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Abstract

The rapid advancement of artificial intelligence (AI) in recent years has been

nothing short of remarkable. AI systems have demonstrated remarkable capabil-

ities in a wide range of domains, from natural language processing and computer

vision to classification and decision making. This growth has been fuelled by the

availability of vast amounts of digital data, coupled with significant improvements

in computing power and algorithmic techniques. The amount of data required

continues to grow, and this data hunger raises new issues.

Oversampling is a technique based on obtaining new data from a trusted and

well-documented dataset to improve a model’s performance. However, histori-

cal biases embedded in training data can lead to AI systems perpetuating and

amplifying societal biases, with serious implications for fairness and equity [3].

Finally, as AI systems become more pervasive in our daily lives, they collect and

process vast amounts of personal data. The presence of this kind of data poses

some limitations in terms of sharing and training models with this data, hence

the emergence of a vast literature on data privacy.

The aim of this work of thesis was to study and compare different methods for

the generation of synthetic data, evaluating their impact while trying to solve the

above scenarios. After reviewing traditional methods such as Gaussian Mixture

Models (GMMs) and SMOTE, I studied the field of mechanisms based on Neural

Networks, with a focus on Generative Adversarial Networks [16].

While GANs were originally developed for image generation, several approaches

have been developed specifically for tabular data. CTGAN [31] and CTAB-

GAN+ [35] are the most recent and promising and have demonstrated the capa-

bilities of GANs for tabular data. Their strength lies in their better ability to

model distributions of categorical data, while learning the complex relationships

typically found in tabular data.

I started by experimenting with the oversampling scenario. GANs have

been tested on specific datasets, with the presence of categorical data and skewed

continuous data. I have worked with the HTRU2 dataset [22], known to be

an imbalanced dataset with only continuous features, so I was able to compare

the above mechanisms with GMM and SMOTE. My experiment was based on

reducing the proportion of minority class samples from the dataset, generating
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the synthetic data and measuring the improvement in performance with and

without synthetic data. What I found was that SMOTE had a weaker impact

as the percentage of the minority class decreased, while GMM on average had

the best improvement. Regarding the GANs, both can compete with the GMM,

with CTGAN occasionally giving the best improvement. This highlights a need

for improvement for GANs: due to the resources, both in terms of hardware and

time required, it is still worth using a GMM for these specific datasets.

Next step I evaluated a privacy scenario: when a dataset contains sensitive

information, researchers have problems at sharing such data because of the pos-

sible consequences. The use of synthetic data has emerged in this area, with the

aim of providing the possibility of sharing data with similar statistical information

to the original, with the possibility of respecting privacy. However, this technique

has been undermined by several attacks where an attacker can infer information

about the original data from the synthetic data. I have evaluated synthetic data

from different generators against a specific attack: the Membership Inference At-

tack (MIA) [7], where an attacker can infer whether a particular sample belongs

to the training data used to compute the synthetic data. The results show how

GAN-based generators can withstand this attack, while a perturbation method

fails to generate robust synthetic data from the same training data. GANs also

proved to be more robust: as the size of the training data decreased, the accu-

racy of the attack did not change. An explanation of these performances can

be obtained by using the Distance to Closest Record (DCR) and the Nearest

Neighbour Distance Ratio (NNDR) [35], which are based on measuring for each

synthetic sample the minimum distance between that sample and all the samples

from the training data. These show that the synthetic data produced by both

GANs have a higher average value compared to the synthetic data produced by

the perturbation methods, indicating that they were able to generalize better.

Finally, I evaluated the impact of synthetic data generated by CTAB-GAN+

in a fairness scenario, where we want to introduce synthetic data in the training

set to modify the decision boundaries of a model due to a bias in the decisions.

For this part, I used two different approaches to study the decision of a model:

Explainable AI (XAI) and fairness measures [6]. Explainable AI explores a range

of methods to assess how a model works internally and to explain the predictions,

while fairness measures use a range of criteria to assess whether a model discrim-

inates against a minority group. For the XAI part, I showed that by including



3

synthetic data, the importance of sensitive features in the decision processes is

reduced, resulting in a model that is less prone to making a direct discriminatory

decision. Similar results were obtained when looking at fairness measures: the

difference between groups (with respect to a sensitive feature) tends to decrease,

resulting in a less discriminative model. There were still some differences that

were not captured by the XAI approach, due to some historical biases in the

training data that were still present in the synthetic data. This is a limitation of

this approach: since the data set must capture biases to be a good reflection of

our society, these will be built into the model. A model that does not discriminate

is a model without bias, but the only possibility is that the training data does

not reflect the reality it needs to capture.

Overall, these results provide a positive direction for the generative mechanism

of synthetic data based on a neural architecture, taking into account the current

limitations:

• For an oversampling application, GANs provide state-of-the-art results with

categorical and mixed-type data. The new challenge is to create a new

methodology that can work with a wider variety of datasets.

• The synthetic data produced with GAN-based generators can withstand a

membership inference attack, so the use of this data ensures a good level of

privacy.

• Bearing in mind that it’s a technical solution to a socio-technical problem,

including synthetic data in a training set can help reduce the bias of a

model.

Although this thesis has some limitations due to the lack of a variety of

datasets for each experiment and generative methods, the results are promising

and provide a starting point for research and development of new state-of-the-

art methods for generating synthetic data with an acceptable trade-off between

privacy preservation, fairness and accuracy.
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Chapter 1

Introduction

The rapid advancement of artificial intelligence (AI) in recent years has been

nothing short of remarkable. AI systems have demonstrated remarkable capabil-

ities in a wide range of domains, from natural language processing and computer

vision to classification and decision making. This growth has been fueled by the

availability of vast amounts of digital data, coupled with significant improvements

in computing power and algorithmic techniques.

However, as AI systems become increasingly sophisticated and ubiquitous,

concerns have emerged regarding their limitations and potential pitfalls. A key

challenge is the AI’s reliance on data, which can often be biased, incomplete, or

unrepresentative of the full diversity of human society. The overall quality of the

outcomes of AI depends heavily on the data [14] and historical biases embedded

in training data can lead to AI systems perpetuating and amplifying societal

prejudices, with serious implications for fairness and equity.

Another pressing issue is the impact of AI on individual privacy. As AI sys-

tems become more pervasive in our daily lives, they collect and process vast

amounts of personal data, raising concerns about the protection of sensitive in-

formation and the potential for misuse or abuse. The presence of this kind of

data poses some limitations in terms of sharing and training models with this

data, hence a vast literature for anonymization of data was born.

1.1 What is AI?

Thoughts on the general idea of a ’thinking machine’ can be traced back many

centuries, for example in the works of Gottfried Wilhelm von Leibniz and Ada

4
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Lovelace. Nonetheless the terms actually originated in the 1950s by John Mc-

Carthy, that later in 1956 organized the Dartmouth workshop [24]. Today it’s

widely considered to be the founding event of artificial intelligence as a field.

In the 1980s the field emerged with the introduction of Machine Learning,

where the computer improves its own ability to carry out tasks by analysing new

data, without a human needing to give instructions in the form of a program1.

This new technology brought better performances and the possibility of applying

AI to new and more complex task. With the improvement of computer archi-

tectures, the adoption of new computing devices, like Graphic Processing Unit

(GPU), and the introduction of neural networks a new industry was created. An

increasing number of commercial applications are nowadays based on AI systems,

sometimes without really understanding how AI can impact our society.

1.2 What is Data?

Today, most artificial intelligence is based on data pattern recognition [5]: AI

models learn an internal representation of data patterns. This internal repre-

sentation is then used to perform a given task on other instances of data that

have not yet been encountered. This fundamental principle at the heart of all AI

software introduces the basic raw materials needed to train the algorithms: data.

The amount of data needed is always bigger and this data hunger raises new

issues. Datasets are not simply operational instruments of digital knowledge

production but one of the core elements of AI. As previously mentioned, AI looks

at the data and incorporate any pattern useful for the task, without questioning

its impact. For this reason the data should be:

• Diverse and varied.

• Unbiased.

• High-quality.

• Comprehensive.

In most cases, except for unsupervised learning, data should be annotated in

order to train a model to perform a classification task. Annotating data means

1Definition from the Cambridge Advanced Learner’s Dictionary & Thesaurus
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manually classifying it, providing a label that the model can consider as ground

truth. A desired property of labelling is objectivity: however, the subjectivity of

human annotation makes this a very ambitious goal [9].

New techniques have been proposed to address the above problems, includ-

ing oversampling: starting from a trusted and well documented dataset, include

new synthetic data generated based on the original data, with the objective of

enhancing it and improving its usefulness for training a Machine Learning model.

1.3 The impact of AI

One of the key book for understanding the impact of AI in our world is Atlas of

AI by Kate Crawford [9]. Earth’s resources are one fundamental element of the

AI supply chain. Furthermore, the energy required to train model is significant:

the carbon footprint of training a single big language model is equal to around

300,000 kg of carbon dioxide emissions [11].

In this thesis one particular impact is taken into consideration: what is the

impact of a data-drive automated decision makers for specific group of people?

Considering that datasets always carry the historical biases of our society, can we

keep using our models while also minimizing the impact of such models?

For this particular problem many new field of research started in the past

few years: Explainable AI (XAI) wants to study how the models internally make

decisions, while fairness measures [3] try to evaluate the unfairness of a model via

different metrics. I will apply this techniques to assets the impact of synthetic

data.



Chapter 2

Synthetic Data

2.1 Background

Synthetic data are obtained by a generative process based on properties of real

data. Over the years, this technique has become known and studied because it

allows certain objectives on the data to be guaranteed:

• Data augmentation

• Anonymization.

• Semi-supervised learning: Using labeled and unlabeled data to train neural

networks

• Balancing unbalanced learning contexts.

Finding an appropriate data generation technique depends on several factors,

including the domain of the data and its type. Other factors are:

• The importance of statistical information of real data and the relationship

between features.

• The task of the model.

• The role of synthetic data in the process (anonymization, balancing, aug-

mentation...).

