
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Design and implementation of web
components

Supervisors

Prof. GIOVANNI MALNATI

Candidate

Mostafa ASADOLLAHY

July 2024

Summary

In order to improve user experience and application functionality, this thesis explores
the design and implementation of complex web components for a caregiving platform,
making use of cutting-edge technology. Keycloak was used to integrate secure
authentication; TypeScript and Redux RTK Query were used to facilitate efficient
data management; React was used to create user-friendly interfaces with features
like infinite scrolling and debounced search; and Kepler.gl was utilized to enable
advanced data visualization for geospatial mapping of patient locations.

The study makes an important contribution to the field of web development
by showing the successful integration of several technologies, especially in the
context of healthcare applications. These include Kepler.gl for perceptive data
visualization, React and Redux for dynamic and responsive user interfaces, Keycloak
for strong user authentication, and TypeScript for improved code dependability and
maintainability. The complicated requirements of healthcare systems are addressed
by this well-thought-out integration, which focuses on enhancing user interfaces,
data handling, and security.

The project’s outcomes highlight the potential of modern web technologies to
significantly improve the efficiency, security, and user engagement of healthcare
applications. The integration of these technologies has led to a more maintainable
and error-resistant codebase, secure and efficient user authentication processes,
optimized state management, and enhanced data visualization capabilities that
support caregiver decision-making.

The produced prototype provides a flexible and clean practical framework
that forms the basis for future applications. It emphasizes how crucial complete
technology integration is to tackle the many issues that healthcare services must
deal with. The thesis ends with research directions that should be pursued, such
as investigating real-time data updates, improving state management strategies,
and developing interactive geospatial data visualization tools.

This summary encapsulates the essence of the thesis, emphasizing the innovative
integration of technologies and their practical applications in enhancing web-
based healthcare services, and provides a clear pathway for future research and
development in this vital area.

ii

iii

Acknowledgements

I am deeply grateful to my supervisor, Professor Giovanni Malnati, for your
invaluable guidance and support throughout this journey. Your expertise was
essential to my success.

Special thanks to David Lomuscio for your insightful feedback and suggestions
that improved my work.

I must also thank my friends for your moral support and encouragement, and
my family, especially my parents, for your endless love and support.

To everyone who supported me, thank you for making this thesis possible.
To all these great people, I owe the realization of this thesis.

iv

Table of Contents

List of Tables viii

List of Figures ix

Acronyms xi

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Problem Statement . 2
1.3 Objectives of the Study . 3
1.4 Scope and Limitations . 4
1.5 Significance of the Study . 5
1.6 Thesis Structure . 6

2 Literature Review 8
2.1 Evolution of Web Technologies . 8
2.2 Web Components: An Overview . 8
2.3 React in Modern Web Development 9
2.4 The Role of TypeScript and Redux 9

2.4.1 TypeScript . 9
2.4.2 Redux . 10

2.5 Authentication in Web Applications 10

3 Methodology 12
3.1 Research Design . 12
3.2 Frontend development . 12

3.2.1 Selection of Tools and Technologies 13
3.2.2 React . 13
3.2.3 JSX . 14
3.2.4 Webpack . 15
3.2.5 Entry Point of the Application: App.js 17

vi

3.2.6 React Router . 18
3.2.7 Material UI . 20
3.2.8 Redux - the state manager 21
3.2.9 React-redux . 23
3.2.10 Redux Toolkit . 23
3.2.11 RTK Query: Data Fetching and Caching 24
3.2.12 TypeScript . 26
3.2.13 What is JWT Token . 27
3.2.14 Keycloak . 36
3.2.15 Kepler.gl . 38
3.2.16 json-server . 39

3.3 Development Process . 40

4 Design and Implementation of Application 42
4.1 Overview of the Application . 42
4.2 User Management Component . 42

4.2.1 User Listing . 42
4.2.2 User Details Page with Enhanced Location Visualization . . 44
4.2.3 Edit page . 45
4.2.4 Login page . 46
4.2.5 User profile page . 47
4.2.6 Message page of the application 49
4.2.7 Message detail page . 50

4.3 Challenges and Solutions . 51

5 Conclusions and potential future development 52

Bibliography 54

vii

List of Tables

viii

List of Figures

3.1 Major Benefits of React JS [4] . 13
3.2 React Virtual Dom . 14
3.3 JSX role inside React . 15
3.4 Webpack flowchart . 16
3.5 SPA and traditional page lifecycles comparison [8] 16
3.6 How React router works . 18
3.7 The schema of the routing structure [10] 20
3.8 Redux data flow . 22
3.9 How TypeScript works . 27
3.10 Structure of JSON web Token [13] 29
3.11 Cryptography techniques used by JWT[14] 30
3.12 Session Based Authentication Flow [15] 31
3.13 Token Based Authentication Flow [15] 32
3.14 JWT Authentication and Token Lifecycle Management Flow[16] . . 34
3.15 CSRF in Action[18] . 36
3.16 Keycloak integration [19] . 38
3.17 Kepler.gl [20] . 39

4.1 Home page of application . 43
4.2 Manage the bookmark items . 43
4.3 User Detail page of application . 44
4.4 location points in the map . 45
4.5 location points in the map . 45
4.6 Login page of application . 46
4.7 Return url pattern . 47
4.8 Profile page bookmark management 47
4.9 Profile page user logged . 48
4.10 Message list page . 49
4.11 Message detail page . 50
4.12 Display Attachment in message detail page 50

ix

Acronyms

SSO
single sign-on

MFA
multi-factor authentication

RBAC
role-based access controls

ABAC
attribute-based access control

JWT
JSON Web Token

JSX
JavaScript XML

DOM
Document Object Model

HTML
HyperText Markup Language

CSS
Cascading Style Sheets

SPA
single-page application

xi

RSA
Rivest-Shamir-Adleman

JSON
JavaScript Object Notation

HMAC
Hash-Based Message Authentication Code

ECDSA
Elliptic Curve Digital Signature Algorithm

CSRF
Cross-Site Request Forgery

OWASP
Open Web Application Security Project

XSS
Cross-Site Scripting

xii

Chapter 1

Introduction

1.1 Background and Motivation

In the fast-changing landscape of digital technology, web apps have become critical
in a variety of industries, including healthcare, education, finance, and others.
These applications not only improve operational efficiency but also increase user
engagement through dynamic and interactive platforms. However, the complexity
of today’s online applications brings serious challenges, particularly in terms of
security, data management, and user interface responsiveness. The need for resilient,
scalable, and secure applications is greater than ever, particularly in sensitive sectors
such as healthcare, where data integrity and security are important.

This thesis is motivated by the problems and requirements of a caregiving
platform, in which effective data management, security, and user engagement can
have a significant impact on care quality and operational efficiency. Caregivers
and patients rely largely on the platforms’ seamless functionality for scheduling,
communication, and access to critical information. The application mentioned
in this thesis seeks to meet these requirements by integrating sophisticated web
technologies.

The integration of several technologies into a single integrated application shows
a modern approach to addressing the multifaceted issues of web development.
This thesis investigates how these tools can be efficiently used to produce a web
application that is useful, secure, scalable, and maintained. The primary objective
is to improve the user experience and operational efficiency of caregiving platforms,
which will directly contribute to better healthcare outcomes.

1

Introduction

1.2 Problem Statement
In such a dynamically changing environment of web development as it is nowadays,
the ability to be able to create efficient, safe, and user-friendly web applications is
still a very serious challenge. The developers of web applications have to develop
modular, reusable, and interactive components of web interfaces that will respond
to the permanently changing requirements in terms of security, possibilities for the
passage of huge volumes of data, and speed of operation of interfaces.

Secure user authentication and authorization have become one of the indispens-
able features of the modern web application. With increasing concerns over data
privacy and cybersecurity, a stronger authentication system is demanded to let
user data and the integrity of applications be well guarded. However, there are
several such solutions available in the market, but none of them perfectly merge
with the React-based ecosystem to provide flexible and secure identity management.
Particularly, web developers need a solution that:

Provides comprehensive security features, including single sign-on (SSO), multi-
factor authentication (MFA), and role-based access controls (RBAC). Integrates
easily with modern frontend frameworks like React. Is easy to implement, customize,
and manage. In this setting, the thesis will discuss the application development mak-
ing use of Keycloak—an open-source identity and access management system—into
a React application in order to provide secure authentication.

Besides the security concerns, efficient and user-friendly web components are
equally important for the effective user engagement of the web applications and for
the proper management of data. Therefore, the thesis focuses on the introduction
of reusable web components with more details, such as what they are and how to
develop them using React, TypeScript, and Redux.

