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Summary

Time series anomaly detection is the process of identifying deviations from expected
patterns within sequential data points over time. It is a fundamental task in all
those scenarios where analysing and understanding temporal trends is essential.
This field leverages advanced statistical and machine learning techniques to detect
irregularities, spikes or unusual patterns in time series data.

Nowadays, it has become of great importance to perform anomaly detection on
energy consumptions, in order to identify and prevent a wasteful use of energy for
a better management of LECs in EU.

This thesis investigates state-of-the-art Deep Learning approaches applied on
energy consumption data in a completely Unsupervised manner. The dataset used
for the development of the chosen models is taken from the Large-scale Energy
Anomaly Detection competition hosted by Kaggle. The methods explored work
as to reconstruct or forecast the normal behaviour of the input time series; then,
anomaly detection is performed by classifying as anomalies all those output data
points which differ from the expected values more than a certain threshold.

The goal of the thesis is to understand the applicability of these methods in
absence of annotated data. In many real-life scenarios, in fact, datasets are not
provided with indications of whether the contained observations are to be considered
as anomalies or not. This makes the anomaly detection task harder. Without
labels, in fact, one has no way of identifying and removing anomalous data points
from the dataset which is going to be used to train the models: they will thus learn
to recognize abnormal patterns in data as normal energy consumption behaviour.

This work explores various Deep Learning techniques and thresholding methods
in order to enhance the development of more resilient and effective models for
practical applications in energy management.
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Chapter 1

Introduction

1.1 Problem setting: energy anomaly detection
Anomaly detection is the task of identifying patterns in data that do not conform to
the usual, expected behaviour. This is of great interest in many real-life applications
and scenarios, like healthcare, cybersecurity, industry and robotics, where detecting
for example heart palpitations, intrusions, production faults or system defects is
extremely important to ensure the correction and eventually even the prevention
of these problems.

A field in which such task is acquiring more and more importance is the one
of energy consumption. Nowadays, people are concerned with the impact that
their everyday activities have on the environment and on sustainability. Even such
an important entity as the United Nations listed among its seventeen Sustain-
able Development Goals the importance of ensuring access to affordable, reliable,
sustainable and modern energy for all citizens, of making cities and human settle-
ments sustainable and of ensuring sustainable consumption and production patterns.

It is in this setting that the DATA CELLAR project came to life: the goal is
that of creating a federated energy dataspace that will support the creation, devel-
opment and management of Local Energy Communities (LECs) in EU.
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Introduction

1.2 DATA CELLAR

DATA CELLAR, Data Hub for the Creation of Energy communities at the Local
Level and to Advance Research on them, is a project funded by the European
Commission that will last three and a half years and that involves the collaboration
of several organizations in different European countries, Italy being one of them. It
aims to support the energy management of Local Energy Communities through
Artificial Intelligence techniques: a big step towards saving energy and achieving
global sustainability. LECs, in fact, have being recognised by the European Union
as the main protagonist in driving the EU’s energy transition.

LECs are citizen-driven energy actions, involving citizens, small businesses and
local authorities, that contribute to the clean energy transition, advancing energy
efficiency within local communities, by producing, managing and consuming their
own energy. They comprise both energy producers and distributors, and consumers:
their goal is to enable access to renewable energy and information regarding how
to enhance the energy efficiency of buildings, in order to improve the control over
their energy bills.

The main objective of DATA CELLAR is that of creating an energy dataspace
that will support the creation, development and management of LECs in the EU.
The data space population will be facilitated via an innovative rewarded private
metering approach, with a focus on an easy onboarding and interaction, guaran-
teeing a smooth integration with other EU energy data spaces, providing to LEC
stakeholders services and tools for developing their activities 1.

In this setting, a great importance has been given to analysing methodologies
to perform anomaly detection on energy consumption data, to try to identify and
prevent a wasteful use of energy. This can be particularly useful not only from an
environmental point of view, but also from an economical one, as wasting energy
is directly linked with a waste of money both for the energy providers and the
consumers, who will have to pay higher bills not reflecting their true, normal,
energy consumption.

The data employed to design anomaly detection applications is often times collected
by smart meters present in buildings of any kind, which record information like
the energy consumption and communicate it to both the consumer and the energy
providers for monitoring the correct functioning of the system and for customer

1https://datacellarproject.eu/
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billing. Smart meters typically collect data periodically, for example every hour,
thus allowing the users to observe the evolution of the consumptions over a period
of time.
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1.3 Objective of this thesis
The work of this thesis has been done in collaboration with LINKS Foundation,
and contributes in a very small way to the big project of DATA CELLAR.

To perform anomaly detection, there are typically several methodologies which can
be taken into consideration, and their distinction is mainly based on whether the
dataset one works with is annotated with labels indicating the abnormality of data
points or not.

In fact, if the dataset is labeled, one can decide to take advantage of Super-
vised approaches and pose the task as a classification one, using AI models to
categorize data into "anomaly" and "not-an-anomaly" classes.

