
Polytechnic of Turin

A.Y. 2022/2023

Master degree course
Electronic engineering

Transaction-Level Ethernet PHY
modelling in SystemC

Advisor Co-advisor Candidate
Luciano Lavagno Dario Soldi Loris Panaro

Abstract

The availability of Advanced Driver Assistance Systems (ADAS), the pressing demand
for connectivity and increasingly complex and content-rich infotainment systems, have
had, as first consequence, a considerable increase in data traffic and in the demand for
solutions capable of ensuring high throughput and low latency. Among these techno-
logical advancements, the adoption of Ethernet as a communication protocol within
automotive systems has emerged as a game-changer. Ethernet, a well-established stan-
dard in the realm of computer networking, offers numerous advantages in terms of
bandwidth, scalability, and flexibility, making it an attractive solution for in-vehicle
communication networks.
However, being an innovative communication protocol in the automotive industry, it
leads to brand new challenges: to define validation methodologies and strategies that
allow to easily test the integrability of Engine Control Unit (ECU) interconnected on
Ethernet and to perform high specific simulations on a virtual environment among all
the involved peripherals of the vehicle.
The aim of this master thesis is to deeply analyze how the Ethernet communication
protocol can be implemented on an automotive environment according to OPEN Al-
liance specifications, to develop virtual Ethernet PHY device TJA1101B provided by
NXP Semiconductor using SystemC 2.3.3 library and SCML2 2.8.0 library (provided
by Accelera and Synopsys respectively) and to simulate its behaviour in the Synopsys
Virtual Development Kit (VDK) tool. The project has been carried out in collaboration
with Punch Softronix and Polytechnic of Turin.

i

Acknowledgments

I would like to thank my relator, professor Luciano Lavagno, who has shown great
willingness both during the teaching period and during this thesis period. Moreover, I
am truly thankful for the invaluable opportunity he has provided me with, allowing me
to get in touch with Punch Torino and to develop this thesis together with its group.
I would like to extend a special thank to Punch Torino for the cooperation of this thesis,
which gave me the possibility to get in touch with its business reality and to better
understand how a real life project comes into being; in particular, a sincere thank goes
to Dario Soldi, member of Punch Torino and co-advisor, whom I hold in high esteem,
and with whom I have shared this thesis journey. He has consistently been extremely
helpful with assistance and clarifications at every stage of the work and pushed me to
do better every day.
A personal thank goes to my girlfriend Clara, exquisit person who deeply knows me
and with whom I have shared the most meaningful experiences of my life. Involving
her in such a moment of joy only fills my heart with happiness.
In addition to that, I would like to thank all my friends who I have known during
Master Degree and during High School, whose friendship has last over the years.
Last but not least, I would like to thank and dedicate this achievement to my father
Massimo and my mother Luciana. Thanks to them, I have been able to start and
accomplish my university carreer, which helped me growing as an engineer and as a
person.
My special thanks go to all of them.

ii

Contents

Acknowledgments ii

1 Digital Twin and SystemC modeling 1
1.1 Digital Twin creation and behaviour 1

1.1.1 Examples of Digital Twin applications 2
1.1.2 Creation process of the Digital Twin 2
1.1.3 Data acquisition of the Digital Twin 4

1.2 SystemC language . 6
1.2.1 Overview . 7
1.2.2 Module hierarchy . 7
1.2.3 SystemC ports and signals . 8
1.2.4 SystemC processes . 10
1.2.5 SystemC events . 12
1.2.6 SystemC time modeling . 12
1.2.7 SystemC simulation scheduler 13
1.2.8 Transaction Level Modeling . 15
1.2.9 SCML 2.8.0 library . 17

1.3 Comparison between Digital Twin and SystemC model 18

2 General overview of Automotive Ethernet 19
2.1 Limitations of CAN and LIN protocols 19
2.2 Ethernet: a new suitable solution . 19
2.3 From standard Ethernet to Automotive Ethernet 20

2.3.1 Standard Ethernet . 20
2.3.2 Automotive Ethernet . 25

2.4 100BASE-T1 technology . 26
2.4.1 Cabling and wiring . 26
2.4.2 Noise reduction . 27
2.4.3 Echo reduction . 28
2.4.4 Bit encoding for EMI constraints 29
2.4.5 Link startup . 31

iii

2.5 1000BASE-T1 technology . 32
2.5.1 Interface circuitry . 32
2.5.2 PAM5 modulation and wiring 33
2.5.3 Link startup . 34

2.6 TC10 specification for Sleep/Wakeup 36

3 Punch Electronic Platform and ASIC specifications 38
3.1 Punch Electronic Platform specifications 38
3.2 TJA1101B overview and pinout . 39
3.3 TJA1101B PHY . 40
3.4 SMI interface and registers . 41
3.5 Pinout . 42
3.6 Functional block and diagram . 45
3.7 SMI registers . 46

3.7.1 SMI frame . 47
3.8 Hardware configuration . 47
3.9 MII signal encoding . 48
3.10 RMII signal encoding . 49
3.11 Reverse MII . 50
3.12 Loopback . 51
3.13 MDI interface circuit . 52
3.14 Finite state machine . 53

3.14.1 DUT operations allowed . 54
3.14.2 Relevant timing . 55

3.15 Undervoltage detection methods . 56
3.16 Overtemperature and Temperature warning methods 56
3.17 Interrupt handling . 56
3.18 PHY wakeup concept . 57
3.19 PHY sleep concept (LPS) . 58

4 Model requirements 59
4.1 TJA1101B hierarchy . 60
4.2 Pinout . 61
4.3 MII and MDI interface . 61
4.4 SMI interface . 62
4.5 SMI registers . 62
4.6 Internal and external loopback . 63
4.7 Remote loopback . 64
4.8 Ethernet frame class description . 65
4.9 Finite state machine . 65
4.10 Undervoltage detection methods . 66

iv

4.11 Overtemperature and temperature warning detection methods 66
4.12 Interrupt handling . 67
4.13 Local/Remote wakeup . 67
4.14 Low Power Sleep (LPS) . 67
4.15 Ethernet sniffers . 67
4.16 Live demostration . 69

5 Test environment 70
5.1 Testbench structure . 70
5.2 Test list . 72
5.3 Undervoltage detection . 73
5.4 Overtemperature and temperature warning detection 73
5.5 Interrupt event . 74
5.6 Local/Remote wakeup handling . 74
5.7 LPS detection . 75
5.8 Results of listed tests . 76
5.9 Ethernet sniffer dumps . 77
5.10 Code coverage . 81
5.11 Functional verification . 82
5.12 Live sniffing demostration . 83
5.13 Virtual Development Kit implementation 83

6 Final conclusions 87

Bibliography 88

v

List of Tables

3.1 Pins functionality . 44
3.2 SMI registers numbering and functionality 47
3.3 SMI frame structure . 47
3.4 Pins for hardware configuration . 48
3.5 Media Independent Interface (MII) encoding for transmission 48
3.6 MII encoding for reception . 48
3.7 Reversed Media Independent Interface (RMII) encoding for transmission 49
3.8 RMII encoding for reception . 50

5.1 State transitions list . 72

vi

List of Figures

1.1 Digital Twin creation . 3
1.2 Enabling technology for data collection 6
1.3 RTL description and TLM differences 15
1.4 TLM socket representation . 16

2.1 OSI model layers representation . 21
2.2 Data-link frame format . 21
2.3 Ethernet types relationship . 22
2.4 IP frame format . 22
2.5 TCP frame format . 24
2.6 UDP frame format . 25
2.7 100BASE-TX connection . 27
2.8 100BASE-T1 connection . 27
2.9 TJA1101B PHY application circuit for noise reduction 27
2.10 Block diagram of interface circuitry 100BASE-T1 28
2.11 Echo cancellation block diagram . 29
2.12 Generation of the 2T ternary pair vector 30
2.13 From MII to MDI conversion process 30
2.14 100BASE-T1 link startup process . 31
2.15 Block diagram of interface circuitry 1000BASE-T1 33
2.16 PAM5 modulation. Source [2] . 34
2.17 1000BASE-T1 link startup process . 35
2.18 TC10 Sleep/Wakeup mechanism . 37

3.1 TJA1101B overview . 40
3.2 Ethernet MII-MDI peripheral . 41
3.3 SMI interface and control blocks . 41
3.4 TJA1101B pinout . 45
3.5 TJA1101B block diagram . 46
3.8 Reverse MII configuration . 51
3.9 internal loopback . 51
3.10 External loopback . 51

vii

3.11 Remote loopback . 52
3.12 Media Dependent Interface (MDI) interface circuit 52
3.13 Finite state machine diagram . 53
3.14 TC10 wakeup implementation . 58

4.1 Pinout implementation Green:implemented Orange: abstracted Red:
omitted . 61

4.2 TLM representation of MII and MDI interface 62
4.3 SMI TLM memory structure . 63
4.4 Block diagram of the virtual internal and external loopback 64
4.5 Block diagram of the virtual remote loopback 64

5.1 Test environment . 70
5.2 Test process flowchart . 71
5.3 Undervoltage on V_bat . 73
5.4 Overtemperature event . 73
5.5 Interrupt handling . 74
5.6 Local wakeup . 74
5.7 Remote wakeup . 74
5.8 LPS code group detection . 75
5.9 Timeout on tto(req)sleep . 75
5.10 Acknowledge timer behaviour . 76
5.11 Transition to NORMAL with no tto(ack)sleep timeout 76
5.12 State tracing using waveform viewer . 76
5.13 TCP packet sniffing using wireshark . 79
5.14 UDP packet sniffing using wireshark 81
5.15 Code coverage representation . 81
5.16 Virtualizer analysis settings . 85
5.17 Pin and SMI registers tracing . 85
5.18 Pins and sockets interface . 86

viii

Acronyms

DT

Digital Twin.

ESD

Electric Static Discharge.

CMC

Common Mode Choke.

LPF

Low Pass Filter.

EMC

ElectroMagnetic Compatibility.

OSI

Open System Interconnection.

SMI

Serial Management Interface.

MII

Media Independent Interface.

RMII

Reversed Media Independent Interface.

MDI

Media Dependent Interface.

ix

PCS

Physical Coding Sublayer.

PMA

Physical Medium Attacher.

MAC

Media Access Control.

UV

Under Voltage.

DUT

Device Under Test.

VDK

Virtual Development Kit.

CAN

Controlled Area Network.

LIN

Local Interconnect Network.

LAN

Local Area Network.

TCP

Transmission Control Protocol.

UDP

User Datagram Protocol.

IP

Internet Protocol.

PoE

Power over Ethernet.

x

UTP

Unshielded Twisted Pair.

STP

Shielded Twisted Pair.

RF

Radio Frequency.

EMI

ElectroMagnetic Interference.

TLM

Transaction Level Modeling.

SoC

System on Chip.

PEP

Punch Electronic Platform.

ASIC

Application Specific Integrated Circuit.

LPS

Low Power Sleep.

WUR

WakeUp Request.

WUP

WakeUp Pulse.

FSM

Finite State Machine.

ECU

Engine Control Unit.

xi

AUTOSAR

AUTomotive Open System ARchitecture.

PLL

Phase Locked Loop.

ADAS

Advanced Driver Assistance Systems.

OSCI

Open SystemC Initiative.

API

Application Programming Interface.

DC

Direct Current.

AC

Alternate Current.

PFI

Ported Fuel Injection.

SENT

Single Edge Nibble Transmission.

SCML

SystemC Model Library.

FPGA

Field Programmable Gate Array.

xii

CHAPTER 1

Digital Twin and SystemC modeling

The aim of this chapter is to give a general overview about Digital Twin (DT) technol-
ogy to explore the concept, development, and far-reaching implications of DTs across
various domains. In the following sections, a deep analysis will be performed into the
core principles, technologies, and real-world applications that have led to the emer-
gence of digital twins. After that, it will be discovered how DTs are creating exciting
opportunities for precision, optimization, and innovation. In addition to that, chal-
lenges and considerations that come with putting them into practice will be explored.
Finally, it will be discussed about SystemC Hardware Co-Design, why it is going to be
deeply and more often used in the industry and how it will be exploited for the purpose
of modeling the TJA1101B Ethernet PHY in the virtual environment.

1.1 Digital Twin creation and behaviour

DT technology is a cutting-edge concept that involves creating a virtual replica or rep-
resentation of a physical object, system, or process in the digital realm. This virtual
counterpart, known as the "digital twin", is an exact digital simulation that mirrors
the real-world entity’s characteristics, behavior, and functionality. It is dynamically
updated in real-time, allowing it to reflect changes and updates in the physical coun-
terpart accurately. The core idea behind DT technology is to create a bridge between
the physical and digital worlds. By having a DT, engineers, designers, and operators
can gain valuable insights into the performance, status, and interactions of the phys-
ical entity, such as the decision making at different levels, from the early production
strategy of the product to the more technical operations.
This new level of abstraction has led to a re-creation of the industry product developing
process, which is now more focused on the digital world and based on:

• Virtual environment

• Physical space (the real world)

1

• Communication and exchange of data between the two

1.1.1 Examples of Digital Twin applications

Due to the capability to provide real-time data analysis of the involved environment,
DT has become a keystone for production, manteinance, optimization and performance
analysis of the product. Some use-cases are here reported[21]:

• Manufactoring: industries can create a virtual model of the manufactoring pro-
cess such that it is possible to constantly monitor the correctness of the produc-
tion and identifying errors in a faster way

• Automotive: electronic peripherals and mechanical parts can be abstracted to
observe their physical interaction

• Construction: construction companies can test different conditions and worst
cases to see how a building will response to a given stimuli (earthquake, flood,
and so on), or how the building asset will be in real time

• Energy: energy companies can create the virtual model of their energy assets
to test in real-time the quality of thei energy systems, increasing time-to-market
and safety of their products

• Healthcare: patient’s body can be modelled to better design medical devices and
equipments, together with diagnosis accuracy to reduce unnecessary procedures

• Transportation: models of city transportation systems are now built virtually to
test their behaviour in different scenarios, such that engineers can optimize their
systems before they are implemented

• Medicine: DT technology in the medicine field can be used for educational pur-
poses such that students can interact with a virtual replica of the human body
and can explore it without any risk on a real patient; in addition to that, scien-
tists can study more accurately new hypotheses and speed up the development
of new medicines

• Smart Cities: a city replica can be used to simulate the traffic flow for identifying
bottlenecks and improve the traffic timing, or to analyze energy consumption and
optimize its efficiency

1.1.2 Creation process of the Digital Twin

The creation of the virtual model of a product is a long process, and it must be
accurately designed in order to take advantage of its features. It starts from deciding

2

how complex the model should be: the more the model is rich of details the more
accurate will be the simulation of the replica, but this results in the software overhead
due to the interal implementation; on the other hand, the model can be a simplistic
version of the physical produt to enable faster simulations, but it will lose a huge
amount of the technology involved. The tradeoff is left to the implementers according
to their needs and specifications.
A possible approach is identified by Deloitte University1, and it is composed by 6 steps:

• Imagine

• Identify

• Pilot

• Industrialize

• Scale

• Monitor

Figure 1.1: Digital Twin creation

Fig.1.1 shows the steps listed above.
1Source [31], pp12

3

• Imagine: first step tries to identify a set of scenarios in which the model can be
implemented to bring the DT value to the company

• Identify: identify the DT that offers success in its implementation and benefits
to the industry production

• Pilot: it can be considered as the representation of an use-case by starting from
the data analysis provided by different company divisions

• Industrialize: start the industrial production of the product once the virtual
model is available

• Scale: adjust the twin for different processes interconnected with the pilot

• Monitor: constantly monitor the behaviour of the solution, in order to allow
continous improvement of the twin

1.1.3 Data acquisition of the Digital Twin

As said, one of the key aspect for DT development is data, which must be collected in
near real-time to ensure accuracy, efficiency and adaptability of the virtual model. In
this section, it will be analyzed how DT data are collected using different methods[32].
However, it is important to highlight different requirements on the data collection:

• Comprehensive data: comprehensive data gathering refers to the process of
collecting and compiling a wide range of relevant information from various sources
to create a comprehensive and complete dataset. This means that the virtual
model should collect data both from the physical world and virtual world: it
must consider certain scenarios and uncertain scenarios, because low-probability
events should be included in the dataset, otherwise the model will not behave
correctly when responding to real world stimuli.

