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Summary

The ever-increasing and publicly accessible flow of news represents a valuable
resource for extracting information to detect health crises using machine learning
techniques. The primary objective of this thesis is to accurately classify news articles
by topic, with a focus on those related to health, and subsequently categorise them
by specific diseases. This research aims to explore innovative architectures and
techniques in Natural Language Processing to analyse and classify the news stream.
In addition, a robust test suite will be developed to evaluate the reliability of
the developed models. The resulting classifications will generate time series of
news related to specific diseases. This thesis is part of a much larger project
in collaboration with LINKS Foundation called TrustAlert, which aims at early
detection of health crises.
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Chapter 1

Introduction

1.1 Aim of this thesis project

This thesis work fit within the LINKS foundation’s contribution to TrustAlert
project. Specifically, this work investigates Natural Language Processing techniques
to filter and classify online news retrieved from an online news stream called
GDELT. This process is done in a completely unsupervised scenario. During this
thesis a test suite is developed to quantitatively evaluate the performances of the
developed model responsible for filtering and classification.

The main contribution of this thesis is the development of an artificial intelligence
architecture able to perform first a filtering phase, dividing news related to health
topics from the others, then a tagging phase, where the filtered news are tagged
with the disease they are reporting on.

Due to the evolving nature of the diseases and the completely unsupervised
nature of the available data, a major focus is placed on the zero shot application
of the models involved. Thus, the focus is on exploration of models that use
different pre-training strategies, data quality and format rather than the traditional
fine-tuning of these models.

Finally, a labelled dataset has been developed for this thesis and fine-tuned
versions of these models have been developed through a strategy based on the
contrastive learning instead of traditional fine-tuning based on classification heads.
A foundamental step was to formalize the problem not as a multi-label classification
one but as a retrieval problem using the notion of semantic search. This intuition
was the first step towards the concept of contrastive learning originally developed
for computer vision tasks.

1



Introduction

1.2 What is TrustAlert?
TrustAlert is a project founded by Fondazione Compagnia di San Paolo and
developed by the cooperation between different parties: Department of Clinical and
Biological Sciences of University of Torino, Department of Informatics of University
of Torino, Foundation Bruno Kessler and Links Foundation.

The TrustAlert main goals are:

1. Intercept and understand the healthcare crisis by extracting information
from healthcare, clinical data and news reporting on communicable diseases.

2. Assess the impact by cross-referencing healthcare data and classifying
population health and vulnerability.

3. Provide containment actions by conducting simulation to optimize resource
allocation.

Envisioning the TrustAlert project, it is possible to identify different parts that
work together, and the LINKS Foundation is responsible for the "early detection"
part. This means developing a tool able to automatically detect anomalies in the
news streams and the healthcare or hospital data. The most important data sources
for early detection are primarily text data in the form of online news streams such
as GDELT as well as healthcare data and clinical data provided by hospitals and
healthcare facilities. All this data needs to be analyzed and classified, and the best
choice for performing these operations is the use of Large Language Models (LLM).
This Master thesis projects focus on the news classification part of TrustAlert early
detection phase. Specifically, by investigating NLP techniques and developing a
model able to filter and tag news with the diseases they are reporting on.

Given the nature of the data handled, it is also foundamental that TrustAlert
project aligns its core values with European values by using algorithms and
databases that are compliant with the GDPR and the AI Act. This ensures
the protection of the privacy of data subjects and the centrality of the human being
throughout the development of the project.

1.3 Challenges
One of the biggest challenges is working with completely unstructured and unlabeled
text: from freely written news to hospital records and discharge notes. This means
that no fixed structure is imposed on the text data and that there are often no
meaningful labels associated with the text in the datasets related to healthcare
news currently available.

2



Introduction

Another important challenge is the nature of Large Language Models, which are
resource-intensive and data-hungry. Therefore, there is the need to find a way to
not train the models involved from scratch every time, but to utilise the zero-shot
capabilities of these huge pre-trained models and find a way to tailor the tasks to
fully exploit their potential.

1.4 Preview of results
To summarize the value brought by this work:

• Development of a flexible tagger capable of classifying any text with any set of
labels using the zero-shot capabilities of its freely chosen, pre-trained backbone.
This model achieves results of over 98% in Accuracy@1 in the first filtering
phase and over 90% in the disease tagging phase.

• Development of a labelled dataset that can be used to quantitatively evaluate
the tagger’s performance on a text format and style similar to the one of
the news the model will actually filter. These datasets are easily replicable
and updatable using reliable data sources such as BBC and World Health
Organization.

• Comparison between the zero-shot application of base models and their fine-
tuned versions on specific domains such as the ICD9 codes classification. The
model that best performed on this thesis test was the SentenceTransformer
with an MPNET backbone.

• Investigation of contrastive learning techniques and Masked Language Mod-
eling techniques to fine-tune LLM models for classification without losing
their zero-shot capabilities. Starting from a state-of-the-art model known as
MPNET, it is finetuned through contrastive learning techniques to be adapted
to ICD9 tagging task.

3



Chapter 2

Background

This chapter presents the problem from a top-level perspective and explains possible
machine learning and deep learning techniques, with a particular focus on natural
language processing, that can be used to address the main challenges of this thesis
considering also the constraints imposed by TrustAlert.

In today’s information-rich world, the early detection of health crises is a complex
yet critical task. The sheer volume of data generated from news sources, social
media and healthcare facilities presents a significant challenge in monitoring and
responding to potential epidemiological threats. This is where the TrustAlert
project comes in. The main focus of the project, led by the LINKS Foundation, is
the early detection component. This involves the development of tools to classify
and analyse text data from sources such as the Global Database of Events, Language,
and Tone (GDELT).

One of the main challenges in this project is dealing with completely unstructured
and unlabelled text. This includes freely written news articles and hospital records,
which require sophisticated techniques for effective classification and analysis. The
aim of this chapter is to provide a brief introduction to NLP and all the techniques
and architectures used in the methods (chapter 4) and experiments (chapter 5).
This includes a look at techniques for representing text in data structures that
can be processed by machine learning models, the history of such models, from
Word2Vec to Transformers and other Seq2Seq models, and finally a presentation of
the different techniques used to train these models effectively.

4



Background

2.1 An introduction over Natural Language Pro-
cessing

Natural Language Processing is a prominent branch of artificial intelligence that
focuses on the interaction between computers and human language representing a
crucial intersection of computer science, linguistics and artificial intelligence. It
enables machines to understand, interpret and generate human language, opening
up numerous applications in transformative industries such as the TrustAlert project
in the healthcare industry. In the context of this thesis, NLP techniques are central
to transforming unstructured and unlabelled text from news articles and hospital
records into structured, analysable information.

The history of NLP evolution can be drawn as a line from from simple Bag
of Words and TF-IDF to dense, context-aware embedding like Word2Vec, GloVe,
and Transformers (BERT, GPT ). In the meanwhile the architectures transitioned
from traditional Machine Learning models (Naive Bayes, SVM ) to advanced neural
networks (RNN, LSTM ) and Transformer architectures.

2.2 NLP techniques
The first step in NLP involves converting text into data structures that machine
learning models can process. This process, known as text representation or text
vectorization, has evolved significantly over the years, but essentially can be defined
as obtaining a numeric high dimensional vector from a textual input.

2.2.1 Sparse Vector Representation
The first data structure used to represent textual data was to generate a global
vocabulary and represent each document as a binary vector of terms present in
each document. Thus, a representation similar to a one hot encoding

Figure 2.1: Example of one hot encoding of textual data, in this case sentences.

Other possible representations that leverages once more the frequentistic ap-
proach towards words are TF-IDF and TF-DF. These techniques compute for

5
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each word the times it appears in the current document weighted by its overall
appearances in the whole collection. The TF-IDF penalizes words that are spread
over all documents, suitable for heterogeneous collections. The TF-DF rewards
word that are spread over all documents, suitable for homogeneous collections.

Figure 2.2: Example of TF-IDF encoding of sentences.

The mathematical formulation of TF-IDF and TF-DF are the following:

TF-IDF(t, d) = TF(t, d)× IDF(t)

TF-DF(t, d) = TF(t, d)×DF(t)

Notice that t is a word term, d is a document or sentence and D is the collection
of documents. Each term is defined as:

TF(t, d) = ft,dq
t′∈d

ft′,d

IDF(t) = log
1

N
|{d∈D:t∈d}|

2
DF(t) = |{d ∈ D : t ∈ d}|

However useful, these textual features are computed on the frequencies of
occurrences of the main textual units (words or char n-grams). Therefore this
approach is suitable only for syntactic embedding, because no semantic relation or
meaning is preserved, and small vocabularies, due to the resulting dimension of
the embedding being the vocabulary size itself.

2.2.2 Dense Vector Representations
Representation learning aims to learn embeddings for words, sentences and docu-
ments through a self-supervised process on the raw input data. Each input is then
mapped to a dense vector in a space where the distance between vectors is related
to their semantic distance. This approach is less interpretable because meaning
is no longer localised in a feature, but is spread across the vector representation.
Furthermore, studying the latent space can provide new insights into the hidden

6
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information in the text. All embedding models start from the so-called "distri-
butional hypothesis" [1]: when a target word is chosen, its semantic meaning
can be inferred from nearby words. In other words, the context in which a word is
used defines the meaning of the word itself.

Word2Vec

One of the first architectures proposed, with two different training techniques, is
Word2Vec [2]. It builds directly upon the "distributional hypothesis" by analyzing
a large document corpus and outputting a static embedding for every encountered
word. This is done using a Feedforward Neural Net Language Model [3] and other
simplier architectures with different training strategies like CBOW and Skip-Gram,
as shown in Fig 2.3.

Figure 2.3: The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.
Figure from [2].

As specified before, this methods and all the other presented in this section
produce "static embedding". This means that each word is mapped to the same
embedding each time is encountered. This behaviour, even if simple to understand
and implement, does not take into account the fact that the same word can have
different meaning. To generate more advanced embedding deep learning techniques
are required, which are presented in section 2.3.

7
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FastText

One of the main problems of Word2Vec is the impossibility to have embedding
for out of vocabulary words. In other words, if a word was never seen during the
training phase, it has no learnt representation. FastText [4] [5] makes a first step
towards solving this issue by producing embedding for both whole words and their
sub-words, called n-grams (pieces of n consecutive textual units like characters).

Figure 2.4: FastText sub-word representation using the word "eating" as example.

The final embedding of the word is represented as the sum of its own n-gram
embedding and the embedding of the special sequence represented by the whole
word. In this way, each word can have a representation enriched with sub-word
information, and for those that were never seen during training, their representation
is generated using only their n-grams. The sub-word concept, introduced in several
works other than FastText, such as the adaptation of Byte Pair Encoding [6] to
textual data [7] and WordPiece [8] algorithm, was seminal for tokenisation, which
is the basis of modern NLP [9].

Figure 2.5: FastText training resembles closely the contrastive learning framework.

8
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2.3 Deep NLP architectures
A significant advancement in NLP occurred with the development of architectures
capable of processing sequences of textual data while capturing both short and long
distance dependencies. These architectures typically feature numerous learnable
parameters and are composed of sequences of layers or repeated stacked blocks.
These blocks perform operations on the input text to transform it into embedding
vectors within a high-dimensional latent space.

Recurrent Neural Networks

A limitation of a Feed Forward Neural Network [10] is that its input must be of
fixed length. Recurrent Neural Networks are flexible in that regard. In fact,
unlike FFNNs, RNNs can handle sequences of varying lengths because they process
data one element at a time, maintaining a hidden state that captures information
about previous elements in the sequence.

As shown in Fig 2.6, RNN can be thought as a cell with a set of "weight,
biases and activation functions" (U, W ) but also with a "feedback loop" (V ) so that
outputt−1 contributes to outputt. The hidden, intermediate state is represented by
h. The shared weights (U, W, V ) allow the RNN to apply the same transformations
at each time step, which makes them well-suited for handling sequential data.

To better visualize it one can unfold the cell into sequential steps. In Fig. 2.6 all
the weights are shared (U, W, V ) and in doing so the RNN can have sequences of
variable length as input. Therefore, the data is fed sequentially and as consequence
the order of data matters during learning.

Figure 2.6: RNN architecture. Left: the real architecture. Right: the unfolding
of the architecture as sequential data xt is fed to the RNN.

Two of the main problems of RNNs are the Gradient Vanishing and Gradient
Explosion for longer sequences because of the excessive length of the back propa-
gation update along the feedback loop. To specifically solve these problems the
LSTM were introduced.

9



Background

Long Short Term Memory

The evolution of the RNN to avoid gradient update problems is the Long Short
Term Memory architecture [11], shown in Fig 2.7.

Figure 2.7: LSTM cell architecture. It has three different inputs: "Sequential
input" xt, "Short Term Memory" ht−1 and "Long Term Memory" ct−1. It produces
two outputs: "Updated Short Memory" ht and "Updated Long Memory" ct.