However, in many real-life scenarios this is not possible, as often times the data
has no indications of whether each measurement is anomalous or not. So how
can we efficiently perform anomaly detection in this setting? This thesis aims
at investigating whether it is feasible to employ Unsupervised approaches, that
do not need labels but rather leverage the true target of the analysis, the energy
consumption, to perform anomaly detection.

A big challenge therefore arises: if the data is not annotated, one has no way
of knowing which measurements can be considered as anomalies, unless one decides
to use statistical methods like the Inter-Quartile Range (IQR), assuming that all
the values which do not fall within the IQR are anomalies, and therefore eliminate
these data points from the training set. This would mean, though, simplifying too
much the problem: anomalies, in fact, are not only abnormally high or low values,
but can also take on values in the normal range for the energy measurements,
therefore such an approach would be counter-productive.

Since there is no way to safely remove potentially anomalous data points, if
labels are not available, this means that AI models need to be trained with data
that contains also anomalies, even though usually in a very small percentage with
respect to the normal measurements (2-5%), which makes therefore the task of
anomaly detection more challenging: the models employed would learn to reproduce
also the anomalous points, as they are interpreted as the normal behaviour of the
phenomenon in observation. This is the challenge that we will address in this thesis:
trying to assess the feasibility of Unsupervised, Deep Learning, models for the task
of anomaly detection, when such models need to be trained on data containing
anomalies.

4
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1.4 Outline of this Thesis
The thesis is organized as follows.

Chapter 2 presents an overview of the main methodologies to perform anomaly
detection: after a presentation of the type of data we are going to deal with, the
chapter focuses on explaining the different approaches to the task. The focus will
mainly be on Unsupervised methodologies, in particular forecasting-based and
reconstruction-based models, but a brief description of how to tackle the problem
in the Supervised domain will also be provided.

Chapter 3 will propose an in-depth description of the problem, from the anal-
ysis of the dataset used to perform all the experiments, to the description of the
chosen techniques for the task of anomaly detection.

Chapter 4 will present the experimental results obtained with each of the methods,
a comparison of all of them on another dataset and their generalization capabilities
on the real data provided within the DATA CELLAR project.

Finally, Chapter 5 will contain the final conclusions that can be drawn from
this project, analysing the successes and failures of the chosen methodologies and
assessing what could be possibly done in the future, to further tackle such problem.

5



Chapter 2

Related Works

The task of anomaly detection has increasingly gained importance in many different
fields. Much attention has been invested in research, to try to efficiently and
effectively tackle the problem of identifying unusual patterns in data. There are
many surveys that give an overview of the main characteristics of the task and the
preferred models, like [1] and [2].

Anomaly detection can be applied on images and tabular data. In particular, in
this thesis we are going to work with time series data.

2.1 Time Series Data
A time series is a sequence of data naturally ordered with time.

Figure 2.1: Example of a portion of a Time Series taken from the LEAD dataset

It is typically denoted as X = {Xi}1≤i≤N , where N indicates the number of
points constituting the time series and Xi is a n-dimensional vector characterized by
n possible features. A time series is said to be univariate if n = 1: this means that
it tracks the evolution over time of a single feature, like the energy consumption

6
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of a building in the specific case of this thesis. If n > 1, the time series is said to
be multivariate, meaning that several features depending on time are taken into
account, like the evolution of the air temperature, of the wind speed and many
others: here such features are not only dependent on their own past values, but
also on those of the other variables present in the dataset.

Time series analysis is extremely important in any field. One of the most in-
teresting analysis that can be performed is the Seasonal-Trend Decomposition,
which aim is that of identifying the different components of the evolution over time
of a phenomenon. A time series can be defined as such: Xt = Tt + St + Rt, in
the case of an additive decomposition, or Xt = Tt · St · Rt, for the multiplicative
decomposition. The former is appropriate if the magnitude of the seasonal fluctua-
tions or the variation of the trend does not vary with the level of the time series; it
assumes that the influence of each component is independent of each other. The
latter, instead, is appropriate when the seasonal factor increases or decreases as
the trend changes; it assumes an influence of the components on each other. The
main components are:

• Trend component Tt: it indicates the long-term movement or direction of the
evolution over time of the phenomenon; it is an essential component to identify
upward, downward or stable behavior of a time series

• Seasonal component St: it indicates a pattern which happens at fixed and
known frequencies, i.e. daily, weekly, monthly

• Residual component Rt: it is what remains after all the other components
have been removed from the original time series

Note that decomposing a time series can prove to be particularly useful for the
task of anomaly detection because the residual component is the one that contains
noise and can therefore contain anomalies.

One technique to decompose a time series is the Seasonal-Trend decomposition
using LOESS (STL), proposed by [3], which applies recursively a locally weighted
regression (loess) smoother to obtain the different components of a time series.