• Knowledge mining: knowledge mining is the process of extracting valuable
insights and knowledge from large volumes of data. In order to derive a real
entity behaviour, it is necessary to extract information by a raw data collection
and build a useful model: the challenge remains understanding which data is
useful for extracting information over a very large dataset, which data is unuseful
and which data is redundant.

• Seamless data fusion: seamless data fusion is the process of combining infor-
mation from multiple sources or sensors to create a unified and coherent repre-
sentation of the data. It is required when dealing with different data sources in
order to build an accurate model: different data must be integrated such that
they can be verified, corrected and validated by each other.

4

• Real-time data interaction: real-time data interaction is useful for:

– updating virtual model parameters from the physical world

– real-time diagnosis and mantainance of the physical entity

– illustrating deficiencies and calibrating the virtual model

• Iterative optimization: it is a cyclic process through which new incoming data
is compared with old data to generate new information until the best possible
solution is found.

• Data universality: a high universality of data is required to solve problems re-
lated to transferring a DT across different scenarios that have different constraints
on data collection.

• On-demand data usage: a virtual model often has to provide different data
types, so it is difficult to allow and implement a generic set of data operations.

To fulfill the requirements cited above, a set of seven principles has been developed:

• Complementary principle: it corresponds to comprehensive data gathering,
where physical and virtual world feed each others; physical world reflects the
dynamic effects of the real entity, and virtual world generates rare events which
cannot be easily measured and collected by the physical world

• Standardization principle: it corresponds to data universality, such that data
is collected under templated structures to be exchanged among different applica-
tions

• Timeliness principle: it corresponds to real-time data interaction, where data
has to be manipulated and compressed to speed up the communication in a time-
manner, and make it real-time

• Association principle: it corresponds on knowledge mining, and it associates
different aspects of the DT to extract useful information

• Fusion principle: it corresponds to seamless data fusion, and it aims to fully
merge data coming from different sources and minimize uncertainties related to
the different parts of the entity (both digital and physical)

• Information growth principle: it corresponds to iterative optimization, where
new data should be continously merged with old data through iterative fusions;
if the new information is valid, the information quantity can be increased or
decreased deciding wheter to accept the new information or to discard it

• Servization principle: it corresponds to on-demand data usage, and it is based
on the encapsulation of data resources into on-demand data structures

5

Referring to Fig.1.2, it is possible to see how what kind of technology could be a
suitable solution for every different method of data collection that is in conformity
with the associated principle listed above:

Figure 1.2: Enabling technology for data collection

1.2 SystemC language

SystemC is a versatile tool that enables engineers model complex electronic systems
using high-level algorithms and constructs. It has been developed in the year 1999 by
a team of ARM, CoWare, Synopsys and CynApps; after that, Open SystemC Initia-
tive (OSCI) was created in year 2000 and it is responsible for continously develop and
improve the language. In 2005, SystemC has become a IEEE standard and in 2011 it
added the support for Transaction Level Modeling (TLM). It was born to address the
growing complexity in hardware design and verification by means of a higher level of
abstraction.
Inside this thesis context, a DT model is to be intended as a virtual ECU whose be-
haviour is emulated at instruction level: this means that microprocessor instructions
are simulated one by one by means of the SystemC virtual environment. The virtual-
ization process allows to abstract hardware interfaces and to develop the software to
be flashed in the microprocessor before the hardware is available (enabling concurrent
developing between hardware and software), and without changing it when the hard-
ware product is then accessible. In addition to that, the virtual model enables the
simulation of possible faults that may occur in the ECU and it can be easily integrated
with other models developed using Simulink or OpenModelica.

6

1.2.1 Overview

SystemC is a C/C++ class library developed to model hardware architecture, System
on Chip (SoC) interfaces and system-level design[29], and it is a cycle-based language
model. The reasons behind the choice of using C and C++ language for SystemC
library can be multiple: nowadays, the enormous hardware complexity has led to the
developing of faster executable specifications for verification and validation of the in-
volved system2 and only C/C++ languages could provide fast code execution and
adequate abstracion levels; in addition to that, the hardware design world needed for
a standardized modeling language in order to provide interoperability design tools and
services.
Similarly to VHDL hardware language, SystemC offers the possibility to design struc-
tural hierarchies using ports, signals and modules but also to model concurrent be-
haviour using processes and to model binary numbers and bits using specific data
types. Everything will be discussed in the following sections.

1.2.2 Module hierarchy

Almost every large design can be splitted down in several submodules to manage com-
plexity and readability of the overall code. Just as VHDL provides entity for modeling
a hardware block, SystemC provides sc_core::sc_module class to encapsulate design
components and all the required methods for modeling that specific block: the designer
is able to create his own design hierarchy by instantiating submodules, ports, channels
and processes for simulation; another significant advantage of creating a module hier-
archy is that it is possibible to hide internal data and algorithms from other modules,
forcing to use public interfaces that allow to abstract the module interal behaviour.
The module declaration must be included in the class header file (.h file extension), and
it has to comprise ports declaration, methods declaration and members declaration;
the implementation of the module (the architecture of VHDL) must be included in the
.cpp file.
Modules can be declared using SystemC macro SC_MODULE, or using the class
sc_module_name which holds the name for the current module; to construct the mod-
ule, SystemC provides two ways of accomplish the task: it provides SC_CTOR(module_name)
macro or the SC_HAS_PROCESS(module_name) macro, where the difference be-
tween the two is that using SC_CTOR macro, no additional parameters can be passed
to the constructor, while using SC_HAS_PROCESS it is possible to pass further pa-
rameters to the custom module constructor. Here are reported generic examples of
how to declare and construct a module:

1 #inc lude " systemc . h"
2

2Source[29], pp1

7

3 SC_MODULE(module_name) {
4 /∗ de c l a r a t i on o f publ ic , p r i va t e and protec t ed members∗/
5 SC_CTOR(module_name) {
6 /∗module con s t ruc to r implementation ∗/
7 }
8 }

1 #inc lude " systemc . h"
2

3 c l a s s example_class : pub l i c sc_core : : sc_module {
4 SC_HAS_PROCESS(example_class) ;
5 example_class (sc_module_name module_name /∗ add i t i ona l parameters ∗/) ;
6 }

It is important to notice that class sc_module_name has its private member of type
const char *, so the module name can be passed by value between quotation marks in
the class instantiation.

1.2.3 SystemC ports and signals

Module ports are module object instances that can be seen as hardware pins, and they
are responsible for passing data from/to the module itself. They can be input ports,
output ports or both input and output ports; a substantial difference with respect to
VHDL pinout is that SystemC ports are templated objects: this means that they can
be of any type (C++ built-in type, SystemC defined type or user defined type) such
that it is possible to guarantee a higher level of abstraction and flexibility.
Here it is shown how to declare module ports:

1 #inc lude " systemc . h"
2

3 SC_MODULE(module_name) {
4 sc_in<port_type> _input_port ;
5 sc_out<port_type> _output_port ;
6 sc_inout<port_type> _input_output_port ;
7

8 SC_CTOR(module_name) {
9 . . .

10 }
11 }

Input ports can be read using port_type sc_in::read() method but they cannot be
written; output port can be written using void sc_out::write(port_type value) method
but they cannot be read; inout ports can be both read and written.
To be able to connect pins of different modules, just as VHDL and Verilog, it is neces-
sary to use signals: they represent physical wires responsible for carrying data among
modules. As SystemC ports, SystemC signals are templated objects but the direction
of data flow is determined by the ports they are connected to. A very unique feature of

8

ports and signals is the possibility to trace their switching activity: using the SystemC
function sc_trace it is possible to register the simulation time and value each time a
port or signal changes in the simulation by writing these information into a .vcd file;
when the simulation ends, .vcd files can be loaded into a waveform viewer program
and the device internal values can be analyzed properly. Also SystemC events can be
traced, and it will be discussed lately.
An example of signal usage is here reported:

1 #inc lude " systemc . h"
2 #inc lude "mod1 . h"
3 #inc lude "mod2 . h"
4

5 SC_MODULE(Top) {
6 sc_signal<signal_type> s ;
7

8 mod1 ∗module1 = new mod1("mod1_name") ;
9 mod2 ∗module2 = new mod2("mod2_name") ;

10

11 mod1 . in_port (s) ;
12 mod2 . out_port (s) ;
13

14 SC_CTOR(Top) {
15 . . .
16 }
17

18 i n t sc_main () {
19 /∗main implementation ∗/
20 }
21 }

In this example, signal s is connected to output port of instance module2 and to input
port of module1, and it will carry data coming out from module2 to module1.
Referring to the previous example, it is shown how to trace ports and signals:

1 #inc lude " systemc . h"
2 #inc lude "mod1 . h"
3 #inc lude "mod2 . h"
4

5 s c_t ra c e_ f i l e ∗ t r a c e_ f i l e = sc_create_vcd_trace_f i le ("VCD_file") ;
6

7 SC_MODULE(Top) {
8 sc_signal<signal_type> s ;
9

10 mod1 ∗module1 = new mod1("mod1_name") ;
11 mod2 ∗module2 = new mod2("mod2_name") ;
12

13 mod1 . in_port (s) ;
14 mod2 . out_port (s) ;
15

9

16 SC_CTOR(Top) {
17 . . .
18 }
19 }
20

21 i n t sc_main () {
22 Top t ("Top") ;
23

24 sc_trace (t r a c e_ f i l e , t .mod1 . out_port , "port_name") ;
25 sc_trace (t r a c e_ f i l e , t .mod2 . in_port , "port_name") ;
26 sc_trace (t r a c e_ f i l e , t . s , " signal_name") ;
27

28 sc_close_vcd_trace_f i l e (t r a c e_ f i l e) ;
29 re turn 0 ;
30 }

sc_create_vcd_trace_file allows the designer to open a file of type sc_trace_file (file
extension .vcd will be assigned automatically) where to write the switching activity of
desired ports, signals and events.

1.2.4 SystemC processes

Processes in SystemC are used by the library to model different parts of a specific
system that execute concurrently and interact with each other. SystemC processes can
be seen by the end-user as normal processes and threads in normal programming, but
they are not actually part of an operating system call; instead, they are abstractions
that represent concurrent activities in a hardware description. The concept of concur-
rency in SystemC is just an illusion given by the SystemC kernel[24]: it is true that
it simulates concurrency, but when multiple processes are called to begin their execu-
tion at the same simulation time, only one process is executed at a particular time.
The illusion of concurrency is given by the fact that the simulation time remains the
same until every process has finished its execution. SystemC provides three process
types: methods, threads, cthreads; their behaviour will be explained in the following
subsections.

SystemC methods

Methods can be seen as a normal C/C++ function call that does not require any
parameter and does not return any value. Its execution begins every time a value in its
sensitivity list changes, and it does not cost any simulation time (i.e. it is executed in
SC_ZERO_TIME). A function to be used as a method must be registered inside the
module constructor, and its implementation must be provided separately. An example
of a method registration is here provided:

1 #inc lude " systemc . h"
2

10

3 SC_MODULE(my_module) {
4 . . .
5 SC_CTOR(my_module) {
6 SC_METHOD(module_method) ;
7 s e n s i t i v e << any_port << any_signal << any_event ;
8 }
9

10 void module_method () ;
11 }

SystemC threads

Unlike methods, SystemC threads can be seen as software threads that begin their
execution and never return in order to mantain the interaction with the external envi-
ronment. To do so, a systemC thread typically contains an infinite loop and a wait()
statement to suspend its execution to allow the kernel to schedule other processes and
to advance the simulation time. Thread execution will continue when a signal in the
sensitivity list has changed. Threads are a good solution when the designer has the
need to rely on a higher level of abstraction without wasting hardware or software
resources; however, a systemC thread is not a synthesizable construct and it is only
used for simulation purposes. Just as methods, threads must be registered inside the
module constructor:

1 #inc lude " systemc . h"
2

3 SC_MODULE(my_module) {
4 . . .
5 SC_CTOR(my_module) {
6 SC_THREAD(module_thread) ;
7 s e n s i t i v e << any_port << any_signal << any_event ;
8 }
9

10 void module_thread () ;
11 }

SystemC cthreads

Cthread stands for "clocked thread", and it is a subclass of systemC thread: cthreads
are triggered on one edge of one single clock, and do not accept a sensitivity list; instead,
they only accept a clock object and its triggering edge. Cthreads can be registered as
follows:

1 #inc lude " systemc . h"
2

3 SC_MODULE(my_module) {
4 . . .
5

11

6 sc_in_clk c l o ck ;
7

8 SC_CTOR(my_module) {
9 SC_CTHREAD(module_cthread , c l o ck . pos ()) ; //module_cthread i s

t r i g g e r e d on the r i s i n g edge o f the c l o ck ob j e c t " c l o ck "
10 }
11

12 void module_cthread () ;
13 }

Cthreads can be used when it is required a synthesis result, because their behaviour
meets the requirements provided by synthesis tools.

