
POLITECNICO DI TORINO
Master’s Degree in ICT FOR SMART SOCIETIES

Master’s Degree Thesis

IoT: Wi-Fi Sensing and Diagnostic for
Customer Premises Equipment using

Transfer Learning and USP

Supervisors

Prof. Albertengo GUIDO

Domenico LOTITO

Candidate

Lin HUANG

July 2024

Summary

This paper presents a lightweight deep transfer learning based human activity
detection and diagnostic recognition approach using WiFi sensing. In our method,
the amplitude matrix of each WiFi Channel State Information stream is reorganized
as an image. Therefore, WiFi based human activity recognition is transformed into
an image classification task. Leveraging the high potential of Convolutional Neural
Networks in image processing, a CNN-based transfer learning model is employed to
reduce the need for extensive network training and to extract features more suited
to the Channel State Information matrix. The proposed methods are trained and
tested on a public Channel State Information dataset, demonstrating an accuracy of
approximately 94% to 99% across six activities. This performance outperforms the
state-of-the-art in Human Activity Recognition for Customer Premises Equipment.

We integrate the transfer learning model that demonstrated the best performance
into Customer Premises Equipment and deploy it on a Raspberry Pi 4 for local
detection applications. The User Services Platform serves as the standard for
remote manipulation of connected Customer Premises Equipment. Utilizing the
User Services Platform protocol, end-users can independently manage and monitor
their Customer Premises Equipment through one or more Controllers.

ii

Table of Contents

List of Tables vi

List of Figures vii

Acronyms x

1 Introduction 1
1.1 Overview . 1
1.2 General Pipeline . 2
1.3 Thesis Structure . 5

2 Related Works 7

3 Implemented Technologies 8
3.1 Channel State Information . 8
3.2 Deep Learning . 9

3.2.1 Convolutional Neural Networks 9
3.2.2 Transfer Learning . 10

3.3 Customer Premises Equipment . 10
3.4 User Services Platform . 11

4 Experiment 14
4.1 Human Activity Recognition Datasets 14
4.2 Data Pre-process . 15

4.2.1 Merge Classes . 16
4.2.2 Convert CSI Matrices to Images 16
4.2.3 Image Augmentation . 16

5 Proposed Methodologies & Evaluation 18
5.1 Proposed Classification Models . 18

5.1.1 Model 1: VGG16 based Transfer Learning 18
5.1.2 Model 2 & 3: MobileNetV3-Large based Transfer Learning . 26

iv

5.2 Model Evaluation . 31

6 Deployment of Machine Learning Models in Local Environments 34
6.1 Environment Configuration . 34

6.1.1 User Services Platform Agent-CPE 34
6.1.2 User Services Platform Controller-ACS 38

6.2 Model Deployment . 39
6.2.1 Enable Model Execution in OB-USP-Agent 40
6.2.2 Preprocessing of Input Images 41
6.2.3 Model Benchmark Information Collection 41

6.3 Model Testing . 41

7 Conclusion & Future Work 47

Bibliography 49

v

List of Tables

5.1 Hyperparameters used for the proposed model I. 25
5.2 Hyperparameters used for the proposed model II. 30
5.3 Model Evaluation. Accuracy and Loss are refer to validation accuracy

and validation loss. Bach size are the same, result in same amount
of data in one epoch. 32

vi

List of Figures

1.1 Model Framework. 4
1.2 CSI images of each class. Classes a and b are merged to class Down,

classes c and d are merged to class Fall, classes e and f are merged
to class Move . 5

3.1 CSI Matrices. Scource: [10] . 9
3.2 CPE WAN Management Protocol Architecture. Source: [11] 11
3.3 User Services Platform Architecture. 12
3.4 USP Protocol Stack. 12
3.5 USP Agent and Controller Architecture. Source: [13] 13

4.1 Experimental Environment. Source: [4] 15

5.1 VGG16 Architecture. 19
5.2 VGG16 Architecture (D) vs VGG19 Architecture (E). Source: [15] . 20
5.3 Global Average Pooling (GAP) vs Flattening. 22
5.4 ReLU Activation Function. 23
5.5 Dropout Technology: Left is the network after applying dropout. . . 24
5.6 Softmax Activation Function. 24
5.7 Comparison of the original VGG16 and VGG16-based transfer learn-

ing model. 25
5.8 MobileNetV3-Small (left) and MobileNetV3-Large (right) specifica-

tions. Source: [16] . 26
5.9 MobileNetV2 Block vs MobileNetV3 Block. Source: [16] 27
5.10 Sigmoid and swish nonlinearities and their ’hard’ counterparts.

Source: [16] . 27
5.11 Comparison of original last stage and efficient last stage. Source: [16] 28
5.12 MobileNetV3-Large Architecture. 28
5.13 Comparison of the original MobileNetV3-Large and MobileNetV3-

Large based transfer learning model. 29
5.14 Early Stopping Technology. 31

vii

5.15 VGG16 Model Confusion Matrix. 33
5.16 MobileNetV3L Model Confusion Matrix. 33
5.17 MobileNetV3L Model with FT Confusion Matrix. 33

6.1 Raspberry Pi 4 Model B. Source: [17] 35
6.2 User Services Platform Notification Mechanism. Source: [12] 39
6.3 Operate Message Flow for Synchronous Operations. Source: [13] . . 39
6.4 USP over MQTT Framework. 40

viii

Acronyms

IoT
Internet of Things

HAR
Human Activity Recognition

RF
Radio Frequency

RSSI
Received Signal Strength Indication

CSI
Channel State Information

DL
Deep Learning

RNN
Recurrent Neural Network

LSTM
Long Short-Term Memory

CNN
Convolutional Neural Network

CPE
Customer Premises Equipment

x

USP
User Services Platform

OFDM
Orthogonal frequency-division multiplexing

SVM
Support Vector Machine

GAP
Global Average Pooling

CWMP
Customer Premises Equipment WAN Management Protocol

ACS
Auto-Configuration Server

AP
Access Point

PIL
Python Imaging Library

VGG16
Visual Graphics Group-16

FC
Fully-Connected

ReLU
Rectified Linear Unit

OB-USP-Agent
Open Broadband-User Services Platform-Agent

MTP
Configure Message transport Protocol

xi

STOMP
Streaming Text Oriented Messaging Protocol

MQTT
Message Queuing Telemetry Transport

CoAP
Constrained Application Protocol

TLS
Transport Layer Security

ONNX
Open Neural Network Exchange

FT
Fine-Tuning

xii

Chapter 1

Introduction

1.1 Overview

The Internet of Things (IoT) has become a vibrant research field, due to the recent
advancements in communication systems and wireless technology over the last
decade. Things or objects are connected to the internet and exchange data or
information with each other over the network. As one of the most important
IoT applications, smart houses bring a lot benefits to daily life. Allow people
to monitor the situation in the house for healthcare of elderly adults, disabled,
children or pets. These tasks could be done by using Human Activity Recognition
(HAR) techniques, which has emerged as one of the most prominent and influential
research topics in several fields, including fall detection, elderly monitoring, gesture
recognition, and gender estimation. Among the HAR techniques, WiFi-based
methods (WiFi sensing) are becoming most popular in the present internet world,
ascribe the ubiquitous WiFi signals that permeate our surroundings, especially
indoor environments. Additionally, compared with other methods like camera-based
and RF-based, WiFi devices are easier and less expensive to implement, free from
light restrictions, and have less invasion of privacy.

The two signals mainly used for WiFi sensing are Received Signal Strength
Indication (RSSI) and Channel State Information (CSI). RSSI estimates the power
of the received signals, which could be useful for research on WiFi impairments
or indoor localization. However, compared to CSI signals, RSSI is less sensitive
to capturing small-scale changes in signals produced by activities between WiFi
nodes. Therefore, CSI is more used in HAR tasks. CSI mainly contains fine-grained
information about how signals propagate from transmitter to receiver and illustrates
the effects of power attenuation, scattering, reflection, and refraction. Human’s
body shapes and activities, as well as the presence of obstacles will impact the
propagation of the signal. That means a fall activity and a running activity will have

1

Introduction

different wireless signal reflections, resulting in different Channel State Information,
making it easy to classify human activity. The CSI data can be collected by using
some specific extraction tools and platforms. For instance, Nexmon CSI tool [1],
Atheros CSI tool [2] or the CSI extraction method based on Intel 5300 NIC released
by Halperin [3]. Many researches are done by using these methods.

The retrieved CSI data can be used as inputs of Deep Learning (DL) models
for classification. As a time-series data with temporal dependency, Recurrent
Neural Network (RNN) and Long Short-Term Memory (LSTM) are often considered
suitable for training based on prior experiences. However, LSTMs process sequential
data in a unidirectional manner, considering only past CSI data, which limits their
ability to differentiate between activities with similar starting positions but distinct
final positions, such as lying down and sitting down. To address this limitation,
Convolutional Neural Networks (CNN) are employed, as they automatically extract
features from input image pixels and perform final classification, eliminating the
need for manual feature extraction. In our study, we convert the CSI data into
images by plotting the CSI matrices using a Python library.

In this paper, we focus on the recognition of six gestures: bend, fall, run, walk,
lie down, and sit down. We further merge similar activities into one class, the six
labels then become three: fall, down, and move. This makes the classification more
meaningful, because activities like falling are more crucial for us in healthcare. Due
to limited training samples, transfer learning is proposed, which involves reusing
previously acquired knowledge from similar tasks. Large-scale and lightweight
CNN-based pre-trained models are both included in experiments and compared.
We aim at human activities identification using a CNN-based lightweight model
that can be deployed in Customer Premises Equipment (CPE).

