
POLITECNICO DI TORINO
Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

Bad Teaching in Machine Unlearning
with Similarity-based Sampling

Supervisors

Dr. Flavio GIOBERGIA

Prof.ssa Elena Maria BARALIS

Candidate

Claudio SAVELLI

July 2024





Summary

The world of Artificial Intelligence (AI) and Machine Learning (ML) is constantly
changing, and the concept of ‘Machine Unlearning’ has emerged as a challenging
area of research. This concept is becoming increasingly relevant as the huge adoption
of AI and ML technologies has introduced numerous ethical, moral, and privacy
concerns, particularly regarding using personal data in training these models.

The central objective of Machine Unlearning is to erase the influence of specific
data inputs from a model’s training set. While it is relatively straightforward to
do so from databases, erasing it from an AI model presents a significant challenge
due to these models’ complex nature. Furthermore, making a model forget certain
information is particularly tough due to the stochastic nature characteristic of
all Deep Neural Networks, including widely used models such as Large Language
Models (LLMs). The stochasticity in the learning processes complicates the
evaluation of the effects of specific data on the model’s training phase. Moreover,
the efficacy of Machine Unlearning techniques is difficult to evaluate. This difficulty
is also raised by the lack of established metrics for evaluating these methods since,
as already said, it is difficult to assess how much a model is influenced in its
prediction by specific data, making the development of such metrics an open field
of research.

This thesis aims to explore the domain of Machine Unlearning. It seeks to
analyze the underlying dynamics of various unlearning approaches, examining some
strategies employed to remove influences of specific data from models and the
principal metrics used to assess their effectiveness. In addition to the existing
methodologies, this research includes the development of a new unlearning method
proposed by the author, which has been shown to outperform the other described
techniques considering the analyzed metrics. A new benchmark has been proposed,
which includes the definition of three new datasets. The goal is to create a shared
framework for effectively comparing different unlearning techniques. By doing
so, the research intends to contribute to active and emergent discussions in the
academic community, fostering a better understanding of how unlearning impacts
model integrity and data privacy. This exploration is particularly pertinent as the
demand for ethical AI solutions becomes crucial for everyday applications.
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Chapter 1

Introduction

The introduction to this work will describe the concept of Machine Unlearning
(MU), why it is used, and the current challenges. In addition, the main contributions
made will be described.

1.1 Machine Unlearning

1.1.1 Reasons for Machine Unlearning
There are various fields and reasons in which Machine Unlearning is used. A short
list of the main areas is shown below:

1. Complying with the new AI regulations: for worldwide regulations such
as the GDPR (General Data Protection Regulation), Consumer Privacy Act,
or Bill C-27, companies must ensure that their users have the ‘Right to be
Forgotten’ [1], which is not only delete user data on demand from databases
but also from Deep Learning models. The only solution for companies that
want to follow these guidelines would be to retrain these models from scratch,
removing the data to be deleted from the training. This method is impractical
considering their high economic costs and environmental impact [2].

2. Recovery of attacked models: Machine Unlearning is crucial to recover
machine learning models that have compromised poisoned training data points.
Data poisoning attacks involve deliberately introducing malicious data into the
training set, intending to corrupt the model’s learning process and degrade its
performance [3]. By effectively identifying these poisoned data points, Machine
Unlearning techniques can mitigate the impact of such attacks, restoring the
integrity and reliability of the affected models. By removing the influence of
compromised data selectively, we can rehabilitate the model without retraining
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Introduction

it completely. This allows us to save computational resources and maintain
the overall efficiency of the machine learning pipeline.

3. Copyright claim: Generative AI tools are trained on collections of material
collected, usually by scraping the net. Some AI image and text generation
tools have been trained on material taken from web pages without the consent
or knowledge of the owners of those pages. It has not yet been openly
stated whether using content by artists or writers without permission to train
generative AI is copyright infringement. Should this be the case, however,
Machine Unlearning may be an excellent solution to remove copyrighted data
from model training without having to retrain all of it from scratch. For these
reasons, Machine Unlearning on generative models of both text [4] and images
[5] is another important field of research emerging in recent years.

4. Ethical reasons: Machine Unlearning could lead us towards developing
models that ensure ethical and fairness principles, as it could help address
biases and discrimination in AI systems by unlearning biased patterns and
ensuring fair decision-making. It is well known that many datasets used to
train models, including LLMs, contain heavily biased information. Once it is
recognized which data leads to certain biases, thanks to unlearning approaches,
it will be possible to remove those negative features from the model’s training,
making it fairer.

5. Other applications: Numerous other applications of Unlearning exist. How-
ever, for the sake of brevity, they are not exhaustively listed here.

1.1.2 Formal Formulation of Machine Unlearning
This section explores the basic principles of Machine Unlearning, which form the
foundation for the practical applications discussed later. A figurative example of
the Unlearning framework can be seen in Figure 1.1.

Let D represent the initial training dataset consisting of n data points, where
each data point is denoted as xi ∈ D for i = 1, 2, . . . , n. A machine learning model
M is trained on D to produce a set of learned parameters θ. The model M can
be described as a function f(θ, x) that predicts outcomes based on input data x.

Given a subset Df ⊂ D of data points that need to be unlearned, usually denoted
as ‘Forget Dataset’, the objective of Machine Unlearning is to update the model
M such that its performance and internal state are as if Df had never been part
of the training data. Formally, let Dr = D \ Df be the remaining dataset after
removing Df , usually denoted as ‘Retain Dataset’. The goal is to obtain a new set
of parameters θ′ such that the updated model M′ with parameters θ′ approximates
a model trained exclusively with Dr.
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Algorithm
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Figure 1.1: Anatomy of the Machine Unlearning framework

Exact unlearning, as will be seen in 1.1.3, aims to remove completely the influence
of Df from M. This can be achieved through retraining or some algorithmic
techniques. In the most straightforward approach, retraining, the model is retrained
from scratch using only Dr:

θ′ = arg min
θ

Ø
xi∈Dr

L(f(θ, xi), yi)

where L is the loss function used during training, and yi are the corresponding
labels. However, retraining is computationally and timely expensive [6].

Inexact Unlearning relaxes the requirement of exact equivalence between M′

and a model trained solely on Dr by trying to update θ without full retraining. It
seeks to minimize the influence of Df while maintaining model performance. Some
examples of Inexact Unlearning methods are listed in 2.1. Inexact Unlearning
usually tries to dynamically update the model so that the system can adjust the
model parameters θ to remove the influence of Df without full retraining.

1.1.3 Approaches to Machine Unlearning
We will mainly analyze unlearning processes applied to Deep Neural Networks
(DNNs), motivated by two main factors. Firstly, given their extensive use, DNNs
are predominantly the object of study for unlearning techniques within the scholarly
literature. Secondly, the relative ease of retraining shallow models reduces the need
for unlearning, as these models require fewer resources to be trained from scratch.

As already anticipated in 1.1.2, unlearning techniques for DNNs generally fall
into two algorithmic categories: exact and inexact. Exact unlearning guarantees
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the complete removal of the influence of training data from the model, even though
often at a high computational and financial cost. In contrast, inexact unlearning
methods mitigate these costs but do not provide a formal guarantee of completely
removing the influence of the data from the model. For this reason, it is crucial
to develop metrics to assess how much specific training data influences a model’s
behavior to determine the goodness of the inexact unlearning method used.

Exact Unlearning Exact unlearning, also referred to as perfect unlearning, is
defined as the process by which a machine learning model is modified to eliminate the
influence of a specified subset of data, denoted as Df , from its learned parameters
θ. The objective is to adjust the model so that its state and performance are
indistinguishable from a model initially trained without Df . The goal of exact
unlearning is to find a new set of parameters θ′ such that the updated model M′

with parameters θ′ is equivalent to a model trained solely on Dr.
The challenge of exact unlearning lies in its requirement for the new model M′

to behave as if it had never seen Df . However, retraining the model from scratch
using only Dr is often computationally expensive, especially for large-scale models
and datasets. Therefore, more efficient algorithmic approaches have been developed
to approximate the effect of retraining without incurring the total computational
cost.

SISA (Sharded, Isolated, Sliced, and Aggregated) [7] is an example of an exact
unlearning technique. This method partitions the training data into several disjoint
shards, each of which independently trains a separate model. This sharding strategy
enables unlearning by retraining only the slices affected by data removal rather
than the entire model. The final model output is then obtained by aggregating
the individual slices’ predictions. An example of the SISA framework is shown in
Fig. 1.2. SISA has many limitations anyway, such as potential reductions in model
efficiency due to isolated data shards, increased computational and storage demands
for managing multiple models, challenges in scaling, potential privacy vulnerabilities
within shards, and a lack of flexibility in adapting to data distribution or model
requirements.