Let’s look at an example of this: if our goal is to balance a minority class

we mainly want to add new samples without giving too much weight to the

7
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relationships between features. On the other hand, if we want to anonymize

the dataset, we need to ensure that we have preserved the original statistical

information (since we are only going to use the synthetic dataset). It will also be

critical to study and define metrics to compare the original dataset with the new

one to verify that we have met the goals we set for ourselves.

More formally, if we define our initial dataset D, defined by samples and

labels:

D = (xi, yi), i = 1..l (2.1)

We can then define a generator (in this case modeled with a function) and

the synthetic dataset Ds as:

Ds = (xs, l)

xs = fgen(x, τ)
(2.2)

Where l is the label of the original data x. τ incorporates the hyperparameters

of the function, which are called generation policy.

We can already define two metrics:

• Similarity: the more similar D and Ds are (from a statistical point of view)

the better.

• Performance: the performance of the model trained by Ds is better or

equal to the model trained with D (in case of class re-balancing the model

is trained using D ∪Ds).

In general what we expect from the fgen function is that Ds should have a

data distribution similar to D without going to duplicate data:

P ≈ Ps ∧ xi ̸= xi∀xi ∈ D, xj ∈ Ds (2.3)

2.2 Evaluation dimensions

We will now go on to see an overview of different applications, with emphasis

on the properties they require of our generative models and then going on to

understand the caveats that are used.
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2.2.1 Privacy

The privacy issue arises when there is sensitive information in our dataset that

can be used to identify an individual. As a result, the use of these datasets in

applications such as machine learning and data mining is very limited. Hence the

idea of using the synthetic data to create an anonymized version of the original

dataset. The aim is to make the original subjects unidentifiable without without

compromising performances on the task.

To check the privacy of a dataset we use differential privacy (DP) [18]. In

the context of synthetic data it translates to using two privacy parameters: ϵ and

δ, where given a dataset D for all element x in D:

P(fgen(D) ∈ S) ≤ eϵ · P(fgen(D/x) ∈ S) + δ

∀S ∈ Range(fgen)
(2.4)

This property became very popular because it is not affected by post-processing:

any ML pipeline will maintain the same level of (ϵ, δ)-differential privacy. A more

in depth analysis of DP will be given later.

2.2.2 Regularization

Many models rely on the assumptions that the training data is clean, the labels

are correctly assigned, and the source of the data is fixed. When one or more

of these assumptions are not met, model performance can deteriorate. Synthetic

data can be used to counteract:

• Overfitting.

• Training set too small.

• High dimensionality.

• Outlier.

• Wrong labels.

A well-known technique in the field of computer vision and NLP is data

augmentation, where for each item in a random subset of data is used to create
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a slightly modified copy of it (in the case of CV by changing the coloring and

adding blur) and then add it into the training set.

A more general technique is called Mixup [33]: taken two random samples

(xi, yi) and (xj, yj) we generate:

xs = λxi + (1− λ)xj

ys = λyi + (1− λ)yj

λ = Beta(α, α)

(2.5)

2.2.3 Oversampling

Another assumption employed by many models is that the frequency of classes

in the training set is similar. Datasets skewed toward one class tend to perform

worse. Oversampling is a special case of regularization, where we are interested in

generating multiple samples of a set of minority classes. The idea is to generate

Ds such that D ∪Ds is balanced.

2.2.4 Fairness

Traditional AI models are often trained on real-world datasets, which can inadver-

tently reflect societal biases and inequalities. These biases can then be propagated

and amplified when the models are deployed. Synthetic data offers a solution,

as it can be carefully curated to ensure fair representation of diverse populations

and to eliminate unwanted biases. By training AI models on datasets enriched

with synthetic data that capture the desired characteristics and distributions, we

can create AI systems that are fairer and more inclusive, without the limitations

and biases inherent in real-world data.

2.3 Data quality assessment

The most obvious technique is to train a new classifier and measure performance.

If they have improved our synthetic data are working, otherwise we have more

work to do. Since the training phase of a model is in many cases time-consuming

(in terms of time and resources) the question arises whether there are not other

ways to evaluate synthetic data without having to train a new model.
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Kullback-Leibler (KL) divergence is a metric often used to evaluate generative

models [28]. It is defined as follows:

DKL(P ||Q) =
∑
x∈X

P (x) · log P (x)

Q(x)
(2.6)

Where P and Q are the distributions and X a set of values. It can easily be

seen that if P and Q are very similar the logarithm will have a value close to zero

and thus the summation will be almost zero. The problem with this metric is its

difficult interpretation and the fact that it does not scale well on data with many

dimensionalities.

We can then introduce the Jensen-Shannon (JS) divergence [28]:

DJS(P ||Q) =
DKL(P ||M) +DKL(Q||M)

2

M =
P +Q

2

(2.7)

Another metric is the propensity score [29]: a classifier (usually logistic regres-

sion) is trained using both original and synthetic data and using the data source

(original or synthetic) as the target. The goal is to obtain the probability that a

sample is synthetic. An example is the propensity mean squared error (pMSE):

pMSE =
1

N

N∑
i=1

(p̂i − 0.5)2 (2.8)

Where N is the set of original and synthetic data and p̂i propensity score of

the i-th sample (trivially is equal to 1 if the data is expected to be synthetic and 0

if real). If we get a value close to 0 then the classifier cannot distinguish between

real and synthetic data and thus we have achieved the goal.

Lastly, difference in pair-wise correlation is adopted [35]: in order to assess

how well feature interactions are preserved in the synthetic datasets, the pair-

wise correlation matrix for the columns within the real and synthetic datasets

individually. The Pearson correlation coefficient is used to measure the correla-

tion between any two continuous features. Similarly, to measure the correlation

between any two categorical features, the Theil uncertainty coefficient is used.

Finally, the norm of the difference between the pair-wise correlation matrices for

the real and synthetic datasets is used as measure.
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Generation mechanism

3.1 Taxonomy

From [13] I have adopted the following taxonomy to study and classify the dif-

ferent methods that have been created and used in recent years:

Where the following properties were used to characterize the different tech-

niques:

• Architecture: analyze how internally the function fgen generates the new

data from D:

– Probability: whether the function extracts data by sampling from a

probabilistic function (computed from D).

– Randomized: the original data are modified by random processes to

obtain the new data.

12
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– Domain specific: data transformations are done using knowledge of

the data structure (known a priori from the application domain).

– Network-based: they use architectures based on neural networks.

• Application level: looking at the whole ML pipeline, where are we going

to include the generative process?

– Internal: alongside the primary the task.

– External: used before the development of the ML pipeline.

• Scope: considering the properties of the original dataset:

– Global: whether trying to maintain the distribution or statistical prop-

erties of D.

– Local: is generated by considering a subset or a single element of

D, generating new data that is more accurate but partly losing the

distribution.

• Data space: refers to what type of data the transformation is applied to,

whether to raw data (Input), an embedded representation (Latent) or on

target feature (Output).

Since almost all generation mechanism are built as an external level and are

work on the input space of the data, in the following i will consider the architecture

and the scope as the main source to present and categorize the mechanisms i have

studied.

3.2 Architectures

We will now go on to look at a number of mechanisms for generating synthetic

data, also going on to discuss them using the aforementioned applications and

the previously defined taxonomy. In this section i won’t include the Network

architecture, which will have its own section because of its importance, and the

domain-specific, because it can’t be used in a general setting and is built ad hoc

for each application.
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3.2.1 Randomized mechanisms

The generation of synthetic data based on perturbation can be seen as:

xs = xi + ϵ (3.1)

Where ϵ is called noise vector obtained from a certain distribution. Some

typical distributions to obtain ϵ are Gaussian and Laplace. Typically they are

designed to have control over the maximum and minimum perturbation value to

be obtained.

To maintain the distribution of data, we often use the technique of masking:

let m be a vector where each element is 1 or 0 (usually generated with a Bernoulli

distribution):

m = [m1, ...,md] ∈ {0, 1}d (3.2)

We can then define a new sample using the product for each element of the

vector, ⊙:

xs = (1−m)⊙ xi +m⊙ (xi + ϵ) (3.3)

The idea is that for each feature of xi, the corresponding value in m indicates

whether the value will be preserved (value 0) or should be replaced (value 1). The

replacement is done by adding the corresponding value in ϵ. Without modifying

the whole sample, the distribution and properties of the data are better preserved.

We can notice how this mechanism all use a local scope: for generating a

synthetic sample, only a subset of the training data is taken into consideration.

3.2.2 Mechanisms with probability functions

By estimating a multi-variable Gaussian distribution using the training set, we

can sample on it to get new samples from the same class. This mechanisms are

based on a global scope, trying to estimate the distribution of the training data.

One problem can be immediately noted: assuming that the data follow a

Gaussian distribution greatly limits the use of this mechanism. Gaussian Mixture

Model (GMM)-based mechanisms were able to overcome this problem, where

more than one Gaussian is computed on the same class (where each Gaussian

should identify a cohesive subset of the class).
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Another approach is given by Kernel Density Estimation (KDE), where a

kernel function is employed to estimate the distribution of data over each region.

It’s defined as the following:

p̂(x) =
1

N + h

N∑
i=1

K

(
x− xi

h

)
(3.4)

Where N is the number of samples in the dataset, h a smoothing parameter

and K the kernel function. If the Gaussian kernel is employed then it is called

Gaussian KDE.

From the same paper we have an example of different results by employing

the above techniques for a dataset, as seen in Figure 3.1.

Figure 3.1: Examples of PDF mechanisms fitted to a dataset. (a) Original
dataset, (b) Gaussian model, (c) Gaussian Mixture Model and (d) Gaussian Ker-
nel Density Estimation

Taking advantage of Bayesian networks, we can construct Probabilistic Graph-

ical Models (PGMs) as a collection of conditional distributions. Let us represent

the distribution of D as a product of joint probabilities. If features have a con-

ditional dependence relation, (A|B), then features B are parent feature of A,

pa(A). We can then calculate the distribution as:

P(x) = Σv∈V P(xv|xpa(v) (3.5)

They are called graphical models because if you represent the features as nodes

and the relation pa(v) as all parent features pointing to v then you get an acyclic

graph. From these graphs the synthetic data can be generated.