1.2.5 SystemC events

Events are systemC objects that can cause the triggering of methods and threads: they
can be customized by using the sc_event class or using the default events provided by
sc_port, sc_signal and others. Custom events using the sc_event class can be notified
with notify() method: the notification can be immediate (event_name.notify()) or
delayed after a specific amount of simulation time (event_name.notify(delay_value));
in addition to that, an event that has to be notified with a time delay can be cancelled
using the cancel() method. This can be useful when modeling timers with a reset
signal.

1.2.6 SystemC time modeling

In this section, it will be discussed how the simulation time can be handled and the
classes that can be used to model it.

sc_time

This is s systemC class provided to handle objects that model the simulation time:
they can be used to notify events after the specified time, to suspend the simulation
time for a specific value, and so on. It is composed by an double number and the time
unit, which are:

• SC_FS : femtoseconds

• SC_PS : picoseconds

• SC_NS : nanoseconds

• SC_US : microseconds

• SC_MS : milliseconds

• SC_SEC : seconds

12

sc_time_stamp

sc_time_stamp() is a useful method that returns the current simulation time (which
is in turn a sc_time object), and it does not accept any parameter: it can be useful for
debugging purposes, since an sc_time object can be displayed on a terminal or other
terminal emulators.

sc_start

This method is responsible to start the simulation: when it is called, all processes will
start at the same simulation time even if there has not been any triggering specified in
the sensitivity lists. It can be called without any parameter, or it is possible to pass a
sc_time object to specify the maximum time the simulation can run:

1 sc_star t () ; // s imu la t i on runs un t i l every proce s s has terminated
2 sc_star t (const sc_time& time_object) ; // s imu la t i on runs f o r the

s p e c i f i e d time
3 sc_star t (double max_time , sc_time_unit time_unit) ; // s imu la t i on runs f o r

the s p e c i f i e d time

1.2.7 SystemC simulation scheduler

According to the language reference manual provided by IEEE[15], the scheduler main
purpose is to start or resume one of the user processes. The kernel scheduler is event-
driven, this means that it schedules one of the runnable processes when an event
occurs in a specific simulation instance. IEEE1666 standard language model defines
five situations in which a process can be executed by the scheduler3:

• after the initialization phase (if it is made runnable)

• when sc_spawn() function is called during the simulation

• when an event occurs, if present in the sensitivity list

• when a timeout occurs

• when a call to a process control member function occurs

The scheduling algorithm is composed by several phases, and it is described in the
following subsections.

3Source[15], pp19

13

Initialization phase

The first step executed by the scheduler is the so called initialization phase, which
performs three consecutive steps4:

• execute the update phase without delta notification

• fill the set of runnable processes (methods and threads) of an object instance,
excluding clocked threads and methods for which dont_initialize() function has
been registered

• run delta-notification phase and start evaluation phase

Evaluation phase

The evaluation phase is responsible for executing a user process5: it selects one of the
process instances from the runnable process set and it removes the process from the
set; after that, the process is executed without interruption until it returns or it calls
the wait() function.

Update phase

After the evaluation phase, every pending calls to function update is executed such
that every port and signal values is updated; when there is no pending call left, the
scheduler moves to the delta-notification phase6.

Delta-notification phase

During the delta-notification phase, the scheduler determines which process is sensitive
to event notifications or timeouts and add it to the set of runnable processes; finally,
it removes that notifications and timeouts from the set of delta-notification7.

Timed-notification phase

In addition to delta-notification phase, SystemC offers a timed-notification phase in
which, if pending timed notifications or time-outs exist, the simulation time advances to
the specified notification or timeout, add notification sensitive processes to the runnable
processes set and remove the previous notifications8.

4Source[15], pp22
5Source[15], pp23
6Source[15], pp25
7Source[15], pp25
8Source[15], pp25-26

14

1.2.8 Transaction Level Modeling

TLM provides an abstraction layer that captures essential communication and inter-
action details while minimizing the intricacies of individual components, such as pin
events and exact time representation[6].

Figure 1.3: RTL description and TLM differences

TLM allows to represent only the key aspects of the internal architecture9 such that
the designer can use the TLM model as golden reference for hardware verification and
use software execution to obtain faster simulations that RTL simulations.

Initiator and target sockets

To interconnect different components inside the design and to allow high level commu-
niation among them, TLM uses two socket types to representation interconnections:

• Initiator socket: it is responsible for initiating a transaction (data exchange)

• Target socket: it is responsible for receiving a transaction, and to implement the
behaviour of the transaction

9Source[6], pp7

15

Figure 1.4: TLM socket representation

TLM transports

To allow the communication among initiatior and target sockets, TLM offers two types
of transport calls: blocking and non-blocking transports. The main difference between
the two is that non-blocking transport keeps track of the transaction phases, meaning
that a non-blocking transaction can execute in multiple phases10, while a blocking one
executes in one delta cycle. From an initiator socket point of view, the call for a
transaction involves only the call to b_transport or nb_transport, while from a target
socket point of view the functions related to a transaction must be registered using
the register_b_transport or register_nb_transport and they have to be implemented
separately.

Generic payload

The content of a TLM transaction is represented by a payload object: in particular, the
generic payload allows the abstraction of memory busses and the full interoperability
among the involved sockets11. Generic payload options can be set by the end-user using
payload methods provided by TLM library: command, address, data, byte enables,
Direct Memory Interface (DMI), streaming width, data width, response status are set
by the initiator socket and get by the target socket.

10Source[6], pp23
11Source[6], pp63

16

1.2.9 SCML 2.8.0 library

The objective of this thesis project is to replicate the behaviour of the TJA1101B
device using the SystemC simulation framework. Subsequently, the source code of
the model will be under the ownership of Punch Torino company, which will build
the virtual environment on the VDK. VDK tool is provided by Synopsys group, and
it allows comprehensive debugging and model analysis. In order to trace and debug
memory contents to be displayed in the Virtualizer environment, Synopsys provides an
open-source SystemC compliant library known as SystemC Model Library (SCML)[13]:
in this project, it will be used the 2.8.0 library version. SCML memory objects have
been created to hide TLM APIs details and to create a simple mechanism to describe
a memory map of a device. Allowed memory objects are:

• Memory: top-level object that acts as a data storage

• Memory alias: represents sub-regions inside the memory map and can be associ-
ated with different behaviours

• Register: represents the memory word

• Bitfield: represents register single or consecutive bits

SCML memory objects are compliant with TLM transport calls for communication
among different components: in this sense, a memory object has blocking and non-
blocking transports and their behaviour can be hidden to the end-user or it can be
customized by the designer using the SCML memory callbacks. Memory callbacks
represent the behaviour associated to a memory, register or bitfield access12: many
types of memory callbacks are provided by the library but, for sake of semplicity, only
some relevant regular callback registration are here reported13:

• set_callback : it registers a function that will be called whenever a read or write
access takes place

• set_read_callback : it registers a function that will be called when a read access
takes place; the values of the memory contents will be restored after the callback
returns

• set_read_no_store_callback : it registers a function that will be called when a
read access takes place; the values of the memory contents will not be restored
after the callback returns (a memory address could be modified)

• set_write_callback : it registers a function that will be called when a write access
takes place

12Source[13], pp25
13Source[13], pp26

17

• set_write_ignore_restriction: it registers a memory object to ignore a write
access (useful to model read-only memories)

When initializing a memory object, it takes an argument which represents the
memory object name that will be displayed, as said, in the Virtualizer environment.

1.3 Comparison between Digital Twin and SystemC
model

Analyzing carefully the characteristics of a DT model and of a SystemC model, it
is possible to highlight several differences: first and foremost, a DT is a virtual rep-
resentation of the physical object to be monitored and analyzed, while a SystemC
model simulates a digital hardware circuit at various abstracion levels; furthermore,
a DT focuses on replicating the behavior and attributes of a specific physical entity,
often including real-time data and other sources of information to provide accurate
and up-to-date insights into the behavior of the physical entity, while the SystemC
model primarily relies on predetermined models and parameters to model the behavior
of digital hardware and software systems. In this sense it is not correct to say that
the SystemC virtual model of the TJA1101B device will be the DT of the real device,
because it can be seen as a black-box that, given certain inputs, it will produce proper
outputs but there are no information about the physical hardware and there are no
real-time data sources from sensors for updating the model itself. Even if DT and
SystemC environments are two different worlds, the idea of combining SystemC and
DT is emerging to create a bigger and more accurate ecosystem[7]: in fact, the current
form of the DT lacks the capability to integrate an embedded system. To achieve the
combination of these two, it would be required a top-down approach14 for developing
feasible standards and distributed simulation/co-simulation APIs in order to embed
SystemC in the overall environment; another key feature that has to be inserted in the
SystemC library is the capability of the model encapsulation, because up to now, a
systemC model can be integrated in a non-real time environment only.

14Source[7], pp25

18

CHAPTER 2

General overview of Automotive Ethernet

In this chapter it will be described the context of the Ethernet protocol in an automotive
environment, highlighting the main differences with respect to Controlled Area Network
(CAN) and Local Interconnect Network (LIN), which are the currently most used
protocols in the automotive industry.

2.1 Limitations of CAN and LIN protocols

While CAN and LIN have served as the backbone of automotive communication sys-
tems for many years, their inherent limitations have become increasingly apparent as
the automotive industry pushes the boundaries of innovation.
CAN, although reliable and widely adopted, offers limited bandwidth and struggles
to keep up with the vast amounts of data generated by the growing number of sen-
sors, cameras, and other components in modern vehicles. Additionally, CAN rigid data
frame structure and fixed message length hinder its ability to efficiently handle large
volumes of data required for emerging applications such as high-resolution cameras,
sensor fusion, and over-the-air updates.
On the other hand, while LIN excels in cost-effectiveness, simplicity, and low-power
applications, its low-speed nature and limited bandwidth make it unsuitable for high-
performance and data-intensive functionalities required in advanced automotive sys-
tems. LIN is primarily designed for basic sensor inputs, actuator control, and simple
peripheral device communication.

2.2 Ethernet: a new suitable solution

Recognizing the need for a more robust and versatile communication protocol, the auto-
motive industry has turned to Ethernet, the same technology that powers the internet
and Local Area Network (LAN) worldwide. Ethernet offers several key advantages that
make it an attractive alternative to CAN and LIN in automotive applications, such as:

19

• Bandwidth: Ethernet supports data rates of up to 10 gigabits per second (10
Gbps) and beyond, far surpassing the capabilities of CAN and LIN

• Standardization and interoperability: ethernet benefits of robust and well tested
standards (such as IEEE 802.3 standard), and also of extensive research, de-
velopment, and innovation in the field of networking; this leads to continuous
improvements in terms of performance, security, and reliability, which are essen-
tial for critical automotive applications

• Versatility and integration: ethernet offers a full suite of networking protocols,
such as Internet Protocol (IP), Transmission Control Protocol (TCP), and User
Datagram Protocol (UDP), enabling seamless integration with existing network
infrastructure. This opens the door to connectivity with external systems, such
as cloud services, fleet management platforms, and intelligent transportation sys-
tems, facilitating advanced data analytics, remote diagnostics, and software up-
dates. In addition to this, Ethernet us able to carry Power over Ethernet (PoE):
this simplifies wiring and reduces the complexity of the vehicle’s electrical archi-
tecture. PoE enables the consolidation of power and data cables, reducing weight,
cost, and installation complexity, while also supporting the growing demand for
electric vehicles and their charging infrastructure

2.3 From standard Ethernet to Automotive Ethernet

This section aims to describe the standard ethernet protocol, its main features and why
it cannot be used in automotive environment as it is, but it requires relevant changes
to be a suitable solution for a vehicle integration.

2.3.1 Standard Ethernet

Standard ethernet relies on the Open System Interconnection (OSI) model[20].
OSI model is an ethernet standard validated in 1984 by International Organization
for Standardization (ISO) to produce standardized laws for computer networks. It is
mainly composed by a stack of layers: each layer represent a sub-protocol that reduces
the implementation complexity for a network communication system. There are 7 total
layers, from physical layer (i.e. the cable, optic fiber or any other transmission medium)
to application layer (high level communuication) as shown in Fig.2.1.

20

Figure 2.1: OSI model layers representation

According to IEEE 802.3 standard, the ethernet frame has the structure here re-
ported:

Figure 2.2: Data-link frame format

Fig.2.2 shows thee different fields present in the data-link frame structure:

• Preamble: 7 bytes to synchronize source and destination nodes

• Start of Frame Delimiter: 10101011 byte to identify the start of the frame

• Destination address: identifies the address of the recipient, it is composed by 3
bytes identifying the vendor ID and 3 bytes identifying the host ID

• Source address: identifies the address of the sender, and it is composed as the
destination address

• Length/Type: 2 bytes field: if its value is below 1500, it identifies the length
of the data payload; on the other hand, if it is greater than 1536 it identifies the
network protocol used in the communication

21

• Data payload: from 0 to 1500 bytes of the message to be sent

• Pad: bunch of bytes (usually zeroes) to guarantee the minimum frame length

• Frame Check Sequence: contains Cyclic Redundancy Check (CRC) to verify
if there have been errors in the frame during the transmission of the message

As said, many layers can be inserted in the ethernet frame to reduce the complexity of
the communication.