The feasibility and efficiency of exact unlearning depend on the model’s nature,
the data’s complexity, and the underlying machine learning algorithms.

Inexact Unlearning Inexact unlearning, also referred to as approximate un-
learning, is defined as the process by which a machine learning model is modified to
reduce the influence of a specified subset of data, denoted as Df , from its learned
parameters θ. The objective is to adjust the model so that the influence of Df is
minimized, although not necessarily eliminated, ensuring that the model’s state
and performance are sufficiently close to a model that was trained initially only
using Dr.
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𝐷𝑡𝑟𝑎𝑖𝑛
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𝑀2 𝑀𝑠
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Figure 1.2: Anatomy of the SISA Framework [7]. The dataset D is partitioned
into multiple shards (D1, . . . , Ds), each trained on separate models (M1, . . . ,Ms).
The red square highlights the specific data shard that needs to be unlearned.
Outputs from all models are then aggregated to form the final model output

Formally, consider a machine learning model M with parameters θ, initially
trained on a dataset D. The goal of inexact unlearning is to find a new set
of parameters θ′ such that the updated model M′ with parameters θ′ closely
approximates a model trained exclusively with Dr while acknowledging that some
residual influence of Df may remain.

Inexact unlearning relaxes the stringent requirement of exact equivalence and
instead focuses on reducing the influence of Df to an acceptable level. This
relaxation allows for more computationally efficient approaches compared to exact
unlearning. In inexact unlearning, a balance between computational efficiency and
the degree of unlearning needs to be achieved. While it may not guarantee the
complete removal of Df ’s influence, inexact unlearning provides a practical solution
for scenarios where exact unlearning is infeasible due to computational constraints.

1.1.4 Challenges in Machine Unlearning
Omitting the influence of specific data from DNN models is particularly difficult
in the Machine Unlearning framework given their nature [6]. In addition, once
the unlearning algorithm has been applied, assessing its goodness—measuring how
much influence a specific data point still has within the model—remains one of the
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most significant challenges in the field.
The main challenges of this framework are summarised as follows:

1. Stochasticity of training: Due to the stochastic nature of training, it is
usually impossible to know when a data point was used to train a DNN model.
In neural networks, the training dataset is partitioned stochastically into
numerous subsets, each referred to as a ‘batch’. This additional stochasticity
makes assessing a data point’s impact on the model’s training even more
complex.

2. Incrementality of training: The problem is enhanced by the incremental
nature of the training process. Precisely, at a given time t, the data used to
train the model influences the current state and all the subsequent updates.
This dependence on the data used in t complicates the assessment of the
impact that each data point may have on the complete model training. This
dynamic introduces considerable complexity in understanding and predicting
how much influence a data point has on a model.

3. Catastrophic unlearning: It is reasonable to expect that a model may
lose accuracy after undergoing an unlearning process, as it loses information
related to specific data points. Consequently, it is vital to evaluate the extent
of accuracy loss when employing unlearning techniques, as this loss can lead to
what is often indicated as ‘catastrophic unlearning’ [6]. Such significant degra-
dation can make the model unusable. Therefore, monitoring and addressing
this issue is critical in analyzing different unlearning frameworks.

4. Evaluation of Unlearning: As already described in 1.1.3, for the evaluation
of the goodness of an inexact unlearning method, it is essential to have metrics
that can assess the impact of a data point in the training of the model.
Understanding the impact, as mentioned earlier, is not easy. In fact, currently,
the metrics used in unlearning literature require a direct comparison of the
unlearned model with the retrained one, making them not applicable in real-
life scenarios. In addition, it is necessary to formalize these metrics to have
a legally recognized guarantee [1] that the data to be forgotten have been
sufficiently removed from the model [8].
A more extensive description of some of the most currently used metrics can
be found in 2.2.

1.2 Contributions of the Work
This work contributes significantly to the field of Machine Unlearning by addressing
several key areas of research and development. The main contributions can be
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summarized as follows:

• Study of Machine Unlearning Frameworks: An in-depth exploration
and analysis of existing Machine Unlearning frameworks have been conducted.
This study critically reviews current methodologies, metrics, and datasets and
identifies areas where improvements are needed. This comprehensive analysis
highlights the need for effective unlearning processes to comply with evolving
norms and regulations.

• Development of a Novel Unlearning Method: A novel unlearning
method is proposed, demonstrating higher performance than other unlearning
techniques. This method is evaluated across different metrics, demonstrating
its efficacy considering all the inexact unlearning requirements. Furthermore,
thanks to the tunable parameters during the unlearning process, it is possible
to find the right balance between data forgotten and the model’s performance
after unlearning, ensuring an optimal trade-off based on specific constraints
and requirements.

• Proposal of New Datasets: Three new datasets—MUCelebA, Modified
MUFAC, and MUCIFAR-100—are introduced to recognize the limitations
of existing datasets in evaluating unlearning algorithms. These datasets are
designed to create a general benchmarking environment that facilitates the
comparison of unlearning methods across different scenarios. Each dataset tests
different aspects of unlearning, including the effectiveness of privacy protection
and the ability to handle complex data structures. More information about
the considered datasets is present in Section 4.

7



Chapter 2

Related Works

From this point onward, the work will consider only inexact unlearning methods.
This focus is due to their relevance and applicability in real-world scenarios where
computational efficiency and scalability are crucial.

The following sections will discuss the most notable inexact unlearning techniques
developed and recognized within the academic community for their effectiveness
and innovation. Additionally, evaluating these methods relies on specific metrics,
which are crucial for assessing how data has been effectively unlearned without
significantly degrading the model’s performance.

2.1 Methods
This section analyzes different inexact unlearning methods that have emerged as
practical solutions for data removal in machine learning models. These methods
are considered in the Results Section 5 to evaluate the novel unlearning method
proposed.

2.1.1 Competent and Incompetent Teachers Method
Competent and Incompetent Teachers’ unlearning method [9] uses a teacher-student
framework. Here, knowledge is transferred to the student by both a competent
teacher model (Ts) and an incompetent teacher model (Td) as shown in Figure
2.1. The framework facilitates forgetting specific data by manipulating the student
model’s training process using accurate and random information.

Teacher-Student Configuration: Let the competent teacher Tc be a fully
trained model on the full dataset D, having parameters θc. The incompetent

8
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𝐷𝑓𝑜𝑟𝑔𝑒𝑡

Competent Teacher

Student

Incompetent Teacher

𝐷𝑟𝑒𝑡𝑎𝑖𝑛

𝐾𝐿 𝐾𝐿
𝐷𝑟 logits 𝐷𝑓 logits

Figure 2.1: Anatomy of the Competent and Incompetent Teachers Framework [9]

teacher Ti, with parameters θi is randomly initialised. The student model S starts
with parameters θc identical to Tc and is updated during the unlearning phase.

Unlearning Process: The unlearning process is initiated by exposing the student
model S to both teachers. The knowledge from Ti is meant to corrupt the student’s
understanding of the target data Df , which is to be forgotten, whereas Tc ensures
the retention of correct information for the remaining data Dr. This dual influence
is governed by the following loss function for each data sample x:

L(x, lu) = (1 − lu) ·KL(Tc(x)∥S(x)) + lu · (KL(Ti(x)∥S(x)))
Here, KL represents the Kullback-Leibler divergence, measuring how much

two probability distributions are distant, and lu is the unlearning label, indicating
whether a sample belongs to Df (lu = 1) or Dr (lu = 0). The goal is to minimize
this loss over the dataset, effectively causing S to unlearn Df while retaining
predictions similar to the original model Tc for Dr.

The student’s parameter update is guided by the gradient of L concerning θc,
optimized via stochastic gradient descent.

This approach uses the different knowledge from Tc and Ti to selectively influence
the student model’s learning trajectory. This helps the model forget specific
information while maintaining its overall predictive abilities.

2.1.2 Scrub (SCalable Remembering and Unlearning un-
Bound)

SCRUB (SCalable Remembering and Unlearning unBound) [10] is an improved
version of the teacher-student model. Instead of just copying the teacher model’s

9
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predictions, SCRUB trains the student model to ignore the teacher’s output for
data that needs to be removed. This selective ignoring creates high error rates
for the removed data, which helps eliminate biases and correct mislabeled data.
This selective ignoring allows for intentionally high error rates on the unlearned
data, which is particularly advantageous for eliminating biases or correcting the
impacts of mislabeled data. Additionally, SCRUB uses a ‘rewinding’ technique to
find the best point for unlearning. This technique carefully determines the optimal
unlearning checkpoint to minimize potential Membership Inference Attacks (MIAs).
However, since MIAs are typically used to evaluate model privacy risks, using them
as a target could introduce potential issues. Despite this, the methods in SCRUB
together maintain the model’s utility while improving data forgetting quality.