The LSTM cell uses two different activation functions in for two different reasons:

• Sigmoid σ : R → [0,1] : to compute % of retention of a quantity.

• Hyperbolic Tangent tanh : R → [−1,1] : to compute a new value scaled
by the result of the sigmoid activation function.

The functioning of the LSTM cell involves the following steps:

1. Retention of Long-Term Memory ct−1: The cell retains a percentage
of the long-term memory from the previous time step ct−1, modulated by
the sequential input xt and the short-term memory (hidden state) from the
previous time step ht−1 through a sigmoid activation function σ. This is
referred to as Forget Gate.

2. Computation of Potential Contribution to Long-Term Memory: The
cell computes a potential contribution to the long-term memory using the
activation function tanh(xt). It then decides the percentage of this contribution
to add to the retained long-term memory to obtain the updated long-term
memory ct. This is referred to as Cell state update.

3. Updating Short-Term Memory ht: The cell uses the updated long-term
memory ct and the sequential input xt to update the short-term memory ht.
This is referred to as Output Gate.
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ELMo: "Embeddings from Language Models"

By utilizing gates, LSTMs effectively regulate the flow of information, ensuring that
critical signals are retained and not diminished over time. This mechanism helps
preserve gradients during backpropagation, enabling the architecture to handle
longer sequences of data. This pivotal architectural advancement led to the creation
of the first models capable of generating deep contextualized embedding, such as
ELMo a.k.a. "Embeddings from Language Models" [12]. These embedding
capture both syntactic and semantic aspects of words, accounting for variations in
word meanings across different linguistic contexts.

Figure 2.8: Elmo architecture. Multi layer deep bidirectional LSTM.

The ELMo architecture is based on a deep bidirectional LSTM trained on
a language modeling task, meaning it predicts the next token in the sequence
both left-to-right and right-to-left. This dual perspective enhances the model’s
understanding of context and improves its ability to capture intricate dependencies
within the text. ELMo representations differ from previous architectures in that
each representation is a function of the entire input sequence. This is achieved by
combining its representations across multiple layers linearly (with learnt weights si),
as illustrated in Fig 2.8. Each layer captures different levels of abstraction, from
basic syntactic information to more nuanced semantic features. In fact, higher-level
LSTM states capture context-dependent aspects of word meaning while lower level
states model aspects of syntax [12]. While LSTMs introduced critical technical
advancements, ELMo brought forward essential concepts that are now prevalent in
modern NLP. These concepts include the significance of deep architectures and their
ability to model complex relationships within sequences, as well as the importance
of pretraining and bidirectionality in processing input sequences.
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Sequence to Sequence framework

Taking a step back, one of the main frameworks of problems in NLP are "Sequence
to Sequence" or Seq2Seq problems. This framework can be described from a top
level perspective as having an input sequence of variable length and the need to
map it to a correct ("Machine Translation") or meaningful ("Question Answering"
or "Summarisation") output sequence also of variable length. A generic example is
visualized in Fig 2.9.

Figure 2.9: Example of Seq2Seq problem. Mapping ABC input sequence to
WXYZ output sequence.

Historically, one of the main ideas driving architecture design in NLP was
the Encoder-Decoder structure. This approach was originally inspired by the
"Continuous Space Language Models" or CSLM [13] [14]. In these models,
a fixed length sequence of C words are first represented by "1-of-n coding", where
the i-th word in the vocabulary is coded by setting the i-th element of the vector to 1
and all other elements to 0, and then are projected together, sharing a weight matrix
P , and concatenated into a continuous vector space. Lastly, this representation is
passed through a non linear hidden linear layer, not dissimilar from what happens
in a FFNN, to be mapped to a vector containing the posterior probabilities of all
words in the vocabulary. The model is trained to maximize the probability of the
following word in the sequence.

Figure 2.10: Continuous Space Language Model functional diagram.
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Sequences, however, pose a challenge for traditional Neural Networks archi-
tectures like FFNNs. These architectures require that the dimensionality of the
inputs and outputs is known and fixed, and this is clearly not guaranteed in a
general textual sequence. To address limitations posed by the FFNNs and to be
able to handle variable length sequences, the Encoder-Decoder structure was
created, using RNN s [15] or LSTMs [16] for the inner work of both the Encoder
and Decoder parts. As shown in Fig 2.11, the encoder extracts a fixed-length
vector representation, the "context vector" C from a variable-length input sentence,
then the decoder takes C as its initial state and generates a variable-length target
sequence.

Figure 2.11: Encoder Decoder architecture. The blocks inside both Encoder and
Decoder are the visual representation of the unrolling of a RNN or LSTM.

Transformers and "Attention is all you need"

A significant challenge with the encoder-decoder approach is that the encoder must
compress all the necessary information from the source sequence into a fixed-length
vector. This often results in a rapid decline in performance as the input sentence
length increases, due to the loss of detailed information in longer sequences [17].

The most substantial advancement in NLP and sequence analysis in recent
years is undoubtedly the development of the Attention mechanism [18]. This
mechanism allows the model to focus on specific parts of the input sequence
while generating the output. First introduced to improve machine translation
performance with recurrent LSTM encoder-decoder structures [19], the attention
mechanism has quickly become a standard in NLP. It has led to the creation of the
highly effective Transformer models [20], which are at the forefront of modern
NLP architectures.

13



Background

Figure 2.12: Transformer architecture. Left: the stack of self-attention layers
that behaves like an Encoder. Right: the stack of self-attention and cross-attention
layers that behaves like a Decoder. Figure from [20].

Transformers [20] are auto-regressive encoder-decoder models [21] that
discard the recurrent inner structure and instead use multiple layers of self-attention
and FFNN s, resulting in better parallelization and handling of long-range depen-
dencies.

The attention block implemented in the Transformer is defined by three different
set of weights (Qw, Kw, Vw). These weights are used to generate intermediate
representations for each token within the input sequence called Querys Q, Keys K
and Values V . These representations allow the model to dynamically weight the
importance of each input token.

Attention(Q, K, V ) = softmax
1

QKT
√

dk

2
· V
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In both the encoder and decoder components of the Transformer architecture,
the self-attention mechanism generates queries Q, keys K, and values V from the
input tokens of the sequence. In contrast, during the decoder’s cross-attention
phase, the queries Q are derived from the previous decoder layer, while the keys
K and values V are obtained from the encoder’s output. To preserve the auto-
regressive property, the decoder’s input tokens are restricted to attending only to
the tokens that have already been generated, thereby preventing any look-ahead
bias or foreshadowing.

The absence of recurrent structures eliminates the need for sequential processing
of input data, allowing parallelization and thus significantly reducing training
time. However, there are some drawbacks.

The first minor drawback is that the order of the tokens of the sequences does
not play a role during training, and therefore a positional embedding becomes
mandatory to manually provide the model with this information. The positional
encoding [22] is designed to provide information about the relative and absolute
positions of tokens in the sequence. Moreover, by using only sine and cosine
functions, Transformer architecture ensures that the overhead is minimal and easily
manageable within the larger computational framework of the model.

Another and more problematic drawback is the quadratic complexity with
respect to sequence length in computing attention. In fact, when defining
attention as in the Transformer architecture, each token computes its similarity to ev-
ery other token in the sequence, so the quadratic complexity is O

1
Sequence length

2
.

Different attention mechanism have been proposed to overcome this issue such
as the Longformer [23] with its local windowed attention mixed with a global
attention or BigBird [24] with its block attention mechanism of sparse, local and
global attention.

The last main drawback is that without recurrent structures, now the model has
a hard constraint of maximum sequence length it can handle. This is an hyperpa-
rameter chosen at train time and can impede wanted behaviour at inference time.
Methods to handle this limitations divide into more efficient attention mechanisms
(Longformer, BigBird) or techniques to split the sequence applying relative posi-
tional encoding and segment recurrence mechanism such as in Transformer-XL
[25] and in XLNet [26].

BERT and transformer-like models

The promising results and the easy parallelization brought by the Transformer
architecture led to an increasing effort in training Language Models able to better
capture semantic relationships within the text sequences. The standard behaviour
is becoming pretraining Transformer-like architectures on Language Modeling task
over a large textual corpus [27] to then fine tune this foundation model on different
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possible downstream tasks.
The most influential model in this regard is BERT: Bidirectional Encoder

Representations from Transformers [9]. The architecture of BERT is a deep
bidirectional Encoder-only Transformer, which means it retains only the
Encoder part of the original Transformer architecture and in its self-attention
mechanism each token can attend to both tokens to its left and to its right.

A key concept in modern NLP is the distinction between pre-training and
fine-tuning [27]. Typically, large language models undergo an initial phase of
unsupervised or self-supervised training on a large corpus of text to then be
adapted to specific tasks in supervised scenarios, as shown with BERT in Fig 2.13.

Figure 2.13: BERT is pretrained on a large corpus of text through Masked Lan-
guage Modeling and Next Sentence Prediction. Then, one model per downstream
task is initialized as BERT pretrained and then finetuned on its own specific task.
Figure from [9].

The first phase focuses on tasks such as Language Modeling [27], where the
model predicts the next word given the previous words as context, or Masked
Language Modeling [9], where the model attempts to predict words within a
text that have been replaced by a special token like "[MASK]", or Next Sentence
Prediction [9], where the model has to predict if two sentences are entangled or not.
This first phase is called pre-training and provides the model with information
about the language distribution.

After pre-training, the model is slightly adapted for the specific task, usually
by adding a classification or regression head (a variation of FFNN s and MLPs)
that takes as input the embedding generated by the pretrained LLM and provides
the task specific output. This second phase is typically supervised, is known as
fine-tuning and its goal is adapting LLM ’s general knowledge to specific tasks.
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SentenceBERT and how to use effectively BERT Embedding

Being BERT an Encoder-Only Transformer, it is a natural choice for extracting a
representations of words and sentences in a latent space. However, the architecture
of BERT is a token-by-token architecture, therefore each input token has its own
embedding. In lots of cases the token representation is not as useful as a sentence
or document representation. Some examples may be large-scale semantic similarity
comparison, clustering and information retrieval via semantic search, as in this
thesis project.

To tackle these kind of problems, BERT utilizes a cross-encoder approach where
two sentences are passed through the Transformer network, and a target value is
predicted by a finetuned head. However, this setup becomes impractical for various
pair regression tasks due to the large number of possible sentence combinations.

To address this limitation, a common method for clustering and semantic search
is to map each sentence to a vector space where semantically similar sentences are
positioned close to each other. The most common approach involves either averaging
the BERT output layer [28] or using the output of the first token (the special
token "[CLS]"). However, these initial methods produced rather poor sentence
embedding [29], often performing worse than older techniques like averaging GloVe
embedding [30].

Figure 2.14: SentenceBERT is initialized as BERT and adds pooling operations
along with custom objective functions to generate whole-sentence representations.
Figure from [29].

The first significant improvement in this area came with SBERT: Sentence-
BERT [29]. This architecture, as shown in Fig 2.14 uses a siamese network [31] to
generate fixed-sized vectors for input sentences. By finetuning BERT through the
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addition of pooling layers and contrastive learning techniques employing similarity
measures like cosine similarity or Manhattan/Euclidean distance, SBERT can
efficiently identify semantically similar sentences. These similarity measures can be
performed extremely efficiently on modern hardware, making SBERT suitable for
semantic similarity search and clustering tasks.

BioBERT, domain specific LLM and Vocabularies

Once large language models based on Encoder-only architectures, such as BERT,
or Decoder-only architectures, such as GPT-2 [32], became the state of the art in
general purpose language understanding and processing, the challenge of handling
domain-specific languages and semantics emerged. Researchers began exploring
ways to specialize these models for specific domains and, given the scope of this
thesis, the most notable example was BioBERT [33].

Figure 2.15: BioBERT is initialized as BERT and the same pretraining strategy
is applied on a domain specific text collection. Figure from [33].

BioBERT is the successful attempt to specialize a BERT-like model on the
biomedical semantic field, where specific terminology is quite common and general
purpose LLM s have difficulty in achieving performances as high as expected. The
strategy adopted, shown in Fig 2.15, was to initialize the pretrained model of
BERT that achieved state of the art performances and, maintaining the exact
same architecture and vocabulary (BioBERT-base), perform an "additional
pretraining" with a domain specific text collections such as PubMed abstracts
and PubMed Central full-text articles.

A crucial aspect of LLM s is that to fed the text sequences to the Transformer
architecture, they first have to represent words as numeric vectors. To do so, they
first have to split the sequences into predetermined tokens. This sequence and
word sectioning part is achieved through two main components: a tokenizer and a
vocabulary. Specifically, the tokenizer split the sequences using the tokens available
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in the vocabulary and the initial embedding layer of the Transformer assigns a
starting vector representation to each token.

