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Summary

Deep Learning (DL) technology plays a critical role in various fields. This de-
velopment is driven by big data, high-performance computing capabilities, and
innovative algorithms. Deploying DL models in edge computing scenarios requires
efficient hardware platforms such as Field-Programmable Gate Arrays (FPGA) and
Application-Specific Integrated Circuits (ASIC), which are essential for meeting
the computational demands of modern DL tasks.

This survey aims to provide a comprehensive overview of HW-NAS methodolo-
gies, challenges, and trends, with a particular focus on implementations on FPGA
and ASIC. The survey explores HW-NAS from three aspects: search space, search
algorithms, and evaluation methods.

We hope this survey will serve as a valuable resource for those interested in the
latest advancements in HW-NAS on FPGA/ASIC.
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Chapter 1

Introduction

Deep learning (DL) systems are revolutionizing technology across various fields.
These breakthroughs are driven by the availability of big data, tremendous growth in
computational power, advancements in hardware acceleration, and recent algorith-
mic innovations. The rapid development of deep learning has spurred demand for
efficient hardware implementations capable of handling complex neural network ar-
chitectures. Due to their flexibility and performance efficiency, Field-Programmable
Gate Arrays (FPGAs) and Application-Specific Integrated Circuits (ASICs) have
become key platforms for accelerating deep learning tasks. To fully harness the
potential of these hardware platforms, researchers have turned to Neural Architec-
ture Search (NAS), a promising paradigm that automates the design of optimal
neural network architectures optimized for specific hardware constraints.

Recently, integrating hardware awareness into the search loop (i.e., HW-NAS) has
attracted many researchers and opened up exciting new research directions. Some
efforts in HW-NAS have already demonstrated state-of-the-art results, achieving a
balance between accuracy and hardware efficiency. Neural architecture search on
FPGAs and ASICs involves exploring a wide design space to discover architectures
that maximize performance metrics such as accuracy, speed, and energy efficiency.
This survey comprehensively examines methodologies, challenges, and trends in
hardware-aware NAS, focusing particularly on implementations on FPGAs and
ASICs.

HW-NAS consists of three key components[1]: first, the search space defines the
types and structures of DL architectures to form effective networks. Second, search
algorithms employ multi-objective optimization strategies such as evolutionary
algorithms or reinforcement learning to sample network architectures. Finally,
evaluation methods calculate DL performance and efficiency metrics, such as
accuracy and hardware specifications on target platforms. HW-NAS addresses
multi-objective optimization problems aimed at balancing accuracy, inference
latency, and energy consumption constraints. Evaluation results guide search
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strategies towards promising architectures within the search space. HW-NAS
can provide a range of advantageous solutions rather than a singular optimal
solution, making multi-objective optimization strategies particularly valuable in
edge computing scenarios.

This survey primarily reviews literature on hardware-aware NAS algorithms tar-
geting ASICs and FPGAs. HW-NAS requires interdisciplinary knowledge including
device-specific compilation, hardware microarchitecture, neural network design, and
efficient NAS algorithms. While many AutoML and NAS review papers focus on
theoretical concepts of architecture search, few extensively discuss hardware-based
approaches. This survey covers research reported in literature from 2019 to 2024,
providing a concise overview of HW-NAS.

Our review is divided into several sections. In Section III, we focus on relevant
HW-NAS search spaces. The search space consists of neural network architectures
that determine how neural network operators are connected to form effective
networks and which operators are allowed. In Section IV, we briefly outline
common search strategies and how they explore the search space by sampling
candidate neural network architectures. In Section V, we discuss how evaluation
methods assess the performance of architectures across various metrics. We hope
this review will be helpful to those interested in the latest advancements in HW-NAS
on FPGA/ASIC.

Figure 1.1: Overview of HW-NAS techniques
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Chapter 2

Related Work

2.1 Deep Learning

Deep Learning (DL), as a powerful machine learning technique, has made significant
strides in recent years, profoundly impacting technology and societal life. Its success
stems from the extensive research and understanding of neural network models,
especially with the support of large-scale data and high-performance hardware,
enabling revolutionary advancements across nearly every scientific domain.

Deep Neural Networks (DNNs), as core tools of deep learning, have been widely
applied in tasks such as object classification, detection, and recognition. These
models achieve superior performance by extracting high-level features through
hierarchical abstraction and learning processes.

In recent years, deep learning systems have garnered widespread research interest
and expanded beyond academic labs into industrial and real-world applications.
Deployment of most deep learning models has become feasible through cloud and
on-premise data centers. However, with the proliferation of Internet of Things
(IoT) devices and increasing demands for real-time responses, edge computing is
emerging as a new focus and challenge.

Edge devices face constraints in energy and computational power. For instance,
autonomous vehicles require real-time object detection and cannot tolerate delays
caused by data transmission to and from cloud processing. Simultaneously, there
exists a significant mismatch between edge computing capabilities and the com-
plexity of deep learning models, prompting researchers to seek innovative methods
to reduce model size, lower floating-point operation requirements, and minimize
inference latency.
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2.2 NAS
Neural Architecture Search (NAS) is a critical research direction within automated
deep learning network design. With the rapid automation of deep learning, the
importance of designing network architectures has been increasingly recognized.
While modifying architectures can significantly improve the performance of deep
learning methods, finding the right architecture itself is a time-consuming, complex,
and error-prone task.

Over the years, handcrafted models have excelled in accuracy. However, as the
scale and complexity of deep learning models increase, so does the complexity of
handcrafted models, such as the number of parameters. To reduce the complexity
and subjectivity of manual design, and to improve model performance and design
efficiency, the machine learning community has actively explored methods for au-
tomating the design of powerful deep convolutional networks. Automated Machine
Learning (AutoML)[2], as an approach for automated machine learning model
network design, has gained widespread attention. NAS, as a significant branch of
AutoML, aims to automatically explore predefined network structure search spaces
to find optimal network configurations.

Neural Architecture Search (NAS), as a significant research direction within
AutoML, marks the transition of neural network architecture design from manual
to automated. In 2016, pioneering NAS work proposed using a recurrent neural
network (RNN)-based controller to generate sub-networks and train them using
reinforcement learning (RL)[3]. Once trained, this controller can automatically
explore predefined search spaces to find optimal network configurations. Exper-
imental results on datasets like CIFAR-10 demonstrate that NAS can generate
network structures competitive with manually designed convolutional networks for
tasks such as image classification, semantic segmentation, and machine translation.

Classic NAS methods use an RNN as a controller to generate sub-networks,
which are then trained and evaluated for their network performance, after which
the controller parameters are updated. Traditional NAS methods are simple and
have achieved significant results. However, to fully exploit the potential of each
sub-network, every time a sub-network is sampled, the controller must initialize
and train network weights from scratch. Therefore, traditional NAS methods
have a fatal flaw: they are extremely computationally intensive. For example,
searching on a small dataset like CIFAR-10 can take 800 GPUs for three to four
weeks. Such enormous computational demands are daunting. To address this
issue, Efficient Neural Architecture Search (ENAS) proposed the weight-sharing
paradigm, significantly improving NAS search efficiency. The weight-sharing NAS
paradigm can also be used for evolutionary architecture search, establishing an
evolutionary search engine on a pretrained over-parameterized supernet to find
optimal architecture candidates.
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In 2018, researchers from CMU and Google proposed Differentiable Architecture
Search (DARTS), a method that leads the latest advancements in NAS with its
powerful search efficiency and reliable search performance. DARTS is a gradient-
based neural architecture search method. Its main idea is to introduce a set of
architectural parameters, relaxing the discrete search space into a continuous space,
thereby allowing simultaneous optimization of network weights and architectural
parameters using stochastic gradient descent (SGD). Once differentiable optimiza-
tion converges, we can derive optimal architectural candidates based on the learned
architectural parameters. The success of DARTS further catalyzed extensive
subsequent differentiable NAS work, continuously advancing search performance.

2.3 HW-NAS

Hardware-Aware Neural Architecture Search (HW-NAS) is an essential technique
within the field of Automated Machine Learning (AutoML), particularly making
significant strides in popularizing artificial intelligence (AI) and edge computing.

With the increasing diversity of hardware, designing efficient neural networks
for different platforms becomes crucial. Traditional NAS methods, while pursuing
model accuracy, often neglect practical hardware constraints, resulting in models
that are challenging to deploy on edge devices. Thus, Hardware-Aware Neural
Architecture Search (HW-NAS) emerged to incorporate characteristics of target
hardware platforms into the NAS process. Common hardware cost metrics include
inference latency, power consumption, energy consumption, model size, and memory
bandwidth. This approach helps build AI models deployable on resource-constrained
edge devices such as IoT, mobile devices, and embedded systems.

Initial HW-NAS methods focused primarily on modifying existing NAS al-
gorithms to consider hardware characteristics. Researchers explored how to in-
corporate hardware constraints into the NAS search space to optimize model
inference latency, energy consumption, and memory usage metrics. With the
development of computer hardware and algorithmic technologies, HW-NAS meth-
ods have gradually evolved from simple hardware-constrained optimizations to
more complex multi-objective optimization approaches. For example, introducing
evolutionary algorithms, multi-objective optimization strategies, or reinforcement
learning techniques to balance and optimize across multiple performance metrics,
thereby obtaining efficient neural network structures applicable to various hardware
platforms.
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Figure 2.1: Single-objective NAS (left) and HW-NAS (right)
[4]

2.4 FPGA and ASIC
FPGA (Field-Programmable Gate Array) and ASIC (Application-Specific Inte-
grated Circuit) are two common integrated circuit technologies in hardware design.
FPGA is a programmable logic device that allows defining its functionality and
connectivity through programming. In contrast, ASIC is an integrated circuit
specifically designed for a particular application, typically featuring customized
hardware functions and optimized performance.

FPGA and ASIC each have their strengths and weaknesses in hardware design.
FPGA is known for its flexibility and programmability, making it suitable for
rapid prototyping and applications that require frequent updates. ASIC excels
in power efficiency and performance optimization due to its customized design
and specialized capabilities, particularly well-suited for highly optimized specific
application domains.

Traditional NAS methods often overlook specific hardware platform constraints,
resulting in models that are difficult to effectively deploy on resource-constrained
hardware such as FPGA and ASIC. HW-NAS addresses this by incorporating hard-
ware constraints during the search process, optimizing neural network structures
to better fit the specific resources and performance requirements of FPGA and
ASIC. This optimization significantly enhances model inference efficiency, reduces
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Figure 2.2: Comparison of typical microprocessor, FPGA, ASIC and GPU
[5]

power consumption, and minimizes memory usage, thereby maximizing hardware
resource utilization.