2.1.3 Fine-tuning

Fine-tuning as an unlearning method involves fine-tuning the neural network on the
data that should be retained while excluding the data that needs to be forgotten.
This approach adapts the model parameters θ by minimizing the loss on the
retained dataset Dr using the existing trained parameters as the starting point.
The fine-tuning process effectively adjusts θ using the gradient descent method,
θ′ = θ − η∇θL(θ, x), where η is the learning rate and ∇θL(θ, x) represents the
gradient of the loss function. By concentrating the training loop on Dr and ignoring
Df , fine-tuning aims to reduce the influence of the data that have to be forgotten
on the model’s performance.

2.1.4 NegGrad (Negative Gradient Ascent)

NegGrad, or Negative Gradient Ascent, is an unlearning algorithm designed to
induce forgetting by modifying the gradient descent process typically used in
training neural networks. In contrast to traditional approaches that minimize
the loss function, NegGrad employs gradient ascent to gradually increase the loss
associated with the data points designated for forgetting. This is implemented
by adjusting the model parameters θ in the direction that maximizes the loss,
θ′ = θ+η∇θL(θ, xf ), where η is the learning rate and ∇θL(θ, x) is the gradient of
the loss function. By heightening the loss for specific data points in the dataset
Df , NegGrad degrades the model’s performance on these points to try to forget
the information connected to these data and reduce its influence on the model’s
overall predictive behavior.

10
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2.1.5 Advanced NegGrad with Classification Loss
Advanced NegGrad is an enhanced version of the original NegGrad approach
proposed in [11], designed to optimize the unlearning process through a more
sophisticated manipulation of the gradient ascent technique. Unlike basic NegGrad,
which focuses only on increasing the loss of the data to be forgotten, Advanced
NegGrad integrates a joint loss function that balances retaining useful information
and forgetting specific data. This algorithm adjusts the model parameters θ using
the formulation θ′ = θ + sη∇θL(θ, x), where s = 1 for Df and s = −1 for Dr.
In this way, the gradient is computed not only to maximize the loss on Df but
also to minimize the loss on Dr. Advanced NegGrad aims to refine the unlearning
process, ensuring that the model forgets the targeted data without significantly
compromising its overall performance on the remaining data maintaining the model
utility.

2.1.6 CF-k (Class-wise Forgetting)
CF-k [12], standing for ‘Catastrophic Forgetting-k layers’, is an unlearning method
where the model’s last k layers are incrementally trained on the retained dataset
Dr while other layers remain frozen. CF-k is designed to efficiently erase the
influence of the forget set Df by focusing the retraining process on the final layers,
where higher-level, more dataset-specific representations are typically learned. This
targeted unlearning reduces computational costs and minimizes the impact on
the overall model performance compared to retraining all layers. Moreover, CF-k
provides a flexible trade-off between unlearning efficiency and the depth of erasure
by adjusting k, thereby allowing a controlled forgetting process based on the
sensitivity of the data and model architecture specifics.

2.1.7 UNSIR (Unlearning by Selective Impair and Repair)
This method [13] incorporates an innovative two-step process: the Impair Phase
and the Repair Phase, designed to selectively manipulate network weights to forget
specific data and only then retain overall model performance. This method can be
used both to forget specific samples or entire classes.

1. Impair phase

In the Impair Phase, UNSIR uses an error-maximizing noise matrix to worsen the
model’s performance on the target data classes that need to be forgotten. This noise
matrix is generated from the original model’s predictions and is used to perturb
the model weights significantly. In this way, the model’s weights are adjusted to
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sharply deteriorate its accuracy on the forget data Df , effectively ‘impairing’ the
model’s ability to recall or recognize these data points.

2. Repair phase

Following the initial disruption in the Impair Phase, the Repair Phase is imple-
mented to stabilize the model and restore its previous performance on the remaining
data classes. This phase involves a more conservative learning rate and focuses on
fine-tuning the model using only the retained data Dr. The objective is to ‘repair’
any damage to the model’s accuracy caused by the Impair Phase, ensuring that
the model retains its utility for the remaining tasks.

The combined effect of these phases allows UNSIR to efficiently unlearn specific
information while maintaining the model’s overall integrity and accuracy.

2.2 Metrics
Metrics are essential for quantitatively assessing whether a machine learning model
has successfully ‘forgotten’ specified data points. This ensures that the model’s
performance and behavior align with the desired unlearning objectives. Using
appropriate metrics provides a standardized framework for comparing different
unlearning methods, facilitating the identification of the most effective approaches
for various applications.

Some metrics, also used in the section 5, are described below.

2.2.1 Model’s Utility
One of the primary metrics used for evaluating unlearning methods is Unlearning
Accuracy [14], which measures how much the updated model M′ approximates
the performance of a model trained solely on the remaining dataset Dr. High
unlearning accuracy indicates that the influence of the unlearned data points Du has
been successfully removed. Another critical metric is Performance Degradation,
which assesses the change in the model’s performance (e.g., accuracy, precision,
recall) after the unlearning process. This metric ensures that the unlearning method
does not compromise the model’s performance.

2.2.2 Method’s Efficiency
Unlearning Efficiency [14] is also a crucial metric, evaluating the computational
and time cost associated with the unlearning process. This includes the time
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complexity and resource utilization required to achieve unlearning. Efficient meth-
ods are, in fact, vital in large-scale applications where retraining from scratch is
impractical.

2.2.3 Membership Inference Attacks (MIA)
The currently most widely used and recognized metric to assess the unlearning
efficiency of certain data is Membership Inference Attack (MIA) [10] [15] [16].

MIA is used to evaluate the effectiveness of Machine Unlearning techniques since
it can reveal whether a specific data point was part of the training dataset or not.
Recent research [17] [18] has shown that it may be possible with MIA to infer with
high accuracy whether an example was used to train a model. For this reason, by
employing MIAs as a metric, it is possible to assess whether the influence of these
data points has been successfully eliminated. Thus, MIAs provide a quantifiable
measure of the residual information the model retains about the unlearned data.

Consider an originally trained model M trained on dataset D. Typically, the
loss values for data points x in D are lower than those for unseen data points xtest
from Dtest. An MIA identifies whether specific data have been used to train a
machine learning model by analyzing the confidence in the predictions (usually
the model’s loss function). To do this, MIA tries to predict whether an example is
part of the forget set Df or an unseen set Dtest. The more it cannot recognize the
difference between the two data sets, the more influential the unlearning method
has been.

2.2.4 Forgetting Score
The forgetting score [11] measures the degree of forgetting essential to ensure that
the model no longer retains information about the unlearned data. To evaluate
the forgetting performance, we utilize an MIA, training an additional binary
classification model ψ(·) to distinguish between the loss values of data points
that were part of the training set Dforget and those that were not. The binary
classification model ψ(·) is defined as:

ψ(x) = M =
1 if x ∈ Dforget

0 if x ∈ Dtest

If the accuracy M of ψ(·) is 0.5, the machine unlearning algorithm perfectly forgets,
indicating that the data points x ∈ Dforget are indistinguishable from those in Dtest.
Finally, the forgetting score is given by |M − 0.5|, where a lower score indicates
better unlearning performance. For the forgetting score metric values closer to 0.5
are preferable.
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Method proposed

The method described here is based on the approach outlined in Section 2.1.1,
with some changes to better use the available data. This optimization aims to
effectively optimize the use of forget data in the Forget Set Df while preserving
the information related to the Retain Set Dr. As evidenced in Section 5, these
adjustments have successfully reduced the susceptibility to Membership Inference
Attacks (MIA) without significantly extending the duration of the Unlearning phase
or degrading the model’s performance.

3.1 Data Selection
The initial phase of the unlearning algorithm focuses on data preparation and
selection, which is crucial for the success of the subsequent unlearning process.

3.1.1 Similarity-Based Sampling (SBS)
In the unlearning phase, not all the images of the Retain Set Dr help reconstruct the
student model, and this not only slows down the unlearning process but mitigates it
as the dimension of Dr is much greater than the Df . The objective of the Retain Set
is to reconstruct the feature space around the Forget images after the ‘destruction
phase’, as shown in section [13]. This work aims to do so by using Retain images
close to that feature space. A graphic example of such an idea is shown in Fig. 3.2.