Bayesian networks can be used for synthetic data generation when the re-

lationship between variables is known (or can be learned) and when the data

is high-dimensional, not only making the sampling process non-trivial but also
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diminishing the range of possible applications.

3.3 Network architecture

The field of machine learning has seen remarkable advancements in recent decades,

driven in large part by the introduction and rapid development of neural network

models. One of the key advantages of neural networks is their remarkable capacity

for feature extraction and representation learning. Neural networks can automat-

ically learn relevant features from raw data, allowing them to uncover intricate

patterns and relationships that were previously difficult to capture. This ability

to learn powerful representations has enabled neural networks to achieve state-

of-the-art performance on a wide range of tasks, including the field of generative

models.

A first example of application of Neural Networks for generating synthetic

data is Variational AutoEncorders (VAEs): a type of neural network that learns a

representation of data in the form of a probability distribution. Within these net-

works there are two actors called encoder and decoder, which learn to project

the data onto a new space. They are derived from ordinary AutoEncoders (AE),

where the encoder and decoder learn an embedding representation of data by us-

ing a lower dimensionality space called the latent space. For this objective they

use the reconstruction loss:

||x− x̂||2 (3.6)

Where x is the original sample and x̂ the sample reconstructed by the decoder.

So the encoder will be optimized to include as much meaningful information of x in

the latent space as possible. So AE are used in task like information compression

or clustering. But since no constrains are posed to the latent space, we can not

use the decoder to generate new samples since most of the latent space will not

be mapped to meaningful data. The idea of VAE is to think about the latent

space as a probability distribution. Here the used loss is the Variational loss:

Ez[log pθ(x
i|z)]−DKL(qϕ(z|xi)||pθ(xi)) (3.7)

Where qϕ represents the encoder and pθ the encoder. The first term is used

to train the decoder to reconstruct the input xi from the latent space represented
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by z, while the second term force the latent space distribution (produced by the

encoder) to be as close as possible to a normal distribution. This is known as

the Variational lower bound: maximizing the above equation will produce

a decoder able to approximate the distribution. Hence by randomly sampling

from a multivariate normal distribution we can use the decoder to produce new

synthetic data. Nevertheless the use of VAE has also been diminishing due to

their limitation, specially in capturing details of the distribution, hence producing

samples of lower quality compared to GANs.

Generative Adversarial Networks (GANs) are another type of Neural networks

created for this purpose, where internally they are structured using two models:

a generator and a discriminator. During the learning phase, the generator learns

the distribution of the data while the discriminator estimates the probability of a

sample being synthetic or from the original dataset. The purpose of the generator

is to produce synthetic data as similar as possible to the original data such that

the discriminator cannot distinguish it from the original data.

GANs were introduced by Goodfellow in his famous paper [16]. The main

idea is in the training procedure: by taking inspiration from game theory, the

encoder and decoder are trained using an adversarial, two players minmax game:

min
G

max
D

Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (3.8)

The first term represent the capacity of the discriminator to recognize a data

as being in the dataset, while the second terms its capacity to recognize synthetic

data. The discriminator is trying to maximize this term while the generator is

trying to minimize it. This create a training procedure based on a loop where

each component improves, up to the point where the samples of the generator

are so similar to the synthetic samples that the discriminator can not improve

anymore. At this point the procedure stop, and the generator will be used to

generate synthetic samples. Before moving on one side note: initially the authors

tried to train the generator by minimizing log(1 −D(G(z))). This proved to be

difficult, since at the beginning the synthetic samples are too different and the

discriminator was able to reject the samples with high confidence, thus saturat-

ing the gradient. To overcome this problem, in the actual implementation the

generator is trained to maximize log(D(G(z))). This objective function results is

the same dynamic, but provide much stronger and stable gradients.
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Another important improvement for GANs were given by [23]. In the origi-

nal paper of Goodfellow there was no mechanism of conditioning the generation

process of the generator, hence randomly sampling from the normal distribution

would provide random samples. In this paper the author showed that by just

conditioning both discriminator and generator with an extra information y, one

could condition the generation of both actors. The final game thus becomes:

min
G

max
D

Ex∼pdata(x)[logD(x|y)] + Ez∼pz(z)[log(1−D(G(z|y)))] (3.9)

In practice for the generator the prior input noise z and the information y are

combined in a joint hidden representation. The same is done for the discriminator,

combining the input x and the information y.

One last improvement was brought in [2]: after GANs became popular it

became more clear that one of their weakness relies on the training procedure.

If the discriminator improves too much the generator won’t be able to recover,

and we will be stuck in a state called mode collapse, where at the end the

synthetic samples will have an unacceptable quality. The authors shown that for

the original GAN objective the training phase resulted in the minimization of the

Jensen-Shannon Divergence. They claimed that changing the GAN to minimize

the Wasserstein distance would improve the training for the following reason:

• Wasserstein Distance is continuous and almost differentiable everywhere.

• JS Divergence locally saturates as the discriminator gets better, thus the

gradients becomes zero and vanishes.

• Wasserstein Distance as objective function is more stable than using JS

divergence, thus the mode collapse problem is mitigated.

In practice the discriminator is changed, and to enhance this changing in the

paper is now called critic. This new architecture was called Wasserstein GANs

(WGAN), referring to the mathematical foundation it was derived from. The

objective function of the critic becomes:

max
w∈W

Ex∼pdata(x)[fw(x)]− Ez∼pz(z)[fw(g(x))] (3.10)

To implement a minimization of the Wasserstein Distance the critic must have

the property of Lipschitz continuity. This is done by clamping the weights to a
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small range ([−e−2, e−2]) in the paper. Later papers proposed different implemen-

tations, but Gradient Penalty [17] have become the standard for implementing

a WGAN. Nowadays most GAN architectures uses a WGAN architecture with

gradient clipping to ensure a stable training procedure.

GANs for tabular data

Tabular data introduces new aspects compared to other type of data:

• Complex relationship between features.

• Discrete numerical data.

• Categorical data.

Originally GANs were thought to be used only for data with a real-value

domain, like images. Their application for tabular data was not immediate and

brought a series of very interesting proposals.

medGAN [8] is our starting point, due to their attention to discrete data.

One problems that emerges with tabular data is that the gradient can not be

computed for discrete data, only for continuous. This becomes a problems for

updating the generator. Their approach was based on leveraging an AutoEncoder:

during the training the generator will generate samples in the latent space, then

the samples will be reconstructed by the decoder before being given to the dis-

criminator. The decoder of the AE is fine tuned while training the generator,

hence it can be seen as an additional module of the generator. The architecture

of the generator is a classical GAN architecture, with the additional use of resid-

ual network. Since the idea of medGAN is to produce synthetic medical data that

can be freely shared they also started investigating possible attacks to GANs.

In the same year Table-GAN [25] was published. The biggest change com-

pared to medGAN is that no latent space is used. Instead samples are converted

in a matrix squared form, and both generator and discriminator use a Convo-

lutional Neural Network (CNN). Since classical convolution is based on apply

filters to captures relationships and semantic meanings between pixel, the same

relationships and semantic meanings can be captured between features of tabular

data. They also introduced two additional component in the loss of the generator:

information loss is the discrepancy between the mean and the standard devia-

tion of synthetic and real records, while classification loss is derived by training
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Figure 3.2: An example of mode-specific normalization [31]

a classifier on the training data and using it to classify the synthetic data. The

introduction of these elements improved the quality of synthetic data: with the

information loss the generator was enforced at better capturing the statistics of

the data, while with the classification loss more semantic meaning were captured

(for example a medical samples with the gender feature equal to female could not

have anymore diseases that afflict only males).

The next jump in quality came with CTGAN [31], which was actually based

on a model from the same author called TGAN [30] that used recurrent Neural

Network. CTGAN employ a pre-processing phase for continuous features called

mode-specific normalization: for each continuous features it estimates the

number of modes using a Variational GMM [5] and fit a Gaussian. Then each

value in the feature get normalized using the mean and standard deviation of

the corresponding Gaussian, obtained by selecting the Gaussian with the higher

probability. Thus each values is represented using a one-hot encoder representing

the corresponding mode used, and the final scalar values. Figure 3.2 presents an

examples, where the value η3 is used to compute the processed value. Notice that

β = [0, 0, 1] because we use the third mode.

For Discrete data is also represented as one-hot encoding, but no pre processing is

applied. They also proposed a solution to a known problem of GANs for tabular

data: when a categorical column is unbalanced, in the training phase the values

representing the minority will receive less attention from both generator and

discriminator, hence the synthetic data will have a lower quality for specific data.

Their solution is called training-by-sampling: using the conditional part of the

GAN, during the training one value of one categorical features will be randomly

selected, so for that for one specific loop the generator will be rewarded to generate

samples respecting the condition, while the discriminator will receive the samples

from the generator and rows from the training set that respect the condition. Note
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Figure 3.3: An example of training-by-sampling [31]

that while the column have a uniform probability to be selected, the probability of

selecting the values for the column will depends on their distribution (thus giving

more chances to be selected to more frequent values). Figure 3.3 presents an

example of training-by-sampling, where the first values of column D2 is selected.

One last improvement is given by using a discriminator with a WGAN archi-

tecture. Specifically they used the implementation based on gradient penalty

[17].

The most recent and promising GAN for tabular data is CTAB-GAN+ [35].

It was presented in an earlier version in [34] called CTAB-GAN. The version are

similar in terms of adopting almost all of the above techniques: classification loss,

information loss, training-by-sampling and mode-specific normalization. They

were able to further improve the performances by defining mixed variables:

continuous variables where there is a set of values with higher occurrences and a

specific semantic meaning. For examples in a features representing the loan, the

values 0 will have a specific semantic meaning, as ’this person does not have any

current loans’. With the mode specific normalization this meaning may be lost.

Thus they specified a modified version called Mixed-type Encoder, where for

each continuous feature the user can specify a set of categorical value. Those

values will not be affected from the pre-processing, thus the mode normalization

will be applied only to the non-categorical values of the features. In the one-

hot encoding for the features, the size will be equal to the number of identified

modes plus the number of categorical values. Looking at Figure 3.4 we can see

an example of mixed-type encoding, where the categorical values of µ0 and µ3

won’t be processed, while the mode normalization is applied to µ1 and µ2. In

total the one-hot encoding will have 4 positions: 2 for the modes and two for the
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Figure 3.4: Mixed type variable distribution with VGM [35]

categorical values. We can notice that the computation of the two modes did not

take into consideration µ0 and µ3.

