here’s showed in figure 4.6 a simple Flow
Chart of the Task. The data exchanged
via UART by the OBC board are managed
thorugh specific libraries and they will be
explained later,instead the data received
by the IMU Task are sent to the OBC
Task via Queue.
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CONTROL TASK

The Control Task is the one that practically controls Magnetorquers and so it is able in the first
place to drive them or not when it is needed.At the beginning it waits for any OpMode data
coming from the OBC Task and depending on the value it manages 3 cases:

• OPMODE = 0: This is the IDLE case,where the Cubesats isn’t moving because it doesn’t
receive any target speed. It can be seen as the initial state and the state to STOP the
control.

• OPMODE = 1: This is the case where the control code is actually executed, in this
Opmode the ADCS receives the target Speed data from the OBC Task and drive the
Magnetorquers in order to reach the Target.

• OPMODE = 2: This Opmode can be seen as the "Initial test" state,where magnetorquers
can be driven separately one after the other to control that they are responding to the
PWM command from the IC drivers and for testing their Polarity. This is a crucial part
since if it goes all well it allows to be sure that the control can be actually implemented.

Below is shows the Control Task Flow Chart:

Figure 4.7: Control Task Flow Chart

IMU TASK

The Task that reads IMU values is extremely simple(in figure 4.8 the Flow Chart). After
sampling the measured angular speed(Gyroscope) and magnetic field intensity(Magnetorquers)
it sends them to the Control Task and the OBC Task via 2 distinct queues.
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Figure 4.8: IMU Task Flow Chart

4.3.2 ADCS Code
In this section it will be explained the main firmware architecture and its elements.

Firmware Architecture

The firmware architecture that will be described includes libraries for the nucleo Drivers manage-
ment,for the acquisition of temperature values from NTC sensors, the reading of angular speed
and magnetic fields from IMU and for the driving of the Magnetorquers. Looking at the figure
4.10 we can define 2 layers of libraries:

• The top blue layer which includes all the library related to drivers of the Nucleo such as
the timers library,the ADC and SPI one;

• The red layer which is related to the code that deals with the components of the PCB and
not only the Nucleo board,so the NTC thermistors,the IMU, the electronic drivers and so
on;

• The central freertos.c block is related to the library where all the tasks code is written.

In figure 4.9 the CubeMx software Nucleo Pinout is showed, in it we can notice the number of
pins dedicated to timers peripherals, ten because we have 2 pwm signals per electornic driver, the
five ADC1_INx pins dedicated to the acquisition of voltages on the Rsensing of the electronic
drivers, the 8 UART Tx and Rx signals(two per each UART), the signals for the SPI protocol
and some GPIO outputs for the Multiplexer selection.
To notice the fact the the CAN pins are not used in the application.
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Figure 4.9: CubeMX Pinout of Nucleo

Figure 4.10: Firmware Architecture
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Now we’ll se them in details.

Blue Layer

• queue.h/c,adc.h/c,tim.h/c,spi.h/c and usart.h/c: are library created by the ST Nucleo
software that manages rispecively the code for the usage of queues in Freertos, the internal
A/D converter, the timer peripheral and the SPI and UART/USART protocols ;

• UARTdriver.h/c: it is a custom created library to enhance the pre-existing usart library ;

• bufferUtils.h/c and frameUtils.h/c: the first is a support library to manage all the
buffers used in the UARTdriver library and the second implements functions to search
frames insider serial buffers.

• messages.h/c: is a library containing all the opmode frame structure that are send between
the OBC and the ADCS board.

Red Layer

• MTi.h/c:this library uses the UARTdriver library to implement the code for the UART
communication with the Nucleo

• simpleDataLink.h/c: this library uses the libraries bufferUtils and frameUtils to imple-
ment the Tx and Rx function of the UART protocol that enhances the ones created by the
Nucleo Software;

• actuator_drivers.h/c: this library implements the code to manage the control signals to
the elctronic drivers and to read the actuators currents;

• sensors.h/c: this is the library to manage the communication via SPI with the external
ADC for the A/D conversion of temperatures;

• queue_structs.h/c: this library implements custom general functions to work with
complex structures that manages the reception of data via queue in the Tasks;

• pid_conversions.h/c: this library implements the code needed to realize the Control
alghorithm for the Dethumbling maneuvre of the Cubesat, see 2.3;

The libraries UARTdriver.h/c,simpleDataLink.h/cbufferUtils.h/c, frameUtils.h/c and
MTi.h/c comes from a previous thesis work [11] and were adapted to this Application.