The methodology involves two key steps, explained in the following sections

Feature Extraction

Let Xretain and Xforget represent the sets of input data from which features are to
be retained and forgotten, respectively. The feature extraction process transforms
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Figure 3.1: Diagram of the Data Preparation for Unleraning. α is the ‘smart
fraction’, i.e., the fraction of images sampled based on the similarity of the new
Retain subset, described in Section 3.1.1.

these inputs into feature vectors, Fretain and Fforget, through a feature extraction
model M , such that:

Fretain = M(Xretain), Fforget = M(Xforget)

M operates by removing the head of the Competent Teacher Model to focus on
layers dedicated to feature extraction. In this way, a proxy of the information in
the latent space of the images is made.

The correlation between features in Fretain and Fforget is quantified using cosine
similarity, defined as:

Scos(a, b) = a · b
∥a∥∥b∥

=
qn

i=1 aibiñqn
i=1 a

2
i

ñqn
i=1 b

2
i

for vectors a and b. This results in a correlation matrix C, where Cij represents
the similarity between the i-th feature in Fretain and the j-th feature in Fforget.

Image Selection

Based on the correlation matrix C, features in Fforget that exhibit a high degree
of similarity to those in Fretain are identified. To do this, the top k elements with
the highest cosine similarity in the matrix are considered. This means that the
images considered may repeat and that the number of retained images taken is
not homogeneous over the number of forgotten images, as shown in Fig. 3.2. This
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approach is particularly relevant in scenarios where an individual requests data
deletion, as it is common for the training dataset to contain multiple images of the
same subject closely clustered in the feature space. Therefore, a retained image,
xr, might share characteristics with a significant subset of Df , enclosing many,
potentially all, images associated with the deletion request.

Figure 3.2: Example of image selection for the model reconstruction phase.
Stars indicate data points of Df in the feature space, and circles represent data
points of Dr. Circle shading intensity correlates with the frequency of use in the
reconstruction phase. The left image shows the conventional selection method
applied in [9], while the right image displays the selection method proposed.

This behavior is justified by the initial assumption made, whereby there may
be data present in a more ‘dense’ feature space, where it will be necessary to take
multiple images to reconstruct that feature space in a suitable way considering
the absence of the data, and data in more isolated feature spaces (given that the
Unlearning framework can also be used for outliers’ elimination [19]) it will be
sufficient to forget the latter without having to intensively reconstruct the space
around it.

In addition, a hybrid solution can be approached, in which only a part of the
Retain set Dr is chosen through this method, and another is chosen randomly
from the images that were not selected in this first step to maintain an overall
reconstruction.

3.2 Unlearning Process

The second phase of the unlearning algorithm focuses on intelligently using available
data to optimize the destruction of information related to points that must be
forgotten while effectively restoring the model’s usability with the points retained.
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3.2.1 Smart Batch Construction (SBC)
Current Limitations

A limitation of the methods based on competent and incompetent teaching, such
as the ‘Competent and Incompetent Teachers’ [9] and ‘SCRUB’ [10], is intrinsic
in the loss function used. These methods minimize the distance of the logits of
the retained data between the student model and the competent teacher – that
at the beginning of the unlearning phase are equals – and the logits of the data
to be forgotten with the incompetent teacher. Considering that in the unlearning
framework, the size of the retained set is much greater than that of forget, as
visible in Section 4.1, one may run the risk of having many steps having no or
minimal effect in the unlearning of the model. Considering the standard method
of Competent and Incompetent Teachers, our model will not update until at least
one ‘forget data’ is used in the training loop.

Proposed Solution

Target model

Bad Teacher

Good Teacher

(Full model)

Retain 

logits

Forget 

logits

Target forget 

logits

Target retain 

logits
KL divergenceKL divergence

Loss

KL divergenceKL divergence

Retain Data

Forget Data

Unlearn Dataloader

𝛽 × 𝑏𝑠

(1 − 𝛽) × 𝑏𝑠

Figure 3.3: Diagram of the Unlearning process. β sets the ratio of Retain and
Forget data to take in each step. bs represents the batch size dimension.

In the proposed method, to ensure greater efficiency of the Unlearning process
within the epochs, the batch is composed in such a way as to maximize the effect of
the Forget Set Df and the Incompetent Teacher. As already anticipated, retained
points are much more numerous than have to be forgotten, so the effect on the
model of the latter could decrease if the batches are not intelligently constructed.
For this reason, a process like the one carried out by other unlearning processes like
‘UNSIR’ (described in Section 2.1.7) of destruction and reconstruction was chosen.
At the beginning of unlearning, many more points of Df are shown so that the
information related to them is destroyed by the Incompetent Teacher. Only then
the Competent Teacher reconstruct the model capability with the retained points
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in the second phase of the unlearning. This approach is particularly effective at
the beginning of unlearning, where the student would produce the same logits as
the Competent Teacher on the retained points, which is why the KL-divergence
between these two will be zero, making the unlearning phase inefficient.

The parameter β is introduced for this scope. This parameter represents the
ratio of points of the Forget Set Df with respect to Dr selected for making a batch.

The approach is delineated through a Smart Batch Construction (SBC), in which
the batches for each unlearning step are dynamically composed, initially favoring
a higher proportion of Forget Set Df data (β = 0.9) to intensify the unlearning
effect. This proportion is adjusted as the process advances, reducing the emphasis
on the Forget Set to allow for the reinforcement of the Retain Set knowledge Dr.
This adaptive learning process ensures that the Student Model is exposed to a
strategically varied learning environment, initially focusing on unlearning (through
the Forget Set Df ) and gradually shifting towards re-solidifying its knowledge base
using the Retain Set Dr.
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Datasets

The following chapter will outline the formulation of datasets within the general
Machine Unlearning framework (4.1) and show the different datasets proposed (4.2)
for evaluating the efficacy of the unlearning methods through the definition of a
benchmark.

4.1 Dataset Division in MU Framework

𝐷𝑡𝑟𝑎𝑖𝑛
All these datasets do not overlap for a single 
image. The subjects present in 𝐷𝑓𝑜𝑟𝑔𝑒𝑡 are 

exclusive of that dataset.

𝐷𝑟𝑒𝑡𝑎𝑖𝑛 𝐷𝑓𝑜𝑟𝑔𝑒𝑡 𝐷𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝐷𝑡𝑒𝑠𝑡

Figure 4.1: Diagram of the data division convention in the unlearning framework

In Machine Unlearning, the Training Set D is divided into two key subsets to
facilitate targeted unlearning: Retain Set Dr and Forget Set Df . Additionally,
independent validation and test datasets, Dval and Dtest, are used. These are distinct
from D and are used to evaluate the model’s performance and the effectiveness of
the unlearning process.
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Training Set The Training Set D in a Machine Unlearning framework is divided
into two subsets to facilitate the selective unlearning of data:

• Retain Set: This subset comprises data points that must remain within the
model’s knowledge base. These data points are not targeted for unlearning
and are used to ensure that the model retains its ability to perform tasks
relevant to these data. At the same time, the unlearning process is applied to
other data points.

• Forget Set: This subset includes the data points to be forgotten by the model.
These are specifically targeted during unlearning to erase their influence from
the model’s parameters.

The Training Set, D, is exclusively composed of Dr and Df , ensuring that
every piece of data used for training the model is accounted for in either retaining
knowledge or being forgotten.

Validation and Test Sets The Validation Dval and Test Dtest Sets are crucial
for evaluating the model’s performance. They consist of entirely new data that
the model has never seen. This distinction is critical for assessments such as
Membership Inference Attacks (MIA), where the model’s behavior on Df) must
be compared against its behavior with data never seen before during the model’s
training to determine how effectively it has unlearned these specific data.

Exclusivity and Non-overlap: It is vital that Dr and Df are mutually exclusive
and collectively exhaustive of D. Similarly, Dval and Dtest must not overlap with
each other nor with any subset of D. Formally, we define:

D = Dr ∪ Df , Dr ∩ Df = ∅,

D ∩ Dval = ∅, D ∩ Dtest = ∅, Dval ∩ D = ∅

.
This structured approach to Set division supports the methodological integrity

of the unlearning process, ensuring that the model’s unlearning can be rigorously
tested and quantitatively assessed.

4.2 Datasets Proposed
This section is dedicated to presenting the three distinct datasets proposed to test
the efficacy of the proposed Machine Unlearning method. The datasets have been
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specifically developed to assess the robustness and versatility of the unlearning
process across varied data types and complexity levels.