With this new improvements CTAB-GAN was able to reach state-of-the-art

results in many different datasets with complex relationship between features and

mixed type distribution.

CTAB-GAN+ brought some improvements by adding the gradient clipping,

thus using an architecture equivalent to a WGAN (as CTGAN), and adding an

optional pre-processing called General Transform (GT), where the domain of the

feature is encoded in the range of (-1, 1) using the maximum and minimum

value to help the VGMM at recognizing the modes. The actual innovation of

CTAB-GAN+ was the introduction of differential privacy, that will be discussed

later.



Chapter 4

Attack and Defenses of

Generation Mechanism

4.1 Attacking generation mechanism

Due to the increasing of popularity and use of synthetic data generation, many

attacks have been proposed [32]. Some relies on some specific architectures (GAN

or VAE) while others make no assumption on the underlying architecture. I have

decided to work with an attack that makes no assumption on the underlying

architectures, so i could compare the results using different generation mechanism.

For this reason i chose the Membership Inference Attack (MIA): an attack where

by only looking at the synthetic data, an attacker tries to infer some information

about the training data. In this scenario the training data could not be shared

due to the presence of sensitive attribute. The objective of the attack is to build

a model able to answer the question: is the following samples x present in the

original training set?

In this part i will explain the Membership Inference Attack, by using the

technique presented in [7]. What we want to do in practice is define a function

that given a sample will output 1 if it infers that the sample was in the training

set and 0 if the sample was not in the training set. More formally:

A = (x) → {0, 1} (4.1)

With a Bayes perspective, the attacker compute the probability of the sample

belonging to the training set and if the probability is higher compared to the

23
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probability of not belonging to the training set we will return 1:

A = 1

[
log

(
P (x ∈ Dtrain)

P (x /∈ Dtrain)

)
≥ 0

]
(4.2)

How do we compute this probability? We can assume that a good generator

will have approximated the training set distribution, so (by using G as the victim

generator):

PDtrain
≈ PG (4.3)

PDtrain
(x) ∝ PG(x) (4.4)

In a practical case this is still problematic: estimating the distribution can

require a large number of samples that we don’t have and since we don’t have

access to the latent space (the vector supplied to the generator) we can’t con-

trol which samples are generated. Hence the author introduced Parzen window

density estimation, were we can estimate the probability as:

PG(x) ≈
1

k

k∑
i=1

e−L(x,x̂i) (4.5)

Where we can k generated samples denoted as x̂i and L is a distance function.

As the number of close samples increases the probability will tend to grow.

Lastly, to further simply our job we won’t consider all the generated samples

but only the closest one to our sample. Thus our A function will output 1 when

we can find a sample which is close enough to x:

R (x|G) = min
x̂∈G

L(x, x̂) (4.6)

A(x|G) = 1 [L(x,R (x|G)) ≤ ϵ] (4.7)

Where G is the set of generated samples and ϵ the threshold. The Figure 4.1 is

a good visual representation of what is happening (taken from the paper cited

above).

Before moving on two things must be noticed: choosing ϵ requires a balance,

being too restrictive would mean wrongly classify samples in the training set as

not in the training set, while the opposite would arise if we have a bigger ϵ. Also
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Figure 4.1: Attacks to GAN

the assumption of this attack is the key of its strength: as the generator becomes

better at estimating the distribution this attack becomes easier. In fact we will

see that there is a trade off between ML utility and Privacy.

4.2 Differential Privacy

To understand how different generation mechanisms (including CTAB-GAN+)

try to prevents the MIA attacks we need to define what is differential privacy

and how it’s usually implemented in a GAN. This explanation is based on [27].

Let’s define with M a classifier trained over a set of patients with cancer,

called D. Since having a cancer (or have had it) is a personal information is very

important that this information remains private. Let’s now imagine we have a

record that says ”Bob has cancer” (we don’t need to consider how it’s actually

built), and using M trained on D we get:

MD(BOB) = 0.55 (4.8)

Now we will add this record to the training set, written as MD+BOB and let’s

consider two cases:
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MD+BOB(BOB) = 0.57 (4.9)

M ′
D+BOB(BOB) = 0.80 (4.10)

We can imagine that in the first case the model improved because it now has

access to more data, but in the second case the model is obviously overfitting

and, worse, is leaking the Bob information that he has cancer.

Thanks to information theory we can measure the privacy loss as the log-

arithm of the ratio of the two values: log MD+BOB(BOB)

MD(BOB)
. Let’s see it for the two

cases:

log
0.57

0.55
= 0.0357 (4.11)

log
0.80

0.55
= 0.375 (4.12)

We have measured that the second case has 10 times more privacy loss compared

to the first case!

We can now formally define differential privacy (DP): for any dataset D

and for any set of outcomes S we try to minimize the privacy loss:

log
P (MD ∈ S)

P (MD′ ∈ S)
(4.13)

Where D′ is defined by removing one element from D. This computation is done

by considering all possible samples, hence any configuration of D′.

We need to consider the situation where the privacy loss is equal to 0: in this

case the model is not changing the output, thus the model is not learning from the

added record. For this reason we will add some flexibility: now our objective is

that the privacy loss is lower than an upper-bound ϵ called the privacy budget:

log
P (MD ∈ S)

P (MD′ ∈ S)
≤ ϵ (4.14)

This will be our trade-off between how much we learn from each sample and the

privacy of each sample. This version of DP is called ϵ-differential privacy and is

usually written as:
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P (MD ∈ S) ≤ eϵ · P (MD′ ∈ S) (4.15)

If we are able to find such a value ϵ for a machine learning model M we have a

formal privacy guarantee for any training sample in M .

This is still very tight: we will introduce a parameter δ which represent a

probability that the above equation is not satisfied for some cases. We will then

extend the formula and get the (ϵ,δ)-differential privacy:

P (MD ∈ S) ≤ eϵ · P (MD′ ∈ S) + δ (4.16)

By reducing the value for both ϵ and δ with a good probability we can guarantee

for each sample in D an acceptable level of privacy (enough to make attacks very

difficult) while keeping ML utility high enough.

4.3 Implementing Differential Privacy

Now that we have a formal definition of differential privacy we need a way to

achieve it. The main idea is to add noise: the more noise we add the more

the model will learn differently the training data and the more privacy we are

guaranteeing.

[1] proposed to apply differential privacy during the training phase, into the

stochastic gradient descendent, known as DP-SGD. This has an interesting ad-

vantage over adding noise to the output: while in the former case the privacy

guarantee deteriorates as we produce outputs (this is known as the basic compo-

sition theorem [19]: if you interact T times with a mechanism with (ϵ,δ)-DP you

will end up with a (Tϵ,Tδ)-DP), by using DP-SGD we can use the model as long

as we want without worrying about privacy.

DP-SGD works like a normal SGD but we add two steps after computing the

gradient and before applying it:

1. Clip the gradient: divide the gradient by it’s norm divided by the param-

eter C, thus ensuring that its norm is at most C. In this way we introduce

a bound to how much the model is learning from the batch.

2. Add noise: add noise to the gradient by using a Normal distribution with

standard deviation Cσ, where σ is the noise multiplier.
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In their paper they proposed the following configuration: the hyper parameter

C can be set equal to 1, while σ will depend on the (ϵ,δ)-DP by the following

formula:

σ =

√
2 · log 1.25

δ
/ϵ (4.17)

With this configuration it’s guaranteed (ϵ,δ)-DP at each individual step in the

algorithm.

But can we measure the DP for the overall SGD algorithm? We need to

consider the following statement:

• With appropriate value we can guarantee (ϵ,δ)-DP at each step.

• Due to the basic composition theorem doing this T times we are left with

(Tϵ,Tδ)-DP.

• privacy amplification theorem [20]: if a model M is (ϵ,δ)-DP for a training

set D, then if we train it using a data set D′ obtained by sampling from D

a fraction q of data then we have (qϵ,qδ)-DP.

Adding these together we can thus see that our DP will have an upper-bound

of (qT ϵ,qTδ)-DP. This has a critical point: the privacy budget and probability of

failure increases as the number of iterations T increases. But in the same paper

where the algorithm was proposed an analysis to get a tighter bound was done.

They used Moments accountant, a technique that permitted to prove that

the actual overall differential privacy becomes (O(q
√
Tϵ), δ)-DP, thus the failure

probability is always the same and the privacy budget increase is now proportional

to
√
T . We can use the batch size to adapt q to prevent ϵ to increase too much.

CTAB-GAN+ uses the above implementation of DP-SGD during the training

when we specify the ϵ and δ parameters, otherwise it will proceed using a normal

SGD procedure.



Chapter 5

Experiments

This chapter will use different mechanisms for generating synthetic data, with the

objective of exploring their capabilities and deeper understanding the true gains

of using generative methods based on a network architecture. For each section i

will propose a research question and presents some experiments to try to answer

and present novel results.

My analysis include CTAB-GAN+ [35] and other algorithms, categorized with

the main architecture of synthetic data generations:

• Gaussian Mixture Models (GMM) for probabilistic architectures.

• SMOTE and Mixture will be used for representing algorithms based on

perturbation.

• For network based technique i will employ CTGAN.

I initially started trying to also employ Table-GAN, but the results for the

oversampling part did not satisfy my expectations: at some points of the training

phase there would be a convergence failure and the synthetic data started looking

like random noise. Since i wanted to compare CTAB-GAN+ with another GAN-

based approach but i couldn’t used Table-GAN i decided to use CTGAN [31],

which is similar to CTAB-GAN+ and can be seen as less complex approach (since

it doesn’t include DP-SGD or classification loss).

Comparing Table-GAN and CTGAN there are two points to consider:

• CTGAN implements a gradient penalty during the training, implementing

a WGAN. It has been shown that this helps the training process.

29
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• CTGAN uses a pre-processing phase, where the data is normalized accord-

ing to a GMM fitted for each column. Also this approach has been shown

to help the training process.

