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Summary

Plant health monitoring is critical for ensuring agricultural
productivity and sustainability. Traditional methods of
monitoring plant health are often labor-intensive, time-
consuming, and subject to human error. With the increasing
global demand for food and the challenges posed by climate
change, there is a pressing need for more efficient, accurate,
and scalable solutions. Neural networks, a subset of artificial
intelligence, have emerged as a powerful tool to address
complex problems in various domains, including agriculture.

This master’s thesis investigates the creation and deploy-
ment of firmware designed to monitor plant health via
impedance analysis, utilizing neural networks. The impor-
tance of monitoring plant health in fields such as agriculture, horticulture, and
environmental science highlights the need for effective and reliable methodologies.
Conventional methods frequently lack accuracy and real-time monitoring capabili-
ties, often relying solely on environmental condition predictions. This research
aims to use intrinsic characteristics to develop firmware capable of accurately
assessing the health status of plants.
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The research starts by reviewing neural network architectures to find suitable
designs. Firmware was developed using an STM32 Nucleo devkit with a sensor
shield for data measurement, conducted by doctoral students from the eLiONS
group. The project includes remote control features via the low-power, long-
range LoRaWAN protocol. Results were evaluated using The Things Network, a
common LoRaWAN stack.

In summary, the integration of neural networks into plant health monitoring
systems represents a significant advance in agricultural technology. This thesis
aims to contribute to the body of knowledge in this field by providing a com-
prehensive study of neural network firmware, its design, implementation, and
practical applications in monitoring plant health.
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Chapter 1

Introduction

Plant health is critical to agricultural productivity and global food security. As
the world’s population continues to grow, the need for efficient and sustainable
farming practices becomes more pressing. Healthy plants are essential not only
for food production but also for maintaining ecological balance and biodiversity.
Performing effective monitoring of plant health can help prevent crop losses, re-
duce the need for chemical interventions, and ensure optimal growth conditions,
contributing to a sustainable future [1].

Figure 1.1: Global food security challenges highlighted by the FAO.

The Food and Agriculture Organization (FAO) of the United Nations high-
lights that the world is facing an unprecedented crisis in food security. Several

1



Introduction

factors contribute to this crisis, including climate change, soil degradation,
water scarcity, and the increasing prevalence of pests and diseases. Climate
change, in particular, has altered weather patterns, leading to extreme events
such as droughts and floods that directly impact crop yields. Soil degradation,
resulting from unsustainable farming practices, reduces the land’s fertility,
further exacerbating food production challenges. In addition, the overuse of
chemical fertilizers and pesticides has led to environmental pollution and a
decrease in biodiversity [1].

Effective plant health monitoring is essential to address these challenges. Early
detection of plant stress, diseases, and nutrient deficiencies can enable timely
interventions, reducing the risk of significant crop loss. Advanced monitoring
techniques can also provide farmers with precise information about the health
of their crops, allowing for more targeted and efficient use of resources such
as water and fertilizers. This not only helps in improving crop yields but also
contributes to the sustainability of agricultural practices [1].

1.1 Limitations of Existing Commercial
Solutions

In recent years, various commercial solutions have emerged that utilize different
types of sensors and communication protocols to monitor plant health. These
solutions range from simple moisture sensors to sophisticated devices that
measure a variety of environmental and physiological parameters. Despite their
advancements, many existing commercial nodes have limitations in terms of
accuracy, range, and power consumption [2].

Figure 1.2: Example of a commercial plant health monitoring device.
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1.2 – Innovative Approach: Neural Network Firmware

For instance, some commercial devices rely heavily on environmental condition
predictions and do not account for the intrinsic characteristics of plants that
may indicate health issues. Others may offer high accuracy, but are limited
by short-range communication protocols or high power consumption, making
them less suitable for large-scale or remote agricultural operations [3]. These
limitations highlight the need for a more robust and efficient approach to plant
health monitoring.

1.2 Innovative Approach: Neural Network
Firmware

This research aims to develop neural network firmware for monitoring plant
health, addressing the shortcomings of current methods. Using impedance anal-
ysis, the firmware seeks to provide accurate assessments of plant health based
on intrinsic characteristics. Furthermore, the integration of the LoRaWAN
protocol (long-range wide area network) ensures low power consumption and
extensive range, making it ideal for large-scale agricultural applications [4].

The development process involves a thorough examination of existing neural
network architectures to identify the most suitable design for this applica-
tion. The firmware is developed using a devkit from the STM32 Nucleo series,
equipped with a sensor shield containing all necessary devices for data measure-
ment. Measurement tasks are conducted by doctoral students in the eLiONS
group, and the results are monitored through The Things Network, a com-
monly used LoRaWAN stack [5].

This thesis aims to advance plant health monitoring technologies by presenting
a detailed study of neural network firmware, its design, implementation, and
practical applications. The research underscores the importance of leveraging
advanced technologies to ensure sustainable agricultural practices and secure
the future of global food production.
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Chapter 2

Neural Network
Description

2.1 Machine Learning
Machine Learning (ML) is a subset of artificial intelligence that focuses on
the development of algorithms and statistical models that enable computers
to perform specific tasks without explicit instructions. ML algorithms build
models based on sample data, known as training data, to make predictions or
decisions without being programmed to perform the task [6].

The general process of machine learning involves the following steps:

• Data Collection: Gathering relevant data for the task.
• Data Preprocessing: Cleaning and organizing the data.
• Feature Engineering: Selecting and transforming variables (features) to

improve model performance.
• Model Training: Using algorithms to train a model on the data.
• Model Evaluation: Assessing the model’s performance on unseen data.
• Model Deployment: Implementing the model in a real-world scenario.

The goal of machine learning is to minimize a cost function, often called a loss
function, which measures the error between the predicted and actual outputs.
For a dataset with n samples, the Mean Squared Error (MSE) is a commonly
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used loss function, defined as:

MSE = 1
n

nØ
i=1

(yi − ŷi)2

where yi is the actual value and ŷi is the predicted value [7].

2.2 Neural Networks
Neural Networks are a type of machine learning model inspired by the struc-
ture and function of the human brain. They consist of layers of interconnected
nodes, called neurons, that process input data to generate an output. Each
connection between neurons has an associated weight, which is adjusted during
training to minimize the error in predictions [8].

The output of a neuron is calculated as a weighted sum of its inputs, followed
by the application of an activation function:

z =
nØ

i=1
wixi + b

a = σ(z)

where wi are the weights, xi are the inputs, b is the bias term and σ is the
activation function [9].

Figure 2.1: Example of a neuron

6



2.3 – Neural Network Model for Plant Health Monitoring

2.2.1 Activation Functions: ReLU
An activation function determines whether or not a neuron should be activated,
based on the input it receives. One of the most popular activation functions is
the Rectified Linear Unit (ReLU). ReLU is defined as:

ReLU(x) = max(0, x)

Figure 2.2: Plotting of ReLU function

ReLU introduces non-linearity into the model, enabling it to learn complex
patterns. It is computationally efficient and helps mitigate the problem of
vanishing gradients, making it suitable for deep neural networks [10].

2.3 Neural Network Model for Plant Health
Monitoring

In this project, we develop a neural network model designed to monitor plant
health by analyzing two input features: Soil Water Potential (SWP) and
Impedance. The model outputs a status indicator that signifies the health
condition of the plant.

An example of the NN used is provided in Figure 2.3.

2.3.1 Network Inputs
For plant health monitoring, the approach of the project tries to estimate the
status from the features provided. The latter were measured with a custom

7
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Figure 2.3: Drawing of project NN structure

shield that has been developed by doctoral Calvo [11].

Figure 2.4: Sensors setup on plant

Soil Water Potential

The SWP is an important indicator of plant health, that measures the energy
of migrating fluid, in this case water, and it is characterized by Clapeyron equa-
tions. Its main composition is the sum of osmotic and soil matric potential, but
in some cases also soil gravitational and pressure matric [12]. The latter can
be used for the study of flux in frozen liquid and for potential in low salinity,
but for the case of study only the osmosis component is important as an indi-
cator of the availability of energy for the plant to absorb unfrozen water from
the environment. This is due to daily transpiration which make necessary to
reintegrate liquids loss [13].

8



2.3 – Neural Network Model for Plant Health Monitoring

SWP is measured in kPa, but the sensor used in this project outputs raw data,
which is called Watermark in this project. This implies that the value needs
a conversion, which is achieved by using two LUTs: respectively converting
Watermark → Resistance and Resistance → SWP . These tables were
provided by doctoral Calvo which used manufacturer datasheet to produce an
accurate characteristic function.

Impedance Modulus
As highlighted by eLiONS team, impedance has been proved to rise under
plant stem drying condition. This appears to be a direct indicator of plant
health, but unfortunately measuring phase in an optical with low power con-
sumption is difficult, especially with the tools currently available on the market
[14]. The current sensor board is capable of measuring impedance using fre-
quency variation inducted in an integrated circuit oscillator.

9
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Chapter 3

Firmware
Implementation

3.1 Introduction
In this chapter, the firmware developed by the candidate is accurately de-
scripted for every part. The project started from the standard LoRaWAN_End_Node
example provided by eLiONS doctorals, who has modified the one shipped by
STM on SDK repository STM32Cube_FW_WL_V1.3.0. The goal of the project
was to implement an application which starts with LoRa transmission ruotine
and then uses the measured values to make a prediction on the health status of
the plant.

3.2 Board Description
It is essential for a developer, but it is also useful for a better understanding
of the thread, to know its target device. In this section, there is a detailed
description of the board which has been used: STM32 Nucleo WL55JC1.

3.2.1 Block Scheme of the Architecture
The STM32 Nucleo WL55JC1 is based on the STM32WL55JC microcontroller,
which integrates a dual-core architecture combining an Arm Cortex-M4 core
and an Arm Cortex-M0+ core. This configuration provides flexibility and
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efficiency in handling various tasks, such as communication protocols and
sensor data processing, simultaneously.

Figure 3.1: Block diagram of the STM32WL55JC architecture [15]

The block diagram (Figure 3.1) illustrates the major components and their
interconnections within the STM32WL55JC microcontroller. Key components
include:

• Cortex-M4 Core: The primary core responsible for executing the main
application code, supporting DSP instructions and floating-point opera-
tions.

• Cortex-M0+ Core: The secondary core used for handling low-power
tasks and peripheral control, optimizing energy efficiency.

• Embedded Memories: Including Flash memory, SRAM1, SRAM2, and
system memory, providing storage for code, data, and boot operations.

12



3.2 – Board Description

• Peripherals: A wide range of peripherals such as GPIOs, ADCs, DACs,
USARTs, I2C, SPI, and more, enabling versatile interfacing with external
devices.

• Radio Subsystem: An integrated sub-GHz radio transceiver support-
ing LoRa, (G)FSK, (G)MSK, and BPSK modulations, essential for IoT
applications.

3.2.2 Memory Address Designation
The STM32WL55JC microcontroller features a comprehensive memory map
that designates specific address ranges for different memory types and pe-
ripherals. Understanding this memory map is crucial for efficient firmware
development and debugging.

Memory Type Address Range
Start End

CPUx Flash 0x0000 0000 0x0003 FFFF
Flash Memory 0x0800 0000 0x0803 FFFF

SRAM2 (CPU1 only) 0x1000 0000 0x1000 7FFF
System Memory 0x1FFF 7000 0x1FFF 73FF

OTP Area 0x1FFF 7400 0x1FFF 77FF
Option Bytes 0x1FFF 7800 0x1FFF 7FFF

SRAM1 0x2000 0000 0x2000 7FFF
SRAM2 0x2000 8000 0x2000 FFFF

Peripheral Registers 0x4000 0000 0x5801 FFFF
CPUx Internal Peripherals 0xE000 0000 0xFFFF FFFF

Table 3.1: Memory address designation of STM32WL55JC [16]

The memory types and their corresponding address ranges are detailed in Table
3.1. This includes:

• CPUx Flash: Memory area used for executing code, mapped to the
beginning of the address space.

• Flash Memory: Non-volatile memory used for storing the main firmware
code.

• SRAM2 (CPU1 only): Dedicated SRAM for CPU1, providing fast
access to frequently used data.

• System Memory: Contains the bootloader, enabling firmware updates
and recovery.

13
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• OTP Area: One-time programmable memory for storing critical data
such as calibration values and keys.

• Option Bytes: Configuration memory for setting device-specific options
such as read-out protection and watchdog timers.

• SRAM1: Primary volatile memory for data storage during operation.
• SRAM2: Additional volatile memory providing more space for data

storage.
• Peripheral Registers: Address ranges dedicated to control and status

registers for on-chip peripherals.
• CPUx Internal Peripherals: Reserved for core functionalities such as

interrupt control, debug, and system configuration.

3.2.3 Peripheral Overview
The STM32 Nucleo WL55JC1 provides a rich set of peripherals that facilitate
diverse applications, particularly in IoT and smart agriculture. Key peripherals
include:

• General-Purpose I/O (GPIO): Configurable pins for digital input/out-
put operations, essential for interfacing with sensors and actuators.

• Analog-to-Digital Converter (ADC): Converts analog signals to
digital values, crucial for processing sensor data.

• Digital-to-Analog Converter (DAC): Generates analog output from
digital values, useful in control applications.

• Universal Synchronous/Asynchronous Receiver Transmitter (US-
ART): Facilitates serial communication, commonly used for debugging
and data transmission.

• Inter-Integrated Circuit (I2C): Enables communication with vari-
ous peripherals such as sensors and EEPROMs using a simple two-wire
interface.

• Serial Peripheral Interface (SPI): Supports high-speed communication
with external devices such as flash memory and display modules.

• Timers and PWM: Provides timing control and pulse-width modulation,
essential for tasks like motor control and signal generation.

• Low-Power Modes: Multiple low-power modes to reduce energy con-
sumption, critical for battery-operated applications.

14



3.3 – X-CUBE-AI

These peripherals, combined with the dual core architecture and integrated ra-
dio subsystem, make the STM32 Nucleo WL55JC1 an ideal platform to develop
sophisticated IoT applications that require reliable performance, efficient power
management, and robust communication capabilities.

3.2.4 Development Environment
The development environment for STM32 Nucleo WL55JC1 involves the use of
STM32CubeIDE, a comprehensive software development suite that integrates
various tools for coding, debugging and programming STM32 microcontrollers.

• STM32CubeMX Integration: Facilitates peripheral configuration and
code generation through a graphical interface.

• Debugger: Offers advanced debugging capabilities, including breakpoints,
watchpoints, and real-time variable monitoring.

• Code Management: Supports version control systems such as Git, aid-
ing in collaborative development.

• Project Templates: Provides ready-to-use project templates for quick
development setup.

• Makefile Generation: Permit an automated way to generate makefiles,
an easy way to quickly run a build configuration.