User Management Features: Listings of users, detailed profiles for each user,
and with the help of a simulated backend using json-server, it allows for editing or
deletion of a user. Bookmark Feature: Allows a user to highlight favorite profiles
and save a list for personal use. Integration with Kepler.gl: Enables advanced
geospatial user data visualization, giving an engaging and informative experience
in mapping. The core problems addressed in this thesis are:

Secure Authentication: How to make the authentication system strong enough
in a web application that user data stays secure with Keycloak while ensuring a
seamless user experience with single sign-on (SSO)? User Management Components:
How can reusable web components be designed that enable effective management
of user data and, at the same time, ensure safe interaction, whether in editing
or deletion? Bookmark Feature: How can this feature be implemented so that
users can add the content they like to their own list of favorites? Geospatial
Visualization: How can Kepler.gl be effectively used with React to visualize user
data on a map? Hence, this thesis is a pragmatic attempt to address these challenges

2

Introduction

by designing and implementing secure, reusable, and efficient web components
within a React ecosystem. In doing so, the study contributes to the broader field of
web development and sets a reference for developers looking to implement similar
functionalities.

1.3 Objectives of the Study
The primary objective of this thesis is to design and implement secure, reusable, and
efficient web components within a React ecosystem, utilizing modern technologies
like TypeScript, Redux, and Keycloak. Specifically, the study aims to address the
following objectives:

1. Implement a Secure Authentication System

• Integrate Keycloak into the web application for robust authentication and
authorization.

• Ensure that the authentication system provides comprehensive security
features such as single sign-on (SSO), multi-factor authentication (MFA),
and role-based access control (RBAC).

• Create reusable authentication components that seamlessly fit into the
React ecosystem.

2. Develop Reusable Web Components for User Management

• Design and implement a user management system that allows for listing,
viewing, editing, and deleting user profiles.

• Simulate a backend using the json-server library to facilitate dynamic
data management during development and testing.

• Ensure that these components are reusable, modular, and maintainable
across different parts of the web application.

3. Integrate Geospatial Visualization with Kepler.gl

• Utilize Kepler.gl to visualize user data on a map, providing an engaging
and informative user experience.

• Ensure smooth integration of Kepler.gl with the React application to
present geographical data dynamically and efficiently.

4. Evaluate the Performance, Security, and Usability of the Imple-
mented Components

3

Introduction

• Conduct severe testing and evaluation to assess the performance and
security of the authentication system.

• Measure the usability and effectiveness of the user management compo-
nents and the bookmark feature.

• Analyze the geospatial visualization’s impact on user engagement and
application performance.

5. Contribute to the Field of Web Development

• Provide practical solutions and best practices for implementing secure
and reusable web components in modern web applications.

• Serve as a reference model for developers and researchers interested in
using React, TypeScript, Redux, and Keycloak.

1.4 Scope and Limitations
The scope of this study encompasses the design and implementation of secure,
reusable, and efficient web components within a React ecosystem. The research
focuses specifically on integrating Keycloak for secure authentication, developing
user management components, creating a bookmark feature, and visualizing data
with Kepler.gl. The following aspects define the boundaries of the study:

1. Scope

• Authentication System: The study covers the integration of Keycloak
for user authentication and authorization, ensuring comprehensive security
features such as single sign-on (SSO), multi-factor authentication (MFA),
and role-based access control (RBAC).

• User Management Components: The thesis includes designing and
implementing web components for user management, including listing,
viewing, editing, and deleting user profiles.

• Geospatial Visualization with Kepler.gl: The integration of Kepler.gl
for visualizing user data on a map, providing an engaging and informative
user experience.

2. Limitations

• Authentication Alternatives: While Keycloak is used for secure au-
thentication, the study does not explore alternative authentication systems
in detail.

4

Introduction

• Backend Simulation: The use of the json-server library provides a
simulated backend for development and testing purposes, which may not
fully represent real-world application backends.

• Scalability Considerations: The implemented web components are
designed to be reusable and efficient, but the study does not deeply explore
scalability challenges in high-traffic production environments.

• User Management Depth: The user management components are
implemented with limited functionalities (e.g., listing, viewing, editing,
and deleting profiles). More advanced features like role-based access
control and batch processing are not included.

• Geospatial Visualization Scope: Kepler.gl is integrated for geospatial
data visualization, but the visualization is limited to mapping user profiles
without deeper geospatial analysis.

1.5 Significance of the Study
The significance of this study lies in its contribution to the field of web development
by demonstrating practical methods for designing and implementing secure, reusable,
and efficient web components using modern technologies like React, TypeScript,
Redux, and Keycloak. The specific contributions of this study are as follows:

1. Secure Authentication System

• The study demonstrates the effective integration of Keycloak for imple-
menting a secure authentication system with comprehensive features such
as single sign-on (SSO), multi-factor authentication (MFA), and role-based
access control (RBAC).

• It provides a reusable set of authentication components that can be
seamlessly integrated into React-based applications.

2. Reusable Web Components

• The study develops a suite of reusable web components for user manage-
ment, including listing, viewing, editing, and deleting user profiles.

• It contributes practical guidelines and best practices for building modular,
maintainable, and scalable web components using React, TypeScript, and
Redux.

3. Geospatial Data Visualization

• The integration of Kepler.gl for geospatial data visualization introduces a
novel approach to mapping user data in web applications.

5

Introduction

• The study demonstrates how Kepler.gl can be used to enrich user interfaces
with interactive and informative data visualizations.

4. Evaluation of Performance, Security, and Usability

• The rigorous testing and evaluation conducted in this study provide
valuable insights into the performance, security, and usability of modern
web components.

• The findings offer practical benchmarks and recommendations for devel-
opers building similar systems.

5. Reference Model for Developers and Researchers

• The study serves as a reference model for developers and researchers
interested in implementing secure and reusable web components using
React, TypeScript, and Redux.

• It contributes to the body of knowledge in web development by providing
practical solutions and best practices for modern web applications.

1.6 Thesis Structure
This thesis is organized into the following chapters:

1. Introduction This chapter provides background information on web compo-
nent design and implementation, the motivation for the study, the problem
statement, objectives, scope, limitations, significance, and the structure of the
thesis.

2. Literature Review This chapter reviews relevant literature on web technolo-
gies, web components, and related works. It discusses the evolution of web
development, the role of React, TypeScript, Redux, and the importance of
authentication systems like Keycloak in modern web applications.

3. Methodology This chapter presents the research design and methodology. It
details the tools and technologies used, including React, TypeScript, Redux,
Keycloak, json-server, and Kepler.gl, and explains the development process
and testing methods.

4. Design and Implementation of Web Components This chapter describes
the architecture, design, and implementation of the web components. It
focuses on the secure authentication system with Keycloak, user management
components, the bookmark feature, and geospatial visualization with Kepler.gl.

6

Introduction

5. Conclusion and Future Work This chapter summarizes the key findings
and contributions of the thesis, acknowledges the limitations of the study, and
provides recommendations and suggestions for future research.

7

Chapter 2

Literature Review

2.1 Evolution of Web Technologies
The evolution of web technologies over the past few decades has transformed
the landscape of software development. From static HTML pages to dynamic,
data-driven applications, the journey has been marked by several key milestones:

• Early Web (1990s): The early web consisted of static HTML pages with
minimal interactivity. Technologies like CGI and server-side scripting languages
(Perl, PHP) enabled basic form processing.

• Dynamic Web (2000s): The rise of JavaScript, AJAX, and server-side
frameworks (ASP.NET, JSP) brought about dynamic, interactive web appli-
cations.

• Web 2.0 (the Late 2000s): Web 2.0 emphasized user-generated content,
social networking, and cloud computing. AJAX and RESTful services became
standard.

• Modern Web (2010s): The adoption of HTML5, CSS3, and JavaScript
frameworks like AngularJS, React, and Vue.js revolutionized front-end devel-
opment.

• Current Trends (2020s): The current era is characterized by Progressive
Web Apps (PWAs), serverless architectures, microservices, and advanced state
management solutions like Redux.

2.2 Web Components: An Overview
Web components are reusable, encapsulated blocks of code that are used to build
web applications. They consist of several key technologies:

8

Literature Review

• Custom Elements: Defines new HTML elements using the HTMLElement
API.

• Shadow DOM: Provides encapsulation for styles and markup, preventing
style leakage.

• HTML Templates: Allows for defining reusable HTML structures that can
be cloned and inserted into the DOM.

• ES Modules: Enables modular and reusable JavaScript code.

These technologies provide the foundation for building modular, maintainable,
and reusable web components. Frameworks like React, Angular, and Vue.js build
upon these concepts to offer high-level abstractions and enhanced development
capabilities.

2.3 React in Modern Web Development
React, developed by Facebook in 2013, is a JavaScript library for building user
interfaces. Key features of React include:

• Component-Based Architecture: Promotes the use of reusable and com-
posable components.

• Virtual DOM: Optimizes rendering by maintaining a lightweight representa-
tion of the actual DOM.

• One-Way Data Binding: Simplifies data flow and state management.

• JSX: A syntax extension that enables writing HTML-like code directly within
JavaScript.

React has become one of the most popular frontend libraries due to its flexibility,
performance, and extensive ecosystem. It is widely used for building dynamic
single-page applications (SPAs) and user interfaces.