Figure 2.3: Ethernet types relationship

In Fig.2.3 it is highlighted the relationship among the supported ethernet types.
The frame structure for each type is instead reported in the following pictures:

Figure 2.4: IP frame format

22

Fields of IP header:

• Version: IP version of the current frame (4 for IPv4 or 6 for IPv6)

• Internet header length (IHL): header length of the IP header (expressed in
number of 32-bit words)

• Explicit Congestion Notification (ECN): notifies the network congestion
without losing packets

• Total length: packet total length (expressed in bytes)

• Identification (ID): primarily used for uniquely identifying the group of frag-
ments of a single IP datagram

• Flags: 3 bits that indicate:

– bit0: reserved (must be 0)

– bit1: don’t fragment (DF)

– bit2: more fragments (MF)

• Fragmented offset: offset of a particular fragment relative to the beginning of
the original unfragmented IP datagram

• Time to Live (TTL): seconds for specifying the time of the packet life to
prevent network failure

• Protocol: IP protocol for transmission layer

• Header checksum: value for error-checking of the header

• Source address: IPvX address of the sender

• Destionation address: IPvX address of the receiver

• Options: additional information for routers

23

Figure 2.5: TCP frame format

Fields of TCP header:

• Source port: port number associated to the source host

• Destination port: port number associated to the destination host

• Sequence number: number of the TCP segment beginning inside the entire
communication flow

• Acknowledgment number: notifies the correct reception of the frame by the
receiver

• Data offset: TCP header length (expressed in 32-bit words)

• Reserved: not used, must be set to 0

• Flags: 8 bits of control flags:

– URG (1 bit): indicates that the Urgent pointer field is significant

– ACK (1 bit): indicates that the Acknowledgment field is significant

– PSH (1 bit): push function. Asks to push the buffered data to the receiving
application

– RST (1 bit): reset the connection

– SYN (1 bit): synchronize sequence numbers. Only the first packet sent from
each end should have this flag set

– FIN (1 bit): last packet from sender

• Window size: specifies the amount of data that a sender can send before re-
ceiving an acknowledgment from the receiver

24

• Checksum: value for error-checking of the header

• Urgent pointer: indicates the last urgent data byte

• Options: payload options

Figure 2.6: UDP frame format

Fields of UDP header:

• Source port: port number associated to the source host

• Destination port: port number associated to the destination host

• Length: length of header and data (expressed in bytes)

2.3.2 Automotive Ethernet

Standard ethernet is a standard that is currently dominating the computer network
communications, because it can offer very high speed in terms of baud rate, but it
cannot guarantee high performances in terms of latency, jitter time, message integrity
and bandwidth: it can be suitable for non-real time applications, such as web appli-
cations where the user can reasonably wait a certain amount of second for a website
load in the browser, but it can’t be used for a context where a crashing detection must
be recognized in few microseconds to activate the airbag of the vehicle. Furthermore,
conventional Ethernet exhibits excessive noise and interference, rendering it unsuitable
for automotive applications.
For these reasons, automotive industry has taken some features from the standard
ethernet (such as the protocol structures) and adapted them for its needs.

Physical layer changes

Starting from the physical layer, standard ethernet uses coaxial cables, Twisted Pair
cables and fiber optic cables: in the automotive industry, it is used a Unshielded
Twisted Pair (UTP) cable for up to 1000BASE-T1 communication to reduce cost and
weight[19], but for higher speeds it is used a single Shielded Twisted Pair (STP) for bet-
ter Radio Frequency (RF)/ElectroMagnetic Interference (EMI) protection and higher
data transmission speeds.

25

Ethernet speeds

Regarding the baud rates, standard LAN ethernet can use the following speeds:

• 10BASE-T

• 100BASE-T

• 1000BASE-T

• 10GBASE-T

• 40GBASE-T

• 100GBASE-T

In the automotive field, only 100BASE-T and 1000BASE-T are used because they
can guarantee:

• Compatibility: these two baud rates are a widely adopted standard

• Cost-effectiveness: higher speeds would require more sophisticated hardware and
cabling, which can increase costs

• Scalability: higher speeds are not necessary to increase performances

• Signal integrity: higher speeds would be highly affected by electromagnetic in-
terference, temperature variations and mechanical vibrations

2.4 100BASE-T1 technology

In this section, it is described how the 100BASE-T1 technology is implemented in an
automotive environment and how the conditioning circuitry is composed.

2.4.1 Cabling and wiring

For LAN networks, the most used ethernet standard is 100BASE-TX and it uses 2 pairs
of UTP cable (1 for transmission and 1 for receiving); on the other hand, 100BASE-
T1 meets all the requirements just as 100BASE-TX but it uses just 1 pair of UTP
cable: this leads to significant improvements for reducing weight (30%) and costs (80%)
according to OPEN Alliance and Broadcom[1].
The difference between the two standars is reported in Fig.2.7 and Fig.2.8.

26

Figure 2.7: 100BASE-TX connection

Figure 2.8: 100BASE-T1 connection

Using 100BASE-T1 standard and an UTP cable the maximum cable length is
around 15m

2.4.2 Noise reduction

As a 100BASE-T1 compliant Ethernet PHY, the TJA1101B provides 100 Mbit/s trans-
mit and receive capability over a single UTP cable[22], supporting a cable length of at
least 15 m with a bit error rate less than or equal to 1×10−10: to be compliant with this
specification and with automotive ElectroMagnetic Compatibility (EMC) requirement,
a Common Mode Choke (CMC) is typically inserted into the signal path.

Figure 2.9: TJA1101B PHY application circuit for noise reduction

The PHY basically exchanges messages with a Media Access Control (MAC) using
its MII, and over the UTP cable usign the MDI connected to the CMC.
To build a specific interface circuit, OPEN Alliance defines a generic interface circuit
diagram for Electric Static Discharge (ESD) protection and filtering besides the CMC1:

1Source [8], pp11

27

Figure 2.10: Block diagram of interface circuitry 100BASE-T1

Fig.2.15 shows the CMC, DC block capacitors C1 and C2, the ESD protection circuit
and a Low Pass Filter (LPF) composed by R1, R2, R3, C3 to avoid static charge of
cable harness.
All the required components must be selected properly according to the datasheet of
the device provided by the manufacturer.

2.4.3 Echo reduction

When dealing with full-duplex mode (such as ethernet PHYs), it may occur that a
portion of the transmitted signal is reflected back and received again at the source,
creating an unwanted duplicate of the original signal: this phenomena is known as
echo.
100BASE-T1 PHYs come out with intergrate hybrids circuits to eliminate the echo
that can modify the signal transmission in a noisy environment[27]. A single PHY is
composed by a transmitter, a receiver and a hardware block that acts as echo canceler;
what the echo canceler does is, qualitatively, removing the transmitted signal at the
receive block by detecting its transfer function and subtracting it to the received signal
transfer function, such that the link partner information is extracted correctly.

28

Figure 2.11: Echo cancellation block diagram

2.4.4 Bit encoding for EMI constraints

100BASE-T1 PHY can operate with different encoding maps for transmitting messages
from an external MCU or MAC over the UTP cable to reduce signal degradation: this
requires an appropriate bit encoding among the links MCU-PHY and PHY-UTP[27].
The following standards are:

• 4 bit to 3 bit (4B3B)

• 3 bit to 2 ternary pair (3B2T)

• Three level pulse modulation (PAM3)

The MAC can send a frame to the PHY: if the bit number of the frame is not divisible
by 3, the PHY adds dummy bits to make it divisible by 3; then the PHY uses 4B3B
conversion and 3B2T conversion to scale the message down to a ternary pair vector of
values (-1, 0, 1) and modulates it using PAM3.

29

Figure 2.12: Generation of the 2T ternary pair vector

In Fig.2.12 it is shown the bit mapping of 3 bits group to the ternary pairs to
modulate using PAM3.

Figure 2.13: From MII to MDI conversion process

In Fig.2.13 it is illustrated the process that maps the MAC message from 4 bits

30

groups down to 2 bits to be sent on the UTP cable.
Starting from a base frequency of 25MHz (standard frequency), when the PHY uses
4B3B conversion it must increase the frequency up to 25MHz × 4 ÷ 3 = 33.3MHz

to keep constant the bit rate; same concept is used when using 3B2T conversion,
66.6MHz × 2÷ 3 2

2.4.5 Link startup

Link startup[23] between two network nodes is illustrated in Fig.2.14:

Figure 2.14: 100BASE-T1 link startup process

2Source [27], pp7

31

It highlights some of the aspects of a link startup, where:

• SEND_Z: transmission of all zeroes

• SEND_I: transmission of PAM3 idle signals

• SEND_N: transmission of idle/data signals

Master PHY initiates the training phase by transmitting an idle pattern (SEND_I);
after the slave PHY receiver has been synchronized with the IDLE pattern, it en-
ters training state too and sends IDLE pattern to the Master PHY; as soon as min-
wait_timer expires, the Slave PHY switches to SEND_IDLE state. Now the Master
PHY receives an idle pattern from the Slave PHY and synchronizes to the idle pattern
to enter SEND_IDLE or SEND_DATA state (SEND_N); finally, when the slave recog-
nizes that the master is synchronized, it enters in turn SEND_IDLE or SEND_DATA
state: from now on, the bidirectional link is enstablished and the two nodes can ex-
change data normally.

2.5 1000BASE-T1 technology

When a higher bit rate is required, using 1000BASE-T1 technology is a suitable so-
lution. However, to support a higher speed, a different cabling and bit modulation
are required: 1000BASE-T1 uses 4 UTPs as cable and a PAM5 modulation for bit
encoding [9].

2.5.1 Interface circuitry

Due to the higher bit rate, a dedicated circuitry is needed for 1000BASE-T1. According
to OPEN Alliance requirements [8] the interface consists of the transceiver block with
transceiver supply decoupling and filtering:

32

Figure 2.15: Block diagram of interface circuitry 1000BASE-T1

Optional protection can be included in the design, such as:

• Common Node Chocke

• DC block capacitors

• Common mode termination network

• ESD protection

All the required components (mandatory and optional) must be selected properly ac-
cording to the datasheet of the device provided by the device vendor company, as
Fig.2.15 is just a generic block diagram that represents how to interface the compo-
nents.

2.5.2 PAM5 modulation and wiring

PAM5 bit modulation includes 5 voltage levels to encode data: it uses (-2, -1, 0, +1,
+2)V to be sent over 4 wires simultaneously.

33

Figure 2.16: PAM5 modulation. Source [2]

The advantages of PAM5 are:

• signal rate is reduced by N/8 as data is sent over 4 wires

• redundancy is used for error detection (value 0 is used for error detection)

• self synchronization is available

• no DC component is used to transmit signal (this saves a lot of static power)

On the other hand, PAM5 uses lot of redundancy because it maps 28 input patterns
to 44 output patterns3.

2.5.3 Link startup

Link startup process of a 1000BASE-T1 PHY is very similar to the 100BASE-T1 one
and it is deeply described in [14], where:

• SEND_Z: transmission of all zeroes

• SEND_I: transmission of PAM3 idle signals

• SEND_T: transmission of training signals

• SEND_N: transmission of data signals

3Source [2]

34

Figure 2.17: 1000BASE-T1 link startup process

Master PHY initiates a training phase by sending a training pattern (SEND_T)
for a time determined by minwait_timer ; after the Slave PHY has been synchro-
nized with the training sequence, Master PHY enters COUNTDOWN state where
it sends SEND_T pattern to the Slave for a time determined by loc_countdown
and the Slave PHY sends an acknowledge SEND_T sequence for a time determined
by rem_countdown; after that, an IDLE sequence is instanciated the same way as
100BASE-T1 process where the two PHYs synchronize themselves on an idle pattern

35

(SEND_I) and a stable link is enstablished, and SEND_N data can be exchanged over
the network4.

2.6 TC10 specification for Sleep/Wakeup

Both 100BASE-T1 and 1000BASE-T1 are compliant to TC10 standard: it is a stan-
dard defined by OPEN Alliance in document [4] to allow Sleep transition and Wakeup
transition for PHYs involved in an automotive environment, because it is not present
in IEEE 802.3bw protocol (computer networks do not have the need of sleeping and
waking up).
New primitives can be found, such as:

• Low Power Sleep (LPS)

• WakeUp Request (WUR)

• WakeUp Pulse (WUP)

They identify signal patterns exchanged by two link partners, that are a PHY and an
external MAC or microcontroller.

4Source [14], pp127

36

Figure 2.18: TC10 Sleep/Wakeup mechanism

From active to Silent/Sleep mode

If the PHY is in NORMAL (active) state and it receives an LPS code group from its
link partner, it enters SLEEP_ACK state: sleep_ack_timer is started and if data is
detected on MII/MDI peripheral, the PHY returns in NORMAL state; otherwise, if
sleep_ack_timer expires before data detected, a handshake protocol between MAC and
PHY through LPS takes place and sleep_req_timer starts; if the handshake process
ends before sleep_req_timer expires, then the device enters SLEEP state, otherwise it
generates sleep_fail interrupt and goes back to NORMAL state.

From Silent/Sleep to Active mode

When the PHY is in SLEEP state, it is still able to detect WUP from its link partner:
if it receives a WUP or a local wakeup request (i.e. logical value on a dedicated pin),
it enters NORMAL state without generating the sleep_fail interrupt.

37

CHAPTER 3

Punch Electronic Platform and ASIC
specifications

In order to start developing the virtual model of the TJA1101B, it is required to deeply
analyze the Application Specific Integrated Circuit (ASIC) specifications, datasheet
and application note.
The device is going to be a piece of a puzzle inside the Punch Electronic Platform
(PEP), which is a multi-purpose electronic device that manages the propulsion control
and energy generation of the entire vehicle system[28]. PEP design is made in order
to be compliant with AUTomotive Open System ARchitecture (AUTOSAR) rules and
standards[3], automotive safety and cybersecurity requirements.
This chapter aims to investigate the PHY ethernet block, the configuration memory
peripheral, the control blocks and the frame structures.

3.1 Punch Electronic Platform specifications

PEP is the ECU product developed by Punch: it is a propulsion controller able to run
a V8 engine propelled with hydrogen. It is optimized for integrating H2 components
specific control algorithms and for offering flexibility to test Direct Injection and Ported
Fuel Injection (PFI), where gasoline is sprayed into the intake manifold, where it mixes
with air, and then is sucked down into the cylinders.
PEP supports Solenoid Control Valves for fuel injection, Direct Current (DC) Motor
controllers, analog and digital sensor for data acquisition systems, CAN, LIN and Eth-
ernet peripherals for communication among vehicle peripherals and microcontroller.
PEP exploits Infineon AURIX™ TC399X microcontroller provided by Infineon Tech-
nologies[16]: it belongs to the hexa-core high performance architecture family, which
allows advanced features for connectivity, security and functional safety for automotive
applications; in particular, the ASIC involved provides up to 6 cores with a nominal

38

frequency of 300MHz, 16MB of Flash memory and 2048 kB of RAM memory.
Among the involved peripherals, it is possible to find:

• 4x Buffered Sensor Supply Outputs for 300mA and 50mA current load

• 12x Boosted Flexible Solenoid Valve Control

• 6x Solenoid Flexible Valve Control Outputs

• Low Side Outputs

• High Side Outputs

• 5x Full H bridges

• PFI injectors

• 2x UHEGO Sensor Heater Drivers

• 4x CAN peripherals

• 3x LIN master nodes

• 1x Ethernet network

• 8x Single Edge Nibble Transmission (SENT) inputs for point-to-point communi-
cation between sensor and microcontroller

3.2 TJA1101B overview and pinout

PHY (Physical Layer) is the first subcategory of the OSI model. It’s main purpouse is
to manage the data transmission on the physical layer.
The overall structure can be divided in 2 macroblocks: one related to the MII/RMII
and MDI interface (the PHY itself), and one related to the registers and control blocks
driven by Serial Management Interface (SMI)[22].