The flexibility of FPGA is a major advantage, allowing developers to optimize
and adjust neural network architectures according to specific requirements without
the need for hardware redesign. FPGA can provide substantial computational
performance at relatively low power consumption, particularly suitable for edge
computing and embedded systems like smart cameras and sensors. ASIC, on the
other hand, is a dedicated integrated circuit designed for specific applications, ca-
pable of achieving highly customized neural network acceleration through hardware
optimization. This customized design typically offers significant advantages in
power efficiency and performance.

Although ASIC design and production costs are typically higher, and once
designed, ASICs cannot be altered, they offer substantial cost-effectiveness and
performance advantages in large-scale production. This makes ASIC particularly
suitable for high-performance applications requiring long-term deployment.
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Chapter 3

Search Space

In this review, we use the term "search space" to refer to the space containing all
hyperparameters of the neural architecture model. Common parameters to consider
include layer types, layer connections, activation functions, kernel sizes, and number
of kernels, among others, with the aim of finding high-performance architectures.
The design of the search space is a fundamental component of Hardware-NAS
(HW-NAS), as its performance heavily relies on the quality of the search space.
The search space typically serves as the initial step in setting up HW-NAS, defining
a set of basic network operators and their connectivity to construct the model’s
computation graph. It predefines the scope of the search, indirectly determining
the performance ceiling of NAS algorithms.

Traditionally, researchers have followed heuristic methods for NAS search space
design. In HW-NAS, the design of the search space often represents a crucial
trade-off between human biases and search efficiency. When the search space is
large, the search complexity increases with the number of elements, requiring longer
algorithm runtime but also potentially discovering novel architectures.

3.1 Architecture Search Space
The architecture search space is extensive. When designing accelerators for a given
application, numerous hyperparameters need to be selected for their values to
identify high-performing architectures. In general, it defines a set of basic network
operators and how these operators connect to build the model’s computation graph.
We distinguish between two approaches to design architecture search spaces [6]:

1) Fixed Architecture Hyperparameter Optimization : In this approach,
researchers define a fixed neural architecture in advance. The goal is solely to
optimize hyperparameters of the architecture’s network structure and each opera-
tion’s hyperparameters (e.g., number of layers, convolution types, pooling types,
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Figure 3.1: An example for generic CNN architecture for each layer
[7]

activation functions), without considering the hardware involved. This approach
reduces search time and computational resource consumption but may introduce
strong human biases.

2) Real Architecture Search Space: In contrast, the real architecture search
space is more flexible. The search space allows the optimizer to choose connections
between operations and can change the types of operations within each layer. The
actual architecture search space is vast. In AnaCoNGA [8], their Quantization
Strategy Search (QSS) also includes the quantization strategies for CNNs. This
method enables the optimizer to explore various possible connections and operation
types freely within the specified search space. However, the increase in search space
also implies significantly higher time and computational resource requirements for
the search process.

In summary, fixed architecture parameter optimization is suitable for scenarios
where there is already a basic structure in place, focusing primarily on optimizing
hyperparameters of predefined architecture. On the other hand, the real architecture
search space offers greater flexibility, allowing the optimizer to explore a wider range
of network structures and operation choices to achieve superior neural network
architecture designs.

Typically, the latter approach is further categorized into three types:
- Layer-wise Search Space: In layer-based architectures, each layer comprises

a set of selectable operations or layer types, serving as the unit of selection that
can only connect to its immediate layers. The entire model is generated from an
operator pool. For example, the FBNet search space includes a layer-wise search
space with a fixed macro architecture of 22 layers and fixed dimensions for each
layer, reducing the search space by limiting options and fixing layer types to shorten
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search time.
There are many search spaces of this type. For example, in EdgeTran [9]

framework, they designed the FlexiBERT 2.0 architecture as an extension of
the design space for Transformer models. FlexiBERT 2.0 is an expansion and
optimization of the traditional BERT model, which includes the introduction of
various attention mechanisms and operation types, such as weighted multiplicative
attention, linear transformation attention, and dynamic span convolutions. These
extensions increase the model’s flexibility and expressive power, allowing the use of
different types of attention operations within a single encoder layer.

The search space of the HALOC [10] framework is achieved by constructing
an over-parameterized network, which utilizes a NAS-inspired automatic rank
selection method, employing iterative sampling and evaluating different candidate
rank settings to differentially learn the most suitable rank. They built an over-
parameterized network containing various rank combinations through Tucker-2
decomposition, and these candidate rank combinations form a very large search
space.

- Unit-based Search Space: Advanced models like CNNs, designed manually,
are often composed of stacked repeating units to form larger and deeper architec-
tures. Thus, rather than searching for entire network architectures from scratch,
Zoph et al. proposed searching for relatively small units/modules and stacking
the discovered units multiple times to form the final overall architecture. A unit
typically represents a small acyclic graph that represents a feature transformation,
where each edge in the unit is an operation from a predefined search space. This
search space is suitable for tasks that require efficient and rapid design and op-
timization of network structures, such as when resources are limited or demands
change frequently, thus improving efficiency and performance through unit reuse.

FGNAS’s [11] search space falls into the category of unit-based search space.
FGNAS defines a fundamental operational process for graph neural networks, where
each layer consists of three independent stages, which can be viewed as repeated
fixed architectural patterns or units. Specifically, each unit includes embedding
linear transformation, message weighting, and feature aggregation operations, which
are reused to construct larger and deeper graph neural network architectures. In
Haiyan’s work [12], they used VGG blocks and RepVGG blocks as basic units to
construct the entire network architecture and defined the configurations of these
basic units at different stages.

- Hierarchical Search Space: Focuses on structural organization between
layers and overall design. It involves designing patterns at different levels, where
each higher-level pattern is often represented as a DAG of lower-level patterns.
Hierarchical search space is typically divided into three steps: defining units,
building larger blocks containing a certain number of units, and finally, designing
the entire model using generated units.
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For example, in HAO [13], they use subgraphs to construct neural network
architectures. Here, subgraphs refer to combinations of operations. This search
space views the network structure as composed of multiple modules, providing
higher flexibility and customizability. It allows mixing precision quantization with
different bit widths at different layers, significantly increasing the search space.

In the work of Huizheng and Lingli [14], they proposed a tree structure modeling
method to handle the vast design space of HLS (High-Level Synthesis) instruction
configurations. The tree structure design space represents the relationships between
parameters at different levels. This method can automatically eliminate invalid
configurations. The tree structure indicates that certain sub-parameters are only
valid when their parent parameters are set to specific values, thus only the valid
parameters in the tree structure need to be evaluated, significantly reducing the
scale of the search space. They then used a surrogate model, the Multi-Objective
Tree-structured Parzen Estimator (MOTPE), for efficient design space search and
to model the complex nonlinear relationships between instructions and design
objectives. To uniformly represent instruction parameters in the design space, they
also adopted float encoding. Through scaling and rounding down, these float values
can be converted into corresponding instruction descriptions, simplifying parameter
handling during the optimization process.

- Supernet Search Space: The concept of a supernet is to create a large
possible architecture space that can be efficiently explored to find the best network
for a given task. In a supernet, the weights of subnetworks are not fixed but learned
as hyperparameters during training[15]. This allows for a more flexible search space
that can better adapt to specific task requirements.

Figure 3.2: Supernet and Subnet Visualization in Neural Architecture Search
[3]

For example, in Taehee and Elliott’s work[16], they constructed a search space
based on a supernet. In the search space, they optimized the number of layers per
block and the number of channels per layer while considering the given input image
size. The size of the search space is very huge. They built a supernet based on VGG-
19, replacing the flattening layer in the original VGGNet with global average pooling

11



Search Space

to meet the memory bandwidth requirements of resource-constrained devices. In
DeepBurning-MixQ[17], they defined the range of quantization bit widths for each
layer model and created a supernet that includes all possible quantization branches.
These branches are adjusted by weights, using backpropagation to optimize the
quantization settings of MPNN.

In the work of Mohamed et al.[18], they designed Codesign-NAS, which can
combine multiple search space structures depending on optimization goals. For
part of the CNN model, Codesign-NAS can automatically insert operations, such as
adding or connecting operations according to rules, to optimize model performance.
It can start searching for the overall network structure from a hierarchical structure
and then optimize local details at the unit level, finally conducting a comprehensive
search and evaluation through the supernet.

The S3NAS[19] method proposed a novel supernet structure design. In this
supernet structure, the number of blocks at each stage can vary to accommodate
the latency-accuracy trade-off requirements of different hardware platforms. Within
each block, there can be parallel depthwise convolution layers with different kernel
sizes (MixConv) to enhance the network’s flexibility and adaptability.

ETNAS[20] utilizes an improved search space design based on the supernet
architecture of the Differentiable Architecture Search (DARTS) method. The
search space of ETNAS includes an operation set, lightweight candidate cells, fixed
blocks, and trainable blocks. These improvements in cell design make the network
more hierarchical and flexible in structure, allowing it to better adapt to different
computational resources and task requirements.

3.2 Hardware Search Space (HSS)
Due to differences in underlying hardware, operations within the search space need
to adapt to specific hardware platforms. The latency of the same operation can
vary significantly across different devices, even within the same type of hardware.
Resource-constrained devices may also fail to meet certain operation requirements.
Therefore, many HW-NAS methods include a Hardware Search Space (HSS) com-
ponent. This component transforms and optimizes hardware specifications through
various algorithmic transformations before evaluating the model, tailored to fit
hardware designs. While co-exploration is effective, it significantly increases the
time complexity of the search space. For example, in the case of FPGAs, their
design space may include IP instance types, IP reuse strategies, quantization
schemes, parallel factors, data transfer behaviors, slice parameters, and buffer sizes.
Considering all these options as part of the search space might be impractical due
to increased computational costs. Hence, many existing strategies are limited to
only a few options.
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The Hardware Search Space (HSS) can be further classified into the following
categories[6]:

- Parameters-based: The search space is formalized by a set of different
parameter configurations. In hardware search spaces involving FPGA and ASIC,
the hardware architecture is defined and optimized through numerous adjustable
parameters, such as on-chip memory size (memfp), the number of compute resources
(compfp, such as DSPs), and the bandwidth between off-chip and on-chip memory
(BWfp), among others.