The loess regression curve g(x) is a smoothing of y = f(x) that can be computed
for any value of x along the scale of the independent variable. To obtain g(x) one
considers a positive integer, q: the q values of xi that are closest to x are selected
and given a neighborhood weight vi(x) based on their distance to x, so that those
which are closest are going to have the highest weights. Then, one fits a polynomial
of degree d to the data to obtain the smoothed function. As q increases, g(x)
becomes smoother. If the underlying pattern in the data has a gentle curvature
one can take d = 1, otherwise d = 2 is better. Each observation (xi, yi) has a

7
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Figure 2.2: STL Decomposition of a Time Series

weight ρi that indicates the reliability of it with respect to the others: this can be
incorporated in the loess smoothing by using ρi · vi(x) as the weights for the local
least-squares fitting.

In the case of very difficult time series, especially those that contain multiple
seasonal patterns, a decomposition using the STL method might not produce
optimal results: [4] proposed the Multiple STL Decomposition (MSTL) algorithm
which initially identifies the number of distinct seasonal patterns present in the time
series, which can be interlaced one with another, then applies the STL algorithm
iteratively on each of the identified seasonal frequencies.

8
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2.2 Anomalies in Time Series Data and
methodologies

As previously stated, what becomes particularly interesting when analysing time
series is to identify unexpected behaviours with respect to the normal evolution of
a feature. These patterns are often known with the name of anomaly and they can
be of three main different kinds:

• Point anomalies: these are the simplest types of anomalies, that refer to
individual data instances that can be considered anomalous with respect to
the normal behaviour

• Contextual anomalies: in this case a data instance is considered as anomalous
due to its being in a specific context, which can also be defined by a series of
attributes present in the dataset

• Collective anomalies: here, a collection of data points, which taken singularly
would not constitute an anomaly, is anomalous with respect of the entire
dataset due to their simultaneous occurrence

In the following Figure 2.3 we can appreciate these three types of anomalies.

Figure 2.3: Example of Point, Contextual and Collective anomalies

9
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It is immediate to notice the differences between the different anomalies: a point
anomaly is what we would usually define as an outlier, meaning a data point whose
value is much higher or in some cases even much lower than those which are typical
of the time series in observation. A contextual anomaly, instead, is a data point
whose value alone would actually be considered normal, but given the context it is
not, as for example it does not follow smoothly the evolution of the time series,
but may be an abrupt change. Finally, collective anomalies are a series of points
which are simultaneously considered as abnormal: from Figure 2.3 it is evident
to notice how they represent an unusual prosecution of the sensor measurement,
which instead of continuing the sinusoidal-like curve gets truncated for a period of
time.

To identify anomalies in a time series there are different methodologies, depending
on whether the dataset is provided with labels, indicating if a data point is to be
considered anomalous or not. The main approaches are:

• Supervised Approach: this technique relies on the presence of labels in the
dataset. The task if formulated as a classification problem, where the aim
is that of categorizing each data point as either anomalous or not. One
challenge of this methodology is the imbalance often present in the dataset
among anomalies and non-anomalies: in fact, in most real-case scenarios, the
anomalies typically constitute very small percentages of the data, around 2%,
therefore resampling techniques must be taken into consideration to balance
the dataset and avoid having classifiers which are biased towards the negative
(normal) class.

• Self-Supervised Approach: this technique assumes that the dataset has labels
only for the normal class; typically, one would build a model to train on the
normal class and apply it on the test data to identify possibly anomalous
points

• Unsupervised Approach: this technique does not rely on the presence of
labels in the dataset, but rather exploits the true target of the analysis to
create, in many cases, reconstructing or forecasting-based tasks to obtain
predictions. Once a model has been trained, it is applied on a test set and
the difference between the input and the output of such model is compared
against a predefined threshold to revert back to the anomaly detection task,
by classifying each data point as anomalous or not based on the reconstruction
or forecasting error.

Finding anomalies in time series data is not a trivial task: as stated in Chapter
1, the way one decides how to tackle the problem depends mainly on the presence
or absence of labelled data.

10
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2.3 Supervised Approaches
When an annotated dataset is available, the problem is formulated as a classification
task. Given the dataset, and all its features, a model is chosen in order to associate
to each data point a label, usually 0 to indicate a "normal" point or 1, in case of an
anomaly.

Often, a supervised approach reveals to be quite successful, leading to high per-
formances, but it can still face some challenges. In particular, in many real-life
scenarios, the anomalies that can be present in a dataset are way fewer than the
normal data points, typically around 2%-5%, therefore a resampling is needed,
otherwise any model, having such a discrepancy in the number of examples per
class in the dataset, would tend to classify almost every data point as belonging to
the majority class. If instead one proceeds with resampling, choosing whether it is
better to undersample the majority class or oversample the minority one allows to
create a balanced dataset, thus helping the model in performing a fair evaluation
of each data point.

There are many different models that can be used, but recently one that has
gained increasingly more relevance is eXtreme Gradient Boosting, which is able to
reach very satisfactory results in this setting.

2.3.1 eXtreme Gradient Boosting
XGBoost ([5]) combines the predictive power of several base learners, i.e. regression
trees, into a single model: at each iteration, a learner is built by taking into
consideration the residual error with respect to the prediction made at the previous
time-step, paying attention that, while it is important that such error is minimized,
the learner should not overfit on the data.

