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Summary

Image segmentation is a core task in computer vision, playing a crucial role in
object recognition, image analysis, and various practical applications, such as
medical imaging, autonomous driving, and surveillance. It involves dividing an
image into meaningful segments, often called objects or foregrounds, based on
specific properties. Image segmentation based on the s/t graph cut is a powerful
approach that combines region and boundary information. It transforming the
image segmentation problem into an energy function minimization problem and
applying the Min-Cut algorithm to find a globally optimal solution. S/t graph
cut methods are highly efficient and accurate in various segmentation scenarios,
making them widely applicable to N-dimensional (N-D) problems.

This thesis introduces the basic concepts of s/t graphs and their applications in
combinatorial optimization. We explore several typical graph construction methods
and their parameter settings, demonstrating how to build effective Min-Cut models
using these parameters. We then detail two mathematical models that define the
minimum s/t cut problem from different perspectives. Following this, we cover
the fundamentals and usage of the Gurobi optimization solver, explaining how to
convert these mathematical models into a format compatible with Gurobi. By
leveraging Gurobi’s powerful algorithms, we find the global minimum of the energy
function, ensuring optimal segmentation results. In the experimental section, we
assess the performance of these models through real-world image segmentation
tasks, evaluating their effectiveness with various metrics.
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Chapter 1

Introduction

1.1 Background and Motivation

Image segmentation is a crucial aspect of computer vision and a fundamental topic
in image analysis. It involves dividing an image into meaningful segments that
possess unique characteristics. The primary goal of segmentation is to isolate these
objects for more detailed analysis and processing. This process allows for a deeper
understanding and manipulation of specific parts of an image, such as recognizing
objects or editing images.

Image segmentation splits an image into several disjoint regions based on features
such as grayscale, color, spatial texture, and geometric shape. The goal is to ensure
consistency or similarity within the same region while ensuring significant differences
between different regions. More precisely, image segmentation assigns labels to
each pixel in an image, where pixels with the same label share certain common
features. The purpose of image segmentation is to simplify the complexity of an
image or alter its presentation to make it easier to understand and analyze.

Image segmentation is not only valuable in itself but also provides the basis
for other image processing tasks. For example, accurate image segmentation is
essential for object detection and tracking, helping in identification and localization.
According to Nair et al. [1] and Dumouchel et al. [2], in the field of medical
imaging, image segmentation helps locate lesions, extract anatomical structures,
and support disease diagnosis and treatment. In industry, applications include
mineral deposit analysis, contactless inspection, and product accuracy and purity
analysis [3]. In transportation [4], applications include autonomous driving [5],
vehicle detection [6], vehicle type recognition [7], and vehicle tracking. Additionally,
image segmentation has a wide range of applications in image editing [8], virtual
reality, and many other fields.

Over the years, numerous methods for performing image segmentation have been
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developed, utilizing domain-specific knowledge to effectively solve segmentation
problems within specific application areas, reflecting the diversity of approaches.

Image segmentation techniques can be broadly categorized into several groups.
Traditional methods include threshold-based segmentation [9], edge-based segmen-
tation [10], and region-growing algorithms [11]. Graph-based methods such as the
minimum cut [12] and the normalized cut [13] were introduced by Shi and Malik in
2000. Pixel clustering based on specific theories includes methods such as K-means
[14], spectral clustering [15], mean shift [16], and SLIC [17]. There is also deep
learning-based image segmentation. For example, Convolutional Neural Networks
(CNNs) [18] have led advancements in semantic segmentation, instance segmenta-
tion, and full-view segmentation. The Fully Convolutional Networks (FCN) [19]
approach and Generative Adversarial Networks (GANs) [20], proposed by Long et
al. in 2014, have been used for image segmentation and data enhancement.

Although image segmentation technologies advance rapidly and show great
potential in various fields, they come with inherent challenges that need to be
addressed. Threshold-based segmentation, for instance, is very sensitive to changes
in lighting and noise, which can reduce the accuracy of segmentation results. Addi-
tionally, manually selecting the threshold can be challenging, as it is difficult to
find the right thresholds for different images and situations. Edge-based segmen-
tation techniques are also not resistant to noise, leading to inconsistent results.
Furthermore, edge segmentation struggles with complex image structures due to its
sensitivity to image details and textures. Region-growing algorithms find it hard to
accurately segment objects that vary greatly in size or have irregular shapes. Deep
learning approaches to segmentation require large labeled datasets for training and
significant computational resources, especially for complex network architectures.
Moreover, understanding the predictions of these models remains a challenge, as it
is hard to translate these predictions into clear rules or principles.

The Min-Cut based graph cut segmentation method provides an efficient and
accurate solution to the image segmentation problem by transforming it into a
graph partitioning problem. This method leverages global optimization techniques
to find the minimum cut, thus avoiding the need for manual threshold setting. The
Min-Cut based graph cut segmentation method effectively integrates both region
and boundary information, which helps handle variations in lighting and mitigate
noise interference within images to some extent. Furthermore, by introducing the
energy function, the graph cut method can integrate various a priori knowledge
and image characteristics. It also allows users to introduce constraints flexibly
according to specific application scenarios, enhancing segmentation performance in
complex environments. Compared with deep learning methods that rely on large
amounts of labeled data and computational resources, one of the primary benefits
of graph cut is its minimal resource demands. This advantage reduces the reliance
on extensive labeled datasets and ensures efficient operation even with limited
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computational resources.
Compared to traditional graph cut methods, the combination of s-t graph cuts

and minimum cuts provides more precise and efficient segmentation solutions.By
combining s-t graph cut techniques and defining optimal Min-Cut models through
adjusting various parameters and constructing different graph structures, more
accurate image segmentation can be achieved while improving computational
efficiency.

Although efficient minimum cut algorithms, such as the Ford-Fulkerson and
Push-Relabel algorithms [21][22], are available for specific types of graphs, the
computational complexity of finding the minimum cut remains high for complex
graph structures. The introduction of the Gurobi optimizer significantly enhances
the ability to achieve the global optimal solution and greatly improves the efficiency
of finding the global minimum of the target energy function.

1.2 Thesis Overview
This thesis presents an in-depth exploration of an approach for object/background
segmentation of images using combinatorial optimization of s/t graph cuts. This
approach focuses on the application of the minimum cut technique. It constructs
several different minimum cut image segmentation models through diverse graph
construction and a series of parameter adjustments during in-depth study and image
and graph construction analysis. This thesis comprehensively compares and analyzes
the differing effects these minimum cut models have on image segmentation. We then
detail two mathematical models that define the Min-Cut problem. A contribution of
this thesis is utilizing the Gurobi optimization solver, which significantly enhances
the achievement of the global optimal solution for the constructed Min-Cut models
and greatly improves the efficiency of finding the global minimum of the target
energy function. The thesis is organized as follows:

• In Chapter 2, a comprehensive literature review on image segmentation,
discussing various segmentation methods including graph-based methods, pixel-
clustering, deep learning-based segmentation, and other specialized approaches.
This chapter serves as a foundation for understanding the current state of the
field and the motivation of the proposed method.

• Chapter 3 provides an overview of the preliminary knowledge and theoretical
foundations necessary for image segmentation methods. In the first part of this
chapter, concepts related to color spaces, the definition of color spaces, and their
significance in processing image data are elaborated, laying the groundwork
for understanding how image data can be described and processed through
different color models. The second part of this chapter delves into the basic
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theories of graphs and the application of graph theory in image segmentation
problems, thoroughly explaining the fundamentals of graph cuts theory and
its application relationship in image segmentation issues. Additionally, this
chapter discusses the basics of Min-Cut problems and introduces common
algorithms applied to standard Min-Cut problems in image segmentation. Two
mathematical models that define the minimum s/t cut problem from different
perspectives are elaborated.

• In Chapter 4, the focus shifts to the key aspects of the thesis, detailing
the process of constructing a graph for image segmentation. This includes
establishing region terms and boundary terms, selecting edge weights, and
constructing the energy function. Additionally, methods for selecting graph
seeds, including both manual and automatic selection, are discussed.

• Chapter 5 starts with a comprehensive introduction, analysis of the dataset
characteristics, and preparation steps before the experiments. It then provides
a brief overview of the basic principles and usage of the Gurobi optimizer.
Following this, five sets of experiments are conducted to progressively test
various segmentation models based on different parameters. The chapter
concludes by detailing the metrics and standards used to evaluate the accuracy
and efficiency of the segmentation results, along with an analysis and evaluation
of the experimental outcomes.

• Chapter 6 Summarizes the research findings and experiments on image segmen-
tation, discussing the effectiveness of the Min-Cut algorithm in this context.
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Chapter 2

State of the Art

Image segmentation is a classical problem in computer vision research and has
become a hot spot in the field of image understanding. It is the first step of
image analysis, the foundation of computer vision, and one of the most challenging
problems in image processing. Since the 1970s, image segmentation has attracted
significant research efforts. Although there is no universal perfect image segmenta-
tion method, the general principles have reached a consensus, resulting in many
research outcomes and methods. Image segmentation techniques can be roughly
categorized into graph-based methods, pixel clustering-based methods, and deep
learning-based methods based on their algorithmic evolution.

In this chapter, we analyze the current state of the art in various image seg-
mentation methods. The first part introduces graph-based image segmentation
techniques, particularly emphasizing the Felzenszwalb method. Next, we explore
image segmentation methods based on pixel clustering, including a detailed de-
scription of the k-means clustering method and an analysis of how its parameters
affect the results. In the third section, we present methods and state-of-the-art
techniques for deep learning-based segmentation. Finally, this chapter provides
a general overview and review of current research on other image segmentation
methods.

2.1 Graph-Based Image Segmentation

Graph-based methods map an image as a weighted undirected graph, considering
pixels as nodes. They convert the image segmentation problem into a graph vertex
partitioning problem, obtaining optimal segmentation by finding the maximum
flow/Min-Cut of the graph.

Graph-based image segmentation offers notable advantages:
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• Established Mathematical Foundation: Graphics is a well-developed re-
search field with a solid mathematical foundation, providing multiple solutions
to image segmentation problems.

• Similarity to Images: The similarity between images and graphs allows
the conversion of images into graphical structures, enabling the application of
numerous theoretical and mathematical tools for segmentation purposes.

Despite their computational complexity, a key advantage of these methods is that
they do not require training, which makes them applicable to various segmentation
tasks without preprocessing or labeled datasets.