The design of hardware search spaces is diverse. For example, the search
space in HAO[13] includes considerations for different hardware configurations,
such as the number of layers, channel sizes, and input resolution parameters. In
the work of Nilotpal et al[21]., they used Floating Point Operations (FLOPs)
as a hardware cost metric to compare with existing HW-NAS methods. In the
work of Mohamed et al [18], they obtained FPGA accelerator parameters from
the CHaiDNN library, configuring parameters such as the number of convolution
engines, buffer depth, external memory interface width, and the parallelism of filter
and pixel dimensions. Considering the design of hardware accelerators, appropriate
hardware optimization options can be chosen based on the resource constraints
and performance requirements of the target FPGA, such as the utilization of DSP
blocks, BRAM, and CLB. They also introduced the ratio conv engines parameter to
adjust the DSP allocation ratio among different convolution engines. In FGNAS[11],
they further chose the size of feature groups as a key parameter to extend the
hardware.

In the work of Haiyan et al.[12], their adjustable parameters included compute
elements (CE), processing elements (PE), the number of SIMD units, and row
buffer length, among others. By adjusting these parameters, they defined differ-
ent hardware architectures and designed a reconfigurable streaming-based neural
network accelerator. They also used a DMA engine to exchange data between
off-chip and on-chip memory, leveraging FIFO to achieve data stream processing.
In EdgeTran framework[9], they designed a flexible BERT accelerator framework
called ELECTOR. The ELECTOR framework includes multiple hardware modules,
forming a vast design space through different combinations. The ELECTOR design
space supports various hardware configuration options, including Batch Tile Size,
Memory Types, Number of MAC Lanes Per PE, etc. In the work of Grace et al.[22],
their search space included various mapping parameters for DNN accelerators, such
as tile sizes, loop orderings, and spatio-temporal mappings. These parameters are
directly related to how the hardware accelerator executes specific algorithms.

In the work of Panjie et al.[23], their search space also covered the model
compression ratio (sparsity ratio). The paper defined the search space by considering
a combination of model compression ratios and hardware resource utilization
through the proposed algorithm-hardware co-design framework. Specifically, the
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search space encompassed different combinations of model compression ratios (such
as sparsity) and hardware acceleration schemes (such as FPGA). The sparsity
ratio determines the pruning level of the model, affecting the model’s size and
computational complexity. Meanwhile, hardware parameters such as parallelism
factors and the number of digital signal processors (DSPs) impact the execution
efficiency and resource utilization of the model on different hardware devices. These
combinations can select the optimal device configuration under specific latency and
accuracy constraints while maintaining inference accuracy.

- Template-based: In this scenario, the search space is defined as a set of pre-
configured templates. Templates are first defined, then adjustable parameters within
the templates are determined, and finally, search algorithms are used to explore the
parameter space. NASAIC integrates NAS with Application-Specific Integrated
Circuits (ASICs). Their hardware search space includes several successfully designed
templates. The objective is to find the best model across all templates and different
possible parallelization. In current GNN accelerator designs, they also define a
template and explore optimal configurations by adjusting template parameters.
Template-based hardware search space is an efficient hardware design approach,
significantly reducing design complexity and improving optimization efficiency.
Below are examples of template-based search spaces.

HotNAS[24] performs NAS based on a selected model, ensuring it meets given
time constraints and maintains high accuracy. Its sub-tool iSpace provides a search
space that includes filter patterns, channel pruning, quantization, filter expansion,
and hardware design.

In a conference paper at ICLR 2022[25], to ensure efficient operation on the
target hardware platform, the search space excludes some operators that perform
poorly or are unsupported on the target hardware, such as batch normalization,
depthwise convolution, squeeze-and-excitation, and Swish activation. They form
larger architectures by stacking predefined blocks and optimize these blocks to
meet the performance requirements of specific hardware.

In ASICNAS framework[26], they emphasize the importance of heterogeneous
accelerator design. Their hardware search space is primarily based on a set of
successful existing ASIC design templates, each representing a specific dataflow
style. Each template corresponds to a specific dataflow style and defines specific
hardware structures and dataflow methods. For instance, Shidiannao is suitable for
high-resolution activation channels, the NVDLA style is suited for low-resolution
activation channels and large numbers of activation channels, and the Eyeriss style
performs well in various dataflow scenarios.
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Search Algorithm

The search strategy defines how the search space is explored. Its primary goal is
to construct the model that best fits the given dataset from the vast number of
models available in the search space. In this section, we will discuss all the search
strategies used in hardware-aware NAS.

4.1 Reinforcement Learning
Many HW-NAS methods use reinforcement learning to search for optimal architec-
tures because the NAS problem can be easily modeled as a Markov decision process.
In reinforcement learning, a Recurrent Neural Network (RNN) controller is first
used to generate a description of the neural network. This RNN is trained via an
RL algorithm to maximize the performance of the generated architecture. The
RL controller samples an architecture from the search space and receives rewards
based on its accuracy and hardware cost. The agent then adjusts its weights to
generate better models. Different works vary in how they represent the agent’s
policy and how they optimize it. This process is repeated over many iterations.

In HotNAS framework[24], they use an RNN-based reinforcement learning opti-
mizer. A design space is created based on their iSpace tool, and an RNN controller
is designed accordingly. Specifically, the controller consists of a softmax classifier
that predicts the hyperparameters for each search space in iSpace. The predicted
hyperparameters determine specific neural networks and hardware designs, which
can be rewarded based on accuracy and latency. The search process optimizes the
controller by adjusting its parameters to maximize the expected reward. The param-
eters are updated using the policy gradient method to predict better architectures
over a series of episodes.

In the work of Panjie et al.[23], their RL controller is based on a Recurrent Neural
Network (RNN). In each search cycle (episode), the controller predicts and selects

15



Search Algorithm

Figure 4.1: Basic Terminologies of Reinforcement Learning
[27]

a set of parameters (such as model compression ratios and hardware configurations)
based on the evaluation results from the environment. The controller’s policy is
then updated based on these evaluation results to guide the next round of searches
towards better configurations.

Codesign-NAS[18] uses reinforcement learning as the primary search algorithm
to guide the joint optimization process of CNN models and hardware accelerators.
They found that gradually increasing the threshold makes it easier for the RL
controller to learn high-accuracy CNN structures. They evaluated three RL-based
search strategies, assessing their proximity to the Pareto optimal points and search
convergence speed. The most efficient strategy is phase search, which divides the
search process into different phases, such as first fixing the CNN structure and
then optimizing the hardware accelerator design, or vice versa. Each phase can use
different policy networks to explore the search space more effectively and find local
optima.

FGNAS[11] is a graph neural network-based NAS method whose framework
consists of three main components: the controller, the FPGA model builder, and the
GNN model trainer. For each layer of the subnetwork, the controller generates three
types of parameters that define the network topology, hardware implementation,
and accuracy. For each sample from the controller, the hardware model is first
built and evaluated against predefined constraints. Since most samples may be
infeasible, their training is skipped, and their reward is set to zero; otherwise,
the network is built, trained, and validated. This approach bypasses the training
process as much as possible, making the search faster than pure NAS. Finally, the
controller’s parameters are updated once after evaluating a small batch of samples.
The process terminates after a predefined number of rounds.

In the framework proposed from Weiwen et al.[28], a two-stage (fast and slow)
exploration strategy is adopted. The fast exploration stage accelerates the NAS
process by efficiently fine-tuning hyperparameters and pruning unqualified hardware
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specifications. In the slow exploration stage (SE), candidate architectures are
trained on the validation set, and their accuracy and hardware efficiency are
calculated to generate rewards and update the controller’s parameters.

Reinforcement learning learns the optimal strategy through a trial-and-error
process and does not rely on a predefined search space. However, this algorithm has
a long training time and consumes a significant amount of computational resources.
It may get trapped in local optima, making it challenging to guarantee a globally
optimal solution.

4.2 Evolutionary Algorithms
Another popular strategy in traditional NAS is using evolutionary algorithms. These
are a class of optimizers inspired by principles of biological evolution and genetics.
Typically, neuro-evolution NAS generates an initial population of architectures
through random sampling, applies selection techniques to sample some models for
generating the next generation, evaluates the fitness of the offspring, and selects
the best models to evolve into the population to update the next generation. For
the search strategy, evolutionary algorithms transform one neural architecture into
another through mutation and crossover operations. When it comes to integrating
hardware constraints into NAS algorithms, some research works have utilized
evolutionary algorithms.

Figure 4.2: Basic Terminologies of Evolutionary Algorithms
[29]

GAMMA (Genetic Algorithm for Mapping Machine Learning Algorithms)[30]
is a mapping tool based on genetic algorithms, specifically designed to optimize
the mapping strategies of convolutional neural networks (CNNs) on hardware
accelerators. After generating the initial population, selection is performed based
on a fitness function. The performance metrics for GAMMA’s fitness function are
derived from latency, energy consumption, and computation time obtained through
hardware simulators or performance predictors.

Xel-FPGAs[31] is an end-to-end automated framework designed for architectural
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space exploration of approximate accelerators in FPGA systems. They chose an
exploration evolutionary strategy (ES) + better suited for identifying a wide range
of design trade-offs relevant to the target application. This strategy iteratively
identifies a set of 200 Pareto-optimal approximate accelerators after 1000 gener-
ations. Unlike traditional genetic algorithms, ES relies solely on small random
variations within the best individuals rather than complex crossover mechanisms.
They iterate over each given Pareto frontier within time constraints to obtain new
designs that can be used to extract a new Pareto frontier. These new frontier
designs serve as the basis for the next generation of designs.

SkyNet[32] uses a population-based Particle Swarm Optimization (PSO) algo-
rithm to evolve network candidates, enhancing their accuracy and efficiency. PSO
works by mimicking the behavior of bird flocks or fish schools searching for food.
It explores network configurations such as convolutional layer channel expansions
and pooling positions, evaluating and selecting the candidates with the highest
fitness scores.

HW-EvRSNAS[21] combines genetic algorithms and random search as its search
algorithm. Random search is used to generate an initial diverse set of candidate
solutions, and the evolutionary algorithm improves these candidates based on the
initial population through crossover, mutation, and selection operations. These
operations help gradually optimize the solution quality, with high-performing
solutions under evaluation criteria being retained and further optimized.

In a conference paper at ICLR 2022[25], they use an evolutionary algorithm
(EA) as their search strategy. For the architecture selection process within the
evolutionary algorithm, they propose a simple and efficient method based on the
epsilon constraint method to select an elite population. The Upfront algorithm
divides the current population into small cells based on the hardware constraint
threshold delta T grid. If there is only one hardware constraint, the grid can be
one-dimensional; if there are two hardware constraints, it can be two-dimensional.
Upfront then selects the architecture with the highest accuracy within each cell.
The selected architectures show great potential in terms of accuracy and hardware
constraints.