Thus, we can formulate the additive training as such: for each input instance
xi, at a time-step t, the prediction is obtained as ŷt

i = ŷt−1
i + ft(xi), where ft is the

learner built at time-step t; while training, the goal is to minimize the objective
function

nØ
i=1

l(yi, ŷt−1
i + ft(xi)) +

Ø
k

Ω(fk), (2.1)

where Ω is the regularization term that penalizes the complexity of the algorithm
in order to avoid overfitting, often expressed as Ω(fk) = γT + 1

2λ||w||2. The final
prediction over each data point is given by a combination of all the predictions
obtained from the K different learners:

ŷi =
KØ

k=1
fk(xi) (2.2)
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By minimizing Equation (2.1), we greedily add the tree to the configuration that
most improves the model. To quickly optimize the objective, one could leverage
second-order approximation, by considering the first and second derivative of the
loss with respect to the previous prediction ŷt−1, respectively indicated as gi and
hi. Thus, the new objective function to minimize at each time-step is:

nØ
i=1

[gift(xi) + 1
2hif

2
t (xi)] + Ω(ft) (2.3)

XGBoost in this setting will provide us with one of two possible results: it will
output a 1 if the data value is to be considered as an anomaly, a 0 otherwise.
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2.4 Unsupervised Approaches
As stated before, the absence of annotated data precludes the use of Supervised
approaches, which instead rely heavily on the presence of labels. In this setting,
one needs to employ Unsupervised methodologies which can work directly with the
real target of the analysis, as is in the case of this thesis the energy consumption
measured for each building by a smart meter.
Mejri et al.in [6] explain how one can identify mainly five Unsupervised paradigms:
clustering-based, density estimation-based, distance-based, forecasting-based and
reconstruction-based. The last two methodologies are the ones this thesis investi-
gates about, as we work with Deep Learning models.

2.4.1 Forecasting methods
These approaches work by predicting future states given the previous observations.
Typically, in many methods which perform forecasting, the time series given for
training are divided into smaller sections by using a sliding window of a certain
length and with a certain stride. Such created windows constitute the input for
the models, which need to predict a certain number of future steps with respect to
the last observation of each window.

To perform anomaly detection, one takes into account the distance between the
input and the forecasted time series and if this exceeds, for a specific data point, a
predefined threshold, then this is flagged as an anomaly.

Traditional methods are based on autoregression-based models, like AutoRegressive
Integrated Moving Average (ARIMA), which have been progressively replaced by
Deep Learning models like LSTMs, which are able to model short and long-term
temporal dependencies.

Long-Short Term Memory - LSTM

LSTMs were firstly introduced by Hochreiter and Schmidhuber in [7] as an im-
provement upon RNNs, to solve the problems of vanishing gradient and gradient
clipping in sequence-to-sequence (seq2seq) tasks.
An LSTM cell, as the one depicted in Figure 2.4, comprises three gates:
• Forget gate, which implements a sigmoid layer to decide which information

to forget in the long-term, by considering the current input, Xt, and the
short-term memory represented by the hidden state ht−1 passed through the
cells of the architecture

ft = σ(Wf · [ht−1, Xt] + bf ) (2.4)
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Figure 2.4: Architecture of an LSTM cell

• Input gate, which decides which information to store in the internal cell state
Ct: through a sigmoid layer it decides the values to update, while through an
hyperbolic tangent it creates a vector of new candidate values to add to the
state

it = σ(Wi · [ht−1, Xt] + bi) (2.5)
Ĉt = tanh(WC · [ht−1, Xt] + bC) (2.6)

• Output gate, which decides which parts of the cell state are going to be the
output of the cell

ot = σ(Wo · [ht−1, Xt] + bo) (2.7)

The internal cell state, representing the long-term memory, is updated as follows:

Ct = it · Ĉt + ft · Ct−1 (2.8)

The final output from the cell, corresponding to the hidden state ht, which
represents the short-term memory, is filtered with the internal cell state as ht =
ot · tanh(Ct).

When using an LSTM model to perform anomaly detection, one usually inputs
windows of a specific length and predicts the next data point in the sequence:
the predictions are then compared to the ground truth next timestamps and if
the distance is above a certain threshold for a certain observation, that would be
flagged as an anomaly.
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Convolutional Neural Networks

Other than LSTMs, also CNNs can be used as a forecasting module in the anomaly
detection framework, as proposed by Munir et Al. in [8] (DeepAnT).

CNNs are widely used in Computer Vision and NLP, but have been adapted to
handle sequential data, like time series.

A CNN consists of a sequence of layers (convolutional, pooling, fully connected
layers). Each convolutional layer firstly performs the convolution operation resulting
in linear activations: in the case of images, this implies convolving, sliding, a filter
over an image and computing dot products; the convolution of a filter over all
spatial locations results into an activation, or feature, map s. A series of filters
can be applied, each generating their own activation map. Then on each of them
a non-linear activation function is often applied. The convolution is defined as
follows:

s(t) = (x ∗ w)(t) (2.9)

where s is a weighted average of the function x(τ), the input, at the timestamp t,
and w(−τ) is the weight, the kernel.