39

Figure 3.1: TJA1101B overview

3.3 TJA1101B PHY

As said, TJA1101B is compliant with 100BASE-T1, and it is responsible for the trans-
mitting and receiving data from the external MAC through MII and from the external
network through the MDI. The PHY is composed by 2 physical sub-blocks, which seri-
alize/deserialize symbols/external bit streams and to map them in symbol maps: these
two are Physical Coding Sublayer (PCS) and Physical Medium Attacher (PMA). Their
functionalities are here summarized:

• PCS: encodes and decodes payload data. This means that it can serialize/dese-
rialize outcoming/incoming bits for both the transmission/receiving

• PMA: translates bit stream from the PCS into symbol map to be transmitted
and received over the PHY network

Others control pins are provided to keep track of the current transmission status:

• TXEN

• TXER

• RXDV

• RXER

Their meaning will be explained in section 3.9 and 3.10.

40

Figure 3.2: Ethernet MII-MDI peripheral

3.4 SMI interface and registers

The MAC can control the PHY behaviour by accessing its internal registers. This
is possible due to the SMI interface which receives MAC frames to configure internal
registers (i.e. the MAC can perform a read/write operation); it is possible to hardwire
some pins of the ASIC on the board for configuration features, and to write on the
dedicate registers through a configuration control interface (i.e. select master/slave
configuration, select MII/RMII mode, etc...); finally, the ASIC is able to send inter-
rupts and reset signals to the MAC through interrupt and reset control blocks.
The SMI registers are read by the PHY in order to behave according to the configura-
tions; additional blocks are instantiated, such as Under Voltage (UV) and overtemper-
ature detector.

Figure 3.3: SMI interface and control blocks

41

3.5 Pinout

Here it is reported the PHY pinout, according to the datasheet specifications: for each
pin it is reported its number, name and functionality1.

Pin number Pin name Pin functionality
1 MDC SMI clock input
2 INT_N Interrupt output (active-LOW)
3 RST_N Reset input (active-LOW)

4 SEL_1V8
1.8V LDO mode selection (inter-
nal or external)

5 XO Crystal feedback
6 XI Crystal input
7 VDDA3V3 3.3V supply voltage
8 WAKE_IN_OUT Local/forwarding wake-up in/out
9 Vbat Battery supply voltage

10 INH
Inhibit output for voltage regula-
tor control (active-HIGH)

11 VDDAtx
3.3V analog supply voltage for
transmitter

12 TRX_P + terminal for tx/rx signal
13 TRX_N - terminal for tx/rx signal

14 VDDAtx
3.3V analog supply voltage for
transmitter

15 VDDD3V3 3.3V digital supply voltage
16 VDDD1V8 1.8V digital supply voltage

17
RXER
CONFIG3
TXCLK

RXER: MII/RMII receive error
output
CONFIG3: pin strapping config-
uration input 3
TXCLK: clock output in test
mode and slave jitter test

18
RXDV
CONFIG2
CRSDV

RXDV: receive data valid output
for MII
CONFIG2: pin strapping config-
uration input 2
CRSDV: carrier sense/receive
data valid output (during RMII
mode)

1Source [22], pp5

42

Pin number Pin name Pin functionality
19 VDD(IO) 3.3V I/O supply voltage
20 CLK_IN_OUT 25MHz reference clock in/out

21
RXD3
CONFIG1

RXD3: receive data output (bit 3
of RXD[3:0] in MII mode)
CONFIG1: pin strapping config-
uration input 1

22
RXD2
CONFIG0

RXD2: receive data output (bit 2
of RXD[3:0] in MII mode)
CONFIG0: pin strapping config-
uration input 0

23
RXD1
PHYAD2

RXD1: receive data output (bit 1
of RXD[3:0] in MII mode or bit 1
of RXD[1:0] in RMII mode)
PHYAD2: pin strapping config-
uration input for bit 2 of PHY
address used for SMI address/Ci-
pher scrambler

24
RXD0
PHYAD1

RXD0: receive data output (bit 0
of RXD[3:0] in MII mode or bit 0
of RXD[1:0] in RMII mode)
PHYAD1: pin strapping config-
uration input for bit 1 of PHY
address used for SMI address/Ci-
pher scrambler

25
RXC
REF_CLK

RXC(MII mode): external
25MHz receive clock output
RXC(MII reverse mode): exter-
nal 25MHz clock input
REF_CLK(RMII mode): inter-
face reference clk input (external
50MHz)
REF_CLK(RMII mode): inter-
face reference clock output

26 GND Ground reference
27 VDD(IO) 3.3V I/O supply voltage

28 TXC

MII mode: 25MHz transmit clock
output
Reverse MII mode: external
25MHz transmit clock input

43

Pin number Pin name Pin functionality

29 TXEN
Transmit enable input (active-
HIGH) for MII/RMII mode

30 TXD3
Transmit data input (bit 3 of
TXD[3:0] in MII mode)

31 TXD2
Transmit data input (bit 2 of
TXD[3:0] in MII mode)

32 TXD1
Transmit data input (bit 1 of
TXD[3:0] in MII mode or bit 1 of
TXD[1:0] in RMII mode)

33 TXD0
Transmit data input (bit 0 of
TXD[3:0] in MII mode or bit 0 of
TXD in RMII mode)

34 TXER
Transmit error input (for both
MII and RMII mode)

35 EN PHY enable, active-HIGH
36 MDIO SMI data I/O

Table 3.1: Pins functionality

Here it is also reported the datasheet pinout to be referenced to:

44

Figure 3.4: TJA1101B pinout

3.6 Functional block and diagram

A detailed implementation of the TJA1101B is shown here: the upper part (highlighted
in grey) contains MII/RMII logic, PCS and PMA layers, Front-end/Hybrid block for
MDI interface and Phase Locked Loop (PLL) to generate clock signals derived from
external crystal or input oscillator signal2.

2Source [22], pp3

45

Figure 3.5: TJA1101B block diagram

The lower part (not highlighted) contains logic blocks for SMI, Configuration, In-
terrupt and Reset signals. On top of that, it is possible to notice the internal registers
that are accessed by the interface logic together with undervoltage and overtemperature
detection blocks.

3.7 SMI registers

In this section it is reported the SMI register mapping: it is composed of 18 registers
of 16 bits width, each one dedicated to a specific purpose. The following table shows
their usage3:

Register index Register name
0 Basic control register
1 Basic status register
2 PHY identification register 1
3 PHY identification register 2
15 Extended status register
16 PHYidentification register 3
17 Extended control register
18 Configuration register 1

3Source [22], pp24

46

Register index Register name
19 Configuration register 2
20 Symbol error counter register
21 Interrupt source register
22 Interrupt enable register
23 Communication status register
24 General status register
25 External status register
26 Link-fail counter register
27 Common configuration register
28 Configuration register 3

Table 3.2: SMI registers numbering and functionality

3.7.1 SMI frame

A single MAC configured as Master can have up to 32 PHYs configured as slave. Com-
munication among MAC and PHYs on SMI interface is based on frame transmission,
which should have the following structure4:

Preamble
[31:0]

Start OP code PHY
addr[4:0]

Register
addr[4:0]

Turnaround Data
[15:0]

Idle

1...1 01 10(read) AAAAA RRRRR Z0 D...D Z
1...1 01 01(write) AAAAA RRRRR 10 D...D Z

Table 3.3: SMI frame structure

It is important to specify that bit sampling is performed on the rising edge of the
clock (MDC because it is referred to SMI interface).

3.8 Hardware configuration

The PHY controller enables several pins dedicated to hardware configuration, such
that there is no need of microcontroller interaction. Values corresponding to the con-
figuration options are stored in SMI registers.
The following table summarizes the configurable functions:

Symbol Pin Value Function
MASTER_SLAVE 22(CONFIG0) 0/1 Slave/Master configuration

4Source [23], pp9

47

Symbol Pin Value Function
AUTO_OP 21(CONFIG1) 0/1 Managed/Autonomous operation

MII_MODE
17(CONFIG3)
18(CONFIG2)

00
01
10
11

Normal MII mode
RMII mode (50MHz input)
RMII mode (50MHz output)
Reverse MII mode

PHYAD[2:1]
23(PHYAD2)
24(PHYAD1)

-
-

Address bit 2 for SMI
Address bit 1 for SMI

LDO mode 4(SEL_1V8)
0
1

Internal 1.8V LDO enabled
External 1.8V supply

Table 3.4: Pins for hardware configuration

3.9 MII signal encoding

Using MII mode, data is exchanged between PHY and MAC via 4-bit wide payload.
Transmit and receive data is synchronized with transmit and receive clocks (TXC and
RXC) which are derived from external clock source or 25MHz crystal oscillator. Data
is encoded as follows:

• Transmission

TXEN TXER TXD[3:0] Indication
0 0 0000-1111 Normal interframe
0 1 0000-1111 Reserved
1 0 0000-1111 Normal data transmission
1 1 0000-1111 Transmit error propagation

Table 3.5: MII encoding for transmission

• Receiving

RXDV RXER RXD[3:0] Indication
0 0 0000-1111 Normal interframe
0 1 0000 Normal interframe
0 1 0001-1101 Reserved
0 1 1110 False carrier indication
0 1 1111 Reserved
1 0 0000-1111 Normal data transmission
1 1 0000-1111 Data reception with errors

Table 3.6: MII encoding for reception

48

TJA1101B MII peripheral can use either the external crystal oscillator (XTAL)
clock or an external reference clock, on XI-XO pins or on the clk_in_out pin (from
another PHY or switch) respectively, both running at 25MHz to meet the 100Mbit/s
requirement as specified in 2.4.4:

(a) MII XTAL clock (b) MII external reference clock

3.10 RMII signal encoding

Using RMII mode, data is exchanged between PHY and MAC via 2-bit wide payload.
It is used only one single clock signal, REF_CLK, that runs at 50MHz to achieve the
same data rate of MII mode: it can be an external 25MHz crystal, 50MHz clock signal
generated by an external oscillator connected to REF_CLK or a 25MHz clock signal
coming from another PHY connected to CLK_IN_OUT.
Data is encoded as follows:

• Transmission

TXEN TXD[1:0] Indication
0 00-11 Normal interframe
1 00-11 Normal data transmission

Table 3.7: RMII encoding for transmission

• Receiving

49

CRSDV RXER RXD[1:0] Indication
0 0 00-11 Normal interframe
0 1 00 Normal interframe
0 1 01-11 Reserved
1 0 00-11 Normal data transmission
1 0 00-11 Data reception with errors

Table 3.8: RMII encoding for reception

Just as MII mode, the RMII can use either an external crystal oscillator clock or
an external reference clock: in order to meet the 100Mbit/s requirement, the external
reference clock must have a nominal frequency of 50MHz, while the XTAL clock must
run at 25MHz and the PHY will derive its internal clock from it, and it will have a
nominal frequency of 50MHz.

(a) RMII XTAL clock (b) RMII external reference clock

3.11 Reverse MII

To realize a repeater function, two PHYs can be connected in series using the MII
interface: this is called Reverse MII mode, and it is selected setting MII_MODE = 11
(pin 17 and 18, as specified above).

50

Figure 3.8: Reverse MII configuration

3.12 Loopback

TJA1101 implements the loopback functionality to test the correctness of the sent/re-
ceived packets through the MII/MDI interfaces by sending back those packets and
compare them to the previous ones. Three types of loopbacks are available:

• Internal loopback: packets sent through MII are sent back to verifiy PCS correct
behaviour

Figure 3.9: internal loopback

• External loopback: packets sent through MII are sent back to verifiy PMA correct
behaviour

Figure 3.10: External loopback

51

• Remote loopback: packets received from the MDI are sent back from the PCS
receiver to verify the overall correctness of the PHY transmit and receive blocks

Figure 3.11: Remote loopback

3.13 MDI interface circuit

According to the application note document5, it is possible to compare the interface
circuit diagram of the MDI peripheral with the one provided by the OPEN Alliance
document6:

Figure 3.12: MDI interface circuit

It is possible to identify the DC block capacitors C1 and C2, the CMC, the LPF
and the ESD protection circuit which is composed by protection diodes: each value is
reported in Fig.3.12.

5Source [23], pp10
6Source [10], pp11

52

3.14 Finite state machine

Figure 3.13: Finite state machine diagram

Fig.3.13 is taken from the datasheet and shows signals responsible for state changing.
Depending on the current state of the ASIC, only a limited number of operations are
allowed.