3.3 X-CUBE-AI
STM Nucleo boards do not support the ONNX neural network directly, as
specified in Section 4.2.1, then a utility is provided by manufacturer. The
following is a comprehensive description of the suite.

The X-CUBE-AI expansion package is an advanced tool and library suite devel-
oped by STMicroelectronics to facilitate the integration of artificial intelligence
(AI) algorithms into STM32 microcontrollers. This comprehensive package
enables developers to deploy pre-trained neural network models on STM32 de-
vices, providing an efficient pathway from AI model development to deployment
on embedded systems. The following sections provide a detailed overview of
the X-CUBE-AI tool and its associated libraries [17].

3.3.1 Overview of X-CUBE-AI
X-CUBE-AI is designed to bridge the gap between AI model development
environments and STM32 microcontroller platforms. It supports the conversion
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of neural network models trained in popular machine learning frameworks such
as TensorFlow, Keras, and ONNX, into optimized C code that can run on
STM32 microcontrollers. This conversion process includes several optimization
techniques to ensure that the neural network operates efficiently within the
resource constraints of an embedded environment [18].

Key Features
The X-CUBE-AI package offers a range of features that facilitate the deploy-
ment of AI models on STM32 microcontrollers:

• Model Conversion: Converts neural network models from high-level
frameworks (e.g., TensorFlow, Keras, ONNX) into optimized C code for
STM32 devices [19].

• Optimization: Includes techniques such as quantization, pruning, and
layer fusion to reduce the memory footprint and computational require-
ments of the neural network [20].

• Performance Monitoring: Provides tools for measuring the runtime
performance of the neural network on the target microcontroller, helping
developers identify and address performance bottlenecks [17].

• Integration with STM32CubeMX: Seamlessly integrates with STM32CubeMX,
a graphical tool for configuring STM32 microcontrollers, simplifying the
process of integrating AI models into embedded applications [21].

• Support for Multiple Neural Network Layers: Supports a wide
range of neural network layers, including dense (fully connected), convolu-
tional, pooling, activation, and recurrent layers [19].

• Memory Management: Efficiently manages memory allocation for
neural network weights, biases, and intermediate activations, ensuring
optimal use of the microcontroller’s resources [19].

Model Conversion and Optimization
The X-CUBE-AI toolchain involves several steps to convert and optimize AI
models for embedded deployment:

• Model Import: Neural network models are imported from supported
frameworks using the X-CUBE-AI GUI or command-line interface [17].

• Layer Mapping: The tool maps high-level neural network layers to
corresponding optimized implementations available in the X-CUBE-AI
library [19].
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• Quantization: The tool performs quantization, reducing the precision of
weights and activations from floating-point to fixed-point representations,
significantly decreasing the model size and computational requirements
[22].

• Pruning: Unnecessary neurons and connections are pruned from the
network, further reducing the model complexity and enhancing inference
speed [23].

• Code Generation: The optimized model is converted into C code, which
includes the necessary functions to run the neural network on the STM32
microcontroller [17].

Integration with STM32CubeMX
The integration with STM32CubeMX simplifies the configuration and deploy-
ment of neural networks on STM32 microcontrollers:

• Graphical Configuration: Developers can use STM32CubeMX’s graph-
ical interface to configure microcontroller peripherals and parameters
required for AI applications [21].

• Code Generation: STM32CubeMX generates initialization code for
peripherals and middleware, including the X-CUBE-AI library, ensuring
seamless integration with the application code [21].

• Project Management: The tool provides project management capabili-
ties, allowing developers to manage files, dependencies, and build settings
within a single integrated environment [21].

Performance Monitoring and Debugging
X-CUBE-AI includes tools for monitoring the performance of neural networks
on STM32 microcontrollers:

• Runtime Analysis: Developers can measure the execution time of each
layer in the neural network, identifying performance-critical sections [19].

• Memory Usage: The tool provides insights into memory allocation
and usage, helping developers optimize the memory footprint of their AI
applications [19].

• Debugging Support: Integrated debugging features allow developers to
step through neural network execution, inspect intermediate results, and
diagnose issues [19].
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3.3.2 Library Files Description
In Figure 3.2 there are some files highlighted in yellow. These are the library
files which come from X-CUBE-AI, except for app_x-cube-ai.c that is in-
tended to be modified by user. In Section 3.5 the user-defined methods are
exhaustively detailed. There are also some files in green: they came from X-
CUBE-AI C model conversion (Section 4.2.1). They need to be updated to
change the neurons in the network. The folder Middlewares containes all head-
ers and static libraries provided by the STM package.

PlantFW_LoRa Middlewares ST AI Lib NetworkRuntime810_CM4_GCC.a

Inc

X-CUBE-AI App app_x-cube-ai.c

app_x-cube-ai.h

normalization.c

normalization.h

plantnetwork.c

plantnetwork_config.h

plantnetwork_data.c

plantnetwork_data.h

plantnetwork_data_params.c

plantnetwork_data_params.h

plantnetwork_generate_report.txt

plantnetwork.h

constants_ai.h

Figure 3.2: X-CUBE-AI library files

3.4 LoRaWAN: Long Range Wide Area
Network

3.4.1 Introduction to LoRa
LoRa (Long Range) is a modulation technique derived from chirp spread spec-
trum (CSS) technology. It is designed for long-range communication with low
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power consumption, making it ideal for Internet of Things (IoT) applications
where devices need to communicate over long distances without consuming
significant amounts of power [24]. LoRa operates in unlicensed ISM (Industrial,
Scientific and Medical) radio bands, such as 868 MHz in Europe and 915 MHz
in North America, providing flexibility for global deployment.

LoRa modulation spreads the signal across a wide frequency spectrum, which
helps in resisting interference and allows for successful data transmission over
long distances, even in challenging environments. The key advantages of LoRa
include its long communication range (up to 15 km in rural areas), low power
requirements, and robustness against interference, which are crucial for battery-
operated devices in remote locations [4].

3.4.2 LoRaWAN Protocol

Figure 3.3: LoRaWAN Network Architecture

LoRaWAN (Long Range Wide Area Network) is a communication protocol
and system architecture designed to manage LoRa wireless communication
networks. It is maintained by the LoRa Alliance, a non-profit association that
drives the standardization and global harmonization of the LoRaWAN protocol
[24].

The LoRaWAN protocol is designed to provide low-power, long-range communi-
cation capabilities to IoT devices. It operates in a star-of-stars topology, where
gateways relay messages between end devices and a central network server.
Gateways are connected to the network server via standard IP connections,
while end devices use single-hop wireless communication to one or multiple
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gateways. The communication between the end devices and gateways is bi-
directional, and the protocol supports multicast operation, which is useful for
firmware updates over the air (FUOTA) [25].

3.4.3 LoRaWAN Architecture
The LoRaWAN network architecture comprises several key components:

• End Devices: These are the sensors or actuators that collect data or
perform actions based on received commands. They are typically battery-
powered and designed for low power consumption.

• Gateways: These devices act as bridges, receiving data from end devices
and forwarding it to the network server. Gateways can cover large areas
and support thousands of end devices.

• Network Server: The central component that manages the network. It
handles data routing, network management, and security. The network
server processes the data received from gateways and forwards it to the
appropriate application servers.

• Application Servers: These servers host the end-user applications that
process and use the data collected by end devices. They provide interfaces
for data analysis, visualization, and control.

Figure 3.3 illustrates the LoRaWAN network architecture, highlighting the
interactions between the end devices, the gateways, the network server and the
application servers.

3.4.4 LoRaWAN Communication Classes
LoRaWAN defines three different device classes to address various application
needs in terms of latency and energy consumption:

• Class A (All): This class offers the lowest power operation, suitable for
battery-powered sensors. Each end device’s uplink transmission is followed
by two short downlink receive windows. Communication from the server
to the end device can only occur immediately after the end device has sent
an uplink transmission. This class is ideal for applications where downlink
communication is infrequent and can wait until the next uplink.

• Class B (Beacon): In addition to the Class A functionalities, Class B
devices open extra receive windows at scheduled times. The network server
uses time-synchronized beacons to ensure that the end device receives
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downlink messages at specific times. This class is suitable for applications
requiring more frequent downlink communication.

• Class C (Continuous): This class offers the lowest latency for down-
link communication, suitable for applications requiring frequent and low-
latency downlink messages. Class C devices have almost continuously open
receive windows, except for the short time needed to transmit uplink mes-
sages. This results in higher power consumption compared to Class A and
Class B devices.

3.4.5 Security in LoRaWAN
Security is a critical aspect of LoRaWAN, ensuring data integrity, confiden-
tiality, and authenticity. LoRaWAN employs a robust security framework that
includes the following features [26]:

• End-to-End Encryption: Data payloads are encrypted between the end
device and the application server using AES-128 encryption.

• Network Security: Ensures the authenticity of the device in the network
using unique network session keys.

• Application Security: Protects application data using unique applica-
tion session keys.

These security measures prevent unauthorized access and ensure that the data
transmitted over the network remains secure and tamper-proof.

3.4.6 LoRaWAN Application Files
The files involved in the projects are stored in LoRaWAN folder. In particular,
se-identity stores LoRaWAN credentials, app_lorawan.c defines the main
processes (init and update) and in lora_app every LoRa event ruotine and
application is defined. This includes also X-CUBE-AI processes because they
are scheduled by LoRaWAN transmission.
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PlantFW_LoRa LoRaWAN App app_lorawan.c

app_lorawan.h

app_version.h

CayenneLpp.c

CayenneLpp.h

Commissioning.h

lora_app.c

lora_app.h

lora_info.c

lora_info.h

se-identity.h

Target

Figure 3.4: LoRaWAN application file tree

22



3.5 – Execution Flow

3.5 Execution Flow
In this section there is an exhaustive description of the main routine of the FW.
All parts that are not described have been left unmodified by the candidate.

Reset

Peripheral
Initialization

LoRaWAN App
Initialization

Is Join 
Task active

Try join
LoRaWAN

Is Transmission
Task active 

Input 
measurements 

X-CUBE-AI
Initialization

Network 
prediction 

Fill output
buffer 

Send data
to LoRaWAN

Succeeded

Disable join 
timer

Enable TX 
timer

Transmission Task Join Task

TX timer tick Join timer tick RX event

Enable TX
Task 

Enable Join
Task 

END

Is RX 
on Port 2?

Is 1 byte long?

Is 2 bytes long?

END
RESET

END

Change TX 
period

Initialization

Sequencer Loop

TX Timer Interrupt Join Timer Interrupt Receiveng Event Interrupt

yes

yes

yes

yes

yes

yes

no

no

no

no

no

no

Figure 3.5: ASM chart of FW

23



Firmware Implementation

3.5.1 Peripheral Initialization
The main() function in the firmware is responsible for the initial setup and
configuration of the microcontroller’s peripherals before entering the main
program loop. This section provides a detailed explanation of the peripheral
initialization process that is typically found in the main.c file.

System Initialization The peripheral initialization process begins with
the system initialization, which includes configuring the system clock and
initializing hardware abstraction layers.

1 i n t main ( void )
2 {
3 /∗ Reset o f a l l p e r i phe r a l s , I n i t i a l i z e s the Flash

i n t e r f a c e and the Sys t i ck . ∗/
4 HAL_Init ( ) ;
5

6 /∗ I n i t STM genuine check (CRC) ∗/
7 __HAL_RCC_CRC_CLK_ENABLE( ) ;
8

9 /∗ Conf igure the system c lo ck ∗/
10 SystemClock_Config ( ) ;

• HAL_Init(): This function initializes the Hardware Abstraction Layer
(HAL) and configures the Flash interface and the Systick timer. It ensures
that the microcontroller is in a known state before peripheral initialization
begins.

• SystemClock_Config(): This function configures the system clock,
setting the clock source, prescalers, and other parameters to ensure the
microcontroller operates at the desired frequency.

Peripheral Initialization
Following system initialization, the main() function proceeds to initialize var-
ious peripherals. Each peripheral typically has its own initialization function,
which sets up the peripheral’s configuration registers and prepares it for use.

1 /∗ I n i t i a l i z e a l l c on f i gu r ed p e r i p h e r a l s ∗/
2 MX_GPIO_Init ( ) ;
3 MX_LoRaWAN_Init( ) ;
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4 MX_I2C2_Init ( ) ;
5 MX_TIM1_Init ( ) ;
6 MX_TIM2_Init ( ) ;

• MX_GPIO_Init(): This function initializes the General-Purpose In-
put/Output (GPIO) pins. It configures the pin modes (input, output,
alternate function), pull-up/pull-down resistors, and initial output levels.

• MX_LoRaWAN_Init(): This function initializes the LoRaWAN com-
munication protocol, enabling the microcontroller to communicate over
long-range wireless networks.

• MX_I2C2_Init(): This function initializes the Inter-Integrated Circuit
(I2C) interface, specifically the I2C2 peripheral, used for communication
with other I2C-compatible devices such as sensors and memory modules.

• MX_TIM1_Init() and MX_TIM2_Init(): These functions initialize
the Timer peripherals TIM1 and TIM2, which are used for generating
precise time delays, PWM signals, and event counting.

GPIO Pin Configuration After initializing the peripherals, specific
GPIO pins are configured to ensure that connected sensors and modules are
properly controlled. The following code sets various pins to a low state (reset):

1 /∗ USER CODE BEGIN 2 ∗/
2 HAL_GPIO_WritePin(GPIOB, EN_SEN_3_Pin, GPIO_PIN_RESET) ;
3 HAL_GPIO_WritePin(GPIOC, EN_SEN_1_Pin, GPIO_PIN_RESET) ;
4 HAL_GPIO_WritePin(GPIOA, EN_SEN_4_Pin, GPIO_PIN_RESET) ;
5 HAL_GPIO_WritePin(GPIOB, EN_SEN_2_Pin, GPIO_PIN_RESET) ;
6 HAL_GPIO_WritePin(GPIOA, IMP_EN_Pin, GPIO_PIN_RESET) ;
7 HAL_GPIO_WritePin(GPIOC, EN_WT_Pin, GPIO_PIN_RESET) ;
8 CLEAR_BIT(DBGMCU−>CR, DBGMCU_CR_DBG_STOP) ;
9 CLEAR_BIT(DBGMCU−>CR, DBGMCU_CR_DBG_SLEEP) ;

10 CLEAR_BIT(DBGMCU−>CR, DBGMCU_CR_DBG_STANDBY) ;

• HAL_GPIO_WritePin(): This function sets the specified GPIO pin to
the given state (reset in this case). It is used to control the enable pins for
various sensors and modules.

• CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOP):
This macro clears the specified bits in the Debug MCU Configuration
Register, ensuring that debugging features are disabled during low-power
modes like stop, sleep, and standby.
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LoRaWAN Initialization

As seen in previous section, LoRaWAN initialization is a process named as
MX_LoRaWAN_Init(), its definition is in app_lorawan.c.