To deploy the model in CPE, we choose Raspberry Pi as the local device,
which is mostly used in IoT. To meet the desire on the most of end-users to
have sophisticated control over their CPEs, we use the User Services Platform
(USP) protocol released by Broadband Forum. The best lightweight model among
experiments will be integrated in the USP Agent on a Raspberry Pi to perform
HAR tasks in local environment.

1.2 General Pipeline
Figure 1.1 shows the overall framework of transfer learning model building. The
first step is to collect the raw CSI data of different human activities from routers.
In this study, a public CSI amplitude dataset [4] is used. To convert CSI data into
grayscale images, the amplitude values in CSI matrices are first normalized to a
range between 0 and 255 for all activities. These matrices are then transformed
into arrays, from which images are generated and subsequently saved. Each matrix

2

Introduction

element is linearly mapped to a grayscale colormap. Images are also augmented
and then reshaped to a certain size before training to meet the input constraints
of specific CNN-based transfer learning models. Some of these images for each
activity class are depicted in Figure 1.2. Since the images are not noisy, we do not
apply pre-processing techniques like denoising filters, which may cause information
lost.

Transfer learning is applied to define the classification machine learning model.
The layers of the pre-trained CNN model are imported, excluding the fully connected
layers of the model. We use bootstrap extractor for feature extraction, which is to
write our custom fully connected layers and integrate them with the pre-trained
layers. These fully connected layers will be initialized with random weights, which
will be updated via back propagation during training. Furthermore, another transfer
learning approach, fine-tuning, is applied to the best model among the experiments
to make the model better fit our data.

The optimal model is subsequently integrated into the USP Agent on a Raspberry
Pi for human activity classification. Real-time CSI values from a WiFi environment
are collected and used as input for the model deployed within the USP Agent. The
prediction results will be automatically transmitted via User Services Platform
Notify messages to one or more connected USP Controllers.

3

Introduction

Figure 1.1: Model Framework.

4

Introduction

Down

a. Lie down

b. Sit down

Fall

c. Bend

d. Fall

Move

e. Run

f. Walk
Figure 1.2: CSI images of each class. Classes a and b are merged to class Down,
classes c and d are merged to class Fall, classes e and f are merged to class Move

1.3 Thesis Structure
The rest of this paper is organized as follows:

• Chapter 2: Integrate state-of-art pre-trained CNN models with transfer learn-
ing for wifi sensing use cases.

• Chapter 3: Introduction to the implemented technologies in the thesis work, in-
cluding dataset used, deep learning algorithms, Customer Premises Equipment,
and User Services Platform protocol.

• Chapter 4: Description of Human Activity Recognition dateset selection and
data pre-processing procedures.

• Chapter 5: Introduction to transfer learning models proposed in the work.
Including large-scale models based on VGG, as well as smaller-scale models
based on MobileNet. And evaluation of the proposed models across various
metrics.

5

Introduction

• Chapter 6: Description of developed User Services Platform Agent and User
Services Platform Controller, followed by the deployment and testing of a
predictive algorithm based on the best-performing model from experiments,
integrated into Customer Premises Equipment.

• Chapter 7: Summary of the conducted work and analysis of potential future
developments.

6

Chapter 2

Related Works

Since Halperin [3] published a measuring method of CSI based on Intel 5300 NIC,
and the release of Nexmon CSI Tool [1], researchers started to study human activity
recognition based on commercial WiFi devices, using CSI signals.

[5] listed various existing deep learning approaches for WiFi sensing. It released
a comprehensive benchmark with an open-source library for deep-learning-based
WiFi human sensing with comparison among different famous public CSI dataset
as well as different deep learning architectures. Article [4] indicated that, in
CSI-based HAR tasks, 2D-CNN model has best performance among most of the
other deep learning methods such as LSTM and 1D-CNN. [6] used VGG16 and
VGG19 for feature extraction, support vector machines(SVM) for classification
on WiFi based gesture recognition. Additionally, fine-tuning technique was used
and obtained better experimental results on the dataset compare to not use. The
deep and complex architecture of VGG required extraordinarily long execution
time. Therefore, [7] improved performance by downsized the VGG architecture.
Moreover, P. Sruthi and Siba K. Udgata [8] proposed a two-phase deep learning
model for WiFi sensing based person identification and activity recognition. They
focused on both recognizing a participant and classifying the activity performed
by the participants. Additionally, they tried to reduce the false negatives of a key
person and associated critical activity by using a multistage model. An approach
presented by [9] used MobileNetV3 transfer learning on device-based real-time tree
species identification shows a big advantage of MobileNetV3 model in handling
tasks on local devices.

Inspired by these paper and the development of CNN in vision field, we propose
to use CNN to achieve human activity recognition. In order to let CNN achieve
good result on limited dataset, we transfer the pre-trained CNN of vision areas to
the WiFi based activity recognition filed.

7

Chapter 3

Implemented Technologies

3.1 Channel State Information

Channel State Information (CSI) can be utilized to characterize the signal trans-
mission process from the transmitter to the receiver, where the signal undergoes
deflection, reflection, and scattering upon encountering obstacles or objects. Mul-
tiple sub-carriers may be present within the physical link between each pair of
transmitter and receiver antennas. Since each sub-carrier can support multiple
data streams, the CSI associated with each sub-carrier will be distinct. A CSI
data point can be represented by a complex-valued channel matrix of dimensions
m×t×r, where m denotes the number of Orthogonal Frequency-Division Multiplex-
ing (OFDM) sub-carriers and t, r represent the number of transmitter and receiver
antennas. Each CSI complex value consists of amplitude and phase. By stacking
N consecutive CSI data points along the temporal dimension, we can form a 4D
tensor with dimensions N×m×t×r, like Figure 3.1. This data structure facilitates
the retrieval of CSI at specific time instances and allows for the analysis of CSI
evolution for individual antennas.

The number of available sub-carriers varies based on the hardware configuration
and channel bandwidth utilized. The dataset we used in the study used a Raspberry
Pi 4 and a TP-Link Archer C20 operating over a 5 GHz frequency band with a 20
MHz bandwidth, which allows access to 52 data sub-carriers.

8

Implemented Technologies

Figure 3.1: CSI Matrices. Scource: [10]

3.2 Deep Learning
In recent years, deep learning algorithms have been extensively employed for classi-
fication tasks. As a specialized branch of machine learning, deep learning leverages
multi-layered neural networks, referred to as deep neural networks. Enhancing the
number of hidden layers and nodes within these networks can lead to improved
accuracy. However, this increase in layers and nodes also necessitates a greater
number of parameters and computing resources. Compared to conventional neu-
ral networks, deep learning enables computers to tackle more intricate problems
autonomously.

3.2.1 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are feed-forward neural networks profi-
cient in extracting features from data via convolutional operations, making them
exceptionally suitable for image classification tasks. CNNs comprise several layers,
including Convolution, Pooling, Flatten, Global Average Pooling (GAP), and Dense
layers. The convolutional layers are responsible for extracting image features, while
the pooling layers reduce the dimensionality of these features. With multiple
convolutional layers in the architecture, CNNs can capture features ranging from
low-level to high-level, thus enhancing recognition accuracy. The fully connected
(dense) layers then integrate the extracted features into a comprehensive feature
vector. In this study, CNNs are employed to learn the characteristics from the
effects of activities on Channel State Information data.

9

Implemented Technologies

A significant advantage of CNNs is their reduced need for extensive data pre-
processing compared to other classification techniques. Furthermore, CNNs can
automatically learn features from the data without user intervention, thereby
Significantly simplifies the feature extraction process.

3.2.2 Transfer Learning
Transfer learning, as a technique of deep learning, is wildly used in machine learning
studies. When data used to train deep learning networks is not enough, transfer
learning is applied to acquire the knowledge learned in previous settings. By
integrating pre-trained layers excluding the final classification layer, two primary
transfer learning approaches can be employed: feature extraction and fine-tuning.
Feature extraction itself can be categorized into two types: stand-alone extractor
and bootstrap extractor.

1. Feature Extraction Approaches:

• Stand-Alone Extractor: In this scenario, pre-trained layers are uti-
lized to extract image features a single time. These extracted features
subsequently form a new dataset, which is then employed for further task
purposes.

• Bootstrap Extractor: Develop custom fully connected layers and inte-
grate them with the pre-trained layers. Initialize these fully connected
layers with random weights, which will update through backpropagation
during the training process.

2. Fine-Tuning Approach: The initial pre-trained layers of the model are
fixed, while a subset of the layers, typically the last few, are set to be trainable.
The trainable layers will learn the characteristics of the new dataset.

This way, the deep learning model is trained for custom tasks, with the weights
being updated according to the new dataset. Transfer learning speeds up the
training process compared to building a new network from scratch, as it does not
require estimating all parameters anew. Studies on transfer learning for Human
Activity Recognition have demonstrated that CNN-based transfer learning models
achieve superior performance.

3.3 Customer Premises Equipment
Customer Premises Equipment (CPE) refers to devices and equipment located
at the end user’s premises, which are used to access telecommunications services.

10

Implemented Technologies

These devices include routers, modems, gateways, set-top boxes, and other net-
working hardware that connect to service providers’ networks. CPE serves as
the critical interface between the user’s local network and the broader internet or
telecommunications infrastructure.