MO-HDNAS[33] employs the metaheuristic optimization technique of genetic
algorithms, specifically using NSGA-II. MO-HDNAS conducts architecture search
by optimizing three objectives: maximizing representation similarity metrics, min-
imizing hardware cost, and maximizing hardware cost diversity. The hardware
cost diversity objective helps better explore the architecture search space. By
introducing the hardware cost diversity objective, the architectures within the
population exhibit a broader range of hardware costs, thus increasing the likelihood
of discovering high-performance architectures.

In the work of Lotte et al.[34], they utilized the genetic algorithm NSGA-II in
conjunction with the ZigZag DSE framework. The ZigZag framework can simulate
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various types of neural network accelerators, providing detailed energy consumption
and latency analysis, thereby enabling rapid and accurate estimation of hardware
performance.

In the work of Halima et al.[35], they also adopted NSGA-II as the search
algorithm. However, during the initialization process, they used Latin Hypercube
Sampling (LHS) to ensure the breadth of the search. Latin Hypercube Sampling is
a statistical method used to generate samples from a multidimensional uniform
distribution. When there are many parameters and extensive simulations are
needed, it can achieve better coverage of the parameter space more rapidly than
simple random sampling or regular grid sampling.

EDD (Efficient Differential DNN Architecture Search) is an optimization method
for neural network architecture search (NAS). The core idea of EDD is to search
and optimize DNN architectures through Differential Evolution. In the search for
DNN architectures, Differential Evolution iterates to generate new architectures
by combining features of existing architectures, such as layer types, number of
layers, and connectivity patterns, and testing their performance. The EDD method
allows for the flexible definition of multiple optimization objectives during the
search process, such as improving accuracy and reducing energy consumption.
By adjusting the relative importance of these objectives, architectures can be
customized according to the specific requirements of the application.

AnaCoNGA[8] uses genetic algorithms (GA) as its core search mechanism. Unlike
previous studies, it employs two nested genetic algorithms. The Quantization
Strategy Search (QSS) is responsible for finding the optimal quantization strategies,
and once a quantization strategy is proposed, the Hardware Architecture Search
(HAS) concurrently searches for the optimal hardware configuration for it. If no
solution within the hardware Pareto front of a quantization strategy meets the
established hardware constraints, QSS receives a signal to avoid further resource
wastage on that strategy. This nested approach allows hardware designs to adapt
in real-time to the changing needs of CNNs.

LEMONADE[36] applies Lamarckian genetic principles, which assume that
individuals can pass on traits acquired during their lifetime to their offspring.
In LEMONADE, this means that modifications to the network structure can be
directly inherited by its child networks, eliminating the need to train each network
from scratch. This approach significantly speeds up the search process, as it allows
the network to retain beneficial characteristics already acquired. LEMONADE
utilizes network morphisms technology, which permits small, reversible changes
to the network structure without altering its functionality. This ensures that
adjustments made during the optimization process do not affect its performance,
allowing for a safer exploration of the design space without compromising the
advantages already achieved.

Evolutionary search has a strong global search capability and can explore a wide
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search space. The drawback of this search algorithm is its slow convergence speed,
which may require a long time to find high-quality solutions. Additionally, since
fitness evaluation requires a significant amount of computational resources, the
computational cost of evolutionary algorithms is also high.

4.3 Gradient-based Methods

Gradient-based optimizer algorithms rely on the derivatives or gradients of the
objective function to iteratively update parameters/hyperparameters in the direc-
tion of their maxima or minima. Among these search strategies, gradient-based
methods show promising results. These methods are increasingly used in hardware-
aware NAS. However, due to the discrete nature of the search space, running the
search and evaluation separately requires significant time and computation. This
problem was first addressed by DARTS. DARTS uses a weight-sharing technique
that significantly reduces search time. Gradient-based methods train a supernet
while obtaining both architecture parameters and weights. However, DARTS can
be unstable, and the search process may lead to suboptimal solutions.

Figure 4.3: Basic Terminologies of Gradient-based Methods
[37]
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In XNAS, unlike traditional gradient descent, they use the Exponentiated-
Gradient algorithm to avoid the decay of architecture weights. This algorithm
more effectively facilitates the selection of arbitrary architectures.

BOSHCODE[38] co-design technique extends the BOSHNAS technique, which
combines the GOBI algorithm for gradient optimization. By maximizing the upper
confidence bound (UCB) estimate of model performance, the co-design process of
the model and device is further optimized.

Loong[39] adopts a layer-by-layer training approach to design and train neural
networks incrementally, avoiding the high computational cost of searching the
entire layer structure at once. They also employ dual-layer gradient optimization,
updating parameters and importance weights for each layer’s operations through
two-step gradient descent. The first step computes cross-entropy loss on the
validation dataset to update weights, while the second step updates parameters
on the training dataset. They introduce hardware objectives such as memory and
latency as regularization terms, and use a lookup table to quickly compute the
hardware costs of candidate operations, guiding operation selection.

ETNAS[20] uses a search algorithm based on DARTS, which simultaneously
optimizes weights and architecture parameters through gradient descent, addressing
memory-intensive issues. They incorporated soft losses into the weight optimization
loss function, enabling the search for low-power network architectures by applying
segmented penalties for power consumption. ETNAS continuous the search space
through Softmax operations, allowing the weights of candidate operations to be
optimized during training, ultimately selecting the operation with the highest
probability as the final structure.

SurgeNAS[40] employs a single-level optimization approach, optimizing the
network structure through accurate gradient estimation to ensure stability and
efficiency in the search process. To reduce memory consumption, SurgeNAS
introduces an efficient ordered differentiable sampling technique, reducing memory
requirements to a single-path level while ensuring fairness throughout the search
process.

Gradient-based methods have a fast convergence speed and an efficient opti-
mization process, making them suitable for large-scale neural network architecture
searches. However, this type of search algorithm requires precise gradient informa-
tion and performs poorly in non-smooth or discrete search spaces. It is prone to
getting stuck in local optima, making it difficult to find a globally optimal solution.

4.4 Random Search and Bayesian Optimization
Exploring hardware design spaces can be seen as a black-box optimization problem.
Firstly, evaluating the objective function is expensive. Secondly, for most hardware
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design variables, derivatives do not exist or are difficult to compute, making the
properties of the objective function, such as derivatives and convexity, unknown.
Bayesian optimization (BO) is a powerful tool and a widely-used sequential model-
based optimization framework for solving global optimization problems. In Bayesian
optimization, the goal is to find a surrogate function fs that closely mimics the
behavior of the desired objective function. It is important to note that in Bayesian
optimization, fs is a stochastic process. In the optimization process, BO initially
uses random sampling based on previously observed samples to acquire an initial
dataset for finding extrema of the hard-to-evaluate objective function, constructing
a surrogate model to approximate the objective function. Subsequently, the
BO algorithm iteratively samples a new configuration from the design space for
evaluation, updating the surrogate model guided by acquisition functions. The
acquisition function should balance exploitation of sampled configurations and
exploration of unsampled configurations in the design space. Finally, the Pareto
set explored by BO in the multi-objective optimization process represents optimal
configurations.

In the work of Alireza and Yvon[41], they compare three design space exploration
methods: Grey Wolf Optimization (GWO), Bayesian Optimization (BO), and a
hybrid GWO-BO approach. GWO, as a metaheuristic method, performs well in
design space searches but lacks a systematic surrogate model. On the other hand,
BO provides a surrogate model capability but performs less favorably in some
benchmark tests compared to GWO. Therefore, the paper proposes an innovative
hybrid GWO-BO method that combines BO’s surrogate modeling capability with
GWO’s superior search performance. The hybrid GWO-BO method proposed in
this paper not only effectively optimizes FPGA-targeted OpenCL kernels but also
achieves efficient exploration of the design space through surrogate modeling.

Automated framework Prospector[42] uses multidimensional Bayesian techniques
to optimize synthesized instructions, reducing execution latency and resource
usage on Field-Programmable Gate Arrays (FPGAs). The framework coordinates
instruction placement and configuration, aiming for low execution time and efficient
resource utilization. Prospector improves heterogeneous performance by finding
more accurate Pareto-optimal design variants. It achieves these goals in two ways:
first, by encoding the design space for better capturing accelerator performance
and FPGA costs (e.g., flip-flops, lookup tables, block RAM, and DSPs); second, by
sampling the design space to effectively reveal optimal designs, as HLS measurement
costs are high.

In the work of Alireza et al.[43], they integrate model-based active learning with
Bayesian transfer learning to provide accurate Bayesian models for design space
exploration. This method employs Bayesian models to characterize various aspects
of hardware performance and combines transfer learning, Gaussian process-based
bootstrapping techniques, and active learning to create more accurate models.
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Compared to traditional methods, this approach significantly reduces the number
of samples required to build performance models while maintaining predictive
capability. Once a Bayesian model is constructed, it can be updated using feedback
mechanisms provided by real applications.

To further reduce the number of samples required for hardware performance
prediction, they use Gaussian process bootstrapping to generate new data for
various regression analyses of hardware models, demonstrating that results based on
bootstrap samples closely reflect analyses performed on real data. Additionally, they
employ Bayesian transfer learning and show that performance of parameter searches
is significantly improved by merging information from other related hardware design
tasks. Experiments show that their approach can detect optimal design parameters
for processor microarchitecture with fewer than 50 samples in most cases. The
method demonstrates a significant reduction of 65% in the number of samples
needed to create performance models while maintaining their predictive capability.

CODEBench[44] is a unified benchmarking framework used to simulate and
model CNN-accelerator pairs and their performance metrics. CODEBench in-
troduces the collaborative design method BOSHCODE, employing second-order
gradients and heteroscedastic surrogate models for Bayesian optimization of CNN
and accelerator co-design. BOSHNAS operates gradient-based optimization on a
single lightweight NN model, using Gradient-Boosted Input to Output (GOBI) to
predict model performance and deterministic and stochastic uncertainties.

In the work of Huizhen and Lingli[14], they model design space exploration as a
multi-objective black-box optimization problem based on Bayesian optimization,
using floating-point encoding to explore the Pareto frontier of HLS instruction design.
They develop a general method to model the design space in a tree structure, where
the tree structure indicates some sub-parameters are active only when their parent
parameters are set to specific values. This method automatically avoids invalid
configurations. They adopt the Multi-objective Tree-structured Parzen Estimator
(MOTPE) as a surrogate model to flexibly construct HLS design spaces, efficiently
searching the tree-structured design space while using Expected Hypervolume
Improvement (EHVI) as an acquisition function to guide the optimization process.