The first two datasets are centered on human facial imagery. In this domain,
unlearning frameworks are often most employed due to the sensitive nature of
facial data and its extensive use in various applications spanning security, personal
identification, and social media. These datasets are inspired by and partially
derived from the frameworks suggested in [11].

The third dataset is the CIFAR-100 dataset, which comprises 100 classes en-
compassing various objects from everyday scenes. This dataset is known for its
diversity and complexity, making it a standard benchmark in machine learning for
evaluating generalization and performance across generic object classes.

Each of these datasets has been specifically chosen to show the effectiveness of
the unlearning method under different scenarios, ranging from sensitive personal
data to more general object recognition tasks. The following subsections will
describe the composition, specific characteristics, and rationale behind the selection
of each dataset, providing a comprehensive basis for the subsequent evaluations
made in Section 5.

4.2.1 Forget Set construction
In the structured datasets employed for unlearning experiments, a ratio of 2.5%
of the total Training Set D is designated as the Forget Set Df . This proportion
is maintained to emulate realistic scenarios where a minimal yet significant data
segment must be forgotten, typically under privacy deletion requests. This setup
tests the model’s ability to selectively forget without retraining and aligns with
regulatory frameworks emphasizing the Right to be Forgotten [1], providing a real-
istic benchmark for evaluating the efficacy of unlearning methods under conditions
that might be encountered in real-world applications.

4.2.2 Models Training
From all the proposed datasets, two model configurations are employed:

• General Model: Trained on the combined Retain Dr and Forget Df sets.
This model assesses the initial performance across all available data before
any unlearning process.

• Gold Model: Trained exclusively on the Retain set Dr. This model serves
as a benchmark for the highest expected performance obtainable. In fact, the
Machine Unlearning framework aims to obtain a model as similar as possible
to the Gold one without retraining everything from scratch.
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Both models undergo the same training regimen, described in detail where
needed in the following paragraphs for each dataset, ensuring that comparisons
reflect differences in data handling and unlearning efficacy rather than variations
in model training.

4.2.3 MUCelebA
CelebA [20] is a widely recognized dataset in machine learning. It is mainly used
in developing and benchmarking algorithms focused on facial attribute recognition
and face detection tasks. It comprises over 200,000 images, each annotated with 40
attribute labels and 5 landmark locations, making it one of the richest datasets
available for facial analysis. In our research, we have chosen to simplify the
complexity of the problem by focusing exclusively on a single label, ‘Arched
Eyebrows’. Limiting the scope to one attribute enhances our ability to analyze and
refine the model’s performance, ensuring a focused and manageable framework for
our experimental evaluations. This simplification can isolate the effects of different
unlearning strategies on the model’s attribute recognition capabilities. An example
of images of the MUCelebA dataset is shown in Fig. 4.2

Figure 4.2: Examples of images taken from the Forget Set of the MUCelebA
dataset

Dataset Preparation and Division

To develop the unlearning dataset MUCelebA, the CelebA dataset [20] is used. To
construct the Forget set Df , only celebrities with at least 20 images are considered
to ensure a robust dataset. These identities are sampled until the Df comprises
2.5% of the entire Train Set D, aiming to simulate realistic scenarios of data
removal under privacy constraints. This methodological approach should ensure
fair model training and practical unlearning experiments across diverse identity
representations.
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After creating the Forget Set Df , the remainder of the data is segmented into
Retain, Validation, and Test Sets at ratios of 80%, 10%, and 10%, respectively,
excluding the Df images. The guidelines explained in 4.1 are followed.

Model Training and Data Augmentation

In the models’ training phase, a series of data augmentation techniques are system-
atically applied to increase the diversity of the dataset, prevent overfitting, and
simulate a real-world scenario.

The images are first resized to a uniform dimension of 128x128 pixels to stan-
dardize input size across all data. Random horizontal flipping introduces variability
in the dataset, simulating different orientations and perspectives. Additionally, ran-
dom affine transformations are applied, which include slight rotations, translations,
scaling by a factor of 0.8 to 1.2, and shearing by up to 10 degrees. This helps the
model learn to recognize features under various geometric transformations. Color
jittering is also applied to adjust the brightness, contrast, and saturation of the
images by up to 20%, further enhancing the model’s robustness to different lighting
conditions and color variations.

These transformations are compiled into a transformation pipeline using a
composition of functions, ensuring each image in the training set undergoes the
same sequence of transformations (but applied with random parameters every time)
before being converted into a tensor for model training.

Implementation and Use

Structured files organize the datasets to facilitate easy access during the machine
learning workflows, supporting reproducible results in training, validation, and
testing phases across different experimental setups. The models trained on these
datasets are also saved to ensure consistency and coherence in the results across
various tests. This practice allows for maintaining specific model states, enabling
reliable comparisons and evaluations of unlearning effectiveness in subsequent
experiments.

4.2.4 Modified MUFAC (MMUFAC)
The MUFAC dataset, introduced in [11], is designed to evaluate Machine Unlearning
methods focusing on facial age classification. This novel dataset consists of over
13,000 facial images collected from participants in South Korea, each annotated
with age and personal identity number. The age classification process is organized
into nine distinct bins, each representing a specific range of age groups.

This setup aims to unlearn specific personal privacy instances while preserving
the model’s original functionality. Such a configuration ensures that the dataset can
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effectively test the robustness and performance of machine unlearning algorithms
in realistic and practical settings. An example of images of the MMUFAC dataset
is shown in Fig. 4.3

Figure 4.3: Examples of images taken from the Forget Set of the Modified MUFAC
dataset

Dataset Preparation and Division

To create Modified MUFAC, the dataset proposed in [11] was examined, and some
modifications were applied. In fact, within the dataset, some of the images were
duplicated even in the training dataset, making the results obtained from the latter
not rigorous for the framework proposed in Machine Unlearning, described also in
4.1.

The first step in generating a new dataset from the one just proposed was to
delete all duplicate images within the original dataset. All images with a cosine
similarity of 0 to at least another image were removed to do this. Thus, 4,956 out
of the initial 10,025 were removed from the Training Set D, 340 out of 1,539 for
Validation Dval, and 388 out of 1,504 for Test Dtest. At the end of this first phase,
from the initial total dataset of 13,068 images, a dataset of 9,119 unique images
was obtained.

After obtaining this new dataset, the images were stratified between D, Dval, and
Dtest, resulting in 8,229 training images, 445 validation and test images. The split
between Retain Dr and Forget Df was applied following 4.2.1, thus going to select
2.5% of D for Df selecting only identities with at least 16 images. Furthermore, as
expressed in 4.1, identities that must be forgotten are absent in any other dataset.

Model Training, Data Augmentation, Implementation and Use

The transformations applied to the dataset images and the related data augmenta-
tion are the same as proposed for MUCelebA in Section 4.2.3. Similarly, the data
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obtained were saved for reproducibility, as in Section 4.2.3.

4.2.5 MUCifar-100
The CIFAR-100 dataset [21] is an established benchmark in machine learning,
mainly used for evaluating image recognition algorithms. Comprising 60,000
32x32 color images, CIFAR-100 is divided into 100 classes, each containing 600
images. What sets CIFAR-100 apart is its organization into 20 superclasses, each
encompassing 5 semantically related classes. This structure allows for a layered
approach to classification tasks beyond identifying individual classes; models can
be trained and tested to recognize and categorize images according to these broader
superclass categories. This superclass classification introduces complexity and
realism to the task, simulating more nuanced real-world scenarios where objects
must be identified individually and to larger categorical groupings. Currently, only
the standard classification of the 100 classes is evaluated. An example of images of
the MUCifar-100 dataset is shown in Fig. 4.4

Figure 4.4: Examples of images taken from the Forget Set of the MUCifar-100
dataset

Dataset Preparation and Division

The CIFAR-100 Dataset for each class offers 500 Training images and 100 Testing
images. Considering the following division, for MUCifar-100, the images are divided
as follows:

• For Train, it uses the entire CIFAR-100 Train Dataset.

• For Retain and Forget, following the guidelines explained in Section 4.1,
97.5% of the images are allocated for the Retain Set Dr and 2.5% for the
Forget Set Df , guided by a fixed seed.
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• For Validation and Test, the original CIFAR-100 Test Dataset into two
halves creating Validation Set Dval and Test Set Dtest, respectively.

Model Training, Data Augmentation, Implementation and Use

No transformations are applied to the dataset images since the lower resolution of
the images of the Cifar dataset and not data augmentation is applied differently
from the one proposed in Section 4.2.3.