The Customer Premises Equipment WAN Management Protocol (CWMP),
standardized as TR-069 by the Broadband Forum, is a communication protocol
designed to manage and control network devices such as modems, routers, gateways,
and other CPEs in a broadband network. CWMP facilitates remote management
by allowing service providers to configure, monitor, and update CPEs without the
need for user intervention. The protocol ensures secure and reliable communication
between the CPE and the Auto-Configuration Server (ACS), Figure 3.2 shows the
CWMP architecture. This paper explores the deployment of machine learning
algorithms within CPE to enable local, real-time data processing, thereby extending
the functionality and intelligence of these devices.

OSS / Service
Configuration

Manager

Subscriber

BRAS DSLAM
Broadband
 Network

Remote CPE Control
via TR-069

ACS Northbound
Interface

Auto
Configuration

Server

CPE
(Customer
Premises

Equipment)

Figure 3.2: CPE WAN Management Protocol Architecture. Source: [11]

3.4 User Services Platform
The User Services Platform protocol, standardized by the Broadband Forum [12], is
an advanced protocol designed to manage, monitor, update, and control connected
devices within a network of Controllers and Agents. An Agent is an endpoint that
exposes service elements to one or more Controllers. A Controller is an endpoint
that allows end-users to manipulates Agents’ functions. User Services Platform,
also known as TR-369, extends the capabilities of the earlier TR-069 protocol,
providing enhanced performance, security, and scalability. A major improvement
made by User Services Platform is it allows secure communication between various
USP Controllers and a connected USP Agent embedded in network devices, such as
Customer Premises Equipment, as depicted in Figure 3.3. Moreover, User Services
Platform supports different message-oriented approach and modern communication
mechanisms like Streaming Text Oriented Messaging Protocol, Message Queuing

11

Implemented Technologies

Telemetry Transport, WebSockets and Constrained Application Protocol for User
Services Platform messages exchange through networks, see Figure 3.4.

Figure 3.3: User Services Platform Architecture.

Figure 3.4: USP Protocol Stack.

Figure 3.5 shows a more detailed Agent and Controller architecture for User
Services Platform.

12

Implemented Technologies

Figure 3.5: USP Agent and Controller Architecture. Source: [13]

13

Chapter 4

Experiment

4.1 Human Activity Recognition Datasets

The quantity of data required to train a neural network for HAR tasks is variable,
depending on the task complexity and the selected algorithm. A relevant study
[4] in WiFi-based human activity recognition employs a 2D-CNN model similar
to our approach. Therefore, we utilize the public CSI dataset provided by this
study for our research. CSI is a complex value consisting of amplitude and phase.
However, CSI amplitude data tends to be more stable and less affected by noise or
hardware imperfections. Also, many human activities produce distinct patterns in
the amplitude data that are sufficiently informative for HAR tasks. Therefore, in
this work, we focus on the CSI amplitude.

The authors employ Nexmon CSI Tool [1] and collect CSI data for seven daily
human activities, including walk, run, fall, lie down, sit down, stand up, and bend.
3 volunteers of different ages perform 7 different activities 20 times, resulting in
420 samples in total. They use Raspberry Pi 4 and a Tp-link archer c20 as an
Access Point (AP) in 20 MHz bandwidth on channel 36 in IEEE 802.11ac standard.
The transmitter and receiver are at a distance of three meters and are both one
meter above the ground to ensure an unobstructed signal path. The experimental
environment is depicted in Figure 4.1. The packets are collected for around 20
s, giving 4000 packets of data. The period of time taken for the activities varies
slightly, around 3 to 6 s, which are around 600 to 1100 rows of 4000 total rows in
the matrix. CSI complex numbers are extracted, and after removing null and pilot
sub-carriers, they export activity rows according to the video of each activity and
stopwatch.

Due to reflections induced by human activity, each sub-carrier for any given link
experiences a variation. Each sub-carrier includes critical information that will
increase recognition accuracy. A higher proportion of sub-carriers boosts precise

14

Experiment

feature detection since it provides additional information and boosts identification
of challenging features to analyze a subset of sub-carriers.

The CSI amplitude matrices of the benchmark dataset have the form No. of
transmitter antennas × No. of receiver antennas × No. of sub-carriers × No. of
frames. In this experiment, a single transmit/receive antenna pair is used, with
52 available data sub-carriers, and 600 to 1100 frames, varying according to the
duration of each activity. Consequently, the resulting CSI amplitude matrix is
structured into 52 columns × 600 to 1100 rows. The dataset is available on GitHub
https://github.com/parisafm/CSI-HAR-Dataset.

Figure 4.1: Experimental Environment. Source: [4]

4.2 Data Pre-process

Data preprocessing mainly has 3 procedures: Merge classes, convert CSI matrices
to images, and image augmentation. We aim to have as less data preprocessing
before putting data into models as possible, and include some data preprocessing
method inside the models. In order to make models more portable and less error
prone. This also makes models more applicable to universal data.

15

https://github.com/parisafm/CSI-HAR-Dataset

Experiment

4.2.1 Merge Classes
To enhance the relevance of the data to our target application, we consolidate
the classes as follows: bend and fall data are merged into a single class, fall; sit
down and lie down data are combined into the class down; and run and walk
data are merged into the class move. The stand up data is excluded. Classes are
merged together based on their similarity. As illustrated in Figure 1.2, the CSI
images for activities within the same column exhibit significant similarity. This
reclassification is particularly meaningful for healthcare, as activities resembling
falls are critical to monitor. Additionally, consolidating data into fewer categories
improves the model’s ability to learn the characteristics of each category during
training. Consequently, the dataset now comprises three classes: fall, down, and
move. And the dataset is balanced in the terms of total images in each class.

4.2.2 Convert CSI Matrices to Images
Given the high potential of Convolutional Neural Networks in image processing, we
convert the CSI amplitude matrices into images and develop models based on CNN
architecture. Images can be either color or grayscale. However, since CSI data
are single-channel and RGB images require three channels, creating RGB images
would necessitate generating a pseudocolor plot from the matrices. This addition of
artificial color information could adversely affect classification accuracy. Meanwhile,
the additional information for RGB images increases complexity, resulting in longer
model execution times, which is not we expect. Therefore, we choose to convert the
CSI amplitude matrices into grayscale images, which only require a single channel.

Initially, the values in the CSI amplitude matrices are normalized to a range of 0
to 255 across all activities. We then generate images from these matrices using the
Image module from the Python Imaging Library (PIL) and save them. Each matrix
element is linearly mapped to the grayscale colormap. Figure 1.2 illustrates some
of these CSI images, showing distinct texture and structural differences between
activity classes. This visual differentiation supports the transformation of WiFi
sensing-based human activity recognition into an image classification problem,
allowing us to use image-based techniques for feature extraction and classification.

The converted imaged are split into training and test sets with proportions of
75% and 25%, respectively, and stored in corresponding directories.

4.2.3 Image Augmentation
Image augmentation involves applying various transformations to original images,
producing multiple altered versions of the same image. This technique not only
increases the dataset size but also introduces variability, enhancing the model’s
ability to generalize to unseen data and reducing the risk of overfitting. Additionally,

16

Experiment

training on these modified images increases the model’s robustness to new, slightly
different inputs.

The Keras ImageDataGenerator class provides a convenient and efficient method
for image augmentation, encompassing techniques such as standardization, rotation,
shifts, flips, brightness adjustment, rescaling, and more. Its primary advantage is
its capability for real-time data augmentation, generating altered images on the fly
during the training process. This ensures the model receives new image variations
at each epoch during the model training process. The ImageDataGenerator class
only returns transformed images without adding them to the original dataset.
Unlike loading all images simultaneously, using ImageDataGenerator allows images
to be loaded in batches, significantly conserving memory.

We employ several augmentation techniques using the Keras ImageDataGenera-
tor class, specifically brightness adjustment, width and height shift, rescale, input
preprocessing. Given the nature of time series images, augmentation methods like
rotation and zoom are not suitable for our dataset. Additionally, each Keras model
application expects a specific kind of input preprocessing. However, input prepro-
cessing function and rescaling are not applied to the input data before training the
MobileNetV3-Large based transfer learning model, as MobileNetV3-Large already
includes an integrated Rescaling layer to transfer inputs to be float tensors of pixels
with values in the [-1, 1] range.

Images are augmented and reshaped to a desired size (224, 224) before training
to meet the input constraints of specific CNN models (all propsed CNN-based
transfer learning models in this paper require the input image shape to be (224,
224, 3)). Since the images are not noisy, we do not apply pre-processing techniques
like denoising filters, which may cause information lost.

17

Chapter 5

Proposed Methodologies &
Evaluation

5.1 Proposed Classification Models
The primary objective of the paper is to identify human activities utilizing a
CNN-based transfer learning approach. To achieve this, we have developed three
distinct models, leveraging different pre-trained CNNs as their foundations. There
are various type of CNN models, including DenseNet, ResNet, VGG, AlexNet,
MobileNet and so on. This paper focuses on transfer learning with large-scale CNN
architecture, VGG16, and lightweight architecture, MobileNetV3-Large with and
without fine-tuning. By forming performance metrics comparison among proposed
models of varying scales, we aim to elucidate the factors influencing model size,
assess the impact of different architectures on overall model performance, and
determine the suitability of each model for deployment on local IoT devices.

The models are trained and tested on Google Colab, using the GPU resources
available to Colab Pro subscribers. The implementation is carried out in Python
using the Keras API from TensorFlow.

5.1.1 Model 1: VGG16 based Transfer Learning
Visual Graphics Group-16 (VGG16)

VGG is one of the most common CNN models pre-trained on ImageNet dataset
[14], specifically the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
2012 dataset. This extensive dataset includes images from 1,000 classes, with 1.3
million images for training, 50,000 images for validation, and 100,000 images for
testing.