In the work of Grace et al.[22], they demonstrate the feasibility of using Bayesian
optimization for mapping space search with few samples (less than 100), further
reducing the sample count through transfer learning from data collected for other
hardware configurations. The key to their approach lies in constructing an encoding
scheme that ensures every point in the search space given to the Bayesian algorithm
corresponds to a valid mapping. They represent these variables as continuous
variables in the optimization program and round them to find actual mapping
parameters. Experimental results show that this rounding method optimizes
Bayesian optimization of complex functions with a faster convergence rate and
capability to handle multiple parameters, matching or surpassing methods based
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on discrete alternatives.
For achieving efficient device-side training, they propose a low-overhead dynamic

inference and training scheme DynaProp, which dynamically prunes weights, acti-
vations, and gradients to skip invalid MAC operations, accelerating Transformer
training/inference. DynaProp introduces sparsity in Transformer training and
inference using dedicated low-overhead hardware modules. DynaProp achieves 90%
sparsity in gradient matrices with negligible accuracy loss and improves training
throughput 2.3 times compared to traditional training.

Random Search and Bayesian Optimization do not rely on the characteristics
of the search space, making them suitable for multi-objective search spaces and
resource-constrained environments. However, Random Search is inefficient and
requires a large number of samples to find high-quality solutions. Bayesian Opti-
mization has a high computational complexity, and the process of model training
and updating is slow.

Some studies do not use the traditional search algorithms mentioned above.
For instance, in Reg-TuneV2[45], they perform continuous optimization of model
parameters using polynomial regression and metric learning techniques. This
approach is more efficient than traditional search algorithms as it explores and
evaluates a large number of model configurations with fewer computational expenses.
In HAO, they do not apply heuristic pruning spaces or use reinforcement learning
or gradient-based search algorithms; instead, they formulate neural architecture
design, quantization, and hardware design as an integer programming problem,
enabling the use of efficient optimization algorithms to reduce computational costs.
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Chapter 5

Estimation Strategy

In Hardware Neural Architecture Search (HW-NAS), performance estimation is a
crucial component. In HW-NAS, an estimation strategy refers to the methods and
techniques used to evaluate and predict DL performance and hardware costs (such
as latency, power consumption, memory usage, etc.). To apply NAS to specific
hardware, hardware constraints must be considered. For example, NAS[46] uses a
set of constraints such as peak memory usage, model size, and latency as hardware
metrics. These strategies are critical for optimizing and selecting the best hardware
architecture.

Typically, researchers build accuracy predictors for architectures in the search
space and latency estimators for the target hardware. The goal of accuracy
predictors is to quickly and accurately predict the accuracy of neural network
architectures without requiring a full training process. Latency estimators aim
to quickly assess the inference latency of neural network architectures on specific
hardware platforms.

To guide the search strategy, evaluation methods are needed to assess the
accuracy of candidate architectures. Evaluating accuracy requires training the
architectures to convergence, which demands substantial computational resources,
often taking hours or even days of GPU time. One alternative method to accel-
erate the evaluation process is to estimate accuracy without training the sample
architectures. HW-NAS aims to achieve multi-objective optimization, such as high
accuracy and low latency. Typically, we cannot optimize conflicting metrics, such
as accuracy and latency, simultaneously. Generally, hardware constraint methods
or weighted product methods are used to achieve multi-objective optimization goals
in NAS.

HW-NAS is formulated as a multi-objective optimization problem, aiming to
optimize two or more conflicting objectives, usually requiring improvements in DL
performance while reducing hardware costs. In HW-NAS, the results obtained by
the search algorithm are usually not a single solution but a set of architectures
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with optimal trade-offs between objectives. These sets of optimal solutions are
called Pareto frontiers.

There are four common estimation strategies in HW-NAS[6].

5.1 Real-world measurements
This method measures performance metrics by running models on actual hardware
platforms. It provides the highest accuracy as it directly reflects the performance
in real hardware environments.

However, collecting performance data by running models on actual hardware
usually requires more time. If multiple hardware configurations or a large number
of different model architectures need to be evaluated, the scalability of real-world
testing may be limited. Each hardware or configuration test needs to be conducted
independently, which restricts the ability to quickly evaluate a large number of
options.

In summary, although real-world testing provides the most reliable data, its
high cost, time consumption, and resource demands may make it unsuitable for
all scenarios, especially in early exploratory research and resource-constrained
applications. In these cases, researchers start exploring other estimation strategies
to achieve better efficiency and cost-effectiveness.

5.2 Lookup table
This method involves pre-collecting and storing performance data for different
operations on specific hardware platforms. During architecture search, these stored
data can be directly used to estimate the hardware cost of the model without the
need to actually run the network on the hardware. By avoiding repeated hardware
execution and measurement, this estimation strategy is very fast. Additionally,
since the lookup table is based on actual hardware measurement data, it can provide
accurate performance information.

For example, in the work of Mohamed et al.[18], they measured the latency of
each operation (such as convolution, pooling, and element-wise operations) on an
FPGA accelerator and stored it in a lookup table. Then, they used a scheduler to
allocate operations to parallel computing units based on the latency information in
the lookup table and calculated the total latency of the entire CNN model.

However, the flexibility of lookup tables is limited, and they require maintenance
costs. Once the hardware is updated or new operation types are added, the lookup
table also needs to be updated. Additionally, the lookup table method relies on the
assumption of the independence of operations, which may not accurately reflect
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performance changes due to interactions between operations (such as memory
access conflicts).

5.3 Analytical estimation
This method estimates the performance of deep learning models on specific hardware
by analyzing the model’s structure and operations, such as the number of multiply-
accumulate operations and the latency of each operation. Analytical estimation
usually relies on a deep understanding of neural network architecture and hardware
performance characteristics, using mathematical models and formulas to predict the
execution efficiency of neural networks on hardware, such as computation latency,
power consumption, and resource utilization.

Analytical estimation first requires establishing a mathematical model that
includes hardware and network architecture parameters. This model typically
considers factors such as processor type, memory bandwidth, network layer type,
and size. For example, in ASICNAS framework[26], a tool called MAESTRO
(Modeling Accelerator Efficiency via Spatio-Temporal Reuse and Occupancy) is
mentioned for evaluating and optimizing ASIC (Application-Specific Integrated Cir-
cuit) design. It primarily analyzes data reuse patterns to assess the total execution
time and the performance and efficiency of DNN (Deep Neural Network) inference
in accelerator design. Based on the analysis results, MAESTRO provides specific
optimization suggestions and design schemes, such as adjusting the computation
graph topology, optimizing memory access patterns, and improving data reuse
strategies to enhance hardware design performance and efficiency. This estimation
method is particularly suitable for the early stages of hardware design when actual
hardware prototypes are not yet available, allowing for performance prediction and
design decision-making.

Latency is the most evaluated hardware metric in NAS. There are two main types
of latency prediction methods: layer-by-layer prediction and end-to-end prediction.
In the work of Bingqian et al.[47], they use the Spearman rank correlation coefficient
(SRCC) to quantify the degree of latency monotonicity in practice. Latency
monotonicity indicates that a neural architecture that performs well on one device
will also perform well on another device. If latency monotonicity holds between
two devices, the architecture search results on one device can be generalized to
another device. This means that hardware-aware neural architecture search needs
to be conducted on only one device to obtain optimal architectures that are equally
effective on other devices, avoiding the high costs of building separate latency
predictors for each device.

In the work of Panjie et al.[23], a software and hardware parameter-based
FPGA performance predictor is proposed for efficiently deploying Transformer
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models on different hardware devices. The evaluation method mainly includes
latency constraints (LC), accuracy constraints (AC), resource utilization (RU), and
reward functions. This predictor can estimate the required clock cycles, memory
usage (BRAM), and DSP resource utilization to guide further model and hardware
optimization. Specifically, the estimation strategy is based on the PE (Processing
Element) size implemented by Vivado HLS, reducing computation latency through
simulation and tuning to achieve optimal hardware resource allocation and inference
performance.

In the work of Mohamed et al.[18], they created a hardware area model to
estimate the resource utilization of hardware accelerators. They decompose the
accelerator into components such as convolution engines, buffers, pooling engines,
and storage interfaces. Then, using a parameterized approach, they establish
a parameterized area model for each component. This model allows for the
quick evaluation of hardware resource utilization when jointly optimizing CNN
architectures and hardware accelerators, thereby improving design efficiency and
performance.

However, analytical estimation also has limitations and is not suitable for all
scenarios. The accuracy of analytical estimation highly depends on the model’s
accuracy and complexity. If the model is overly simplified or ignores some key
factors, it may lead to inaccurate results. As the complexity of hardware and model
architectures increases, maintaining and updating performance models becomes
more challenging, making it difficult to ensure the accuracy and applicability of
predictions.

5.4 Prediction models
Accuracy predictors typically use smaller models, such as RNN models, to predict
accuracy based on architecture specifications. However, training such models
is not straightforward because it requires collecting a dataset of architecture
specifications along with their corresponding accuracy on a given task, which
increases computational demand. In [30], to accelerate the evaluation of neural
network accuracy and latency within the search space, they constructed an accuracy
predictor for given neural networks and a latency estimator for specific hardware
platforms. Their accuracy predictor uses a data-driven approach aimed at quickly
assessing the performance of candidate neural network architectures without full
training. They generated over 2400 neural networks from a VGGNet-based search
space and trained them using a supernetwork’s weights. The collected (architecture,
accuracy) pairs were used to train their accuracy predictor. Combining the accuracy
predictor and latency estimator not only speeds up the evaluation process but also
optimizes neural network architectures by allowing for multi-objective optimization
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and search strategies.
In the work of Xiangzhong et al.[48], they proposed an efficient and computa-

tionally effective proxy method called Trained Batchwise Estimation (TBE) to
reliably estimate the performance of different architectures and integrate it into
the hardware-aware NAS scenario. TBE uses early training batch statistics to
predict the potential accuracy of architectures, employing a pre-trained multilayer
perceptron (MLP) model. This method requires only a portion of the training
dataset to achieve efficient estimation.

BRP-NAS[49] introduced a novel prediction algorithm based on Graph Convolu-
tional Networks (GCN), combined with a binary relation predictor and iterative
data selection strategy. This significantly enhanced the performance of hardware-
aware NAS. By learning graph-structured data to predict end-to-end latency, this
graph-based approach can comprehensively consider the overall characteristics of
the architecture, providing more accurate results compared to traditional layer-by-
layer prediction methods. BRP-NAS demonstrated outstanding performance in
the large DARTS search space, finding better models with a smaller search budget.

MAPLE-Edge[50] uses hardware-aware regression models to estimate the infer-
ence latency of neural network architectures on previously unseen embedded target
devices. MAPLE-Edge employs an automated pipeline to convert models from
NAS-Bench-201 into architecture codes and hardware descriptions, which are then
input into the regression model to output the inference latency. They also divide
each performance counter by the latency of the respective operation, providing a
more effective representation and significantly improving the accuracy of latency
prediction for optimized graphs on embedded devices.