2.4 The Role of TypeScript and Redux
2.4.1 TypeScript
TypeScript, developed by Microsoft, is a superset of JavaScript that adds static
typing and other features:

• Static Typing: Detects type errors at compile-time, reducing runtime bugs.

9

Literature Review

• Interfaces and Generics: Provides better code organization and reusability.

• Enhanced Tooling: Improves IDE features such as autocompletion, refac-
toring, and error checking.

Integrating TypeScript with React helps in building more maintainable and robust
applications.

2.4.2 Redux
Redux is a predictable state container for JavaScript applications. It follows the
Flux architecture pattern and provides:

• Single Source of Truth: The entire application state is stored in a single
object.

• State Immutability: State is never mutated directly but replaced with a
new object.

• Predictable State Management: Changes are made via pure functions
called reducers.

• Middleware Support: Enables handling asynchronous actions and side
effects.

Redux, when combined with React, provides a powerful mechanism for managing
application state consistently and predictably.

2.5 Authentication in Web Applications
Authentication is crucial in modern web applications to ensure secure access to
data and functionality. Key considerations include:

• Authentication Mechanisms:

– Session-Based Authentication: Server stores session data; cookies
identify clients.

– Token-Based Authentication: ?? (JSON Web Tokens) are used for
stateless authentication.

– OAuth 2.0: Open standard for access delegation.

• Authorization: Role-based access control (RBAC) and attribute-based access
control (ABAC) define user permissions.

10

Literature Review

• Identity Management Systems: Systems like Keycloak provide com-
prehensive identity and access management, including single sign-on (SSO),
multi-factor authentication (MFA), and social login.

The integration of secure authentication systems like Keycloak into web applications
is crucial for protecting user data and ensuring compliance with security standards.

11

Chapter 3

Methodology

3.1 Research Design
The methodology of this thesis is rooted in a practical, experimental approach
to software development, focusing on the iterative design and implementation
of web components within a controlled setting. This approach allows for the
systematic investigation of how different technologies and designs affect the usability,
functionality, and performance of web applications.

3.2 Frontend development
The term frontend describes the area of a software program that interacts directly
with users, or the user-facing side. It includes the interface, organization, and
features that users interact with.

Frontend development involves using various programming languages and tech-
nologies to create the visual and interactive elements of a software application.

As a result, the frontend development takes into account a number of factors,
including the creation of the user interface, server connectivity, internal state and
cache management, and client-side business logic.

The following technologies are frequently used in frontend development: HTML
(HyperText Markup Language): This is the common markup language used to
design web page structure. Cascading Style Sheets, or CSS, are used to style how
web pages look. JavaScript: A computer language that allows for dynamic content
updates, form validation, and animations on websites.

The React framework was utilized in the frontend development for this project,
which was entirely web-based.

Website development relied on the construction of HTML code, one or more
CSS style sheets, one or more Javascript scripts, often put straight into HTML to

12

Methodology

add dynamism to the page, and other components before the emergence of libraries
and frameworks like React, Vue.js, and Angular [1].

These days, nearly all web apps are built using Javascript frameworks, which
provide a full development environment and effectively and automatically integrate
the layout declaration, the business logic, and the design.

3.2.1 Selection of Tools and Technologies
A critical aspect of this research was selecting appropriate tools and technologies
that provide robust support for modern web development practices. The choices
were made based on the popularity, community support, documentation quality,
and suitability for enterprise-level applications [2].

3.2.2 React
For this project, the React library was chosen for front-end development.

Facebook launched the open-source React project, which has received a lot of
support from the front-end developer community. Unlike other competitors, React
is just a library and just intended for use in the creation of user interfaces, and not
a framework [3].

To be sincere, several technologies have become vital in recent years due to their
excellent effectiveness in setting standards for the creation and implementation of
React applications.

Figure 3.1: Major Benefits of React JS [4]

Among these tools, Redux stands out as the primary state management tool,
and Webpack is notable for efficiently bundling static resources into two or three
files, which will be further discussed later.

13

Methodology

React adopts a component-based approach where each component, a fundamental
unit of the user interface, integrates its visual elements, business logic, and internal
state.

These components take in parameters, known as props, and output user interface
elements. User interface declarations are made directly in JavaScript, specifically
using JSX, which will be examined in greater detail subsequently. This approach
eliminates the need for developers to write HTML or manually manage the DOM.
Instead, they utilize “virtual” React components that exist in memory within
the “virtual DOM,” allowing React to manage DOM updates autonomously and
efficiently, typically triggered by changes in the component’s state [5].

Figure 3.2: React Virtual Dom

3.2.3 JSX
JSX, or JavaScript XML, is a syntax extension for JavaScript used predominantly
in React to describe the appearance of the user interface. It allows developers
to write HTML-like code alongside JavaScript in the same file, blending the
presentation logic directly with JavaScript functions. This syntax, which resembles
HTML, makes it intuitive for those familiar with HTML to adopt and use in React
applications [6].

14

Methodology

Figure 3.3: JSX role inside React

3.2.4 Webpack
Modern online development relies heavily on Webpack, a powerful and adaptable
module bundler for JavaScript applications, particularly in frameworks such as
React.

Webpack takes modules with dependencies and generates static assets represent-
ing those modules. It starts from one or more entry points and then transforms
and bundles the required modules and assets into fewer, usually only one or two,
files. This process is customizable with the help of loaders and plugins:

• Loaders in Webpack transform the files into modules as they are added to your
application’s dependency graph. They can convert SASS to CSS, TypeScript
to JavaScript, and include Babel transpilation to convert ES6 code down to
ES5 for broader browser compatibility.

• Plugins are the backbone of Webpack’s functionality, offering a rich feature
set that is used to perform a wider range of tasks like bundle optimization,
asset management, and environment variable injection. [7]

Webpack’s Role in a React Application

In the React application, Webpack is primarily used for bundling and serving assets
efficiently.

15

Methodology

Figure 3.4: Webpack flowchart

Single Page Applications:

One of Webpack’s key contributions to React development is its ability to bundle
complex multi-file applications into a single-page application (SPA). This bundling
not only simplifies deployment but also improves performance by reducing the
number of server requests during navigation.

Figure 3.5: SPA and traditional page lifecycles comparison [8]

Optimization:

Webpack optimizes the loading of your application by reducing the size of your
JavaScript bundle. It does this through techniques like code splitting, tree shaking

16

Methodology

(removing unused code), and minifying code. This results in faster load times
and a better user experience. React code is often written using JSX and modern
JavaScript (ES6+), which aren’t supported in all browsers. Webpack uses Babel
(through loaders) to transpile JSX into JavaScript that browsers can understand
and ES6+ into ES5.

Development Efficiency:

Webpack enhances developer productivity by providing features like hot module
replacement (HMR). HMR updates the application on the fly without needing a
full reload when code changes, which is particularly useful in React development
as it preserves the state of the application.

Asset Management:

Besides JavaScript, React applications often involve other assets such as images,
fonts, and CSS. Webpack can manage all these assets, allowing them to be bundled
as part of the dependency graph of the application. It can also inline images as data
URLs, dynamically load images as needed, and bundle CSS either in JavaScript or
into separate CSS files.

Customization:

Webpack’s extensive configuration options allow React developers to tailor the build
process to their specific needs, optimizing performance, and enhancing functionality.

To put it simply, Webpack is essential to current React programming. It
simplifies multi-page architectures into single-page apps while also optimizing load
times and consolidating resources. In intricate web applications, this feature greatly
improves resource management and user experience.

3.2.5 Entry Point of the Application: App.js
The React project is defined as a SPA. SPA stands for Single Page Application.
Actually, the server returns an index.html file to the base path "/" that contains
the whole program.

While some static resources are included in the index.html page, the logic and
CSS style are loaded dynamically from the bundle files. There are scenes and
components within the project.

Repetitively, a scene includes other scenes or parts. A scene is an element used
just once inside the application that is typically related to the global state, whereas
a component is a reusable user interface element that is typically not tied to the

17

Methodology

global state of the application. The app.js file serves as the application’s entry
point and is used to initialize the router and instantiate the state manager redux.

3.2.6 React Router
Routing in single-page applications (SPAs) is crucial for managing navigation and
rendering components without full page reloads. React Router v6, the latest itera-
tion of the popular library, is specifically tailored for React applications, providing
dynamic routing capabilities that are both powerful and easy to manage. This
section discusses the adoption of React Router v6 in the application, highlighting
its necessity and the enhancements it offers over previous versions.

React Router v6 was chosen for its significant improvements in performance,
flexibility, and developer experience. It introduces several new features and opti-
mizations that streamline routing in React applications:

Figure 3.6: How React router works

Simplified Configuration:

Simplified Configuration: React Router v6 simplifies route configuration, making it
more intuitive and declarative. Routes are now naturally nested, matching the UI
structure, which aligns closely with React’s component-based architecture.