18

Proposed Methodologies & Evaluation

As introduced in the paper “Very Deep Convolutional Networks for Large-Scale
Image Recognition” [15]. The VGG16 architecture achieves 92.7% top-5 test
accuracy in ILSVRC classification. It consists of 19 weight layers, of which 3 are
fully connected layers, 13 are convolution layers. These convolution layers are
organized into 5 convolution blocks. Figure 5.1 depicts the VGG16 architecture.
Additionally, another VGG architecture VGG19 is slightly deeper than VGG16
and has 16 convolution layers and 3 fully connected layers. More detailed layer
information and architecture comparison between VGG16 and VGG19 are presented
in Figure 5.2 . After experiments, we found that transfer learning models with
VGG16 and VGG19 have similar performance, but VGG16 has fewer layers and
parameters result in a smaller model size. With the aim of deploying lightweight
machine learning model in local environment, we will focus on VGG16 in this study.

Figure 5.1: VGG16 Architecture.

19

Proposed Methodologies & Evaluation

Figure 5.2: VGG16 Architecture (D) vs VGG19 Architecture (E). Source: [15]

Feature Extraction

After choosing the model for transfer learning, the primary thing is to pick which
layer of VGG16 to use for feature extraction. The very last classification layers (also
known as fully connected layers) are considered not very useful. The classification
layers are mainly built based on the using dataset, one example is the number of
artificial neurons of last fully connected layer is always equal to the number of
target classes in classification tasks. However, our dataset and target classes are
not the same as ImageNet. So the classification layers are not suitable for feature
extraction in custom tasks due their lack of generality.

On the other hand, since VGG16 has 5 convolution blocks, we let the feature
extraction layer be the MaxPooling layer after the first convolution block to the
one after the fifth convolution block respectively, and compare their performance.

20

Proposed Methodologies & Evaluation

The reason for choosing the MaxPooling layer as output layer is, it extracts
important features from the last convolution layer while simultaneously reducing
the dimensions of the data. Furthermore, it helps reduce the image size, making it
more manageable for the convolutional neural network, which speeds up training
and requires less memory. So it is a better choice to use the MaxPooling layer as
the output layer instead of the convolution layer.

We choose to depend on the MaxPooling layer positioned after the fifth convo-
lution block and before the classifier. This layer, also referred to as the bottleneck
layer, is frequently selected for feature extraction in transfer learning by numerous
studies follow the common practice.

To build feature extractor, we firstly instantiate a VGG16 model pre-loaded
with weights trained on ImageNet. By setting the include_top argument to False,
the model is loaded without the classification layers at the top, which is what we
expected for feature extraction:

base_vgg16 = tf.keras.applications.vgg16(include_top=False,
weights=’imagenet’,
input_shape=(224, 224, 3))

Another important step in feature extraction is to freeze the created convolutional
base, to use it as a feature extractor. Freezing prevents the pre-trained weights in
a given layer from being updated during training. To do that, we set the trainable
flag of base model to False:

base_vgg16.trainable = False.

Later, we will add custom classification layers on top of it and only train the
top-level classification layers.

Custom Fully Connected Layers

Following feature extraction, we define the custom fully connected layers. The
proposed classifier comprises the following layers:

• Global average pooling layer: This layer is used to prepare data for dense
layers. To mitigate the risk of overfitting and reduce the computational load
associated with a large number of parameters, a Global Average Pooling
(GAP) layer will be used instead of a Flatten layer. Both GAP and Flatten
layers serve to collapse the spatial dimensions of the input features into the
channel dimension. However, in Keras, the Flatten layer reshapes the tensor
into a 1D vector with a length equal to the total number of elements in the
tensor, preserving all nodes from each feature map. In contrast, the GAP
layer outputs the mean value of each feature map by doing average pooling

21

Proposed Methodologies & Evaluation

operation, resulting in an 1D output vector whose length corresponds to the
number of feature maps. This output will subsequently serve as the input
to the dense layers. Figure 5.3 clearly demonstrates the difference between
GAP layer and Flatten layer. The GAP layer reduces the output shape and
parameter count by nearly 50-fold. This reduction significantly accelerates
the running time while maintaining high accuracy in model performance.

Figure 5.3: Global Average Pooling (GAP) vs Flattening.

• Dense layer: Dense layers are often used at the end of the network to make
predictions based on the features learned during the feature extraction stage.
Unlike convolutional layers, dense layers are fully connected, so they are also
known as Fully-Connected (FC) layers. The dimensionality reduction achieved
by the global average pooling layer eliminates the need for multiple FC layers
at the top of the CNN, significantly decreasing the number of parameters and
limiting the risk of overfitting. Although additional FC layers can enhance
network robustness, they also substantially increase the number of parameters
at the same time. Therefore, our model utilizes two dense layers, as opposed
to the three in the standard VGG16 architecture. The first dense layer
contains 128 units and employs the non-linear Rectified Linear Unit (ReLU)
activation function, Figure 5.4 shows the plot of ReLU. Unlike traditional
activation functions such as sigmoid or tanh, ReLU mitigates the vanishing
gradient problem by maintaining stable gradients during backpropagation,
promoting efficient learning and convergence. Additionally, ReLU induces
sparse activation, where only a subset of neurons are active at any time,

22

Proposed Methodologies & Evaluation

enhancing network efficiency and reducing overfitting. The other dense layer
is the softmax layer, which will be discussed later.

Figure 5.4: ReLU Activation Function.

• Dropout layer: The above dense layer will be followed with a dropout layer.
A dropout layer randomly deactivates a proportion of neurons in the network,
the proportion known as the dropout rate. When neurons are deactivated,
their incoming and outgoing connections are also switched off, as illustrated
in Figure 5.5. This technique reduces architectural complexity, decreases
overfitting, while improve the generalization capability of network. In this
study, the dropout rate is set to 0.25, signifies that during training, 25%
of the neurons in this dense layer are randomly deactivated each iteration.
Higher dropout rates like 0.5 or higher might excessively reduce the network’s
capacity to learn useful features, while lower rates that lower than 0.1 might not
provide sufficient regularization. For moderately complex CNN architectures
and standard-sized or small-sized datasets similar to our task, a dropout rate
around 0.25 often strikes a good balance.

• Softmax layer: The final layer is the softmax layer, where we get our
predicted results. It is the second dense layer with 3 channels, one for each
target class. For muti-classification taks the activation function is often set
to softmax, Figure 5.6. It is able to transform raw output scores into a
probability distribution across all target classes. This transformation is crucial
as it converts the model’s outputs into probabilities that sum to one, providing
a clear and interpretable prediction for each class.

23

Proposed Methodologies & Evaluation

Figure 5.5: Dropout Technology: Left is the network after applying dropout.

Figure 5.6: Softmax Activation Function.

The configuration of the fully connected layers is consistent across all three
transfer learning model proposals. So the detailed custom classifier definition
will not be discussed further in the subsequent sections on the other two transfer
learning models.

Model Structure

The block diagram of proposed model structure is depicted in Figure 5.7. It
presents a comparative overview of the flattened architecture of VGG16 alongside
our transfer learning model based on VGG16. For brevity, MaxPooling layers
following each convolutional block are omitted. The section highlighted in the red
box represents our custom classifier.

24

Proposed Methodologies & Evaluation

Figure 5.7: Comparison of the original VGG16 and VGG16-based transfer learning
model.

Hyperparameters

Some important hyperparameters are tabulated in Table 5.1

Table 5.1: Hyperparameters used for the proposed model I.

Hyperparameters Value
Bach size 32
Optimizer Adam, learning rate=0.001
Loss function Cross Entropy
Epochs 50

25

Proposed Methodologies & Evaluation

5.1.2 Model 2&3: MobileNetV3-Large based Transfer Learn-
ing

MobileNetV3-Large

The second proposed transfer learning model is based on another existing CNN
model MobileNetV3-Large, which belongs to the MobileNet family. MobileNet is a
CNN model developed by Google and also pre-trained on ImageNet. Unlike VGG
or ResNet series, it offers lightweight architecture, reduced memory usage, and
improved computation speed, making it suitable for real-time detection and monitor
in applications on embedded devices. MobileNet has many versions and releases.
The two releases of MobileNetV3: MobileNetV3-Small and MobileNetV3-Large
are targeted for high and low resource use cases. Comparing to the older version
MobileNetV2, MobileNetV3-Large is 3.2% more accurate on ImageNet classification
while reducing latency by 20% compared to MobileNetV2. MobileNetV3-Small is
6.6% more accurate compared to a MobileNetV2 model with comparable latency
[16]. Figure 5.8 indicates the specification for MobileNetV3-Large and MobileNetV3-
Small.

Figure 5.8: MobileNetV3-Small (left) and MobileNetV3-Large (right) specifica-
tions. Source: [16]

The efficiency, lightweight architecture, and high accuracy of MobileNetV3 are
attributed to several key innovations: the incorporation of Squeeze-and-Excite
modules within the residual layers (Figure 5.9), the introduction of the h-swish
nonlinearity (Figure 5.10), and a more efficient final stage (Figure 5.11). After con-
ducting experiments, MobileNetV3-Large was selected for its superior performance
on our dataset. Figure 5.12 depicts the MobileNetV3-Large architecture.