As can be seen, vocabulary plays a crucial role in shaping the results of Trans-
former. There are two main approaches in the modern literature. The first is
keeping the same vocabulary as the pre-trained model to be able to use
pre-trained weights, thus taking advantage of the expensive pre-training done by
others, as in BioBERT [33] with BERT initialization. The second strategy is to
generate a new domain-specific vocabulary by Byte Pair Encoding [6] or
WordPiece [8] and train from scratch one of the models that achieve top domain
performance, thus having a potentially more knowledgeable model but paying the
cost of pre-training, as in SciBERT [34].

XLNet and the importance of pre-training tasks

Focusing specifically on Transformer pretraining tasks, in literature exist mainly two
successful approaches: autoregressive language modeling and autoencoding
tasks.

Autoregressive language modeling is a technique where the model predicts the
next token in a sequence based on the preceding tokens. It generates text in
a left-to-right or right-to-left manner, using the previously generated tokens as
context to predict the subsequent ones. This method is foundational in models like
GPT, which build coherent sequences by continuously expanding from the initial
input.

Autoencoding, in contrast, does not focus on explicit density estimation but aims
to reconstruct original data from a corrupted input. Some prominent example are
BERT ’s Masked Language Modeling or BART Denoising [35]. In MLM, some
tokens in the input sequence are replaced with a special symbol, "[MASK]", and the
model is trained to recover the original tokens from this corrupted version. Because
density estimation is not part of its objective, BERT can utilize bidirectional
contexts for reconstruction. However, the "[MASK]" tokens used during pretraining
do not appear in real data during fine-tuning, leading to a pretrain-finetune dis-
crepancy. Additionally, since the masked tokens are not visible in the input, BERT
cannot model the joint probability using the product rule as autoregressive language
models do. This means BERT assumes the predicted tokens are independent of
each other given the unmasked tokens, which is a significant simplification.

XLNet [26] is the first approach that tries to address the problems of BERT
pretraining strategy. It tries to solve the Independence assumption of MLM by
generalizing the autoregressive language modeling introducing the permutation
language modeling. This strategy maximizes the expected log likelihood of a
sequence with respect to all possible permutations of the factorization order (or in
expectation by sampling some factorization orders).
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Figure 2.16: Different permuted factorization orders in the sequence [x1, x2,
x3, x4] let the autoregressive pretraining task on x3 attend to both left-side and
right-side tokens. Figure from [26].

As shown in Fig 2.16, given the token x3 to predict, instead of relying on the
previous tokens (x2 and x1) we sample some factorization orders and attend to
all the previous tokens w.r.t that factorization order. By using permutation, the
context for each token can include tokens from both the left and the right, thereby
addressing the lack of bidirectionality in traditional autoregressive models without
enforcing the independency assumption. Note that the original Transformer ’s
positional embedding is still applied before the permutation, which has the sole
purpose of being applied throughout the pretraining to enhance the autoregressive
language modeling strategy.

One of the challenges with permuted sequences is preventing the model from
seeing the token it is supposed to predict, which would trivialize the task. To do
so, a change is needed in what the model is able see, namely the attention mask.
This mask effectively tells the model for each token what to attend to and what
to ignore. By working on those the XLNet is able to enanche the autoregressive
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pretraining without trivializing the task.

Figure 2.17: Given a permutation order, e.g. [3,2,4,1], XLNet generates the
attention masks of the Content (a) and Query (b) streams in such a way that both
can only attend to previous tokens in the factorisation order, and the query stream
cannot attend to its own token content but only its position (c). Figure from [26].

To solve this problem, XLNet introduces Two-Stream Self-Attention for
target-aware representations. As shown in Fig 2.17, now the model has two different
self-attention mechanisms. The first one is "Content Stream" which works exactly
as the Transformer ’s self-attention. The second one is the "Query Stream" whose
query Q attends to only the position of the token without looking at the content
of the token. Therefore, each token xi has now two hidden representations, one for
content hi and one for the position-awareness of the model gi.

While during pretraining the Query stream is essential for the correct formulation
of Permuted Language Modeling, at inference time, the architecture behaves
similarly to a standard transformer, primarily utilizing the Content stream’s self-
attention.

MPNet and a unified pretraining strategy

In an attempt to take advantage of both the autoregressive permuted strategy
developed by the XLNet strategy and the Masked Language Modeling of BERT,
a novel architecture has been proposed. The intention was to unify these two
approaches to pretraining and to develop one that could take advantage of both.
The architecture presented was called MPNet: Masked Permuted Network
[36].
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Figure 2.18: The unified view proposed in MPNet of MLM and PLM, where xi

represents the initial embedding of token i and Pi its position embedding. Figure
from [36].

As shown in Fig 2.18, both the Masked Language Modeling and Permuted
Language Modeling can be represented as permuting a sequence in way such that
the tokens to predict are grouped on the rightest most part. Then MLM uses the
positional information of all tokens and the content of the non masked ones to
predict the masked tokens, therefore imposing Independence among them. Whereas
PLM uses for each token only the information, both content and positional, of the
previous tokens.

Figure 2.19: Attention mask system of MPNet. Reusing the idea of PLM of
Content and Query attention stream. Figure from [36].

To model this unified objective, a new attention masking strategy is proposed by
MPNet and visualized in Fig 2.19. Here the Content stream and the Query stream
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are enriched by the representations of the masked tokens ant their positions within
the sequence. Therefore, a token sequence like [x1, x2, x3, x4, x5, x6] is enriched
with its positional encoding [P1, P2, P3, P4, P5, P6,] obtaining the initial position
aware representation xi + Pi for each token. Then, the sequence is first permuted
following a factorization order [1, 3, 5, 4, 6, 2], obtaining a pretraining sequence
such as [x1 + P1 +, x3 + P3, x5 + P5, x4 + P4, x6 + P6, x2 + P2] and then are added
the mask special tokens "[M]" with the corresponding positional embeddings in the
corresponding portion to predict. If the model has to predict the last 3 tokens in
the permuted sequence (x4, x6, x2), the masking addition will be [M + P4, M + P6,
M + P2] and the input sequence to the model can be visualized as [x1 + P1 +,
x3 + P3, x5 + P5, M + P4, M + P6, M + P2, x4 + P4, x6 + P6, x2 + P2]. a visual
representation is shown in Fig 2.20.

The last MPNet addition is modeling the Query stream by reusing the hidden
states of Key and Values of the Content self-attention stream, while keeping
generating a new Query value for the masked tokens to predict.

Figure 2.20: Attention system of MPNet. It reuse the hidden states from the
Content stream to compute key and value in the Query stream. Figure from [36].

All these changes let the pretraining abandon the independence assumption
over the masked tokens and enrich the context of the predicted tokens in the
Permuted Language Modeling framework. MPNet, the adjustments proposed by
SentenceBERT and the intuition about contrastive learning will be at the core of
the methods developed for this thesis.
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Chapter 3

Data Sources

This chapter introduces all the main data sources that were used to collect data for
training and evaluating the whole tagging pipeline. First of all, section 3.1 explains
the taxonomies used as reference to extract labels to tag the news stream, namely
IPTC NewsCode (section 3.1.1) and ICD9 (section 3.1.2). These sections focus on
why these taxonomy were specifically chosen, and suggest some previous work in
which they have been used. Section 3.2 describes the datasets used in this thesis,
with a mention of previous work and a detailed data analysis of them.
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3.1 Taxonomies
A taxonomy is defined as a hierarchical classification scheme generally used to index
and organize knowledge. It can be thought of as a division of the knowledge space
into non-overlapping areas, the specificity or granularity of which depends on the
level of hierarchy at which one wishes to remain. So one can think of the taxonomy
as a tree structure where the root is the area of knowledge it relates to, and the
deeper one moves through the taxonomy, the more specific the characterization.

The strategy adopted in this work is to use established taxonomies in different
domains to extract reliable and meaningful labels with which to tag the text data.
Note that this choice is largely supported by the literature [37] [38] [39], where the
ICD9 taxonomy is often used as a reference for categorising medical records.

3.1.1 IPTC
The first taxonomy presented relates to the field of knowledge of news topics. IPTC
stands for International Press Telecommunications Council and the IPTC taxonomy
called NewsCodes MediaTopic1 is a hierarchical scheme that categorizes the topics
a news item can report on. The first level of this taxonomy, as it is possible to see in
Figure 3.1, corresponds to the courser division of the knowledge space and consists
of 17 different concepts. that vary from "arts, culture, entertainment and media"
to "weather". Among these topics, the main goal the first level want to achieve
is to be able to recognize the topic "health". The second level of the MediaTopic
"health" contains the following categories:

• "disease and condition"

• "health facility"

• "health organisation"

• "government health care"

• "health insurance"

• "private health care"

• "medical profession"

• "non-human diseases"

• "public health"

1https://show.newscodes.org/index.html?newscodes=subj&lang=en-GB&startTo=Show
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• "health treatment and procedure"

Figure 3.1: IPTC taxonomy of Media Codes, all first levels and second level of
media topic politics. The color pink indicates that the node can be deeper explored.

It is possible to see both in Figure 3.1 and in the above example that, semantically,
a good way to define each first level element of the taxonomy is to look at what
elements make up its own deeper level. This consideration will be crucial in the
definition of the labels for the tagging system.
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3.1.2 ICD9
The second taxonomy used in this work is the ICD9 codes taxonomy 2. The
acronym ICD-9-CM stands for International Classification of Diseases, 9th revision
- Clinical Modification. It is an international classification system for diseases,
injuries, surgeries, and diagnostic and therapeutic procedures proposed by the
World Health Organization. ICD-9-CM coding aims to provide a standardized and
unambiguous nomenclature for health conditions to facilitate the collection and
analysis of health data at international levels. Through standardization, it also
enhance the monitoring of epidemiological trends in diseases, quality and adequacy
of health care, resource use and health care effective financing.

The ICD9 codes are numerical or alpha-numerical codes relative to specific
diseases and the hierarchical structure helps in grouping them together.

• Numerical Codes: these are codes that consist of at least 3 digits and
describe the disease (e.g. 480 is "Viral Pneumonia"), which can be further
specified with decimal numbers (e.g. 480.3 is "Pneumonia due to SARS
associated coronavirus"). These codes follow the following grouping system:

– (001-139) Infectious And Parasitic Diseases
– (140-239) Neoplasms
– (240-279) Endocrine, Nutritional And Metabolic Diseases, And Immunity

Disorders
– (280-289) Diseases Of The Blood And Blood-Forming Organs
– (290-319) Mental Disorders
– (320-389) Diseases Of The Nervous System And Sense Organs
– (390-459) Diseases Of The Circulatory System
– (460-519) Diseases Of The Respiratory System
– (520-579) Diseases Of The Digestive System
– (580-629) Diseases Of The Genitourinary System
– (630-679) Complications Of Pregnancy, Childbirth, And The Puerperium
– (680-709) Diseases Of The Skin And Subcutaneous Tissue
– (710-739) Diseases Of The Musculoskeletal System And Connective Tis-

sue
– (740-759) Congenital Anomalies

2https://ftp.cdc.gov/pub/health_Statistics/nchs/Publications/ICD9-CM/2007/
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– (760-779) Certain Conditions Originating In The Perinatal Period
– (780-799) Symptoms, Signs, And Ill-Defined Conditions
– (800-999) Injury And Poisoning

• V Codes (V01-V91): these are alphanumerical codes starting with letter V
that are used to identify Supplementary Classification Of Factors Influencing
Health Status And Contact With Health Services.

• E Codes (E000-E999): these are alphanumerical codes starting with letter
E that are used to identifySupplementary Classification Of External Causes
Of Injury And Poisoning.
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3.2 Datasets
Several datasets have been used in this thesis, and some have been specifically
created to address specific problems, such as the lack of public and tagged news
datasets with a specific focus on health-related news, or the quality of the textual
data in the available datasets. The section 3.2.1 introduces the World Health Orga-
nization dataset, which is generated through an openly available API. The section
3.2.2 instead presents a BBC dataset that is mainly used for topic classification
of news. How these datasets are manipulated and processed for the scope of this
thesis is instead presented in chapter 4. In the last two subsections two dataset are
introduced: MIMIC-III (section 3.2.3) and GDELT (section 3.2.4).

3.2.1 World Health Organization
World Health Organizaton3 is a specialized United Nations institute for health.
Among its several interestes, for several years it explored how digitization and
technology can help global health. Some examples are the ICD9 coding, introduced
in subsection 3.1.2, but also through the distribution of updated datasets and
publication of freely accessible online news.

Their news site is a globally recognized source and is well structured and features
several tags of interest. These include “disease outbreaks”. This is precisely the type
of news that TrustAlert wants to intercept in GDELT stream which is analysing. By
using the API4 provided by WHO, it was possible to collect all the news related to
“disease outbreaks” and capture 2805 different news from 01.01.2020 to 31.12.2023
(note that the time frame was chosen to be compatible with the GDELT dataset
available at LINKS, but the dataset thus obtained can still be extended)

3https://www.who.int/
4https://www.who.int/api/news
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3.2.2 BBC - British Broadcasting Corporation
BBC or British Broadcasting Corporation is a recognized and respected news source
around the world. An openly accessible dataset5 regularly collects its news and
categorizes it into five different topics:

• Business

• Entertainment

• Politics

• Sport

• Tech

Figure 3.2: Topic Distribution in BBC dataset.