Now we’ll see in details the main functions of the libraries related to the Red layer in the
figure 4.3.

actuator_drivers.h

The main functions of the actuator_drivers library are:

• void get_actuator_current(ADC_HandleTypeDef *hadc,volatile float voltage-
buf[],volatile float currentbuf[],uint8_t Channels_mask[]): takes as input an ADC
handler, a buffer to upload the converted values of the ADC channels, obtains the currents
(see 3.6.6) and uploads them in a buffer. The last parameter allows to select only certain
channels over the five availables;
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• void update_pwm_Frequency(Actuator_struct *act):this function allows to update
a timer’s internal register to obtain a square wave with a certain frequency. It accepts as
parameter a custom struct of type Actuator_struct that contains all the variables related
to a specific driver and so to its two timer PWM channels;

Figure 4.11: Handler for an actuator electronic driver

• void update_duty_dir(Actuator_struct *act,float duty,bool dir): allows to change
the Duty Cycle of the PWM square waves of a specific electronic driver(accepts the electronic
driver handler act) and the direction of the current of that actuator by setting or resetting
the third parameter(the logic behind is explained here 3.6.3):

– dir = 1 -> Forward current direction;
– dir = 0 -> Reverse current direction;

sensors.h

• void select_input(uint8_t sel):allows to select which channel of analogic MUX send to
the external ADC for the conversion;

• float ADC_Conversion(SPI_HandleTypeDef *spi_struct,uint8_t mode): allows
to perform the A/D conversion with the external ADC and returns the conversion of the
single channel. The second parameter allows to select the conversion mode:

– mode = 0 -> Continuous conversione mode
– mode = 1 -> Single conversion mode
– mode = 2 -> Continuous Read mode.

See 3.3.1 for details about conversion modes.

• void voltage_to_temperature_conv(float value,Temp_values *s1,uint8_t i):
allows to convert a voltage values from the A/D conversion into a temperature value in
Celsius degrees.
See 3.3.4 for the calibration function.
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Figure 4.12: Handlers for the temperature sensors acquisition

• void get_temperatures(SPI_HandleTypeDef *spi_struct,Temp_values *temp_struct,
uint8_t counter): allows to obtain the temperatures of a selected NTC channel(parameter
counter).
It makes use of the functions select_input,ADC_Conversion and voltage_to_temperature_conv
previously described.

pid_conversions.h

Even if the variables suggests that a PID control was developed at the moment only a PD one
was actually implemented:

• void PID_error_calculation(PID_Inputs_struct *PID_Inputs): calculates the
error between two attitude measurements. It has as input a structure for the management
of PID control and below the handler is showed:

Figure 4.13: Handlers for PD control alghoritm
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• void PID_attitude_Derivative_calculation(PID_Inputs_struct *PID_Inputs):
calculates the derivative of the error to give as input to the PD controller

• void PID_error_2_torque(PID_Inputs_struct *PID_INPUTS): converts the
error calcuated in PID_error_calculation into a torque value;

• void PID_torque_2_dipole(PID_Inputs_struct *PID_Inputs): converts the
torque calculated in PID_error_2_torque into a magnetic dipole value;

• void PID_dipole_2_current(PID_Inputs_struct *PID_INPUTS):converts the
magnetic dipole calculated in PID_torque_2_dipole into a current value;

• void PID_current_2_DutyCycle(PID_Inputs_struct *PID_Inputs):converts
the current value calculated in PID_dipole_2_current into a Duty Cycle value;

For further details about the control law implemented see 2.3.

queue_structs.h

In the following list will be described the functions used two manage data arriving from queues
inside tasks.