My thesis is based on 3 main evaluations for synthetic data. For each one i will

introduce a dataset, explain the purpose and how to measure the performance

for each generation algorithm:

• Oversampling: starting with a very unbalanced dataset, i want to add sam-

ples of the minority class to balance the dataset.

• Privacy: a very important application, where i want to create a new dataset

of synthetic data and share it without any problem of privacy.

• Fairness: can i use the synthetic data to augment the training set and avoid

unfairness in the decision boundaries?

An important introduction of CTAB-GAN+ is differentially-private stochas-

tic gradient descent (DP-SGD) where we clip the gradient to our clipping norm

C and add noise base on a noise multiplier σ. These parameters will be used in

the Privacy section while for the Oversampling and Fairness sections i won’t limit

the gradient vector (since in these cases we are not in a situation where privacy

must be guaranteed).

5.1 Oversampling

The improvement of synthetic data for tabular data has been huge thanks to

the introduction of new techniques based on Generative Adversarial Networks.

But there still is some problems in terms of measuring the improvement: most

datasets are based on using categorical data, the results that the authors of

CTAB-GAN+ presented data with mostly categorical data as seen in Figure 5.1.

With this setting is impossible to compare GANs with more traditional and reli-

able techniques like SMOTE and GMM. Thus i will introduce a dataset with only

continuous columns, with the objective of being able to compare traditional over-

sampling techniques with two network based, CTGAN and CTAB-GAN+. My

research question is: will GANs-based approaches overcome traditional models?
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Figure 5.1: Results of GANs on tabular data [35]

5.1.1 Dataset analysis

We can start by analysing our chosen dataset: HTRU2 [22]. This dataset include a

collection of measurement for Pulsars (a rare type of Neutron star). The objective

is to be able to distinguish samples of signals that are generated from a Pulsar

compared to those generated by noise. This dataset is interesting because only

roughly 9% of records are generated by Pulsars, the vast majority is from noise.

Let’s look at some samples in Table 5.1. Since the same 4 four statistics

(mean, standard deviation, excess kurtosis and skewness) are computed for the

two sources (Integrated profiles and DM-SNR curve) i decided to use those as

columns and the two sources as sub-columns.

Mean Std Deviation Excess Kurtosis Skewness

Int
Prof

DM
SNR

Int
Prof

DM
SNR

Int
Prof

DM
SNR

Int
Prof

DM
SNR

Label

140.56 55.68 -0.23 -0.70 3.20 19.11 7.98 74.24 0
99.37 41.57 1.55 4.15 27.56 61.72 2.21 3.66 1
27.77 28.67 5.77 37.42 73.11 62.07 1.27 1.08 1

Table 5.1: Statistical Measures for Different Categories

Since our objective is to create synthetic data belonging to the Pulsar group

this analysis will take into account samples where the labels is equal to 1. Let’s

start by looking at the correlation map: Figure 5.2. As we can expect, there is an

higher correlation between variables computing statistics from the same source

(integrated profile and DM-SNR curve), while for different sources the correlation

diminishes.

For the single variables, all of them resemble a Normal distribution or a neg-

atively skewed distribution as we can see in Figure 5.4. By plotting some scatter

plots we can observe some interesting shapes, like in Figure 5.3, where we can as-

sume there is a potential non-linear relationship between the two variables. Such
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Figure 5.2: Correlation map

a pattern is often observed in natural or social phenomena, where the relationship

between two variables is not strictly linear, but rather exhibits a more nuanced,

non-linear behavior.

(a) Mean and Skewness of Integrated
Profile (b) Mean and Std of DM-SNR curve

Figure 5.3: Plots for Pulsars

5.1.2 Algorithms Application

To test our algorithm i split the data, where 20% will be used as a test set and

the remaining as training set (to produce the synthetic data and to train the

classifier). Since we started with only 1639 possible cases for Pulsars the samples
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(a) Statistic Plot 1 (b) Statistic Plot 2

Figure 5.4: Histograms for Pulsars

of positive samples in the test set is too low for employing accuracy. A commonly

used metric is Fβ score, which takes into account precision and recall:

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

(5.1)

I decided to measure the performances by using β = 2, which gives an higher

weigh for the recall value. In this way i can measure if the algorithm is correctly

classifying as many Pulsars as possible, even if those are the minority in both

train and test set. For the classifier, i employed a Random Forest Classifier,

specifically the implementation of sklearn. For each algorithm i added synthetic

data until the ratio of classes for the training set was balanced. In Table 5.2 we

can see the best results. For Gaussian Mixture Model i tried two approached: the

first one i trained GMM in the raw data, while in the second approach i applied

PCA (so the generated samples needed to be projected to the original shape). We

can see that the results are similar in terms of F2 score, but i will keep applying

both approches later.

For CTAB-GAN+ i trained it in two configurations: in the first one i trained

it using both samples from Pulsars and Noise, then i filtered the synthetic data

selecting only Pulsars synthetic samples, while in the second I trained the model

using using only Pulsars samples. Currently in the state-of-the-art there is no

clear advantage for the oversampling scenario: the former may be helpful at

understanding the boundaries of the classes, but with the latter the model focus

on the useful class. As an example [12] obtained the best results by training a

GAN only on minority samples.

Regarding the noise class during the analysis i also computed the F2 scores for

that class: with the synthetic data the value will decrease but it never went

lower than 97%. The reason why the value is decreasing relies on the algorithm
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Without GMM
PCA

GMM SMOTE CTAB
GAN+all

CTAB
GAN+Pulsars

Depth 5 0.876 0.896 0.887 0.895 0.900 0.894
Depth 6 0.885 0.898 0.891 0.893 0.896 0.896
Depth 7 0.891 0.900 0.896 0.897 0.897 0.896
Depth 8 0.882 0.897 0.903 0.898 0.896 0.899
Depth 9 0.885 0.897 0.899 0.895 0.894 0.904
Depth 10 0.889 0.901 0.900 0.895 0.895 0.897

Table 5.2: Results for oversampling

focusing on both class and not classifying the majority of samples as Noise, hence

the recall of the Noise class is a bit lower now.

Without CTAB
GAN+all

CTAB
GAN+Pulsars

CTGANall CTGANPulsars

Depth 5 0.876 0.900 0.894 0.882 0.893
Depth 6 0.885 0.896 0.896 0.888 0.893
Depth 7 0.891 0.897 0.896 0.892 0.892
Depth 8 0.882 0.896 0.899 0.897 0.894
Depth 9 0.885 0.894 0.904 0.900 0.894
Depth 10 0.889 0.895 0.897 0.898 0.890

Table 5.3: Results for GANs

Comparing the two GAN-based models in Table 5.3, not only CTAB-GAN+

outperforms CTGAN in both configurations, but interestingly CTGAN prefers

to have both labels during training, compared to CTAB-GAN+ that got the best

results with the training set composed of only Pulsars. This is probably due to

the possibility of using pre-processing methodologies, specific to the Pulsars class.

Some columns have a mixed type variable only for the Pulsar class, thus can be

used only the setting with only Pulsars.

In some context (for example fraudulent transaction identification) a ratio

of 9% of one class is not considered too unbalanced. We can also see that the

improvement given by using CTAB-GAN+ is only equal to 1.3%. I decided

to repeat the above experiment multiple time, keeping track of the improvement

gained by using synthetic data from each generator, while also randomly removing

samples from the minority class. Results as the ratio of Pulsars samples decrease

is shown in Section 5.1.2, where i put together the results for GMM with and

without PCA and the different configurations of the GANs. The increase in
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accuracy is shown in percentage for visualization purpose. For summarizing the

6 experiments for each configuration, i used the median and the first and third

quartile. In this way i could present the results without any shift due to a better or

worst value while also showing the spread. As the percentage of Pulsars samples

diminishes, the performances of synthetic data varies.
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As the number of samples diminishes, for GMM the best results were obtained by

applying PCA before, contrarily to what happens in the situation where we don’t

remove samples. For both GANs the best results were obtained when training

only with data coming from the Pulsars. Notable CTGAN is the generator that

has more difficulties at learning the data distribution but has a peak as the number

of positive samples diminishes, while CTAB-GAN+ can keep up the pace. This is

explained by the pre-processing of the data, that amplifies the data distribution

and avoids that CTAB-GAN+ overfit. A known behaviour that is confirmed in

this experiment is that as the number of samples diminishes the improvement of

SMOTE starts is less strong compared to others.

By considering other factors such has computation time and the requirements

of specific hardware, GMM still remains the best methodology for this setting.
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CTGAN was able to outperform it in some scenarios but only for a small per-

centage and requiring a longer time to train.

5.2 Privacy

Privacy in the context of synthetic data refers to the possibility of freely sharing a

dataset containing sensitive attributes, since with synthetic data the samples are

not directly derived from real people. As discussed above, attacks to synthetic

data like the Membership Inference Attack (MIA) may take advantage of this

assumption, deriving membership of samples in the training data by only looking

at the synthetic data. In this section i will investigate how each model is able to

withstand the attack by performing it and measuring the accuracy, thus my re-

search question is: are GANs approaches better at withstanding the MIA attack?.

Since an accuracy close to 0.5 means that the model is basically classifying all

samples in one class, we can assume that it is not able to understand which were

the samples in the training set used for generating the synthetic data.

5.2.1 Dataset analysis

I decided to use the Adult dataset [4], since it contains a personal information

about an individual: whether he earns more or less than 50k per year. The

dataset is also known to be very unbalanced, favoring some individuals regarding

who earns more than 50k (usually white male individuals) [15], but this is beyond

the analysis for this section.

Before performing a MIA attack and evaluate each algorithm based on the

resistance to the attack, let’s see the attributes and some example of samples.

Here we can see each attribute with a short description:

1. Age: Integer representing the age of the individual.

2. Workclass: Categorical feature describing the type of employment.

3. Fnlwgt: Integer feature representing the final weight, which is the number

of units in the target population that the responding unit represents.

4. Education: Categorical feature representing the education level.
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5. Education-num: Integer representing the numerical encoding of the edu-

cation level.