1 void MX_LoRaWAN_Init( void )
2 {
3 /∗ USER CODE BEGIN MX_LoRaWAN_Init_1 ∗/
4

5 /∗ USER CODE END MX_LoRaWAN_Init_1 ∗/
6 SystemApp_Init ( ) ;
7 /∗ USER CODE BEGIN MX_LoRaWAN_Init_2 ∗/
8

9 /∗ USER CODE END MX_LoRaWAN_Init_2 ∗/
10 LoRaWAN_Init ( ) ;
11 /∗ USER CODE BEGIN MX_LoRaWAN_Init_3 ∗/
12

13 /∗ USER CODE END MX_LoRaWAN_Init_3 ∗/
14 }

The functions in the process are two: SystemApp_Init() configures the sys-
tem clock, initializes timers, RTC, debug and trace utilities, environmental
sensors, and low power manager, ensuring the system is ready for operations
while LoRaWAN_Init() is the one that ensures the initialization of the appli-
cation. The latter is defined in lora_app.c. Following, there is a condensed
explanation of the main processes.

1 void LoRaWAN_Init( void )
2 {
3 /∗ USER CODE BEGIN LoRaWAN_Init_LV ∗/
4 uint32_t f ea tu r e_ver s i on = 0UL;
5 /∗ USER CODE END LoRaWAN_Init_LV ∗/
6

7 /∗ USER CODE BEGIN LoRaWAN_Init_1 ∗/
8

9 /∗ Get LoRaWAN APP ve r s i on ∗/
10 APP_LOG(TS_OFF, VLEVEL_M, "APPLICATION_VERSION: V%X.%X.%X\ r \n

" ,
11 ( uint8_t ) (APP_VERSION_MAIN) ,
12 ( uint8_t ) (APP_VERSION_SUB1) ,
13 ( uint8_t ) (APP_VERSION_SUB2) ) ;
14
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15 /∗ Get MW LoRaWAN i n f o ∗/
16 APP_LOG(TS_OFF, VLEVEL_M, "MW_LORAWAN_VERSION: V%X.%X.%X\ r \n

" ,
17 ( uint8_t ) (LORAWAN_VERSION_MAIN) ,
18 ( uint8_t ) (LORAWAN_VERSION_SUB1) ,
19 ( uint8_t ) (LORAWAN_VERSION_SUB2) ) ;
20

21 /∗ Get MW SubGhz_Phy i n f o ∗/
22 APP_LOG(TS_OFF, VLEVEL_M, "MW_RADIO_VERSION: V%X.%X.%X\ r \n

" ,
23 ( uint8_t ) (SUBGHZ_PHY_VERSION_MAIN) ,
24 ( uint8_t ) (SUBGHZ_PHY_VERSION_SUB1) ,
25 ( uint8_t ) (SUBGHZ_PHY_VERSION_SUB2) ) ;
26

27 /∗ Get LoRaWAN Link Layer i n f o ∗/
28 LmHandlerGetVersion (LORAMAC_HANDLER_L2_VERSION, &

fea tu re_ver s i on ) ;
29 APP_LOG(TS_OFF, VLEVEL_M, "L2_SPEC_VERSION: V%X.%X.%X\ r \n

" ,
30 ( uint8_t ) ( f ea tu r e_ver s i on >> 24) ,
31 ( uint8_t ) ( f ea tu r e_ver s i on >> 16) ,
32 ( uint8_t ) ( f ea tu r e_ver s i on >> 8) ) ;
33

34 /∗ Get LoRaWAN Regional Parameters i n f o ∗/
35 LmHandlerGetVersion (LORAMAC_HANDLER_REGION_VERSION, &

fea tu re_ver s i on ) ;
36 APP_LOG(TS_OFF, VLEVEL_M, "RP_SPEC_VERSION: V%X−%X.%X.%X\

r \n " ,
37 ( uint8_t ) ( f ea tu r e_ver s i on >> 24) ,
38 ( uint8_t ) ( f ea tu r e_ver s i on >> 16) ,
39 ( uint8_t ) ( f ea tu r e_ver s i on >> 8) ,
40 ( uint8_t ) ( f ea tu r e_ver s i on ) ) ;

Version Logging: Retrieves and prints on serial the logs of the application,
LoRaWAN middleware, and SubGhz PHY versions using the APP_LOG macro
and respective version macros.

1 MX_X_CUBE_AI_Init( ) ;
2 APP_LOG(TS_OFF, VLEVEL_M, "X−CUBE−AI i n i t i a l i z e d \ r \n " ) ;
3

4 UTIL_TIMER_Create(&TxLedTimer , LED_PERIOD_TIME,
UTIL_TIMER_ONESHOT, OnTxTimerLedEvent , NULL) ;

27



Firmware Implementation

5 UTIL_TIMER_Create(&RxLedTimer , LED_PERIOD_TIME,
UTIL_TIMER_ONESHOT, OnRxTimerLedEvent , NULL) ;

6 UTIL_TIMER_Create(&JoinLedTimer , LED_PERIOD_TIME,
UTIL_TIMER_PERIODIC, OnJoinTimerLedEvent , NULL) ;

7

8 i f (FLASH_IF_Init (NULL) != FLASH_IF_OK)
9 {

10 Error_Handler ( ) ;
11 }
12

13 /∗ USER CODE END LoRaWAN_Init_1 ∗/
14

15 UTIL_TIMER_Create(&StopJoinTimer , JOIN_TIME,
UTIL_TIMER_ONESHOT, OnStopJoinTimerEvent , NULL) ;

Module Initialization: Initializes X-CUBE-AI, timers (TxLedTimer,
RxLedTimer, JoinLedTimer, StopJoinTimer), and checks the Flash interface
initialization. Here the Join timer begins running, it will be used to wait a
period between the attempts.

1 UTIL_SEQ_RegTask( (1 << CFG_SEQ_Task_LmHandlerProcess ) ,
UTIL_SEQ_RFU, LmHandlerProcess ) ;

2

3 UTIL_SEQ_RegTask( (1 <<
CFG_SEQ_Task_LoRaSendOnTxTimerOrButtonEvent) , UTIL_SEQ_RFU,
SendTxData ) ;

4 UTIL_SEQ_RegTask( (1 << CFG_SEQ_Task_LoRaStoreContextEvent ) ,
UTIL_SEQ_RFU, StoreContext ) ;

5 UTIL_SEQ_RegTask( (1 << CFG_SEQ_Task_LoRaStopJoinEvent) ,
UTIL_SEQ_RFU, StopJoin ) ;

Task Registration: Registers tasks for LoRaWAN handler processing
(LmHandlerProcess), transmission (SendTxData), context storage (StoreContext),
and stop join event handling (StopJoin). The use of this tasks is explained in
Section 3.5.2.

1 /∗ I n i t In f o t ab l e used by LmHandler∗/
2 LoraIn fo_In i t ( ) ;
3

4 /∗ I n i t the Lora Stack ∗/
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5 LmHandlerInit(&LmHandlerCallbacks , APP_VERSION) ;
6

7 LmHandlerConfigure(&LmHandlerParams ) ;

LmHandler Initialization: Initializes the LmHandler with callbacks
(LmHandlerCallbacks) and application version (APP_VERSION), then configures
handler parameters (LmHandlerParams).

1 /∗ USER CODE BEGIN LoRaWAN_Init_2 ∗/
2 UTIL_TIMER_Start(&JoinLedTimer ) ;
3

4 /∗ USER CODE END LoRaWAN_Init_2 ∗/
5

6 LmHandlerJoin ( ActivationType , ForceRejo in ) ;

Timer Start and Join: Starts the JoinLedTimer and initiates a join
procedure with specified activation type (ActivationType) and force rejoin
flag (ForceRejoin).

1 i f ( EventType == TX_ON_TIMER)
2 {
3 /∗ send every time t imer e l a p s e s ∗/
4 UTIL_TIMER_Create(&TxTimer , TxPer iod ic i ty ,

UTIL_TIMER_ONESHOT, OnTxTimerEvent , NULL) ;
5 UTIL_TIMER_Start(&TxTimer ) ;
6 }
7 e l s e
8 {
9 /∗ USER CODE BEGIN LoRaWAN_Init_3 ∗/

10

11 /∗ USER CODE END LoRaWAN_Init_3 ∗/
12 }
13

14 /∗ USER CODE BEGIN LoRaWAN_Init_Last ∗/
15

16 /∗ USER CODE END LoRaWAN_Init_Last ∗/
17 }
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Transmission Timer: If EventType is TX_ON_TIMER, creates and starts
a timer (TxTimer) for periodic transmission events (OnTxTimerEvent). In this
case, the variable is set, otherwise transmission can be started only by pressing
the predefined button.

X-CUBE-AI Initialization
The process of initialization is launched in MX_LoRaWAN_Init(). Its definition
is written in app_x-cube-ai.c.

1 void MX_X_CUBE_AI_Init( void )
2 {
3 /∗ USER CODE BEGIN 5 ∗/
4 // RTC_TimeTypeDef s t a r t ;
5 // s t a r t . Hours = 0 ;
6 // s t a r t . Minutes = 0 ;
7 // s t a r t . Seconds = 0 ;
8 // s t a r t . SubSeconds = 0 ;
9

10 // HAL_RTC_SetTime(&hrtc , &s ta r t , RTC_FORMAT_BIN) ;
11 // HAL_RTC_MspInit(&hrtc ) ;
12 /∗ I n i t i a l i z e network with d e f a u l t a c t i v a t i o n s ∗/
13 ai_boostrap ( data_act ivat ions0 ) ;
14 /∗ USER CODE END 5 ∗/
15 }

There are some commented lines, they were used to debug the execution time
of the network. The essential part is processed at ai_bootstrap() which allo-
cates the pool where the activation data must go, after every run.

1 s t a t i c i n t ai_boostrap ( ai_handle ∗act_addr )
2 {
3 a i_er ro r e r r ;
4

5 /∗ Create and i n i t i a l i z e an in s t ance o f the model ∗/
6 e r r = ai_plantnetwork_create_and_init(&plantnetwork , act_addr

, NULL) ;
7 i f ( e r r . type != AI_ERROR_NONE) {
8 ai_log_err ( err , " ai_plantnetwork_create_and_init " ) ;
9 r e turn −1;

10 }
11
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12 ai_input = ai_plantnetwork_inputs_get ( plantnetwork , NULL) ;
13 ai_output = ai_plantnetwork_outputs_get ( plantnetwork , NULL) ;
14

15 #i f de f ined (AI_PLANTNETWORK_INPUTS_IN_ACTIVATIONS)
16 /∗ In the case where "−−a l l o c a t e −inputs " opt ion i s used ,

memory b u f f e r can be
17 ∗ used from the a c t i v a t i o n s b u f f e r . This i s not mandatory .
18 ∗/
19 f o r ( i n t idx =0; idx < AI_PLANTNETWORK_IN_NUM; idx++) {
20 data_ins [ idx ] = ai_input [ idx ] . data ;
21 }
22 #e l s e
23 f o r ( i n t idx =0; idx < AI_PLANTNETWORK_IN_NUM; idx++) {
24 ai_input [ idx ] . data = data_ins [ idx ] ;
25 }
26 #e nd i f
27

28 #i f de f ined (AI_PLANTNETWORK_OUTPUTS_IN_ACTIVATIONS)
29 /∗ In the case where "−−a l l o c a t e −outputs " opt ion i s used ,

memory b u f f e r can be
30 ∗ used from the a c t i v a t i o n s b u f f e r . This i s no mandatory .
31 ∗/
32 f o r ( i n t idx =0; idx < AI_PLANTNETWORK_OUT_NUM; idx++) {
33 data_outs [ idx ] = ai_output [ idx ] . data ;
34 }
35 #e l s e
36 f o r ( i n t idx =0; idx < AI_PLANTNETWORK_OUT_NUM; idx++) {
37 ai_output [ idx ] . data = data_outs [ idx ] ;
38 }
39 #e nd i f
40

41 r e turn 0 ;
42 }

This function is the link point between the fixed part of the firmware and the
one that is updated every time NN changes. These methods are declared in
files named the same as NN, because they contain the C model of the network,
with all the weights and structure of the neurons.

3.5.2 Sequencer Loop
After all peripherals have been initialized and configured, the main() function
enters the main program loop. This loop typically contains the application
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logic, including tasks such as reading sensor data, processing inputs, and com-
municating with other devices.

1 /∗ I n f i n i t e loop ∗/
2 /∗ USER CODE BEGIN WHILE ∗/
3 whi le (1 )
4 {
5 /∗ USER CODE END WHILE ∗/
6 MX_LoRaWAN_Process( ) ;
7

8 /∗ USER CODE BEGIN 3 ∗/
9 }

The MX_LoRaWAN_Process() function is called within the main loop to han-
dle LoRaWAN-related tasks. The main loop ensures that the microcontroller
continues to operate and respond to events indefinitely, or until it is reset or
powered off. The definition of the function is contained in app_lorawan.c.

1 void MX_LoRaWAN_Process( void )
2 {
3 /∗ USER CODE BEGIN MX_LoRaWAN_Process_1 ∗/
4

5 /∗ USER CODE END MX_LoRaWAN_Process_1 ∗/
6 UTIL_SEQ_Run(UTIL_SEQ_DEFAULT) ;
7 /∗ USER CODE BEGIN MX_LoRaWAN_Process_2 ∗/
8

9 /∗ USER CODE END MX_LoRaWAN_Process_2 ∗/
10 }

The process consists in a call to UTIL_SEQ_Run() which serves as scheduler
based on polling. The function, a core component of STM32 utilities, serves
as a polling-based scheduler crucial for managing task execution in embedded
applications. Part of the sequencer module, it enables developers to define, pri-
oritize, and execute multiple tasks in an organized and efficient manner. When
invoked, UTIL_SEQ_Run() enters an infinite loop, continuously checking for and
executing pending tasks based on their priorities. This approach ensures that
higher-priority tasks are handled first, enhancing the responsiveness and per-
formance of the firmware. Moreover, the sequencer manages task dependencies,
ensuring proper order of execution and task completion before starting new
ones.
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The tasks involved in this project are listed in utilities_def.c.
The CFG_SEQ_Task_Id_t enumeration defines task identifiers used by the ap-
plication for scheduling and managing tasks within the STM32 microcontroller
environment.