26

Proposed Methodologies & Evaluation

Figure 5.9: MobileNetV2 Block vs MobileNetV3 Block. Source: [16]

Figure 5.10: Sigmoid and swish nonlinearities and their ’hard’ counterparts.
Source: [16]

Feature Extraction and Custom Fully Connected Layers

Based on the discussion in the previous Section 5.1.1. The feature extraction layer
selected is the bottleneck layer preceding the Average Pooling layer. To construct
the feature extractor, we begin by instantiating a MobileNetV3-Large model pre-
trained weights. Setting the include_top argument to False ensures that the model

27

Proposed Methodologies & Evaluation

Figure 5.11: Comparison of original last stage and efficient last stage. Source:
[16]

Figure 5.12: MobileNetV3-Large Architecture.

is loaded without its classification layers, aligning with our intention for feature
extraction:

base_MobileNetV3L = tf.keras.applications.MobileNetV3Large(
include_top=False,
weights=’imagenet’,
input_shape=(224, 224, 3))

To prevents the pre-trained weights in a given layer from being updated during
training, we set the trainable flag of base model to False:

base_MobileNetV3L.trainable = False.

28

Proposed Methodologies & Evaluation

A custom classifier is introduced on top of the feature extractor. During model
training, only the weights of the custom classifier are updated. The custom
classifier comprises the following components: a GlobalAveragePooling layer, a fully
connected layer with 128 nodes utilizing the ReLU activation function, a dropout
layer with a dropout rate of 0.25, and a final fully connected layer with 3 nodes
employing the Softmax activation function. Further details are provided in Section
5.1.1 earlier.

Model Structure

Figure 5.13 depicts the proposed model structure. Whereas The section highlighted
in the red box is the custom classifier.

Figure 5.13: Comparison of the original MobileNetV3-Large and MobileNetV3-
Large based transfer learning model.

Fine-Tuning Approach

Although the method of directly extracting features using existing CNN models
has achieved good performance, there remains potential for improvement. As we
know, deep CNN gradually abstracts the image information from the bottom layer
to the top layer when performing feature extraction. The CNN models VGG16 and

29

Proposed Methodologies & Evaluation

MobileNetV3-Large are pre-trained on ImageNet, that is very different from our
CSI data. Thus these features extracted for natural image classification are not well
fit for the CSI classification. To better align with our specific task requirements,
we employ fine-tuning techniques to retrain the existing model. The fine-tuning
process is to initialize the network with pre-trained parameters from ImageNet and
subsequently adjusting these parameters using our dataset. During this process, due
to the good versatility of the underlying image features of the training CNN model,
we particularly focus on retraining the weights of the top layers of MobileNetV3-
Large and the remaining fully connected layers to enhance their adaptability to
CSI classification. To do that, we unfreeze the base_MobileNetV3L model and set
layers of last convolution block of MobileNetV3-Large to be trainable:

base_MobileNetV3L.trainable = True
fine_tuning = 256
Freeze all the layers before fine_tuning
for layer in MobileNetV3L.layers[:fine_tuning]:

layer.trainable = False

Except that, the proposed model architecture is the same as the MobileNetV3-Large
based transfer learning model shows in Figure 5.13.

Additionally, the parameters of the unfrozen last convolutional layers are updated
based on pre-trained parameters from ImageNet rather than random initialization.
This necessitates very small adjustments to avoid missing optimal convergence.
Therefore, the learning rate of the optimizer is set to a significantly lower value
of 0.0005 (see Table 5.2), compared to the learning rate of 0.001 used without
fine-tuning. Meanwhile, more epochs are needed because of a lower learning rate.

Hyperparameters

The hyperparameters of model 2, MobileNetV3-Large based transfer learning with-
out fine-tuning, are same as model 1, as shown in Table 5.1. The hyperparameters
of model 3, which use fine-tuning approach are tabulated in Table 5.2.

Table 5.2: Hyperparameters used for the proposed model II.

Hyperparameters Value
Bach size 32
Optimizer Adam, learning rate=0.0005
Loss function Cross Entropy
Epochs 100

30

Proposed Methodologies & Evaluation

5.2 Model Evaluation
In our training process, we incorporate both Early Stopping and Model Checkpoint
techniques to enhance the model performance and prevent overfitting. Early
Stopping is a widely used regularization technique, it is employed to halt the
training when the performance on the validation set ceases to improve for a
predetermined number of epochs, known as the patience parameter. This approach
ensures that training does not continue unnecessarily, thus avoiding overfitting,
as shown in Figure 5.14. Concurrently, Model Checkpoint is utilized to monitor
the model performance at each epoch, saving the model’s weights whenever an
improvement in the validation metric is observed. This technique ensures that
the best-performing model is preserved, allowing us to restore the model weights
from the optimal point in the training process. By combining these techniques,
we maintain model generalizability and efficiency, ensuring robust performance on
unseen data.

Figure 5.14: Early Stopping Technology.

The raw CSI amplitude data, represented as a 52-dimensional vector, is converted
into grayscale images and subsequently input into VGG16 based and MobileNetV3-
Large based transfer learning models. The architectures of these networks are
illustrated in Figures 5.7 and 5.13.

In Table 5.3 we compare the experimental results of the VGG16 based transfer
learning model, MobileNetV3-Large based transfer learning model, and MobileNetV3-
Large based transfer learning with fine-tuning. The performance are also compared

31

Proposed Methodologies & Evaluation

with other transfer learning approach for WiFi sensing tasks from different research,
namely VGG16 with SVM [6] and MobileNetV2-based transfer learning [9], as
shown in the first two lines in the following table.

The proposed models are validated with test dataset. The model based on
VGG16 shows the training accuracy up to 96% and validation accuracy 94.44%.
While the model based on MobileNetV3-Large achieves training accuracy of 98.89%
and validation accuracy 97.78% at 26 epochs. After applying fine-tuning, the
validation accuracy of MobileNetV3-Large based transfer learning model improves
to 98.89% with 84 epochs. It confirms that fine-tuning helps enhance the applica-
bility of pre-trained models for custom classification tasks comes with much more
iterations required.

The MobileNetV3-Large model with and without fine-tuning take almost same
training time, which is 60% less than the time that VGG16-based model uses for
training. This huge difference also appears when comparing the model size. This
due to the structure and the number of parameters of pre-trained models. VGG16
model has 14.8 million parameters, while MobileNetV3-Large model contains 3.1
million parameters and is constructed in a more efficient way. Drawing from
the evaluation results, choosing our MobileNetV3-Large based model with fine-
tuning, achieves higher accuracy with time-efficiency and relative smaller model
size, making it well-suited for deployment in Customer Premises Equipment and
IoT devices for localized HAR tasks.

Table 5.3: Model Evaluation. Accuracy and Loss are refer to validation accuracy
and validation loss. Bach size are the same, result in same amount of data in one
epoch.

Model Accuracy (%) Loss (%) Training Time (s/epoch) Model Size
VGG16-SVM [6] 97.75 - - 56.13 MB
MobileNetV2 [9] 86 0.4 - 9.86 MB

VGG16 94.44 0.17 55-60 56.38 MB
MobileNetV3-Large 97.78 0.04-0.05 15-20 11.9 MB
MobileNetV3-Large
with Fine-Tuning 98.89 0.02-0.03 18-22 11.9 MB

Analyzing the confusion matrices in 5.15, 5.16 and 5.17 for the three proposed
models reveals distinct performance differences. The VGG16 based model struggles
with accurately identifying the ’move’ activity, often misclassifying it as ’fall’ or
’down.’ In contrast, the MobileNetV3-Large based models demonstrate higher
overall accuracy but occasionally confuse ’fall’ and ’down’ activities, likely due
to their inherent similarities. Understanding these specific limitations is crucial
for targeted model improvements and for making informed assessments of model
outputs in practical applications.

32

Proposed Methodologies & Evaluation

Figure 5.15: VGG16 Model Confusion Matrix.

Figure 5.16: MobileNetV3L Model Con-
fusion Matrix.

Figure 5.17: MobileNetV3L Model
with FT Confusion Matrix.

33

Chapter 6

Deployment of Machine
Learning Models in Local
Environments

6.1 Environment Configuration
This section describes the User Services Platform Agent and User Services Platform
Controller built for this study in terms of selected hardware and developed software.

The USP Agent is implemented in C language and hosted on a Raspberry Pi
4 Model B Single-Board Computer with 4GB of RAM. The USP Controller is
implemented in Python.

6.1.1 User Services Platform Agent-CPE
Hardware Selection

Given that the User Services Platform Agent serves as a representation of potential
Customer Premises Equipment at the physical location of end-users, a Single-Board
Computer is an ideal choice due to its relevance in home automation. Among the
various Single-Board Computers available on the market, we selected the Raspberry
Pi 4 Model B, see Figure 6.1, for the following reasons:

• Has an operating system, Raspberry Pi OS, based on a Debian Linux distri-
bution, which is essential for installing the User Services Platform Agent.

• Equipped with an integrated Broadcom WiFi Chip (bcm43455c0), which
requires running a 4.9, 4.14, or 4.19 version of the Raspbian kernel to operate.
To extract Channel State Information (CSI) from OFDM-modulated WiFi

34

Deployment of Machine Learning Models in Local Environments

frames, the Nexmon tool is utilized. Nexmon consists of a series of firmware
patches specifically designed for the Broadcom chip used by the Raspberry Pi
for WiFi connectivity.

• Offers a low price compared to other Single-Board Computer with similar
features.