Built-in Lazy Loading:

The library supports React’s native lazy loading mechanism, allowing developers
to split their application code into chunks that are only loaded when needed. This

18

Methodology

reduces the initial load time, enhancing the performance and user experience.

Hooks API:

React Router v6 expands its hooks API, offering more granular hooks like useNavi-
gate, useParams, and useLocation. These hooks provide a more React-centric way
of building navigation and interaction, adhering to the modern React programming
style which favors hooks over higher-order components and render props.

Automatic Route Ranking:

The library automatically ranks routes to decide which route is the best match
based on specificity. This means less manual error handling and override setup for
developers, streamlining route management.

Enhanced Code Simplicity and Performance:

With smaller bundle sizes and a more efficient approach to routing, React Router
v6 not only speeds up application performance but also simplifies the codebase,
making it easier to maintain and scale.

Security is a critical aspect of any modern application, particularly when it comes
to managing access to certain routes or sections that contain sensitive information
or functionalities. These sections are often referred to as “private routes”[9] and
are designed to be accessible only to authenticated and authorized users. The
importance of securing these routes cannot be overstated, as they often handle
personal data or critical business functions that, if compromised, could lead to
significant privacy breaches or operational disruptions.

In a well-secured application, any attempt by an unauthorized user to access a
private route should lead to immediate redirection to a login page. This safeguard
is essential for enforcing access controls and maintaining the integrity and confi-
dentiality of the application’s sensitive areas. Implementing such redirection not
only blocks unauthorized access but also cues the user to authenticate, potentially
streamlining the user experience by guiding them towards obtaining the appropriate
access permissions.

This redirection mechanism is crucial not just for security purposes but also for
user guidance. It prevents exposure of sensitive interfaces and data to unauthorized
users and helps legitimate users access their desired resources by prompting them
to log in. Proper implementation of such security measures requires a robust
authentication system and carefully designed logic to handle route protection,
ensuring that all private routes are shielded from unauthorized access effectively.

19

Methodology

Figure 3.7: The schema of the routing structure [10]

3.2.7 Material UI
Material-UI was selected as the foundational library for the graphical components of
this project due to its comprehensive incorporation of best practices in performance
and user experience, which align closely with the principles of Google’s Material
Design guidelines.

Opting for Material-UI allows for the utilization of pre-designed, high-quality
components rather than building from scratch with basic HTML elements. This
choice is particularly advantageous for projects where graphic customization is
not the primary focus. By leveraging the extensive work done by a community of
skilled frontend developers, the project benefits from years of expertise and ongoing
improvements without the overhead of initial development.

Material-UI offers a wide range of components, from simple utilities like the
Paper, which acts as a basic container, to more complex elements like Chips, used
for listing tags or attributes and customizable with options for editing or removal.
It also includes Tab bars, which facilitate navigation across different views within

20

Methodology

the same interface, and Buttons that can function both as clickable buttons or
links.

A key feature of Material-UI is the Typography component, which organizes
text elements from headers (h1, h2, h3, etc.) to captions and body text, ensuring
text across the application maintains consistent styling and readability.

From a user experience perspective, many of these components include default
animations for actions such as clicks or focus, enhancing user interaction with
tactile feedback. Graphically, Material-UI supports a powerful theming system,
allowing developers to define high-level variables like primary and secondary colors.
Components within the application then automatically adjust their styles to match
these theme settings.

Customization extends through the use of component properties (props). For
instance, assigning the ‘primary’ color prop to a button applies the theme’s primary
color, and similarly, animations and other interactive elements adapt to align with
the defined theme settings.

The creation of a custom theme object, rather than using the default provided
by Material-UI, was a deliberate choice to align the application’s visual elements
with a specific design intent. The primary and secondary colors were chosen using
coolors.co, a tool that generates color palettes optimized for user interface and
experience.

Material-UI’s theme object offers extensive control over the appearance and sizing
of components, from interactive elements to textual presentations. Additionally,
the palette type property within each theme specifies whether to adopt a light
or dark mode, influencing the library to set appropriate contrast text colors that
ensure legibility against varying background conditions.

the adoption of Material-UI not only streamlines development with its rich
set of ready-to-use components but also ensures that the application maintains a
high standard of design consistency and user accessibility. This integration reflects
a strategic choice to harness proven technologies that enhance the application’s
functionality and aesthetic appeal while supporting efficient development practices.

3.2.8 Redux - the state manager
Redux is a model and library for using "actions" or events to manage and update
the state of an application. With rules ensuring that the state can only be modified
in a manner that is predictable, it provides a single repository for state that must
be used throughout the entire program.

Redux facilitates the management of "global" state, or state required by various
components of your application.

It is simpler for you to understand when, where, why, and how your application’s
state is being modified, as well as how your application logic will respond when those

21

Methodology

changes take place, thanks to Redux’s patterns and tools. Redux lets you write
predictable and testable code so you can be more confident that your application
will function as intended. Redux is a useful tool for managing shared states, but it
has drawbacks like every other technology. Both the concepts to understand and
the code to write are increasing. It also requires you to abide by certain limitations
and adds some indirection to your code. There is a trade-off between productivity
over the long run and short term.

Figure 3.8: Redux data flow

Redux works best when You have a lot of application states that are required

22

Methodology

throughout the app. Over time, the app state is updated often. It could have
complicated logic to update that state. The application may have a huge or
medium-sized codebase with numerous developers working on it [11].

3.2.9 React-redux
React-Redux provides the critical linkage between the Redux state management
library and React components. At the heart of this integration is the React Context
API, which React-Redux utilizes to enable publish/subscribe interactions between
the Redux store and React components. This setup allows for efficient data flow
and state management across the application.

The Provider component, a fundamental part of React-Redux, acts as a wrapper
at the root of your application. It accepts the Redux store as a prop, which is
created using Redux’s createStore function. The primary role of the Provider is to
place the Redux store into the React Context, making it accessible to any nested
components that might need to subscribe to the store updates.

1 import { Provider } from ’ react −redux ’ ;
2 import { c r e a t e S t o r e } from ’ redux ’ ;
3 import rootReducer from ’ . / reducers ’ ;
4 import App from ’ . /App ’ ;
5

6 const s t o r e = c r e a t e S t o r e (rootReducer) ;
7

8 const RootComponent = () => (
9 <Provider s t o r e={s t o r e}>

10 <App />
11 </Provider>
12) ;

3.2.10 Redux Toolkit
Redux Toolkit (RTK) represents the official, opinionated, batteries-included toolset
for efficient Redux development. It is designed to simplify the process of setting
up and working with Redux in a React application. RTK addresses common
issues such as verbosity, complexity, and maintainability of Redux with a more
straightforward and powerful approach to state management.

Redux Toolkit simplifies Redux application development and encourages best
practices. It reduces boilerplate code significantly, which not only makes the code
more manageable but also helps prevent common mistakes.

RTK includes performance optimizations out of the box. It uses Immer internally
to handle immutable state updates more efficiently, which helps avoid common

23

Methodology

bugs associated with mutating state directly.
With utilities like configureStore, createSlice, and createAsyncThunk, Redux

Toolkit provides more straightforward APIs that consolidate various setup steps
into single, coherent operations. This makes the setup and operation of the Redux
store easier and more intuitive.

This utility simplifies the store setup process with sensible defaults. It automat-
ically sets up the store with recommended middleware for a better development
experience, such as Redux Thunk for asynchronous actions and Redux DevTools
integration.

A function that accepts an initial state, an object of reducer functions, and a
“slice name”, and automatically generates action creators and action types that
correspond to the reducers and state. This reduces the redundancy of declaring
action types and action creators separately.

1 import { c r e a t e S l i c e } from ’ @reduxjs / t o o l k i t ’ ;
2

3 const t o d o S l i c e = c r e a t e S l i c e ({
4 name : ’ todos ’ ,
5 i n i t i a l S t a t e : [] ,
6 r educe r s : {
7 addTodo : (s ta te , a c t i on) => {
8 s t a t e . push ({ id : a c t i on . payload . id , t ex t : a c t i on . payload . text ,

completed : f a l s e }) ;
9 } ,

10 toggleTodo : (s ta te , a c t i on) => {
11 const todo = s t a t e . f i n d (todo => todo . id === act i on . payload) ;
12 i f (todo) {
13 todo . completed = ! todo . completed ;
14 }
15 }
16 }
17 }) ;
18

19 export const { addTodo , toggleTodo } = t o d o S l i c e . a c t i o n s ;
20 export d e f a u l t t o d o S l i c e . reducer ;

3.2.11 RTK Query: Data Fetching and Caching

RTK Query, a powerful data fetching and caching tool included in Redux Toolkit,
abstracts the handling of data fetching, caching, synchronization, and error handling,
providing a seamless integration for server-state management in React applications.