As we can see in Figure 3.2, this dataset is almost balanced with at least 386
news per topic and a total of 2225 news. However, it lacks the main category on
which this project would like to focus, namely health-related news.

5https://www.kaggle.com/datasets/gpreda/bbc-news
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3.2.3 MIMIC-III

MIMIC-III is a database of anonymized health-related data from patients treated in
the intensive care unit of Beth Israel Deaconess Medical Center between 2001 and
2012. The database contains information of various data types, such as categorical
data on demographics, time series derived from electronic measurements of bedside
vital signs, and many other information like lab test results, procedures, medications,
nursing staff records, imaging reports, and mortality.

MIMIC supports a variety of analytic studies, from epidemiology to clinical
decision rule improvement to electronic tool development.

During this work MIMIC was investigated to look at the feasibility of its
implementation as a test suite for the tagger on the ICD9 coding task.

Given the nature of this work, the type of data analyzed is the textual one.
In the database there is table of notes relative to each hospitalization called
NOTEEVENTS, the types of possible textual data and their distribution in MIMIC-
III is reported in Figure 3.3.

Figure 3.3: Category Distribution of textual data in MIMIC-III dataset.
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Among these variety of textual data there are the "Discharge summary" that
includes medical history, diagnostic results, surgical procedures, discharge instruc-
tions, etc. Each admission record is assigned a set of the most important ICD-9
codes by the experts of the ICU of Beth Israel Deaconess Medical.

By grouping the ICD9 codes assignment by admission code of each hospital-
ization, it is possible to have a dataset that relates the discharge notes composed
by textual data with the corresponding ICD9 codes. In doing so, it is possible to
obtain a dataset of 59652 different discharge summaries with their codes.

Figure 3.4: Number of discharge sum-
mary distribution

Figure 3.5: Number of ICD9 codes dis-
tribution

As we can see in Figure 3.4 and in Figure 3.5 the vast majority of the records has
one only discharge notes while the number of ICD9 codes assigned to each of them
vary a lot. This can cause some problem both in the definition of the multi-label
classification problem and in the one of the tag retrieval defined in section 4.1.
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Figure 3.6: ICD9 codes Distribution in MIMIC-III dataset.

As we can see in Figure 3.6, another major problem is the distribution of the
ICD9 codes themselves. Indeed, it seems to be a long-tailed distribution, with
many examples of a minority of codes and some of them with few or none.

To have a quantitative example, the first five codes sorted by frequency with
their relative occurrence are reported below:

• (401) Essential hypertension: 20592 occurrences

• (427) Cardiac dysrhythmias: 16731 occurrences

• (276) Disorders of fluid, electrolyte, and acid-base balance: 14682 occurrences

• (272) Disorders of lipoid metabolism: 14185 occurrences

• (414) Other forms of chronic ischemic heart disease: 14054 occurrences
Another important piece of information to understand how this dataset is biassed

is the fact that the ICD9 taxonomy used as tags includes 922 different codes and 27
of these codes appear only once in the MIMIC III dataset, while 80 never appear
(e.g. 001 Cholera).

To avoid the problem related to the label imbalance and missing codes some
previous works done on MIMIC III such as [37] and [38] suggest to restrain the
problem to the filter the dataset keeping only the most frequent ICD9 codes.
Common choices are keeping only thr top 10 and top 50 ICD9 codes.

The resulting dataset will be referred to as "MIMIC III TOP 10" or "MIMIC
III TOP 50" and it is composed by 44304 different discharge notes with their
relative ICD9 codes that appear into the top 10 or top 50 most frequent ICD9
codes considering MIMIC III ICD9 codes distribution reported in Figure 3.6.
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3.2.4 GDELT
GDELT6 or Global Database of Events, Language, and Tone is a database created
by Google that collects news from around the world. It monitors the world’s news
media in print, broadcast and web formats and translates every news item from
over 100 monitored languages into English. Using Google own words: "the GDELT
Project is a real-time open data global graph over human society as seen through the
eyes of the world’s news media, reaching deeply into local events, reaction, discourse,
and emotions of the most remote corners of the world in near real-time and making
all of this available as an open database to enable research over human society".

GDELT is the news stream that the TrustAlert Project aims to monitor to
gather news on health issues. In addition, the nature of GDELT allows the stream
to be split by geographic areas of interest and the system to be used for a specific
target, such as a city, a country or an entire continent. To get an idea of the
amount of data collected by GDELT, it suffices to point out that the system stores
more than 250 million events recorded worldwide since 1979, allowing anyone to
access them and extract information.

Figure 3.7: GDELT main tables and their relationships

GDELT is structured like a real-time event collector and has various tables. Of
the entire database, LINKS Foundation has decided to focus on the tables: Event,
Mentions, GKG (Global Knowledge Graph) and GQG (Global Quotations Graph).
The relationships between these tables are shown in the Entity Relationship (ER)

6https://www.gdeltproject.org/#watching
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schema, which can be seen in Figure 3.7. These tables are published as archive
files, each containing a CSV serialization of the corresponding table. The table
archives are created every 15 minutes and enable knowledge extraction almost in
real time. A brief description of the main tables is reported below:

• Event: this table collects various events and assign to them a unique identifier.

• Mentions: this table reports on all the mentions across media collected that
refers to a specific event tracked by Event table.

• GKG (Global Knowledge Graph): this table provides expanded context by
capturing people, organizations, companies, unique places, millions of topics
and thousands of emotions from each article.

• GQG (Global Quotations Graph): this table contains text excerpts from articles.
Each line of the data set corresponds to a specific article and contains its
quotations. Unlike the other tables, The GQG dataset is updated every
minute.

Figure 3.8: Data model adopted by LINKS Foundation.

The GDELT dataset was queried through SQL by LINKS Foundation in order
to make a smaller and narrower version available locally focused on data since 2018.
A different data schema with three main tables was chosen for the local version,
which can be seen in Figure 3.8. The main tables of this version of GDELT are:
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• Observed Datetime: this table tracks the data downloaded from GDELT using
their timestamp as unique identifier.

• News: this table contains metadata about the news collecte by GDELT.

• Annotation: this table structures the information produced from the semantic
analysis and filtering of the GDELT news.
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Method

This chapter introduces all the important elements that contribute to the function-
ality of the entire tagging pipeline. First of all, section 4.1 formally defines the
task that is set for the tagger system. Section 4.2 describes how the taxonomies
introduced in 3.1 are manipulated to extract labels with the maximum amount
of information from them. Section 4.3 describes the datasets created specifically
for this work using data sources introduced in 3. Finally, section 4.4 presents the
model architectures and their training strategies.

Before we get into the technical details, it is important to reiterate the constraints
of the TrustAlert project, as it has some serious implications for technical decisions.
Namely, the main goal is a disease outbreak alert system that helps hospitals and
healthcare facilities track anomalies in these types of trends so as not to be caught
unprepared. This means that the evaluation suite should focus more on ICD9
codes of communicable diseases rather than the more generic and common codes.
Another limitation is the style of the text data. Since they are texts from global
news sources, they are neither very technical nor use too specific terms. These two
considerations made it clear that the available dataset such as MIMIC-III, which
was presented and analyzed in section 3.2.3, is insufficient, so we had to look for
another dataset to work with. These considerations resulted in the creation of a
custom dataset presented in section 4.3.1.

Another consideration is that while this work is based on a specific taxonomy,
namely the ICD9 taxonomy presented in section 3.1.2, the landscape of science-
related taxonomies is frequently changing. There is currently an ICD10 version of
the ICD taxonomy and the World Health Organization is already developing the
ICD11 taxonomy. This situation highlights the importance of having a model that
is flexible in terms of the tags we want to use. The chosen approach is therefore
to explore techniques, such as pre training techniques and contrastive learning,
that are not tied to the number or type of these tags. In other words, the lack of
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labeled datasets and the flexibility required to focusing on the characteristics of the
latent spaces generated by these models and the data they works with, rather than
focusing on the specialization of a classifier on this specific task. In fact, the chosen
approach is to use a backbone pre-trained model to encode both news and labels
in its latent space and use a distance metric to retrieve the nearest tag to the news.
This choice let the model be fine tuned through contrastive learning techniques
while keeping its flexibility in being used as a zero-shot model on unseen tags.

To sum up the main constraints:

• Lack of labelled dataset.

• Available datasets not aligned with the real case scenario of TrustAlert.

• Necessity not to be constrained by the tag set.

To sum up the choices taken:

• Creation of a dataset that resembles the context TrustAlert will be deployed.

• Focus on zero-shot capality of the models inspected.

• Training in contrastive learning settings.
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4.1 Task Formulation
The core of this work can be represented as a two-stage tagging problem. Once a
message source is selected, such as GDELT introduced in section 3.2.4, the "phase
one" tagger must be able to distinguish between news reporting on health and all
others. This behaviour is formalized in section 4.1.1.

While the "phase one" tagger limits the message stream to health-related news,
the "phase two" tagger is responsible for tagging each of these news with the
corresponding disease using the ICD9 taxonomy, presented in section 3.1.2, as a
reference. This specific behaviour is introduced in section 4.1.2.

This two-stage tagging pipeline generates disease specific time series, and graphs
of these time series are displayed on a visualization dashboard developed by LINKS
on Grafana.

4.1.1 Phase One Tagger Task
The tagger of the "phase one" is responsible for the correct assignment of the tag
"health" to the news stream. Specifically, the tags available for each news are the
list of codes in the IPTC taxonomy, which is presented in detail in section 3.1.1.

Figure 4.1: Visualization of the "phase one" tagging task. All the news that will
have "health" as Top1 tag will be kept for the second level of tagging.

The expected behaviour of this pipeline (Fig 4.1) can be summarized as follows:

• Let x be a news in plain text format.

• Let tagsetIP T C be the set of all possible tags generated from IPTC taxonomy.

tagsetIP T C := {tagIP T C1 , tagIP T C2 , ..., tagIP T CN
}.
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• Let Tagger(x , tagset) be the system with a backbone model able to process
the text x and retrieving one tag ∈ tagset or a ranked subset of top N tags
{tagi} ∈ tagset.

• Let simT agger(x, tag) a similarity metric to compare the news with respect to
all the labels available in tagsetIP T C using the representation of x and tag
obtained through the Tagger.

Tagger(x , tagsetIP T C) = arg maxi∈tagsetIP T C
{ simT agger(x, tagIP T Ci

) }

if Tagger(x , tagsetIP T C) == "health"
then keep x

In simple words, the tagger retrieves the tagIP T C that is most similar to the news
based on a similarity metric search performed between the news x and all the tags
preset in the tagsetIP T C using a specific similarity sim.

Then, based on the tagging results it is decided whether to keep the news or
not. The ideal output of this first level of tagging is a perfectly divided stream in
"health" and "non-health" news.

4.1.2 Phase Two Tagger Task
In relation to the task of the "phase one", the "second phase" now focuses on news
reporting on health topics. The specific task of the "second phase" tagger is to
assign a disease-specific code to each news item that is filtered by the first level
tagger.

The disease codes are generated from the ICD9 taxonomy presented in 3.1.2.

Figure 4.2: Visualization of the "phase two" tagging task. All the news will be
tagged with their Top1 tag.
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The expected behaviour of this second pipeline (Fig 4.2) can be summarized as
follows:

• Let x be a news in plain text format filtered by the first level tagger.

• Let tagsetICD9 be the set of all tags generated from ICD9 taxonomy.

tagsetICD9 := {tagICD91 , tagICD92 , ..., tagICD9N
}.

• Let Tagger(x , tagset) be the system with a backbone model, possibly different
from the "phase one" tagger, able to process the text x and retrieving one
tag ∈ tagset or a ranked subset of top N tags {tagi} ∈ tagset.

• Let simT agger(x, tag) a similarity metric to compare the news with respect to
all the labels available in tagsetICD9 using the representation of x and tag
obtained through the Tagger.

The "phase two" tagger tagging functionality can be described as:

Tagger(x , tagsetICD9) = arg maxi∈tagsetICD9{ simT agger(x, tagICD9i
) }

Therefore, the tagger finds the tagICD9 that is most similar to the news based on a
metric similarity search between the news x and all tags preset in the tagsetICD9
using a certain similarity sim.

The ideal output of this second level of tagging is a perfectly tagged stream
with each news tagged with the diseases it reports on.
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4.2 Taxonomy Expansion
As described in section 4.1, the tagger uses a tag set to select the tag to be assigned
to each news. This tag set is generated based on the taxonomies presented in
section 3.1 using various techniques presented in this section.