Since CFG_SEQ_Task_LoRaStoreContextEvent is not used by the application,
we describe the purpose and function of three specific tasks:

• CFG_SEQ_Task_LmHandlerProcess

• CFG_SEQ_Task_LoRaSendOnTxTimerOrButtonEvent

• CFG_SEQ_Task_LoRaStopJoinEvent

1 /∗∗
2 ∗ This i s the l i s t o f task id r equ i r ed by the a p p l i c a t i o n
3 ∗ Each Id s h a l l be in the range 0 . . 3 1
4 ∗/
5 typede f enum
6 {
7 CFG_SEQ_Task_LmHandlerProcess ,
8 CFG_SEQ_Task_LoRaSendOnTxTimerOrButtonEvent ,
9 CFG_SEQ_Task_LoRaStoreContextEvent ,

10 CFG_SEQ_Task_LoRaStopJoinEvent ,
11 /∗ USER CODE BEGIN CFG_SEQ_Task_Id_t ∗/
12

13 /∗ USER CODE END CFG_SEQ_Task_Id_t ∗/
14 CFG_SEQ_Task_NBR
15 } CFG_SEQ_Task_Id_t ;

CFG_SEQ_Task_LmHandlerProcess The LoRaWAN handler task
is responsible for handling the LoRaWAN protocol stack. This task processes
various related events, such as managing network join requests, uplink and
downlink message handling, and other protocol-specific tasks. It ensures that
the stack operates correctly, maintaining seamless communication between the
end device and the LoRaWAN network server.

CFG_SEQ_Task_LoRaSendOnTxTimerOrButtonEvent This
task manages the transmission of data via LoRaWAN based on specific triggers
such as a timer or a button press event. This task is crucial for applications
that require periodic data transmission (e.g., sensor readings at regular inter-
vals) or event-driven data transmission (e.g., sending data when a user presses
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a button). It ensures timely and appropriate data transmission over the Lo-
RaWAN network.

CFG_SEQ_Task_LoRaStopJoinEvent The LoRaWAN join task
is used to handle events related to stopping the LoRaWAN network join pro-
cess. This could be necessary in scenarios where the device needs to abort an
ongoing join procedure due to specific conditions or constraints (e.g., failed join
attempts, network restrictions, or user intervention). This task ensures that the
join process can be gracefully terminated when required.

Each of these tasks plays an essential role in managing the various aspects of
LoRaWAN application.

3.5.3 Join Task
The join task in the LoRaWAN system is mandatory for managing the pro-
cess of joining a LoRaWAN network. It involves the OnStopJoinTimerEvent
and StopJoin functions, which handle the stopping of the join process and
switching between activation types.

StopJoin Function
The StopJoin function is responsible for stopping the current join process. It
first stops the transmission timer and attempts to stop the LoRaMAC handler.
If the handler stops successfully, it logs the status and toggles between ABP
(Activation By Personalization) and OTAA (Over-The-Air Activation) modes,
reconfigures the handler, and reinitiates the join process. Finally, it restarts
both the transmission and it stops join timers.

1 s t a t i c void StopJoin ( void )
2 {
3 /∗ USER CODE BEGIN StopJoin_1 ∗/
4 //HAL_GPIO_WritePin(LED1_GPIO_Port , LED1_Pin , GPIO_PIN_SET) ;

/∗ LED_BLUE ∗/
5 //HAL_GPIO_WritePin(LED2_GPIO_Port , LED2_Pin , GPIO_PIN_SET) ;

/∗ LED_GREEN ∗/
6 //HAL_GPIO_WritePin(LED3_GPIO_Port , LED3_Pin , GPIO_PIN_SET) ;

/∗ LED_RED ∗/
7 /∗ USER CODE END StopJoin_1 ∗/
8

9 UTIL_TIMER_Stop(&TxTimer ) ;
10
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11 i f (LORAMAC_HANDLER_SUCCESS != LmHandlerStop ( ) )
12 {
13 APP_LOG(TS_OFF, VLEVEL_M, " LmHandler Stop on going . . . \ r \n "

) ;
14 }
15 e l s e
16 {
17 APP_LOG(TS_OFF, VLEVEL_M, " LmHandler Stopped\ r \n " ) ;
18 i f (LORAWAN_DEFAULT_ACTIVATION_TYPE == ACTIVATION_TYPE_ABP)
19 {
20 ActivationType = ACTIVATION_TYPE_OTAA;
21 APP_LOG(TS_OFF, VLEVEL_M, " LmHandler switch to OTAA mode\

r \n " ) ;
22 }
23 e l s e
24 {
25 ActivationType = ACTIVATION_TYPE_ABP;
26 APP_LOG(TS_OFF, VLEVEL_M, " LmHandler switch to ABP mode\ r

\n " ) ;
27 }
28 LmHandlerConfigure(&LmHandlerParams ) ;
29 LmHandlerJoin ( ActivationType , t rue ) ;
30 UTIL_TIMER_Start(&TxTimer ) ;
31 }
32 UTIL_TIMER_Start(&StopJoinTimer ) ;
33 /∗ USER CODE BEGIN StopJoin_Last ∗/
34

35 /∗ USER CODE END StopJoin_Last ∗/
36 }

OnStopJoinTimerEvent Function
The OnStopJoinTimerEvent function is triggered when the stop join timer
event occurs. It checks the current activation type and, if it matches the de-
fault LoRaWAN activation type, it schedules the CFG_SEQ_Task_LoRaStopJoinEvent
task with priority 0.

1 s t a t i c void OnStopJoinTimerEvent ( void ∗ context )
2 {
3 /∗ USER CODE BEGIN OnStopJoinTimerEvent_1 ∗/
4

5 /∗ USER CODE END OnStopJoinTimerEvent_1 ∗/
6 i f ( ActivationType == LORAWAN_DEFAULT_ACTIVATION_TYPE)
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7 {
8 UTIL_SEQ_SetTask ( (1 << CFG_SEQ_Task_LoRaStopJoinEvent) ,

CFG_SEQ_Prio_0) ;
9 }

10 /∗ USER CODE BEGIN OnStopJoinTimerEvent_Last ∗/
11 //HAL_GPIO_WritePin(LED1_GPIO_Port , LED1_Pin , GPIO_PIN_RESET)

; /∗ LED_BLUE ∗/
12 //HAL_GPIO_WritePin(LED2_GPIO_Port , LED2_Pin , GPIO_PIN_RESET)

; /∗ LED_GREEN ∗/
13 //HAL_GPIO_WritePin(LED3_GPIO_Port , LED3_Pin , GPIO_PIN_RESET)

; /∗ LED_RED ∗/
14 /∗ USER CODE END OnStopJoinTimerEvent_Last ∗/
15 }

The join task involves stopping the current join process and managing the ac-
tivation type switching between OTAA and ABP. The OnStopJoinTimerEvent
function schedules the stop join task, while the StopJoin function handles the
stopping process, logging, and reconfiguring of the LoRaMAC handler to ensure
a smooth and efficient join process.

3.5.4 Transmission Task
The transmission task in the LoRaWAN system demands the SendTxData
function, which is responsible for collecting sensor data, predicting network
conditions, buffering the data, and transmitting it over the LoRaWAN net-
work. This process is divided into four main phases: Measurement, Network
Prediction, Buffering, and Transmission.

Measurement
In the Measurement phase, various sensors are initialized, and data is collected.
This involves reading temperature, relative humidity, light intensity, impedance,
and watermark levels from connected sensors.

Initially, the function initializes the ADC and I2C peripherals and reads the
temperature and humidity values using the HDC2080 sensor. It also checks for
the presence of the OPT3001 light sensor and reads the light intensity if the
sensor is connected.

1 s t a t i c void SendTxData ( void )
2 {
3 uint16_t rh_int = 0 ;
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4 uint16_t lux_int = 0 ;
5 uint16_t temp_int = 0 ;
6 uint32_t ∗output_value_ptr ;
7

8 /∗ ADC and I2C I n i t i a l i z a t i o n ∗/
9 MX_ADC_Init( ) ;

10 MX_I2C2_Init ( ) ;
11 MX_TIM1_Init ( ) ;
12 MX_TIM2_Init ( ) ;
13

14 /∗ Read temperature and humidity ∗/
15 temp_int = hdc2080_readtemp ( ) ;
16 rh_int = hdc2080_readrh ( ) ;
17

18 /∗ Check i f the OPT3001 senso r i s connected ∗/
19 i f ( read_devid ( ) == 12289) {
20 i f ( opt3001_init ( ) == 1) {
21 lux_int = opt3001_readdata ( ) ;
22 }
23 } e l s e {
24 lux_int = 0 ;
25 }

To measure impedance and watermark levels, the function reconfigures and
uses timers. Timer 1 (TIM1) is set up for input capture, and Timer 2 (TIM2)
is set up for output compare. These timers are started to measure the time
interval between signal transitions, which is used to calculate the frequency of
the signal corresponding to the impedance and watermark levels.

For impedance measurement, the impedance module is enabled, and the timers
are started. The function waits until the measurement is complete, then stops
the timers and disables the impedance module.

1 /∗ Star t and stop t imers f o r impedance measurement ∗/
2 HAL_TIM_IC_Start_IT(&htim1 , TIM_CHANNEL_1) ;
3 HAL_TIM_OC_Start_IT(&htim2 , TIM_CHANNEL_1) ;
4 HAL_GPIO_WritePin(GPIOA, IMP_EN_Pin, GPIO_PIN_SET) ;
5 whi le ( flag_meas == 0) {}
6 HAL_TIM_IC_Stop_IT(&htim1 , TIM_CHANNEL_1) ;
7 HAL_TIM_OC_Stop_IT(&htim2 , TIM_CHANNEL_1) ;
8 HAL_GPIO_WritePin(GPIOA, IMP_EN_Pin, GPIO_PIN_RESET) ;
9

10 /∗ Evaluate impedance ∗/
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11 impedance = eva l_freq ( ) ;
12 f lag_meas = 0 ;

Similarly, for watermark measurement, the watermark module is enabled and
the timers are started. The function waits until the measurement is complete,
then stops the timers and disables the watermark module.

1 /∗ Star t and stop t imers f o r watermark measurement ∗/
2 HAL_TIM_IC_Start_IT(&htim1 , TIM_CHANNEL_2) ;
3 HAL_TIM_OC_Start_IT(&htim2 , TIM_CHANNEL_1) ;
4 HAL_GPIO_WritePin(GPIOC, EN_WT_Pin, GPIO_PIN_SET) ;
5 whi le ( flag_meas == 0) {}
6 HAL_TIM_IC_Stop_IT(&htim1 , TIM_CHANNEL_2) ;
7 HAL_TIM_OC_Stop_IT(&htim2 , TIM_CHANNEL_1) ;
8 HAL_GPIO_WritePin(GPIOC, EN_WT_Pin, GPIO_PIN_RESET) ;
9

10 /∗ Evaluate watermark ∗/
11 watermark = ( uint16_t ) eva l_freq ( ) ;

The eval_freq function is used to calculate the frequency based on the cap-
tured timer values, which represents the impedance and watermark levels. It
calculates the time difference between two consecutive timer captures and uses
this difference to compute the frequency.

1 uint32_t eva l_freq ( )
2 {
3 uint32_t f r e q = 0 ;
4 f l o a t fr_tmp ;
5

6 i f ( old_capture != new_capture )
7 {
8 i f ( new_capture > old_capture )
9 {

10 d i f fCapture = new_capture − old_capture ;
11 fr_tmp = 2000000 / d i f fCapture ;
12 f r e q = ( uint32_t ) fr_tmp ;
13 }
14 e l s e
15 {
16 d i f fCapture = 65535 − old_capture + new_capture ;
17 fr_tmp = 2000000 / d i f fCapture ;
18 f r e q = ( uint32_t ) fr_tmp ;
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19 }
20 }
21

22 r e turn f r e q ;
23 }

The eval_freq function calculates the frequency by considering the difference
between the new and old capture values. If the new capture value is greater
than the old value, the difference is calculated directly. If the new capture
value has been wrapped, the difference is adjusted accordingly. The calculated
frequency is then returned as the result.

Network Prediction
In the Network Prediction phase, the system processes the collected data using
a neural network to predict network conditions. This is achieved using the X-
CUBE-AI library. The MX_X_CUBE_AI_Process function orchestrates the neural
network processing, involving three main steps: acquiring and preprocessing
input data, running the inference engine, and post-processing the predictions.

1 void MX_X_CUBE_AI_Process( void )
2 {
3 i n t r e s = −1;
4

5 APP_PRINTF( " \ r \nNNetwork> Sta r t i ng neura l network proce s s . . . \
r \n " ) ;

6

7 i f ( plantnetwork ) {
8 /∗ 1 − acqu i r e and pre−proce s s input data ∗/
9 r e s = acquire_and_process_data ( data_ins ) ;

10 /∗ 2 − proce s s the data − c a l l i n f e r e n c e eng ine ∗/
11 i f ( r e s == 0) {
12 r e s = ai_run ( ) ;
13 }
14 /∗ 3− post−proce s s the p r e d i c t i o n s ∗/
15 i f ( r e s == 0)
16 r e s = post_process ( data_outs ) ;
17 }
18

19 i f ( r e s ) {
20 a i_er ro r e r r = {AI_ERROR_INVALID_STATE,

AI_ERROR_CODE_NETWORK};
21 ai_log_err ( err , " Process has FAILED" ) ;
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22 }
23

24 APP_PRINTF( " NNetwork> Neural network proce s s ended\ r \n\n " ) ;
25 }

The acquire_and_process_data function prepares the input data for the
neural network. It collects the impedance and watermark values, normalizes
them, and formats them as inputs for the neural network model.

1 i n t acquire_and_process_data ( a i_i8 ∗ data [ ] )
2 {
3 s t a t i c a i _ f l o a t f [AI_PLANTNETWORK_IN_1_SIZE ] ;
4 f [ 1 ] = ( a i _ f l o a t ) impedance ;
5 f [ 0 ] = ( a i _ f l o a t ) watermark ;
6

7 normal ize ( f ) ;
8

9 f o r ( i n t idx = 0 ; idx < AI_PLANTNETWORK_IN_NUM; idx++)
10 f o r ( i n t i = 0 ; i < AI_PLANTNETWORK_IN_1_SIZE; i++)
11 ( ( a i _ f l o a t ∗) ( data [ idx ] ) ) [ i ] = f [ i ] ;
12

13 APP_PRINTF( " NNetwork> Received : %f \ t%f \ r \n " , ( f l o a t ) ( ( (
a i _ f l o a t ∗) ∗data ) [ 0 ] ) , ( f l o a t ) ( ( ( a i _ f l o a t ∗) ∗data ) [ 1 ] ) ) ;

14 r e turn 0 ;
15 }

The ai_run function executes the neural network inference. It passes the pre-
processed input data to the neural network and retrieves the output predic-
tions.

1 s t a t i c i n t ai_run ( void )
2 {
3 ai_i32 batch ;
4

5 batch = ai_plantnetwork_run ( plantnetwork , ai_input , ai_output
) ;

6 i f ( batch != 1) {
7 ai_log_err ( ai_plantnetwork_get_error ( plantnetwork ) , "

ai_plantnetwork_run " ) ;
8 r e turn −1;
9 }

10
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11 r e turn 0 ;
12 }

The post_process function interprets the neural network output, determin-
ing the prediction result. It processes the output to determine whether the
prediction exceeds a certain threshold, which indicates the network condition.