24

Methodology

Some features of RTK Query:

Auto-generated Hooks:

RTK Query generates custom React hooks for each endpoint query or mutation,
simplifying the integration with the UI.

aching and Invalidation:

It automatically provides caching logic, which minimizes the number of requests
needed. It also supports tag-based invalidation to refresh data as required.

Polling and Prefetching:

Supports features like automatic polling and prefetching, making it easier to keep
the application data up-to-date without manual intervention.

1 import { createApi , fetchBaseQuery } from ’ @reduxjs / t o o l k i t / query /
react ’ ;

2

3 const api = createApi ({
4 reducerPath : ’ api ’ ,
5 baseQuery : fetchBaseQuery ({ baseUrl : ’/ api ’ }) ,
6 endpoints : (b u i l d e r) => ({
7 getTodos : b u i l d e r . query ({
8 query : () => ’ todos ’ ,
9 providesTags : [’ Todo ’] ,

10 }) ,
11 addTodo : b u i l d e r . mutation ({
12 query : (todo) => ({
13 u r l : ’ todos ’ ,
14 method : ’POST’ ,
15 body : todo ,
16 }) ,
17 i nva l i da t e sTag s : [’ Todo ’] ,
18 }) ,
19 }) ,
20 }) ;
21

22 export const { useGetTodosQuery , useAddTodoMutation } = api ;

Redux Toolkit and RTK Query significantly enhance the development experience
and capabilities within React applications. By reducing boilerplate, streamlining
state management practices, and offering powerful data fetching capabilities, these
tools allow developers to focus more on building features and less on configuring
and maintaining state management and network logic. They represent essential

25

Methodology

advancements in the modern React development ecosystem, promoting efficiency,
maintainability, and scalability.

3.2.12 TypeScript
TypeScript has become increasingly popular in the development of modern web
applications, especially in complex projects where scalability, maintainability, and
developer productivity are key. TypeScript is a free and open-source high-level
programming language developed by Microsoft that adds static typing with optional
type annotations to JavaScript. By integrating TypeScript with React, developers
can significantly enhance code quality and readability, while also leveraging Type-
Script’s powerful type-checking capabilities to catch errors at compile time rather
than at runtime.

TypeScript introduces static typing to JavaScript, allowing developers to specify
types for variables, function parameters, and returned values. This type enforcement
helps prevent many common bugs that can occur in dynamically typed languages
like JavaScript, particularly those related to unexpected data types.

TypeScript provides better tooling at development time with features like
autocompletion, type inference, and more descriptive error messages. This leads to
more efficient coding and debugging processes.

For large-scale projects, TypeScript’s modular architecture and type system make
the codebase easier to manage and scale. Developers can more easily understand
and work with the code, reducing the risk of introducing bugs when making changes
or adding new features.

26

Methodology

Figure 3.9: How TypeScript works

3.2.13 What is JWT Token
JWT or JSON Web Tokens are encrypted tokens that can be used to securely
transmit information between client and server as a JSON object. This is the
backbone of token-based authentication and is developed to transfer data securely
and prevent any data theft or badgering. JWT is segregated into three distinct
parts, with each separated from one other via a full stop. These three parts of the
JWT are called as Header, Payload, and Signature [12].

Header

The header is the initial segment of a JSON Web Token (JWT). It primarily
specifies the cryptographic algorithms used to secure the token. Typically, the
header includes two essential pieces of information: the type of token, which is
JWT, and the algorithm used for signing, such as HMAC SHA256 or RSA. This
information is crucial as it dictates how the JWT should be verified and handled
by the server. The header is JSON formatted and then encoded using Base64URL
to ensure safe transmission over network protocols. An example of a header using
the HS256 algorithm is:

27

Methodology

1 {
2 " a l g " : " HS256 " ,
3 " typ " : "JWT"
4 }

This JSON structure is Base64URL encoded, forming the first part of the JWT,
and outlines the security process to be employed in verifying the token.

Payload

The payload of a JWT contains the actual data meant to be conveyed, which
typically includes user-specific details and additional metadata necessary for the
application’s functionality. Common fields in the payload might include the user
ID, email address, issuer’s name, and the token’s issuance time. This part of the
JWT is also JSON formatted and then encoded using Base64URL, ensuring the
data remains intact and tamper-proof during transmission. An example of a typical
JWT payload might look like this:

1 {
2 " id " : " 1 " ,
3 " emai l " : " xyz@abc . com " ,
4 " i s s u e r " : " company name " ,
5 " i a t " : 2321442213
6 }

It’s important to note that sensitive information should not be stored in the payload
unless it is encrypted, as Base64URL is an encoding technique, not an encryption
method, and can be easily decoded.

Signature

The signature is the final component of a JWT, vital for ensuring the token’s
integrity and authenticity. It is generated by concatenating the encoded header,
the encoded payload, and a secret or private key using the algorithm specified in
the header. The signature serves to verify that the JWT has not been altered after
it was issued and, in scenarios involving a private/public key pair, to authenticate
the identity of the token’s sender. The process to create the signature using the
HMAC SHA256 algorithm can be illustrated as follows:

1 HMACSHA256(
2 base64UrlEncode (header) + " . " +
3 base64UrlEncode (payload) ,

28

Methodology

4 s e c r e t
5)

Figure 3.10: Structure of JSON web Token [13]

This cryptographic process ensures that any alterations made to the header or
payload after the token’s generation will invalidate the signature, thereby alerting
the receiving party to potential tampering.

JSON Web Tokens (JWTs) are structured in a compact format, comprising
three distinct parts—header, payload, and signature—that together facilitate secure
means of transmitting data and assertions between parties. Each segment of the
JWT serves a specific purpose, from declaring the type and method of security
used, to carrying user or system-specific information, and finally ensuring the
integrity and authenticity of the token through its signature. Proper understanding
and implementation of JWTs are critical in securing modern web applications,
maintaining trust, and ensuring that communications between client and server
remain secure and reliable.

Cryptography techniques used by JWT

JSON Web Tokens (JWTs) are not encrypted in their entirety but are instead
encoded using the Base64 format. This encoding serves to compact the data into a
URL-safe string, which simplifies the transmission of JWTs across different systems.
It’s important to note that Base64 encoding is not a security measure—it merely
ensures that the token’s structure remains intact during transport.

The contents within a JWT, including its header, payload, and signature, are
thus easily readable by anyone who intercepts or is given the token. However, despite
this transparency, the integrity and authenticity of the JWT remain protected.

29

Methodology

Alterations to the token can only be validated through a cryptographic key known
only to the issuer and, in some cases, the recipient. This key can be a shared secret
using HMAC algorithms or a public/private key pair using RSA or ECDSA for
added security.

The main purpose of JWT encoding is to efficiently handle user-specific infor-
mation that the application frequently accesses, such as user permissions or session
identifiers. However, to prevent unauthorized access to the sensitive data encoded
within the JWT, additional precautions are necessary. While encoding simplifies
data handling, it does not secure it against unauthorized viewing.

Regarding encryption, the signature part of the JWT, which is crucial for verify-
ing the token’s integrity, can be generated using various cryptographic algorithms.
For instance, a commonly used RSA algorithm encrypts data with a public key,
ensuring that only the holder of the corresponding private key can decrypt and
thus verify the contents. This asymmetric encryption method is particularly useful
in scenarios where enhanced security measures are required.

JWT algorithms offer great flexibility, allowing for the use of different hashing
techniques. For example, a JWT might employ the HS256 algorithm, which utilizes
HMAC to hash both the header and payload. The signature is then generated by
hashing these two hashed parts together, potentially using a different algorithm, to
further secure the token against tampering. This dual-layer hashing mechanism
ensures the persistence of token contents and protects them from unauthorized
modifications.

Figure 3.11: Cryptography techniques used by JWT[14]

30

Methodology

Session Based Authentication

In session-based authentication, when a user logs in, the server initiates a session
and generates a session ID, which is subsequently stored as a cookie in the user’s
browser. As long as the user remains logged in, this cookie is automatically included
with each subsequent request made to the server. The server uses this session ID
to retrieve the session data from its memory or a session store, thereby confirming
the user’s identity. It then processes the request and delivers a response that is
consistent with the user’s state and permissions. This mechanism ensures that the
user’s state is preserved across multiple interactions with the application during
the session, providing a seamless and secure user experience.

Figure 3.12: Session Based Authentication Flow [15]

Token Based Authentication

Many web applications have adopted JSON Web Tokens (JWT) as an alternative
to traditional session-based authentication. In a token-based architecture, the
server generates a JWT using a cryptographic secret and transmits it to the
client. Typically, the client stores this JWT in local storage and includes it in the
Authorization header of every subsequent request. Upon receiving a request, the
server validates the JWT to ensure its integrity and authenticity before processing
the request. If the token is valid, the server proceeds to fulfill the request and
respond accordingly. This method not only streamlines the authentication process

31

Methodology

but also enhances the application’s security by leveraging the self-contained nature
of JWTs, which encapsulate the user’s identity and claims.