The basic idea is that the similarity used by the tagger is intended to be a semantic
similarity, which is why we want each tag to be as meaningful as possible in terms
of semantic content. While the news consist of a considerable amount of text, as
we can see in the description of the datasets in section 3.2, the taxonomy terms
are quite short, e.g. the tag we want to assign to the health-related news is simply
"health".

Even if these terms are semantically correct, it is possible that not enough
semantic information can be extracted from a single word. For this reason, some
techniques for semantically extending the taxonomy are being explored.

4.2.1 Primary level taxonomy expansion
This technique is the simplest way to extract a tag from a taxonomy. Looking at
the taxonomy as a nested dictionary of concepts, each primary key becomes a tag
in the tag set. Therefore, each top level concept becomes a tag that can be chosen
by the tagger.

As expected, these tags are the shortest ones and the one less specific, corre-
sponding to top level broader concepts.

Using as reference the ICD9 taxonomy, presented in section 3.1.2, the tag related
to Cholera is simply the first level entry of the taxonomy "Cholera".

• Primary: "Cholera"

4.2.2 Secondary level taxonomy expansion
This technique builds on the idea of the first. Taking advantage of the fact that
every taxonomy we use has at least one depth level below the top level, it is possible
to extract and combine both the primary and secondary level information for each
concept to obtain more meaningful tags.

Taking again the ICD9 taxonomy, presented in section 3.1.2, as reference and
specifically the code (001) "Cholera" we can see how the code is expanded:

• Primary: "Cholera"

• Secondary: "Cholera: Due to Vibrio cholerae, Due to Vibrio cholerae el tor,
Cholera, unspecified "
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4.2.3 Description taxonomy expansion
This technique specifically refers to the ICD9 taxonomy. As it is possible to see,
the previous technique proposes an expansion that is still very specific and does
not add very much as context. Therefore, this technique proposes an approach of
definition retrieval for each code.

Given a code, we look online for the definition of the diseases through a site that
collects ICD9 code definitions (www.icd9data.com) and concatenate it with the
code name. Unfortunately, not all the codes have an available definition, therefore
for the missing ones we re-use the technique of concatenating the second level of
the taxonomy.

Taking two examples with and without a definition we can see that when a
definition is not available the last two techniques behave the same way.

With a definition, code (001) "Cholera":

• Primary: "Cholera"

• Secondary: "Cholera: Due to Vibrio cholerae, Due to Vibrio cholerae el tor,
Cholera, unspecified"

• Definition: "Cholera: Acute diarrheal disease endemic in India and southeast
Asia whose causative agent is vibrio cholerae can lead to severe dehydration in
a matter of hours unless quickly treated."

Without a definition, code (274) "Gout":

• Primary: "Gout"

• Secondary: "Gout: Gouty arthropathy, Gouty nephropathy, Gout with other
specified manifestations, Gout, unspecified"

• Definition: "Gout: Gouty arthropathy, Gouty nephropathy, Gout with other
specified manifestations, Gout, unspecified"
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4.3 Datasets Generation
During the development of the TrustAlert project, several datasets were used and
some others were specifically created to solve certain problems, such as the lack of
public and labelled news datasets with a specific focus on health-related news or
the quality of textual data in the available datasets. In subsection 4.3.1 is possible
to find how the news dataset was created, while in subsection 4.3.2 it is possible to
see how this dataset was turned into a dataset to evaluate ICD9 coding capabilities
of the tagging system.

4.3.1 Developed news dataset
As specified in subsection 4.1.1, the first capability of the tagger system to be
tested is whether it is able to distinguish health-related news from the others.
After a careful examination of the openly available datasets, it was clear that,
as of now, there were none that simultaneously fulfilled the following mandatory
characteristics:

• Text format and style resembling the one of online news stream. This means
a fluent and freely formulated text without overly specific terms from the
medical field.

• Labels (or more in general features) that let distinguish between news reporting
on health topic and the other ones.

The first constraint ensures that the test suite resembles the real scenario in which
the tagging system is used. The second is imperative to have a ground truth against
which the results of the system can be compared. Hence, the idea of combining
two reliable news sources such as the World Health Organization (section 3.2.1)
and the BBC (section 3.2.2) to produce a labelled and reproducible dataset.
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Final Dataset

To create a final dataset able to respect both the constraint introduced in subsection
4.3.1, the idea was to fuse the World Health Organization dataset giving to those
the ground truth label "health" while keeping the news of BBC with their original
labels or giving to them the ground truth label "not health". Remember that, as
we can see on Figure 3.2, the BBC news surely are not reporting on health topics.

As we can see in Figure 4.3, the original datasets has a news length distribution
that is comparable. Instead, the final label distribution, considering a binary
classification task of discerning "health" news from "non-health" news can be seen
in Figure 4.4. The final length of the dataset is of 5030 different news.

Figure 4.3: Topic Distribution in all news datasets.

Figure 4.4: Label Distribution in the generated news dataset.
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The dataset generated as explained will be used to evaluate, as explained in
section 4.1, the tagger system ability to distinguish among the news that report on
health topic such as diseases, as reported in the World Health Organization news
on diseases outbreaks, and the other news that will be considered irrelevant for the
TrustAlert project.

4.3.2 Developed dataset adapted to ICD9: "WHO-ICD9"
The news dataset generated as in subsection 4.3.1 is useful to quantify the ability
of the developed tagger system to recognize health-related messages. However, it is
also interesting to investigate a more specific capability of the tagger system: its
ability to understand which disease the news is reporting on.

To evaluate this specific capability the only subset of news that can be useful is
clearly the one retrieved through the World Health Organization API, as explained
in subsection 3.2.1.

After identifying the subgroup of interest, the challenge was to transform this
unlabeled corpus into a labelled dataset. The simplest but most effective idea was
to use the title of the news and their text to search for a perfect match among the
textual description of the ICD9 codes.

Figure 4.5: ICD9 codes distribution in the generated news dataset with perfect
matching strategy.

The perfect matching strategy gave us a dataset that follows the ICD9 code
distribution shown in Figure 4.5. Although this strategy is promising, the number
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of ICD9 codes found per news in Figure 4.6 shows that a large proportion of the
news in the WHO dataset would be lost if this simple strategy were implemented.
Specifically, only 1477 of the 2805 original news were assigned a golden truth and
looking at the ICD9 code distribution in Figure 4.5 it is possible to see that few
codes have a significant amount of examples, such as "influenza".

Figure 4.6: Number of ICD9 codes in the generated news dataset with perfect
matching strategy.

In reviewing the news of WHO news, which did not match perfectly, it was
found that some diseases were misspelled and some other acronyms were used, so a
series of manual rules were applied to correctly label these news. The rules applied
are described below:

• If a perfect match is found no further examination is done.

• if "Meningococcal" is found in the news
then (036):"Meningococcal infection" is applied.

• if "Polio" is found in the news
then (045):"Acute poliomyelitis" is applied.
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• if "HIV" is found in the news
then (042) "Human immunodeficiency virus [HIV] disease" is applied.

• if "Ebola" or "hemoraagic fever" is found in the news
then (065): "Arthropod-borne hemorrhagic fever" is applied.

• if "Coronavirus" or "SARS" is found in the news
then (480):"Viral Pneumonia" is applied.

From now on the dataset prepared in this way will be referred to as "perfect
matching plus" to make it clear which version of the dataset the experiments and
statements refer to.

Figure 4.7: Number of ICD9 codes in the generated news dataset with perfect
matching plus strategy.

Looking at Figure 4.7 where is reported the final number of ICD9 assigned per
news in it is possible to see that using the perfect matching plus strategy to assign
golden truth codes it was possible to cover a significant part of the original WHO
dataset. Specifically, 2504 of the 2805 original news were assigned a golden truth
and the ICD9 codes distribution is reported in Figure 4.8.
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Figure 4.8: ICD9 codes distribution in the generated news dataset with perfect
matching plus strategy

Note that the generated dataset, especially with respect to the MIMIC-III
dataset presented in section 3.2.3, consists entirely of news, i.e. unstructured but
fluent text reporting on diseases and medical information in a specific but not too
technical language. Moreover, 2302 of the 2504 news are linked to only one ICD9
code, which solves some problems related to the classification task, which can be
formulated as a simple classification problem instead of a multi-label classification
one on MIMIC-III.

Another remarkable feature of this dataset, that from now on it will be referred
to as "WHO-ICD9", with respect to MIMIC-III is that the majority of the ICD9
codes that appear here are related to communicable disease, which is the target of
TrustAlert project. Instead, as exposed in section 3.2.3 referring about "MIMIC III
TOP 10" or "MIMIC III TOP 50", the most frequent codes in whole MIMIC III
are related to uninteresting (for the scope of this project) medical complications
such as Hypertension or Cardiac dysrhythmias.
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4.4 Models
This section examines the architectures and training techniques used to solve
the problems encountered throughout the thesis considering also the TrustAlert
constraints, such as the need for a flexible tagging system that is not constrained by
the labels we want to use, or the need to improve performance on specific domains,
such as the medical domain.

In section 4.4.1 is presented the standard architecture used to solve multi-label
classification problems while highlighting the causes that impede TrustAlert project
to fully embrace this kind of solution as a standard.

In section 4.4.2 is presented the chosen architecture, with an interchangeable
backbone and fine tuned with a contrastive learning strategy.

4.4.1 Multi-label classifier
A multi-label classifier is a machine learning model designed to assign multiple
labels to a given input instance. Formally, it can be defined as follows:

• Let X be the input space, where each instance x ∈ X is a text.

• Let Y be the set of possible labels extracted from one of the available tax-
onomies. It is represented by Y = {y1, y2, . . . , ym}, where m is the number of
labels.

• The multi-label classifier is a function f : X → 2Y , where 2Y denotes the
power set of Y .

• The set of parameters θ influences the behaviour of the classifier model f(x | θ).
The goal of training is to find a set of parameters θ∗ that produces the most
effective model f(x | θ∗).
(effectiveness is not a strictly defined concept but is codified in the structure of
the loss function that is chosen based on the desired model behaviour).

For an instance x ∈ X , the classifier assigns a subset of labels y ⊆ Y . Thus, the
output of the classifier for an input x is a set of labels:

f(x | θ∗) = {yi ∈ Y | x is predicted to have label yi}

Since the multi-label classification framework seems to be a natural fit for solving
the ICD9 assignment problem, the following section describes how to model and
train the architecture according to these principles.
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Architecture Design

Working on a NLP scenario, it is preferable to use a model f(x | θ) able to encode
and classify textual data. The most common choice, as explained in previous chapter
in section 2.3, is to use a Transformer Encoder architecture able to generate an
embedding vector from the text and then use this vector as input to a classification
head clf.

Figure 4.9: Architecture and inference workflow of Multi Label Classifier.

The main components of the architecture f(x | θ), shown in Fig. 4.9 and built
to solve the multi-label classification task, are the following:

• Transformer Encoder: this could be any model fT ransformer(x) that takes
in input a textual sequence x ∈ X and project it to a vector xh in a latent
space of dimension hdim denoted as Rhdim .

fT ransformer : X → Rhdim

fT ransformer(x) = xh ∈ Rhdim

The Transformer models used will be BioBERT, a variation of BERT presented
in section 2.3, and MPNET, presented in section 2.3.

• Classification Head: this could be any model clf(xh) that takes in input
the embedding vector generated by the Transformer Encoder xh ∈ Rhdim and
classify it using a fixed set of labels Y = {y1, y2, . . . , ym}, where m is the
number of labels.
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Being a multi-label classification task this classification head must be able to
assign a variable amount of labels to each embedding vector xh, therefore any
output ŷ is an element of the power set of all possible labels 2Y

clf(xh) : Rhdim → 2Y

clf(xh) = ŷ ∈ 2Y

The model clf is a multi layer perceptron (or MLP) or a single Linear Layer
that has, as final layer dimension, as many neurons as the possible labels in
Y . A threshold is defined on the output neurons and if the relative output is
above the threshold the corresponding label is considered to be chosen by the
model.
Therefore, instead of working on the powerset of the labels Y, the classifier
clf works directly on the set of labels Y = {y1, y2, . . . , ym} assigning to each
one {0,1} whether they are assigned or not based on the threshold.

clf : Rhdim → {0,1}m

clf(xh) = ŷ ∈ {0,1}m

Training Strategy

The training strategies associated to this kind of architectures is divided in two
main categories: freezing the backbone model and training only the classification
head, therefore maintaining fixed the embedding representation of the Transformer
Encoder, or training the whole architecture. Effects of both are shown in Fig 4.10.

Figure 4.10: Gradient flow through backpropagation at train time. Above:
update only the MLP clf. Below: update also the Transformer Encoder.
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Some important considerations regarding these two approaches are that the
number of parameters of the Transformer Encoder are way more than the clf ones.
Therefore, the convergence of training is slower and the amount of data needed is
bigger. Moreover, the pretraining of the backbones models are heavy tasks (both in
terms of data, resources and time required), can lead to overfit and leveraging upon
someone else developed foundation model is becoming the standard behaviour in
this field.