1 i n t post_process ( a i_i8 ∗ data [ ] )
2 {
3 a i _ f l o a t output ;
4

5 output = ( ( a i _ f l o a t ∗) ∗data ) [ 0 ] ;
6 p r e d i c t i o n = output >= 0 . 5 ;
7 APP_PRINTF( " NNetwork> Network Output :%.4 e\ r \n " , ∗ ( ( a i _ f l o a t ∗)

&output ) ) ;
8 APP_PRINTF( " NNetwork> Pred icted : %d\ r \n " , p r e d i c t i o n ) ;
9 r e turn 0 ;

10 }

Buffering
During the Buffering phase, the sensor data and prediction results are format-
ted and stored in the transmission buffer.

1 uint32_t i = 0 ;
2 AppData . Buf f e r [ i ++] = ( uint8_t ) ( ( rh_int >> 8) & 0xFF) ;
3 AppData . Buf f e r [ i ++] = ( uint8_t ) ( rh_int & 0xFF) ;
4 AppData . Buf f e r [ i ++] = ( uint8_t ) ( ( lux_int >> 8) & 0xFF) ;
5 AppData . Buf f e r [ i ++] = ( uint8_t ) ( lux_int & 0xFF) ;
6 AppData . Buf f e r [ i ++] = ( uint8_t ) ( ( temp_int >> 8) & 0xFF) ;
7 AppData . Buf f e r [ i ++] = ( uint8_t ) ( temp_int & 0xFF) ;
8 AppData . Buf f e r [ i ++] = ( uint8_t ) ( ( impedance >> 16) & 0xFF) ;
9 AppData . Buf f e r [ i ++] = ( uint8_t ) ( ( impedance >> 8) & 0xFF) ;

10 AppData . Buf f e r [ i ++] = ( uint8_t ) ( impedance & 0xFF) ;
11 AppData . Buf f e r [ i ++] = ( uint8_t ) ( ( watermark >> 8) & 0xFF) ;
12 AppData . Buf f e r [ i ++] = ( uint8_t ) ( watermark & 0xFF) ;
13 AppData . Buf f e r [ i ++] = ( uint8_t ) ( p r e d i c t i o n & 0xFF) ;
14 AppData . Buf f e r [ i ++] = ( uint8_t ) ( ( ( uint8_t ∗) output_value_ptr )

[ 3 ] & 0xFF) ;
15 AppData . Buf f e r [ i ++] = ( uint8_t ) ( ( ( uint8_t ∗) output_value_ptr )

[ 2 ] & 0xFF) ;
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16 AppData . Buf f e r [ i ++] = ( uint8_t ) ( ( ( uint8_t ∗) output_value_ptr )
[ 1 ] & 0xFF) ;

17 AppData . Buf f e r [ i ++] = ( uint8_t ) ( ( ( uint8_t ∗) output_value_ptr )
[ 0 ] & 0xFF) ;

18 AppData . Bu f f e rS i z e = i ;

Transmission
Finally, in the Transmission phase, the buffered data is sent over the Lo-
RaWAN network. The function checks if the network is ready and then sends
the data. It also handles duty cycle restrictions by adjusting the transmission
timer.

1 LmHandlerErrorStatus_t s t a tu s = LORAMAC_HANDLER_ERROR;
2 UTIL_TIMER_Time_t nextTxIn = 0 ;
3

4 i f ( LmHandlerIsBusy ( ) == f a l s e )
5 {
6 s t a tu s = LmHandlerSend(&AppData , LmHandlerParams .

IsTxConfirmed , f a l s e ) ;
7 i f (LORAMAC_HANDLER_SUCCESS == sta tu s )
8 {
9 APP_LOG(TS_ON, VLEVEL_L, "SEND REQUEST\ r \n " ) ;

10 }
11 e l s e i f (LORAMAC_HANDLER_DUTYCYCLE_RESTRICTED == sta tu s )
12 {
13 nextTxIn = LmHandlerGetDutyCycleWaitTime ( ) ;
14 i f ( nextTxIn > 0)
15 {
16 APP_LOG(TS_ON, VLEVEL_L, " Next Tx in : ~%d second ( s ) \ r

\n " , ( nextTxIn / 1000) ) ;
17 }
18 }
19 }
20

21 i f ( EventType == TX_ON_TIMER)
22 {
23 UTIL_TIMER_Stop(&TxTimer ) ;
24 UTIL_TIMER_SetPeriod(&TxTimer , MAX( nextTxIn , TxPer iod i c i ty )

) ;
25 UTIL_TIMER_Start(&TxTimer ) ;
26 }
27 }
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3.5.5 Reception Task
The reception task in the LoRaWAN system is responsible for handling incom-
ing data packets received via the LoRaWAN network. This task is invoked
by a LoRaWAN interrupt and is implemented in the OnRxData function. The
function processes the received data, identifies the port on which the data was
received, and takes appropriate actions based on the content of the received
data.

1 s t a t i c void OnRxData(LmHandlerAppData_t ∗appData ,
LmHandlerRxParams_t ∗params )

2 {
3 uint8_t RxPort = 0 ;
4

5 i f ( params != NULL)
6 {
7 UTIL_TIMER_Start(&RxLedTimer ) ;
8

9 i f ( params−>IsMcpsInd icat ion )
10 {
11 i f ( appData != NULL)
12 {
13 RxPort = appData−>Port ;
14 i f ( appData−>Buf f e r != NULL)
15 {
16 switch ( appData−>Port )
17 {
18 case LORAWAN_SWITCH_CLASS_PORT:
19 i f ( appData−>Bu f f e rS i z e == 1)
20 {
21 switch ( appData−>Buf f e r [ 0 ] )
22 {
23 case 0 :
24 LmHandlerRequestClass (CLASS_A) ;
25 break ;
26 case 1 :
27 LmHandlerRequestClass (CLASS_B) ;
28 break ;
29 case 2 :
30 LmHandlerRequestClass (CLASS_C) ;
31 break ;
32 d e f a u l t :
33 break ;
34 }
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35 }
36 break ;
37

38 case LORAWAN_USER_APP_PORT:
39 i f ( appData−>Bu f f e rS i z e == 1)
40 {
41 i f ( appData−>Buf f e r [ 0 ] == 0)
42 {
43 NVIC_SystemReset ( ) ;
44 }
45 }
46 i f ( appData−>Bu f f e rS i z e == 2)
47 {
48 new_lora_dc = ( ( ( appData−>Buf f e r [ 0 ] ) << 8) | (

appData−>Buf f e r [ 1 ] ) ) ∗ 1000 ;
49 OnTxPeriodicityChanged ( new_lora_dc ) ;
50 }
51 break ;
52

53 d e f a u l t :
54 break ;
55 }
56 }
57 }
58 }
59

60 i f ( params−>RxSlot < RX_SLOT_NONE)
61 {
62 APP_LOG(TS_OFF, VLEVEL_H, "###### D/L FRAME:%04d | PORT:%

d | DR:%d | SLOT:%s | RSSI:%d | SNR:%d\ r \n " ,
63 params−>DownlinkCounter , RxPort , params−>Datarate

, s l o t S t r i n g s [ params−>RxSlot ] ,
64 params−>Rssi , params−>Snr ) ;
65 }
66 }
67 }

Overview The OnRxData function is triggered by a LoRaWAN interrupt
when data is received. It processes the received data packet, evaluates the port
on which the data was received, and performs specific actions based on the
content and size of the data.
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Processing Received Data When the OnRxData function is invoked, it
first checks if the params structure is not null. If valid parameters are available,
it starts the reception LED timer using UTIL_TIMER_Start(&RxLedTimer) to
indicate that data reception is in progress.

MCPS Indication Handling The function then checks if the IsMcpsIndication
flag in the params structure is set, indicating that a MAC-layer indication has
occurred. If so, it proceeds to evaluate the received application data (appData).

Port-Based Data Handling The function identifies the port on which
the data was received (RxPort = appData->Port). Based on the port number,
it performs different actions:

• LORAWAN_SWITCH_CLASS_PORT: This port is used for switching the Lo-
RaWAN device class. If the received data size is 1 byte, it switches the
class based on the value of the byte (0 for Class A, 1 for Class B, and 2 for
Class C).

• LORAWAN_USER_APP_PORT: This port is used for user-defined application
commands. If the received data size is 1 byte and the value is 0, the micro-
controller is reset using NVIC_SystemReset(). If the received data size is
2 bytes, it updates the LoRa duty cycle based on the received value and
calls OnTxPeriodicityChanged with the new duty cycle.

Logging Received Data If the data was received in a valid Rx slot
(params->RxSlot < RX_SLOT_NONE), the function logs detailed information
about the received frame, including the downlink frame counter, port number,
data rate, slot type, RSSI, and SNR.

3.6 LoRaWAN Configuration
Configuring the credentials for a LoRaWAN node is a mandatory step in the
setup of the FW and it ensures secure and reliable communication within the
LoRaWAN network. Properly setting these credentials helps to establish the
identity of the device, allowing it to join and communicate with the network
securely. This section highlights the significance of this process and illustrates
it with specific lines from the se-identity.h file.
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3.6.1 Overview of Credentials
In a LoRaWAN network, each node must have a unique set of credentials that
include a Device EUI (Extended Unique Identifier), Join EUI (formerly known
as App EUI), and application keys. These credentials ensure that the device
can be authenticated by the network server and that the data transmitted and
received is encrypted.

Device EUI

The Device EUI is a unique identifier for each LoRaWAN device. It is typically
a 64-bit address that is used to uniquely identify the device within the network.

1 /∗ Device EUI ∗/
2 #d e f i n e LORAWAN_DEVICE_EUI { 0

x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 }

Join EUI

The Join EUI (formerly App EUI) is a global application identifier used during
the join procedure to identify the application provider of the device.

1 /∗ Join EUI ∗/
2 #d e f i n e LORAWAN_JOIN_EUI { 0

x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 }

Application Key

The application key (AppKey) is a 128-bit AES encryption key specific to the
device, used to secure the communication between the device and the network
server.

1 /∗ Appl i cat ion root key ∗/
2 #d e f i n e LORAWAN_APP_KEY { 0

x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , \
3 0

x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 }
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3.6.2 Security and Authentication
Setting these credentials correctly is crucial for the following reasons:

• Authentication: The Device EUI and Join EUI are used to authenti-
cate the device during the join process. This ensures that only legitimate
devices can join the network.

• Data Integrity and Confidentiality: The AppKey is used to encrypt
the data transmitted between the device and the network server, ensur-
ing that the data is not tampered with or intercepted by unauthorized
entities.

• Network Management: Proper credential configuration helps network
servers manage and identify devices efficiently, facilitating network scalabil-
ity and maintenance.

3.6.3 Example Configuration
Below is an example configuration from the se-identity.h file, which shows
how the credentials are defined and initialized.

1 /∗ Device EUI ∗/
2 #d e f i n e LORAWAN_DEVICE_EUI { 0

x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 }
3

4 /∗ Join EUI ∗/
5 #d e f i n e LORAWAN_JOIN_EUI { 0

x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 }
6

7 /∗ Appl i cat ion root key ∗/
8 #d e f i n e LORAWAN_APP_KEY { 0

x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , \
9 0

x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 }
10

11 /∗ Network root key ∗/
12 #d e f i n e LORAWAN_NWK_KEY { 0

x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , \
13 0

x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 }
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Chapter 4

Toolchain Description

In this chapter, we describe the toolchain used for the development and de-
ployment of neural network firmware designed to monitor plant health by
impedance analysis. The process encompasses several stages, each critical to
ensuring the firmware’s accuracy and functionality.

The toolchain is divided into three main phases: Training, Building, and Flash-
ing, as illustrated in Figure 4.1.

Figure 4.1: Toolchain for neural network firmware development

Dependencies
In order to run the toolchain, some dependency must be satisfied.

Python v3.12 Python language interpreter
Anaconda Data science Python environment manager
GNU Make standard build tool to automate the process
gcc-arm-none-eabi GNU Arm embedded toolchain to build Arm binaries
X-CUBE-AI STM software to create C models from ONNX
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STM32CubeProgrammer official STM microcontrollers flasher tool

4.1 Training

Figure 4.2: Toolchain for neural network firmware development - Training high-
lighted

The training phase involves the preparation of the neural network model. This
begins with the neural network (NN) training, where the model learns from the
data collected. The trained model is then exported in the ONNX format, which
facilitates compatibility with various hardware and software environments.

4.1.1 NN Training
A framework developed previously is used to train the NN. The latter is sw-
ml-framework developed by eLiONS doctoral students. This one is written in
Python language, using a popular ML library called PyTorch. [27][28]

Not only that, a series of support libraries have been used, all listed in follow-
ing description:

PyTorch
PyTorch is an open-source machine learning library based on the Torch
library, used for applications such as computer vision and natural lan-
guage processing. In this project, PyTorch is employed for developing and
training neural network models due to its flexibility and dynamic computa-
tional graph support.

NumPy
NumPy is a fundamental package for scientific computing in Python. It
provides support for arrays, matrices, and many mathematical functions to
operate on these data structures efficiently. In this project, NumPy is used
extensively for numerical calculations and data manipulation.

Pandas
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Pandas is a powerful data manipulation and analysis library for Python. It
offers data structures like DataFrame, which allows for easy manipulation,
cleaning, and analysis of structured data. In this project, Pandas is used
to handle large datasets, perform data cleaning, and prepare data for
analysis.

Scikit-learn
Scikit-learn is a Python machine learning library. In this project, Scikit-
learn is used to implement and train neural network models used in the
plant health monitoring system.

Matplotlib
Matplotlib is a plotting library for the Python programming language and
its numerical mathematics extension NumPy. In this project, Matplotlib is
used to visualize the data and the results of the analysis.

SciPy
SciPy is an open-source Python library used for scientific and technical
computing. In this project, SciPy is used for advanced mathematical and
statistical computations.

File description
Figure 4.3 presents a comprehensive analysis of the structure of sw-ml-framework.
Following this, an in-depth explanation of the roles of these files is given:

Data is the directory in which input .csv files are stored to be processed by
the framework

ml_framework_env[_cuda].yml are files to reproduce the exact Python
environment in Anaconda, a scientific environment manager for Python.

README.md simple README file, generated by GitLab, an online software
versioning server

results output folder, it contains a snapshot of each simulation launched
calibration is used by DataManipulation.py, in case of SWP feature selected

it does the conversion from raw data to kPa, using its LUTs written in
.csv file format.

DataManipulation.py/Dataset.py contain function to manage and process
Pandas DataFrames, in order to prepare them for the convertion to input
tensors.

single_simulation.py/single.py define all routines to launch training loops,
manage batch subsets, measure evaluation metrics and export ONNX net.
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sw-ml-framework data Plant_1 data_export.csv

Plant_2 data_export.csv

Plant_3 data_export.csv

ml_framework_env_cuda.yml

ml_framework_env.yml

README.md

results YYYY-MM-DD_HH-mm-ss_Single

src calibration Cal_Watermark_Datasheet.csv

Cal_Watermark_Resistance.csv

WT_calibration.py

DataManipulation.py

Dataset.py

__init__.py

metrics.py

new_main.py

single.py

single_simulation.py

train_config.json

Figure 4.3: sw-ml-framework file tree

metrics.py permit to define user metrics formulae.
train_config.json is the file in which all settings are defined, such as plant

IDs to use, the date of the subsets and the type of simulation to run.