In the work of Yong et al.[51], they proposed a latency prediction method based
on active learning. This method uses a multilayer perceptron (MLP) as the latency
prediction model and iteratively selects architectures and collects their latency data
through active learning to train the latency prediction model, thus reducing the
high cost of collecting latency data. The Kendall correlation coefficient is used to
evaluate the prediction accuracy of the latency prediction model, with dataset cost
measured by the number of samples.

In the work of Kurt et al.[52], they use Block-Level Surrogate Models (BLSMs) to
estimate inference time. This method involves randomly sampling from predefined
network blocks and then measuring the inference time of these blocks on a specific
hardware platform. The configuration of each block and its corresponding inference
time form the training dataset. Then, a BLSM is independently trained for each
type of block and hardware platform. Finally, by aggregating the inference time
predicted by each BLSM for the blocks, the total inference time of the candidate
network can be estimated.

In hardware-aware neural architecture search (HW-NAS), multi-objective es-
timation strategies are key methods designed to balance and optimize multiple
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competing objective metrics, such as latency, power consumption, and accuracy.
These strategies consider different hardware platform characteristics and application
requirements to design neural network architectures that perform well under various
constraints. In the work of Yue et al.[53], they proposed a novel multi-objective
predictor framework. This framework consists of a multi-head encoder and a de-
coder, capable of extracting feature representations from different perspectives (e.g.,
accuracy and latency). These representations are then concatenated and passed to
the decoder to output evaluation scores. They used Higher-performance Architec-
ture Sampling (HPAS) to build the predictor training dataset, selectively collecting
training samples from the search space instead of simple random sampling.

In the work of Haiyan et al.[12], the key requirement for efficient hardware-aware
neural architecture search (HW-NAS) is the rapid evaluation of accuracy and
latency to rank different candidate solutions. To accelerate the search process, they
designed a network performance estimator called Eacc to predict accuracy, hardware
resource costs, and latency. This performance estimator comprises three parts:
an accuracy predictor, a hardware resource estimator, and a hardware latency
predictor. They used a neural network with four fully connected layers, with
input features generated by an encoder. Mean Squared Error (MSE) was chosen
as the loss function, and they optimized the accuracy predictor by minimizing
MSE loss. The hardware latency predictor estimates latency through fine-grained
analysis of the computation process. Since each convolutional computation unit is
independently deployed, hardware latency can be estimated layer by layer.

Inspired by research on pruning at initialization, zero-cost proxies attempt to
quantify the trainability and expressiveness of neural network architectures without
training them. Multi-Predict[54] is a few-shot predictor method that proposes two
new NN encodings (ZCP and HWL), enabling accuracy and latency prediction
with as few as 10 samples. These encodings are not dependent on the search space
but are based on zero-cost proxies or hardware latency measurements, allowing
efficient prediction across multiple search spaces and tasks. ZCP quantifies the
trainability and expressiveness of neural network architectures, generating useful
metrics without requiring full network training. This greatly reduces the number
of samples and computational resources needed. Additionally, ZCP encodings
generate metrics independent of specific tasks and search spaces, enabling effective
knowledge transfer for predictors across different NAS search spaces and tasks.
They also proposed a simple transfer learning strategy for multi-device latency
prediction, demonstrating effectiveness in tasks on FPGA and ASIC platforms.

In HAO’s work[13], to reduce the computational load required for evaluating
different designs, they developed subgraph-level hardware latency models and
accuracy predictors for neural network architectures. This model considers the
impact of neural network architectures and quantization settings on hardware
latency and uses integer programming algorithms to find the optimal configuration
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that meets latency constraints. To compare different neural network architectures,
they used predictors to estimate the accuracy of pre-trained models under given
architectures and ranked candidates that meet latency constraints. In HAO, they
stacked the architecture parameters of each layer as input vectors and applied
support vector regression (SVR) models to predict accuracy. SVR models typically
require less data to train, simplifying and improving sample efficiency.

Reg-TuneV2[45] uses polynomial regression to estimate model accuracy, dynamic
power consumption, and inference latency based on existing training data points.
This estimation strategy allows researchers to predict the performance of new
model configurations on specific hardware platforms without actual deployment
and testing. This strategy enables researchers to make more precise, data-driven
decisions during model optimization.

In the work of Grace et al.[22], they designed the GPTune tool based on multi-
task learning and transfer learning algorithms for automatic tuning using Bayesian
optimization. GPTune can share performance sample data between different tasks
to improve tuning results. By training surrogate models on various hardware
configurations, GPTune can perform rapid tuning on new hardware configurations,
significantly reducing the number of samples needed.

In the work of Huizhen and Lingli[14], they used ADRS (Average Distance
from Reference Set) to measure the distance between the obtained Pareto front
and the reference Pareto front. This metric calculates the normalized distance of
each solution from the obtained set to the nearest solution in the reference set
and averages these distances to reflect the overall quality of the solution set. By
comparing the results of different algorithms, the optimization effectiveness can
be evaluated. The smaller the ADRS value, the better the performance of the
optimization algorithm.

A3C-S[55] is an automated agent-accelerator joint search framework that opti-
mizes both agent models and hardware accelerators in the field of deep reinforcement
learning (DRL). A3C-S uses innovative differentiable neural architecture search
(DNAS) and a novel distillation mechanism. This AC distillation mechanism ef-
fectively reduces the variance of gradient estimation, improving training stability
and convergence speed. The distillation process considers both policy and value
functions, further enhancing training results.

Some studies have also evaluated less common metrics. For example, HW-
EvRSNAS’s[33] evaluation method is mainly based on measuring the similarity of
deep neural network representations, specifically using Representation Mutual Infor-
mation (RMI) as a performance estimation metric. RMI calculates the similarity of
hidden layer representations between two architectures. RMI compares the hidden
layer representations of the current architecture with those of a reference model
and calculates their RMI values. It can compute performance evaluation using only
a single training batch, significantly saving computational resources compared to
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training each architecture from scratch. This method not only improves search
efficiency but also effectively addresses architecture optimization needs under dif-
ferent hardware constraints. RMI can effectively capture the similarity between
architectures, making the evaluation results provide reliable architecture choices
under actual hardware constraints.

In recent years, researchers have proposed machine learning algorithm-based
proxy-assisted evaluation methods to quickly estimate the performance of sampled
architectures without training them. In existing HW-NAS methods, each objective
is often assigned an independently trained proxy model. These proxy models use
different evaluation methods; however, since each proxy model introduces its error,
it can lead to low search efficiency and local optima.

In the work of Hadjer et al.[56], they proposed a unified proxy model, hardware-
aware Pareto ranking NAS (HW-PR-NAS). They used learning-to-rank theory
because they observed that when the proxy model preserves rankings, the time
complexity of NAS is significantly reduced, and the exploration path is enhanced.
This ranking method is more important than calculating accuracy. HW-PR-NAS
ranks by Pareto scores, reducing search time and avoiding potential conflicts
between proxy models.

In the work of TransCODE[38], within the BOSHCODE and GPTran frameworks,
the authors proposed different estimation strategies to optimize the design and
performance of Transformer architectures. BOSHCODE uses trained surrogate
models and uncertainty estimation to further optimize model and device embedding
choices, including modeling epistemic and aleatoric uncertainty. The GPTran
framework further adjusts optimized models through rapid block-level growth and
magnitude-based pruning techniques to improve performance and address issues
that may arise from inaccurate surrogate model training.

In Sherlock[57], this DSE framework uses various regression models as proxy
models, including random forests, Gaussian processes, and kernel-based interpola-
tion methods (such as RBF). Each model has its applicable design space type and
characteristics. Proxy models not only provide predictions of output values but
also estimate the uncertainty of each prediction. Sherlock guides the next sample
selection by calculating the estimated Pareto front and its uncertainty, aiming to
more accurately optimize solutions within the design space.

With the rapid development of machine learning and artificial intelligence tech-
nologies, predictive model strategies may gradually become mainstream, especially
in the early design stages and large-scale searches. Simultaneously, with the rapid
iteration and diversification of hardware platforms, lookup table and analytical
estimation strategies need continuous updating and optimization to adapt to new
hardware characteristics and more complex network architectures. Real-world mea-
surements, as the "gold standard" for final performance verification, will continue
to play an irreplaceable role in the final product confirmation stage.
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These estimation strategies provide a diverse set of tools and methods for
the research and application of HW-NAS, enabling researchers and engineers to
choose the most appropriate strategy based on specific needs and resources, thereby
effectively promoting the co-optimization of neural network architectures and
hardware.
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Chapter 6

Other Considerations for
HW-NAS

In hardware-aware neural architecture search (HW-NAS), compression techniques
are crucial technological means for reducing the size and complexity of deep learning
models to meet the demands of various hardware platforms. Quantization and
Pruning are two common compression methods, which we will introduce in this
section.

6.1 Quantization
In addition to HW-NAS architecture design, quantization is another method to
achieve efficient inference and enrich the efficient DNN design space for hardware.
It directly impacts model quality by using low-bit representations for weights and
activations in a given neural network model. However, simply quantizing DNNs
into low-bit representations often leads to poorer inference accuracy, making quan-
tization impractical regardless of hardware efficiency. Mixed precision quantization
allows different layers in neural networks to have varying bit-widths, leading to an
exponentially growing search space to find optimal bit-width configurations.

In A3[58], researchers found that most neural network tasks can inherently
tolerate a certain degree of error, allowing operations to be conducted with lower
bit-width representations while maintaining high precision representations. They
leverage lower bit-width expansions to design accelerators, avoiding linear or
quadratic growth in hardware energy consumption as bit-width representation
increases. Additionally, due to the significantly higher energy consumption of
floating-point operations compared to fixed-point operations, specialized accel-
erators typically employ fixed-point representation. Their model first quantizes
provided floating-point inputs into i integer bits and f fractional bits (plus one
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sign bit), then uses different bit-widths at each stage of the pipeline to maintain
precision, avoid overflow, and minimize energy consumption.

FracBNN[32] is a solution focused on low-bit-width DNN design, offering both
precise and hardware-friendly network architectures through the use of fractional
activation values and double precision activation schemes. It employs novel network
building modules and thermometer encoding to optimize binary handling at the
input layer, retaining the efficiency of traditional BNNs and achieving high-precision
inference results under low-precision conditions.