• typedef void (*CombinedDataProcessor)(void *event,void *data1): this is a special
function that allows to handle whatever type of struct object: as first and second parameters
accepts two struct pointer of void type and as third parameter a function that processes
the data contained on the two structs objects. The third function is customized depending
on the case;

• void processCombinedData(void *event,void *strct1, CombinedDataProcessor
processor): this function allows to handle pointers to void(first two parameters) and as
third one a pointer to void struct function;

• void receive_OpModequeue_control(void *event,void *opmode): this function
allows to store in a local variable the OpMode received from the OBC;

• void receive_IMUqueue_control(void *event,void *PID_struct): this function
allows to store in a local struct, dedicated to the PID control, the IMU data recevied via a
Queue dedicated to the IMU;

• void receive_IMUqueue_OBC(void *event,void *attitude): this function allows
to store in a local struct,dedicated to the attitude received from the OBC, the IMU data
received via a Queue dedicated to the IMU;

• void receive_Current_Tempqueue_OBC(void *event,void *current_temp_struct):
this function allows to store in a local struct all the data related to A/D conversions on
the ADC, so the temperature values and the Current values data received via a Queue
dedicated to the Houseekeeping(HouseekeepingADCS) data of the ADCS;

• void receive_Attitudequeue_control(void *event,void *attitude_adcs):allows
to store in a local struct all the data related to the target Attitude received via a Queue
containing the Attitude data(setAttitudeADCS) sent by the OBC board to the ADCS;
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ADCS Tasks Data Exchange

Here a brief explenation of the code relative to the freertos.c library will be given.
To synchronize the Tasks the Queue mechanism was used due to the architecture at system level
that required continuous exchange of data starting from the GS arriving to the ADCS.

• ADCSHouseKeepingQueue : this is a Queue used to send from the Check/Safet Task
to the OBC Task the Local HouseKeeping data. Before beeing sent the Queue is filled with
a structure pointer of type Current_Temp_Struct organized like this:

Figure 4.14: Currents and Temperatures struct

• IMUQueue1 and IMUQueue2 : Once the IMU Task reads the values of Angular Speed
and Magnetic field it samples them with a struct of type imu_queue_struct(4.5) and
fills the Queue which is sent to the Control Task and the OBC Task: the first needs them
to have an update on the state of the System and close the control Loop,the second to send
them back to the GS which shows them in the Dashboard on Grafana.

Figure 4.15: IMU data struct

• setAttitudeADCSQueue : once the OBC receives the new target Attitude Data from
the GS it samples the data in a local struct of type setAttitudeADCS(4.16), declared in
the library message.h because these data comes after the change of OpMode to 1 on the
part of the GS, and puts them in the Queue ready to be sent to the Control Task;
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Figure 4.16: Struct in message.h library to manage received target Attitude Data from OBC

• setOpModeADCSQueue : this queue is sent by the OBC Task to communicate to the
Control Task chenges on the OpMode,once it is received succesfully by the OBC Task;

• intOpModeADCSQueue : this queue has the only purpose of sending back to the OBC
the updated OpMode data so that it can be updated on the Dashboard of Graphana.

In figure 4.17 there’s a scheme who summarizes the Queue exchange between tasks.

Figure 4.17: ADCS RTOS Tasks Organization

70



Chapter 5

Test Campaign

This chapter will introduce the facility present in Forlì laboratory [27],called CubeDynA
(CubeSat Dynamic Attitude simulator testbed) Facility , by describing the included com-
ponents,experiments and final results.

5.1 Facility Description
[28],The increasing number of launches of nanosatellites and cubesats over the years lead to
an increasing needing in performing quality test to assure the reliability of all the sub-systems
and mechanical structure. Looking at this actual scenario, developing appropiate test facility
becomes of remarkable importance.

Due to these reasons dynamic simulation facilities have been built to emulate the space conditions
and in particular the microgravity. This last topic becomes extremely important considering
that tests must be performed in the earth with completely different conditions compared to
the space. It becomes essential to reproduce in the best way possible those harsh conditions.
The parameter that must be minimized is the Disturbance Torque of the facility where the
tests are performed: this torque is a consequence of the different methodologies used to recreate
microgravity.
To minimize it the mini-satellite must be the largest possible.