Graph-based image segmentation techniques typically represent the problem in
terms of a graph G = (V, E), where each node vi ∈ V corresponds to a pixel in the
image, E is an edge connecting a pair of neighboring pixels, and the weights of the
edges, w(vi, vj), represent the non-negative similarity between neighboring pixels in
terms of grayscale, color, or texture. The essence of segmentation methods based
on graphs is to remove specific edges and divide the graph into several subgraphs to
achieve segmentation. The optimality principle of segmentation is to maximize the
similarity within the subgraphs and minimize the similarity between the subgraphs.
Well-known graph-based methods include Normalized Cut [13], Graph Cut [23],
GrabCut [24], and Felzenszwalb methods [25].

Graph cut methods can be fully automated. Combining graph cut with other
techniques, such as Phase Unwrapping via Graph Cuts proposed by Bioucas-Dias
[26], which uses phase expansion to obtain the seeds and then applies graph cut
for automatic segmentation; Suga et al. [27], which uses the SIFT operator to
get the seeds and then performs automatic segmentation; Tang et al. [28] used a
saliency detection algorithm to automatically localize the object roughly and then
optimized the segmentation with weighted kernel density estimation and graph
cut algorithm. However, the complexity of segmented images and the presence or
absence of apparent features of interest critically affect the practicality of automatic
segmentation. Therefore, interactive segmentation methods based on graph cuts
remain practical.

2.1.1 Felzenszwalb Method
Felzenszwalb’s algorithm employs a graph-based approach to image segmentation
by converting the image into an undirected weighted graph, where each pixel is a
node and the edge weights represent the differences between adjacent pixels. The
algorithm orders the edges based on their weights and iteratively merges pixel
components with differences below a certain threshold, following the order of the
weights until a specified stopping condition is reached. A minimum spanning tree
algorithm is applied to maintain these merges’ connectivity.
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In Felzenszwalb’s algorithm, k is a key factor that controls the granularity of
image segmentation. Specifically, k determines the Minimum Internal Difference
(MID) between the components that make up the image. Two components are
considered separate only if their difference is greater than their MID. Adjusting k
allows for manipulating the segmentation’s fineness:

• If k is large, the algorithm tends to generate larger components, making the
resulting image regions coarser.

• If k is small, the algorithm generates smaller components, resulting in a more
detailed segmentation.

The Felzenszwalb algorithm is valued for its efficiency and capability of processing
diverse images, consistently delivering uniform and well-connected segmentation
outcomes. However, it often fails to precisely delineate object boundaries, yielding
overly smoothed segmentation contours. Fine-tuning the k factor is necessary to
achieve the desired level of boundary precision. Figures 2.1 and 2.2 illustrate the
application of Felzenszwalb’s algorithm with different k.

Figure 2.1: Results produced by Felzenszwalb algorithm (k = 100).

Figure 2.2: Results produced by Felzenszwalb algorithm (k = 500).
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As seen in the results, smaller k lead to finer segmentation, while larger k result
in coarser segmentation. In Figure 2.2, the bear eyes are segmented correctly, while
in Figure 2.1, they are not.

2.2 Pixel-Clustering Segmentation
Clustering is a statistical method used for classification problems that aims to divide
a collection of objects into several groups based on similarities among data points.
As an unsupervised learning approach, clustering algorithms operate without prior
knowledge, grouping data based on similarities among data points.

In image segmentation, clustering algorithms treat image pixels as a dataset to
be classified, segmenting the image by analyzing pixel features such as grayscale,
color, position, and texture. This approach enables segmentation into distinct,
meaningful regions by identifying and leveraging inherent pixel similarities without
relying on predetermined classification standards.

Traditional clustering methods such as FCM (Fuzzy C-Means) [29], k-means
algorithms [14], spectral clustering [30], the Mean Shift algorithm [16], and SLIC
(Simple Linear Iterative Clustering) [17] are prominent examples. The Mean Shift
algorithm, introduced by Comaniciu and Meer, is a nonparametric clustering
algorithm widely used in tasks like image segmentation and tracking. It does not
require a predetermined number of clusters, handling various visual data well. In
contrast, SLIC focuses on creating compact, uniform hyperpixels through iterative
clustering based on color and spatial proximity, simplifying the segmentation
process [17]. R. Urquhart introduced graph-theoretic clustering based on finite
neighborhood sets in 1982, constructing a graph where data points are nodes
connected by edges representing similarities. This improves computational efficiency,
especially on large datasets, by focusing on local similarities [31].

Each clustering method has distinct characteristics suited to specific applications,
providing a robust toolkit for image processing.

2.2.1 K-Means Method
Since McQueen proposed the k-means algorithm in 1967, it has been widely used
for clustering. K-means is an unsupervised learning method that evaluates data
point similarity by minimizing the sum of squared errors and automatically dividing
the dataset into clusters.

Initially, the algorithm selects k objects randomly from the dataset to serve as
the initial cluster centers. It assigns each data point to the nearest cluster center
based on the Euclidean distance, computes the mean position of data points in
each cluster, and updates the cluster centers. This iterative process continues until
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the cluster centers stabilize. Figure 2.3 demonstrates the application of k-means to
image segmentation.

Figure 2.3: k-means clustering algorithm for image segmentation with k=2

The k-means algorithm is known for its speed, simplicity, and scalability, which
makes it effective and adaptable for large datasets. Its linear time complexity
facilitates efficient handling of large data volumes.

However, k-means has limitations. It is sensitive to outliers, which can distort
cluster centroids and result in inaccurate outcomes. It heavily depends on the
initial placement of cluster centroids, and poor initialization can trap the algorithm
in a suboptimal solution. As a distance-based method, k-means is suitable only for
convex datasets, not for non-convex data [32].

Despite these challenges, the simplicity and efficiency of k-means often make
it a starting point for data clustering tasks, with potential for exploring more
complex models like Gaussian Mixture Models (GMM) for datasets with greater
heterogeneity [33].

2.3 Deep Learning-based Segmentation
Traditional image segmentation techniques, such as threshold segmentation, edge
detection, and region growth, depend on manual parameter tuning. Using only lower-
level content information, such as color, brightness, and texture, these methods
often struggle with complex structures objects and high internal variability, leading
to inaccurate segmentations in intricate scenarios.

Deep learning has revolutionized image processing tasks, including segmentation,
by providing superior efficiency, accuracy, and the capacity to handle complex envi-
ronments. Unlike traditional approaches requiring handcrafted feature design, deep
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learning algorithms excel in autonomously deriving potent feature representations
directly from the data. These models are adaptable, enabling customization for
various segmentation tasks, such as instance and semantic segmentation, through
model fine-tuning or additional network layers. This adaptability and learning
capacity make deep learning invaluable for tackling image segmentation challenges.

In 2013, Farabet et al. trained a deep convolutional classification network using
a supervised approach [18]. This technique involved multi-scale sampling around
a target pixel and processing the resulting local image patches through a CNN
classifier, iteratively assigning a semantic label to every pixel. In 2014, Long et
al. introduced the Fully Convolutional Network (FCN) [19], transforming fully
connected layers into convolutional layers for end-to-end learning and segmentation
of images. FCN handles input images of any size, producing corresponding seg-
mentation maps, and laying the groundwork for future algorithms. In 2015, Olaf
Ronneberger and his team introduced U-Net, specifically addressing medical image
segmentation with a distinctive U-shaped architecture that captures contextual
details while maintaining edge precision [34]. SegNet, another critical contribu-
tion, focuses on scene understanding through a deep encoder-decoder architecture,
effective for segmenting complex outdoor scenes [35].

Recently, Shervin Minaee and Yuri Boykov et al. published a comprehensive
review paper titled "Image Segmentation Using Deep Learning: An Overview." This
paper examines advances in the application of deep learning to image segmentation
and constructs a development timeline for deep learning-based 2D image segmenta-
tion algorithms (Figure 2.4). Important advancements in semantic segmentation
are represented by orange blocks, while key milestones in instance segmentation
are indicated by green blocks.

Deep learning-based image segmentation methods bring breakthroughs, but
they also face challenges. They require large labeled datasets and computational
resources for training. These models often suffer from poor interpretability and
risk overfitting, especially with limited or non-diverse data, reducing generalization
ability. Ongoing research is gradually addressing these issues, showing a positive
trend toward solving these challenges.

2.4 Other Specialized Approaches
In addition to the previously mentioned methods, several other techniques have
demonstrated notable results in various application scenarios.

2.4.1 Threshold-based methods
Threshold-based methods are among the first image segmentation techniques
to segment an image into distinct regions by selecting one or more threshold
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Figure 2.4: Development timeline for 2D image segmentation algorithms based
on deep learning. [36]

values. Using at least one color or grayscale value to define image boundaries,
they generate binary images, reducing complexity and simplifying recognition and
classification processes [37]. Standard methods include global thresholding [9],
local thresholding [38], and adaptive thresholding [39]. However, threshold-based
methods are susceptible to lighting changes and noise, making it challenging to select
a suitable threshold for complex scenes, resulting in unsatisfactory segmentation.

2.4.2 Edge detection-based methods
Edge detection-based methods utilize significant changes in an image’s gray values
to identify pixels that define region boundaries. Common techniques include
gradient and grayscale histogram methods. The gradient method detects edges
by identifying abrupt gray value changes between regions, while the grayscale
histogram method separates the foreground from the background by selecting a
specific threshold [40]. Notable edge detection operators include Roberts, Sobel,
Prewitt, Canny, and Laplace [41]. The Sobel operator detects bidirectional edges
(horizontal and vertical) [42].

Although edge detection methods effectively extract boundaries, they are prone
to generating pseudo edges and struggle to enclose the complete target region,
especially in textured and noisy images.

2.4.3 Model-based methods
Model-based segmentation methods guide the process using predefined templates
or models of specific shapes (e.g., circles, ellipses) [43]. These methods accurately
segment specific target regions by matching models with image content, suitable
for scenes with regular patterns, such as medical image processing, industrial
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inspection, and target recognition [43, 44, 45, 46, 47]. However, they are less
effective for targets with complex or irregular shapes, and model construction and
matching involve high computational complexity.

These segmentation techniques exhibit unique advantages and effectiveness in
different applications, demonstrating their practicality and flexibility. However,
each method has limitations. With increasing demand and complexity, existing
technologies may struggle to achieve ideal results in certain situations. Therefore,
research for new methods to optimize image segmentation remains crucial.
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Chapter 3

Preliminary Know-How

3.1 Color Spaces and Similarity Measures
In image recognition and segmentation, choosing suitable feature is paramount for
accurate object detection. These features include various dimensions such as shape,
texture, grayscale and color. Color, as a key visual attribute, has found extensive
application and recognition [48].

Color images provide much more information than grayscale images. They
capture the properties of object surfaces across different wavelengths of light, offering
a more precise representation of surface characteristics. Furthermore, color features
tend to be more stable than shape or texture features when images undergo rotation
and scaling. These benefits make color features particularly advantageous in image
segmentation tasks, improving both accuracy and dependability. Consequently,
choosing color as a segmentation feature is an effective strategy in image processing.