A one dimensional convolution is defined as:

s(t) =
∞Ø

τ=−∞
x(τ)w(t− τ) (2.10)

The output of a convolutional layer is then passed through a pooling layer,
where a pooling function summarizes the output at a certain location based on
its neighbors. A typically used pooling function is the max-pooling operation,
which outputs the maximum activation in a defined neighborhood. Such function
is applied on all the feature maps, separately.

Fully connected layers are characterized by neurons such that each is connected
to all the other neurons from a following layer.

Munir et Al. propose the architecture shown in Figure 2.5 based on a CNN to
perform anomaly detection:

Figure 2.5: DeepAnT architecture, as described in [8]
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Here there are two convolutional layers, each followed by a max-pooling layer.
The input layer has w input nodes, where w is the window size: in fact, to use
a CNN for forecasting, one needs to prepare the data in a way which is similar
to that needed for the LSTM. The time series is, thus, divided into overlapping
windows, and labels are obtained by considering the next value in the sequence
for each window. Then, the so called forecasting horizon is defined, meaning the
number of timestamps that need to be predicted. The final part of the network
consists of a fully connected layer, whose output is the network prediction for the
next timestamp.

Then, to perform anomaly detection one needs to compute in some way the
distance between the output of the network and the labels: in the case of DeepAnT,
the Euclidean distance is used as a measure of discrepancy, as the anomaly score.
Finally, by using a threshold, one can categorize each data point as anomaly or
not-an-anomaly.

2.4.2 Reconstruction methods
When one needs to deal with time series consisting of a large number of data
points, forecasting-based approaches like LSTMs may reveal themselves to be
ineffective: this can happen because of rapidly and continuously changing time
series, which make it harder to perform accurate predictions, and therefore anomaly
detection. An alternative approach would be that of using Autoencoders, to perform
a reconstruction of an original sequence once encoded in a latent space.

Specifically, an Autoencoder, like the one depicted in Figure 2.6, is made of
two parts, an encoder and a decoder. The input of an encoder is a sequence
of values obtained by applying a sliding window over the training dataset: such
structure will try to capture the most relevant aspects of the input and represent
it in a lower-dimensional space. The decoder, instead, takes as input the output of
the encoder, and does the opposite operation, meaning it tries to reconstruct the
original sequence by starting from a latent representation of it. The Autoencoder
is trained in order to minimize the loss between the reconstruction and the ground
truth, as the goal would be that of building a model which, ideally, would be able
to output a sequence resembling as much as possible the core characteristics of the
input of the encoder.

This kind of models can be employed in anomaly detection, because traditionally
one assumes that the reconstruction error associated with anomalies is much higher
than the one associated with the "normal" data points, as the trained Autoencoder
should learn the latent space of the normal samples. There are different ways to
compute the reconstruction error, the most used being the Mean Squared Error:
given the input X = {xi}, i = 1...N and the reconstruction X̂ = {x̂i}, i = 1...N
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Figure 2.6: Autoencoder architecture

the reconstruction error is computed as

MSE = 1
N

NØ
i=1
|xi − x̂i|2 (2.11)

Then, by defining a specific threshold, it should be easy to detect anomalies.

Autoencoders for anomaly detection can be built in different ways, employing
either linear or convolutional or LSTM layers, like the one proposed by Provotar et
Al. in [9].

Hybrid Methodologies

It is not uncommon to simultaneously leverage the advantages of forecasting and
reconstruction-based models.

Kardi et Al. in [10] propose an approach which employs a traditional LSTM
network to predict the next hour sample in the input sequence, paired up with an
LSTM Autoencoder which is useful to learn the features of normal consumption.
It leverages the Exponential Moving Average as a threshold and identifies both
local anomalies, i.e. when a single metric crosses the threshold, and global ones,
i.e. when the mean loss of all metrics crosses such threshold.
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Jiang et Al., in [11], propose to combine several Deep Learning methods to perform
anomaly detection, by combining CNN, Bidirectional LSTM (Bi-LSTM) and atten-
tion mechanisms. In particular, CNNs are used as they can extract higher-order
features from the input data; Bi-LSTM can acquire contextual information on the
time series by combining it in forward and backward directions; an attention mech-
anism is used to assign different weights to the hidden units of a neural network,
in order to make a hidden layer focus more on a specific portion of information in
the data. Anomaly detection is then performed by setting a threshold value which
is 3σ above the predicted value, where σ is the standard deviation of electricity
consumption on the day before the actual one.