Of all the methods implemented to recreate microgravity on earth the Facility of Forlì applies
the Air-Bearing: a pressurized air flow is used to generate a film between two corresponding
surfaces. This film will act as a lubricant between the surfaces,reducing friction.
In Figure 5.1 the CubeDynA Facility is showed. To simulate the Attitude Dynamics Environment
encountered by a satellite in Low Earth Orbit (LEO) the Facility embeds mainly 4 components:

• 1) A Triaxial Helmholtz Cage to simulate the Earth’s magnetic field;

• 2) A Sun simulator;

• 3) An Air Bearing Table (ABT) equipped with an Automatic Balancing System
(ABS) that provide three-degree-of-freedom rotational motion with low disturbance;

• 4) A metrology system for generating Ground-Truth Attitude Data.
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Figure 5.1: CubeDynA Facility in Forlì

5.1.1 Helmotz Cage
A magnetic field can be generated to test the Attitude Determination and Control System of a
cubesat or to simulate the magnetic field generated by the earth experienced byt the satellite
once it is in orbit.
One of the possible methods to reproduce these conditions is the Helmotz Cage, a device capable
of generating Uniform Magnetic Fields in all the 3 directions.
To reproduce the field in the three axis the so called Helmotz coils are used: they consist of
a pair of coils parallel to each other,each single coil has N turns of wires. If a current is lead
passing through one of the coils a magnetic fields is created. It’s expression is:

B = µ0 · i · N · R2

2 · (x2 + R2) 3
2

(5.1)

The Helmholtz cage in the Facility is composed of some hardware components:

• 3 orthogonal pairs of coils with 1300 mm diameter, which correspond to the x, y and z axes
of the reference system, respectively;

• A fluxgate magnetometer;

• A Programmable power supply;

• An Arduino Uno for closed-loop control

Thanks to these component the Cage is able to generate fields of arbitrary direction in the range
+/-10G(1 Gauss = 10−4) In the center of the HC it’s installed a cilindrical support, which has
the function to keep the base platform of the air bearing at the center of the cage, and so at the
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center of the generated magnetic field.

Figure 5.2: Facility Helmotz Cage

5.1.2 Sun Simulator
As the name suggests a Sun Simulator is a system able to reproduce in the best way possible
the solar radiation characterising the satellite’s orbit.
It serves essentially two scopes:

• Use it to implemet an attitude determination: for Cubesats attitude determination systems
that exploit solar radiation are often employed;

• Allow the simulation of disturbance torque due to solar radiation: this torque must be
compensable by the CubeSats itself.

The simulator consisting of a COST LED Studio light, with a 300W phosphor-coated LED
as light source.
The collimation lens is a 400mm diameter Fresnel. The purpose of the simulator is to collimate
the light of the lamp to replicate sunlight.
Through a focus test, the distance between the Fresnel lens and the light source has been tuned
to maximise beam collimation.

Figure 5.3: Facility Sun Simulator

As explained in section 3.7.1 the ADCS board has the arrangment to use the Sun Sensor but it’s
circuitry wasn’t designed,in fact for this Test Champaign it is not provided to test this part of
the ADCS.
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5.1.3 Air Bearing Table
The Air Bearing system in figure 5.4 mentioned before, consists of two parts: the base which is
fixed at the pedestal, and the hemispherical one which is movable.
Between the two a thin layer of air is generated to minimize friction. Ideally, the disturbance
torques affecting the platform should be kept in the same order of magnitude as those in orbit:
in case of LEO orbit, at 700 km altitude, with a 1U satellite, these orbital disturbance torques
are in the order of 10−6Nm.
The disturbance torques affecting an air-bearing platform can have different causes but in this
specific case, the torque due to gravity is the main torque acting on the platform,resulting from
misalignment between the CM and CR.

Figure 5.4: Facility Air Bearing Pedestal

The correction of this misalignment is performed by adjusting the relative position of the CR
and CM through a balancing process.
Two types of balancing must be applied:

• Coarse balancing : is accomplished by evenly distributing the mass of platform components
and by manual placement of counterweights on the rotating platform;

• Fine balancing : is achieved using a set of three mutually orthogonal sliding masses moved
by stepper motors thanks to a two-steps procedure.
First, the in-plane masses positions are adjusted through a PID feedback control; afterwards,
the out-of-plane mass displacement is computed through a system identification algorithm
by sampling the ABT free oscillations, as explained in details in [29].