Figure 3.13: Token Based Authentication Flow [15]

Invalidating issued JSON Web Tokens (JWTs) upon logout presents a significant
challenge, as JWTs are inherently designed to be stateless, meaning their validity
isn’t directly managed by the server. Stored either on the client-side or within
cookies, JWTs cannot be easily revoked at the administrator’s discretion since
their validity isn’t tracked server-side. This constraint complicates the process of
securely managing session termination and can potentially create security risks. To
address this issue, the following techniques are commonly employed:

Short-lived Tokens: One effective strategy is to issue short-lived tokens, which
have a brief expiration time. This approach limits the duration for which a token is
valid, thereby reducing the window of opportunity for unauthorized use should the
token be compromised. After expiration, the user is required to re-authenticate,
obtaining a new token to continue their session. This method enhances security
but can detract from user experience by requiring frequent logins. Additionally,
it poses a risk that a user’s session might expire in the midst of critical activities,
such as financial transactions, potentially disrupting their completion.

Blacklisting: Another method involves blacklisting or maintaining a list of
invalidated tokens. When a token is no longer valid—due to logout or other

32

Methodology

reasons—it is added to a blacklist. This list is stored server-side, often within a
database, and is consulted with each transaction to ensure no blacklisted token
is accepted. While this approach effectively allows for the invalidation of specific
tokens.

Use of short lived token

Short-lived tokens, despite presenting challenges due to their frequent expiration
and subsequent user re-authentication requirements, are utilized for their enhanced
security benefits. To mitigate the inconvenience of frequent logins, these tokens
are often paired with a longer-term credential known as a refresh token. When a
short-lived token expires, the validity of the long-lived refresh token is verified, and
if valid, a new short-lived token is issued and securely attached to the cookies. This
process eliminates the need for users to manually re-login each time their access
token expires. The primary rationale behind this strategy is to enhance security; if
a token were to be compromised, the limited validity period of short-lived tokens
restricts the time frame in which an attacker could exploit it, thus significantly
reducing potential damage and enhancing the overall security posture against
attacks like Cross-Site Request Forgery (CSRF) or other types of unauthorized
access attempts.

Refresh Token

If somehow the JWT token lands in the wrong hands it would result in an identity
problem as the attacker would be able to access any private data of the original
user. To curb this issue JWT tokens are generated with short expiry. This short
expiration time ensures that even if the token lands in the wrong hands, then
the attacker only has a small amount of time to use that token which might not
be too much to fetch any useful data from the server. But on the contrary, this
would result in a tedious and cumbersome process for the original user to login in
again and again on the server and generate a fresh token. This problem is then
solved using a pair of JWT tokens one of which is short-lived while the other is
a long-lived token. Whenever the short-lived token expires this long-lived token
also known as the refresh token is verified and a new JWT token is generated post
successful verification. The process of creation of this refresh token is similar to
that of the original token with the prime difference that it has a longer expiration
time. This token must be stored in HTTP only cookies as it needs more security
as a person possessing this token can generate an endless amount of JWT tokens
throughout the lifetime of this token. This token should only regenerate a new
JWT token if the request possesses an expired JWT token. If no JWT token is
provided in the request then this throughout the lifetime of this token. This token
should only regenerate a new JWT token if the request possesses an expired JWT

33

Methodology

token.If no JWT token is provided in the request then this part is skipped and an
unauthenticated response is returned back to the user.

Figure 3.14: JWT Authentication and Token Lifecycle Management Flow[16]

34

Methodology

CSRF Token

Cross-Site Request Forgery (CSRF), also known as a one-click attack or session
riding, is a web security vulnerability that allows an attacker to induce users to
perform actions that they do not intend to perform. It exploits the trust that a
site has in a user’s browser, causing the user’s browser to perform an unwanted
action on a trusted site when the user is authenticated.

CSRF attacks can have varying impacts, depending on the specific vulnerabilities
exploited and the level of access of the victim. The Open Web Application Security
Project (OWASP) has introduced CSRF Guard as a countermeasure to protect
against these attacks. Developed under the leadership of Eric Sheridan, CSRF
Guard is a server-side tool that implements a version of the synchronizer token
pattern, which helps mitigate the risk associated with CSRF by associating a secret,
unpredictable token with each user session.

CSRF Guard has gained recognition as a robust defense mechanism against CSRF
attacks. Studies and experiences reported by various researchers confirm its efficacy
in securing web applications from such threats. However, it is crucial for developers
to implement CSRF Guard without compromising the overall information security
objectives of the application.

1. CSRF Guard Mechanism: CSRF Guard uses a synchronizer token pattern to
validate user requests and protect against CSRF attacks. This mechanism
involves injecting a unique security token into each session and verifying it
with each request, aiming to ensure that requests are legitimate and originate
from the authenticated user.

2. Vulnerabilities and Limitations: CSRF Guard primarily defends against CSRF
attacks but can be bypassed through other vulnerabilities such as cross-
site scripting (XSS) and session hijacking. The protection CSRF Guard
offers is limited to environments where session identifiers are secure and not
compromised. The tool is most effective on specific server environments (like
Tomcat) and might not provide adequate security on others (e.g., IIS).

3. Security Scenarios: Various web application types, from content management
systems to web servers like Apache, have different levels of susceptibility to
CSRF attacks. The paper discusses several scenarios where CSRF Guard
is beneficial, as well as somewhere its use might be inadequate or overkill,
depending on the application’s architecture and security requirements.

4. Recommendations: Web developers should carefully select which parts of their
applications require CSRF protection based on sensitivity and functionality.
Developers should ensure that CSRF Guard configurations do not compromise
application usability or navigation[17].

35

Methodology

Figure 3.15: CSRF in Action[18]

3.2.14 Keycloak

Keycloak is an open-source identity and access management tool with a focus on
modern applications such as single-page applications, mobile applications, and
REST APIs.

In 2014, the project got underway. Since then, it has developed into an excellent
open-source project with a strong community. It is employed by both small and
large businesses.

In addition to many other features, Keycloak offers fully configurable login
screens, password recovery, and acceptance of terms. Without any coding knowledge
at all, you can effortlessly incorporate all of Keycloak’s functionality into your
application. By giving Keycloak control over user authentication, you can stop
worrying about password storage security and other related issues. Without altering
the program, you can enable two-factor authentication. Because your application
can only know the tokens that Keycloak has provided and cannot access user
credentials in this scenario, it also improves the security of your application.

Keycloak offers robust session management features together with single sign-
on. It involves allowing consumers to access several apps with just a single
authentication.

36

Methodology

Refresh Tokens

Keycloak implements the OAuth 2.0 specification, which includes the use of refresh
tokens to maintain user sessions without requiring the user to repeatedly enter
their credentials.

1. Token Granting: When a user successfully authenticates, Keycloak issues
an access token and a refresh token. The access token is short-lived and used to
access the protected resources. The refresh token lasts longer and is used to obtain
new access tokens when the original expires. 2. Using Refresh Tokens: When the
access token expires, the application can request a new access token by submitting
the refresh token to Keycloak’s token endpoint. If the refresh token is valid and
has not been revoked, Keycloak issues a new access token (and possibly a new
refresh token). 3. Security Considerations: Refresh tokens are particularly sensitive
because they can remain valid for a long period. Keycloak provides mechanisms to
revoke refresh tokens when they are suspected of being compromised. Moreover,
applications should use secure transport (HTTPS) to prevent token interception,
and tokens should be stored securely to prevent unauthorized access.

Handling CSRF Attacks

Keycloak mitigates CSRF attacks primarily through the use of anti-CSRF tokens,
also known as state tokens or one-time use tokens. Here’s how it generally works:

1. State Tokens: When a client (such as a web application) makes an authenti-
cation request to Keycloak, Keycloak can include a state parameter in the request.
This state is a random token that the client must store and send back with the
authentication response. 2. Validation: When the user is redirected back to the
application after authenticating with Keycloak, the application sends the state
token back to Keycloak. Keycloak then verifies that this token matches the one it
originally issued. If they match, the response is considered valid; if not, it’s possible
that the request may be part of a CSRF attack, and the request is rejected.

This CSRF token mechanism is essential for OAuth 2.0 and OpenID Connect
flows, particularly in scenarios where the redirection back to the application could
potentially be manipulated.

Keycloak’s robust handling of CSRF attacks through state tokens and its
comprehensive token management system utilizing refresh tokens are critical for
maintaining the security and integrity of applications using its services.

Building upon industry standards, Keycloak supports OpenID Connect (OAuth
2.0 + Authentication Layer), SAML 2.0, and OAuth 2.0.

Keycloak employs a user database of its own. Additionally, you can integrate
with already-existing user directories like LDAP servers and Active Directory.

37

Methodology

Figure 3.16: Keycloak integration [19]

3.2.15 Kepler.gl

Kepler.gl is a data-agnostic, high-performance web-based application for visual
exploration of large-scale geolocation data sets. Built on top of MapLibre GL and
deck.gl, kepler.gl can render millions of points representing thousands of trips and
perform spatial aggregations on the fly.