Whichever the technique is used, the training task can be formalized as follows.
The multi-label classifier at train time f(x | θ) : X → [0,1]m, given a news

x ∈ X , outputs a probability vector ŷ ∈ [0,1]m that contains at each entry ŷi the
probability of each label being part of the real labels associated to x. Notice that
the prediction space Ŷ is [0,1]m ⊆ Rm where m is the number of different labels.
The true label vector for an instance x is denoted by y = (y1, y2, . . . , ym), where
yi ∈ {0, 1}.

The loss function used to train is the cross-entropy loss, for a single instance
(x, y) it is defined as:

L( f(x | θ) , y ) = −qm
i=1 [yi log fi(x | θ) + (1− yi) log(1− fi(x | θ))]

Therefore, the objective defined by L is to align the output label distribution Ŷ
with the one we have at our disposal in the training dataset Y .

To minimize the loss over the entire training set D the total loss Ltotal as the
average loss over all training examples is defined as:

D = {(x(1), y(1)), (x(2), y(2)), . . . , (x(N), y(N))}

Ltotal = 1
N

qN
j=1 L( f(x(j) | θ) , y(j) )

The objective is to find the optimal parameters θ∗ such that the multi label
classifier f(x | θ) minimizes the total loss:

θ∗ = arg minθ Ltotal

The optimization is performed through gradient-based optimization methods
such as Stochastic Gradient Descent (SGD) or a variation of Adam optimizer [40]
like AdamW [41]. Generalizing, the parameters θ are updated iteratively using the
gradient of the loss function with respect to the parameters scaled by a learning
rate η:

θ ← θ − η∇θLtotal
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Problems of multi label classification

The formulation of the tagging problem as a multi label classification task brings
some problems already highlighted in the introduction of this chapter 4.

First of all, the structure of the classification head impose to know beforehand
both the total number and types of possible labels Y. This means that once a
model is developed through this kind of approach, it is bonded to the label set
it was trained on. To think about the direct mapping between output neurons
and label ordering (which output neuron corresponds to which label) is enough to
confirm that it is impossible to adopt this model in an evolving scenario. However,
this model should still be able to perform well under a fixed scenario where the
focus is specializing the model on a well-defined task.

Another problem is that multi-label classification is clearly a supervised task.
This means that we need a dataset D with a list of ICD9 codes y ∈ Y related to
the text sample x ∈ X to train the model on. On the one hand, this does not
fit well into the environment of the dataset, where MIMIC-III is the only reliable
source for this type of data, once again highlighting the lack of such referencing
data. On the other hand, this is likely to cause problems related to a shift in data
distribution between the training data (medical notes from MIMIC-III) and the
data to which the model is applied (news originating from GDELT). This shift can
be seen in the average length as well as in the differences in tone, lexical choice
and specificity of words belonging to a hospital vocabulary.

As will be seen in the chapter 5, another limitation is that the difficulty of the
task increases as the number of labels increases. For the ICD9 tagging task, we
have 922 different codes as possible labels (restricting ourselves only to the primary
codes). Moreover, the only available labelled dataset for IDC9 codes, namely
MIMIC-III described in section 3.2.3, shows a strong imbalance of these classes,
and the over represented ones are not even the ones correlated with communicable
disease outbreaks that the TrustAlert project wants to focus on. In fact, TrustAlert
aims to focus on communicable diseases in order to detect them early and inform
specialised structures to prepare for them.
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4.4.2 Tagger
The tagger is a machine learning model designed to retrieve the topN most similar
labels with respect to the semantic content of a text.

• Let X be the input space, where each instance x ∈ X is a text.

• Let Y be the set of possible labels extracted from one of the available tax-
onomies. It is represented by Y = {y1, y2, . . . , ym}, where m is the number of
labels.

• The tagger is a function f : X → {yi}N , where yi ∈ Y and N is the max
number of labels we want to retrieve from all the labels.

• The set of parameters θ influences the behaviour of the tagger f(x | θ). The
goal of training is to find a set of parameters θ∗ that produces the most
effective model f(x | θ∗).
(effectiveness is not a strictly defined concept but is codified in the structure of
the loss function that is chosen based on the wanted model behaviour).

For an instance x ∈ X , the tagger assigns a subset of N labels y ⊆ Y. Thus,
the output of the tagger for an input x is a set of labels:

f(x | θ∗) = {yi ∈ Y | yi is in the top N most similar labels w.r.t. x}

("most similar" is not a strictly defined concept but is codified in the architecture
choices such as which Transformer Encoder is used and which distance or

similarity metric is adopted).

The formulation presented above is much more similar to a task of information
retrieval rather than a classification one. Here, the focus is on finding a way to
represent closer the news and their relative labels instead of learning to classify the
text in a direct way.

Architecture Design

As specified for the previous model, working on a NLP scenario forces the model
f(x | θ) to be able to encode textual data. As explained in section 2.3, the most
common approach (section 2.3) is to use a Transformer Encoder architecture able
to generate an embedding vector from the text. This embedding vector should
have a strong relation with the semantic concept present in the text because of the
pre training strategies adopted to train these LLMs.
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Figure 4.11: Index generation for retrieval task.

The main idea is to fix a Transformer Encoder as backbone and generate the
latent representation or embedding vector of each label and index them to let a fast
retrieval possible, as shown in Fig 4.11. Then, for each text generate its embedding
vector and query the index with a specified distance metric such as Euclidean
Distance or Cosine Similarity, as shown in Fig 4.12.

Figure 4.12: Architecture and inference workflow of Tagger.

Therefore, the main parts of the architecture f(x | θ) built to solve the tagging
task are:

• Transformer Encoder: this could be any model fT ransformer(x) that takes
in input a textual sequence x ∈ X and project it to a vector xh ∈ Xh in a
latent space of dimension hdim denoted as Rhdim .
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fT ransformer : X → Rhdim

fT ransformer(x) = xh ∈ Rhdim

The Transformer models used will be BioBERT, a variation of BERT presented
in section 2.3, and MPNET, presented in section 2.3.

• Taxonomy: this time the taxonomy expansion technique used will play a
big role. In fact, as presented in section 4.2, using the labels to generate
embedding means that their semantic content will play a significant role in
shaping their latent representation and consequently the techniques used to
generate labels or tags from the taxonomy must be investigated.

fT ransformer : Y → Rhdim

fT ransformer(y) = yh ∈ Rhdim

The same Transformer Encoder used to encode textual data x ∈ X is also
used to encode labels or tags y ∈ Y. The set of embedding generated by
encoding y ∈ Y will be referred to as Yh. Thus, yh ∈ Yh.

• Index: this is a data structure useful to store and quickly retrieve the
embedding of the labels yh ∈ Yh ⊆ Rhdim . Given the embedding of a text as
a query vector xh ∈ Xh ⊆ Rhdim , this index retrieves the N nearest labels in
the latent space {yhi

}N where yhi
∈ Yh with respect to sim(xh, yh), namely a

distance metric or similarity metric.

sim : Xh × Yh → R

Index : Xh → {yhi
}N

Index(xh | Yh , sim) = arg maxi∈Yh
{sim( xh , yhi

)}

(If a distance metric is used instead of a similarity one, the formulation of the
Index will use an arg min instead of an arg max)
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Training Strategy

The architecture presented is quite unusual with respect to the most common ones
for text classification. However, some similarities can be found if we look at Retrieval
Systems, Siamese Networks [42] [29] [43] and at contrastive learning frameworks [44]
[45] [46] [47]. Usually, Retrieval Systems are trained with adversarial or contrastive
learning strategy because the focus is on developing a latent space that resemble
the distances between concepts that we want to encode.

Therefore, to train this kind of architecture the idea explored is the one of
contrastive learning.

Initially introduced for computer vision tasks [44], the main idea is to force
the latent representation of pairs of similar images to be near each other in the
latent space and separating the representation of the pairs of different images, this
behaviour is visualized in Fig 4.13. The concept of "similar images" can be easily
represented by images that belong to the same class, or taken geographically at the
same coordinates. This idea is represented by the Contrastive Loss [48] L(xi, xj):

LContrastive(xi , xj) :=

d(xi, xj) if yi == yj

max{0, mn − d(xi, xj) if yi /= yj

Figure 4.13: Contrastive Loss visual representation. Above: the images rep-
resentations of a positive pair are pulled together in the latent space. Below:
the images representations of a negative pair are pushed away in the latent space
enforcing the margin mn.

Some more refined techniques such as Triplet Loss [31] and Multisimilarity Loss
[49] introduce the idea of bringing together the positive images while keeping apart
at the same time the images that do not belong to the same class.

The point to focus on is the "at the same time". In fact, the main difference
is that these losses do not work with pairs but triplets or entire groups. The

58



Method

representation of the image is simultaneously brought closer to the similar sample
and away from the different ones. This behaviour is visualized in Fig 4.14.

Following the standard nomenclature the image is defined as anchor "a", the
similar image is called positive "p" and the different one is called negative "n".

Given an anchor a, a positive sample p, and a negative sample n, and a margin
m, the triplet margin loss LT riplet is defined, using a distance metric d(x , y) or a
similarity metric sim(x , y), as:

LT riplet(a, p, n) = max (0, d(a, p)− d(a, n) + m)

or

LT riplet(a, p, n) = max (0, sim(a, n)− sim(a, p) + m)

Figure 4.14: Triplet Loss visual representation. The image representations of
the positive p and the anchor a are pulled together in the latent space while the
representation of the negative n and the anchor one a are pushed away enforcing
the margin mn.
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Triplet Dataset Structure

The triplet loss can be adapted to the NLP scenario with the specific intent of
developing a training strategy for the Tagger. To do so, it is mandatory to structure
a dataset D of triplets of data (x, yp, yn). Taking the second level of tagging
(section 4.1.2) as an example, for each news x two different labels are provided,
both extracted from the ICD9 taxonomy. The positive label yp must be one of the
diseases the news x is talking about and the negative label yn can be sampled at
random among all the remaining codes.

D = {(x(1), yp
(1), yn

(1)) , . . . , (x(N), yp
(N), yn

(N))}

Using dataset D, the triplet loss LT riplet(a, p, n) can be easily adapted using the
Transformer Encoder fT ransformer(x|θ) like in a siamese network setting [29].

Given the triplet (x, yp, yn) are processed by the model with the same set of
parameters θ as follows:

• anchor "a" is generated from the news x as f(x | θ).

• positive "p" is generated from the positive label yp as f(yp | θ).

• negative "n" is generated from the negative sampled label yn as f(yn | θ).

To compute the triplet loss the similarity chosen is the Cosine Similarity between
the embedding generated.

LT riplet : Xh × Yh × Yh → R

sim(A, B) = A·B
∥A∥∥B∥

LT riplet(a, p, n) = max (0, sim(a, n)− sim(a, p) + m)

Ltotal = 1
N

qN
j=1 LT riplet( f(x(i) | θ) , f(yp

(i) | θ) , f(yn
(i) | θ) )

The objective is to find the optimal parameters θ∗ such that fT ransformer(x|θ∗)
minimizes the total loss Ltotal.
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Considerations over Tagger architecture

The Tagger architecture proposed brings several advantages with respect to the
multi-label classifier.

First of all, the label set Y is no more a hard constraint of the model, and this
means that can be easily kept up to date with the diseases and medical landscape.
For example, this model can work with any version of the ICD taxonomy past,
present and future ones.

Another advantage is that the backbone model, an LLM such as MPNET, is
basically used only as an encoder and therefore any progress done in NLP field can
be easily applied to this design. Thus, this architecture is also easier to update
technologically speaking.

The only remaining problems reside in the definition of a Dataset D given that
the Contrastive Learning is still a supervised framework (or self-supervised in some
cases). However, any pre trained model can be used in a zero-shot scenario with no
further fine-tuned with this architecture design. In this case, an evaluation suite is
mandatory to be able to assess its capabilities.
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Chapter 5

Experiments and Results

This chapter reports on all the experiments that were considered relevant to support
the statements within the discussion (chapter 6) of the thesis. This chapter is
divided by grouping the experiments into those that evaluate the "phase one"
tagging, which filters news based on correlation with "health" topics, and those
that evaluate the "phase two" tagging, which tags the news with the corresponding
ICD9 code.

As far as the experiments for the first phase are concerned, the dataset involved
is the one generated specifically for this thesis and presented in section 4.3.1.

The section about the second phase focuses instead on comparing the two
strategies explained in chapter 4: multi label classification (4.4.1) and tagging
(4.4.2). The datasets used for this group of experiments are MIMIC-III (3.2.3) and
"WHO-ICD9", the news dataset adapted for ICD9 tagging (4.3.1).