53

3.14.1 DUT operations allowed

• POWER OFF

– Communication on SMI interface is disabled

– Communication on MII/MDI is disabled

– Reset SMI registers to default value

– Read power mode is disabled

• DISABLE

– Communication on SMI interface is disabled

– Communication on MII/MDI is disabled

– Do not reset SMI registers to default value

– Read power mode is disabled

• RESET

– Reset SMI registers to default value

– Communication on SMI is disabled

– Communication on MII/MDI is disabled

– Capture pin strapping configuration

– Read power mode is disabled

• STANDBY

– Set INH output pin to HIGH

– Set PHY configuration mode according to pin strapping

– Communication on SMI interface is enabled after tsPon from the time STANDBY
state is entered

– Read power mode is enabled

– Reset req_timer and ack_timer

• NORMAL

– The ASIC transmit and receive functions are enabled and can setup a link

– MII/MDI communications enabled

– SMI communication enabled

– Read power mode is enabled

54

– Reset req_timer and ack_timer

– Set INH pin to HIGH

• SLEEP

– Communication on MII/MDI is disabled

– Set INH output pin to LOW

– Do not reset SMI registers to default value

– Only POWER_MODE bitfield reading is allowed on the SMI interface

• SLEEP REQUEST

– Start tto(req)sleep;

– If sleep_ack_timer is disabled, it switches to NORMAL mode if data de-
tected at MII and MDI interface, set DATA_DET_WU and generate WAKEUP
interrupt if REMWUPPHY = 1;

– If sleep_ack_timer is enabled, start tto(ack)sleep and data at MII and MDI
interfaces is ignored;

• SILENT

– Communication on MII, MDI and SMI is allowed

3.14.2 Relevant timing

During state transition, some relevant timings must be considered:

• POWER-ON → STANDBY: tsPon = 2ms (no SMI access during tsPon)

• From any state (except from NORMAL) → NORMAL: tinit(PHY) = 2ms (no link
can be established before tinit(PHY))

• NORMAL → SLEEP REQUEST: tto(pd)autn = 1-2sec

• Sleep request time-out time starts when TJA1101 enters SLEEP REQUEST
MODE: tto(req)sleep = 400µs when SLEEP_REQUEST_TO = 0, 1ms when SLEEP_REQUEST_TO
= 1, 4ms when SLEEP_REQUEST_TO = 2, 16ms when SLEEP_REQUEST_TO
= 3

• Sleep acknowledge time-out time starts in SLEEP REQUEST MODE if SLEEP_ACK
is set: tto(ack)sleep = 200µs when SLEEP_REQUEST_TO = 0, 500µs when
SLEEP_REQUEST_TO = 1, 2ms when SLEEP_REQUEST_TO = 2, 8ms
when SLEEP_REQUEST_TO = 3

55

• Under-voltage detection time-out time = touvd = 670ms

• DISABLE → STANDBY: tdet(EN) = 20µs

• RESET → STANDBY: tdet(rst) = 20µs

3.15 Undervoltage detection methods

The ASIC behaviour strongly depends on the voltages upon power pins. Voltages must
be modelled using sc_in<double> ports, and each time one or more pins changes its
value, the state transition method checks whether and undervoltage has occurred to
properly switch the current state. Here there are listed the voltage thresholds for the
power pins:

• Vdd_io: 3.3V

• Vddd3V3: 3.3V

• Vdda3V3: 3.3V

• Vddd1V8: 1.8V

• V_bat: 3.3V

3.16 Overtemperature and Temperature warning meth-
ods

Temperature, just as voltages, has to be constantly monitored to change the state if an
overtemperature has occurred. Proposal: it can be modelled as an sc_signal<double>,
and the state change method is sensitive to it such that it can check the temperature
value.
Overtemperature values: (180 – 200) °C
Temperature warning values: (155 – 175) °C

3.17 Interrupt handling

Register 21 is responsible for keeping track of all the interrupts events that occur
between 2 read operations of the register itself. Here it is possible to identify all the
events that can generate an interrupt:

• Power-on

• Wake-up (local or remote)

56

• LPS code group received

• UV (undervoltage on VDD_IO or VDDD3V3 or VDDA3V3 or VDDD1V8)

• Overtemperature

• SMI error (any value written in POWER_MODE different from normal_cmd,
stand-by_cmd, sleep_mode, silent_mode)

• UV recovery

• Sleep abort

If the interrupt is not masked (corresponding bitfield in register 22 set to 1) then the
TJA1101 sets the INT_N pin to LOW. If instead a read operation is performed on
register 21, the pin INT_N is set to HIGH.

3.18 PHY wakeup concept

Looking at the TC10 mechanism described in the document provided by OPEN Al-
liance, several things can be deduced regarding the wake-up protocol: the PHY can
receive a wake-up command on the wake_in_out pin or through the MDI interface on
the reception of a WUR from the link partner. The PHY can react to the wake-up
call if the corresponding bit in register 18 is enabled (LOCWUPHY for local wake-up
on wake_in_out pin, REMWUPHY for remote wake-up on the MDI interface); if the
bit is not set, the PHY won’t recognize these commands and does not wake-up from
a sleep state. PHY local wake-up time is determined by the value present in bitfield
LOC_WU_TIM in register 27:

• 00: 10-20ms

• 01: 500µs

• 10: 200µs

• 11: 40µs

Regarding the forwarding concept, it is a method to propagate a wake-up request over
an entire network of multiple PHYs connected: if the local forwarding bitfield is set and
a remote wake-up request is detected, the PHY will propagate the request by pulling
the wake_in_out pin high; on the other hand, if the remote forwarding bit is set and
a local wake-up request is detected, the PHY will propagate the request by sending
WUP on the MDI peripheral.

57

Figure 3.14: TC10 wakeup implementation

3.19 PHY sleep concept (LPS)

The PHY can enter a sleep request state by receiving a LPS code group: looking at
the TC10 specification, the encoding of a LPS code group is is performed by the bit
scrambler of the link partner, just as the encoding of a remote wakeup frame. In the
virtual model, it is reasonable to use the length/type field of the ethernet frame as
a LPS code field (it can be set to a random value, greater than 1536(dec)). This
mechanism implies that a handshake will be required to confirm the state transition.
When the PHY enter SLEEP_REQUEST state, the timer tto(req)sleep timer will start
and the PHY sends LPS code group to the link partner to inform it that it is switching
to a SLEEP state: if the timer expires before the link partner has sent a LPS code
group back as acknowledgement for the ASIC, the PHY will switch back to NORMAL
state; on the other hand, if the handshake protocol is satisfied, the PHY will enter
SLEEP state (through SILENT state). Moreover, the TJA1101 offers the possibility
to wait for a wake-up host command thanks to the SLEEP_ACK bitfield in register
28. If the bit is set, the tto(ack)sleep timer is started when the SLEEP REQUEST state
is entered, and it determines the maximum time amount in which the PHY can receive
a wake-up command: if the timer expires before receiving a WUP or WUR, the PHY
switches to SLEEP state, otherwise to NORMAL state; if the bit is not set, it switches
back to NORMAL state if data is detected at MII or MDI interface and generate a
SLEEP_ABORT interrupt.

58

CHAPTER 4

Model requirements

The aim of this chapter is to describe how the virtual model requirements have been
implemented using the SystemC[5] library and the SCML2 2.8.0 library[13].
In particular, the followings items are described:

• TJA1101B hierarchy

• Pinout

• MII interface

• MDI interface

• SMI interface

• SMI registers

• Pin-strapping hardware configuration

• Internal loopback

• External loopback

• Remote loopback

• Ethernet frame class description

• Finite State Machine

• Undervoltage detection methods

• Overtemperature and temperature warning detection methods

• Interrupt handling

• Local/Remote wake-up

59

• LPS

• Ethernet sniffer

4.1 TJA1101B hierarchy

To keep the overall design well organized and clean, the TJA1101 virtual model is
divided into 3 classes: SMI_registers, PHY and TJA1101.

SC_CORE::SC_MODULE

SMI_REGISTERS

PHY

TJA1101

First, the entire design must inherit all the methods coming from the sc_core::sc_module
class, such that it is identified as an hardware model by the Virtualizer tool. After
that, the SMI_register module is defined as the parent class of the PHY module, which
is in turn the parent class of the top module TJA1101.

60

4.2 Pinout

Figure 4.1: Pinout implementation
Green:implemented
Orange: abstracted

Red: omitted

In Fig.4.1 it is highlighted how the device pins have been modelled in the virtual model:
they can be implemented, abstracted or omitted.
Only pins that are responsible for a behaviour change of the Device Under Test (DUT)
have been implemented or abstracted, clock pins have been omitted in order to speed
up the simmulation because they don’t act on the model behaviour.

4.3 MII and MDI interface

The need of trans receiving an ethernet frame and move it on the other side of the PHY
(from MII to MDI and vice versa) leads to an implementation with 2 target sockets, to
handle transactions instantiated by the external MAC/network, and 2 initiator sockets
to transfer the generic payload to the external network/MAC.
In Fig.4.2 it is shown how it has been implemented:

61

Figure 4.2: TLM representation of MII and MDI interface

Server sockets are defined as tlm_utils::tlm_simple_target_socket<PHY>, while
client sockets as tlm_utils::simple_initiator_socket<PHY>. Each time a server socket
detects a transaction, the PHY forwards the transaction itself to the other link partner
if the operation is allowed (i.e. the current state is NORMAL and the PHY is enabled).
As specified by the datasheet, a normal data transmission is identified by the pin con-
figuration: txen = 1 AND txer = 0, otherwise it identifies an interframe or an error
propagation (both cases are considered as errors in the virtual model because they are
not carrying useful information).

4.4 SMI interface

The SMI interface communication is managed by a
tlm_utils::simple_target_socket<SMI_registers>, which is a socket that calls the
memory b_transport function to write/read to/from the registers of the ASIC, if the
operation is allowed.
The TLM version of the SMI frame does not involve the preamble bytes and the start
of frame byte: they do not carry any useful information, and also it is assumed that the
entire system is always synchronized; information like OP_CODE and ADDRESS are
set in the generic payload exchanged among sockets (using methods set_command()
for the OP_CODE and set_address() for the ADDRESS).

4.5 SMI registers

SMI register file is be implemented using SCML2 library: it is modelled as a class
containing the memory map and registers. Memory map is a scml2::memory object of
unsigned short elements, because the register parallelism is on 16 bits; it is the parent
class of objects of type scml2::reg, which are all the registers listed above. SCML2.8.0
librar allows to set read/write callbacks and to set read/write restrictions on memory
objects that will facilitate the debugging phase.
List of remarkable register callbacks:

• Register 0: if bitfield RESET = 1, then generate a software reset event

62

• Register 17: POWER_MODE bitfield contains the information for software com-
mands which are useful for state transitions, respectively NORMAL_MODE,
STANDBY_MODE and SLEEP_MODE

• Register 18: whenever an access takes place on register 18, the callback checks if
the bitfield CONFIG_EN in register 17 is set to 1 in order to grant the required
access, otherwise it is ignored

• Register 21: the interrupt source register must be cleared after a read operation

• Register 23: RECEIVE_ERR and TRANSMIT_ERR bitfields must be set to 1
after a read operation

• Register 24: LOCAL_WU, REMOTE_WU, EN_STATUS must be set to 0 after
a read operation;

• Register 26: must be reset to 0 after a read operation

Figure 4.3: SMI TLM memory structure

4.6 Internal and external loopback

Loopback is a method that is useful to test the correct functionality of the PCS and
PMA blocks.
In the virtual model they are abstracted, but since this function can be configured via
SMI it has been virtually implemented.
For what it concerns the internal and external loopback, the implementation is the
same for both: if the LOOPBACK is enabled and an ethernet frame is received at the

63

MII target socket, the MII initiator socket will initiate a transition back with the same
received payload, otherwise not.

Figure 4.4: Block diagram of the virtual internal and external loopback

4.7 Remote loopback

The remote loopback virtual implementation is the specular with respect to the inter-
nal/external one, the difference is that the loopback is on the MDI interface.

Figure 4.5: Block diagram of the virtual remote loopback

64

4.8 Ethernet frame class description

The ETHERNET_FRAME class contains all the methods to set the frame fields and
to get the field values from the frame. The frame has been modelled as an unsigned
char array and set/get functions act on this array. It is important to specify that array
bytes are stored in Big Endian mode (MSB is stored in the lower memory region).
Every time the sockets exchange ethernet frames, the payload array is copied in the
memory region of the destination payload array.
In the TLM implementation, the preamble and Start of Frame Delimeter bytes are
not implemented because it is assumed that the entire system is already synchronized.
Data payload size has to support different sizes of ethernet frames: standard ethernet
frame size is usually 1518 bytes, while longer frames are classified as jumbo frames;
according to the configuration of JUMBO_ENABLE bitfield in register 19, the PHY
is able to support up to 4kB of payload when JUMBO_ENABLE = 0 or up to 16kB
when JUMBO_ENABLE = 1.

4.9 Finite state machine

The FSM has been implemented as a Moore state machine, using two different sc_methods.
The first one, change_state(), implements the state transitions according to the fol-
lowing list of events and signals:

• Battery voltage

• Vdd_io

• Vddd3V3

• Vdda3V3

• Vdda1V8

• Hardware reset

• Software reset

• Hardware enable

• Temperature

• Ethernet frames on MII and MDI

• SMI mode commands (normal, standby, sleep)

• Local wakeup

65

• Remote wakeup

• Sleep request timer expiration

• Acknowledge timer expiration

• LPS code group

After a state transition, this method notifies the start of the virtual control unit, FSM(),
after the proper time as specified by the datasheet.
The role of the control unit is to configure the PHY control signals according to the
current state: for example it enables/disables the Ethernet peripherals, starts the
timers for sleep request transition, resets the registers, so on and so forth.

4.10 Undervoltage detection methods

Voltage upon power pins has been modelled with sc_in<double>ports, and they are
constantly read by the methods in charge of changing the DUT behaviour:

• State machine: to go POWER-OFF or STANDBY if undervoltage detected on
V_bat or digital and analogue pins

• External status register

• Interrupt source register

4.11 Overtemperature and temperature warning de-
tection methods

The temperature has been modelled as an sc_signal<double>, and it is set from the
testbench to test correct state transitions and registers update, and it is monitored by:

• State machine

• External status register

• Interrupt source register

If the temperature value is between 180 and 200 it means that an overtemperature
event has occurred.
If the temperature value is between 155 and 175 it means that a temperature warning
event has occurred.

66

4.12 Interrupt handling

For what it concerns the interrupt handling, the TJA1101 register 21 is the interrupt
source register, while register 22 is the register that contains the bitfields associated
with one interrupt and, if set, pulls the INT_N pin LOW if that corresponding interrupt
occurs.
The interrupt generation is modelled with an SC_METHOD, which is sensitive to all
the events listed in the datasheet: it checks what is the interrupt source and updates the
corresponding bit; after that, it checks whether the mask bit in register 22 is enabled,
and it sets the INT_N pin LOW if it is 1. If a read operation event is triggered on
register 21 via read callback, it pulls INT_N at a HIGH value, and the register is
automatically reset to its default value.

4.13 Local/Remote wakeup

The local wakeup has been modelled through the wake_in_out pin that is a
sc_inout<bool>object, and an SC_METHOD that notifies a local wakeup event ac-
cording to the configuration written in register 18, after the time specified in the
LOC_WU_TIM bitfield.
On the other hand, the remote wakeup has been modelled through an ethernet frame
whose length/type field contains a WAKE_ON_LAN code 0x842, and it is sent on
the MDI interface.

4.14 Low Power Sleep (LPS)

The LPS code group has been encoded with 0x900 value in the length/type, which is
a random value greater than 1536(dec), because, according to the TC10 standard, the
encoding of the LPS is left to the implementer. If the device is in NORMAL state and
it receives a LPS command, it will go in SLEEP_REQUEST state and start tto(req)sleep
and tto(ack)sleep according to SMI registers values.