Yang et Al., in [12], propose an anomaly detection framework in which the time
series is treated as a signal, and Fourier transforms are applied to obtain a de-
composition in trend, seasonal and residual series, based on different frequency
components. Each component is then handled with a different method:

• Trend Series: since it contains the most important components in the original
time series, it should be predicted as accurately as possible, employing an
LSTM network to perform predictions

• Seasonal Series: as it contains more components with different frequencies, and
its waveform changes rapidly, to accurately perform a prediction Yang et Al.
decided to implement a model based on CNN and an attention mechanism. In
particular, the model contains an attention layer, a CNN to capture features
of the weighted component map resulting from the previous layer, and finally
an LSTM layer which outputs the final prediction

• Residual Series: given its chaotic pattern, a reconstruction-based method is
chosen based on a Gaussian distribution

In the end, the prediction or reconstruction of each component is then summed to
obtain the overall reconstruction of the input series, then a reconstruction error
is computed and compared to a threshold to determine which data points can be
considered anomalous.

2.4.3 Generative methods
Generative models aim at generating new samples from the same distribution of
the training data. In particular, they aim at learning a model probability function
that approximates the one of the data, and use such learned distribution to sample
new data points.

Generative modeling is often formulated as a density estimation problem:

18



Related Works

• Explicit density estimation, by explicitly defining and solving for the model
probability distribution; this is the case of Variational Autoencoders

• Implicit density estimation, by learning a model that can sample from a
probability distribution without explicitly defining it; this is the case of
Generative Adversarial Networks

Generative Adversarial Networks

GANs, introduced by Goodfellow et Al. in [13], are a type of generative models that
consists of a generator G and a discriminator D. The former is typically a Neural
Network that takes as input a noise vector and it is trained to learn the probability
distribution of the training data and generate samples following it. The latter is a
Neural Network which needs to classify whether the samples from G are fake or
real; its goal is that of understanding the underlying probability distribution of the
real data and distinguish it from the samples generated by G. The training of such
model falls within the framework of adversarial learning, and it is performed until
the discriminator is fooled about half of the time.

Figure 2.7: Generative Adversarial Network applied on time series data, as shown
by [14]

In particular, given the generator’s distribution pg(x), we define a prior on
input noise variables pz(z); G(z; θg) is the mapping with parameters θg to the data
space. The discriminator outputs a scalar D(x; θd), which indicates the probability
that the data point x came from the data, rather than was generated by G. The
discriminator is trained as to maximize the probability of assigning the correct
label to real and fake (generated) samples, while at the same time the generator is
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trained to actually fool the discriminator, by minimizing the difference between
the generated samples and the real training data.
This could be seen as a two-player min-max game with the following value function:

min
G

max
D

V (G, D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.12)

[13] proposes the following minibatch SGD (Stochastic Gradient Descent) for GANs:

Algorithm 1 GAN training. The number of steps k to apply to the discriminator
is a hyperparameter

for n_iterations do
for k steps do
• Sample minibatch of m noise samples {z(1), . . . , z(m)} from pg(z).
• Sample minibatch of m examples {x(1), . . . , x(m)} from pdata(x).
• Update the discriminator by ascending its stochastic gradient:

∇θd

1
m

mØ
i=1

è
log D

1
x(i)

2
+ log

1
1−D

1
G

1
z(i)

222é
.

end for
• Sample minibatch of m noise samples {z(1), . . . , z(m)} from pg(z).
• Update the generator by descending its stochastic gradient:

∇θg

1
m

mØ
i=1

log
1
1−D

1
G

1
z(i)

222
.

end for

GANs can be used for anomaly detection because if they are trained on a dataset
containing exclusively normal samples, it can identify anomalies as those data
points that the generator poorly reconstructs. In particular, as stated in [15], the
objective is to master a representation of normal data and determine data instances
that differ from it. The network is trained as to generate a feature extractor,
often the generator, which extracts a representation of normal data sample used to
reconstruct it: the reconstruction error is going to be used to signal the existence of
anomalies. In alternative, the output of the discriminator can be used as anomaly
score: in fact, the sequences it labels as fake with high confidence are likely to be
anomalous.

It is not common to find GAN-based networks applied to time series data, due to
the complex temporal correlations which pose significant challenges to generative
modeling.
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Geiger et Al. in [16] propose an unsupervised AD approach built on GANs, known
as TadGAN, whose architecture is shown in Figure 2.8. The model comprises two

Figure 2.8: TadGAN architecture

generators: E , which acts as an Encoder that maps the time series sequences into
the latent space; G, which serves as a Decoder outputting a reconstruction for
the input time series. Additionally, there are two adversarial Critics, acting as
discriminators. Cx aims at distinguishing between the real time series sequences
from X and the ones generated by G(z); Cz measures the goodness of the mapping
into the latent space, by distinguishing between random latent samples z ∼ PZ

and the encoded ones.
The reconstruction errors and the Critic outputs Cx(x) are then used to compute
the anomaly score for each data point in the dataset, by taking into consideration
their z-scores. Finally, a threshold is employed to categorize the samples as anoma-
lies or normal points.

Zhang et Al. in [17] propose a Self-Training based Anomaly Detection with
GAN model called STAD-GAN. The model is based off a generator-discriminator
structure for adversarial learning, where the former aims to capture the normal
data distribution, while the latter aims at amplifying the reconstruction error of
abnormal data to recognize them. Such architecture is optimized with a self-training
teacher-student framework, where a teacher model generates pseudo-labels which
are going to be used to obtain a refined dataset to train the student model.