3.1.1 Color Space
In the practice of digital imaging, computer graphics, and display technology, the
accurate identification of color is indispensable. To achieve this, various color models
are utilized. A color space serves as a framework for arranging and representing
colors, mathematically facilitating their description and reproduction [49]. In
image processing, different color spaces can be adapted to diverse applications,
and choosing an appropriate color space not only enhances the expression of color
information but also optimizes the performance of image segmentation based on
the requirements of individual applications.

Typically, color spaces can be categorized into two primary types: hardware-
oriented and user-oriented. Hardware-oriented color spaces include RGB (Red,
Green, Blue), CMY (Cyan, Magenta, Yellow), and YIQ [50]. In RGB color space,
colors are defined by the intensity of three components: red (R), green (G), and
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blue (B). Each component usually ranges from 0 to 255, where 0 indicates the
minimum intensity (black) and 255 signifies the maximum intensity (white) [51].
Different combinations of these values produce a wide range of colors.

The RGB color space is widely used in computer graphics, digital image process-
ing, display technology, and other fields due to its prevalence on computer monitors
and television screens. It serves as the primary method for representing colors in
these devices. In addition, RGB is extensively used in image processing software for
tasks such as editing, compositing, and image manipulation. This widespread use
underscores its significance in various applications related to visual technologies.

Figure 3.1: 1931 CIE chromaticity diagram showing some RGB color spaces as
defined by their chromaticity triangles [52]

User-oriented color spaces, such as HLS (Hue, Lightness, Saturation), HCV,
HSV (Hue, Saturation, Value), HSB, MTM, CIE-LAB, and CIELUV, are designed
to simulate human visual perception. Among these, the CIE-LAB color space is
particularly prevalent [50]. Unlike the RGB color space, CIE-LAB is constructed
to align with the human eye’s perception of colors, making it more consistent with
human vision characteristics.
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In the CIE-LAB color space, colors are denoted by three coordinates: L (lumi-
nance), a (green-red component), and b (blue-yellow component). The L coordinate
represents the lightness of a color, ranging from 0 (black) to 100 (white). The
coordinates a and b represent the position of the color in the red-green and blue-
yellow directions, respectively, with values ranging from -128 to +127 [53]. These
three coordinates enable the CIE-LAB color space to accurately describe nearly all
visible colors, ensuring it effectively mirrors human color perception.

One of the main advantages of the CIE-LAB color space is its homogeneity. This
means that colors close to each other in terms of distance within this space tend
to appear visually similar to the human eye. This property makes the CIE-LAB
color space highly useful for quantifying color differences and performing color
comparisons. In image segmentation tasks, researchers leverage this attribute to
measure the variance in color across distinct areas or objects within an image,
thereby achieving enhanced precision in segmentation outcomes.

Figure 3.2: CIELAB is a 3D space, the space is perceptually uniform [54]
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3.1.2 Similarity Measures

In this thesis, we use the color distance based on two different color spaces: RGB
color space and LAB color space to quantify the color similarity of pixels. By
examining the variances and similarities between colors in these two spaces, a more
comprehensive understanding of color’s impact on the segmentation of color images
can be achieved.

1. Color distance in the RGB space

RGB is an additive color model where colors are represented by combining
different intensities of 3 channels.

To determine the color distance between two pixels in RGB space, the Euclidean
distance formula as follows:

∆RGBij =
ñ

(Rj − Ri)2 + (Gj − Gi)2 + (Bj − Bi)2 (3.1)

• Ri, Gi, Bi: Red, green, and blue channel values of pixel i.

• Rj, Gj, Bj: Red, green, and blue channel values of pixel j.

• ∆RGBij: The color distance between pixel i and pixel j in RGB space.

2. Color distance in the LAB space

LAB color space is designed to mimic human perception of color and is often
used in applications that require accurate color representation. To calculate
the color distance between two points in the LAB space, the Euclidean distance
formula as follows:

∆E∗
abij

=
ñ

(L∗
j − L∗

i )2 + (a∗
j − a∗

i )2 + (b∗
j − b∗

i )2 (3.2)

• L∗
i , a∗

i , b∗
i : The lightness (L*), red/green axis (a*), and yellow/blue axis

(b*) values of pixel i in LAB space.

• L∗
j , a∗

j , b∗
j : The lightness (L*), red/green axis (a*), and yellow/blue axis

(b*) values of pixel j in LAB space.

• ∆E∗
abij

: The color distance between pixel i and pixel j in LAB space
(according to the CIE76 standard).
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3.2 Theory of Graph and Graph Cuts

3.2.1 Graph theory
Graph theory is a branch of mathematics focused on the study of mathematical
structures known as graphs. These structures consist of points, called vertices
or nodes, and lines connect the vertices, called edges. Graph theory serves as a
powerful tool for modeling pairwise relationships among objects, allowing for the
exploration and analysis of concepts such as connectivity and network structure.
In a graph, vertices represent individual entities or objects, while edges symbolize
links or interactions between these entities. This framework is instrumental in
understanding and managing various abstract and practical problems in numerous
fields, including computer science, biology, and social sciences.

A graph G = (V, E) consists of a set of vertices V and a set of edges E that
connect these vertices. The vertices, denoted by symbols such as u and v, represent
individual entities. The edges, denoted by symbols such as w, represent the
connections between these entities. Each edge in E corresponds to a pair of vertices
in V .

In an undirected graph shown in Figure 3.3, all edges have no specific direction,
so the pair (u, v) is the same as (v, u). The edges in a graph can also be ordered,
with ⟨u, v⟩ indicating an edge directed from u to v. In this case, ⟨u, v⟩ and ⟨v, u⟩
represent two different edges. If the edges of the graph are directional, such a graph
is called a directed graph, as shown in Figure 3.4.

Figure 3.3: Illustration of Undi-
rected Graph

Figure 3.4: Illustration of Directed
Graph

3.2.2 Graph Cut
In graph theory, connectivity refers to the property that nodes or sub-graphs
within a graph can be connected through edges. In an undirected graph, if a path
composed of one or more edges allows two nodes or sub-graphs to reach each other,
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these nodes or sub-graphs are considered connected. If any pair of vertices in an
undirected graph G are connected, the graph is called a connected graph.

For a directed graph, G is called a strongly connected directed graph if, for any
two vertices u and v in G, there exists both a path from u to v and a path from v
to u. If G is a directed graph and, for any two vertices u and v, there exists either
a path from u to v or a path from v to u, then G is called a unilaterally connected
directed graph.

The opposite of connectivity is separation (or cut). Suppose E ′ is a subset of the
edge set of a connected graph G. If removing E ′ from G results in a disconnected
graph, then E ′ is called a cut set of G. When edges are cut, the nodes or regions
associated with these edges are divided into disconnected sets. An example is
shown in Figure 3.5.

Figure 3.5: Removing the two edges A ↔ B and D ↔ C partitions the graph
into two disconnected components, and the set containing the edges A ↔ B and
D ↔ C forms a cut.

The definition of cut is as follows:
A graph G = (V, E) can be partitioned into two disjoint sets, S, T , S ∪ T = V ,

S ∩ T = ∅, simply by removing the edges connecting the two parts. The degree of
dissimilarity between these two pieces can be computed as total weight of the edges
that have been removed. In graph theoretic, it is called the cut [55].The formula
3.3 represents the cut.

cut(S, T ) =
Ø

u∈S,v∈T

w(u, v) (3.3)
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3.3 The Min-Cut Problem
A cut in a graph is defined as a collection of edges whose removal disconnects a
graph into two distinct sub-graphs. Among all possible cuts, a minimum cut or
a Min-Cutis distinguished by having the smallest number of edges or the lowest
total edge weights in a weighted graph. The task of finding such minimum cuts is
known as minimum cut problem or Min-Cut problem. The minimum-cut problem
is a quintessential combinatorial optimization problem in the field of graph theory.

The minimum-cut problem in graph theory has two primary formulations: with
and without terminal nodes. The Min-Cut problem with terminal nodes is known
as the minimum s-t cut problem. For a given graph, G = (V, E) with a particular
source node s and sink node t, find the smallest set of edges such that all paths
from the source node s to the sink node t must pass through this set while also
minimizing the number of edges traversed (or the sum of their weights). In contexts
where a source and a sink are defined, this minimum cut problem is closely related
to the maximum flow problem. The duality between the max-flow and Min-Cut
allows the determination of the minimum cut by maximizing the flow from the
source s to the sink t.

The Min-Cut problem takes a more global perspective when no specific termi-
nal nodes are designated. This problem does not focus on particular nodes for
disconnection but seeks a cut that globally minimizes connectivity across the graph.

Although the minimum cut problem is not theoretically computationally difficult,
its wide applications and elegant mathematical form make it a classic topic in
graph theory research. This section will use two different mathematical models to
define the minimum s-t cut problem. In Chapter 5, the performance of these two
models in actual image segmentation will be compared through experiments.

1. Model 1
The objective of the first model is to minimize the sum of the weights of the
cut edges based on the Max-Flow Min-Cut Theorem. Constraints ensure that
the total flow through the cut edges is equal to the maximum flow.
Given G := (V, A) a flow network, source node s and termination node t, and
capacity uij in each arc (i, j):

min
Ø

(i,j)∈A

uijyij

s.t. zi − zj ≤ yij ∀(i, j) ∈ E

zs − zt = 1 (zs = 1, zt = 0)
yij ∈ {0,1} ∀ (i, j) ∈ E

zi ∈ {0,1} ∀ i ∈ V
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• yij: binary variables taking value 1 if arc (i,j) belongs to the optimal cut
(forward), 0 otherwise

• zi: binary variables taking value 1 if node i belongs to the subset of nodes
containing s, 0 otherwise

Its main features include:

• Direct binary variable definitions for nodes and arcs.
• Emphasizing flow conservation and non-negative constraints on flow.

2. Model 2
The second model aims to minimize the sum of the weights of the cut while
also introducing additional variables and constraints. In addition to zi and
yij, it introduces two binary variables: V S

i and V T
i , which signify whether a

node i is a source or a terminating node.
Given G := (V, A) a flow network, source node s and termination node t, and
capacity uij in each arc (i, j):

min
Ø

(i,j)∈A

uijyij

s.t. zi − zj ≤ yij ∀(i, j) ∈ A

zi ≥ V S
i ∀i ∈ V

1 − V T
i ≥ zi ∀i ∈ VØ

i∈V

V S
i = 1Ø

i∈V

V T
i = 1

V S
i + V T

i ≤ 1 ∀ i ∈ V

yij ∈ {0,1} ∀ (i, j) ∈ A

zi ∈ {0,1} ∀ i ∈ V

V S
i ∈ {0,1} ∀ i ∈ V

V T
i ∈ {0,1} ∀ i ∈ V

• yij: binary variables taking value 1 if arc (i,j) belongs to the optimal cut
(forward), 0 otherwise

• zi: binary variables taking value 1 if node i belongs to the subset of nodes
containing s, 0 otherwise

• V S
i : binary variables taking value 1 if node i is the source s, 0 otherwise
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• V T
i : binary variables taking value 1 if node i is the sink t, 0 otherwise

The second model becomes more specific by introducing additional variables
and complex constraints, enabling a more straightforward definition and
solution to the minimum cut problem from the source node to the sink node.