The data obtained were saved for reproducibility, as in Section 4.2.3.
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Experimental Results

5.1 Experimental Setup
This section describes the experimental framework established to evaluate the
effectiveness of the proposed Machine Unlearning method. The experimental design
uses distinct datasets to rigorously assess these aspects under various scenarios.

5.1.1 Unlearning Models
The experiments used several unlearning methods to establish comprehensive
comparative results:

• Proposed Method (PM): Described in Chapter 3.

• Base Model (BM): Starting model trained with all the training data, using
both retain and forget sets.

• Retrained Model (RM): Model trained from scratch using only the retain
set.

• Other Methods: Includes various state-of-the-art unlearning methods from
recent literature, such as Competent and Incompetent Teachers Method
(CIT), SCRUB, Fine-tuning, Negative Gradient Ascent (NNegGrad), Advanced
NegGrad (ANegGrad), CF-k, and UNSIR. All these methods are described in
detail in Section 2.1.

5.1.2 Dataset Description
The experiments were conducted on three specific datasets described in Section 4.2:
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• MUCelebA: A variant of the CelebA dataset, modified to facilitate the
testing of unlearning for facial attributes.

• Modified MUFAC: This dataset focuses on facial age attributes, taken from
an already existing unlearning dataset [11] and adapted for the unlearning
framework guidelines described in 4.1.

• MUCIFAR-100: Uses CIFAR-100 dataset to examine unlearning across a
more comprehensive collection of object categories and a different environment.

Each dataset was tested using a convolutional neural network (CNN) designed
for specific attributes or categories. Initially, networks were trained on the complete
datasets without any backbone and saved to set a common baseline for performance.
The proposed unlearning method was then applied.

5.1.3 Metrics for Evaluation
To measure the efficacy and efficiency of each unlearning method, the following
metrics were considered, described more in detail in Section 2.2:

• Forgetting Score: Assesses how well the model protects privacy post-
unlearning on the forgot data, estimating susceptibility to inference attacks.

• F1 Score: Evaluates the accuracy and utility of the model after the unlearning
process.

• Time Efficiency: Measures the time required for retraining, reflecting the
method’s practicality for real-world application.

5.2 Comparative Analysis
The results of the experiments provide a comprehensive analysis of the proposed
Machine Unlearning method compared to several baseline and advanced methods.
The evaluations are based on the Forgetting Score, F1 score, and computational time,
measured across three datasets: MUCelebA, Modified MUFAC, and MUCIFAR-100.
This section discusses the key findings from each dataset.

For ease of visualization, the following results show the best models that min-
imized the Forgetting Score, which is considered the most critical metric for
evaluating the goodness of an Unlearning algorithm. Specifically, each table will
use a color gradient from darkest to lightest green to indicate the top three config-
urations, with the darkest green representing the best model, followed by a slightly
lighter green for the second best and the lightest green highlighting the third.
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For each dataset in this study, another table includes results from the Base
Model, the best-performing configuration of the Proposed unlearning Method, and
the fully Retrained Model. The Base Model provides a reference point or lower
bound for assessing the effectiveness of unlearning, while the Retrained Model
serves as an upper bound, representing the ideal scenario of model performance
after complete retraining. This structured presentation underscores the effectiveness
of the proposed method and places its performance within the broader unlearning
settings, enabling an evaluation of its practical applicability and limitations.

5.2.1 Results on MUCelebA
As shown in Table 5.1, the proposed unlearning method outperformed known
techniques to reduce MIA accuracy, suggesting enhanced privacy preservation.
Additionally, the proposed method maintained a high F1 score, indicating a minimal
loss in model utility. Excellent results were also achieved when comparing the
Proposed Method with the Base and Retrained Model, as visible in Table 5.2. In
fact a Forget Score even lower than that obtained with the Retrained Model is
achieved in ~1/10th of the time, keeping the overall F1 score competitive.

5.2.2 Results on MMUFAC
In the Modified MUFAC dataset, the Proposed Method demonstrated overall
superior performance with respect to other ones considering all the metrics proposed,
as detailed in Table 5.3. Although, on the one hand, the best Forget Score was
obtained by NegGrad, the latter had an important loss in F1 Score compared with
the proposed method (-10%), and the time required was about 10 times longer.
Good results were also achieved when comparing the Proposed Method with the
Base and Retrained Model, as visible in Table 5.4. In fact a Forget Score comparable
with that obtained with the Retrained Model is achieved in ~1/100th of the time.
On the other hand, a drop of ~11% in F1 score is obtained. However, we would like
to emphasize that the comparison shown in the table is with respect to the method
that obtains a minimal Forget Score, which affects the overall performance of the
model. However, it is also possible to choose, through tuning the hyperparameters,
a configuration that, at the expense of the Forget Score, increases the usability of
the model.

5.2.3 Results on Modified CIFAR-100
The modified CIFAR-100 results, presented in Table 5.5, illustrate the method’s
effectiveness across a broader range of object categories. As observed in Section
5.2.2, NegGrad is the top-performing method again. However, in this instance,
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Table 5.1: MUCelebA - Evaluation of Unlearning Methods

Method Smart TF SF Forget Score F1 Time
PM True 0.2 0.3 0.00814 ± 0.00086 0.83473 ± 0.0035 138.09 ± 2.02
PM False 0.2 - 0.0222 ± 0.00465 0.84105 ± 0.00052 32.28 ± 0.65
PM True 0.2 0.5 0.00186 ± 0.00125 0.82152 ± 0.00313 144.67 ± 1.13
PM True 0.2 0.7 0.00915 ± 0.00275 0.80405 ± 0.00577 147.58 ± 2.94
PM True 0.2 0.9 0.00475 ± 0.00276 0.77696 ± 0.00626 146.21 ± 0.83
PM True 0.4 0.3 0.00729 ± 0.00198 0.83709 ± 0.00231 148.95 ± 0.74
PM False 0.4 - 0.02373 ± 0.00858 0.84075 ± 0.00056 58.72 ± 1.3
PM True 0.4 0.5 0.00203 ± 0.00183 0.8262 ± 0.00696 152.03 ± 0.84
PM True 0.4 0.7 0.0039 ± 0.00175 0.8122 ± 0.00488 150.20 ± 1.95
PM True 0.4 0.9 0.00847 ± 0.00054 0.79019 ± 0.00381 145.48 ± 1.13
PM True 0.6 0.3 0.00864 ± 0.00361 0.83757 ± 0.00226 153.50 ± 3.38
PM False 0.6 - 0.02254 ± 0.00576 0.8402 ± 0.00047 88.36 ± 1.09
PM True 0.6 0.5 0.00475 ± 0.00403 0.82752 ± 0.00234 149.99 ± 1.95
PM True 0.6 0.7 0.00119 ± 0.00127 0.81723 ± 0.00288 149.43 ± 2.63
PM True 0.6 0.9 0.00458 ± 0.00148 0.80679 ± 0.00261 149.42 ± 1.00
PM True 0.8 0.3 0.00695 ± 0.00164 0.83637 ± 0.00327 152.75 ± 3.47
PM False 0.8 - 0.02254 ± 0.00666 0.84067 ± 0.00080 113.94 ± 1.25
PM True 0.8 0.5 0.00475 ± 0.00243 0.83199 ± 0.00374 152.11 ± 2.97
PM True 0.8 0.7 0.00136 ± 0.00068 0.81975 ± 0.00371 150.02 ± 0.61
PM True 0.8 0.9 0.00424 ± 0.00107 0.81298 ± 0.00319 150.02 ± 0.65
CIT - - - 0.02729 ± 0.00736 0.84095 ± 0.00079 137.61 ± 1.83
SCRUB - - - 0.03373 ± 0.00189 0.83794 ± 0.00218 287.74 ± 3.83
Fine-tuning - - - 0.01458 ± 0.00099 0.84015 ± 0.00051 292.67 ± 13.35
NNegGrad - - - 0.02305 ± 0.00136 0.49216 ± 0.0 665.88 ± 50.63
ANegGrad - - - 0.01864 ± 0.0 0.49216 ± 0.0 613.82 ± 46.1
CF-k - - - 0.01492 ± 0.00138 0.84011 ± 0.00129 330.13 ± 25.81
UNSIR 1 - - - 0.00441 ± 0.00136 0.61622 ± 0.00793 18.47 ± 1.29
UNSIR 2 - - - 0.02576 ± 0.00175 0.80812 ± 0.00084 162.35 ± 6.19

Table 5.2: Comparison between Base Model, Proposed Method, and Retrained
Model for the MUCelebA dataset