In the work of Reg-TuneV2[45], they proposed a mixed-precision neural net-
work (MPNN) accelerator design framework specifically for FPGA. The framework
achieves efficient execution of neural network models on FPGA by optimizing
quantization, hardware implementation, and resource allocation. In [31], they
adopted 8-bit fixed-point quantization to optimize weights, input-output of con-
volutional layers, and fully connected layers. This quantization scheme enhances
model inference efficiency by reducing storage and computational resource usage
while maintaining accuracy.

Auto-ViT-Acc[59] is an FPGA-based automatic visual Transformer (ViTs) accel-
eration framework. This framework employs a hybrid quantization scheme, utilizing
fixed-point and Power of Two (PoT) quantization within each layer simultaneously.
Fixed-point quantization offers high accuracy performance and efficiently utilizes
DSP resources on FPGA. PoT quantization, on the other hand, is an efficient
quantization scheme that replaces multiplications with simple shift operations,
making it suitable for leveraging LUT resources on FPGA.

In the work of Javier et al.[60], they propose an end-to-end collaborative design
method that combines Hessian-aware quantization techniques to optimize the
deployment of neural networks on both FPGA and ASIC. They introduce new
quantization strategies that integrate Hessian information into the optimization
process for finer parameter tuning.

In the work of Christoph et al.[36], they compared two fixed-point quantization
methods, MaxRange and MinPQE. The MaxRange method determines the step size
based on the maximum range of the data distribution, which is suitable for bounded
activation functions (such as sigmoid) but may not be suitable for unbounded
activation functions (such as ReLU). Moreover, MaxRange does not consider the
propagation of quantization errors within the network. The MinPQE method aims
to minimize the propagation of quantization errors. It ensures that the difference
between the outputs before and after quantization is minimized. This method
optimizes the step size for the inputs, weights, and biases of each layer separately,
minimizing the difference between the quantized and original neuron outputs,
thereby better preserving the network’s performance.

LSFQ[61], short for Learnable Parameter Soft Clipping Full Integer Quantization,
is an efficient new quantization method. This approach introduces learnable soft

35



Other Considerations for HW-NAS

clipping quantization to optimize neural network performance under low-precision
integer operations. Employing linear symmetric quantization, it truncates the
dense part of weight distribution for quantization to reduce overall quantization
error. They further introduce a soft clipping function where parameters are learned
via backpropagation to minimize quantization error.

LW-GCN[62] is a lightweight FPGA-based graph convolutional network acceler-
ator. They propose the Packet-level Column-Only Coordinate List (PCOO) format
to compress sparse matrix non-zero elements column-wise, reducing storage and
computational requirements. They apply 16-bit and 4-bit fixed-point quantization
methods to further compress matrix data, reducing memory consumption and
computational complexity. They also utilize data blocking techniques to partition
large matrices into smaller blocks for processing, adapting to limited on-chip storage
resources on FPGA.

In the work of Mohamed et al.[63], to efficiently implement GoogleNet on
FPGA, they explore offloading the CNN’s compute-intensive parts to FPGA using
Xilinx Vitis tools, while running the remaining parts on embedded CPUs. They
then apply Post-Training Quantization (PTQ) technology to convert floating-point
computations into fixed-point computations. PTQ is a method of quantizing the
model after training to reduce hardware resource requirements while minimizing
impact on model accuracy.

CoGNN[63] introduces a hardware collaborative design method for small-batch
GNN inference, significantly reducing computation and memory access by reusing
perception sampling and parallel perception quantization technologies. Parallel
perception quantization adjusts quantization parameters dynamically, enabling
each parallel computing unit to work under optimal quantization parameters
during GNN inference. By employing block-level parallel quantization methods, it
drastically reduces memory access and computational complexity while maintaining
computational accuracy, enhancing overall performance and energy efficiency of
hardware accelerators.

In the work of Xiaofan et al.[64], two quantization techniques tailored for
hardware platforms are discussed. ELB-NN (Extremely Low Bitwidth Neural
Network) enhances energy efficiency when running image classification on embedded
FPGAs. It supports arbitrary DNN quantization through a hybrid low-bitwidth
design that improves energy efficiency. ELB-NN balances inference accuracy and
computational demands by adjusting the full precision representation of weights
and applying binary, ternary, or higher fixed-point representations. The VecQ
quantization training framework is based on vector loss. This framework supports
flexible bitwidth settings and uses Euclidean distance (L2 distance) to measure
and minimize quantization errors. During the quantization process, the VecQ
framework does not consider individual parameters but views them as vectors,
taking into account the interactions and overall distribution among parameters. By
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adjusting the direction and size of the quantized vectors, VecQ precisely controls
the quantization process to optimize overall network performance.

6.2 Pruning
Regarding Pruning techniques, it reduces the number of parameters in a network by
identifying and removing unimportant neurons or connections to improve efficiency.
Previous research has primarily focused on training-phase pruning techniques, where
these training-based methods impose sparse constraints on specific parameters (e.g.,
L1 regularization) during training to identify and prune unimportant architectures.
However, these methods are costly in terms of resource and time consumption and
are constrained by various conditions, such as parameters through L1 regularization
not always achieving sufficient sparsity.

Figure 6.1: Synapses and neurons before and after pruning
[65]

In the work of Jan Pieter et al.[66], feasibility and effectiveness in accelerating
deep learning model execution on FPGA were demonstrated. The study compared
residual connection pruning with traditional L2 norm pruning methods, showing an
additional 30% inference speed improvement. The study also explored hardware-
aware pruning (HAP), adapting pruning strategies based on FPGA systolic array
size to minimize computing and memory access requirements.

In the work of Hengyi et al.[67], they proposed an efficient layer-wise fine pruning
method leveraging properties of Batch Normalization (BN) layers and input sparsity
at the convolutional layer level. This method based on convolutional layer-level
input sparsity and channel-level importance indices compresses and optimizes
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DNNs. The pruning method is highly efficient with minimal accuracy loss and can
effectively extend to all other neural networks using batch normalization operations.

The HW-Flow[68] framework introduces a hardware-aware pruning method,
achieving effective compression of CNN models by employing precise hardware
estimates during the pruning process while minimizing prediction accuracy loss.
This method performs better than traditional pruning methods significantly.

In the work of Han et al.[2], they propose a Hardware-Aware Automated Quan-
tization (HAQ) model based on AutoML to optimize the latency and accuracy of
the network. The HAQ model frames the quantization task as a reinforcement
learning problem. They employ an actor-critic model to generate quantization
policies. In their approach, they utilize FPGA, which supports mixed precision
well, to provide energy and latency costs.

Jef and Toon[66] introduced Hardware-Aware Pruning (HAP). Based on the
processing characteristics of FPGA deep learning accelerators, particularly the
nearbAI engine, they adjusted pruning strategies to significantly shorten model
compression and inference times. They utilized normalized L2 norm to compute the
importance of different filters, then iteratively pruned X% of the least important
channels. HAP maximized pruning space by combining residual connection pruning
and hardware-aware pruning. By simultaneously removing multiple relevant layers,
it further enhanced model compression rates and inference speeds. This method
effectively expanded pruning space, making the pruning process more efficient.

In HotNAS[24], they linked compression techniques with NAS and hardware
design using the iSpace sub-tool. They employed the iDirect performance bottleneck
detector to analyze pattern pruning, channel pruning, quantization, and filter
expansion in the search space. By reordering IFMs, they ensured effective reduction
in computational latency with pruning, effectively addressing the inefficiencies of
starting from scratch in search.

In the work of Panjie[23], they combined existing pruning techniques BP and VW
to propose a new two-level pruning technique HP. To maintain hardware friendliness,
they initially employed BP for the first-level pruning of the model. Then, based
on BP, they further pruned using VW. HP technology integrates coarse-grained
pruning (BP) and fine-grained pruning (VW), achieving higher sparsity rates while
ensuring minimal precision loss and remaining hardware-friendly.

Within the joint design framework of TransCODE[38], they used the DynaProp
module to introduce sparsity by dynamically pruning weights, activations, and
gradients to skip ineffective MAC operations, speeding up Transformer training/in-
ference processes. DynaProp leverages dedicated low-overhead hardware modules
to introduce sparsity in Transformer training and inference. DynaProp achieved
90% sparsity in gradient matrices with negligible accuracy loss, while improving
training throughput by 2.3 times compared to traditional training.

GNN has achieved great success in applications such as recommendation systems,
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molecular property prediction, and traffic forecasting. HP-GNN[69] is a general
framework for generating high-throughput Graph Neural Network (GNN) training
implementations on CPU-FPGA heterogeneous platforms. They evaluated the
main metric of mini-batch GNN training throughput, defined as vertices traversed
per second (NVTPS). They also established a resource utilization model focusing
on the usage of DSPs and LUTs.

SpAtten[70] adopted an optimization algorithm combining cascaded pruning
and progressive quantization. This pruning technique targets input tokens rather
than network weights, dynamically pruning based on attention probabilities across
different layers. Pruning decisions are dynamic and depend on input instances, re-
ducing computational burden while ensuring model accuracy, effectively optimizing
the computational efficiency and memory access of attention mechanisms.

HALP[71] (Hardware-Aware Latency Pruning) is a latency-driven structured
pruning algorithm. HALP models structured pruning as a global resource allocation
optimization problem, evaluating filter importance using latency lookup tables and
global significance scores. With an enhanced Knapsack Algorithm, HALP surpasses
previous work in pruning efficiency and accuracy-efficiency trade-offs.

In the work of Krishna et al.[72], a generalized search space pruning algorithm
was proposed. Search space pruning includes four main steps: Enumerate Choices,
Clustering, Prune Choices, and Check Optimal Latency. By removing redundant
weight and activation precision choices, significant reduction in search time was
achieved.

In the work of Mengshu et al.[73], a method was proposed to accelerate 3D
Convolutional Neural Networks (3D CNNs) on FPGA using hardware-aware prun-
ing. By combining block-level pruning and an ADMM-based solution framework,
significant acceleration was achieved without significant loss of accuracy. Post-
ADMM pruning, the pruned model was retrained, updating only non-zero weights
to further enhance post-pruning model accuracy.