3.3.1 Algorithms for Min-Cut
The minimum cut is not only an abstract concept in theoretical research, but also
a practical tool in image segmentation. By redefining the image segmentation
challenge as a minimum cut problem, the complex task is simplified to identify
the optimal graph cut. This approach utilizes a variety of efficient algorithms and
strategies from graph theory, providing a comprehensive solution. The similarities
between image segmentation and finding the minimum cut in a graph allow for the
development of effective and reliable solutions using insights from graph theory.

Various algorithms can solve the minimum cut problem, each offering unique
advantages in different application scenarios. One of the most commonly used
algorithms is based on the maximum flow-minimum cut theorem for capacitated
networks. The minimum cut problem is closely related to the maximum flow
problem. According to Theorem 2, the optimal solution to the maximum flow
problem equals the optimal solution to the corresponding minimum cut problem.
Therefore, solving the minimum cut problem can be transformed into solving the
maximum flow problem [56]

Theorem 1 (Augmenting Path Theorem) A flow is a maximum flow if and
only if the residual network G contains no augmenting path.

Theorem 2 (Max-Flow Min-Cut Theorem) The maximum flow value from s
to t equals the minimum capacity of all s-t cuts.

The maximum flow problem involves finding the maximum possible flow from a
specified source node to a specified sink node in a directed graph called a capacitated
network. The objective of the maximum flow problem is to maximize the total flow
from the source to the sink, which is a central issue in network flow theory.

According to Theorem 1, an essential concept in solving the maximum flow
problem is the augmenting path. An augmenting path is a direct path from a
source node s to a sink node t in the residual network. The residual capacity of an
augmenting path is the minimum residual capacity of any arc in the path. [57]

1. Ford-Fulkerson Algorithm
The Ford-Fulkerson algorithm is a maximum flow algorithm based on aug-
menting paths. It iteratively finds augmenting paths and updates the flow
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to increase the total flow in the network gradually [21]. The steps of the
Ford-Fulkerson algorithm are as follows:

(a) Initialization: Initialize all flows in the network to zero.
(b) Finding Augmenting Paths: Use depth-first search (DFS) or breadth-

first search (BFS) in the residual network to find an augmenting path
from the source to the sink.

(c) Updating Flow: Update the flow in the network based on the minimum
residual capacity along the augmenting path.

(d) Repeat: Repeat steps 2 and 3 until no augmenting path can be found in
the residual network.

The algorithm 1 provides the pseudocode of the Ford-Fulkerson algorithm.

Algorithm 1 Ford-Fulkerson Algorithm
1: function FordFulkerson(G, s, t)
2: for all edge (u, v) in G do
3: set flow(u, v) = 0
4: end for
5: while there exists an augmenting path p from s to t in the residual graph

Gf do
6: find the residual capacity cf (p)
7: for all edge (u, v) in p do
8: flow(u, v) = flow(u, v) + cf (p)
9: flow(v, u) = flow(v, u) − cf (p)

10: end for
11: end while
12: return the total flow from s to t
13: end function

2. Push-Relabel Algorithm
The Push-Relabel algorithm, also known as the Preflow-Push algorithm, differs
from augmenting path algorithms. Instead of directly finding augmenting
paths, the Push-Relabel algorithm increases flow through push and relabel
operations until the maximum flow is achieved. The core idea is to maintain
a "preflow," allowing some nodes to have an inflow greater than their outflow,
and gradually adjusting the flow through push and relabel operations until it
becomes a valid maximum flow.
The steps of the Push-Relabel algorithm are as follows.
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(a) Initialization: Initialize all edge flows to 0. Set the height of the source
node to the total number of nodes n, and set the height of all other nodes
to 0. Set the flow of all edges from the source to their capacity and push
these flows to the corresponding nodes. The initial preflow equals the
sum of the capacities of all outgoing edges from the source.

(b) Push Operation: For each node with excess flow, if there is an ad-
jacent edge (u, v) such that h(u) = h(v) + 1 and the residual capac-
ity is greater than 0, push as much flow as possible to v. Specifically,
∆f = min(excess(u), cf(u, v)). Update the flow and excess flow accord-
ingly.

(c) Relabel Operation: If a node with excess flow cannot push flow (i.e.,
there are no suitable adjacent edges), increase the node’s height to enable
the push operation. Specifically, set the height of node u to h(u) =
min{h(v) | cf (u, v) > 0} + 1.

(d) Repeat: Continuously perform push and relabel operations until no
nodes, except the source and the sink, have excess flow.

By iteratively performing these operations, the Push-Relabel algorithm adjusts
the flow in the network until it reaches the maximum flow. The algorithm 2
provides the pseudocode of the Push-Relabel algorithm.
In addition to the Ford-Fulkerson and Push-Relabel algorithms, Dinic’s algo-
rithm (or Dinitz’s algorithm) accelerates max-flow computation by constructing
a hierarchical network and using layered paths to achieve a minimum cut.
Edmonds-Karp’s algorithm improves efficiency by using Breadth-First Search
(BFS) to find augmenting paths. The Stoer-Wagner algorithm specializes in
undirected graphs and finds the minimum cut by gradually shrinking the graph
until only two nodes remain. Karger’s algorithm is a randomized method that
forms the cut set by randomly selecting edges and merging nodes. Improves
correctness by running multiple iterations. [58]
These algorithms collectively enhance the solutions to the minimum cut
problem, particularly in image segmentation. They provide diverse approaches
for different scenarios, improving the accuracy and efficiency of segmentation
and making image processing more precise and effective.
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Algorithm 2 Push-Relabel Algorithm
function Push-Relabel(G, s, t)

2: initialize height and excess flow
for all edge (s, v) in G do

4: flow(s, v) = capacity(s, v)
flow(v, s) = −flow(s, v)

6: excess(v) = flow(s, v)
excess(s)− = flow(s, v)

8: end for
while there exists an active node u (u /= s and u /= t) do

10: if there exists a neighbor v of u such that capacity(u, v)−flow(u, v) > 0
and height(u) = height(v) + 1 then

push(u, v)
12: else

relabel(u)
14: end if

end while
16: end function

function push(u, v)
18: send = min(excess(u), capacity(u, v) − flow(u, v))

flow(u, v)+ = send
20: flow(v, u)− = send

excess(u)− = send
22: excess(v)+ = send

end function
24: function relabel(u)

min_height = ∞
26: for all neighbor v of u do

if capacity(u, v) − flow(u, v) > 0 then
28: min_height = min(min_height, height(v))

end if
30: end for

height(u) = min_height + 1
32: end function
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Chapter 4

Methodology and
Implementation

This chapter explores methods for converting images into graph structures and
efficiently modeling regions and boundary information within images using a graph
cut segmentation framework. By defining and minimizing a cost function that
integrates hard and soft constraints, efficient and accurate image segmentation
can be achieved. This approach essentially transforms the challenge of image
segmentation into the problem of finding the minimum cut in a graph, thereby
enabling efficient and precise segmentation results.

4.1 The Image Seen as a Graph
An image can be considered as a graph G = (V, E), where each pixel (in a 2D
image) or voxel (in a 3D image) corresponds to a node in the graph. Neighboring
pixels (nodes) are usually connected by edges in a regular grid-like structure, as
illustrated in Figure 4.1 and Figure 4.2.

Specifically, an image can be defined as a set of pixels V = {vij}, where (i, j)
denotes the position of pixel vij in the image domain Ω ⊆ R2. Edges connected
between neighboring pixels (i, j) are referred to as n-links and the set of these
connected edges is denoted as N . Note that the definition of neighboring pixels
can be arbitrary, and the neighborhood system N can contain all unordered pairs
of neighboring pixels under the standard 8-neighborhood system (for 2D images)
or 26-neighborhood system (for 3D images). In this context, we focus solely on the
segmentation of 2D images.

To simplify the modeling and express the relationship between pixels and “object
and background” more intuitively and accurately, a typical method to extend the
regular graph is to introduce two additional special nodes called terminals. In the
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Figure 4.1: Original Image Figure 4.2: Illustration of grid-like
arrangement of pixels

context of vision, the terminals correspond to the set of labels that can be assigned
to pixels, where the source is associated with the foreground and the sink with
the background and are denoted by the symbols s and t, respectively, which can
be considered virtual nodes. The edges formed by all other vertices connected to
these two terminal vertices are called t-links. Thus, we updated the graph G to
G′ = (V ′, E ′),A simple 2D example of an updated undirected graph is shown in
Figure 4.3.Therefore,

V ′ = P ∪ {s, t}
E ′ = N ∪

Û
p∈P

{{p, s}, {p, t}}

To partition an image into foreground and background, we use the technique
of s-t cut. An s-t cut C is a subset C ⊆ E of the set of edges E, which makes it
possible to completely separate the two terminal points S and T in the graph after
the cut and to split the nodes into two distinct subsets according to the source
points. The cut can generate binary partitions with arbitrary topological properties.
Let A = (A1, . . . , Ap, . . . , A|P |) be a binary vector whose components Ap specify
assignments to pixels p in P . The goal of segmentation is to assign a label fp to
each pixel Ap in the image, where each fp can be either 1 or 0, representing "object"
and "background," respectively.

Taking Figure 4.4 as an example, the left figure shows the construction of the
graph, where S and T represent two different labels. The right figure shows the
division of the graph into two parts by cutting. Pixels connected to s after a cut
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Figure 4.3: Undirected graph with source and sink nodes

Figure 4.4: An example of a cut

are assigned to the label S, and pixels connected to t are assigned to the label T .
In practice, any cut will split the image into "object" and "background" parts.

However, our goal is to find the optimal cut that not only efficiently splits the image
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into foreground and background but also minimizes the cost of the cut, thereby
ensuring the highest quality of the segmentation.

In combinatorial optimization, the cost of a cut is defined as the sum of the
costs of the edges it cuts:

|C| =
Ø
e∈C

we.

4.2 Graph Edges
A graph cut operates on the edges of a graph. When converting an image into a
graph, defining the edges is crucial because it directly influences the structure of
the graph cut and the outcome of image segmentation. Critical aspects of defining
edges include the connectivity pattern, whether the edges are directed or undirected,
and the definition of edge weights.