4.15 Ethernet sniffers

The virtual model of the TJA1101B comes out with a further feature which is useful
for monitoring the ethernet packets exchanged over the network and to visualize them
on the Virtualizer tool: ethernet sniffers have been developed to capture packets on the
MII interface and to save data in scml2::memory objects every time a frame is detected
on the peripheral. For each of the frame types, the model traces the followings:

• DATA LINK

67

– VENDOR ID SRC

– VENDOR ID DST

– HOST IS SRC

– HOST IS DST

– LENGTH/TYPE

• IP

– VERSION

– HEADER LENGTH

– TOS

– TOTAL LENGTH

– IDENTIFICATION

– FLAGS

– FRAGMENTED OFFSET

– TTL

– PROTOCOL

– CHECKSUM

– SOURCE ADDRESS

– DESTINATION ADDRESS

– OPTIONS

• TCP

– SOURCE PORT

– DESTINATION PORT

– SEQUENCE NUMBER

– ACK NUMBER

– HEADER LENGTH

– RESERVED

– CONTROL FLAGS

– WINDOW SIZE

– CHECKSUM

– URGENT POINTER

– OPTIONS

68

• UDP

– SOURCE PORT

– DESTINATION PORT

– CHECKSUM

– PAYLOAD LENGTH

Each of the listed field is modelled through a scml2::reg memory object properly
mapped in the parent memory object.
In addition to this information, the sniffers trace the frame number captured on the
interface and the elapsed time from the beginning of the simulation, expressed as un-
signed integer number to represent the elapsed nanoseconds. Payload data is omitted
because it does not contain useful information about the ethernet packet communica-
tion fields.

4.16 Live demostration

To provide a live demostration of the Ethernet sniffers, the testbench comes with
an ethernet client socket that receives all packets from the network when the PC is
connected to a LAN. Each time a packet is captured on the network, it is copied in the
memory location of the ethernet payload of the testbench and sent to the MII interface:
in this way, it is possible to compare in real time packets sniffed using C Application
Programming Interface (API) and with Wireshark.

69

CHAPTER 5

Test environment

After the virtual model developing, it is necessary to build a proper test environment to
verify all the required functionalities of the device. In this chapter it is described how
the testbench is implemented, the list of the tests that are performed, the waveforms
to analyze the behaviour of each feature and the dump of the ethernet sniffers.
Finally, it will be shown how the virtual model will be visualized on the Synopsys
Virtualizer tool and how simulations are performed in this environment.

5.1 Testbench structure

The test environment has been implemented as a sc_module connected to the DUT.
All of the DUT pins are connected in the sc_main process to the testbench pins, and
they are driven by the testbench itself.

Figure 5.1: Test environment

70

In order to monitor the DUT internal variables, such as the Finite State Machine
(FSM) state and the temperature, two further sockets are provided: each time the
state has to be read and the temperature to be set, b_transport socket functions are
called to exchange data between the DUT and the testbench. This is how the tests are
performed:

Figure 5.2: Test process flowchart

The SC_THREAD main_thread() reads the test to be performed from a text
file, and it sets all the variables to test whether the DUT behaves according to the
requirements: it checks if the observed variable is equal to the expected one and if it
is different an error message is printed on the terminal, and the simulation stops. To
test different conditions, an sc_signal<unsigned int>called n_test is incremented each
time a test ends: if it is even some conditions are tested, if not other conditions are;
n_test is initialized in the main_thread() to a certain value and it can be used as a
seed to control the test type at each simulation. To trace the current state of the DUT
on the waveform viewer, it is used a sc_bv object: each of its element is the binary
representation of the ASCII code correspondent to the current state, and it will be
displayed as an ASCII character in the waveform viewer.

71

5.2 Test list

An exhaustive list of the test to be performed is here reported:

Test number Transition to state
1 POWER OFF
2 STANDBY
3 RESET
4 STANDBY
5 DISABLE
6 STANDBY
7 NORMAL
8 STANDBY
9 SLEEP
10 STANDBY
11 NORMAL
12 SLEEP REQUEST
13 SILENT
14 SLEEP
15 STANDBY
16 NORMAL

Table 5.1: State transitions list

As mentioned before, to test different conditions for a state transition, the variable
n_test can be initialized to a different value each time a new simulation is started.
In the following analysis, it is shown all the required features and the state transition
associated; finally, a general view of the tests listed above is reported together with an
Ethernet Sniffer dump of the exchanged data.

72

5.3 Undervoltage detection

Figure 5.3: Undervoltage on V_bat

As it is possible to see, the value of V_bat is set to 1.2 such that the DUT enters
POWER-OFF state, and when it is set to 5 it enters STANDBY state: the interrupt
source register (REG21) PWON bit is set to 1; also UV_ERR bit is set to 1 because an
undervoltage has been detected upon VDD_IO, VDDA3V3, VDDD3V3, VDDD1V8
pins.

5.4 Overtemperature and temperature warning de-
tection

Figure 5.4: Overtemperature event

In this example, the value for the temperature is set to 200 °C and it causes a state tran-
sition from NORMAL to STANDBY, updates the interrupt source register (REG21)
TEMP_ERR bitfield to 1 and the external status register (REG25) TEMP_HIGH
bitfield to 1.

73

5.5 Interrupt event

Figure 5.5: Interrupt handling

In this example it is shown an interrupt handling: when POWER_ON event is trig-
gered, REG21 is updated with the corresponding value and INT_N pin is pulled down;
on the other hand, when a read operation is performed on REG21, INT_N is pulled
high and the register is reset to its default value. As it is possible to see, all the events
that could trigger an interrupt are reported and register 21 is update correctly.

5.6 Local/Remote wakeup handling

Figure 5.6: Local wakeup

Regarding the local wakeup, wake_in_out pin is pulled high to locally wake up the de-
vice: the event LOC_WAKEUP_EV is triggered 20ms after according to LOC_WU_TIM
value (0) and it will cause a state transition from STANDBY to NORMAL.

Figure 5.7: Remote wakeup

In this example, a remote wake-up request is detected at the MDI interface: the
DUT is configured to react to a remote wake-up request, and it notifies the REM_WAKEUP_EV
to allow the state transition from SLEEP to STANDBY.

74

5.7 LPS detection

This has been the most critical and challenging feature to test, and it is no exaggeration
to assert that it is the most important aspect of the ASIC. This is because the LPS is
an extremely valuable feature in automotive applications for power saving and is not
implemented in standard Ethernet.
The hardware component required precise timing and specific command sequences to
transition between sleep and wake states. Initially, understanding and correctly pro-
gramming these sequences proved problematic.
Fortunately, the documentation is sufficiently comprehensive to facilitate the imple-
mentation of this key feature.
In order to address this issue, several steps have been strictly followed:

• In depth analysis into technical manuals to clarify every possible doubt

• Use of pen-and-paper approach to better describe the problem using flowcharts
and to reorganize information concerning the correct timings

• Incremental testing and debugging for testing smaller parts of the mechanism
step-by-step; this methodical process helped identify the specific points of failure

• Technical meeting with the project tutor for the consultation with an expertise

Figure 5.8: LPS code group detection

In Fig.5.8, a LPS code group is received while the DUT is in NORMAL state, and
this will cause a state transition from NORMAL to SLEEP_REQUEST; after that,
the TC10 handshake protocol is started: the DUT sends LPS code group in SILENT
state to the testbench and receives another LPS code group back before the tto(req)sleep
timer expires and it enters SLEEP state.

Figure 5.9: Timeout on tto(req)sleep

75

In Fig.5.9, no LPS code confirmation is sent to the DUT and the timer tto(req)sleep
expires: the DUT is in SILENT state when the timeout event occurs and it switches
back to NORMAL state, as specified in the model requirement document.

Figure 5.10: Acknowledge timer behaviour

Fig.5.10 highlights the case when the DUT enters SLEEP_REQUEST state when
it receives a LPS code from the link partner, and SLEEP_ACK timer is enabled: when
it expires, the DUT completes the LPS handshake protocol and enters SLEEP state.

Figure 5.11: Transition to NORMAL with no tto(ack)sleep timeout

Finally, in Fig.5.11 it is shown that the DUT receives a remote wakeup request
before the SLEEP_ACK timer expires: the timer is reset, and the device enters NOR-
MAL state.
It is important to specify that in order to test these specific conditions (tto(req)sleep ex-
piration and tto(ack)sleep no expiration) the test list was modified for sake of semplicity.

5.8 Results of listed tests

Finally, after the verification of the required features listed in the model requirements
document, the final overview of the state transition table is here reported:

Figure 5.12: State tracing using waveform viewer

76

It is also shown the curson at a specific timestamp because, by just looking at the
picture, the last transition wouldn’t be right: the values in the Signals box show that
there is an intermidiate transition (not visible because of the short amount of time).

5.9 Ethernet sniffer dumps

In this final section, dumps of the ethernet sniffers are reported to show the correctness
of the behaviour by comparing the model frames with sniffed packets from Wireshark.
The following dump is obtained with the model simulation by sending a TCP packet:

DATA_LINK_SNIFFER
FRAME_NUMBER : 3
TIME_STAMP : 6a72000
VENDOR_ID_SRC : 74366d
HOST_ID_SRC : 94460
VENDOR_ID_DST : 7cc2c6
HOST_ID_DST : 48103d
LT : 800
CRC : 35000000

IP_SNIFFER
FRAME_NUMBER : 3
TIME_STAMP : 6a72000
VERSION : 4
HEADER_LENGTH : 5
TOS : 0
TOTAL_LENGTH : 34
IDENTIFICATION : c69d
FLAGS : 2
FRAGM_OFFSET : 0
TTL : f0
PROTOCOL : 6
CHECKSUM : 47bb
SRC_ADR : 82c037f0
DST_ADR : c0a80112
OPT : 0

TCP_SNIFFER
FRAME_NUMBER : 3
TIME_STAMP : 6a72000
SOURCE_PORT : 1bb

77

DESTINATION_PORT : 9a26
SEQUENCE_NUMBER : 7cb038a3
ACK_NUMBER : 44ae86bc
HEADER_LENGTH : 8
RESERVED : 0
CONTROL_FLAGS : 10
WINDOW_SIZE : 1000
CHECKSUM : 1ecd
URGENT_POINTER : 0
OPTIONS : 1

1
1
8
a

ed
4b
3e
40
fc
61
86
f7

UDP_SNIFFER
FRAME_NUMBER : 0
TIME_STAMP : 0
SOURCE_PORT : 0
DESTINATION_PORT : 0
DATAGRAM_LENGTH : 0
CHECKSUM : 0

The packet has been sniffed using Wireshark (only the most relevant fields have been
shown for sake of readability):

78

Figure 5.13: TCP packet sniffing using wireshark

UDP packet fields have been verified using the following frame:

DATA_LINK_SNIFFER
FRAME_NUMBER : 5
TIME_STAMP : 5eaa600
VENDOR_ID_SRC : 74366d
HOST_ID_SRC : 94460
VENDOR_ID_DST : 7cc2c6
HOST_ID_DST : 48103d
LT : 800
CRC : 86f73500
IP_SNIFFER
FRAME_NUMBER : 5
TIME_STAMP : 5eaa600
VERSION : 4
HEADER_LENGTH : 5
TOS : 0
TOTAL_LENGTH : 32

79

IDENTIFICATION : 0
FLAGS : 2
FRAGM_OFFSET : 0
TTL : 38
PROTOCOL : 11
CHECKSUM : 3d5c
SRC_ADR : 8efab4aa
DST_ADR : c0a80112
OPT : 0
TCP_SNIFFER
FRAME_NUMBER : 0
TIME_STAMP : 0
SOURCE_PORT : 0
DESTINATION_PORT : 0
SEQUENCE_NUMBER : 0
ACK_NUMBER : 0
HEADER_LENGTH : 0
RESERVED : 0
CONTROL_FLAGS : 0
WINDOW_SIZE : 0
CHECKSUM : 0
URGENT_POINTER : 0
OPTIONS : 0

0
0
0
0
0
0
0
0
0
0
0
0

UDP_SNIFFER
FRAME_NUMBER : 5
TIME_STAMP : 5eaa600
SOURCE_PORT : 1bb
DESTINATION_PORT : a97e
DATAGRAM_LENGTH : 1e

80

CHECKSUM : aeb7

This is the sniffed packet using Wireshark:

Figure 5.14: UDP packet sniffing using wireshark

5.10 Code coverage

In this section it is reported the code coverage percentage of the model: this is an
important test phase in which the designer can see how many code lines are hit during
the execution of the simulation, and so the testbench can be improved in order to verify
all the requirements. Code coverage has been obtained using the coverage flag in the
compilation and converted in .html files using genhtml command, in order to have a
visual representation.

Figure 5.15: Code coverage representation

81

In Fig.5.15 it is shown how the visualization of the code coverage appears only for
the DUT (and not the testbench): it has been used a value for n_seed equal to 0, so
the total percentage cannot be 100% because not all the conditions are tested, but for
what regards SMI_registers, PHY and TJA1101 classes it has been reached a good
coverage; on the other hand, ETHERNET_FRAME class has a low coverage because
the testbech does not use UDP packets (and so all the related functions are not hit).

5.11 Functional verification

During the developing of a real hardware ASIC, functional verification plays a crucial
role. Detecting a hardware bug after production can result in significant financial losses
due to the necessity of redeveloping silicon masks. To mitigate this issue, functional
verification is employed. The primary goal of functional verification is to identify and
correct design errors by applying different methods:

• Logic simulation: it aims to simulate separate logical structures that make up a
functional unit by performing logic simulation before the functional unit is built

• Emulation: by applying emulation, the ASIC is built on top of a Field Pro-
grammable Gate Array (FPGA) or a programmable logic device; this method is
expensive and slow, but it is much faster than simulation and makes possible to
boot up certain software programs

• Formal verification: it uses mathematical expressions to check the logic design;
through mathematics, it is possible to prove that specific requirements are met in
the design; in addition to that, this method checks that deadlocks do not happen
in the design

During the developing of the project, it has been decided with the thesis tutor to not
perform functional verification for several reasons:

1. The effort that could have been required for a complete functional verification was
too high for the model requirement; ensuring that every bit and logic switching
combination behaves correctly would have been excessively time-consuming due
to the absence of any commercial tools capable of facilitating comprehensive
functional verification

2. Even if a bug will be found in the design, the effort to fix it relies on a simple
bug fixing in the source code and a recompilation of the model

In this perspective, only code coverage can be used as a metric to measure the quality
of both the model and the testbench.
Unfortunately, the PEP firmware does not include Ethernet drivers. Consequently, the

82

TJA1101 model cannot be tested within a real software environment. To date, test-
ing has been conducted without dedicated test software, relying solely on the custom
testbench outlined in this chapter.

5.12 Live sniffing demostration

When the constructor of the testbench object is called, aN ethernet socket is opened;
it is of type SOCK_RAW because it is necessary to sniff all the packets detected in
the network, even those without data payload (i.e. TCP packets used for synchroniza-
tion), the domain has been set to AF_PACKET such that it is possible to extract
information regarding physical connection (MAC addresses and length/type field) and
the protocol type has been set to ETH_P_IP to capture IP frames.