Figure 6.1: Raspberry Pi 4 Model B. Source: [17]

The Raspberry Pi 4 Model B and a laptop are connected to the same hotpots of a
mobile phone. We connect to Raspberry Pi 4 Model B from the laptop with SSH
by running following command in terminal:

ssh [Pi’s username]@[the Pi’s IP Address]

Software Development

Open Broadband-User Services Platform-Agent (OB-USP-Agent) creates a refer-
ence implementation of the User Services Platform specification from an ’Agent’
perspective. For the development of the software that implement USP Agent, we
need to refer to implementation made available by Broadband Forum on GitHub
[18]. Following the quick start guide, to run OB-USP-Agent on Raspberry Pi it is
necessary to:

• Download and install the latest stable OB-USP-Agent version from the official
site (latest stable release is 8.0.0 when working on this part);

35

Deployment of Machine Learning Models in Local Environments

• Install necessary dependencies;

• Configure Message transport Protocol (MTP) to be Message Queuing Teleme-
try Transport (MQTT) and disable other MTPs;

• Create MQTT Broker;

• Run the USP Agent with a specific command in terminal.

OB-USP-Agent currently supports four Message Transfer Protocol (MTP), they
are Streaming Text Oriented Messaging Protocol (STOMP), Message Queuing
Telemetry Transport (MQTT), Constrained Application Protocol (CoAP), and
WebSockets. We choose to use MQTT MTP for it’s simplicity, low power con-
sumption, and real-time capabilities, which is ideal protocol for IoT applications,
in particular those dealing with resource-constrained devices and real-time data
collection and monitoring like our HAR task.

We established a MQTT Broker on HiveMQ Cloud, a proven enterprise MQTT
platform. Utilizing HiveMQ’s cloud service, we deployed a serverless MQTT
broker, which supports basic authentication using username and password, and
operates over Transport Layer Security (TLS). To securely connect the User Services
Platform Agent to the MQTT Broker via TLS transport protocol, we configured
the parameter Device.MQTT.Client.1.TransportProtocol in the database to TLS.

Before running OB-USP-Agent for the first time, it needs a database containing
the settings of the USP Controller to contact. This is known as the factory reset
database. A file mqtt_factory_reset_example.txt is contained in the installed
OB-USP-Agent. To specify the data model parameters and values used to create
the factory reset database, modify this file. To run OB-USP-Agent connecting to a
MQTT server from network interface eth0, launch the following command:

obuspa -p -v 4 -r mqtt_factory_reset_example.txt -t hivemq.cloud.pem
-i eth0

This will also create a database if the factory reset database is not exist before.
The factory reset parameters specified in mqtt_factory_reset_example.txt file are
as follows:

Agent Endpoint ID
Device.LocalAgent.EndpointID "proto::rx_usp_agent_mqtt"

Adding Boot Parameters
Device.LocalAgent.Controller.1.BootParameter.1.Enable true
Device.LocalAgent.Controller.1.BootParameter.1.ParameterName

"Device.LocalAgent.EndpointID"
Device.LocalAgent.Subscription.1.Alias cpe-1

36

Deployment of Machine Learning Models in Local Environments

Device.LocalAgent.Subscription.1.Enable true
Device.LocalAgent.Subscription.1.ID default-boot-event-ACS
Device.LocalAgent.Subscription.1.Recipient

Device.LocalAgent.Controller.1
Device.LocalAgent.Subscription.1.NotifType Event
Device.LocalAgent.Subscription.1.ReferenceList Device.Boot!
Device.LocalAgent.Subscription.1.Persistent true

MQTT Setup
Device.LocalAgent.MTP.1.MQTT.ResponseTopicConfigured "/usp/agent"
Device.LocalAgent.MTP.1.MQTT.Reference "Device.MQTT.Client.1"
Device.MQTT.Client.1.BrokerAddress "OMITTED"
Device.MQTT.Client.1.ProtocolVersion "5.0"
Device.MQTT.Client.1.BrokerPort "8883"
Device.MQTT.Client.1.TransportProtocol "TLS"
Device.MQTT.Client.1.Username "OMITTED"
Device.MQTT.Client.1.Password "OMITTED"
Device.MQTT.Client.1.Alias "cpe-1"
Device.MQTT.Client.1.Enable true
Device.MQTT.Client.1.ClientID ""
Device.MQTT.Client.1.KeepAliveTime "60"
Device.MQTT.Client.1.ConnectRetryTime "5"
Device.MQTT.Client.1.ConnectRetryIntervalMultiplier "2000"
Device.MQTT.Client.1.ConnectRetryMaxInterval "60"

Default Controller Setup
Device.LocalAgent.Controller.1.Alias "cpe-1"
Device.LocalAgent.Controller.1.Enable true
Device.LocalAgent.Controller.1.PeriodicNotifInterval "86400"
Device.LocalAgent.Controller.1.PeriodicNotifTime

"0001-01-01T00:00:00Z"
Device.LocalAgent.Controller.1.ControllerCode ""
Device.LocalAgent.Controller.1.MTP.1.Alias "cpe-1"
Device.LocalAgent.Controller.1.MTP.1.Enable true
Device.LocalAgent.Controller.1.MTP.1.Protocol "MQTT"
Device.LocalAgent.Controller.1.EndpointID "usp-controller-default"
Device.LocalAgent.Controller.1.MTP.1.MQTT.Reference

"Device.MQTT.Client.1"
Device.LocalAgent.Controller.1.MTP.1.MQTT.Topic

"/usp/controller/default"

37

Deployment of Machine Learning Models in Local Environments

Device.LocalAgent.MTP.1.Alias "cpe-1"
Device.LocalAgent.MTP.1.Enable true
Device.LocalAgent.MTP.1.Protocol "MQTT"

6.1.2 User Services Platform Controller-ACS
As one of the main advantages of User Services Platform protocol, it is possible to
define different types of Controller for the same Agent. Types of Controller could
be data warehouse server for data collection, third party managed service provider,
or remote control from end-user by using web page or mobile applications. In the
thesis work, we build a Python script executable from terminal, which runs like an
application as a User Services Platform Controller. It is able to:

• Onboard to the USP Agent through Message Queuing Telemetry Transport;

• Subscribe or unsubscribe to receive notifications messages of desire information;

• View the real-time WiFi sensing based human activity prediction result with
benchmark information;

• Perform diagnostics of the Agent and Controller.

MQTT Onboard

The initial operation involves establishing a connection to an available Agent.
This connection is facilitated through the Message Queuing Telemetry Transport
protocol. The primary requirement is that both the Agent and Controller can
connect to the MQTT broker hosted in our cloud infrastructure, as detailed in
Section 6.1.1. This connection to the MQTT broker is secured with Transport
Layer Security and requires authentication.

USP ValueChange Notification

Real-time communication between the USP Agent and the USP Controller is
facilitated through USP messages. By subscribing to an object in the Agent’s
supported data model with a notification type set to ValueChange, the Controller
automatically receives notifications whenever the value of the subscribed object
changes, see Figure 6.2. The Operate Response can be disabled or enabled by
modify send_resp flag, based on the user intention. Figure 6.3 the Operate Message
flow.

38

Deployment of Machine Learning Models in Local Environments

Figure 6.2: User Services Platform Notification Mechanism. Source: [12]

In this study, the USP Controller receives notify messages each time new CSI
data is collected, enabling end-users to view real-time WiFi-sensing-based human
activity predictions and benchmark information (see Section 6.2.3 for benchmark
information details).

Figure 6.3: Operate Message Flow for Synchronous Operations. Source: [13]

6.2 Model Deployment
The transfer learning model demonstrating the best performance, specifically the
MobileNetV3-Large with fine-tuning (refer to Section 5.2), is integrated as a function
within the User Services Platform Agent to enable real-time WiFi sensing-based
human activity classification. The overall architecture is illustrated in Figure 6.4.

39

Deployment of Machine Learning Models in Local Environments

Figure 6.4: USP over MQTT Framework.

6.2.1 Enable Model Execution in OB-USP-Agent
Considering the OB-USP-Agent is coded in C language, while the transfer learning
model is completely implemented in Python, we need to find a way to run the
inference in the OB-USP-Agent. There are possibly two ways to do that:

• TensorFlow for C [19]. It provides a C API that can be used to build bindings
for other languages;

• Onnx2c method [20]. Onnx2c is an Open Neural Network Exchange (ONNX)
to C compiler. It will read an ONNX file, and generate C code to be included
in the project.

We are doing model deployment in a local device, so the model size would be
an important reference standard. By saving the model in TensorFlow and ONNX
format respectively, we find that the saved model size of TensorFlow Keras standard
format .h5 is 14.3 MB, while the model saved as .onnx format has size 12.4 MB,
which is slightly smaller than the TensorFlow one.

The interoperability of ONNX allows models to be trained in one framework
and deployed in another, facilitating seamless transitions between frameworks such
as PyTorch, TensorFlow, and others. This flexibility accelerates the development
process and enhances the efficiency of deploying machine learning models across
various platforms and environments. Therefore, deploying the ONNX format model
to the Agent offers significant advantages for future model conversions or export.

40

Deployment of Machine Learning Models in Local Environments

Furthermore, from the perspective of implement difficulty, if use onnx2c method,
we need to:

1. Install ProtocolBuffers libraries;

2. Get the sources from Github [20];

3. Run a standard CMake build which creates onnx2c binary;

4. Run command: ./onnx2c [your ONNX model file] > model.c. This command
generates a file named model.c. At the end of model.c, there is a function
named void entry(...), which is the function we can invoke from the OB-USP-
Agent main program to execute the model.

If use TensorFlow for C method, the model need to be fully rewritten using the
API defined in c_api.h [21], which involves significant effort. In comparison, we
have selected to utilize the onnx2c compiler due to its streamlined approach.