6. Marital-status: Categorical feature describing the marital status.

7. Occupation: Categorical feature describing the occupation.

8. Relationship: Categorical feature describing the relationship status.

9. Race: Categorical feature describing the race.

10. Sex: Binary feature representing the gender.

11. Capital-gain: Integer feature representing the capital gains.

12. Capital-loss: Integer feature representing the capital losses.

13. Hours-per-week: Integer representing the number of hours worked per

week.

14. Native-country: Categorical feature describing the native country.

15. Income: Target binary feature representing income levels, with categories

’>50K’ and ’≤50K’.

final weight (fnlwgt) tells the proportion of the population that has the same

set of features. Basically, every row in the original table was de-duplicated

and final weight stores the number of rows that have exactly the same value.

Also Education-num is the integer representation of the Educational level, hence

Education-num and Education have a one-to-one correspondence. For this rea-

sons the columns fnlwgt and Educational have been removed before starting the

experiment.

Here we can see a sample belonging to the training set:

Age: 56

Workclass: Local-gov

Education-num: 13

Marital-status: Married-civ-spouse

Occupation: Tech-support

Relationship: Husband

Race: White
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Sex: Male

Capital-gain: 0

Capital-loss: 0

Hours-per-week: 40

Native-country: United-States

Income: >50K

After analyzing the dataset i decided to apply the following modifications:

• Some columns use different values for unknown values: work class, native

country and occupation uses the question mark, while capital gain uses

99999. Those values are substituted with NaN.

• Since the creation of synthetic data requires a dataset with a good quality,

rows with at least one NaN will be removed from the dataset.

• Around 11% of the dataset is composed of duplicates, that will be removed

before continuing to avoid bias.

To simulate the attack, I sampled two subsets of the original data: one subset

is removed from the original data and consists of samples where I expect the

attacker to return zero, while the other subset consists of samples that are also in

the training data and thus I expect the attacker to recognise them. Both sets are

balanced with respect to the target feature. The MIA attack requires a distance

function L, to measure the distance between samples. It’s computed with the

euclidean distance, where for computing the distance for each feature i used the

following strategies:

• For continuous and numerical features i normalized the values, so that the

range of each variable is between 0 and 1. Hence for each variable the

distance can be computed by using the euclidean distance.

• For categorical features since a notion of distance is usually wrong i simply

returned 1 when the values are different and 0 if they are equal.

As a comparison method i used a Mixup model, where a synthetic samples

xs is obtained by mixing up two samples from the data:
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xs = λxi + (1− λ)xj

ys = λyi + (1− λ)yj

λ = Beta(α, α)

(5.2)

Two version of Mixup have been used: in one case the λ values are close to 0,

trying to keep statistical similarity. In the second case lambdas will tend to 0.5,

so most samples will contains an average of the samples loosing the statistical

similarity while trying to minize the accuracy of the attack.

Since Differential Privacy is based on adding noise to the data i will also keep

track of statistical similarity between the original dataset and the synthetic ones.

The idea is to understand which generation mechanism can resist the attack while

keeping he statistical information. I have used the following metrics (the same

used by [35]):

• Jensen-Shannon divergence (JSD): used to quantify the difference be-

tween the probability mass distributions of individual categorical and nu-

merical variables.

• Wasserstein distance (WD): used to capture how well the distributions

of individual continuous/mixed variables are emulated by synthetically pro-

duced datasets in correspondence to real datasets. In our case the only

variable with a continuous behavior is capital gain.

• Difference in pair-wise correlation (Diff. Corr.). To evaluate how well

feature interactions are preserved in the synthetic datasets. For the corre-

lation Pearson correlation is used for continuous, while Theil uncertainty

coefficient is used to measure the correlation between any two categorical

features.

Let’s start by looking of the accuracy of the attack for each mechanisms in Ta-

ble 5.4, since i performed multiple times the attack (due to the sampling process

being random) each row represents the outcome for a single experiment. Then

for the two GANs i computed the above statistical metrics to compare the attack

accuracy and the similarities of the data, in Table 5.5 we can see the results.

While doing this computation i noticed that CTGAN produced some samples
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where the values for capital gain and capital loss were not respecting the con-

straints: those values cannot be negative, but since there is no classification loss

(compared to CTAB-GAN+) the GAN is not learning it. I decided that for each

synthetic dataset before computing the accuracy and statistics i pre-process the

data to correct unacceptable data (negative values for capital, underage samples).

Lastly: for the fifth case CTAB-GAN+ was generating an high number of syn-

thetic samples identical to original samples. To avoid this situation of overfitting

i applied differential privacy with an high privacy budget (ϵ = 1), avoiding the

overfitting problem without interfering too much with the training.

Mixup Mixupprivacy CTGAN CTAB-GAN+
1 0.6875 0.601 0.5125 0.507
2 0.7025 0.617 0.514 0.510
3 0.6855 0.605 0.505 0.505
4 0.696 0.607 0.5215 0.525
5 0.691 0.6055 0.51 0.5035
6 0.692 0.6195 0.5215 0.511

mean 0.6924 0.6092 0.5141 0.5103
median 0.6915 0.6063 0.5133 0.5085

Table 5.4: Attacks accuracy

CTGAN CTAB-GAN+

JSD WD Diff Corr copies JSD WD Diff Corr copies

1 0.1112 0.0206 0.5983 1216 0.0861 0.0211 1.4435 1253
2 0.1122 0.0210 0.5808 816 0.0827 0.0227 1.3330 1536
3 0.0997 0.0272 0.6188 1348 0.0897 0.0271 1.3668 1212
4 0.1111 0.0157 0.634 788 0.0949 0.0320 1.3821 964
5 0.1179 0.0093 0.6426 848 0.0864 0.0269 1.3473 1293
6 0.1145 0.0362 0.6012 892 0.0963 0.0373 1.3890 1055

mean 0.1111 0.0217 0.6126 985 0.0894 0.0279 1.3770 1128
median 0.1117 0.0208 0.6100 870 0.0881 0.0270 1.3745 1233

Table 5.5: Statistic similarity between synthetic and original data

The data generated by the two GANs are able to avoid the attack, by bringing

it close to 0.5 (where the attacker is essentially randomly guessing). Also CTAB-

GAN+ is a little more resistant compared to CTGAN. The results of Table 5.5 are

not really explaining why the attack has this difference, since it seems like CTAB-

GAN+ should be weaker due to the number of copies. By analyzing the synthetic
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data i noticed that the number of duplicates in the copies is high (for some real

data CTAB-GAN+ have created not one but two or more synthetic data) and in

general both GANs have some duplicates (this is probably due to the fact that

the statistical constraints of the data force the generator to create similar data).

In Table 5.6 and Table 5.7 i compute the statistics after removing the duplicates:

this will ensure that we can measure more accurately the statistical similarity

and the number of duplicates. We can also notice that the results for the MIA

attack won’t change, since duplicates don’t add any meaningful information for

finding the closest synthetic sample. The final results show a better similarity for

JSD for CTAB-GAN+ but at the cost of more duplicates compared to CTGAN.

CTGAN

JSD WD Diff.Corr. copies duplicates

1 0.1119 0.0204 0.66 841 773
2 0.1135 0.0216 0.5807 657 609
3 0.1010 0.0282 0.6231 917 847
4 0.1117 0.0157 0.6334 639 423
5 0.1187 0.0095 0.6421 618 575
6 0.1153 0.0358 0.6040 732 534

mean 0.1120 0.0204 0.6239 734 627

Table 5.6: Statistic similarity between synthetic and original data without dupli-
cates

CTAB-GAN+

JSD WD Diff.Corr. copies duplicates

1 0.0886 0.0216 1.4452 874 1463
2 0.0855 0.0229 1.3328 1001 1566
3 0.0924 0.0281 1.3618 821 1427
4 0.0969 0.0328 1.3906 717 979
5 0.0888 0.0277 1.3550 955 1040
6 0.0997 0.0395 1.3844 599 1652

mean 0.0920 0.0255 1.3783 828 1355

Table 5.7: Statistic similarity between synthetic and original data without dupli-
cates

Before moving on it’s worth trying to explain why there is such a big gap

between the two Mixup generators and the two GANs. Taking inspiration from
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[35] i computed Distance to Closest Record (DCR) and Nearest Neighbour

Distance Ratio (NNDR) between synthetic data and real data. Both gives an

insight on how much the synthetic data is too close to the original data and

how much information it can be gathered by attacking it. We can observe in

Table 5.8 the correlation between accuracy and distance: especially when NNDR

increase the MIA attack accuracy decrease. I also included the test set as a

maximum threshold: since the test set is not derived from the training set, it can

be interpreted as a set with good similarity that maximize the distance between

samples. In this way we can derive the following result: CTAB-GAN+ has the

best value for both metrics, since for DCR it has the highest value, while for

NNDR it has the closest value to the test set, hence the synthetic samples are

not too distant from the original samples.

Mixup Mixupprivacy CTGAN CTAB-GAN+ Test set

DCR NNDR DCR NNDR DCR NNDR DCR NNDR DCR NNDR

1 0.2214 0.3244 0.3570 0.5214 0.3715 0.6066 0.3817 0.6060 0.9473 0.5744
2 0.2206 0.3087 0.3686 0.5155 0.3561 0.6009 0.4121 0.6075 1.0437 0.6052
3 0.2221 0.2988 0.3761 0.5123 0.4046 0.5877 0.4406 0.6251 1.0130 0.6029
4 0.2140 0.2903 0.3685 0.5158 0.4322 0.6328 0.4394 0.6229 1.0023 0.6074
5 0.2166 0.3149 0.3807 0.5063 0.4385 0.6391 0.3994 0.5891 0.9203 0.5814
6 0.2122 0.3027 0.3662 0.4986 0.4416 0.6409 0.4495 0.6230 1.0608 0.5923

mean 0.2178 0.3066 0.3695 0.5117 0.4074 0.618 0.4205 0.6123 1.0126 0.5939
median 0.2186 0.3057 0.3686 0.5139 0.4184 0.6197 0.4258 0.6152 1.0077 0.5976

Table 5.8: Measure of closeness between synthetic and original data

For completeness purposes i decided to train both GANs while increasing the

number of epochs (from 150 to 250). In this way i expect both synthetic dataset

to be closer to the original data while being more vulnerable to the MIA attack.