Given the similarities between the tagging strategy and the retrieval task, the
metrics chosen for the task evaluation belong to the retrieval system framework.
In order to fully understand the results proposed, section 5.1 explains all the
evaluation metrics encountered during this chapter.
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5.1 Metrics of Evaluation
RETRIEVAL METRIC

Inspired by Retrieval Systems evaluation based on metrics@N, where it is possible to
decide how many of the retrieved labels are considered meaningful, it is introduced
the Accuracy@1.

Accuracy@1: this evaluation metric is computed looking whether the Top 1
label retrieved by the tagger ŷ ∈ Ŷ is in fact the label associated with the input
data (x , y), where y ∈ Y, or it is in the set of labels associated with the data
(x , y), where y = {yi , ... , ym} and yi ∈ Y and y ∈ Y.

acc@1 : Ŷ ×Y→ R

acc@1(ŷ , y) =

1 if ∃y ∈ y : ŷ = y

0 otherwise

Accuracy@1(D) = 1
|D|

q|D|
i=1 acc@1( f(x(i) | θ), y(i))

ClASSIFICATION METRICS

Precision: as the ratio between the number of news correctly classified as class y
and the total number of news classified as y.

Precision = TP

TP + FP
(5.1)

Where TP is the number of True Positives, the ones correctly classified as ŷ, and
FP is the number of False Positives, those that were erroneously classified as ŷ,
e.g. as news reporting on "health", when they were about something else.

Recall: as the ratio between the number of data points correctly classified as y
and the total number of news actually belonging to the class y.

Recall = TP

TP + FN
(5.2)

Where FN is the number of False Negatives, the news which have been erroneously
assigned to other classes, when they are actually of the class under examination.

F1: an harmonic mean between Precision and Recall

F1 = 2 ∗ Precision ∗Recall

Precision + Recall
= 2 ∗ TP

2 ∗ TP + FP + FN
(5.3)
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5.2 Tagger Phase One
In this group of experiments it is evaluated how the first level tagger, introduced
in section 4.1.1, behave on a dataset of news. It must distinguish between news
related to health topic and news that talk about anything else. Therefore, the
evaluation setting is very similar to a binary classification problem with two classes
"health" and "not health". However, as profoundly explained in section 4.4, the
model used is a Tagger. Thus, the output of the model is a ranked list of labels
ordered by proximity in the latent space with respect to the input news.

The datasets used to evaluate the first setting is the one developed for this thesis
project and presetned in section 4.3.1.

Figure 5.1: A specific module Collector is responsible to collect the news from
WHO API and BBC Kaggle dataset generating the dataset presented in section
4.3.1.

5.2.1 Base Model Performances
The first experiment has the goal of assessing how the model chosen behave on the
dataset without any further training or fine-tuning. The backbone model used for
this experiment is an MPNET, explained in section 2.3. The intended behaviour
is classifying all the news coming from WHO dataset as "health" and all the ones
belonging to BBC as "not health".

Model Dataset Accuracy @ 1
MPNET WHO 18.0
MPNET BBC 98.96

Table 5.1: Accuracy@1 of Tagger on the two separated datasets.

In Table 5.1 it is possible to see how the model performs in distinguishing
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between "health" related and "not health" related news. The immediate conclusion
is that, while the model is quite good at understanding what it is not related to
"health", given the 98.96 on BBC dataset, it is not nearly as good at identifying
what it is related to "health". In fact, only 18.0 on WHO dataset means that
82% of news in WHO is misclassified, therefore tagged with tags different
from "health".

The main hypothesis that was proposed and verified by the experiments in
the following section is that the only word "health" it is not very semantically
meaningful. Therefore, there is the need to enrich the label semantic content.

5.2.2 Taxonomy Expansion Techniques Comparison
This set of experiments is designed to asses the differences brought by changing
the semantic content of the labels. Notice that these labels are generated from the
IPTC Taxonomy (section 3.1.1) and used by Tagger to tag the news using mainly
their semantic content. In changing it, it is expected a drastic change in the results.

By keeping both the model and the input data the same, only the labels are
modified using two specific techniques "primary" and "secondary" explained in
details in section 4.2.

Dataset Taxonomy "primary" Taxonomy "secondary"
Accuracy @ 1 Accuracy @ 1

WHO 18.0 97.7
BBC 98.96 98.56

Table 5.2: Accuracy@1 of Tagger comparing Taxonomy Expansion techniques.

As it was expected, the semantic enrichment of the labels brought a significant
improvement. As it is possible to see in Table 5.2, with a mere -0.40 on BBC, the
Tagger is now fully able to recognize "health" related news. This improvement is
quantified by a +79.7 on WHO for a total of 97.7 of Accuracy@1.

Looking at the same problem from a binary classification perspective, i.e. con-
sidering a news item to be classified as health if and only if the Top1 retrieved tag
is "health", it is possible to use metrics common to the classification framework, as
shown in Table 5.3 achieving a final F1 score of 0.98.

Expansion Technique Accuracy Precision Recall F1
@1 "health" "health" "health"

Taxonomy "primary" 0.5384 0.9458 0.1804 0.3029
Taxonomy "secondary" 0.9811 0.9855 0.9775 0.9815

Table 5.3: Performance Metrics for news dataset using MPNET.
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5.2.3 Backbone Model Comparison
Looking mainly for zero-shot performances, it is investigated which model among
the pool of openly available and pretrained ones is the best on this news classification
task. Once established, thanks to the previous experiment, that the expanded
taxonomy with "secondary" technique gives more information to the models to work
with, all the comparisons reported in Table 5.4 are performed with the Taxonomy
"secondary".

Backbone Model Accuracy Precision Recall F1
@1 "health" "health" "health"

BERT
[CLS] pooling 0.4457 0.6372 0.0110 0.0217
mean pooling 0.4423 0.0 0.0 0.0
RoBERTa

[CLS] pooling 0.4429 0.4473 0.0538 0.0960
mean pooling 0.4423 0.0 0.0 0.0

XLNet
[CLS] pooling 0.4419 0.3882 0.0028 0.0056
mean pooling 0.4423 0.0 0.0 0.0
MiniLM-L6 0.8753 0.9864 0.7850 0.8742

MPNET 0.9811 0.9855 0.9775 0.9815
QA-MPNET 0.6308 0.9832 0.3426 0.5081

Table 5.4: Backbone comparison for first level tagging task on news dataset.

The main conclusions that can be drawn from the Table 5.4 are that sentence
transformers are better suited for this kind of semantic embedding generation and
the best performing one among them is the MPNET model. This model is also
used as a starting point for second level tagging.
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5.3 Tagger Phase Two
In this second group of experiments it is evaluated how the second level tagger,
introduced in section 4.1.2, behave on both "WHO-ICD9", the dataset of news
adapted to ICD9 tagging, and on MIMIC-III. It must tag each news with the
related ICD9 code. Therefore, the evaluation setting is very similar to a multi
label classification problem with as many classes as the codes present in the ICD9
taxonomy, presented in 3.1.2. Both the dataset may have a different number of
codes associated to each news or discharge note. Thus, while computing retrieval
metrics we look whether the top1 tag belong to the set of ICD9 codes used as
golden truth.

5.3.1 Dataset Adaptation Techniques Comparison
These experiments aims to understand which version of "WHO-ICD9" is the most
suited to be used as test suite. As it is possible to see in Table 5.5, the dataset
generated with only "Perfect Match" is quite easy to work with. In zero-shot
environment and with no taxonomy expansion the result is an accuracy of 0.91.
However promising, the "Perfect Match Plus" strategy makes the dataset generated
larger and also more diverse in terms of labels, as presented in section 4.3.2. The
lower results in zero shot are indeed a good thing, it means that this dataset is
now a difficult scenario for our model.

Extraction Method Taxonomy Expansion Accuracy@1

Perfect Match Plus "Primary" 0.635
Perfect Match Plus "Secondary" 0.728
Perfect Match Plus "Definition" 0.740

Perfect Match "Primary" 0.913
Perfect Match "Secondary" 0.887
Perfect Match "Definition" 0.856

Table 5.5: Performance Metrics using MPNET for Different Extraction Methods
and different taxonomy techniques in adapting news dataset to ICD9 coding.

Table 5.5 explores also the relationship among the Taxonomy Expansion tech-
niques. An interesting fact is that while in "Perfect Match" the dominant Taxonomy
Expansion technique is "Primary", when the dataset becomes more difficult, as
in "Perfect Match Plus", the strategies that bring better results are "Secondary"
and "Definition". This means that a description of the diseases helps the model in
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understanding the semantic relationship between the labels and the news.

Figure 5.2: Results of ICD9 tagging on WHO dataset adapted through "Perfect
Match Plus", using MPNET base model.

Figure 5.2 shows how the tagging system responds to the variety of ICD9 codes
present in the dataset. It is important to note that while the bars on the left
represent the actual number of each specific code, on the right it is possible to see
how many of these codes are assigned by the tagger and how many of those are
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correctly assigned. Interestingly enough, the behaviour on rare codes is promising

5.3.2 Multi label classification fine-tuning
As introduced in the methodology, within chapter 4, the first approach was to build
a Multi-label classifier (section 4.4.1) and train it on MIMIC-III (section 3.2.3) to
understand if the task was feasible and interesting for the TrustAlert project.

Even considering the architecture limitations profoundly highlighted in the
introduction of this approach, the results found remain interesting to discuss.

Multi label classification

In Fig. 5.3 are reported the training and the evaluation metrics on MIMIC-III
dataset. Notice that the classifier is trained keeping frozen the backbone model,
in this case MPNET base model, and tuning only the classification head. In fact,
backpropagating through the backbone gave close to none results.

Figure 5.3: Training and evaluation of multi label classification with MPNET on
MIMIC-III.

A major problem we can see is represented by the different behaviours on the
training and validation sets, in particular a decrease in the train loss is not reflected
in one on validation, even if the evaluation metrics continue to increase. Another
major problem is the poor final performance achieved by this strategy, only 0.12 in
F1-macro. A plausible cause for this lack of effective training could be the inherent
difficulty of the MIMIC-III text, given as input data. To evaluate also another
model, BioBERT was used as backbone too. This model is usually used for tackling
scientific and medical text, its behaviour is shown in Fig 5.4.
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Figure 5.4: Training and evaluation of multi label classification with BioBERT
on MIMIC-III.

Even if with BioBERT the training losses behave as expected, the evaluation
metrics are way more floaty and, with the same training time of 30 epochs, the
final results are worst. Once more the MPNET is the model that behave the best,
as shown in Table 5.6.

Backbone Model Loss Precision Recall F1

MPNET 0.035 0.121 0.054 0.067
BioBERT 0.0362 0.024 0.0047 0.006

Table 5.6: Different Model performances as multi label classifier backbone.

Multi label classification as backbone fine-tuning

An idea to explore was to look at the performances of the multi label classification
as finetuning strategy for the backbone model. Precisely, the idea was not to freeze
the backbone model while training the classifier and look whether the modified
model would be better at tagging the news. As easily predictable, the performances
of this obtained tagger were heavily degraded. The main reason may be that
the multi label classification task, trained in this way, uses the backbone model
mainly as a feature extractor, then the classification head loses the relationship
with semantics and simply tries to fit the embedding to the correct output neurons.
Trying to optimize the model to fit these requirements may be as asking the model
to lose semantic capability to fit the constraints of classification. Whereas the
tagging task is mainly a retrieval search based on semantics.
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MLM finetuning

The final attempt to extract value from MIMIC-III was to use its text to additionally
train the MPNET with the MLM strategy, to assess if it could benefit the multi-
label classification task. To do so, the discharge notes from MIMIC-III were fed
into the model with some terms masked: 15% of tokens were replaced with a special
token [MASK] and the model tried to predict which word was under the mask.

The MLM training is shown in Fig 5.5 , whereas the final multi label classification
task is shown in Fig 5.6.

Figure 5.5: Finetuning MPNET with MLM strategy on MIMIC-III.

Figure 5.6: Training and evaluation of multi label classification with MPNET
with MLM on MIMIC-III.
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The main conclusions that can be drawn are the inadequacy of both the MIMIC-
III dataset for the multi-label classification task and the structure of multi-label
classification with such a large number of possible labels.

Some interesting but unexplored ways to finetune these models could be to
work on vocabulary expansion to let the model be more aware of terms that are
specific to a domain of interest. Unfortunately, some problems of resources both in
terms of computational capabilities and quality data availability impeded to pursue
this strategy. However, in section 7.2 some ideas about possible pretraining and
finetuneing strategies for semantic domains with specific knowledge are explored.
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5.3.3 Contrastive Learning fine-tuning
The approach of the Tagger (section 4.4.2) was more promising in terms of future
proof architecture and flexibility. In this section are evaluated its capabilities in two
different scenarios: on codes seen during training and on codes that the model has
never seen. All the training cycles are performed for a duration of 10 epochs, the
evaluation is performed once at the beginning and once at the end of the training,
using in the former case the base model and on the latter the model trained using
contrastive learning. Notice that the labels embedding must be recomputed with
the new model parameters and the Index must be recreated.