Krishna introduces various pruning methods for HW-NAS in his paper[74].
HDAP (Hardware Dimension Aware Pruning) performs intelligent pruning on
network weights and structures, removing parts that contribute less to the final
inference result or are inefficient on specific hardware. Unlike general network
pruning methods, HDAP can dynamically adjust pruning strategies based on
different hardware platforms. HDAP enhances the scalability and transferability of
neural network models across different hardware platforms. Models processed by
HDAP are easier to transfer to new hardware environments while maintaining or
even improving performance. Another specialized neural network pruning technique
is FPAP (Fault and Array Size Based Pruning). This method optimizes network
architecture and weight configuration by considering the physical characteristics of
the hardware and potential fault patterns, thereby maintaining efficient inference
performance even in the presence of hardware defects.
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6.3 Approximate Multipliers

Approximate multipliers are an important research direction in the design of FPGA
accelerators. The programmability and parallel processing capabilities of FPGAs
make them an ideal platform for implementing approximate multipliers. In deep
learning models, multiplication is one of the most computationally intensive opera-
tions, especially in convolutional layers and fully connected layers. Approximate
multipliers simplify multiplication operations by introducing controllable errors,
thereby reducing computational complexity and energy consumption. Common
approximation methods include truncation, rounding, and logic simplification. Ap-
proximate multipliers can significantly reduce the power consumption and latency
of DNN accelerators, especially in multiply-accumulate (MAC) operations. Us-
ing approximate multipliers in convolutional layers can achieve significant energy
efficiency improvements with minimal precision loss.

In the work of Vojtech et al,[75], researchers proposed a technique to extend the
original library using an automated method to construct a comprehensive library
of approximate circuits useful for real-world applications. They employed single-
objective Cartesian Genetic Programming (CGP) and selected WCE as the error
metric. The generated approximate circuit library (EvoApproxLib) synthesized
hardware models using general design tools and determined all relevant quality
parameters through software models. These approximate circuits demonstrated
significant performance improvements and energy efficiency optimizations in CNN
hardware accelerators.

Another common open-source library is TFApprox4IL, which extends TensorFlow
and Keras APIs to support approximate multipliers in convolutional layers. This
library uses lookup tables (LUTs) to emulate approximate multiplication operations,
optimizing computational efficiency on GPUs.

SMApproxLib is an open-source library specifically designed for FPGAs, con-
taining approximate multipliers with different bit-widths, output precision, and
performance gains. The multipliers in this library utilize the efficient use of LUTs
and carry chains to optimize FPGA performance, ensuring high computational
efficiency while reducing computational complexity.

The Xel-FPGAs[31] framework incorporates statistical learning models to quickly
estimate the performance and hardware requirements of different designs during the
architectural exploration phase. This approach avoids the time-consuming synthesis
and simulation of each design, significantly improving exploration efficiency. Addi-
tionally, the Xel-FPGAs framework integrates the ABC tool to estimate the number
of LUTs, power consumption, and latency on FPGAs. This integration further
reduces design evaluation time, making Xel-FPGAs advantageous in approximate
accelerator design and optimization.
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AMG[76] (Automated Efficient Approximate Multiplier Generator) is a frame-
work specifically designed to automatically generate efficient approximate multipliers
for FPGA systems. The AMG framework employs Bayesian optimization to achieve
the automatic generation of efficient approximate multipliers in FPGA systems.
This framework automates the generation of HA arrays and supports different
bit-widths, promoting the application of approximate computing technology in
hardware accelerators.

Overall, quantization and pruning techniques play a crucial role in HW-NAS by
optimizing models and hardware implementations, thereby enhancing the inference
efficiency and energy efficiency of deep learning models. Approximate multipliers
are also an important research direction in accelerator design, successfully reducing
computational complexity and energy consumption by simplifying multiplication
operations. Future research should further explore the adaptability and optimization
potential of these techniques across different hardware platforms to drive the
development of more efficient and energy-saving deep learning applications.
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Other Applications

Although most HW-NAS (Hardware-aware Neural Architecture Search) studies
focus on conventional applications in image processing and natural language pro-
cessing, there are also many studies that focus on their successful application in
other settings, such as Graph Neural Networks (GNNs) and Transformer networks.
These areas, which have gained popularity in recent years, have unique processing
requirements that demand different hardware optimizations.

7.1 HW-NAS of GNN
Graph Neural Networks (GNNs) are deep learning networks designed to handle
graph-structured data, and are applicable to fields such as social network analysis
and protein structure prediction. Although GNNs perform well in various tasks,
they require high computational complexity and memory, especially when dealing
with large-scale graph data. To face these challenges, some research has designed
accelerators specifically for GNN tasks.

The HP-GNN framework aims to provide a high-throughput, efficient mapping of
GNN training for CPU-FPGA platforms, offering an excellent solution in the field of
hardware-accelerated GNN training. This framework provides optimized templates
that support various GNN models, allowing for easy adaptation to different GNN
structures and requirements. Additionally, the framework reorders and structures
data to optimize memory traffic and random access patterns, minimizing latency
and maximizing throughput on FPGAs.

SurgeNAS accelerates the implementation and performance of GNNs through
several key technologies. They have integrated a GNN-based latency predictor to
avoid cumbersome latency measurements on actual devices. They also resolved
issues of search collapse through an effective identity mapping mechanism, enhancing
the stability and accuracy of the model during the search process.
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LW-GCN is a lightweight FPGA-based GCN accelerator. It decomposes the
main operations of GCN into Sparse Matrix-Matrix Multiplication (SpMM) and
Matrix-Matrix Multiplication (MM), introducing a novel compression format to
balance the workload across Processing Elements (PEs) and prevent data conflicts.
The accelerator employs data quantization and workload tiling strategies, mapping
both SpMM and MM operations onto a unified architecture on resource-constrained
hardware.

In the CoGNN work, they specifically emphasize the use of minibatch sampling
to accelerate the inference process of GNNs. Their accelerator supports reuse-aware
sampling and parallelism-aware quantization, significantly increases data reusability
and reduces data access conflicts.

7.2 HW-NAS of Transformers
Transformer networks, particularly models designed for processing sequential data
such as BERT and GPT, have achieved significant success in the field of natural
language processing (NLP). However, these models typically require substantial
computational resources, which poses a significant challenge on resource-constrained
hardware. The application of Hardware-Aware Neural Architecture Search (HW-
NAS) in this area aims to optimize the energy efficiency and computational efficiency
of these networks, enabling their deployment on mobile devices and embedded
systems.

In the work of Hongwu et al.[77], they proposed an FPGA-based transformer
model acceleration scheme. The article introduces a hardware-friendly sparse
attention operator that reduces the computational complexity of the attention
mechanism by decreasing the precision of the data processed. For the issue of
inconsistent input sequence lengths in natural language processing tasks, they
proposed a length-adaptive hardware resource scheduling algorithm. The accelerator
design they proposed leverages the reconfigurable nature of FPGAs, allowing
dynamic adjustment of hardware configurations for different tasks.

In the work of Panjie et al.[23], they propose an acceleration framework that
co-optimizes hardware design and model compression for transformer models. The
article introduces an algorithm-hardware closed-loop acceleration framework. This
framework can select the optimal device based on user inputs such as dataset,
model, latency, and accuracy constraints. At the same time, to reduce memory
usage on FPGAs, they also optimized the sparse matrix storage format based on
the HP sparsity pattern.

In EdgeTran[9], an efficient inference solution for transformer models on mobile
edge platforms is provided. They introduce an automated design framework named
ProTran. This framework evaluates the hardware performance of transformer
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architectures across various edge devices, aiding in the identification of the best-
performing models with high accuracy for given tasks while minimizing latency,
energy consumption, and peak power draw. Utilizing data evaluated by ProTran,
the co-design technique within the EdgeTran framework can find the optimal model-
device combination. Finally, they employ GPTran for a pruning post-processing
step, further enhancing accuracy in a hardware-aware manner.

Energon[78] uses dynamic sparse attention mechanisms to effectively accelerate
transformer models. They proposed a multi-precision, multi-round filtering (MP-
MRF) algorithm that dynamically identifies a few important query-key pairs. By
employing low-bitwidth operations in each filtering round and using high-precision
tensors only during the attention phase, they significantly reduce the overall
computational complexity.

In SpAtten[70], they prune unimportant tokens and heads through cascading,
and then introduce progressive quantization techniques to reduce memory access.
SpAtten features a novel high-parallelism top-k engine that quickly identifies the
most important tokens and heads. Experiments show that SpAtten can reduce
DRAM access by an average of 10 times without loss of accuracy.

Auto-ViT-Acc[59] is a framework for mixed-scheme quantization acceleration
designed for Vision Transformers (ViT). The computational engine of this framework
utilizes loop tiling techniques to partition the input, weight, and output data of
ViT layers, decomposing large matrices into smaller submatrices to conserve FPGA
resources. They also employ Pipelining and Unrolling techniques, which significantly
enhance the throughput of multi-head attention processing.

HW-NAS has shown its extensive potential across multiple domains, including
GNNs and Transformers. Future research will continue to expand the application
scope of HW-NAS on FPGA/ASiC and explore new optimization strategies to
meet the growing computational demands and diverse hardware environments.

44



Chapter 8

Conclusion

This survey explores the development trends of Hardware Neural Architecture
Search (HW-NAS) on FPGA and ASIC platforms. Deep learning has revolution-
ized various fields such as image recognition, natural language processing, and
autonomous driving. HW-NAS automates the design of neural networks, optimizing
their performance tailored to specific tasks and hardware constraints. Integrating
NAS with hardware platforms like FPGA and ASIC holds significant potential for
deploying efficient and specialized deep learning models.

Beginning with fundamental concepts of deep learning, this survey introduces the
role of FPGA/ASIC in accelerating neural network computations. We emphasize
the importance of defining efficient search spaces (Chapter 3) and highlight various
search algorithms (Chapter 4) for effective exploration. Discussion on evaluation
strategies (Chapter 5) is crucial for predicting hardware costs such as latency
and energy consumption, essential for deploying models on specific hardware
architectures.

Furthermore, we delve into other considerations of HW-NAS, particularly quanti-
zation and pruning techniques (Chapter 6). Quantization optimizes model size and
complexity by reducing the bit-width of weights and activations, thus enhancing
hardware efficiency without compromising inference accuracy. On the other hand,
pruning reduces network parameters by identifying and eliminating redundant
connections or neurons, creating more efficient model architectures suitable for
FPGA and ASIC implementations.

Advancements discussed in each chapter underscore the rapid development in
the HW-NAS field, driven by innovations in search algorithms, efficient evaluation
strategies, and novel compression techniques. Challenges remain in balancing
model accuracy with hardware constraints and managing the computational costs
associated with NAS.

Looking ahead, future research should focus on integrating emerging technologies
and exploring more sophisticated NAS algorithms tailored for FPGA and ASIC
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architectures. Addressing environmental impacts and energy efficiency in deploying
deep learning models via HW-NAS will be crucial for sustainable AI applications.

In summary, HW-NAS based on FPGA/ASIC offers a promising pathway to
optimize deep learning models, providing scalable solutions across multiple appli-
cation domains through hardware-specific optimizations. In the era of intelligent
computing, continuous collaboration among researchers, industry practitioners, and
hardware developers will be key to unlocking the full potential of HW-NAS.
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