Kepler.gl provides a rich set of tools for creating complex geospatial visualizations
directly in the browser. It supports a wide array of visualization types, from simple
point maps to sophisticated heatmaps and choropleths.

One of Kepler.gl’s strengths is its user-friendly interface and the ability to handle
large datasets without significant performance trade-offs. It is designed to be used
by both developers and non-developers, making it accessible for a wide range of
users.

Kepler.gl can be easily customized and embedded in React applications. It
allows extensive customization of map styles, colors, and interactions, making it
suitable for tailored visualization needs.

38

Methodology

Figure 3.17: Kepler.gl [20]

Kepler.gl enables powerful geospatial analysis, which can be crucial for applica-
tions dealing with logistics, urban planning, or environmental monitoring.

The tool provides an interactive user experience that allows end-users to explore
and manipulate geospatial data intuitively.

Kepler.gl efficiently handles large datasets, which is essential for applications
requiring the visualization of complex or extensive geospatial data.

The integration of Kepler.gl into React applications brings sophisticated geospa-
tial visualization capabilities that enhance the analytical power and user engagement
of modern web platforms. By leveraging its extensive features for creating dy-
namic and customizable maps, developers can provide users with powerful tools for
data exploration and interpretation. Kepler.gl not only elevates the application’s
functionality but also its aesthetic appeal, making complex data accessible and
understandable through intuitive visualizations.

3.2.16 json-server
In the development of modern web applications, especially during the early stages
of development and testing, having a quick and reliable way to simulate a full-
featured REST API can significantly speed up the process. json-server offers a
straightforward solution by providing a full fake REST API with zero coding in less
than 30 seconds, making it an invaluable tool for developers working on frontend

39

Methodology

applications who need to mock a backend system efficiently.
json-server is incredibly simple to set up. With just a minimal configuration

in a JSON file, it can mimic a real API, allowing developers to focus on frontend
development without waiting for backend services to be built.

It provides full flexibility in designing the API as per development needs. De-
velopers can create custom routes, simulate various endpoints, and even integrate
middleware to handle complex behaviors.

By providing instant back-end to front-end interaction possibilities, json-server
accelerates development cycles. Developers can test features and handle data
without any backend constraints, leading to faster iteration and debugging.

Developers can prototype a new application rapidly by providing an interactive
API that can be used to mock data interactions.

json-server is ideal for testing front-end applications, providing reliable responses
and the ability to quickly adjust the output data without touching any actual
back-end code.

It is also an excellent tool for training purposes and demonstrations, where a
full-fledged backend is not required.

json-server provides a powerful yet simple solution for simulating REST APIs,
making it an excellent tool for frontend developers needing to work independently
of backend development progress. Its ability to be up and running in seconds,
combined with the ease of creating a mock database, ensures that it remains a
favorite tool among developers for rapid development and testing. By integrating
json-server into React application development workflows, teams can ensure that
they are able to test features thoroughly and accelerate the development cycle
without waiting for backend services to be fully implemented.

3.3 Development Process
The development process adopted in this thesis follows the Agile methodology, which
supports iterative development and frequent reassessment of project requirements
and goals. The key phases include:

1. Planning: Setting up goals, choosing the stack, and planning the sprints.

2. Development: Iterative cycles of coding, where components are designed,
built, and integrated.

3. Review: Regular assessment of the progress and functionality through meet-
ings and code reviews.

4. Deployment: Staging and production deployments to assess performance in
real-world conditions.

40

Methodology

5. Feedback: Gathering user feedback to inform future development cycles.

41

Chapter 4

Design and Implementation
of Application

This chapter will demonstrate the application environment, the numerous compo-
nents used, and the implementation of the program.

4.1 Overview of the Application
The goal of this web application is to show off advanced features for managing user
interactions, secure data processing, and dynamic content display. The program
provides a platform for demonstrating how modern web technologies may be
effectively used to improve functionality and security in any web-based system,
making it perfect for educational and professional demonstrations.

4.2 User Management Component
4.2.1 User Listing
The project is a React-based front-end application that uses Material UI for UI
components and styling. On the application’s home page, you can see a list of
users. for user data display using infinite scroll to efficiently handle large datasets.
As the user scrolls down, more data is fetched. The user can bookmark items,
selected items that have been saved in the session, and click the see more button
for further information. This home page is visible to all users, even those who are
not authorized.

an anonymous user has the ability to bookmark items from a list. Upon selecting
an item, the bookmark badge on the navigation menu is instantly updated to reflect
the count of bookmarked items. When the user clicks on this badge, a display

42

Design and Implementation of Application

Figure 4.1: Home page of application

of all bookmarked items appears, allowing the user to review their selections.
Furthermore, users have the option to delete any of the bookmarked items directly
from this view, providing a seamless and intuitive interface for managing their
preferences.

Figure 4.2: Manage the bookmark items

43

Design and Implementation of Application

4.2.2 User Details Page with Enhanced Location Visualiza-
tion

The User Details page is an essential part of the application, providing a full and
interactive profile for each user. This page’s major feature is the integration of
the Kepler.gl map, which not only visualizes geographical data but also allows
users to add and examine individual location points. This functionality improves
comprehension of user actions and preferences based on location data.

Figure 4.3: User Detail page of application

In the data center, each user is assigned specific locations, which are represented
on the map with colored points. This visual differentiation allows users to easily
identify and interact with their selected locations, enhancing the usability and
navigational efficiency of the map interface.

Authenticated users have the capability to edit and delete pages directly. Visible
controls, such as buttons for these actions, are prominently displayed, enabling
users to easily manage content and make necessary adjustments with just a few
clicks.

44

Design and Implementation of Application

Figure 4.4: location points in the map

4.2.3 Edit page
The edit page of the application is designed to provide a user-friendly interface,
allowing authenticated users to easily modify content. Upon accessing this page,
users are presented with an intuitive layout where all editable fields are clearly
delineated. Each field is pre-populated with existing content, enabling users to
quickly see what changes may be needed. Functional buttons for saving changes or
reverting edits are strategically placed to facilitate easy navigation.

Figure 4.5: location points in the map

45

Design and Implementation of Application

4.2.4 Login page
The application also have private route if user try to use the private route or
click on the login button, the login status has been checked, and if they are not
authenticated, they are redirected to the login page, which has been implemented
by Keycloak.

Figure 4.6: Login page of application

After logging in, users are seamlessly returned to the last page they visited before
logging in. This is accomplished by saving the user’s last path in local storage;
upon successful authentication, the system utilizes this saved path to implement a
return policy, ensuring users can continue their session without interruption.

46

Design and Implementation of Application

Figure 4.7: Return url pattern

4.2.5 User profile page
in this component, the user can see the list of bookmarked items and also manage
them and in the other tab, it could be check the logged time into the system

Figure 4.8: Profile page bookmark management

47

Design and Implementation of Application

Figure 4.9: Profile page user logged

48

Design and Implementation of Application

4.2.6 Message page of the application
The Message Listing component is an important part of the application, since
it collects and displays messages from multiple communication channels such as
WhatsApp, Telegram, SMS, and email. This centralization improves user interaction
by offering a consistent picture of communications, resulting in increased efficiency
and reaction time. This component addressed a significant issue in handling
messages coming from Gmail, which involved transforming them from base64
encoding to readable text.

Figure 4.10: Message list page

The design of the Message Listing component focused on creating a unified
interface where users could easily manage and access messages from various sources.
The objectives included providing real-time updates, facilitating easy search and
filtering capabilities, and ensuring a user-friendly experience across devices.

49

Design and Implementation of Application

4.2.7 Message detail page
The Message Detail component provides a comprehensive view of individual mes-
sages, facilitating not only the display of detailed information but also the manage-
ment of message status. This feature is particularly useful for handling messages
from various channels. Users can update the status of each message to reflect its
current processing stage, such as Processing, Done, Failed, or Discarded, enabling
efficient tracking and management of communications.

Figure 4.11: Message detail page

Figure 4.12: Display Attachment in message detail page

50

Design and Implementation of Application

Attachments Display

For messages that include attachments, such as the email example provided,
attachments are listed and can be accessed or downloaded directly from the
page. This integration is crucial for emails where attachments often accompany
communications.

4.3 Challenges and Solutions
One major challenge was designing a secure login mechanism that could protect
user data against emerging cyber threats while maintaining a swift authentication
process. Additionally, managing large datasets without degrading the application’s
performance posed a significant technical hurdle.

51

Chapter 5

Conclusions and potential
future development

this thesis has successfully developed a web application that addresses key aspects
of security and functionality for user interaction.

The primary objective was to create secure login mechanisms that protect
user data while maintaining ease of use. By employing the latest encryption
and authentication technologies, the application ensures that user credentials are
securely managed.