Anaconda setup
The process of installing all the previously listed libraries is automated using
Anaconda. In files .yml the lists of packages that the software needs to install
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are contained to get the framework ready to work. The environment can be
selected between a CPU or GPU based, but the latter is still WIP. Once the
suited configuration is chosen, it can be installed through command:

Listing 4.1: Example of Anaconda environment installation command
1 conda env c r ea t e −n <environment−name> ml_framework_env [

_cuda ] . yml

where <environment-name> is an arbitrary name.

Training flow

Figure 4.4 illustrates the ASM chart of the training workflow. To summarize,
the process starts with DataManipulation.py, which reads and preprocesses
data from train_config.json to ensure it meets analytical criteria. Subsequently,
Dataset.py defines a custom dataset class to enable efficient data handling
within the PyTorch ecosystem. new_main.py then coordinates the entire work-
flow, including data loading, model training, and evaluation. Finally, single.py
contains the neural network architecture and executes the training loop, lever-
aging PyTorch’s functions to optimize the model with the processed data.

CUDA optimization

During the manipulation, some improvements have been tried to test the poten-
tial of the framework. One of these was CUDA optimizations, since PyTorch
has embedded supports for the devices. After many trial and errors the code
is ready to use, but with the following descripted issues. Inside the inner loop,
called "_mini_batch()" there is a call to a function "predict()". This function
moves the entire tensor content back to the CPU, causing a large overhead on
high values of epochs (Nepochs > 100). This high latency is caused by transport,
which is doubled due to this fact. Despite this fact, a positive improvement
signal has been reported in Figures 4.5 and 4.6, to convince the future of this
feature.

The graphs show the reporting of a NeuronSweep simulation. The task was
to vary the number of neurons logarithmically in a structure like [2, N, M,1]
where:

N, M ∈ {101, 102, 103, 104} (4.1)
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Step 1: Data Preprocessing

Load data from files, perform normalization (min-max scaling), and
create Pandas DataFrames.

↓

Step 2: Data Transformation

Convert DataFrames to PyTorch tensor datasets.

↓

Step 3: Model Definition

Define the neural network architecture using PyTorch.

↓

Step 4: Training Loop

Iterate over epochs to train the model with training data, compute
loss, and update weights.

↓

Step 5: Model Evaluation

Validate the model with test data and compute evaluation metrics.

↓

Step 6: Model Deployment and Report

Export the trained model for deployment in firmware and report all
training settings, included min/max.

Figure 4.4: NN training ASM chart

2 Is the number of input of the NN
N Is the number of neurons of the first layer
M Is the number of neurons of the second layer
1 Is the number of outputs

However, the results are promising for training with a large number of neurons.
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Figure 4.5: CPU vs GPU memory allocation

Figure 4.6: CPU vs GPU uptime

This is possible only for high performance HW, but it consumes more power
and this is not the object of the thesis.

Normalization bounds reporting

The normalization of minimum and maximum values is a crucial step in the
preprocessing phase, ensuring that all data features are on a similar scale and
enhancing the performance of the neural network. This normalization process
is carried out within the DataManipulation.py script. Specifically, the script
reads the raw data from the specified files and computes the minimum and
maximum values for each feature. The data is then scaled to a range between 0
and 1 using the formula:

normalized_value = value − min
max − min

55



Toolchain Description

Figure 4.7: Example of normalization applied to [min, max] = [32,64963]

This transformation is applied to each feature in the dataset, producing normal-
ized DataFrames that are subsequently loaded into the PyTorch tensorLoadset.
This ensures that the data fed into the neural network during the Simple-
Training() algorithm is appropriately scaled, facilitating more efficient training
and improved model accuracy. The flow proceeds from reading the data and
normalizing in DataManipulation.py to loading and handling by the custom
data set class in Dataset.py, and finally to model training and evaluation in
new_main.py. During this phase, the normalization bounds are stored in a
variable.

4.1.2 ONNX exporting
Once the training is finished, the model needs to be exported, in order to get
saved on a file. The target format for NN is ONNX.

Figure 4.8: ONNX logo [29][30]

Open Neural Network Exchange (ONNX) is an open source format designed to
facilitate the interchangeability of machine learning models between different
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frameworks. Developed by Microsoft and Facebook in 2017, ONNX aims to
streamline the deployment process by providing a universal standard that
supports interoperability among various deep learning tools such as PyTorch,
TensorFlow, and Caffe2. By adopting ONNX, developers can leverage the
strengths of multiple platforms throughout the model lifecycle, from training to
inference, without the need for extensive conversion or redevelopment.

In order to export to this specific format, some changes have been applied to
the original code. Initially, there was an individual Python script to achieve
this feature, but all it was doing was reloading the model from the standard
PyTorch one which is .pth. This implies using two rendundant disk accesses,
since the scope of the framework is to produce ONNX from the beginning.
Then a new method for the class Simple in file single.py of the framework was
created (export_to_onnx in order to take the model, already loaded in memory,
and export directly to target format.

Listing 4.2: Example of minmax.json report, with SWP and Impedance as features
1 [
2 {
3 "SWP" : {
4 "max" : 2 .2823558463946396 ,
5 " min " : −78.76520129153818
6 }
7 } ,
8 {
9 " Impedance " : {

10 "max" : 51891 .0 ,
11 " min " : 14883.0
12 }
13 }
14 ]

All final files are stored in a specific folder under result, which reports data and
time of the beginning of the training. All settings from train_config.json, the
values of the minimum and maximum of the data set and a small report (in the
case of NeuronSweep mode) are saved for the estimation of the results.

In Figure 4.9 there is an example of a typical output of the framework. In
folder plots there are all metrics plots, with the number of epoch iterations on
x-axis. There is also a preview of the predicted value of test plants.
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YYYY-MM-DD_hh-mm-ss_Single YYYY-MM-DD_hh-mm-ss_Single_settings_file.json

minmax.json

models Model_1.onnx

plots accuracy.pdf

f1_score.pdf

inputs Plant_10.pdf

losses.pdf

MCC.pdf

simulation_recap.txt

Figure 4.9: sw-ml-framework result output folder file tree

Figure 4.10: Toolchain for neural network firmware development - Building high-
lighted

4.2 Building
The building phase translates the trained neural network model into a format
suitable for the microcontroller. The ONNX model is first converted into a
C model. Following this, the code is updated to integrate the neural network
model into the firmware. The final step in this phase is building the firmware,
which prepares it for deployment on the hardware.

In Figure 4.11 the scripts that are involved in the building stage are shown.
They serve for the following scopes:

set-env.sh is mandatory to set, it contains all shortcuts to system executa-
bles, listed below:

• STM32CubeProgrammer
• X-CUBE-AI

build.sh launches all scripts sequentially. Its default behaviour is to prompt
for every feature, but it can be bypassed using the option -y.
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update-network.sh uses X-CUBE-AI to generate the updated NN model
written in C language.

update-normalization.sh updates minimum and maxim boundaries of the
input features. It is launched automatically by update-network.sh.

PlantFW_LoRa Core

Data

Drivers

LoRaWAN

Middlewares

Scripts disable_security.sh

program.sh

set-env.sh

update-network.sh

update-normalization.sh

STM32CubeIDE

sw-ml-framework

Utilities

X-CUBE-AI

build.sh

flash.sh

LoRaWAN_End_Node.ioc

README.md

readme.txt

Figure 4.11: Root directories, building scripts focused

In order to simplify the needed steps, a bash script build.sh has been written
and it is shown below in Listing A.1.

Describing the code from the top: first all default paths are set if something
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needs to be customized, then the option from CLI are parsed in case all prompts
need to be skipped, execution pass to following steps.

In order to get the code working, all executable paths must be set in set-env.sh,
which is written in bash as following listed:

Listing 4.3: set-env.sh listing
1 #!/ bin /bash
2 XCUBEAI_PATH=$HOME/STM32Cube/ Repos i tory /Packs/

STMicroe l e c t ron i c s /X−CUBE−AI /8 . 0 . 1 / U t i l i t i e s / l i nux / stm32ai
3 STM_CUBEPROG_PATH=$HOME/ App l i ca t i ons / stm32cubeclt_1 . 1 2 . 0 /

STM32CubeProgrammer/ bin /STM32_Programmer_CLI

4.2.1 C Model Conversion
If the neural network respects the chosen metrics standards, since FW is writ-
ten in C language, a conversion to that language model is needed. This process
is automated by X-CUBE-AI which outputs an optimized version for STM32
MCUs, which is suitable for the case.

All input files, which are ModelX.onnx and minmax.json, must be manually
moved from the sw_ml_framework folder to Data/NNmodel/ folder, as high-
lighted in Figure 4.12. Then when script build.sh launches update-network.sh, it
takes the executable path of X-CUBE-AI and set the custom variables that are
by default as listed below, from listing:

Listing 4.4: update-network.sh settings listing
1 NNMODEL_PATH=../ Data/NNmodel /∗ . onnx
2 OUTPUT_PATH=../ Data/Cmodel
3 FIRMWARE_CODE_PATH=../STM32CubeIDE/ Appl i cat ion /User/X−CUBE−AI/

App
4 MINMAX_FILEPATH=../ Data/NNmodel/minmax . j son
5 NAME=plantnetwork

When the execution of X-CUBE-AI is finished, all output files are stored in
Data/Cmodel/ and the console shows some reports about the just created
model. An example of which files are produced in Cmodel folder is drawn in
Figure 4.13.

It is included normalization.c which is produced by update-normalization.sh
which is launched after the C model is created. It is essential for the next step,
since the firmware needs the new boundaries of the network to be updated.
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PlantFW_LoRa Core

Data Cmodel

Ctemplates normalization_t.c

NNmodel minmax.json

Model_0.onnxDrivers

LoRaWAN

Middlewares

Scripts

STM32CubeIDE

sw-ml-framework

Utilities

X-CUBE-AI

build.sh

flash.sh

LoRaWAN_End_Node.ioc

README.md

readme.txt

Figure 4.12: Root directories, data focused

4.2.2 Code Updating
The files contained in Cmodel folder needs to be substitute in target directory.
In the last part of update-nertwork.sh the user is prompted to choose if copy
the code. This function is explicited in following lines:

1 f unc t i on update_code ( ) {
2 echo " Updating code on f irmware . . . "
3 mkdir −p ${FIRMWARE_CODE_PATH}
4 cp −t ${FIRMWARE_CODE_PATH} ${OUTPUT_PATH} / ∗ . [ ch ]
5 }
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Cmodel normalization.c

plantnetwork.c

plantnetwork_config.h

plantnetwork_data.c

plantnetwork_data.h

plantnetwork_data_params.c

plantnetwork_data_params.h

plantnetwork_generate_report.txt

plantnetwork.h

Figure 4.13: Output files inside Cmodel directory

Which moves files in the directory shown in Figure 4.14, replacing the ones
highlighted in yellow.

4.2.3 Building
Once all source files are ready, build.sh launches

1 cd $MAKEFILE_PATH

1 make −j4 a l l

which compiles using the Makefile inside STM32CubeIDE. If there is any is-
sue with this method, the IDE from STM can be installed to debug the code
or simply regenerate Makefiles. However, this step is not required to simply
reproduce the toolchain of this thesis.

4.3 Flashing
The final phase is flashing, where the built-in firmware is uploaded to the mi-
crocontroller. This step ensures that the firmware is correctly installed and
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STM32CubeIDE

Application

User

X-CUBE-AI

App
app_x-cube-ai.c

app_x-cube-ai.h

normalization.c

normalization.h

plantnetwork.c

plantnetwork_config.h

plantnetwork_data.c

plantnetwork_data.h

plantnetwork_data_params.c

plantnetwork_data_params.h

plantnetwork_generate_report.txt

plantnetwork.h

Figure 4.14: X-CUBE-AI files inside FW source code

Figure 4.15: Toolchain for neural network firmware development - Flashing high-
lighted

ready to perform real-time plant health monitoring. The files involved in this
step are highlighted in Figure 4.16.

The following sections will provide a detailed explanation of each phase, high-
lighting the tools and methodologies used to achieve efficient and reliable
firmware development.
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PlantFW_LoRa Core

Data

Drivers

LoRaWAN

Middlewares

Scripts disable_security.sh

program.sh

set-env.sh

update-network.sh

update-normalization.sh

STM32CubeIDE

sw-ml-framework

Utilities

X-CUBE-AI

build.sh

flash.sh

LoRaWAN_End_Node.ioc

README.md

readme.txt

Figure 4.16: Root directories, flashing scripts focused

User can launch flash.sh to start the downloading process. Also in this case,
user must set set-env.sh to make sure the executable for STMCubeProgrammer
is set. The script run through two main steps:

• Security disabling

• Downloading phase
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Security disabling
This process has solved a common bug found during several attempts, by the
candidate and the rest of the eLiONS group, to download FW with STM32CubeIDE,
which is the official development environment provided shipped with STM Nu-
cleo boards. In particular the bug emerges in a non-deterministic way, launch-
ing multiple downloading runs. Sometimes the board behave like its locked:
STLink, the default programmer on Nucleo board, can be seen but once it tries
to reach the MCU the latter does not respond.

The solution was found during the development of FUOTA firmware (Section
5). A batch script was found in the folder where all building and flashing ones
were contained. This batch file contained an example of the procedure devel-
oped by STM to unlock MCU. After using this file, the download process has
not failed a single time.

Some improvements must be done before using it in the project; the batch file
was not cross-compatible, so it has been ported in a bash script. The result is
listed in Listing A.5. The exact steps are show in sequence in Figure 4.17 and
they are described in following paragraphs.

Read Out Protection (RDP) The script begins by setting the Read
Out Protection (RDP) level. RDP is a security feature that protects the
firmware from being read or copied, thus preventing intellectual property theft
and unauthorized tampering. The levels of protection are:

• Level 1 (0xBB): This level enables read-out protection, preventing ex-
ternal access to the flash memory. It ensures that the contents of the
microcontroller’s flash memory cannot be read or copied by unauthorized
users.

Read Out Protection and Security Disable (ESE) Next, the
script sets the RDP to Level 0 and disables security:

• Level 0 (0xAA) + Security disabled (ESE 0x0): This configuration
disables read-out protection and certain security features, allowing unre-
stricted access to the flash memory. This setting is typically used during
development when unrestricted access to the microcontroller is needed for
debugging and programming.

Write Protection (WRP) The script then disables write protection for
specific flash memory areas:
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• WRP disabled: This configuration allows writing to the entire flash
memory. Disabling write protection is often necessary during development
or updates when the firmware needs to be modified.