ICD9 Codes seen during training

For this experiment, the adapted news dataset (section 4.3.1) is split in a stratified
way in train set and evaluation set, therefore maintaining the same labels distribu-
tion in the two sets. Specifically, in train set we have 1687 different news with 31
distinct ICD9 codes associated to them. In the evaluation set we have 817 different
news associated to 24 different ICD9 codes. Both the distribution are shown in Fig
5.7 and in Fig 5.8.

The fine-tuning through contrastive learning is performed on train set and
evaluated on codes that it has seen during training. The goal of the experiment
is to understand and quantify the imporvments the model can achieve with this
strategy of training.

Figure 5.7: Train set label distribution.

73



Experiments and Results

Figure 5.8: Validation set label distribution.

The result brought by this training strategy, reported in Fig 5.9, shows a progress
on evaluation data from 70.50% to 90.70% in Accuracy@1. Namely, now 9 out
of 10 times the model is able to chose among all the possible ICD9 codes,
which is the one the news is talking about. This highlight the effectiveness
of contrastive training.

Figure 5.9: Results of contrastive learning.
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Zero Shot ICD9 Codes

Due to the scarcity of quality annotated data for ICD9 tagging, the other setting
it was important to explore was the zero shot scenario. It is important to verity
mainly two things. The first one is whether the model, by never looking at any
news about a code, is able to still tag it correctly. The second one is whether
the performances of the model on never seen codes is degraded because of the
contrastive learning finetuning on other codes. In other words, the check to perform
is to asses if the contrastive learning translate into a forgetting of the codes not
present in the train set.

To answer to these questions an experiment is performed where a subset of
labels considered problematic are kept-out from both train and validation set. This
set is referred to as "Kept-out evaluation". The training is again performed on
train set and the evaluation is performed at the beginning and at the end on both
evaluation sets.

Figure 5.10: Results on both codes seen and never seen during training.

As shown in Fig 5.10, the evaluation metrics on codes seen during training
still improves significantly, as expected, from 84.66% to 94.89% in
Accuracy@1. The results on "Kept-out evaluation" set present a slight
decreasing going down from 37.68% to 36.68%.

Firstly, the higher initial score on the evaluation set is explained by the fact that
the excluded codes were selected using the labels on which the model performed
worst, making the evaluation set easier.

The results on "Kept-out evaluation" show that the model does not generalise
further to unseen codes, but the degradation in performance on this type of data
does not seem to be too impactful.
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MLM additional pretraining

One last experiment important to make was trying the Masked Language Modeling
as a pretraining strategy to then apply the contrastive learning strategy. To evaluate
this approach on "WHO-ICD9" dataset the chosen strategy was to collect as plain
text all the news within the dataset and perform with the backbone transformer
encoder of the tagger the MLM strategy. This means masking a percentage of the
text (around 15% of tokens in the text sequence) and let the backbone model chose
among the vocabulary tokens which one is most suited to fill the "[MASK]".

Figure 5.11: MLM pretraining strat-
egy on "WHO-ICD9" text, MPNET back-
bone used.

Figure 5.12: Contrastive Learning
strategy with best model on MLM pre-
traing.

As shown in Fig 5.11, during MLM pretraining the MPNET base model used
as backbone is learning to correctly fill the masked tokens with the terms of its
vocabulary. Then, once the 30 epochs are completed, the best model according to
the evaluation loss is chosen as backbone for the tagger and the same contrastive
learning training is performed. In Fig 5.12 is shown the progress throughout the
process of contrastive learning with Triplet Loss and Cosine Similarity as similarity
metric.

However effective, is interesting to also compare the progress achieved by this
approach with respect to the one without the MLM pretraining.
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Figure 5.13: Progress and finale results of contrastive learning starting from
MPNET base and MPNET with MLM pretrain on WHO-ICD9.

As it is possible to see in Fig 5.13, the final point reached by the two approaches
is practically the same, however the starting point differs a lot. The MPNET base
model without any further pretraining achieves a 70.5 in accuaracy@1 while the
MPNET with additional pretrain only 35.37 in the same metric. Considering also
the fact that both models after contrastive learning reach a peak of over 90.0 in
accuarcy@1, it is possible to conclude that, as in MIMIC-III experiments 5.3.2,
it is not the further pretraining that helps the model solve the task but rather
the strategy adopted on the final task. In other words, while the MLM is not
effective enough in enanching the capabilities on the specific semantic domain, the
downstream strategy of contrastive learning is a suitable choice with respect to the
multi-label classification.
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Chapter 6

Discussion

This chapter summarizes all the conclusions drawn from the various experiments
presented in chapter 5 and proposing some possible adjustments and changes to
the TrustAlert project. As in the previous chapter, the considerations are divided
for the two level of tagging.

6.1 Considerations over news filtering

The first level of tagging behaves very promisingly on real news from reputable
sources such as the World Health Organisation and the BBC. This is promising
considering that the real application of this news filtering stage will be specifically
on the news collected by GDELT, which mainly resemble the blog posts and online
newspapers from all over the world translated into English.

Another interesting but expected conclusion can be drawn from the model
comparison. The Sentence Transformers such as MPNET are, due to their specific
architecture, training strategies and data variety, the best choice for embedding long
texts such as documents and news. Special attention should be paid to the pooling
methods used to move from a token by token representation to a representation of
the whole document.

Finally, the semantic enrichment of labels has some similarities with the be-
haviour of RAG systems. In fact, both rely on pre-trained language models to
effectively understand and match semantic content. Therefore, some intuition
from the RAG framework can be adapted to this pipeline, such as the use of the
already implemented FAISS. Another portable solution may be contextualised label
expansion and end-to-end training. That is, generating a label expansion via a
generative model and training the generated expansion together with the retrieval
task.

78



Discussion

6.2 Considerations over ICD9 tagging
Considering the results achieved on tagging the news with the ICD9 taxonomy, it is
possible to state that while on a news scenario the tagger behave quite effectively,
on a more specific dataset that includes lots of specific terms and broken textual
structure, such as MIMIC-III, the performances are far from optimal. This highlight
mainly two problems: the necessity of quality data to work with in specific semantic
scenarios and the difficulty of adapting a LLM on never seen vocabulary.

To address the first issue, a dataset was developed specifically for this thesis,
but the need for golden truth for the TrustAlert project implies a total dataset
length that is nowhere near the minimum amount typically used to train an LLM.
However, the dataset using the World Health Organisation as the main source
has the huge advantage of having ICD9 codes relevant to communicable diseases,
whereas the most commonly used dataset in the literature, MIMIC-III, is clearly
focused on more common health complications such as heart failure, which give
TrustAlert almost no information to work with.

For the challenge of adapting some pre-trained LLMs to specific domains, the
time and resource requirements remain a major obstacle. Therefor, an idea could
be to explore data augmentation or refinement through purely synthetic LLM
generation or textual paraphrasing. Another idea may be to use the generative
capacity of LLM to generate label descriptions more useful for the retrieval task,
or to generate a text conditioned by both code description and Golden Trough
messages to have more sophisticated synthetic data.

However, given as a premise that the TrustAlert project will work on news,
the technical terms and the broken structure of the text should not represent an
obstacle for the developed tagger as shown in the last experiment proposed.

Another important consideration can be drawn from the comparison between
models, again highlighting the effectiveness of a sentence transformer such as
MPNET. An interesting fact is that if the same model is used for both levels of
tagging, by simply switching the set of labels to retrieve, the computation time can
be almost halved. In fact, if the backbone remains the same, the news embedding
can be generated only once and not once for each level of tagging.

Finally, using contrastive learning as a framework and the flexible structure of
the tagger architecture, it is possible to keep the model constantly updated through
a cycle of online training, allowing continuous learning and adaptation, making the
model more responsive to recent data trends and changes. Interesting as this is, it
also raises again the issue of data quality.

79



Chapter 7

Conclusion

To conclude this thesis, I think it is necessary to recapitulate the main values of
this work and to highlight some possible future work that can be done on the basis
of this thesis.

7.1 Thesis Recap
This thesis has been conducted within the framework of the LINKS Foundation’s
contribution to the TrustAlert project, a collaborative initiative aimed at enhancing
the early detection of healthcare crises.

The primary objective of this work was to identify the best method for classifying
news streams from GDELT in a completely unsupervised scenario and to develop a
robust test suite for evaluating the performance of the classification model. Given
the dynamic nature of healthcare crises and the unsupervised nature of the available
data, the research prioritized the exploration of models capable of zero-shot learning
and flexible architectures.

Key contributions of this thesis include:

• Development of a Flexible Tagger: The creation of a versatile tagging
system capable of classifying any text with any set of labels using the zero-
shot capabilities of a pre-trained backbone model. This tagger leverages the
strengths of Large Language Models (LLMs) to adapt to various classification
tasks without the need for extensive fine-tuning.

• Creation of a Specialized Dataset: A dataset was developed to quantita-
tively evaluate the performance of the tagger on texts that mimic the format
and style of the news articles the model is intended to filter. This ensures
that the model’s performance metrics are reflective of real-world application
scenarios.
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• Comparison of Zero-Shot and Fine-Tuned Models: An in-depth com-
parison was conducted between the zero-shot application of LLM models and
their fine-tuning for specific domains, such as ICD9 code classification. This
comparison provided insights into the trade-offs and benefits of each approach.

• Investigation of Contrastive Learning: The research explored contrastive
learning techniques to fine-tune LLM models for classification tasks. This
method aimed to enhance the models’ performance without compromising
their inherent zero-shot capabilities, offering a balanced approach to model
adaptation and generalization.

The findings and developments presented in this thesis contribute significantly
to the TrustAlert project by providing advanced tools for early anomaly detection
in healthcare data and news streams. The flexible tagger and the evaluation dataset
developed herein are valuable assets for ongoing and future research, facilitating the
continuous improvement and application of machine learning models in dynamic
and unsupervised environments. Through these efforts, the thesis underscores the
importance of innovative approaches in tackling real-world challenges and advancing
the field of healthcare crisis management.

7.2 Future Work
The findings and developments of this thesis have laid a strong foundation for the
ongoing efforts within the TrustAlert project. However, there are several areas for
future research that can further enhance the capabilities and effectiveness of the
models developed. The following topics outline potential directions for future work:

• Synthetic Data Generation for ICD Tagging: A major challenge high-
lighted throughout this research was the scarcity of high-quality data for ICD
tagging. To address this, future work should focus on the generation of syn-
thetic data to augment the available datasets. By using advanced techniques
such as Generative Adversarial Networks (GAN) or text generation models
like Generative Pretrained Transformers (GPT) and any other Large Language
Model, it is possible to create realistic and diverse synthetic samples that can
help balance the dataset or generate samples for codes that do not even have
any sample. This approach can significantly improve the training process,
leading to more robust and accurate classification models.

• Generation of expanded reliable datasets: One of the main contributions
of this thesis is the introduction of a reliable method to generate a dataset that
is semantically matched to online news, with a focus on ICD9 communicable
diseases. To further explore the possibilities of such a dataset, a viable
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approach could be to use Google News and its metadata to retrieve and filter
a specific subset of news items that talk about specific diseases.

• Fine-Tuning Sentence Transformers with Vocabulary Expansion: To
improve the model’s understanding of the semantics involved in both the
classification and tagging tasks, future research should explore the fine-tuning
of sentence transformers with vocabulary expansion. Vocabulary expansion is
an idea driven by the fact that fine-tuned models very often retain the same
vocabulary as the pre-trained model. This is because it makes no sense to add
new words to a vocabulary mapped to random vectors, when all the other
tokens have been trained over several epochs and their order is correlated
with their frequency in the training corpus. Efforts should therefore be made
to find a meaningful vector initialisation for these injected terms. However,
by extending the vocabulary of the model to include domain-specific terms,
the model should better capture the nuances and context of the input data.
Fine-tuning with an expanded vocabulary may lead to improved performance
in understanding and classifying complex domain-specific text.

• Geometric Learning and Knowledge Graphs for Semantic Modeling:
A promising avenue for future work is represented by the study and application
of geometric deep learning techniques. By leveraging geometric deep learning
techniques and Graph Neural Networks (GNN), it is possible to model the
relationships within the taxonomy in a semantic latent space through a
knowledge graph that represent the hierarchical and relational structure of
the taxonomy itself. The goal is to enable the model to understand and
enforce these relationships during classification. This approach can improve
the model’s ability to capture the inherent structure and dependencies within
the data, leading to more accurate and semantically consistent classifications.

These future research directions have the potential to significantly advance the
TrustsAlert project. By addressing current limitations and working with larger
amounts of high quality data, semantically aware models, and pushing into new,
untested architectures, it is certainly possible to improve the overall performance
of the TrustAlert project. These efforts will contribute to the development of
more robust, accurate and semantically aware systems for early detection and
management of health crises.
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