In total two ABTs have been developed, capable of hosting payloads of different mass ranges up
to 4 kg.

Mechanical interface with the ADCS

The CubeDynA platform allows hosting satellites of the CubeSat form factor with mechanical
contact only with the Cubesat’s rails. In the case of the CuebeSat Test Platform, the mechanical
interface happens with lower part of the platform, while the top part is left open for an easy
access to the electronic board as shown in Figure 5.5.
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Figure 5.5: Mechanical interface with the CubeSat

5.2 Integration and Verification
The Champaign consisted in three days of work where the objective where:

• Succesfully perform the Balancing procedure;

• Perform the Tests: in particular the Tests to perform had the target of:

– 1) Verifing the actual polarization of the magnetorquers activating the HC magnetic
fields in all of the three directions separately and so, testing the magnetorquer positioned
in that direction independently of after the other;

– 2) Testing the Control Law to implement the Dethumbling maneuvre.

5.2.1 Fully Assembled Cubesat
The structure that supports the OBC and ADCS boards together with the battery is made
with additive manufacturing techniques in PLA, a material that provides sufficient structural
strength with low density, resulting in the minimum structural mass. The total mass of the
totally assembled system results in 430 g.

Figure 5.6: The Cubesat Test Platform
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5.2.2 Preliminary Setup
The first day the work was the following:
in order to put the CubeSat under test on the ABT some prelimiary checks should have been
taken, considering that we brought with us all the necessary material,so te risk was that some
hardware connection were weak or other problems could occur.

The same passages explained in the following where done in laboratory at the STAR Lab
so they were tried and tested before.
To prevent this we followed a precise outline:

• 1) Setup Raspberry and Ground Station: it was important to configure again the
Raspberry to connect to a new IP addres since the WIFI port was different with respect to
the Star Lab at Politecnico of Turin. Once done this we had to check that the Raspberry
could launch the InfulxDB and Telegraf services with no problem and that it was able to
send data to the Database to be than visualized in Graphana, meaning the Ground station
was working properly.

Figure 5.7: Setup Raspberry and Ground Station in the Laboratory

• 2) Hardware Check: after the Rasp and GS worked properly we had to connect together
the two boards. In this phase we checked that every connection was ok,specifically the lines
for the UART communication and for the power supply.
During the power supply check we had problems with the battery connection and we had
to repair it as showed below;
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Figure 5.8: Battery connection repair

• 3) Firmware Check: once the connections were ok we had to upload the latest version of
the Firmware and assure it was correctly delivered to the board.

Figure 5.9: Firmware upload

Finally the integration between the ATBand the Cubesats was done and we were ready to
perform the Balancing Procedure. In figure 5.10 is reported the integrated ATB + Cubesat
structure.
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Figure 5.10: Integrated platform ready for the Balancing procedure

5.3 Balancing Procedure
As just mentioned the Balancing procedure consisted of two phases.

5.3.1 Coarse Balancing
Coarse balancing is needed to compensate for the macroscopic offset between the CM and the
CR of the platform. In this particular case, coarse balancing required distributing 0.8 kg of
counterweights(fig 5.11) on the platform. In figure 5.12 the moment where coarse balancing was
performed application is reported.

Overall, the total weight of the platform resulted to be equal to 7.404 kg.

Figure 5.11: Some counterweights used for the Coarse Balancing
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Figure 5.12: Coarse Balancing procedure

5.3.2 Fine Balancing
Fine balancing consists of two steps:

• In-plane balancing :where the horizontal component of the CM to CR offset is compen-
sated;

• Vertical offset estimation and compensation.

The two steps are iterated until the offset estimated value does not decrease further.

Figure 5.13 shows the normalized horizontal components of the gravitational acceleration,
horizontal components of angular velocity and stepper motors’ carrier position during the in-
plane balancing process. The in-plane balancing process is considered completed when the
horizontal components of the gravitational converge to zero.