User Configuration This section sets various user-specific configurations,
allowing customization of the microcontroller’s behavior:

• nRST: Configures the behavior of the microcontroller during low-power
modes. Setting nRST to ‘1‘ means that no reset is generated when en-
tering Stop, Standby, or Shutdown modes, which can be important for
certain low-power applications.

• WDG_SW: Switches the watchdog timers to software control, allowing
more flexibility in handling system resets and monitoring system health.

• IWDG: Ensures the independent watchdog counter is frozen in Stop/S-
tandby modes, which helps to prevent unwanted resets during low-power
operations.

• BOOT: Disables boot lock for CPU1 and CPU2, allowing for more flex-
ible boot configurations, which is useful during development and debug-
ging.

Security Configuration This section configures additional security set-
tings to further protect the microcontroller and its data:

• HDPAD: Disables the hide protection area for user flash, ensuring that
all parts of the user flash are accessible.

• SPISD: Disables SPI3 security, allowing SPI3 to operate without addi-
tional security restrictions, which may be necessary for certain communica-
tion applications.

• SBRSA: Resets the default value of the SRAM start address to a secure
setting, ensuring that sensitive data stored in SRAM is protected.

• SBRV: Resets the default value of the CPU2 boot start address, ensuring
secure booting of the secondary CPU.

Downloading phase
In the previous section, the steps involved in the disabling of security on the
STM32 microcontroller have been detailed, ensuring that the device is ready
for subsequent operations. Disabling security is a crucial step that allows us
to perform actions such as memory erasure and binary downloads without
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Start

Set RDP Level 1

Disable RDP + Security

Disable Write Protection

User Configuration

Security Configuration

End

No Reset in Low-Power Modes

Software Watchdogs

Freeze Watchdog Counters

Disable Boot Lock

Disable Hide Protection Area

Disable SPI3 Security

Set SRAM Start Address Secure

Set CPU2 Boot Start Address

Figure 4.17: ASM of disable-security

encountering security restrictions previously descripted that could hinder these
processes. Having successfully completed the security disabling phase, we now
move on to the next critical phase: the Download Phase.

The Download Phase encompasses the process of erasing the existing memory
content on the microcontroller and subsequently downloading the new binary
files. This phase is essential for updating the firmware or deploying new ap-
plications on the microcontroller. The operations in this phase ensure that
the microcontroller has a clean memory slate and the latest firmware version,
which is crucial to maintaining the functionality and security of the system.
The following steps are synthetized from Listing A.6.
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Erase Memory The next step is to erase the entire microcontroller mem-
ory. This is done using the STM32CubeProgrammer tool, specified by the
$STM_CUBEPROG_PATH variable, with the -c port=SWD mode=UR -e all options
to connect via SWD and erase all memory.

The script checks the exit status of the memory erasure command. If the com-
mand fails, the script terminates with an error message.

Download Binaries This step involves downloading the binary files to the
microcontroller. A function named download_file is defined to handle this
process. The function checks for the existence of the binary file and then uses
the STM32CubeProgrammer to download the binary.

The function first checks if the binary file exists. If not, it exits with an error
message. It then downloads the binary using the STM32CubeProgrammer,
verifies the download, and performs a hard reset on the microcontroller. If any
of these steps fail, the function exits with an error message.

Power Cycle After successfully downloading the binaries, the script prompts
the user to power cycle the board to apply the BFU security mechanisms.

Conclusion
This phase, coupled with the preceding security disabling phase, forms a com-
prehensive approach to preparing the microcontroller for its intended applica-
tions. The flashing step is the most crucial of the toolchain, since as proved
by practical attempt, there is not effective way to know the exact size of the
binary and sometimes it can overflow the size of flash memory dedicated to
code.
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Chapter 5

Challenges in
Implementing FUOTA

FUOTA (firmware update over-the-air) is a features that permits to remotely
update the firmware online, while running. The implementation of FUOTA
ensures that the devices remain up-to-date with the latest enhancements and
security patches, thereby extending their operational lifespan and reducing
maintenance costs. Since a flexible toolchain was developed to update the
firmware, this also consents to improve NN performance by launching new
trainings with fresh values, an attempt was made to port the code.

5.1 Introduction to FUOTA for WL55JC1
Series

According to STMicroelectronics, the STM32WL series is designed to support
over-the-air firmware updates, ensuring that devices can be updated with mini-
mal disruption to their operation [16].

5.1.1 Memory Mapping
Understanding the memory mapping of the STM32WL55JC1 series is essential
for implementing FUOTA. The most important information to be deducted is
the download memory size, since this is limiting for the firmware. In Figure 5.1
there is a detailed description of the memory sectors.
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Figure 5.1: Memory Mapping for LoRaWAN_FUOTA_DualCore_ExtFlash [31]

5.1.2 Example Calculation: Transmission Time
To estimate the transmission time for a firmware update, a scenario with a
spread factor (SF) of 7, a bandwidth of 125 kHz and a firmware size of 84kB is
considered. The spread factor affects the data rate and the air time for each
transmission.

The data rate for SF7 in LoRaWAN typically corresponds to a payload of 235
bytes per packet. Given the overhead for each packet estimated for 13, we can
assume an effective payload of approximately 222 bytes.

Total packets required =
G

84 × 1024 B
222 B/packet

H
= ⌈387,459459459⌉ = 388 packets

(5.1)

Since it has been used the maximum bytes per hour, now the only constraints
is the duty cycle. In the European band 863 MHz limits the transmission pe-
riod to 1%. Considering ToA (Time over Air), calculated by Airtime calculator
for LoRaWAN, of 368.9 ms, the next transmitted packet should wait:

Wait time = ⌈368.9 ms/1%⌉ = 36.9 s (5.2)

Total transmission time = 388 packets × 36.9 s/packet = 14,317.2 s ≈ 4 h (5.3)
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Therefore, the estimated transmission time for an 84kB firmware update with a
spread factor of 7 is approximately 4 hours. This calculation demonstrates the
importance of optimizing firmware size and selecting appropriate transmission
parameters to minimize update time.

5.2 State of Development
FUOTA End Node sits in the folder Examples of SDK. Since it is an empty
example, the code must be re-adapted.

The build step is processed through a script which is programmed in Batch
language, which is compatible only for Windows systems. A Bash port has
been realised in order to run the build with the Unix systems. The project
generates four key binaries:

1. 2_Images_KMS_Blob: This binary is built to include the Key Man-
agement Services (KMS) functionalities.It ensures secure handling and
storage of cryptographic keys used during the firmware update process.

2. 2_Images_SECoreBin: The SE core binary is compiled to provide
secure boot and secure firmware update capabilities. It ensures that only
authenticated firmware updates are applied to the device.

3. 2_Images_SBSFU: The SBSFU binary manages the secure boot pro-
cess and the firmware update operations. It coordinates the download and
verification of new firmware images.

4. LoRaWAN_End_Node_DualCore: This binary contains the main
application, including the LoRaWAN protocol stack and the application
logic. It handles communication with the network and the execution of the
device’s primary functions.

Each binary has a postbuild script that combines the previous blob with the
current. The final flash script has to upload only the last one produced.

5.2.1 Dependencies
Some pre-built executables are provided with the repository, but these are com-
patible only with Windows. However, some research in the postbuild.sh and
prebuild.sh scripts contained in some project folders reveals some references
to a Python script that performs the same processes. The latter is located in
the path Lib/Middlewares/ST/STM32_Secure_Engine/Utilities/KeysAndImages/.
Some Python libraries need to be added to get the script keys.py working,
they are reported below:
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• PyCryptodome contains some common cryptography algorithms

• PyElftool has tools to manipulate .elf binary files.

• ecdsa contains some tools to use ECC (Elliptic Curve Cryptography).

5.2.2 Oversize Issues
Once all the firmware has been ported, build.sh has been launched. The build-
ing process failed with the following log message:

Listing 5.1: Result log from build.sh
1 2 0 : 0 1 : 4 7 ∗∗∗∗ Build o f c o n f i g u r a t i o n Debug f o r p r o j e c t 2

_Images_SBSFU_CM0PLUS ∗∗∗∗
2 make −j12 a l l
3 arm−none−eabi−gcc −o "SBSFU. e l f " @" o b j e c t s . l i s t " −mcpu=cortex −m0plus −T" /

home/ repex / S c r i va n i a /PlantFW_FUOTA_DualCore_ExtFlash/2_Images_SBSFU/
STM32CubeIDE/CM0PLUS/SBSFU_cm0plus . ld " −−specs=nosys . spec s −Wl,−Map="
SBSFU. map" −Wl,−−gc−s e c t i o n s −s t a t i c −L . . / . . / . . / . . / Linker_Common/
STM32CubeIDE −−specs=nano . spec s −mfloat−abi=s o f t −mthumb −Wl,−−sta r t −
group −l c −lm −Wl,−−end−group

4 / opt / s t / stm32cubeide_1 . 1 3 . 2 / p lug in s / . . . / arm−none−eab i / bin / ld : SBSFU. e l f
s e c t i o n ‘ . SE_IF_Code ’ w i l l not f i t in r eg i on ‘SE_IF_ROM_region ’

5 / opt / s t / stm32cubeide_1 . 1 3 . 2 / p lug in s / . . . / arm−none−eab i / bin / ld : s e c t i o n . t ex t
LMA [000000000802 d000 ,0000000008033 e c f ] ove r l ap s s e c t i o n . SE_IF_Code LMA

[000000000802 b800 ,000000000802 d027 ]
6 / opt / s t / stm32cubeide_1 . 1 3 . 2 / p lug in s / . . . / arm−none−eab i / bin / ld : r eg i on ‘

SE_IF_ROM_region ’ over f lowed by 40 bytes
7 c o l l e c t 2 : e r r o r : ld returned 1 e x i t s t a t u s
8 make [ 1 ] : ∗∗∗ [ make f i l e : 7 2 : SBSFU. e l f ] Error 1
9 make : ∗∗∗ [ make f i l e : 6 5 : a l l ] Error 2

10 "make −j12 a l l " terminated with e x i t code 2 . Bui ld might be incomplete .
11
12 2 0 : 0 1 : 4 8 Build Fa i l ed . 5 e r r o r s , 0 warnings . ( took 262ms)

That indicates an oversize problem with the declared configuration. The region
named SE Interface Cortex-M0+ should begin at the address 0x0802 B800
and end at 0x0802 CBFF, but it results in an overlap with the next region up
to 0x0802 D027.

The issue has been fixed, giving more room in memory mapping to the incrim-
inated region. The current boundaries are set now to 0x0802 B800 -> 0x0802
D7FF.

Then the execution could proceed over this stage, but it has got stuck in this
new error:

Listing 5.2: Result log from build.sh

72



5.2 – State of Development

1 / opt / s t / stm32cubeide_1 . 1 3 . 2 / p lug in s /com . s t . stm32cube . ide . mcu . e x t e r n a l t o o l s .
gnu−too l s −for −stm32 . 1 1 . 3 . r e l 1 . l inux64_1 .1 .1 . 202309131626/ t o o l s / bin / . . /
l i b / gcc /arm−none−eab i / 1 1 . 3 . 1 / . . / . . / . . / . . / arm−none−eab i / bin / ld : SB . e l f
s e c t i o n ‘ . _user_heap_stack ’ w i l l not f i t in r eg i on ‘M4_SB_RAM_region ’

2 / opt / s t / stm32cubeide_1 . 1 3 . 2 / p lug in s /com . s t . stm32cube . ide . mcu . e x t e r n a l t o o l s .
gnu−too l s −for −stm32 . 1 1 . 3 . r e l 1 . l inux64_1 .1 .1 . 202309131626/ t o o l s / bin / . . /
l i b / gcc /arm−none−eab i / 1 1 . 3 . 1 / . . / . . / . . / . . / arm−none−eab i / bin / ld : r eg i on ‘
M4_SB_RAM_region ’ over f lowed by 240 bytes

3 c o l l e c t 2 : e r r o r : ld returned 1 e x i t s t a t u s
4 make : ∗∗∗ [ make f i l e : 6 7 : SB . e l f ] Error 1
5 "make −j12 a l l " terminated with e x i t code 2 . Bui ld might be incomplete .
6
7 1 4 : 2 1 : 0 1 Build Fa i l ed . 3 e r r o r s , 0 warnings . ( took 1 s .435ms)

Which indicates another overlap in assigned RAM region. The error indicates
an insufficiency of space to run the Cortex M4 Secure Boot execution. Another
time is has been solved by extending the region, shrinking the User Application
RAM section. The results is reported in Table 5.1:

Name Start End
Cortex M4 SB 0x2000 0000 0x2000 181F
Cortex M0+/M4 sync flag 0x2000 1820 0x2000 183F
Cortex M4 User Space 0x2000 1840 0x2000 6FFE

Table 5.1: Modified Memory Map

This modification brings up to the last part of the current development state.
The entire project folder is a standalone project. It can be built or flashed
using the scripts or the IDE. Nevertheless, additional efforts remain requisite to
fully get operational the X-CUBE-AI functionalities.
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Chapter 6

Conclusion and Future
Perspective

The development and deployment of AI firmware for remote wireless plant
health monitoring, as presented in this thesis, represent a significant advance-
ment in agricultural technology. The integration of neural networks into plant
health monitoring systems offers a robust, efficient, and scalable solution to the
challenges faced by traditional methods. By leveraging the intrinsic character-
istics of plants through impedance analysis, the developed firmware provides
accurate assessments of plant health, which is crucial for ensuring agricultural
productivity and sustainability.

The implementation process involved a thorough examination of neural network
architectures to identify the most suitable design for plant health monitoring.
The integration of the LoRaWAN protocol ensured low power consumption and
extensive range, making the system ideal for large-scale agricultural applica-
tions.

Key contributions of this research include:

• Neural Network Integration: The integration of neural networks into
the firmware allowed for the analysis of complex plant health data, en-
abling precise and real-time monitoring.

• Efficient Data Collection: The developed system effectively collected
and processed data from various sensors, providing valuable insights into
plant health.
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• Low Power Consumption: The use of the LoRaWAN protocol ensured
that the system operated with minimal power consumption, which is
critical for battery-operated devices in remote locations.

• Scalability: The system’s design allows for scalability, making it suit-
able for deployment in large agricultural fields and various environmental
conditions.

The results demonstrated that the AI firmware could accurately monitor plant
health by analyzing impedance and soil water potential (SWP). The system’s
ability to predict plant health conditions based on these parameters highlights
its potential for widespread application in agriculture, horticulture, and envi-
ronmental science.

6.1 Future Perspectives
The research presented in this thesis opens several avenues for future work:

• Enhanced Neural Network Models: Future work could explore the
use of more advanced neural network models and machine learning tech-
niques to improve the accuracy and reliability of plant health assessments.