For the CTAB-GAN+ samples, i kept using the privacy budget for avoiding

overfitting.

From Table 5.9 and Table 5.10 seems like more epochs improved CTAB-GAN+

on all metrics, while for CTGAN it diminished the number of copies and dupli-

cates but worsened the statistical similarity. In the Table 5.11 we can see the

results of the MIA attack for the newly created synthetic datasets. As expected

the accuracy of the attack for all cases has improved or remained the same.

Since it looks like CTAB-GAN+ is benefiting a lot from the increase of the

epochs i tried retraining it for the same datasets but using a number of epoch
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CTGAN

JSD WD Diff.Corr. copies duplicates

1 0.1137 0.0238 0.6082 475 217
2 0.1134 0.0271 0.5785 415 172
3 0.1161 0.0267 0.6938 875 487

mean 0.1144 0.0259 0.6283 588 292

Table 5.9: Statistic similarity between synthetic and original data without dupli-
cates and with 250 epochs

CTAB-GAN+

JSD WD Diff.Corr. copies duplicates

1 0.0819 0.0217 1.0915 982 897
2 0.0833 0.0140 1.1991 1091 89
3 0.0862 0.0321 1.1791 859 1816

mean 0.0838 0.0226 1.1566 977 934

Table 5.10: Statistic similarity between synthetic and original data without du-
plicates and with 250 epochs

equal to 350 and keeping the privacy budget (to avoid overfitting). Interestingly

we can observe from Table 5.12 that not only the statistical similarity improves

but also the resistance to the attack. This is due to the generator learning even

better the distribution of the data, thus being able to generate samples enough

sparse.

5.2.2 Half-size dataset

Lastly we can test for all generators what happens when the size of the training

data is reduced: as [7] showed a reduction in the size of the training data usually

implies a weaker synthetic dataset to the MIA attack, due to the higher changer of

privacy leakage. Mixup generators have a higher accuracy for the attack (around

73% for Mixup and 62% for Mixupprivacy). It’s important to test higher epochs,

due to the lower availability of data the generators need more iterations to better

understand the data and avoid overfitting. We can observe from Table 5.13 that

an higher number of iterations implies a lower attack value. Also GANs can still

withstand the attack, thus proving more robust compared to other methods.

Given that CTAB-GAN+ appears to face a slightly higher accuracy with the
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CTGAN CTAB-GAN+
1 0.5125 0.513
2 0.5145 0.515
3 0.5145 0.506

mean 0.5138 0.5113

Table 5.11: Attacks accuracy with 250 epochs

CTAB-GAN+

JSD WD Diff.Corr. copies duplicates attack acc.

1 0.0724 0.0159 1.1012 1284 1478 0.508
2 0.0791 0.0152 1.0907 1157 1111 0.507
3 0.0749 0.0254 1.0730 1078 1365 0.512

Table 5.12: Statistic similarity between synthetic and original data without du-
plicates and with 350 epochs

attack, i propose employing differential privacy as a solution. By constraining the

privacy budget, we aim to mitigate the risk of overfitting and diminish the accu-

racy of the attack. As demonstrated in Table 5.14, the synthetic data generated

by CTAB-GAN+ with the integration of differential privacy exhibits the highest

resilience against the attack. This underscores the efficacy of incorporating it

into a synthetic data generation pipeline.

5.3 Fairness

In this chapter i want to focus on the application of synthetic data for leveraging

possible discrimination scenarios, where a machine learning model has learnt a set

of parameters that causes discrimination against a category of people. Two fam-

ilies of technique have been used: Explainable AI (XAI) techniques for machine

learning models and fairness metrics. The former tries to identify the sources of

bias of a model by explaining its reasoning, while the latter uses a set of metrics

to evaluate the unfairness of a model. The actual use of XAI for fairness has been

criticized [10], since it has been shown that some biases are not always captured

and we have the risk of fairwashing, where the users are mislead into trusting

biased or incorrect models. Still i will apply this techniques to have a description

on how the model is internally reasoning.

My research question regards the impact of synthetic data for the reduction
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CTGAN200 CTGAN250 CTAB-GAN+200 CTAB-GAN+250

1 0.522 0.517 0.5155 0.5195
2 0.51 0.5075 0.511 0.523
3 0.5135 0.514 0.5155 0.516

Table 5.13: Attacks accuracy with half size dataset

best CTGAN best CTAB-GAN+ CTAB-GAN+privacy privacy budget
1 0.517 0.5155 0.514 10−3

2 0.5075 0.511 0.5075 10−4

3 0.5135 0.5155 0.5125 10−5

Table 5.14: Attacks accuracy with half size dataset, including differential privacy

of risk of bias, more specific: Will introducing synthetic data in the training set

diminish the risk of bias?

5.3.1 Explainable AI

I will use the Adult dataset, pre-processed like in the Privacy section. For the

sake of simplicity i also removed the feature marital status, due to its similarity

with the feature relationship. Then I divided the data into training sets and

test sets, and i trained an interpretable model. The choice of the model being

interpretable gives me the possibility of analyzing it using model agnostic and

model specific explanation method, to check if i can find any possible discriminant

scenario. For the Adult dataset i found a decision tree to be the best performing

interpretable model.

Since the decision tree reached a depth equal to 8 it’s impossible to visualize

it, but we can employ an explanation method for decision tree known as feature

importance: it measures the importance of each feature for the model with

an Impurity-based feature importance, thus the importance of a feature is

the (normalized) total reduction of the impurity criterion obtained by using that

feature for splitting. It quantifies how much each feature influences the decisions

made by the tree during training. Higher importance values indicate features

that have a stronger impact on the model’s predictions. Table 5.15 shows that

the main features used by the model to classify are relationship, capital gain and

education num.

Another methodology commonly used for measuring the impact of each fea-

ture in the decision process of any model is permutation importance: the
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Feature Importance
relationship 0.4252
capital gain 0.2181

education num 0.2042
capital loss 0.0690

age 0.0379

Table 5.15: Feature Importances

model’s performance metric, such as accuracy or mean squared error, is calcu-

lated before and after randomly shuffling the values of each feature one at a time.

The difference in the performance metric before and after shuffling indicates the

importance of that feature. A larger drop in performance suggests that the fea-

ture is more important to the model’s predictions. Remarkably, this is a model-

agnostic method, in that no assumptions are made about the model, and we only

take its predictions into account when shuffling the data. Figure 5.5 confirms

what we have already seen above: relationship, capital gain and education num

are the most important features for the model.

Figure 5.5: Permutation importance

The last methodology employed is another model agnostic one: partial de-

pendence plot, used to visualize the relationship between the values of a feature

and the predicted outcome of the model, while keeping other features constant.

It’s extremely useful to check how a model behave considering an important fea-

ture, thus checking if we encounter a discriminatory behaviour. Figure 5.6 shows

that for the values 0 (corresponding to husband) and 5 (corresponding to wife)
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the dependency is close to 0.5, so the values don’t make much difference to the

prediction of the model. But for the remaining values the dependence is close to

0, so people in situations such as divorced, widowed or never married are more

likely to be classified as earning less than 50,000 a year for this reason.

Figure 5.6: Partial Dependence for relationship and education num

As a final test i provided to the model some samples, where for some fea-

tures i assigned values associated to people that makes more than 50k a year

(Caucasian, 50 years old, American, with a degree and working a full time job)

and changed some other features to see how much the prediction changes based

on the relationship values. It’s easily noticeable from Table 5.16 that there is

a correlation between relationship values and prediction, discriminating against

people that are not husband nor wife.

Relationship Gender Prediction
Husband Male 1
Wife Female 1

Not-in-family Male 0
Not-in-family Female 0
Other-relative Male 0
Other-relative Female 0
Own-child Male 0
Own-child Female 0
Unmarried Male 0
Unmarried Female 0

Table 5.16: Prediction Results

Given the situation, we can now add synthetic data using CTAB-GAN+. Due

to the situation requiring the employment of oversampling, differential privacy

won’t be used. Still the generation process of CTAB-GAN+ has been modified,
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so that the conditional vector can now be used to specify to the model the values

for a subset of attributes. In this way i was able to generate samples with specif

values for both relationship and income class. The main idea was to add more

samples with income class equal to 1 where there was an unbalanced ratio for

specific values. Also i added some samples to classes that were balanced but a

minority in the group, like Other relative.

We start start by looking at the statistics before and after adding the synthetic

data. In Table 5.17 we can observe that the discrimination is already present in

the training data: all values except ’Husband’ are under-represented,and, except

’Wife’, are also unbalanced with respect to the labels. Considering the above

results, it seems like the problem is not in the distribution of values but in the

distribution of the labels for each value. With this idea in mind i added the

synthetic data with the objective of balancing the distribution of labels in the

training data, that also influenced the distribution of values for the feature.

Before After

Relationship Distribution Label >50k Distribution Label >50k

Husband 0.40 0.46 0.28 0.46
Not-in-family 0.26 0.11 0.28 0.43
Other-relative 0.03 0.04 0.09 0.51
Own-child 0.14 0.02 0.15 0.39
Unmarried 0.11 0.07 0.16 0.54

Wife 0.05 0.48 0.04 0.48

Table 5.17: Distribution of values and labels before and after adding synthetic
data

By analyzing the new feature importance for the new classifier in Table 5.18.

We can see that the model still contains the feature relationship but its impor-

tance has dropped from 0.32 to 0.07. Now the models takes into consideration

feature there are actually important for classifying the annual earning of an in-

dividual like his education level, the capital gain and how many hours he works.

The permutation feature importance (Figure 5.7) confirms that the relation-

ship importance has dropped compared to other features.

As we have done before, we can use partial dependence plot for measuring the

influence of each value in the decision process. Compared to before, now each

value is more balanced compared to the other Figure 5.8, and the experiment
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Feature Importance
education num 0.3040
capital gain 0.1962

hours per week 0.1763
relationship 0.0774

age 0.0705

Table 5.18: Feature Importances for balanced dataset

Figure 5.7: Permutation importance for balanced dataset

of modifying only the value of relationship and not the others now yield more

balanced results, as seen in Table 5.19.