1 whi le (1) {
2 eth_frame_MII_tb . reset_payload () ;
3 _data_size = recvfrom (_sockfd_raw , eth_frame_MII_tb . get_payload () ,

ETH_PAYLOAD_MAX_SIZE, 0 , &_server_addr , &_server_addr_len) ;
4 i f (_data_size < 0) {
5 per ro r (" recvfrom () f a i l e d \n") ;
6 e x i t (EXIT_FAILURE) ;
7 }
8 _net_protocol = eth_frame_MII_tb . IP_get_protocol () ;
9 i f (_net_protocol == UDP_CODE | | _net_protocol == TCP_CODE) {

10 t rans . set_data_length (eth_frame_MII_tb . get_payload_length ()) ;
11 t rans . set_streaming_width (eth_frame_MII_tb . get_payload_length ()) ;
12 client_socket_MII_tb−>b_transport (trans , b_trans_del) ;
13 wait (t_wait) ;
14 }
15 std : : cout << std : : endl ;
16 }

Packets are copied in the ETHERNET_FRAME object using the blocking recvfrom()
API and, if the protocol type is either TCP or UDP, it is sent to the virtual device
from the testbench using the b_transport() function.
These frames are real time compared to packets sniffed using Wireshark by launching
the simulation together with the software without opening web pages or other pro-
grams (otherwise there will be too much network traffic, making a manual comparison
difficult).

5.13 Virtual Development Kit implementation

After having completed the SystemC model, the very next step of the project is to build
the model in the Synopsys VDK tool[30], which is the Punch tool used to create vir-
tual ECUs. The Virtualizer allows the model to be wrapped into a python environment

83

in which the user can change the parameters, the values of registers, and add faults
even at run time. Virtual prototypes offer a distinct advantage over physical hardware
by granting comprehensive visibility and control throughout the entire system. This
encompasses cores, interconnects, and peripherals, ending in an expedited and highly
effective edit-compile-debug process. Moreover, these prototypes ensure deterministic
system execution and facilitate non-intrusive debugging[12]. The python environment
is created using Corba tool. When the user imports the C++ code into the Virtualizer,
the tool generates specific description files (xml and json) to be correctly interpreted,
and recompiles the code using Visual Studio Professional. Before starting the simula-
tion on the Virtualizer, the tool offers several analysis settings that can be useful for
debugging purposes, such as:

• functional coverage port monitor

• process trace

• register trace

• socket trace

• TLM port trace

• transaction contention statistics

• transaction count

• transaction field statistics

• transaction latency statistics

• value trace

Each of these possibilities can be selected before running the simulation, as shown in
Fig.5.16:

84

Figure 5.16: Virtualizer analysis settings

After having configured analysis settings, the tool has the capability of using break-
points at a specific simulation time and to analyze register contents, signal values and
payload data.

Figure 5.17: Pin and SMI registers tracing

In Fig.5.17 a segment of simulation is being presented. In this example, an overtem-
perature event has occurred (temperature value is not shown in the figure): the value
of the external status register has changed properly (TEMP_HIGH bitfield set to 1)
and when the temperature goes down the threshold value, the bitfield value is reset to
0. As it possible to see, all pins are traced by the Virtualizer and so the SMI registers.

85

An additional capability of the tool is its ability to display the pinout of the device
model together with the sockets involved in the simulation:

Figure 5.18: Pins and sockets interface

In Fig.5.18 it is possible to see all the sockets of the model:

• client and server sockets for the MII interface

• client and server sockets for the MDI interface

• socket for SMI interface

• socket for the current state variable

• socket for the temperature value

86

CHAPTER 6

Final conclusions

In conclusion, the adoption of automotive Ethernet marks a significant paradigm shift
in the design, development, and functionality of modern vehicles. This research has
given a general overview about Automotive Ethernet, highlighting its benefits and chal-
lenges. In addition to that, this thesis aimed to provide a comprehensive understanding
of the role of Automotive Ethernet in shaping the future of mobility and how DT tech-
nology is able to provide a significant value to its development and improvement. The
natural prosecution of this work is therefore the verification and validation of the vir-
tual model in an integrated system composed by a microcontroller and the TJA1101B
device together with the official software developed by Punch Softronix, because, as
well explained in chapter 5, the SystemC model of TJA1101B device has been tested
by means of a TLM testbench and not with a real software: it has not been possible
verifying the correct behaviour and interaction between the DUT and the rest of the
PEP environment. In conclusion, the final results will have to be validated with the
physical counterpart of the DT, which is the physical ECU.

87

Bibliography

[1] Ali Abaye. “BroadR-Reach® Technology: Enabling one pair ethernet”. In: Broad-
com Corp (2012).

[2] Advantages of 4D-PAM5 line coding and disadvantages of 4D-PAM5 line cod-
ing. url: https://www.rfwireless-world.com/Terminology/Advantages- and-
Disadvantages-of-4D-PAM5-line-coding.html.

[3] AUTOSAR. url: https://www.autosar.org/.

[4] Philip Axer, Charles Hong, and Antony Liu. “OPEN Sleep/Wake-up Specifica-
tion”. Version 2.0. In: OPEN Alliance (2017).

[5] John Aynsley. “New Features of IEEE Std 1666-2011 SystemC”. In: Accellera
Systems Initiative (2012).

[6] John Aynsley and Doulos. “The Transaction Level Modeling standard of the Open
SystemC Initiative (OSCI)”. In: OSCI TLM-2.0 (2009).

[7] Martin Barnasconi. “SystemC and Digital Twin: good match or not?” In: SystemC
Evolution day (2019).

[8] Davide Bollati, Bernd Körber, and Michael Kaindl. “1000BASE-T1 System Im-
plementation Specification”. Version 1.6. In: 1000BASE-T1 (2022).

[9] BroadR Reach vs 100Base-Tx vs 1000BASE-T; Difference between BroadR Reach,
100Base-Tx, 1000Base-T. url: https://www.rfwireless-world.com/Terminology/
BroadR-Reach-vs-1000Base-T-vs-100Base-Tx.html.

[10] Stefan Buntz, Bernd Körber, and David Bollati. “100BASE-T1 System Imple-
mentation Specification”. In: 100BASE-T1 (2017).

[11] Steven B. Carlson et al. “IEEE 802 Ethernet Networks for Automotive”. In: IEEE
802 Plenary Tutorial (2017).

[12] Synopsys Group. “Platform Architect and Virtualizer Introduction”. In: Verifica-
tion continuum (2022).

[13] Synopsys Group. “SystemC Modelling Library manual”. In: Synopsys verification
(2022).

88

https://www.rfwireless-world.com/Terminology/Advantages-and-Disadvantages-of-4D-PAM5-line-coding.html
https://www.rfwireless-world.com/Terminology/Advantages-and-Disadvantages-of-4D-PAM5-line-coding.html
https://www.autosar.org/
https://www.rfwireless-world.com/Terminology/BroadR-Reach-vs-1000Base-T-vs-100Base-Tx.html
https://www.rfwireless-world.com/Terminology/BroadR-Reach-vs-1000Base-T-vs-100Base-Tx.html

[14] IEEE. “IEEE Standard for Ethernet Amendment 4: Physical Layer Specifications
and Management Parameters for 1 Gb/s Operation over a Single Twisted-Pair
Copper Cable”. In: IEEE Std 802.3bp-2016 (Amendment to IEEE Std 802.3-2015
as amended by IEEE Std 802.3bw-2015, IEEE Std 802.3by-2016, and IEEE Std
802.3bq-2016) (2016), pp. 1–211. doi: {10.1109/IEEESTD.2016.7564011}.

[15] IEEE. “IEEE Standard for Standard SystemC Language Reference Manual -
Redline”. In: IEEE Std 1666-2011 (Revision of IEEE Std 1666-2005) - Redline
(2012), pp. 1–1163.

[16] Infineon Aurix TC399X microcontroller. url: https://www.infineon.com/cms/
en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-
tc3xx/.

[17] Open SystemC Initiative. “Draft standard SystemC language reference manual”.
In: April 25th (2005).

[18] Michael Kaindl. “Advanced diagnostic features for automotive Ethernet PHYs”.
Version 2.2. In: 1000BASE-T1 (2022).

[19] Bernd Körber. “Definitions for Communication Channel”. In: OPEN Alliance
(2017).

[20] Yadong Li et al. “Research based on OSI model”. In: 2011 IEEE 3rd International
Conference on Communication Software and Networks. 2011, pp. 554–557. doi:
10.1109/ICCSN.2011.6014631.

[21] Megha Nanda. 9 Amazing Examples of Digital Twin Technologies for Industries.
2013. url: https://www.toobler.com/blog/digital-twin-examples.

[22] NXP. “TJA1101B 100BASE-T1 PHY for automotive Ethernet”. In: Product datasheet
(2021).

[23] NXP. “TJA1101B 100BASE-T1 PHY for automotive Ethernet”. In: Product Ap-
plication Note (2021).

[24] Open SystemC Initiative. Concurrency. url: https://learnsystemc.com/basic/
concurrency.

[25] Open SystemC Initiative. SystemC Version 2.0 User’s Guide. 2001. url: http:
//www.systemc.org.

[26] OSCI language working group. “SystemC 2.1 overview”. In: SystemC language
(2004).

[27] Donovan Porter. “100BASE-T1 Ethernet: the evolution of automotive network-
ing”. In: Texas Instruments, Techn. Ber (2018), p. 2.

[28] Punch Electronic Platform. url: https://punchsoftronix.com/punch-electronic-
platform/.

89

https://doi.org/{10.1109/IEEESTD.2016.7564011}
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx/
https://doi.org/10.1109/ICCSN.2011.6014631
https://www.toobler.com/blog/digital-twin-examples
https://learnsystemc.com/basic/concurrency
https://learnsystemc.com/basic/concurrency
http://www.systemc.org
http://www.systemc.org
https://punchsoftronix.com/punch-electronic-platform/
https://punchsoftronix.com/punch-electronic-platform/

[29] Stuart Swan. “An Introduction to System Level Modeling in SystemC 2.0”. In:
Cadence Design Systems (2001).

[30] Virtualizer Development Kits (VDKs). url: https://www.synopsys.com/verification/
virtual-prototyping/vdk.html.

[31] Lane Warshaw and Aaron Parrott. Industry 4.0 and the digital twin. url: https:
/ / www . google . com / search ? q = Industry + 4 . 0 + and + the + digital + twin +
deloitte&oq=Industry+4.0+and+the+digital+twin+deloitte&aqs=chrome.
.69i57j69i60l2.1918932j0j15&sourceid=chrome&ie=UTF-8.

[32] Meng Zhang et al. “Digital twin data: methods and key technologies”. In: Digital
Twin 1 (Sept. 2021), p. 2. doi: 10.12688/digitaltwin.17467.1.

90

https://www.synopsys.com/verification/virtual-prototyping/vdk.html
https://www.synopsys.com/verification/virtual-prototyping/vdk.html
https://www.google.com/search?q=Industry+4.0+and+the+digital+twin+deloitte&oq=Industry+4.0+and+the+digital+twin+deloitte&aqs=chrome..69i57j69i60l2.1918932j0j15&sourceid=chrome&ie=UTF-8
https://www.google.com/search?q=Industry+4.0+and+the+digital+twin+deloitte&oq=Industry+4.0+and+the+digital+twin+deloitte&aqs=chrome..69i57j69i60l2.1918932j0j15&sourceid=chrome&ie=UTF-8
https://www.google.com/search?q=Industry+4.0+and+the+digital+twin+deloitte&oq=Industry+4.0+and+the+digital+twin+deloitte&aqs=chrome..69i57j69i60l2.1918932j0j15&sourceid=chrome&ie=UTF-8
https://www.google.com/search?q=Industry+4.0+and+the+digital+twin+deloitte&oq=Industry+4.0+and+the+digital+twin+deloitte&aqs=chrome..69i57j69i60l2.1918932j0j15&sourceid=chrome&ie=UTF-8
https://doi.org/10.12688/digitaltwin.17467.1

	Acknowledgments
	Digital Twin and SystemC modeling
	Digital Twin creation and behaviour
	Examples of Digital Twin applications
	Creation process of the Digital Twin
	Data acquisition of the Digital Twin

	SystemC language
	Overview
	Module hierarchy
	SystemC ports and signals
	SystemC processes
	SystemC events
	SystemC time modeling
	SystemC simulation scheduler
	Transaction Level Modeling
	SCML 2.8.0 library

	Comparison between Digital Twin and SystemC model

	General overview of Automotive Ethernet
	Limitations of CAN and LIN protocols
	Ethernet: a new suitable solution
	From standard Ethernet to Automotive Ethernet
	Standard Ethernet
	Automotive Ethernet

	100BASE-T1 technology
	Cabling and wiring
	Noise reduction
	Echo reduction
	Bit encoding for EMI constraints
	Link startup

	1000BASE-T1 technology
	Interface circuitry
	PAM5 modulation and wiring
	Link startup

	TC10 specification for Sleep/Wakeup

	Punch Electronic Platform and ASIC specifications
	Punch Electronic Platform specifications
	TJA1101B overview and pinout
	TJA1101B PHY
	SMI interface and registers
	Pinout
	Functional block and diagram
	SMI registers
	SMI frame

	Hardware configuration
	MII signal encoding
	RMII signal encoding
	Reverse MII
	Loopback
	MDI interface circuit
	Finite state machine
	DUT operations allowed
	Relevant timing

	Undervoltage detection methods
	Overtemperature and Temperature warning methods
	Interrupt handling
	PHY wakeup concept
	PHY sleep concept (LPS)

	Model requirements
	TJA1101B hierarchy
	Pinout
	MII and MDI interface
	SMI interface
	SMI registers
	Internal and external loopback
	Remote loopback
	Ethernet frame class description
	Finite state machine
	Undervoltage detection methods
	Overtemperature and temperature warning detection methods
	Interrupt handling
	Local/Remote wakeup
	Low Power Sleep (LPS)
	Ethernet sniffers
	Live demostration

	Test environment
	Testbench structure
	Test list
	Undervoltage detection
	Overtemperature and temperature warning detection
	Interrupt event
	Local/Remote wakeup handling
	LPS detection
	Results of listed tests
	Ethernet sniffer dumps
	Code coverage
	Functional verification
	Live sniffing demostration
	Virtual Development Kit implementation

	Final conclusions
	Bibliography