1. Edge Connectivity
Edge connectivity determines which pixels are connected by edges and is
typically based on their adjacency. In 2D images, common patterns include
4-neighborhood and 8-neighborhood. The 4-neighborhood connects each pixel
to its top, bottom, left, and right neighbors, while the 8-neighborhood also
includes the diagonal neighbors.
Common grid structures include square grids, triangular grids, and quadri-
lateral grids. As shown in the Figure 4.5, 4.6 and 4.7 they are composed of
square, triangular, and irregular quadrilateral cells, respectively.

Figure 4.5: Square
Grid

Figure 4.6: Triangular
Grid

Figure 4.7: Quadrilat-
eral Grid

2. Edge Directionality
Edges can be directed or undirected. Undirected edges indicate symmetric
interactions between pixels, while directed edges represent relationships in a
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specific direction, such as the probability of moving from one pixel to another.
In image segmentation algorithms, undirected edges are typically used because
the similarity between pixels is symmetric.

In this thesis, n-links are considered undirected edges that connect neighboring
pixels, whereas t-links are treated as directed edges with direction s → (u, v) →
t. For the subsequent image segmentation process, particularly using graph
cut methods, we regard n-links as 2 anti-parallel edges with equal weights. In
addition, we conduct control experiments using n-links as unidirectional edges
in the direction from s to t to verify the effect of edge directionality on the
segmentation results.

Figure 4.8: Treat undirected edges as 2 anti-parallel edges with the same weight.

3. Edge Weights

In the graph construction for image segmentation tasks, each edge {vi, vj} ∈ E
is assigned a corresponding non-negative weight wij , which represents the cost
of removing this edge from the graph and can also be viewed as a penalty.
These weights reflect the similarity between neighboring pixels in the image,
where higher weights indicate stronger similarities or connections between
pixels, while lower weights imply weaker similarities or connections. In this
thesis, weights are determined based on the color similarity of pixel values. As
discussed in Section 3.1.1, the analysis primarily focuses on examining color
differences within the RGB and LAB color spaces.

In the next section, we will detail how n-links (connections between nodes) and
t-links (connections between nodes and sources or sinks) can be used to construct
an exact partition energy function. This energy function quantifies the "cost"
of any given segmentation, allowing us to find the optimal image segmentation
by minimizing this function. The minimum cost cut C on the graph G can be
calculated precisely in polynomial time.
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4.3 Segmentation Energy
The graph-cut model proposed by Boykov and Kolmogorov in 2004 cleverly inte-
grates region and boundary information and coordinates them through a regulariza-
tion parameter usually determined experimentally. This achieves an ideal balance
between region and boundary properties. Thus, the segmentation energy function
applied to the boundary and region properties of object A can be described as
follows:

E(A) = λ · R(A) + B(A) (4.1)
where

R(A) =
Ø
i∈V

Ri(Aj) (regional term) (4.2)

B(A) =
Ø

{i,j}∈N

Bi,j · δAi+Aj
(boundary term) (4.3)

and

δAi+Aj
=
1 if Ai /= Aj,

0 if Ai = Aj

The energy function E(A) quantifies the cost of a graph cut, and minimizing this
energy leads to optimal segmentation. The function consists of the region term R(A)
and the boundary term B(A). The integration of these two components constitutes
the essence of the graph cut approach. Here, the regularization parameter λ acts
as the relative importance factor balancing the regional and boundary terms on the
energy function. Setting λ to zero causes the approach to focus only on boundary
details and ignore region information. As shown in Figure 4.9 (a), segmentation
using mainly boundary cues tends to be performed along places with significant
differences in edge intensity, demonstrating the ability to separate regions based on
visual discontinuities. While (b) segmentation using only regional cues ignores the
direct relationship between neighboring pixels by assuming that the capacity of all
connections (n-links) is zero [23].

4.3.1 Construction of Boundary Information
To quantify the similarity between neighboring pixels in an image, Bi,j, known as
the boundary term B(A), is used to represent the weights of the n-links between
pixels i and j. This term evaluates whether the two pixels belong to the same
region by calculating their similarity. If the difference between two neighboring
pixels is small, they are likely to belong to the same object or background. In
contrast, a significant difference indicates that these pixels may be located at the
edges of the object and background, resulting in a higher likelihood of segmentation.
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Figure 4.9: Figure 4.9 presents two basic examples of object extraction using s/t
graph cuts. In (a), image pixels form a 2D grid graph where neighboring pixels
are connected by n-links, with capacities based on intensity differences |Ip − Iq|.
Seeds are connected to terminals (source and sink) by t-links. High-cost t-links
hardwire seeds to terminals, providing topological constraints for segmentation.
Max-flow algorithms increase flow from source to sink until edges saturate, forming
a boundary (cut). Example (a) relies on boundary-based cues from n-links, whereas
(b) demonstrates graph cut segmentation using only t-links, encoding region-
based cues. Here, all n-links have zero capacity, and each pixel p is connected to
terminals with t-link capacities |Ip − A| and |Ip − B|, resulting in segmentation
equivalent to thresholding around intensity level A+B

2 . This graph cut approach
combines boundary cues, regional cues, and topological constraints in a unified
global optimization framework.

In addition, Bi,j can also decrease as the distance between i and j changes. The
total cost of the cut-off n-links reflects the total cost of forming these segmentation
boundaries. For the term Bi,j is defined in the following:

Bi,j ∝ exp
A

−
∆d2

ij

2σ2

B
· 1

dist(i, j) . (4.4)

• Bij is the weight of the edge between pixels i and j.

• ∆dij represents the color distance between pixels i and j.

• σ is a parameter that controls the strength of the weight.

The weight function w(i, j) of n-link can be expressed as follows:
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wij = e
−

∥∆dij ∥2

σ2
I ·

e
− ∥X(i)−X(j)∥2

σ2
x if ∥X(i) − X(j)∥2 < r

0 otherwise.
(4.5)

• X(i) is the spatial location of node i, and ∆dij is color distance between pixels
i and j. Note that the weight wij = 0 for any pair of nodes i and j that are
more than r pixels apart.

Figure 4.10 shows a 2D grid where each node represents a pixel, and the lines
between nodes represent connections between pixels (n-links). The values on these
lines indicate the weights between the pixels.

Figure 4.10: A 2D grid illustration, the numbers on the connecting lines indicate
the weights between neighboring pixels, reflecting the similarity between the pixels.

4.3.2 Construction of Region Information
The region term R(A) describes the likelihood that a pixel belongs to a particular
region (foreground or background). This metric is usually based on features such
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as intensity, color, texture, etc. In this thesis, we also consider color as a key
feature for analysis. The region term evaluates the cost of assigning each pixel to a
particular segmentation region, thus facilitating the division of pixels with similar
properties into the same region. In the previous section 4.1, we added two terminals,
s and t, associated with the foreground and background and created t-links for
each pixel to these two terminals, the weights of these two edges Rp(“obj”) and
Rp(“bkg”) denote the cost of pixel p belonging to the foreground and background,
respectively. For example, a pixel with a high feature match to the foreground
model will have a low-weight t-link to the source node s and a high-weight t-link
to the sink node t, indicating that this pixel has a lower cost of assignment to the
foreground and a higher cost of assignment to the background.

In practice, the exact computation of Rp(“obj”) and Rp(“bkg”) is based on the
requirements of the particular application and the a priori knowledge available.
Some automatic segmentation is based on a priori knowledge, such as image edges,
color histogram peaks, or specific texture patterns. For example, as demonstrated
by Greig et al. and Boykov et al., image segmentation algorithms use Negative
Log-Likelihoods and the Maximum A Posteriori Probability (MAP) - MRF formulas
to compute the region term Rp(·) [12]. When color is used as the feature value,
Ip represents the color of the pixel p, and the probabilities Pr(Cp | “obj”) and
Pr(Cp | “bkg”) denote the likelihood that the pixel p has a certain color given that
it belongs to the object or background, respectively. In this thesis, Rp(·) may reflect
on how the color of pixel p fits into given color space of the object and background.
The weight of the t-links is defined as following equations:

Rp(“obj”) = − ln Pr(Cp|“obj”) (4.6)

Rp(“bkg”) = − ln Pr(Cp|“bk”) (4.7)

4.4 Manual vs. Automatic Seed Selection
Numerous methods have been developed to model region information, including
histogram-based and clustering-based methods. Histogram-based methods operate
by counting the bright and dark pixels in the image, but such methods often
have difficulty in constructing sufficient histograms of the color space and thus
face challenges in color image segmentation. Meanwhile, clustering-based methods
analyze image features by applying clustering algorithms and use the clustering
results to represent a priori labeling information. Commonly used clustering
algorithms include the K-means algorithm and the Gaussian Mixture Model (GMM).
In addition, some methods may take advantage of the statistical properties of the
image to initialize the segmentation process, for example, by assuming that the
brightest or darkest regions of the image belong to a particular group. Image
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segmentation can also be implemented using a combination of algorithms: without
seeds, a simpler segmentation method (e.g., threshold segmentation, region growing)
can be used to obtain an initial result, which can then be used as input to Graph
Cut to refine the segmentation.

This section will explore two approaches to acquiring regional information: one
relies on user-provided seed points, and the other employs automatic clustering
techniques, such as K-means clustering, to obtain prior knowledge.

4.4.1 Interactive Graph Cuts: User Enter Seeds
A common and effective strategy is to use seeds input by the user to get the region
information. The user selects pixels that belong to the foreground (objects) and the
background as seeds (sources and sinks), and this approach uses a priori knowledge
provided by the user to initialize and guide the segmentation process. This provides
a set of topological (hard) constraints for image segmentation, which avoids blindly
exploring the entire image and greatly improves the efficiency and accuracy of
segmentation.

Smart Scissors [59] and Real-Time Lines [60] utilize boundary-based hard con-
straints, which allow the user to specify the particular pixels through the segmen-
tation boundaries that should be passed through. The “shortest path” between
the labeled pixels is then computed as the segmentation boundary according to an
energy function based on the gradient of the image. The difficulty with this hard
constraint is that the user’s input must be very precisely localized to the desired
boundary. In comparison, Boykov first proposed a new approach to interactive
segmentation of N-dimensional images, which allows the user to participate directly
in the segmentation process by selecting regions of interest in the image or by
specifying seed points to achieve more accurate object extraction without requiring
the user to locate them precisely. Moving the seeds appropriately around the object
(within a certain range) usually does not change the segmentation results. [23]

During the image segmentation process, the user designates special source point
s (representing the foreground) and sink point t (representing the background)
by labeling specific pixels as “O” (foreground seed) and “B” (background seed),
respectively, where O ⊂ V and B ⊂ V , ensuring that O ∩ B = ∅.