The input dataset contains time series which are sequenced by applying a sliding
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window. Such sequences are passed as input of the generator, which consists
of an Encoder-Decoder-Encoder Network, as depicted in Figure 2.9. The two

Figure 2.9: STAD-GAN architecture

encoders present the same structure, without sharing the model parameters. The
second encoder works in order to minimize the difference between the two latent
representations, Z = GE1(X) and Z ′ = GE2(D(z)): if X and X ′ are different, their
latent representations will be far away from those of normal samples.

The architecture comprises two discriminators, DZ and DX . The former aims
at distinguishing as much as possible between the two latent representations, while
the generator aims to make them indistinguishable, by learning to generate latent
representations which capture normal patters. The latter tries to separate the
inputs of the two encoders, X (original dataset) and X ′ = D(GE1(X)) (output
of the decoder), to distinguish between the generated data and the original one,
by amplifying the reconstruction error of abnormal data points, to make them
more separable from normal patterns, while the generator aims at making them
indistinguishable to DX .

Note that, the latent representation Z embeds the feature information of the
original time series and is then fed to a DNN classifier, which classifies each data
point as anomalous or not.

The GAN training is embedded within a self-training process, characterized by
two separate models, teacher and student. The teacher works in a completely
unsupervised manner: the output of the DNN classifier is treated as pseudo-labels
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and an anomaly score is computed. Based on the latter, a refined dataset is created,
containing a certain percentage of the top normal samples (those that are associ-
ated to the lowest anomaly scores) and of the top abnormal one (those associated,
instead, to the highest anomaly scores). This will constitute the input dataset for
training a student model, which aim is that of minimizing the classification loss on
the pseudo-labels, which will constitute the ground truth labels in this case. Then
the student model becomes the teacher model and the training procedure iterates
until the pseudo-labels no longer change, or if a number of maximum iterations
have been made.

By combining self-training with adversarial learning to train the teacher-student
model, the feature representation in the latent space becomes more discriminative.

Audibert et Al. propose in [18] a method whose learning is inspired by GANs, by
implementing an adversarial training of an encoder-decoder architecture to learn
how to amplify the reconstruction error in correspondence of anomalous data points.
The complete anomaly detection procedure is depicted in Figure 2.10.

Figure 2.10: UnSupervised Anomaly Detection: training and detection phases

The training procedure involves an encoder E and two decoders, D1 and D2,
which can be also viewed as two autoencoders AE1 and AE2, sharing the same
encoder.

First of all, the two AE are trained in order to learn a reconstruction of the
input time series. Subsequently, they are trained in an adversarial way: AE2 aims
at distinguishing the real data from the reconstruction outputted by AE1, while
this is trained in order to fool the second Autoencoder.

Given an input sequence W , AE1 wants to minimize the difference between such
input and the output of AE2, while AE2 wants to maximize this difference. The
training objective can be formulated as:

min
AE1

max
AE2
||W − AE2(AE1(W ))||2 (2.13)

In particular, the weights of the encoder-decoder architecture are updated according
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to the following two losses:

LAE1 ←
1
n
||W − AE1(W )||2 + (1− 1

n
)||W − AE2(AE1(W ))||2 (2.14)

LAE2 ←
1
n
||W − AE2(W )||2 − (1− 1

n
)||W − AE2(AE1(W ))||2 (2.15)

At inference time, instead, a test dataset is passed as input to the network
and the output is an anomaly score, which can be defined as a weighted sum of
the reconstruction error performed by the first Autoencoder and the one of the
second Autoencoder, but considering as reconstruction the one that started from
the output of AE1. The anomaly score is thus defined as:

A(Ŵ ) = α||Ŵ − AE1(Ŵ )||2 + β||Ŵ − AE2(AE1(Ŵ ))||2 (2.16)

where α+β = 1, which are used to parametrize the trade-off between false positives
(FP) and true positives (TP). α < β is a high detection sensitivity scenario, as
the number of TPs is increased, as well as that of FPs; instead, α > β is a low
detection sensitivity scenario, where the number of TPs is reduced as well as that
of FPs.

Variational Autoencoders

A Variational Autoencoder (VAE), introduced in [19], is a probabilistic graph model
which combines Autoencoders with variational inference to learn complex data
distributions.

Figure 2.11 depicts an example of the VAE architecture, by also proposing a
comparison with a standard Autoencoder.

The main difference with respect to autoencoders is that a VAE does not encode
the input as single points, but rather as a probability distribution over the latent
space. The probabilistic encoder comprises two separate Fully Connected layers
through which passes what in a simple AE would be considered as the latent vector:
one of these two layers returns the mean µ of the latent probability distribution,
while the other returns the logarithmic variance log(σ2). These two quantities are
used to perform the reparameterization trick, useful to ensure seamless propagation
of gradients: the input for the probabilistic decoder is computed as per following
equation

z = µ + σ ∗ ϵ (2.17)
where ϵ corresponds to random noise, extracted from a Standard Gaussian.