Models Forget
Score F1 Time

Base Model 0.03136 0.84249 -
Proposed Method 0.00119 0.81723 ~149 s
Retrained Model 0.01864 0.82117 ~4.800 s

the method renders the resulting model ineffective, reducing the F1 score of the
classification to ~0. This even more pronounced result is probably due to the greater
complexity and variance of the different elements to be forgotten, which is the goal
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Table 5.3: MMUFAC - Evaluation of Unlearning Methods

Method Smart TF SF Forget Score F1 Time
PM True 0.2 0.3 0.06311 ± 0.00668 0.44954 ± 0.00288 4.80316 ± 0.25547
PM False 0.2 - 0.07244 ± 0.00333 0.47219 ± 0.0024 1.4332 ± 0.01707
PM True 0.2 0.5 0.05689 ± 0.00333 0.40916 ± 0.00796 4.58285 ± 0.03898
PM True 0.2 0.7 0.03289 ± 0.00259 0.35937 ± 0.00368 4.67907 ± 0.18256
PM True 0.2 0.9 0.02844 ± 0.00259 0.32721 ± 0.01458 4.5801 ± 0.02906
PM True 0.4 0.3 0.06711 ± 0.00259 0.44776 ± 0.00223 5.47629 ± 0.10373
PM False 0.4 - 0.072 ± 0.00301 0.46917 ± 0.00443 2.71508 ± 0.03119
PM True 0.4 0.5 0.05333 ± 0.00243 0.41891 ± 0.00427 5.45323 ± 0.02643
PM True 0.4 0.7 0.04222 ± 0.00579 0.36493 ± 0.0044 5.55084 ± 0.08248
PM True 0.4 0.9 0.03067 ± 0.00475 0.34111 ± 0.00217 5.53582 ± 0.05423
PM True 0.6 0.3 0.06711 ± 0.00788 0.44936 ± 0.00249 6.52877 ± 0.21303
PM False 0.6 - 0.07244 ± 0.00178 0.46894 ± 0.00499 4.1143 ± 0.11052
PM True 0.6 0.5 0.06089 ± 0.00178 0.42663 ± 0.00605 6.56231 ± 0.1797
PM True 0.6 0.7 0.04889 ± 0.00674 0.38279 ± 0.01026 6.58748 ± 0.08568
PM True 0.6 0.9 0.03289 ± 0.00259 0.35284 ± 0.00538 6.4724 ± 0.07618
PM True 0.8 0.3 0.072 ± 0.00573 0.45172 ± 0.00256 7.54654 ± 0.10266
PM False 0.8 - 0.076 ± 0.00089 0.47181 ± 0.00365 5.33966 ± 0.04867
PM True 0.8 0.5 0.05822 ± 0.00327 0.43097 ± 0.00363 7.55295 ± 0.07466
PM True 0.8 0.7 0.04667 ± 0.00544 0.39277 ± 0.00885 7.45845 ± 0.09222
PM True 0.8 0.9 0.03333 ± 0.00372 0.36436 ± 0.00959 7.62963 ± 0.09218
CIT - - - 0.07289 ± 0.00166 0.47231 ± 0.00574 9.50081 ± 1.79894
SCRUB - - - 0.06756 ± 0.00939 0.4766 ± 0.01866 21.07753 ± 6.49913
Finetuning - - - 0.064 ± 0.00871 0.48205 ± 0.01313 18.00045 ± 0.68536
NNegGrad - - - 0.00844 ± 0.00552 0.2419 ± 0.0066 30.95192 ± 5.06902
ANegGrad - - - 0.05467 ± 0.01019 0.42306 ± 0.00582 34.5031 ± 5.90625
CF-k - - - 0.05956 ± 0.00978 0.48845 ± 0.00629 15.58888 ± 0.39335
UNSIR 1 - - - 0.05822 ± 0.0086 0.33562 ± 0.0075 1.92166 ± 0.03935
UNSIR 2 - - - 0.04222 ± 0.00932 0.42906 ± 0.00762 10.76562 ± 0.44512

Table 5.4: MMUFAC - Evaluation of Base Model, Proposed Method, and Re-
trained Model

Models Forget
Score F1 Time

Base Model 0.06667 0.49227 -
Proposed Method 0.02844 0.32721 ~5 s
Retrained Model 0.02444 0.44030 ~258 s

of the created dataset. The results obtained are similar to those obtained in the
Section 5.2.2. In fact, in the configuration where the Forget Score is minimized, a
drop in model performance can also be found.
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Table 5.5: MUCifar-100 - Evaluation of Unlearning Methods

Method Smart TF SF Forget Score F1 Time
PM True 0.2 0.3 0.07488 ± 0.00111 0.59845 ± 0.00497 9.96114 ± 0.12069
PM False 0.2 - 0.1012 ± 0.00179 0.66761 ± 0.00195 1.82243 ± 0.05066
PM True 0.2 0.5 0.06416 ± 0.00369 0.54263 ± 0.00348 9.91257 ± 0.05686
PM True 0.2 0.7 0.04264 ± 0.00445 0.47305 ± 0.00672 10.05311 ± 0.08404
PM True 0.2 0.9 0.0224 ± 0.00236 0.36696 ± 0.00559 9.9123 ± 0.06978
PM True 0.4 0.3 0.0752 ± 0.00406 0.60914 ± 0.00805 11.34402 ± 0.08833
PM False 0.4 - 0.1024 ± 0.00524 0.6664 ± 0.00142 3.35824 ± 0.03097
PM True 0.4 0.5 0.06688 ± 0.00406 0.54656 ± 0.00539 11.30217 ± 0.15009
PM True 0.4 0.7 0.04816 ± 0.00387 0.49028 ± 0.00938 11.25555 ± 0.12928
PM True 0.4 0.9 0.02376 ± 0.00412 0.38885 ± 0.00734 11.27956 ± 0.12491
PM True 0.6 0.3 0.07736 ± 0.00363 0.60796 ± 0.00691 12.6978 ± 0.3074
PM False 0.6 - 0.10032 ± 0.00272 0.66639 ± 0.0013 4.77986 ± 0.11886
PM True 0.6 0.5 0.0684 ± 0.00219 0.55463 ± 0.00494 12.50386 ± 0.12446
PM True 0.6 0.7 0.04584 ± 0.00557 0.48919 ± 0.01 12.81051 ± 0.12623
PM True 0.6 0.9 0.02456 ± 0.00268 0.3927 ± 0.00713 12.75022 ± 0.05671
PM True 0.8 0.3 0.078 ± 0.00316 0.61658 ± 0.00589 13.95336 ± 0.17268
PM False 0.8 - 0.09912 ± 0.00326 0.66499 ± 0.00092 6.29831 ± 0.15163
PM True 0.8 0.5 0.06768 ± 0.00252 0.55725 ± 0.00284 13.99794 ± 0.22447
PM True 0.8 0.7 0.04616 ± 0.00259 0.49392 ± 0.00331 14.24257 ± 0.21711
PM True 0.8 0.9 0.02136 ± 0.00149 0.39776 ± 0.00746 13.94258 ± 0.26383
CIT - - - 0.09808 ± 0.00217 0.66291 ± 0.00223 7.30337 ± 0.04171
SCRUB - - - 0.0992 ± 0.00409 0.66401 ± 0.0082 32.77273 ± 0.53816
Finetuning - - - 0.10784 ± 0.00281 0.67924 ± 0.00148 31.25241 ± 0.57818
NNegGrad - - - 0.01104 ± 0.00796 0.0045 ± 0.0 52.63538 ± 0.31323
ANegGrad - - - 0.03736 ± 0.0047 0.54414 ± 0.00563 59.79322 ± 0.15162
CF-k - - - 0.10344 ± 0.00144 0.67209 ± 0.0017 29.17457 ± 0.23693
UNSIR 1 - - - 0.0436 ± 0.00503 0.42138 ± 0.01243 2.78836 ± 0.0607
UNSIR2 - - - 0.09968 ± 0.00471 0.66349 ± 0.00336 18.06136 ± 0.154

Table 5.6: MUCIFAR-100 - Evaluation of Base Model, Proposed Method, and
Retrained Model

Models Forget
Score F1 Time

Base Model 0.10520 0.66010 -
Proposed Method 0.02136 0.39776 ~14 s
Retrained Model 0.00320 0.65290 ~420 s
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Chapter 6

Conclusions

The work presents a comprehensive investigation into the Machine Unlearning
framework, addressing several critical aspects contributing to the theoretical un-
derstanding of data privacy in machine learning.