6.2.2 Preprocessing of Input Images
Deployed transfer learning algorithm expects input image size to be (224, 224). To
achieve that constraint, we use FreeImage library for C to resize input Channel
State Information images (we assume that the collected real-time Channel State
Information data is already converted to images).

6.2.3 Model Benchmark Information Collection
To evaluate the performance of integrated model, benchmark information is gath-
ered, focusing specifically on the model execution time. This is accomplished by
including the time.h header in the OB-USP-Agent main program, which provides
functions for measuring elapsed time with high precision. By integrating these func-
tions into the model’s code, we can accurately record the start and end times of the
model’s execution. This data is critical for assessing the efficiency and practicality
of the model, particularly when deployed in resource-constrained environments like
Customer Premises Equipment. Detailed analysis of the execution time helps in
understanding the computational requirements and optimizing the model for better
performance.

6.3 Model Testing
This section details the execution of the deployed model within the MQTT com-
munication framework of the USP Agent and the USP Controller. The CSI data
used for testing remains consistent with that used for model training [4].

41

Deployment of Machine Learning Models in Local Environments

Message Queuing Telemetry Transport Communication

Firstly, the USP Agent must be execute before the USP Controller by running the
following command in the Raspberry Pi terminal:

obuspa -p -v 4 -r mqtt_factory_reset_example.txt -t hivemq.cloud.pem
-i eth0

We will see the following trace, meaning that OB-USP-Agent is successfully con-
nected to the MQTT server:

USP_CONNECT_RECORD sending at time 2024-07-14T16:58:02Z,
to host over MQTT
version: "1.3"
to_id: "usp-controller-default"
from_id: "proto::rx_usp_agent_mqtt"
payload_security: PLAINTEXT
mac_signature[0]
sender_cert[0]
mqtt_connect {

version: V5
subscribed_topic: "/usp/agent"

}

NOTIFY sending at time 2024-07-14T16:58:02Z, to host over MQTT
version: "1.3"
to_id: "usp-controller-default"
from_id: "proto::rx_usp_agent_mqtt"
payload_security: PLAINTEXT
mac_signature[0]
sender_cert[0]
no_session_context {

payload[225]
}

header {
msg_id: "Event-2024-07-14T16:58:02Z-1"
msg_type: NOTIFY

}
body {

request {
notify {

subscription_id: "default-boot-event-ACS"

42

Deployment of Machine Learning Models in Local Environments

send_resp: false
event {

obj_path: "Device."
event_name: "Boot!"
params {

key: "CommandKey"
value: ""

}
params {

key: "Cause"
value: "LocalReboot"

}
params {

key: "FirmwareUpdated"
value: "false"

}
params {

key: "ParameterMap"
value: "{"Device.LocalAgent.EndpointID":
"proto::rx_usp_agent_mqtt"}"

}
}

}
}

}

After execute the USP Controller Python script, communication between USP
Agent and USP Controller will take place through the exchange of User Services
Platform messages. Controller will automatically send a User Services Platform
ADD message to the Agent which it is connected. With this message it requests
the human activity prediction result from the Agent. This message will look like
this:

header {
msg_id: "7a991ae0-4204-11ef-b11a-1e00d90a7531"
msg_type: ADD

}
body {

request {
add {

allow_partial: false
create_objs {

43

Deployment of Machine Learning Models in Local Environments

obj_path: "Device.LocalAgent.Subscription."
param_settings {

param: "Enable"
value: "true"
required: true

}
param_settings {

param: "ID"
value: "WiFiSensing"
required: true

}
param_settings {

param: "NotifType"
value: "ValueChange"
required: true

}
param_settings {

param: "ReferenceList"
value: "Device.Services.WiFiSensing.CSI.Value"
required: true

}
}

}
}

}

The Agent response is like this:

header {
msg_id: "7a991ae0-4204-11ef-b11a-1e00d90a7531"
msg_type: ADD_RESP

}
body {

response {
add_resp {

created_obj_results {
requested_path: "Device.LocalAgent.Subscription."
oper_status {

oper_success {
instantiated_path: "Device.LocalAgent.Subscription.2."
unique_keys {

key: "Alias"

44

Deployment of Machine Learning Models in Local Environments

value: "cpe-2"
}
unique_keys {

key: "ID"
value: "WiFiSensing"

}
unique_keys {

key: "Recipient"
value: "Device.LocalAgent.Controller.1"

}
}

}
}

}
}

}

Once a response has been received from the Agent, the communication between
Agent and Controller is established successfully. Controller will keep listening on
the topic associated to it to receive ValueChange type notifications if the prediction
result changes in value. These notifications reach Controller as User Services
Platform Notify messages like this:

header {
msg_id: "ValueChange-2024-07-14T17:14:44Z-2"
msg_type: NOTIFY

}
body {

request {
notify {

subscription_id: "WiFiSensing"
send_resp: false
value_change {

param_path: "Device.Services.WiFiSensing.CSI.Value"
param_value: "{"moving":"0.949602","cpu_time_used":"0.611123"}"

}
}

}
}

Field param_path specifies the path name of the changed parameter, while
field param_value contains the corresponding value of the parameter identified in

45

Deployment of Machine Learning Models in Local Environments

param_path. The model prediction result outcome from an input CSI image is
encapsulated as a JSON string within the param_value field. The JSON string
shows in the above Notify message specifies that the analyzed CSI data has a 95%
probability of belonging to the ’moving’ class, and the time taken to process this
CSI image is 0.611123 seconds.

The model prediction result is extracted and print in a separate line, for a
user-understandable consideration:

{"action": "move","consumed time":"0.611123"}

This message informs the Controller a person is moving within the detection range,
with the model execution time being 0.611123 seconds.

46

Chapter 7

Conclusion & Future Work

This paper evaluates CNN-based transfer learning models for WiFi sensing and
compares their performance for human activity recognition using Customer Premises
Equipment (CPE). The models are trained and tested on a public Channel State
Information (CSI) amplitude dataset. We assess the performance of proposed
models based on accuracy, loss, and training time. Model size is also considered a
crucial metric since our aim is to deploy these models on CPE in a local environment.
The MobileNetV3-Large based transfer learning model with fine-tuning achieves
a best validation accuracy of 98.89% at 84 epochs, while the accuracy without
fine-tuning is 97.78%, and VGG16 reaches 94.44%. A portion of pre-trained layers
are retrained through fine-tuning, where the parameters are updated using our
dataset. This adaptation enhances the model suitability for CSI based human
activity classification and results in improved experimental performance on our
dataset. Moreover, the MobileNetV3-Large methods require two-thirds less training
time and have 80% less model size compared to the VGG16 method. Consequently,
it can be preliminarily concluded that the deep transfer learning approach utilizing
MobileNetV3-Large is optimal for deployment in CPE and IoT devices due to its
lightweight architecture, cost-effectiveness, and time efficiency in executing local
deep learning tasks.

In this study, the CSI data used to test the deployed transfer learning algorithm
within the USP framework is sourced from a public dataset, simulating real-time
data collection. However, in practical application scenarios, the model will undergo
retraining and updating based on newly collected data. This iterative process aims
to enhance the model’s adaptability and improve its performance over time.

47

Conclusion & Future Work

Future Possibilities

Another machine learning approach, federated learning, enables decentralized model
training across multiple devices while preserving data privacy. Integrating CNN-
based transfer learning models in this context allows individual devices, such as
Customer Premises Equipment, to locally train on user data and collaboratively im-
prove a global model without sharing raw data. Therefore, this approach addresses
privacy concerns and enhances model generalization across diverse environments.
The potential benefits include more robust human activity recognition, reduced
communication costs, and scalability in real-world applications, paving the way
for more personalized and efficient IoT solutions in smart homes and healthcare
monitoring.

Regarding model deployment in Customer Premises Equipment, our current
approach involves using a Python script executable via terminal as the User Services
Platform Controller. However, within the User Services Platform protocol, there is
the capability to define various other types of Controllers. A prospective avenue for
future development of User Services Platform Controller is the creation of a mobile
application for handheld devices. This direction would offer end-users greater
flexibility in remotely managing their connected Customer Premises Equipment.

48

Bibliography

[1] Daniel Wegemer Matthias Schulz and Matthias Hollick. Nexmon: The C-based
Firmware Patching Framework. 2017. url: https://github.com/seemoo-
lab/nexmon (cit. on pp. 2, 7, 14).

[2] Yaxiong Xie, Zhenjiang Li, and Mo Li. «Precise Power Delay Profiling with
Commodity WiFi». In: Proceedings of the 21st Annual International Confer-
ence on Mobile Computing and Networking. MobiCom ’15. Paris, France: ACM,
2015, pp. 53–64. isbn: 978-1-4503-3619-2. doi: 10.1145/2789168.2790124.
url: http://doi.acm.org/10.1145/2789168.2790124 (cit. on p. 2).

[3] Daniel Halperin, Wenjun Hu, Anmol Sheth, and David Wetherall. «Tool
Release: Gathering 802.11n Traces with Channel State Information». In:
ACM SIGCOMM CCR 41.1 (Jan. 2011), p. 53. url: https://dhalperi.
github.io/linux-80211n-csitool/ (cit. on pp. 2, 7).

[4] Parisa Fard Moshiri, Reza Shahbazian, Mohammad Nabati, and Seyed Ali
Ghorashi. «A CSI-Based Human Activity Recognition Using Deep Learning».
In: Sensors 21.21 (2021). issn: 1424-8220. doi: 10.3390/s21217225. url:
https://www.mdpi.com/1424-8220/21/21/7225 (cit. on pp. 2, 7, 14, 15,
41).