The following table gives weights of edges in E :
where

K = 1 + max
p∈P

Ø
q:{p,q}∈N

Bp,q.

weight =


Bp,q {p, q} ∈ Neighboring pixel
α · Rp(0) for edge {p, S}
α · Rp(1) for edge {p, T}

(4.8)
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edge weight (cost) for
{p, q} Bp,q {p, q} ∈ N
{p, S} λ · Rp(“bkg”) p ∈ P, p /∈ O ∪ B

K p ∈ O
0 p ∈ B

{p, T} λ · Rp(“obj”) p ∈ P, p /∈ O ∪ B
0 p ∈ O
K p ∈ B

Table 4.1: Weights of edges

As shown in Table 4.1, when a pixel is labeled as an object (i.e., foreground),
the t-link weight between that pixel and the node s is set to be large, while the
t-link weight between that pixel and the node t is set to 0. In contrast, when a
pixel is labeled as the background, that pixel has a high weight between it and the
node t, and the weight of the t-link between that pixel and the node s is set to 0.
This configuration ensures that the approach can accurately distinguish between
foreground objects and background based on the seeds provided by the user.

4.4.2 Fully Automated Image Segmentation Relying on
K-means

Based on sections 4.4.1, it is found that the selection of seed points is crucial to
the effectiveness of the Graph Cut method. However, relying on users to manually
select seed points each time significantly increases operational burden, affects the
efficiency of image segmentation, and reduces the repeatability of the process.
Moreover, non-expert users may have difficulty accurately selecting the optimal
seed points, impacting the quality of the segmentation results. Therefore, the
automated selection of seed points for foreground and background is an important
research direction in image segmentation.

The following are several methods and techniques that are currently widely used
for automated seed selection.

1. Based on Color Histogram Analysis By analyzing the color histogram of
an image, regions with concentrated or significantly different color distributions
can be automatically selected as seed points. This method first calculates
the color histogram of an image in a selected color space (e.g., RGB, HSV)
and counts the pixel distribution of each color channel. High-frequency color
regions usually represent the main objects in the image. They can be used as
foreground seed points, whereas low-frequency color regions or regions near
the edges of the image are used as background seed points.
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This approach is more common in images with significant color contrast or large
foreground-background color differences, such as medical image segmentation
[61]. In tumor or lesion detection, lesion areas and healthy tissues often have
significant differences in gray-level distribution. By analyzing the histogram
of medical images (e.g., MRI or CT), regions with high-frequency gray levels
can be identified as foreground seed points, which often correspond to lesions.
Regions with low-frequency gray levels are used as background seed points,
representing normal tissues or backgrounds. Medical images usually have less
lighting variation, reducing the impact of illumination changes on histogram
analysis.
This approach is easy to use, doesn’t require much computation, and is well-
suited for real-time applications [62]. However, it is less effective for images
with complex colors or mixed foreground and background colors and is sen-
sitive to illumination changes [63]. Therefore, combining this method with
other techniques may be necessary to improve accuracy and robustness in
complex image processing [61].

2. Clustering-Based Algorithms
Image segmentation methods based on clustering algorithms, especially K-
means clustering, are highly efficient at estimating an image region’s pre-
dominant color by calculating the clusters’ center. A property that makes
K-means a tool that can automatically generate accurate seed points, serving
as a starting point for image segmentation or further processing. Despite
limitations such as sensitivity to noise and outliers, neglect of spatial continu-
ity between pixels, and difficulties when dealing with complex images, these
carefully selected seed points are used in the Graph Cut method as initial
markers for automated seed selection. Automated selection of seed points can
significantly improve the efficiency and accuracy of image segmentation and
reduce the need for manual intervention.
This method shows good adaptability and efficiency in practical applications,
especially for images with significant differences in color or location. For
example, studies have shown that automated segmentation of medical images
can be effectively realized by combining K-means clustering and Graph Cut
methods to improve the accuracy and efficiency of segmentation [64] [65].
These studies support the promise of K-means clustering as a powerful tool
for image segmentation tasks.
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(a) Color Selection of Cluster Centers
In image processing using the K-means clustering algorithm, selecting
the colors of the cluster center is a critical step, as it directly affects
the accuracy and effectiveness of segmentation. Typically, the cluster
centers’ colors represent their regions’ main color features. In practical
applications, there are two common methods for determining the colors
of the cluster centers: selecting the color of representative pixels near
each cluster center or calculating the average color of all pixels within the
cluster.
Choosing the color of pixels near the cluster center as the representative
color is intuitive and easy to implement. However, this method might
occasionally select anomalous pixels, especially in images with noise or
uneven color distribution. Such color anomalies can mislead the clustering
results, affecting the quality of the final image segmentation.
Calculating the average color of all pixels within the cluster provides a
more stable and reliable option. This method comprehensively considers
the color information of the entire region, effectively reducing the risk
of erroneous segmentation. The average color reflects the overall color
trend within the cluster, enhancing the robustness of the clustering and
making the results more stable and reliable. Therefore, in applications
requiring high accuracy and robustness in image segmentation, using the
average color of the region as the cluster center color is generally a better
choice. This method avoids mis-segmentation due to color anomalies and
provides more consistent and accurate image processing results.

(b) Pre-defining the K Value
Pre-defining the K value is a critical step when using the K-means cluster-
ing algorithm for image segmentation. Directly setting the K value to 2 to
divide the image into foreground and background, while straightforward
and easy to understand, may be insufficient for processing complex or
detail-rich images. When the K value is set to 2, the algorithm gener-
ates only two cluster centers, capturing only the two most prominent
colors or features in the image, and may overlook other important visual
information, leading to sub-optimal segmentation quality. Additionally,
since each cluster center’s color is the average of all pixel colors in that
region, this could result in a deviation from the actual colors of some
pixels. Especially when the color distribution between the foreground and
background is similar or the color transition is smooth, setting the K value
to 2 and using the average color as a representative may fail to capture the
actual color variations accurately, thus impacting segmentation accuracy.
As the K value increases, more cluster centers are created, allowing a
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finer division of colors and features within the image. This results in the
cluster center colors more closely reflecting the actual color diversity in
the image. This approach not only better handles images with complex
color distributions but also captures more details, thereby enhancing the
accuracy and effectiveness of the segmentation.
However, the K value should not be set too high. When the K value
is too high, it can lead to over-segmentation of the image, breaking up
even continuous regions into multiple small segments. This can make it
difficult to distinguish between foreground and background seed points,
increasing the complexity of subsequent processing. Additionally, as the K
value increases, the computational burden also rises, and the clustering’s
stability against noise may decrease, leading to unstable results and a loss
of algorithm interpretability. Therefore, by appropriately adjusting the
K value, it is possible to maintain the interpretability of the algorithm
while enhancing its adaptability and accuracy in handling different types
of images. Figures 4.11, 4.12, and 4.13 illustrate the logic behind using
the K-means clustering for automated seed selection and compare the
results of the segmentation with different values of k.

An in-depth comparative analysis of manual and automatic seed placement
methods and their impact on image segmentation results will be presented in
Chapter 5. The experiment aims to discuss the impact of each seed setting method
on the segmentation process and delineate their advantages and disadvantages in
different scenarios.

Once we have the energy equation and the edge weights in the graph (both
n-links and t-links), we can apply the mathematical formulas of Chapter 3 to solve
the minimum-cut problem of the energy equation. This allows us to accurately
segment the target object and the background in the image.
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Figure 4.11: The automated segmentation results using k-means with k = 2

Figure 4.12: The automated segmentation results using k-means with k = 4

Figure 4.13: The automated segmentation results using k-means with k = 8

39



Chapter 5

Experiments and Results

5.1 Pre-experimentation Preparation

5.1.1 Dataset Descriptions

In this thesis, we use images from the widely recognized PASCAL Visual Object
Classes (VOC) dataset to thoroughly evaluate the effectiveness of the Min-Cut image
segmentation method [66]. The PASCAL VOC dataset is a standard benchmark in
computer vision, used for various tasks such as image classification, object detection,
and image segmentation. This dataset is highly regarded and has been the basis
for many influential papers and neural network models.

The VOC2007 dataset includes twenty diverse object categories, such as vehicles,
household items, animals, and other objects. The variety in these categories offers
a rich set of visual content, allowing our segmentation method to demonstrate its
accuracy and effectiveness across different complex environments. Figure 5.1 shows
the 20 object categories in the VOC2007 dataset.

For the segmented image set, each image is accompanied by two types of precise
annotations: class segmentation and object segmentation. In class segmentation,
each pixel is labeled as a category or background. In object segmentation, each
pixel is labeled with an object number (from which the category can be determined)
or background. Figure 5.2 shows examples of these two segmentation types for an
image in the training set.

Since this thesis focuses on image segmentation, primarily targeting the sep-
aration of object and background, we selected images with a single class object
from the 20 categories as the dataset and used class segmentation annotations for
evaluation.
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Figure 5.1: VOC2007 classes. Leaf nodes correspond to the 20 classes. [66]

Figure 5.2: Example of segmentation ground truth. a. Training image b. Class
segmentation showing background, car, horse and person labels. The cream- colored
‘void’ label is also used in border regions and to mask difficult objects. c. Object
segmentation where individual object instances are separately labelled. [66]

5.1.2 Gurobi Optimizer
In operations research, linear programming (LP), integer programming (IP), and
mixed integer programming (MILP) typically involve numerous variables and
constraints. Although optimization problems with continuous variables and dozens
of constraints can be solved using existing algorithms, real-world optimization
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problems often involve thousands of variables and constraints, making manual
solutions or simple algorithms impractical, particularly for discrete models, where
computing the optimal solution is highly complex.

As discussed in Section 3.3, while specialized algorithms such as Ford-Fulkerson
are often applied to the standard Min-Cut problem for image segmentation, real-
world applications frequently require additional constraints and objectives. For
example, considerations such as region consistency, edge smoothing, and region-
specific shape constraints might be necessary. These complex constraints and
objective functions can be challenging to implement with specialized graph-cut
algorithms. However, modeling the Min-Cut problem as an integer linear program-
ming (ILP) model allows for a more flexible expression of these constraints and
objectives.

Moreover, as image resolution and application requirements increase, the size of
the image segmentation task can become substantial, involving thousands of pixels
and the corresponding variables and constraints. Specialized graph cut algorithms
perform well on small-scale problems but may face performance bottlenecks on
larger problems. Such large-scale problems require specialized, high-quality solvers
such as Gurobi Optimization.

Figure 5.3: The general API architecture of Gurobi Optimization

Gurobi Optimization is a high-performance, general-purpose optimization solver
capable of handling large-scale ILP problems and effectively scaling to larger
problem sizes [67]. It is particularly adept at solving complex integer programming
problems using advanced algorithms such as Simplex, Interior Point, and Branch-
and-Bound. The Gurobi Optimization is optimized to find high-quality solutions
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within a reasonable time frame, employing multi-threaded parallel computation,
heuristics, and preprocessing techniques to enhance solution speed and quality. It
excels in managing complex optimization problems of varying sizes and complexities
[68].