Additionally, we concentrated on optimizing the application’s performance,
particularly in managing large data sets. By utilizing the highest and most strategic
methods available, we significantly improved the efficiency of displaying extensive
lists and conducting advanced searches. This not only ensures a seamless user
experience but also enhances the application’s capability to handle complex data
interactions swiftly and effectively.

Furthermore, the application integrates a dynamic mapping feature that effi-
ciently displays various points of interest on a map. This functionality enhances
user engagement by providing real-time geographical insights, which are crucial for
applications requiring spatial awareness.

Lastly, the system is designed to aggregate messages from multiple platforms,
presenting them in a unified list. This not only improves the user experience by
centralizing communication but also employs advanced search techniques to manage
and navigate through large datasets effectively.

Overall, the thesis has not only demonstrated the practical application of cutting-
edge security and data management techniques but also has laid a foundation
for future improvements and iterations in web application development. The

52

Conclusions and potential future development

methodologies implemented herein are scalable and adaptable, ensuring that the
application remains robust and relevant in the face of evolving technological
challenges.

53

Bibliography

[1] Gursheen Kaur and Raj Gaurang Tiwari. «Comparison and Analysis of
Popular Frontend Frameworks and Libraries: An Evaluation of Parameters
for Frontend Web Development». In: 2023 4th International Conference on
Electronics and Sustainable Communication Systems (ICESC). 2023, pp. 1067–
1073. doi: 10.1109/ICESC57686.2023.10192987 (cit. on p. 13).

[2] Pankaj Keshari, Priya Maurya, Pankaj Kumar, and Alok Katiyar. «Web
Development Using ReactJS». In: 2023 5th International Conference on
Advances in Computing, Communication Control and Networking (ICAC3N).
2023, pp. 1571–1575. doi: 10.1109/ICAC3N60023.2023.10541743 (cit. on
p. 13).

[3] Mark Thomas. 2018 (cit. on p. 13).
[4] Major Benefits of React JS. https://www.icoderzsolutions.com/blog/

react-js-benefits/. Accessed: 2024-06-15 (cit. on p. 13).
[5] Giuseppe Psaila. «Virtual DOM: An Efficient Virtual Memory Representa-

tion for Large XML Documents». In: 2008 19th International Workshop on
Database and Expert Systems Applications. 2008, pp. 233–237. doi: 10.1109/
DEXA.2008.117 (cit. on p. 14).

[6] What is JSX and How JSX works. https://medium.com/@danyal_imran/
everything-react-all-about-jsx-4a5123ac8606. Accessed: 2024-05-23
(cit. on p. 14).

[7] How webPack is works. https://webpack.js.org/. Accessed: 2024-06-10
(cit. on p. 15).

[8] Single-page application vs. multiple-page application. https://medium.com/
@NeotericEU/single-page-application-vs-multiple-page-applicati
on-2591588efe58. Accessed: 2024-06-02 (cit. on p. 16).

[9] Philippe De Ryck, Nick Nikiforakis, Lieven Desmet, Frank Piessens, and
Wouter Joosen. «Protected Web Components: Hiding Sensitive Information
in the Shadows». In: IT Professional 17.1 (2015), pp. 36–43. doi: 10.1109/
MITP.2015.12 (cit. on p. 19).

54

https://doi.org/10.1109/ICESC57686.2023.10192987
https://doi.org/10.1109/ICAC3N60023.2023.10541743
https://www.icoderzsolutions.com/blog/react-js-benefits/
https://www.icoderzsolutions.com/blog/react-js-benefits/
https://doi.org/10.1109/DEXA.2008.117
https://doi.org/10.1109/DEXA.2008.117
https://medium.com/@danyal_imran/everything-react-all-about-jsx-4a5123ac8606
https://medium.com/@danyal_imran/everything-react-all-about-jsx-4a5123ac8606
https://webpack.js.org/
https://medium.com/@NeotericEU/single-page-application-vs-multiple-page-application-2591588efe58
https://medium.com/@NeotericEU/single-page-application-vs-multiple-page-application-2591588efe58
https://medium.com/@NeotericEU/single-page-application-vs-multiple-page-application-2591588efe58
https://doi.org/10.1109/MITP.2015.12
https://doi.org/10.1109/MITP.2015.12

BIBLIOGRAPHY

[10] Understanding Session Management Using React Router V6. https://hack
ernoon.com/understanding-session-management-using-react-router-
v6. Accessed: 2024-06-11 (cit. on p. 20).

[11] what Is Redux. https://redux.js.org/. Accessed: 2024-05-13 (cit. on p. 23).
[12] Akanksha and Akshay Chaturvedi. «Comparison of Different Authentication

Techniques and Steps to Implement Robust JWT Authentication». In: 2022
7th International Conference on Communication and Electronics Systems
(ICCES). 2022, pp. 772–779. doi: 10.1109/ICCES54183.2022.9835796
(cit. on p. 27).

[13] Structure of JSON web token. https://www.linkedin.com/pulse/underst
anding-jwt-syed-shamim-hosan/. Accessed: 2024-06-25 (cit. on p. 29).

[14] JWT – Token Based Authentication. https://sherryhsu.medium.com/se
ssion-vs-token-based-authentication-11a6c5ac45e4. Accessed: 2024-
06-21 (cit. on p. 30).

[15] Session vs Token Based Authentication. hhttps : / / sherryhsu . medium .
com/session-vs-token-based-authentication-11a6c5ac45e4. Accessed:
2024-06-19 (cit. on pp. 31, 32).

[16] JWT Authentication and Token Lifecycle Management Flow. https://jour
nals.sagepub.com/doi/10.1177/1550147718801535. Accessed: 2024-06-24
(cit. on p. 34).

[17] Boyan Chen, Pavol Zavarsky, Ron Ruhl, and Dale Lindskog. «A Study of the
Effectiveness of CSRF Guard». In: 2011 IEEE Third International Conference
on Privacy, Security, Risk and Trust and 2011 IEEE Third International
Conference on Social Computing. 2011, pp. 1269–1272. doi: 10.1109/PASSAT/
SocialCom.2011.58 (cit. on p. 35).

[18] Exploring Cross-Site Request Forgery (CSRF) vulnerabilities: Still a threat!
https://www.akto.io/blog/csrf-comprehensive-guide. Accessed: 2024-
06-29 (cit. on p. 36).

[19] Introduction to Keycloak. https://abdulsamet-ileri.medium.com/introd
uction-to-keycloak-227c3902754a. Accessed: 2024-06-20 (cit. on p. 38).

[20] kelper gl. https://kepler.gl/. Accessed: 2024-06-19 (cit. on p. 39).

55

https://hackernoon.com/understanding-session-management-using-react-router-v6
https://hackernoon.com/understanding-session-management-using-react-router-v6
https://hackernoon.com/understanding-session-management-using-react-router-v6
https://redux.js.org/
https://doi.org/10.1109/ICCES54183.2022.9835796
https://www.linkedin.com/pulse/understanding-jwt-syed-shamim-hosan/
https://www.linkedin.com/pulse/understanding-jwt-syed-shamim-hosan/
https://sherryhsu.medium.com/session-vs-token-based-authentication-11a6c5ac45e4
https://sherryhsu.medium.com/session-vs-token-based-authentication-11a6c5ac45e4
hhttps://sherryhsu.medium.com/session-vs-token-based-authentication-11a6c5ac45e4
hhttps://sherryhsu.medium.com/session-vs-token-based-authentication-11a6c5ac45e4
https://journals.sagepub.com/doi/10.1177/1550147718801535
https://journals.sagepub.com/doi/10.1177/1550147718801535
https://doi.org/10.1109/PASSAT/SocialCom.2011.58
https://doi.org/10.1109/PASSAT/SocialCom.2011.58
https://www.akto.io/blog/csrf-comprehensive-guide
https://abdulsamet-ileri.medium.com/introduction-to-keycloak-227c3902754a
https://abdulsamet-ileri.medium.com/introduction-to-keycloak-227c3902754a
https://kepler.gl/

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background and Motivation
	Problem Statement
	Objectives of the Study
	Scope and Limitations
	Significance of the Study
	Thesis Structure

	Literature Review
	Evolution of Web Technologies
	Web Components: An Overview
	React in Modern Web Development
	The Role of TypeScript and Redux
	TypeScript
	Redux

	Authentication in Web Applications

	Methodology
	Research Design
	Frontend development
	Selection of Tools and Technologies
	React
	JSX
	Webpack
	Entry Point of the Application: App.js
	React Router
	Material UI
	Redux - the state manager
	React-redux
	Redux Toolkit
	RTK Query: Data Fetching and Caching
	TypeScript
	What is JWT Token
	Keycloak
	Kepler.gl
	json-server

	Development Process

	Design and Implementation of Application
	Overview of the Application
	User Management Component
	User Listing
	User Details Page with Enhanced Location Visualization
	Edit page
	Login page
	User profile page
	Message page of the application
	Message detail page

	Challenges and Solutions

	Conclusions and potential future development
	Bibliography