• Integration with IoT Platforms: Integrating the developed system
with existing IoT platforms and cloud services can enhance data analysis,
visualization, and decision-making processes.

• Field Trials: Conducting extensive field trials in diverse agricultural
settings will help validate the system’s performance and identify areas for
improvement.

• Multi-Parameter Analysis: Expanding the system to monitor addi-
tional parameters such as soil nutrients and others can provide a more
comprehensive assessment of plant health.

• Energy Harvesting: Investigating energy harvesting techniques, such
as solar or wind power, can further enhance the system’s sustainability by
reducing dependence on batteries.

In conclusion, this thesis demonstrates the feasibility and effectiveness of us-
ing AI firmware for remote wireless plant health monitoring. The integration
of neural networks and low-power communication protocols has the potential
to revolutionize agricultural practices, ensuring food security and promoting
sustainable farming. Continued research and development in this field will con-
tribute to the advancement of smart agriculture and environmental monitoring
technologies.
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Appendix A

Bash scripts listings

A.1 Building Scripts
A.1.1 C Model Conversion

Listing A.1: build.sh
1 #!/ bin /bash
2 MAKEFILE_PATH="STM32CubeIDE/ Release / "
3 UPDATE_SCRIPTS_PATH=" S c r i p t s / "
4 UPDATE_SCRIPTS_FILENAME=" . / update−network . sh "
5 CURRENT_DIR=$PWD
6

7 f unc t i on help_func ( ) {
8 cat << EOF
9 Usage : . / bu i ld . sh [−y|−h ]

10

11 Desc r ip t i on :
12 Simple s c r i p t to update c model o f neura l network and/ or

bu i ld the f irmware
13

14 Options :
15 −y Set a l l answer to yes
16 −h|−−help Show t h i s message
17 EOF
18 }
19

20 # Parse command l i n e arguments
21 bypass=" "
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22 whi le [ [ $# −gt 0 ] ] ; do
23 case " $1 " in
24 −y)
25 bypass=Y
26 ; ;
27 −h)
28 help_func
29 e x i t 1
30 ; ;
31 −−help )
32 help_func
33 e x i t 1
34 ; ;
35 ∗)
36 echo "Unknown opt ion : $1 "
37 help_func
38 e x i t 1
39 ; ;
40 esac
41 s h i f t
42 done
43

44 # 1. Update CModel
45 answer=$bypass
46 whi le t rue ; do
47 i f [ [ $answer == " " ] ] ; then
48 read −r −p "Do you wish to update the code on f irmware ?

(Y/N) : " answer
49 f i
50 case $answer in
51 [Yy] ∗ )
52 echo " Updating C model o f neura l network . . . "
53 cd $UPDATE_SCRIPTS_PATH
54 $UPDATE_SCRIPTS_FILENAME −y
55 cd $CURRENT_DIR
56 break ; ;
57 [Nn] ∗ )
58 break ; ;
59 ∗ )
60 answer=" "
61 echo " Please answer Y or N. " ; ;
62 esac
63 done
64

65 # 2. Clean prompt
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66 answer=$bypass
67 cd $MAKEFILE_PATH
68 whi le t rue ; do
69 i f [ [ $answer == " " ] ] ; then
70 read −r −p "Do you wish to c l ean the p r o j e c t f o l d e r

f i r s t ? (Y/N) : " answer
71 f i
72 case $answer in
73 [Yy] ∗ )
74 echo " Launching make c l ean . . . "
75 make −j4 c l ean
76 break ; ;
77 [Nn] ∗ )
78 break ; ;
79 ∗ )
80 answer=" "
81 echo " Please answer Y or N. " ; ;
82 esac
83 done
84

85 # 3. Build FW
86 echo " Bui ld ing the f irmware "
87 make −j4 a l l
88 cd $CURRENT_DIR

Listing A.2: update-network.sh
1 #!/ bin /bash
2 source . / set−env . sh
3 NNMODEL_PATH=../ Data/NNmodel /∗ . onnx
4 OUTPUT_PATH=../ Data/Cmodel
5 FIRMWARE_CODE_PATH=../STM32CubeIDE/ Appl i cat ion /User/X−CUBE−AI/

App
6 MINMAX_FILEPATH=../ Data/NNmodel/minmax . j son
7 NAME=plantnetwork
8

9 answer=" "
10 whi le [ [ $# −gt 0 ] ] ; do
11 case " $1 " in
12 −y)
13 answer=Y
14 ; ;
15 ∗)
16 echo "Unknown opt ion : $1 "
17 e x i t 1
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18 ; ;
19 esac
20 s h i f t
21 done
22

23 f unc t i on update_code ( ) {
24 echo " Updating code on f irmware . . . "
25 mkdir −p ${FIRMWARE_CODE_PATH}
26 cp −t ${FIRMWARE_CODE_PATH} ${OUTPUT_PATH} / ∗ . [ ch ]
27 }
28

29 ${XCUBEAI_PATH} generate −−type onnx −n $NAME −m ${NNMODEL_PATH
} −o ${OUTPUT_PATH}

30

31 i f [ [ −f $MINMAX_FILEPATH ] ] ; then
32 . / update−norma l i za t i on . sh
33 f i
34

35 whi le t rue ; do
36 i f [ [ $answer == " " ] ] ; then
37 read −r −p "Do you wish to update the code on f irmware ?

(Y/N) : " answer
38 f i
39 case $answer in
40 [Yy] ∗ )
41 update_code
42 break ; ;
43 [Nn] ∗ )
44 e x i t ; ;
45 ∗ )
46 answer=" "
47 echo " Please answer Y or N. " ; ;
48 esac
49 done

Listing A.3: update-normalization.sh
1 #!/ bin /bash
2 MINMAX_FILEPATH=" . . / Data/NNmodel/minmax . j son "
3 NORMALIZATION_T_FILEPATH=" . . / Data/ Ctemplates / normal izat ion_t . c "
4 NORMALIZATION_OUTPUT=" . . / Data/Cmodel/ norma l i za t i on . c "
5

6 # Parse JSON f i l e and ex t r a c t va lue s
7 mapf i l e −t max_values < <( jq −r ’ . [ ] . [ ] . max ’ $MINMAX_FILEPATH)
8 mapf i l e −t min_values < <( jq −r ’ . [ ] . [ ] . min ’ $MINMAX_FILEPATH)

80



A.1 – Building Scripts

9 mapf i l e −t f e a t u r e s < <( jq −r ’ . [ ] | keys [ ] ’ $MINMAX_FILEPATH
)

10

11 # Create the replacement text
12 echo −e " Normal izat ion s e t po in t s : \ n\n Features | Min

| Max \n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
13 f o r ( ( i =0; i<${#max_values [@] } ; i++)) ; do
14 i f [ $ i −eq 0 ] ; then
15 t ex t=" {${max_values [ i ] } , ${min_values [ i ] }} "
16 e l s e
17 t ex t+=" ,\n {${max_values [ i ] } , ${min_values [ i ] }} "
18 f i
19 p r i n t f " %−10s | %−10s | %−10s \n " ${ f e a t u r e s [ i ] } ${

min_values [ i ] } ${max_values [ i ] }
20 done
21

22 # Create a new f i l e with sub s t i t u t ed va lue s
23 cp $NORMALIZATION_T_FILEPATH $NORMALIZATION_OUTPUT
24

25 # Replace the p l a c eho ld e r with the replacement text
26 sed −i " s | \ s ∗\/\/INSERT HERE\ s ∗ | $ text | " $NORMALIZATION_OUTPUT
27

28 echo −e " \nUpdated in $NORMALIZATION_OUTPUT"

A.1.2 Flashing Scripts
Listing A.4: flash.sh

1 #!/ bin /bash
2 CURRENT_DIR=$PWD
3

4 cd S c r i p t s /
5 . / program . sh
6 cd $CURRENT_DIR

Listing A.5: disable-security.sh
1 #!/ bin /bash
2

3 current_dir=" $ (pwd) / "
4

5 echo "###########################################"
6 echo "# 0− Set a l l g l oba l v a r i a b l e s "
7 echo "###########################################"
8 source . / set−env . sh
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9

10 echo "###########################################"
11 echo "# 1− Disab le s e c u r i t y "
12 echo "###########################################"
13

14 f unc t i on write_ob ( ) {
15 len_ob=0
16 option_byte_name=()
17 option_byte_val =()
18 whi le [ [ $# −gt 1 ] ] ; do
19 echo $1 $2
20 i f [ [ ! ( −z " $1 " | | −z " $2 " ) ] ]
21 then
22 option_byte_name+=($1 )
23 option_byte_val+=($2 )
24 len_ob=$ ( ( $len_ob+1) )
25 f i
26 s h i f t 2
27 done
28 # Check i f the number o f arguments i s odd
29 i f [ [ $# −eq 1 ] ] ; then
30 echo "The l a s t argument ( $1 ) i s not pa i r ed and w i l l be

ignored . "
31 f i
32 len_ob=$ ( ( $len_ob −1) )
33 obj_str=" "
34 f o r i in $ ( seq 0 $len_ob )
35 do
36 obj_str=" ${option_byte_name [ $ i ]}=${option_byte_val [ $ i ] }

$obj_str "
37 done
38 echo $obj_str
39 #Writing byte
40 $STM_CUBEPROG_PATH −c port=SWD mode=UR −q −ob " $obj_str " >

/dev/ n u l l 2>&1
41 i f [ [ ${?} −ne 0 ] ] ; then
42 echo " Error : Command wr i t e −ob $obj_str Fa i l ed "
43 e x i t 1
44 f i
45 #Checking byte
46 $STM_CUBEPROG_PATH −c port=SWD mode=UR −q −ob d i s p l > temp .

txt
47 f o r i in $ ( seq 0 $len_ob )
48 do
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49 f o r read_ob in $ ( grep −oP " \ s$ {option_byte_name [ $ i ]}\ s
∗ :\ s ∗0x[0−9A−Fa−f ]+ " temp . txt | awk ’ { p r i n t $3} ’ )

50 do
51 i f [ [ $read_ob −ne ${option_byte_val [ $ i ] } ] ]
52 then
53 echo −e " Error : Option Byte ${option_byte_name [

$ i ] } not modi f i ed as expected : read : $read_ob expected : ${
option_byte_val [ $ i ] } "

54 rm −f temp . txt > /dev/ n u l l 2>&1
55 e x i t 1
56 f i
57 done
58 done
59

60 rm −f temp . txt > /dev/ n u l l 2>&1
61 }
62

63 echo "RDP: Read Out p ro t e c t i on Level 1 "
64 write_ob RDP 0xBB
65

66 echo "RDP+ESE: Read Out p ro t e c t i on Level 0 + Secur i ty d i s ab l ed "
67 write_ob RDP 0xAA ESE 0x0
68

69 echo "WRP: Write Protec t i on d i s ab l ed "
70 write_ob WRP1A_STRT 0x7F WRP1A_END 0x0 WRP1B_STRT 0x7F

WRP1B_END 0x0
71

72 echo "−−−−−− User Conf igurat ion −−−−−−"
73 echo "nRST: No r e s e t generated when en t e r i ng the Stop/Standby/

Shutdown modes "
74 write_ob nRST_STOP 0x1 nRST_STDBY 0x1 nRST_SHDW 0x1
75

76 echo "WDG_SW: Software window/ independent watchdogs "
77 write_ob WWDG_SW 0x1 IWDG_SW 0x1
78

79 echo "IWDG: Independent watchdog counter f r o z en in Stop/Standby
modes "

80 write_ob IWGD_STDBY 0x0 IWDG_STOP 0x0
81

82 echo "BOOT: CPU1+CPU2 CM0+ Boot lock d i s ab l ed "
83 write_ob BOOT_LOCK 0x0 C2BOOT_LOCK 0x0
84

85 echo "−−−−−− Secur i ty Conf igurat ion −−−−−−"
86 echo "HDPAD: User Flash hide p ro t e c t i on area a c c e s s d i s ab l ed "
87 write_ob HDPAD 0x1
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88

89 echo "SPISD : SPI3 s e c u r i t y d i s ab l ed "
90 write_ob SUBGHSPISD 0x1
91

92 echo "SBRSA: Reset d e f a u l t va lue o f SRAM Star t address s e cu re "
93 write_ob SNBRSA 0x1F SBRSA 0x1F
94

95 echo "SBRV: Reset d e f a u l t va lue o f CPU2 Boot s t a r t address "
96 write_ob SBRV 0x8000

Listing A.6: program.sh listing
1 #!/ bin /bash
2

3 current_dir=" $ (pwd) / "
4 b i n a r y _ f i l e=" $current_dir . . / STM32CubeIDE/ Release /∗ . e l f "
5

6 echo "###########################################"
7 echo "# 0− Set a l l g l oba l v a r i a b l e s "
8 echo "###########################################"
9 source . / set−env . sh

10

11 echo "###########################################"
12 echo "# 1− Disab le s e c u r i t y "
13 echo "###########################################"
14 source . / d i s ab l e_s e cu r i t y . sh
15 i f [ [ $? −ne 0 ] ] ; then
16 echo " Error d i s a b l i n g s e c u r i t y "
17 e x i t 1
18 f i
19

20 echo "###########################################"
21 echo "# 2− Erase Memory"
22 echo "###########################################"
23 $STM_CUBEPROG_PATH −c port=SWD mode=UR −e a l l
24 i f [ [ $? −ne 0 ] ] ; then
25 echo " Error : Fu l l Memory Erase Fa i l u r e "
26 e x i t 1
27 f i
28

29 echo "###########################################"
30 echo "# 3− Download b i n a r i e s "
31 echo "###########################################"
32

33 f unc t i on download_f i le ( ) {
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34 i f [ [ ! −f $1 ] ] ; then
35 echo " Error : $1 F i l e not found . Check your bu i ld l og . . .

"
36 e x i t 1
37 f i
38

39 i f [ [ $3 = " " ] ]
40 then
41 echo " Downloading $2 binary . . . "
42 $STM_CUBEPROG_PATH −c port=SWD mode=UR −d $1 −v
43 e l s e
44 echo " Downloading $2 binary @$3 . . . "
45 $STM_CUBEPROG_PATH −c port=SWD mode=UR −d $1 $3 −v
46 f i
47

48 i f [ [ $? −ne 0 ] ] ; then
49 echo " Error : Download f a i l e d "
50 e x i t 1
51 f i
52

53 $STM_CUBEPROG_PATH −c port=SWD mode=HOTPLUG −hardRst
54 i f [ [ $? −ne 0 ] ] ; then
55 echo " Error : Reset a f t e r download f a i l e d "
56 e x i t 1
57 f i
58

59 echo " Done ! "
60 }
61

62 download_f i le $b ina ry_ f i l e $ ( basename $b ina ry_ f i l e )
63

64 echo " Power c y c l e the board ( unplug/ plug USB cab l e ) to apply
the BFU s e c u r i t y mechanisms . . . "

65 e x i t 0
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