This research contributes threefold: the development of a novel unlearning
method, introducing new datasets for benchmarking unlearning techniques, and a
thorough survey of existing unlearning methodologies.

The conclusions drawn from this research identify critical areas for future studies
and outline the current limitations and possible enhancements. The final part of
the conclusions describes these in detail, guiding efforts to improve the robustness
and applicability of unlearning methods in more complex and diverse scenarios.

6.1 Summary of Findings
This work has explored the efficacy of various Machine Unlearning methods, em-
phasizing developing and evaluating a novel unlearning approach. The experiments
conducted across multiple datasets—MUCelebA, MMUFAC, and MUCIFAR-100—
and metrics—Forget Score, F1 Score, and Time Efficiency—have provided extensive
insights into the capabilities and performance of the proposed method compared
to existing techniques. Here, we summarize the key findings:

• Enhanced Privacy Measures: The proposed unlearning method consis-
tently reduced the effectiveness of Membership Inference Attacks across all
tested datasets keeping the model utility and the time constraints. This
improvement indicates a significant enhancement in privacy, addressing the
critical need for compliance with stringent data protection regulations such as
GDPR.

• Preservation of Model Utility: Despite the rigorous unlearning processes,
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the proposed method successfully maintained an acceptable F1 score, indicating
minimal impact on the model’s predictive accuracy and utility. This balance
is crucial for practical applications where privacy and performance are critical.

• Computational Efficiency: The method demonstrated a competitive edge
in computational time compared to the other methods. This efficiency makes
it viable for real-time applications and large-scale data environments, which
are increasingly common in industry settings.

• Adaptability Across Diverse Data: The effectiveness of the proposed
method across different types of data (facial attributes and object categories)
showcases its adaptability, making it a versatile tool.

These findings underscore the potential of the proposed unlearning method to
serve as a robust solution for Machine Unlearning challenges, facilitating regulatory
compliance and safeguarding user privacy without sacrificing performance. Future
research should aim to expand this method’s adaptability to other forms of data
and revise the current weaknesses of the proposed method highlighted in Section 5.

6.2 Limitations

One of the principal limitations identified in this work concerns establishing a
universally accepted and comprehensive framework for Machine Unlearning that is
robust enough to be adopted in legislative contexts. While the proposed unlearn-
ing method demonstrates substantial improvements in privacy preservation and
computational efficiency, there remains a gap in standardizing these approaches to
satisfy legal requirements consistently. Current methodologies, including the one
developed in this study, often focus on specific datasets or scenarios, which may not
universally translate across different legislative environments where data deletion
requests must be handled legally. This limitation is critical because legal standards
for data privacy, such as those mandated by the GDPR, require verifiable assurance
that the data cannot be reconstructed or inferred. The complexity of achieving this
level of compliance is compounded in scenarios involving large-scale data or complex
model architectures, where unlearning must be executed without compromising the
underlying model’s integrity or performance. Future improvements should aim at
developing more generalized frameworks that can adapt to varying legal standards
and are capable of providing empirical evidence to support the compliance of the
unlearning processes.
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6.3 Future Work
A key direction for future research is the development of more robust and com-
prehensive metrics to evaluate Machine Unlearning methods. The effectiveness of
unlearning techniques is currently measured by a limited set of metrics, such as
the Membership Inference Attack (MIA) accuracy and the Model’s Utility, which
do not fully capture the possible effects of unlearning. These metrics, while helpful,
often fail to address the complex dynamics involved in the unlearning process while
considering the final model’s performance.

Moreover, as machine learning models grow in complexity and are applied
across more diverse scenarios, the need for metrics that can effectively measure
the impact of unlearning on model stability, scalability, and performance becomes
increasingly important. Future efforts should focus on designing metrics that assess
the immediate effects of unlearning and evaluate the long-term implications on
model behavior and data integrity. These metrics should clarify how unlearning
modifies a model’s information landscape, ensuring these changes align with legal
standards and operational requirements. The advancement of these metrics will
play a crucial role in establishing Machine Unlearning as a reliable and legally
compliant tool in a world of AI-driven technologies.

In addition to enhancing metrics, there is a significant opportunity to expand the
application of unlearning methods beyond Convolutional Neural Networks (CNNs)
to include more complex architectures such as Large Language Models (LLMs).
LLMs represent a substantial portion of modern AI applications. However, their
complex structures and extensive data in the training phase make unlearning par-
ticularly challenging to apply and evaluate. Research into unlearning mechanisms
for LLMs could broaden the applicability of these techniques and lead to more
responsible use of these models.

Additionally, while this work has primarily focused on the privacy aspects of
unlearning, the methodology holds promise for addressing other critical issues
in machine learning, such as the problem of model bias [19]. Unlearning can
be strategically applied to remove biased data from training sets, thus helping
to make models more fair. This approach can be particularly beneficial when
initial training data inadvertently incorporates biases that reflect and perpetuate
societal inequalities. For this reason, Machine Unlearning also aligns with the
growing demand for ethical AI, where the ability to correct and adjust AI behavior
post-deployment is crucial.

35



List of Tables

5.1 MUCelebA - Evaluation of Unlearning Methods . . . . . . . . . . . 30
5.2 Comparison between Base Model, Proposed Method, and Retrained

Model for the MUCelebA dataset . . . . . . . . . . . . . . . . . . . 30
5.3 MMUFAC - Evaluation of Unlearning Methods . . . . . . . . . . . 31
5.4 MMUFAC - Evaluation of Base Model, Proposed Method, and

Retrained Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.5 MUCifar-100 - Evaluation of Unlearning Methods . . . . . . . . . . 32
5.6 MUCIFAR-100 - Evaluation of Base Model, Proposed Method, and

Retrained Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

36



List of Figures

1.1 Anatomy of the Machine Unlearning framework . . . . . . . . . . . 3
1.2 Anatomy of the SISA Framework [7]. The dataset D is partitioned

into multiple shards (D1, . . . , Ds), each trained on separate models
(M1, . . . ,Ms). The red square highlights the specific data shard that
needs to be unlearned. Outputs from all models are then aggregated
to form the final model output . . . . . . . . . . . . . . . . . . . . . 5

2.1 Anatomy of the Competent and Incompetent Teachers Framework [9] 9

3.1 Diagram of the Data Preparation for Unleraning. α is the ‘smart
fraction’, i.e., the fraction of images sampled based on the similarity
of the new Retain subset, described in Section 3.1.1. . . . . . . . . . 15

3.2 Example of image selection for the model reconstruction phase.
Stars indicate data points of Df in the feature space, and circles
represent data points of Dr. Circle shading intensity correlates with
the frequency of use in the reconstruction phase. The left image
shows the conventional selection method applied in [9], while the
right image displays the selection method proposed. . . . . . . . . . 16

3.3 Diagram of the Unlearning process. β sets the ratio of Retain and
Forget data to take in each step. bs represents the batch size dimension. 17

4.1 Diagram of the data division convention in the unlearning framework 19
4.2 Examples of images taken from the Forget Set of the MUCelebA

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Examples of images taken from the Forget Set of the Modified

MUFAC dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Examples of images taken from the Forget Set of the MUCifar-100

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A.1 Example of SBS applied to an image to be forgotten in the MUCelebA
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

37



List of Figures

A.2 Example of SBS applied to an image to be forgotten in the Modified
MUFAC dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

A.3 Example of SBS applied to an image to be forgotten in the MUCifar-
100 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

38



Appendix A

Similarity-Based Sampling
examples

This appendix provides a detailed illustration of the Similarity-Based Sampling
(SBS) method. The method’s efficacy is demonstrated through specific examples
from each dataset, where an image taken from the Forget Set is paired with the
nearest images in the feature space of the Retain Set. These examples demonstrate
the method’s effectiveness in identifying and grouping similar data points. By
visually representing these relationships, we highlight how the algorithm can cluster
related images, reinforcing the robustness and utility of the employed unlearning
strategy. This enhances the model’s ability to selectively forget without losing
significant contextual information.

For each of the following figures, the first image is the target from the Forget
Set, intended for unlearning. The five nearest images from the retained set follow
the target image, illustrating the close similarity and relevance between the target
and retained data. This visual comparison underscores the effectiveness of the
similarity-based approach in accurately identifying and grouping similar instances
within the datasets, facilitating targeted and efficient unlearning.

Figure A.1: Example of SBS applied to an image to be forgotten in the MUCelebA
dataset
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Similarity-Based Sampling examples

Figure A.2: Example of SBS applied to an image to be forgotten in the Modified
MUFAC dataset

Figure A.3: Example of SBS applied to an image to be forgotten in the MUCifar-
100 dataset
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