Gurobi Optimization supports various programming languages and modeling
tools, As shown in Figure 5.3, including Python, C++, Java, and MATLAB,
providing flexible interfaces and extensive functionality. These features allow for
easy integration with existing systems and workflows.

In summary, Gurobi Optimization is widely regarded as the best solver for large-
scale and complex optimization problems due to its efficient solving capabilities,
user-friendly programming interface, broad application range, and reliability and
accuracy.

In this chapter, the performance of the two mathematical models proposed in
chapter 3 will be experimentally compared in terms of image segmentation results.

5.1.3 Image Pre-processing
Despite Gurobi’s exceptional performance in solving complex integer programming
problems, its runtime and memory requirements can rapidly increase with the
input size. In the graph cut image segmentation task, it is necessary to pre-process
larger images to improve computational efficiency and reduce resource consumption
significantly. In this thesis, we resize larger images to dimensions below 100×100
pixels. This approach effectively reduces the number of nodes in the network,
while preserving as much of the essential information of the images as possible.
Consequently, the structure of the graph is simplified, making the computation
of the Min-Cut algorithm more efficient. By adopting this method, we can save
computational resources and handle more data within the constraints of limited
hardware conditions.

5.1.4 Evaluation Indicator
• Intersection over Union (IoU))

Intersection over Union (IoU), also known as the Jaccard Index, is a metric
used to evaluate the accuracy of image segmentation.
IoU is defined as the area of intersection between the predicted segmentation
map A and the ground truth map B, divided by the area of the union between
the two maps:

IoU = J(A, B) = |A ∩ B|
|A ∪ B|

(5.1)
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A larger IoU value signifies that the predicted segmentation closely matches
the ground truth, leading to more accurate and reliable segmentation results.

• Association of node
Association is a metric used to measure the compactness within segmented
regions in image segmentation. Assoc(A, V) is the sum of all edges with one
end in A. Essentially, it is the sum of all weights for every element in the
partition A connected to any element in V .

assoc(A, V ) =
Ø

u∈A,t∈V

w(u, t) (5.2)

A larger Assoc value indicates greater similarity within each segmented region,
stronger connections between nodes within the region, and thus higher internal
compactness. Consequently, a larger Assoc value typically leads to better
segmentation results, as it reflects more cohesive and well-defined regions.

5.2 Experimental and Results Analysis
In this thesis, we used a system running Windows 11 (version 10.0.22631) on
an AMD64 architecture. The hardware was powered by an Intel(R) Core(TM)
i9-14900HX processor with a base frequency of 2.20 GHz (Intel64 Family 6 Model
183 Stepping 1, GenuineIntel) and an NVIDIA GeForce RTX 4060 laptop GPU.

The software environment included Python version 3.12.2 and Gurobi Optimizer
version 11.0.0 for solving optimization problems.

We conducted three sets of experiments to progressively analyze the independent
impact of each parameter on image segmentation performance. The main variables
considered in the experiments are as follows, with detailed descriptions provided in
Section 4:

• Color Spaces (2 types): RGB and LAB

• Edge Connection Types (3 types): Lattice, Triangulated, Quadrilateral

• Edge Directionality (2 types): Unidirectional and Bidirectional

Experiments 1, 2, and 3 utilized Mathematical Model 1 to solve the minimum cut
of the energy equation for each model, employing the Gurobi Optimization solver
for the computations. The Python script used to perform Min-Cut Optimization
with Gurobi is shown in Listing A.1. To avoid the influence of external factors on
the experimental results and to ensure precision and consistency, manually selected
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source and sink seed points were used in all three experiments to achieve the most
optimal segmentation results.

Besides these variables, we investigated the impact of various experimental
setups. Experiment 4 explored the influence of user-interactive seed point selection
in contrast to automated seed point selection with k-means clustering on the
efficacy of image segmentation, whereas Experiment 5 evaluated the outcomes of
two different mathematical models (detailed in Chapter 3).

5.2.1 Experiment 1
We designed the experiment with two models for comparison to examine the effect of
image segmentation in different color spaces. Model 1 utilizes the RGB color space,
using the RGB color distance between pixels as the weight of the edges between
nodes. The edges are connected in a quadrilateral manner and are bidirectional.
Model 2 employs the same type of edge connection and bidirectional edges as Model
1 but is constructed in the LAB color space.

Figure 5.4: Sample segmentation results from the VOC 2007 segmentation dataset.
The first two lines are the original images and ground truth. The third and fourth
models use RGB color distance and LAB color distance as edge weight, respectively.

Figure 5.4 presents sample segmentation results from the VOC 2007 segmentation
dataset, including original images, ground truth, and segmentation results from
two different models. The ground truth provides precise segmentation contours
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for each object, serving as a reference standard for evaluating model performance.
From Figure ??, we observe that when using the RGB color distance as the edge
weight, the model performs well in segmentation but may show some errors in
detailed areas. The LAB color-distance model typically delivers smoother and more
accurate segmentation edges, particularly excelling in complex scenes and detailed
processing. Overall, the LAB color-distance model outperforms the RGB model in
segmentation accuracy and detail preservation.

From Table 5.1, it can also be seen that while achieving better segmentation
results, the LAB color-distance model processes faster than the RGB model. Model
2 also consistently outperforms Model 1 in terms of Assoc(S) and Assoc(T ) values,
indicating Model 2’s ability to maintain strong links within segmented areas. Higher
association values indicate that Model 2 effectively maintains the connections
between pixel sets in each segmented area, enabling it to accurately identify and
preserve the boundaries between different regions during image segmentation tasks.

Table 5.1: Quantitative comparison of each model in different color spaces. We
display runtime, Intersection over Union (IoU), and association of S and T nodes.

Instance Model 1 Model 2
Time (s) IoU (%) Assoc(S) Assoc(T) Time (s) IoU (%) Assoc(S) Assoc(T)

Aeroplane 35.34 65 69255 737 8.36 71 95369 2900
Dining table 9.22 88 53097 7037 8.36 90 65931 11490
Person 29.60 89 26930 18558 18.55 92 38741 27841
Sofa 24.55 85 14808 34815 22.09 86 20399 52216
Sheep 22.99 38 9757 6716 19.75 45 33866 12201
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5.2.2 Experiment 2
We developed the experiment using three different models to evaluate how the
type of edge connection influences the performance of image segmentation. Each
of the three models employs the LAB color space and bidirectional edges but
differs in their edge connection types. In detail, Model 3 implements a mesh
edge connection, Model 4 utilizes triangular connections, and Model 5 adopts
quadrilateral connections.

Figure 5.5 illustrates various edge connections in the network. This figure
compares three network structures: (a) has fewer connections between nodes, while
(b) and (c) show a marked increase in connections, indicating a more complex
network relationship. The red and black lines represent the edges between the
nodes.

(a) (b) (c)

Figure 5.5: Illustration of a network layout displaying connections among nodes.
Object nodes are depicted in green, while background nodes are shown in white.
Red lines represent the edges that have been cut.

Figure 5.6 shows that the lattice edge model in the third row may lack precision
to capture more complex shapes. The triangular edge model in the fourth row
excels at capturing details and complex shapes, although it might result in over-
segmentation in certain areas. The quadrilateral edge model in the fifth row
shows stable performance in capturing overall contours, effectively maintaining the
integrity of the objects.

From Table 5.2, although the lattice edge model’s segmentation performance
is not as good as the quadrilateral edge model, it connects fewer edges between
nodes. This reduction in connections speeds up the calculation of the minimum
energy equation, thereby increasing the model’s image segmentation speed.
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Figure 5.6: The figure illustrates segmentation outcomes from the VOC 2007
dataset. The top two rows contain the original images and the corresponding
ground truth. The third, fourth, and fifth rows respectively demonstrate the
model’s application of lattice, triangular, and quadrilateral configurations for edge
connections.

Table 5.2: Quantitative comparison of each model in different edge connection
types. We display runtime, Intersection over Union (IoU), and association of S and
T nodes.

Instance Model 3 Model 4 Model 5
Time (s) IoU (%) Time (s) IoU (%) Time (s) IoU (%)

TV/monitor 10.07 58 15.85 58 27.06 57
Bird 7.16 36 10.97 48 13.33 75
Dog 10.24 69 15.11 71 18.76 70
Aeroplane 11.37 88 15.69 87 24.81 87
Cow 8.64 71 25.76 86 36.43 86
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5.2.3 Experiment 3
In the image segmentation process, the direction of edges determines how informa-
tion is transmitted within the network, directly impacting the segmentation results.
Specifically, when using color differences between pixels as the characteristic for
segmentation, n-links are considered as two anti-parallel edges with equal weights.
To examine the impact of edge direction on segmentation results, we conducted
control experiments treating n-links as unidirectional edges directed from s to
t. Model 6 uses the LAB color space, a quadrilateral edge connection type, and
bidirectional edges. Model 7 employs the same color space and edge connection
type but with unidirectional edges.

Figure 5.7 illustrates different types of network structure. Figure (a) shows a
network structure with bidirectional n-links, while Figure (b) presents a structure
with unidirectional n-links. Figure (b) shows that some object pixels are inaccurately
segmented, whereas Figure (a) demonstrates better segmentation results with more
precisely cut edges.

(a) (b)

Figure 5.7: Illustration of network structure with bidirectional n-links (a) and
network structure with bidirectional n-links (b).

Figure 5.8 presents sample segmentation results from the VOC 2007 dataset.
The first and third images in the second row show the effects of using bidirectional
n-link for segmentation, while the second and fourth images show the results
with unidirectional n-link. The bidirectional n-link model clearly captures the
boundaries of the object with more accuracy, producing segmented regions that
closely match the ground truth. In contrast, the unidirectional n-link results
exhibit more segmentation errors and discontinuities. This may be because the
unidirectional n-link restricts the flow of information, leading to insufficient handling
of complex boundaries and, consequently, lower segmentation accuracy.
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Figure 5.8: Sample segmentation results from the VOC 2007 dataset. The first
row shows the original images and ground truth. The second row displays the
model’s segmentation results using bidirectional n-link and unidirectional n-link,
respectively.

5.2.4 Experiment 4
Experiment 4 explored the impact of user-interactive seed point selection on image
segmentation performance compared to k-means clustering-based automatic seed
point selection. Apart from the seed point selection method, all other parameters
were kept constant. We used quadrilateral edge connection in the LAB color space
and bidirectional n-link segmentation.