[5] Jianfei Yang, Xinyan Chen, Han Zou, Chris Xiaoxuan Lu, Dazhuo Wang,
Sumei Sun, and Lihua Xie. «SenseFi: A library and benchmark on deep-
learning-empowered WiFi human sensing». In: Patterns 4.3 (2023), p. 100703.
issn: 2666-3899. doi: https://doi.org/10.1016/j.patter.2023.100703.
url: https://www.sciencedirect.com/science/article/pii/S2666389
923000405 (cit. on p. 7).

[6] Qirong Bu, Gang Yang, Jun Feng, and Xingxia Ming. «Wi-Fi Based Gesture
Recognition Using Deep Transfer Learning». In: 2018 IEEE SmartWorld,
Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable
Computing Communications, Cloud Big Data Computing, Internet of Peo-
ple and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBD-
Com/IOP/SCI). 2018, pp. 590–595. doi: 10.1109/SmartWorld.2018.00122
(cit. on pp. 7, 32).

49

https://github.com/seemoo-lab/nexmon
https://github.com/seemoo-lab/nexmon
https://doi.org/10.1145/2789168.2790124
http://doi.acm.org/10.1145/2789168.2790124
https://dhalperi.github.io/linux-80211n-csitool/
https://dhalperi.github.io/linux-80211n-csitool/
https://doi.org/10.3390/s21217225
https://www.mdpi.com/1424-8220/21/21/7225
https://doi.org/https://doi.org/10.1016/j.patter.2023.100703
https://www.sciencedirect.com/science/article/pii/S2666389923000405
https://www.sciencedirect.com/science/article/pii/S2666389923000405
https://doi.org/10.1109/SmartWorld.2018.00122

BIBLIOGRAPHY

[7] Nurzarinah Zakaria and Yana Mazwin Mohmad Hassim. «Improved VGG
Architecture in CNNs for Image Classification». In: 2022 IEEE Interna-
tional Conference on Artificial Intelligence in Engineering and Technology
(IICAIET). 2022, pp. 1–4. doi: 10.1109/IICAIET55139.2022.9936735 (cit.
on p. 7).

[8] Sruthi P. and Siba K. Udgata. «Wi-Fi sensing based person identification and
activity recognition using two-phase deep learning model». In: Engineering
Applications of Artificial Intelligence 132 (2024), p. 107904. issn: 0952-1976.
doi: https://doi.org/10.1016/j.engappai.2024.107904. url: https:
//www.sciencedirect.com/science/article/pii/S0952197624000629
(cit. on p. 7).

[9] Ambreen Hussain, Bidushi Barua, Ahmed Osman, Raouf Abozariba, and
A. Taufiq Asyhari. «Performance of MobileNetV3 Transfer Learning on Hand-
held Device-based Real-Time Tree Species Identification». In: 2021 26th
International Conference on Automation and Computing (ICAC). 2021, pp. 1–
6. doi: 10.23919/ICAC50006.2021.9594222 (cit. on pp. 7, 32).

[10] Yao Ge, Ahmad Taha, Syed Aziz Shah, Kia Dashtipour, Shuyuan Zhu,
Jonathan Cooper, Qammer H. Abbasi, and Muhammad Ali Imran. «Contact-
less WiFi Sensing and Monitoring for Future Healthcare - Emerging Trends,
Challenges, and Opportunities». In: IEEE Reviews in Biomedical Engineering
16 (2023), pp. 171–191. doi: 10.1109/RBME.2022.3156810 (cit. on p. 9).

[11] Wikipedia. TR-069. https://en.wikipedia.org/wiki/TR-069 (cit. on
p. 11).

[12] Broadband Forum. https://usp.technology/ (cit. on pp. 11, 39).
[13] Broadband Forum. TR-369 – The User Services Platform. https://usp.

technology/specification/index.pdf (cit. on pp. 13, 39).
[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.

«ImageNet: A large-scale hierarchical image database». In: 2009 IEEE Con-
ference on Computer Vision and Pattern Recognition. 2009, pp. 248–255. doi:
10.1109/CVPR.2009.5206848 (cit. on p. 18).

[15] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. 2015. arXiv: 1409.1556 [cs.CV]. url:
https://arxiv.org/abs/1409.1556 (cit. on pp. 19, 20).

[16] Andrew Howard et al. Searching for MobileNetV3. 2019. arXiv: 1905.02244
[cs.CV]. url: https://arxiv.org/abs/1905.02244 (cit. on pp. 26–28).

[17] Raspberry Pi. Raspberry Pi 4 Model B. https://www.raspberrypi.com/
products/raspberry-pi-4-model-b/ (cit. on p. 35).

50

https://doi.org/10.1109/IICAIET55139.2022.9936735
https://doi.org/https://doi.org/10.1016/j.engappai.2024.107904
https://www.sciencedirect.com/science/article/pii/S0952197624000629
https://www.sciencedirect.com/science/article/pii/S0952197624000629
https://doi.org/10.23919/ICAC50006.2021.9594222
https://doi.org/10.1109/RBME.2022.3156810
https://en.wikipedia.org/wiki/TR-069
https://usp.technology/
https://usp.technology/specification/index.pdf
https://usp.technology/specification/index.pdf
https://doi.org/10.1109/CVPR.2009.5206848
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1905.02244
https://arxiv.org/abs/1905.02244
https://arxiv.org/abs/1905.02244
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/

BIBLIOGRAPHY

[18] Broadband Forum. OB-USP-Agent. https://github.com/BroadbandForum/
obuspa/blob/master/QUICK_START_GUIDE.md (cit. on p. 35).

[19] TensorFlow. TensorFlow for C. https://www.tensorflow.org/install/
lang_c (cit. on p. 40).

[20] Onnx2c compiler. https://github.com/kraiskil/onnx2c (cit. on pp. 40,
41).

[21] TensorFlow. capi.h. https://github.com/tensorflow/tensorflow/blob/
master/tensorflow/c/c_api.h (cit. on p. 41).

[22] Mingxing Tan and Quoc V. Le. EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks. 2020. arXiv: 1905.11946 [cs.LG]. url:
https://arxiv.org/abs/1905.11946.

[23] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. MobileNetV2: Inverted Residuals and Linear Bottlenecks. 2019.
arXiv: 1801.04381 [cs.CV]. url: https://arxiv.org/abs/1801.04381.

[24] Mahnaz Chahoushi, Mohammad Nabati, Reza Asvadi, and Seyed Ali Ghorashi.
«CSI-Based Human Activity Recognition Using Multi-Input Multi-Output
Autoencoder and Fine-Tuning». In: Sensors 23.7 (2023). issn: 1424-8220. doi:
10.3390/s23073591. url: https://www.mdpi.com/1424-8220/23/7/3591.

[25] M. Humayun Kabir, M. Hafizur Rahman, and Wonjae Shin. «CSI-IANet:
An Inception Attention Network for Human-Human Interaction Recognition
Based on CSI Signal». In: IEEE Access 9 (2021), pp. 166624–166638. doi:
10.1109/ACCESS.2021.3134794.

[26] Juan Augusto Campos-Leal, Arturo Yee-Rendón, and Inés Fernando Vega-
López. «Simplifying VGG-16 for Plant Species Identification». In: IEEE
Latin America Transactions 20.11 (Aug. 2022), pp. 2330–2338. url: https:
//latamt.ieeer9.org/index.php/transactions/article/view/6728.

[27] Sheldon Mascarenhas and Mukul Agarwal. «A comparison between VGG16,
VGG19 and ResNet50 architecture frameworks for Image Classification».
In: 2021 International Conference on Disruptive Technologies for Multi-
Disciplinary Research and Applications (CENTCON). Vol. 1. 2021, pp. 96–99.
doi: 10.1109/CENTCON52345.2021.9687944.

51

https://github.com/BroadbandForum/obuspa/blob/master/QUICK_START_GUIDE.md
https://github.com/BroadbandForum/obuspa/blob/master/QUICK_START_GUIDE.md
https://www.tensorflow.org/install/lang_c
https://www.tensorflow.org/install/lang_c
https://github.com/kraiskil/onnx2c
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/c/c_api.h
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/c/c_api.h
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381
https://doi.org/10.3390/s23073591
https://www.mdpi.com/1424-8220/23/7/3591
https://doi.org/10.1109/ACCESS.2021.3134794
https://latamt.ieeer9.org/index.php/transactions/article/view/6728
https://latamt.ieeer9.org/index.php/transactions/article/view/6728
https://doi.org/10.1109/CENTCON52345.2021.9687944

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Overview
	General Pipeline
	Thesis Structure

	Related Works
	Implemented Technologies
	Channel State Information
	Deep Learning
	Convolutional Neural Networks
	Transfer Learning

	Customer Premises Equipment
	User Services Platform

	Experiment
	Human Activity Recognition Datasets
	Data Pre-process
	Merge Classes
	Convert CSI Matrices to Images
	Image Augmentation

	Proposed Methodologies & Evaluation
	Proposed Classification Models
	Model 1: VGG16 based Transfer Learning
	Model 2 & 3: MobileNetV3-Large based Transfer Learning

	Model Evaluation

	Deployment of Machine Learning Models in Local Environments
	Environment Configuration
	User Services Platform Agent-CPE
	User Services Platform Controller-ACS

	Model Deployment
	Enable Model Execution in OB-USP-Agent
	Preprocessing of Input Images
	Model Benchmark Information Collection

	Model Testing

	Conclusion & Future Work
	Bibliography