Figure 5.13: Normalized horizontal components of the gravitational acceleration, horizontal
components of angular velocity and stepper motors’ carrier position during the in-plane balancing
process.
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Figure 5.14 shows the residual torque estimation and the CM to CR offset estimation. The
residual torque RMS results to be equal to 6 × 10−5Nm and the peak value 1.5 × 10−4Nm.

Figure 5.14: Angular speed, residual torque estimation and offset estimation

5.4 Final Tests
In figure 5.15 the Cubesat ready to be tested was integrated in the Facility structure.
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Figure 5.15: Cubesat succesfully integrated in the Facility structure

As previously explained,after the Balancing was completed it was time to perform the Tests.
The first one is the Polarity Test : when the Magnetorquers were attached to the ADCS
board we didn’t check for the correct direction of the current so this test is a good way to
control if the Magnetorqers where mounted on the contrary with the help of the HG external
magnetic field. At the end the measurements in terms of Magnetic field and angualr velocity
were validated,comparing them to the ones of the IMU which is an element of the ground-truth
instrumentation present in the Facility.
Before the Test the IMU of the Facility were already calibrated

5.4.1 IMU Characterization
The execution of the test consisted of moving the CTP starting from a random initial attitude
to an attitude for which one axis of the CTP is aligned with the direction of the magnetic field
generated by the Helmholtz cage.

Due to the different sampling rate, a mask with values collected at the same time tag was
matched. The difference (∆w) between the reference values and the IMU measurement are
shown in figure 5.16. Red, blue, and green bars report the difference of measurements of angular
velocities along x, y and z respectively. The mean error was [-0.00273, -0.0021, 0.00466] rad/s,
with standard deviation of [0.0155, 0.0412, 0.0231] rad/s and a distribution resembling a Gaussian
one, so we can consider the selected IMU accurate enough for the future application.
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Figure 5.16: Mean and Standard Deviation of the error on the angular rate measurements.

5.4.2 Polarity Test
As described in a previous section, at 4.3.1, it was introduced a further OpMode to allows the
testing of magnetorquers singularly. In fact during these Tests the Opmode 2 was sent by the
Ground Station after an initial ideal state at Opmode 0.

The test consisted in checking that the dipole commanded to the magnetorquers is actuated in
the correct direction: using the Helmholtz cage, a magnetic field in a direction perpendicular
to the local vertical is created. If the magnetic dipole is actuated in the correct direction, it is
expected that the CubeSat aligns the positive dipole direction to the magnetic field lines.

This test foresaw that the currents flowed in the actuators first in clockwise and then in
anticlockwise directions. CTP started to rotate from a random attitude and a duty cycle of 90%
is applied via PWM driver and circuits up to the alignment with the Magnetic Field direction.
Then, a duty cycle of –90% is applied and CTP started rotating in the opposite direction.

Magnetorquer on X axis

Figure 5.17 shows the results of actuation of the magnetic torquer mounted on the positive
x(IMU reference frame) face of the CubeSat. The top graph shows the evolution of the angular
velocity. It is possible to see that there is an increment of the velocity then a slowing down
(with an overshoot) followed by a stable attitude condition (no rotation). Then, the inversion
of polarisation is applied, and a similar trend, but with opposite sign, is observed with a lower
overshoot up to reach the stable attitude.

The graph in figure 5.18 instead shows the current flowing inside the magnetic torquers, which
exhibits a non-negligible variation of 50 mA of amplitude.
However it was confirmed that the current that flows inside the magnetorquers was constant
and the significant variation of the measurements was due to the acquisition circuit, requiring
an review of the latter.

On the contrary, no ripple on the measured values was observed, confirming that the filtering
stage worked properly.
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These results suggest that the magnetic actuators embedded in the CubeSat platform mock-up
can surely be exploited for future Attitude and Angular Velocity control testing.

Figure 5.17: Angular Speed and Magnetic Field measurement when Magnetorquer on X axis
is activated

Figure 5.18: Current flowing in X Magnetorquer

Magnetorquer on Y axis

The same experiment was performed for the Magnetorquer placed in the positive y axis(IMU
reference frame) allowing to conclude that even here the current exhibited a non-negligible ripple
due to the circuitry behind.