Figure 5.9 shows sample segmentation results from the VOC 2007 dataset.
The results demonstrate that the performance of seed point selection based on
k-means clustering varies with different k values. A smaller k leads to coarse
segmentation, failing to accurately capture image details, whereas a larger k can
cause oversegmentation and a higher risk of misclassification. In contrast, user-
interactive seed point selection typically yields precise segmentations, effectively
capturing the features and details of the images. Table 5.3 also shows that under
the user-interactive method, all instances exhibit high IoU values, with varying
characteristics in Assoc(S) and Assoc(T ), notably stable performance for the Cat
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instance.
Although user-interactive seed point selection yields more accurate results,

automatic segmentation methods have unique advantages. Automatic segmentation
can efficiently handle large volumes of images. Therefore, user-interactive seed
point selection is preferable for high-precision single-image segmentation. For
processing large datasets with relatively lower precision requirements, k-means
clustering-based automatic seed point selection is more suitable.

Figure 5.9: Sample segmentation results from the VOC 2007 dataset. The first
column is the original image, and the second is the ground truth. Columns three
to five show results from k-means clustering with k values of 2, 4, and 8. The last
column displays user-interactive seed point selection results.

Table 5.3: Comparison of IoU (%), Assoc(S), and Assoc(T) for different k values
and user-interactive methods across different instances.

Instance k = 2 k = 4
IoU (%) Assoc(S) Assoc(T) IoU (%) Assoc(S) Assoc(T)

Person 54 21700 3737 44.8 32742 8651
Car 46 17945 41161 62 41916 15844
Cat 90.6 66310 24263 91 58253 24295

Instance k = 8 user-interactive
IoU (%) Assoc(S) Assoc(T) IoU (%) Assoc(S) Assoc(T)

Person 7.9 83606 9191 74 59172 24220
Car 64 28380 28878 56 43635 14811
Cat 75 19886 62231 90.8 59172 24220
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5.2.5 Experiment 5
In this experiment, we implemented image segmentation using two different mathe-
matical models. Model 1 is a classic approach based on the minimum cut of an
energy function. Model 2 introduces additional variables and constraints.

We used the Gurobi Optimizer to solve the constructed minimum cut problem,
finding the optimal segmentation by minimizing the energy function. The Python
scripts to execute the minimum cut optimization are shown in Listings A.1 and
A.2.

From Figures 5.10(a) and (b), Model 1 performs well in simple image segmen-
tation. Figure (a) displays the graph structure of Model 1. Red edges indicate
cut edges, black edges indicate uncut edges, and green and white nodes represent
object and background pixels, respectively. Figure (b) shows the segmentation
result, with the blue area representing the segmented target region and the black
area representing the background. Model 1 effectively segments the target area
with clear boundaries. In contrast, Figures 5.10(c) and (d) show that Model 2
performs worse on this simple image. Figure (c) shows the graph structure of
Model 2, which introduces more variables and constraints, increasing the model’s
complexity. However, the segmentation result in Figure (d) is less accurate than
that of Model 1, with the blue target area showing noticeable segmentation errors.

Figure 5.11 shows differences in the performance of the two mathematical models
in practical image segmentation. Under the same conditions and experimental
settings, Figure (a) shows the segmentation result using Model 1, while Figure (b)
shows the result using Model 2. In Figure (a), Model 1 performs excellently, success-
fully segmenting the target (a bear) from the background. The bear’s boundaries
are clear and complete, with a distinct separation between the background and the
target. In contrast, Model 2’s result in Figure (b) is poorer, with the segmented
bear image having incomplete boundaries and noticeable noise and error regions.

Overall, Model 1 demonstrates superior performance in image segmentation
tasks. Although Model 2 incorporates more variables and constraints, it fails to
deliver the anticipated results in practical applications. Therefore, Model 1 is
recommended for practical image segmentation purposes.
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(a) (b)

(c) (d)

Figure 5.10: Segmentation results obtained using two different mathematical
models. The first row shows the results using Mathematical Model 1, while the
second row shows the results using Mathematical Model 2.

(a) (b)

Figure 5.11: Segmentation results using two different mathematical models.
(a) shows the results using Mathematical Model 1. (b) shows the results using
Mathematical Model 2.
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Chapter 6

Conclusion

This thesis examined and compared various Min-Cut models for image segmentation
and analyzed the performance of different mathematical models in optimizing
segmentation results. It also considered the advantages and disadvantages of
automatic seed selection and user interaction methods.

Among all models evaluated, those using the LAB color space and quadrilateral
edge connections exhibited superior performance, achieving higher segmentation
accuracy and faster processing speeds. The analysis of edge directionality showed
that bidirectional n-links more accurately captured object boundaries than uni-
directional n-links. Among the two different Min-Cut mathematical models, the
classical Min-Cut Model 1 generally outperformed Model 2, which introduced more
variables and constraints. Therefore, it is recommended that the classical Min-Cut
Model 1 be prioritized in realistic image segmentation tasks.

User-interactive methods significantly enhanced segmentation precision through
interactive seed selection. These methods effectively captured image features and
details often overlooked by automated approaches. User input helped guide the
segmentation process, especially in complex images where automated methods
might struggle. While less precise than user-interactive techniques, automated
methods such as k-means clustering performed well in handling large datasets,
providing a scalable solution for initial segmentation.

The Gurobi optimizer proved to be an effective tool for solving the large-
scale integer linear programming problems involved in image segmentation. It
significantly simplified the process of handling complex constraints and markedly
accelerated efficiency.

From the analysis in this thesis, the minimum cut model for image segmentation
also revealed several limitations.

First, the computational demands of the models are substantial. Even with
the powerful Gurobi optimizer, processing times are generally lengthy, particularly
when dealing with high-resolution images and large datasets, posing a significant

54



Conclusion

limitation for practical applications.
Secondly, these models revealed the difficulty of generalizing to unfamiliar

datasets, underscoring the need for more resilient methods to handle diverse data
effectively.

Finally, selecting seeds is a critical step in using Min-Cut for image segmentation,
but both user-interactive and fully automated methods have drawbacks. While
user-interactive methods achieved high accuracy, they are not scalable to large
datasets. Fully automated methods, although scalable, do not always reach the
precision of user-interactive techniques.
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Appendix A

Gurobi Optimization Script

Listing A.1: Python script for performing min-cut optimization using Gurobi for
the first mathematical model

1 c l a s s Gurobi_minCut ( ) :
2 de f __init__( s e l f , G) :
3 s e l f .G = G
4 s e l f . a f f i n i t y = nx . get_edge_attr ibutes ( s e l f .G, ’ a f f i n i t y ’ )
5 de f run ( s e l f , s , t ) :
6 # Dec i s i on model and v a r i a b l e s
7 m = gp . Model ( " min_cut " )
8 W = m. addVars ( s e l f .G. edges , vtype=GRB.CONTINUOUS,
9 lb =0.0 , ub=1.0 , name="W" )

10 U = m. addVars ( s e l f .G. nodes , vtype=GRB.CONTINUOUS,
11 lb =0.0 , ub=1.0 , name="U" )
12 # Add c o n s t r a i n t s
13 m. addConstr (U[ s ] == 1)
14 m. addConstr (U[ t ] == 0)
15 m. addConstrs ( W[ i , j ] >= U[ i ]− U[ j ] f o r i , j in s e l f .G. edges )
16

17 # Solve the model
18 m. opt imize ( )
19 optimal_value = m. objVal
20 edges_cut = [ ]
21 f o r i , j in s e l f .G. edges :
22 i f W[ i , j ] . x > 0 :
23 edges_cut . append ( ( i , j ) )
24 S = [ i f o r i in s e l f .G. nodes i f U[ i ] . x > 0 ] # s−s i d e o f cut
25

26 re turn edges_cut , S
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Listing A.2: Python script for performing min-cut optimization using Gurobi for
the second mathematical model

1 c l a s s Gurobi_minCut2 ( ) :
2 de f __init__( s e l f , G) :
3 s e l f .G = G
4 s e l f . a f f i n i t y = nx . get_edge_attr ibutes ( s e l f .G, ’ a f f i n i t y ’ )
5 de f run ( s e l f ) :
6 # Dec i s i on model and v a r i a b l e s
7 m = gp . Model ( " min_cut " )
8 Y = m. addVars ( s e l f .G. edges , vtype=GRB.CONTINUOUS,
9 lb =0.0 , ub=1.0 , name="Y" )

10 z = m. addVars ( s e l f .G. nodes , vtype=GRB.CONTINUOUS,
11 lb =0.0 , ub=1.0 , name=" z " )
12 V_s = m. addVars ( s e l f .G. nodes , vtype=GRB.CONTINUOUS,
13 lb =0.0 , ub=1.0 , name="V_s" )
14 V_t = m. addVars ( s e l f .G. nodes , vtype=GRB.CONTINUOUS,
15 lb =0.0 , ub=1.0 , name="V_t" )
16 # Def ine the o b j e c t i v e func t i on
17 m. s e tOb j e c t i v e ( gp . quicksum ( s e l f . a f f i n i t y [ i , j ] ∗ Y[ i , j ] f o r i ,

j in s e l f .G. edges ) ,
18 s ense=GRB. MINIMIZE)
19 # Add c o n s t r a i n t s
20 m. addConstrs ( Y[ i , j ] >= z [ i ]− z [ j ] f o r i , j in s e l f .G. edges )
21 m. addConstrs ( z [ i ] >= V_s [ i ] f o r i in s e l f .G. nodes )
22 m. addConstrs ( z [ i ] <= 1 − V_t [ i ] f o r i in s e l f .G. nodes )
23 m. addConstr ( gp . quicksum (V_s [ i ] f o r i in s e l f .G. nodes ) == 1)

m. addConstr ( gp . quicksum (V_s [ i ] f o r i in s e l f .G. nodes ) == 1) m.
addConstr ( gp . quicksum (V_t [ i ] f o r i in s e l f .G. nodes ) == 1)

24 m. addConstrs ( V_s [ i ] + V_t [ i ] <= 1 f o r i in s e l f .G. nodes )
25

26 # Solve the model
27 m. opt imize ( )
28 edges_cut = [ ]
29 f o r i , j in s e l f .G. edges :
30 i f Y[ i , j ] . x > 0 :
31 edges_cut . append ( ( i , j ) )
32 S = [ i f o r i in s e l f .G. nodes i f z [ i ] . x > 0 ] # s−s i d e o f cut
33 nodes_V_s = [ ]
34 nodes_V_t = [ ]
35 f o r i in s e l f .G. nodes :
36 i f V_s [ i ] . x > 0 . 9 9 :
37 nodes_V_s . append ( i )
38 i f V_t [ i ] . x > 0 . 9 9 :
39 nodes_V_t . append ( i )
40

41 re turn edges_cut , S
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