We can see that there is still some difference in the results, but this is due to

gender: the dataset is also unbalanced in terms of the gender of the person and

the label. This part will be better analysed in the next section.

The last thing worth mentioning is the accuracy: by adding this synthetic

data and changing the hyper parameters the accuracy dropped from 85% to 80%.

This is probably due to the fact that the test set remained unbalanced, and now

that the model is not using relationship for classifying the samples it has more

difficulties. On the other hand if we analyze the confusion matrix with respect to

the relationship values we have we can see that now the False Positive Rate is a

bit higher but the False Negative Rate diminished: this is implying that now the

classifier is not assigning based on the relationship value but considering other

situation that better model the task. In Figure 5.9 we can see a comparison of the

confusion matrix for sample with value Other relative, before and after adding

the synthetic data.
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Figure 5.8: Partial Dependence for relationship and education num balanced

Relationship Gender Prediction
Husband Male 1
Wife Female 1

Not-in-family Male 1
Not-in-family Female 0
Other-relative Male 1
Other-relative Female 0
Own-child Male 1
Own-child Female 0
Unmarried Male 1
Unmarried Female 1

Table 5.19: Prediction Results

(a) Before (b) After

Figure 5.9: Confusion matrix before and after synthetic data
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5.3.2 Fairness measures

In machine learning, a given algorithm is said to be fair, or to have fairness, if its

results are independent of given variables , especially those considered sensitive.

We will use A for referring to the sensitive attributes and R the classifier’s pre-

diction. Fairness measures are properties of the joint distribution of the score,

sensitive attribute, and the target variable. This properties can be computed

given samples from the joint distribution, and are subject to statistical sampling

error [6].

The scores that i will be using are:

• Independence: the prediction R and the sensitive attribute A are statis-

tically independent. Can be formally expressed as:

P (R = 1|A = a) = P (R = 1|A = b) = ... (5.3)

If this holds we will say that the acceptance rate for A is the same.

• Separation: for this metric the prediction R and the sensitive attribute

A are statistically independent given the target value Y . This is computed

for both True positive and False positive rate, formally:

P (R = 1|A = a, Y = 1) = P (R = 1|A = b, Y = 1) = ... (5.4)

And

P (R = 1|A = a, Y = 0) = P (R = 1|A = b, Y = 0) = ... (5.5)

This is also know as equalized odds.

Given this two metrics we will compute the unfairness score: for the Indepen-

dence we will compute the difference of probability for a binary A or the average

difference (Diff Ind), while for Separation we will compute the difference for both

TPR and FPR (Diff TPR and Diff FPR).

In this scenario we are not interested in understanding how a model inter-

nally works, but how its predictions have an effect on sensitive attributes. This is

specially true if we consider proxy discrimination: when classifiers do not con-

siders sensitive attributes for making decisions, but the non-sensitive attributes

used works as proxies for these attributes [26]. These behaviours may not no-

ticed by looking at the explanations for the models, but need these scores to be
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measured. I will use as attributes relationship, race and sex. These categorical

features have a low cardinality and can be easily used to measures this statistics.

For each one i computed the average and the maximum difference between all

the values. The dataset used is Adult, without the synthetic data added in the

above section.

The results are shown in Table 5.20, where we can see a confirmation of what

seen in the previous section: since with the dataset without synthetic samples the

model uses the relationship feature for assigning the label, the average difference

is higher for both Independence and TPR. Also even if Figure 5.5 and Table 5.15

tell us that the decision tree has very few nodes that use sex and race, due to the

proxy discrimination there still is an high average difference, with the difference

between Asian and Other reaching 0.2867.

Diff Ind Diff TPR Diff FPR

feature average max average max average max
sex 0.1406 - 0.0359 - 0.0448 -
race 0.0960 0.1858 0.1301 0.2867 0.0389 0.081

relationship 0.2046 0.4082 0.2087 0.4263 0.0984 0.2137

Table 5.20: Unfairness scores

The effect of adding the synthetic data for the relationship feature can be

seen in Table 5.21, where after adding the data i recomputed the unfairness

scores. Two things immediately catches the eye: not only all the differences

for relationship diminished (both average and maximum), but also for race and

sex there has been some improvement. The synthetic data contained a more

enriched data concerning race and sex that helped the model at diminishing the

TPR difference: for example for the ’Unmarried’ value the ratio of White people

diminished from 81% to 71%, while for . Still we can notice that the FPR for

gender increased of 3.5%, probably due to a greater presence of male in the

synthetic data (due to the label), and the Independence for relationship is still

not perfect (the difference between Wife and Own-child is 0.24).

To conclude this part we have to understand that the limits of this methodol-

ogy and similar techniques relies on trying to solve a socio-technical problem with

a technical solution, which is too limited for getting to an actual solution. As

[21] and other authors discussed, Artificial Intelligence relies on a model learning

all the pattern and biases of the dataset, which in turns reflect the biases of our



5.3. FAIRNESS 53

Diff Ind Diff TPR Diff FPR

feature average max average max average max
sex 0.1591 - 0.0011 - 0.0796 -
race 0.0867 0.1469 0.0624 0.122 0.0489 0.0785

relationship 0.1213 0.2402 0.0825 0.1692 0.0248 0.0654

Table 5.21: Unfairness scores with synthetic data for relationship

society. Since we live in a society that for historical and cultural reasons has

developed many biases toward minorities, taking for example a lower percentage

of women enrolling in STEM degrees or immigrants earning less than the average

salary, our datasets will have to include this biases to be a good representation of

our world. But then our models will find this pattern in our data and incorporate

those in their decision processes, resulting in biased models, that in turn will cre-

ating a feedback loop, in which bias in algorithms can potentially be reinforced

over time and exacerbated. Considering that Adult is 30 years old [4], it becomes

challenging to train a classifier and even expect it to work on our society, with

all shaping that have happened in the last year.

Still, a methodology based on synthetic data was able to diminish the impor-

tance of a sensitive attribute, as seen in 5.3.1, while also halving the difference

in TPR and FPR. This worsening the accuracy of 5%, since now our training

set is not correctly reflecting the society it was built on. Furthering modifying

the synthetic data (for example introducing samples representing divorced people

owning a child) could diminish even more the difference, but would a produce a

model incapable of working in our society.



Chapter 6

Results and Discussions

This chapter will answer the research questions i had propose for each experiments

with the results on obtained.

For the Oversampling part i was interested in a more clear comparison be-

tween traditional methods, like GMM and SMOTE, and methods based on GANs

such as CTAB-GAN+ and CTGAN, in order to address will GANs-based ap-

proaches overcome traditional models? Undoubtedly CTAB-GAN+ and CTGAN

are better for dataset with categorical data that represents different patterns, but

in my experiment i showed that using a dataset with only continuous features,

that still represented non-linear behaviours, the results were comparable. While

SMOTE represented a weaker improvement as the ratio of the minority dimin-

ished, GMM was able to produce an improvement comparable to the two GANs.

Considering the time needed to train a GAN and the necessity of using a TPU,

GMM still remains a valid alternative.

For the Privacy part i performed the MIA attack on the two GANs and a

perturbation based approach, in order to address are GANs approaches better at

withstanding the MIA attack? While keeping a high statistical similarity with the

original data, the synthetic data produce by CTAB-GAN+ and CTGAN was able

to withstand the attack bringing it to an accuracy of only 50%. They also proved

to be robust when the training data was diminished, showing a good capacity at

generalizing and not overfitting the data.

Lastly, in the Fairness i addressWill introducing synthetic data in the training

set diminish the risk of bias? How could the synthetic data affect the risk of

bias of a model, measured with both XAI techniques and fairness measures?

By introducing the data produced by CTAB-GAN+ not only the importance of
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sensitive features diminished, but also the average difference of probability, TPR

and FPR diminished. While this proved that we were able to produce a more

fair model without degrading the accuracy, i discussed on how this methodology

is limited by being a technical solution to a socio-technical solution.



Chapter 7

Limitations

One of the main limitations of this research work can be found on the use of

only two datasets. In future works using a variety of datasets for different tasks

can provide more insights to add to my results. It could happen that for other

datasets with only continuous features the improvement of GAN-based mech-

anisms is actually higher compared to other traditional mechanisms, or more

datasets produce synthetic data with a lower capacity of withstanding the MIA

attack, thus resulting in a more important use of the DP-SGD during the train.

This thesis uses only two GAN model, CTGAN and CTAB-GAN+. This

decision was done due to the limit hardware resources in my possession, requiring

a longer time to train the models thus bringing a substantial time to compute even

one single results. Future works could introduce more GAN based approaches,

that may be substantially more different in terms of implementation or strategies

to learn the distribution of data.
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Chapter 8

Conclusions and Future Works

This thesis provide a systematic literature review of the state-of-the-art of gener-

ative mechanism of synthetic data, with a special focus on approaches based on

Neural Networks. Adopting the most recent proposal of mechanisms and more

traditional mechanisms such as GMM and perturbation-based, i was able to de-

rive a set of results that can bring new insight in the field: while for less complex

dataset the improvement of using GAN-based mechanisms become equal to im-

provement obtained with traditional approaches, considering the withstand of a

MIA attack GANs are more robust. Future works could try to improve the ca-

pacity of current models for other types of tabular data, given the already good

results with tabular data containing categorical data, or produce new mechanism

able to obtain similar results with a less demanding training procedure.

Regarding the fairness, by introducing synthetic data i was able to diminish

the risk of bias of a model while also keeping an acceptable accuracy. This

proves that using synthetic data in a model could be a first step to diminish the

risk of bias, while keeping in mind that we are trying to solve a socio-technical

problem with just a technical solution. Synthetic data created with the objective

of maximizing the fairness will loose the original statistical information, where

some of the biases are present, and thus become less useful for an application use.

Building AI systems is not only a technical problem but also an ethical one due

to their impact on society.

The results of this thesis are promising and provide a starting point for re-

search and development of new state-of-the-art methods for generating synthetic

data with an acceptable trade-off between privacy preservation, fairness and ac-

curacy.
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