Figure 5.19: Angular Speed and Magnetic Field measurement when Magnetorquer on Y axis
is activated
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Figure 5.20: Current flowing in Y Magnetorquer

Below is showed the Facility frame reference to be compared with the reference of the IMU in
figure 3.19:

Figure 5.21: Facility frame reference

As expected it was not possible to perform the same polarization experiment on the z axis
since as explained in the section on Magnetorquers(3.5) its Magnetorquer had not sufficient
turns(210) to generate a significant mechanical torquer able to make the system rotate on the z
axis when the HC generated a magnetic field in the z axis,even having a Duty Cycle of 90% on
that Magnetorquer’s electronic driver. However replacing it with a proper actuator it will be
possible to perform all the tests as for x and y axis.
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Conclusions

This thesis work had as its primary objective to review an old ADCS board project developed
some years ago to provide the first version of an ADCS board that will be integrated into a more
complex 3U structure Cubesat to launch 3 years later in space.
The work carried out in this thesis reached the goal of designing, testing, and validating a simple
ADCS board integrated into a CubeSat of reduced dimension concerning the standards.

The system successfully demonstrated to be able to communicate at different levels(Ground
Station to OBC and OBC board to ADCS board) and to drive correctly hands-made Magnetor-
quers, producing a good torque to provide rotation considering that this is a system completely
developed by few students of Politecnico of Turin.
The integration of the CubeSat system in the CubeDynA Facility at the Forlì Campus of the
University of Bologna was successfully completed, leaving room for optimism in future test
sessions.
Some mistakes were made in the process that inevitably stole time for improvements and in
particular this was crucial for the Test Campaign since it wasn’t possible to test the Control of
the Attitude. However, the results collected demonstrated that future studies will surely allow
us to obtain a good control strategy regarding the Dethumbling maneuver and more in general
to a complete attenuation of the Cubesat integrating even the Reaction Wheels.

In the process of the project development a previous thesis work [11], where a PCB with
the name of Singer was developed for the project of SPEA Satellites, was taken as reference
especially for the Hardware design.
However, this work has to be intended as a starting point for a future 2.0 version of the ADCS
board, in fact during the thesis work the author identified some aspects that could be improved
or added for the next version of the ADCS board:

Hardware improvements

• Complete removal of the Nucleo Board: the Nucleo Board attached to the ADCS one
was an easy and fast solution to provide a microcontroller unit to the board. However, this
steals space in vertical for other boards especially if the ADCS board must be integrated
into a bigger Cubesat. For this reason, it was thought to embed directly in the ADCS
board the MCU of the Nucleo Board with all the necessary electronic components plus the
electronics for the ST-Link to reduce vertical clutter and allow easier access to the USB
port for programming and Debug;

• On-site IMU calibration: some solutions were taught to allow performing IMU calibration
directly on board before every Test session to reduce the risk of noisy measurement;
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• Sun sensor and Reaction Wheel integration: as widely explained the ADCS board has
the arrangement for collecting data from a Sun sensor. However, to provide its measurement
another PCB should have been developed entirely dedicated to the conditioning of the
sensor signal and transmission of the data to the ADCS board. As previously said this
can be done using a simple microcontroller like a PIC from Microchip or other similar
microcontroller.
Moreover Reaction Wheels must be integrated too to provide propulsion to the Cubesat
and it will be important to understand their characteristics and adapt eventually the new
ADCS board to them;

• OBC Board improvements: the OBC board had two main serious problems: the circuitry
for A/D conversion of the EPS module voltages and currents couldn’t work, moreover the
connector for the battery gave a lot of problems, especially during the Final Tests. So,
surely, these are the main problems to fix regarding the board.

Firmware improvements

• Improvement of the code and specifically of the Control Law Library: to develop
and improve a good control strategy the code of the library for the PD control implementation
could be improved as well as the code for the safety state of the ADCS board;

• EEPROM usage: it is possible to make use of the Flash memory of the Nucleo board to
emulate an EEPROM behavior. This could be done in the optic of collecting and saving
data directly on the Nucleo for further post-processing actions after every Test session,
reducing eventually the overhead of data to send to the OBC board.
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