More in details, consider having a dataset X = {x(i)}N
i=1, which is generated

from the prior distribution of z ∼ pθ∗(z), by exploiting the conditional distribution
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Figure 2.11: Comparison of AE and VAE architecture

pθ∗(x|z). To estimate the true parameters θ∗, one chooses a Gaussian prior and
represents the conditional distribution with a neural network; the model should be
trained in order to maximize the likelihood of the training data, according to the
following equation:

pθ(x) =
Ú

pθ(z)pθ(x|z)dz (2.18)

Here is where the problem becomes intractable, as it is not possible to compute
pθ(x|z) for every z, and the posterior density pθ(z|x) is intractable as well. Therefore,
the goal becomes to learn a distribution qθ(x|z), which approximates the true
posterior: this allows us to derive a lower bound on the data likelihood which is
indeed tractable and can be optimized.

Maximizing the likelihood lower bound implies maximizing the following equa-
tion:

Ez[logpθ(x(i)|z)]−DKL(qϕ(z|x(i))||pθ(z)) (2.19)

The second term corresponds to the Kullback-Leibler divergence, and computes the
divergence between the prior, Standard Gaussian distribution, and the approximate
posterior, which is based on the mean and standard deviation obtained by passing
the direct output of the encoder through the two FC layers above mentioned. This
acts as a regularization loss, which penalizes the posterior for being too far from
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the prior. It is often computed per the following formula:

1
2

NØ
j=1

(1 + log(σ2
j )− µ2

j − σ2
j ) (2.20)

The first term, instead, corresponds to the reconstruction error. Based on the
type of data one deals with, pθ(x|z) can be either a multivariate Bernoulli, or a
multivariate Gaussian.

VAEs can prove themselves to be useful within the anomaly detection frame-
work because they are able to identify anomalies thanks to their ability to learn
the underlying distribution of the data and reconstruct the input samples.
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2.5 Anomaly Detection in Energy Consumption

The methodologies described up until now have been used in different fields, with
some approaches tested on different kinds of data.

[11] deals with energy consumption data, by implementing a Deep Learning archi-
tecture, based on the usage of Convolutional, bidirectional-LSTM layers and the
attention mechanism.

Also [10] proposes an architecture to perform Anomaly Detection on electric-
ity consumption data. In particular, an LSTM is used to predict the next hour
sample, while an LSTM Autoencoder is then used to learn the features of normal
consumption. Aside from electricity measurements, the models were also fed other
features, like time-related features, indications regarding the weather, and the
average consumption over periods of time.

Several approaches have been investigated within this setting, some encompassing
Deep Learning and Machine Learning approaches, others using statistical methods.
A couple of examples are proposed, just to give an idea of how the task has been
tackled for energy consumptions in literature.

Hollingworth et Al. in [20] propose a methodology to combine the predictive
power of ARIMA and LSTMs. ARIMA is a statistical method which consists in
fitting a linear equation on stationary data. It can also be applied on non-stationary
data, after differencing the time series a certain amount of times in order to obtain
its stationarity. In this work, the authors propose a framework in which the data
is firstly passed through an ARIMA model, then through the LSTM in order to
minimize erroneal detections of anomalies and increase the effectiveness of the task.

Zhang et Al. in [21] propose an architecture based on Graph Neural Networks
(GNN), which model multivariate time series by considering each feature as a node
in the graph. In particular, in this work they combine two versions of GNN: Graph
Convolution Networks (GCN) and Graph Attention Networks (GAT). A GCN is
characterized by a graph convolution layer which uses information of the edges to
aggregate nodes information, thus creating a new node representation: it models
the topological relationships between the features characterizing the time series and
extracts the correlations among them. The GAT is used to give priorities to more
important relationships between such features. In this setting, a multivariate time
series is considered as a complete graph and the GAT learns the interrelationships
between the different features of the time series, thus allowing an improved anomaly
detection over energy consumption data.
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Lastly, Fahim et Al. in [22] propose a Machine Learning approach to the task, by
employing a Support Vector Regression model to build an energy consumption
profile; then, residuals are computed during the anomaly detection phase in order
to find variations between the actual and predicted values of energy consumption.
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Methodology

3.1 Problem Setting
As stated in Chapter 1, the objective of this thesis is to investigate the feasibility
of employing Deep Learning Unsupervised approaches for the task of anomaly
detection when the training dataset contains anomalies.

Traditionally, in fact, such models are trained on normal data, reflecting the
normal evolution over time of the energy consumption, and then they are tested
on a dataset which contains anomalies. In such context, given that the models
have learned the patterns which correspond to normality, they would not be able
to reproduce anomalies at inference time, thus enabling an easy identification of
them.

In many cases the dataset used to test models on the task of anomaly detection
is divided in a "normal" training set and a test set which contains anomalies, which
account usually for 2 − 5% of the dataset. In our specific case, this is not true:
DATA CELLAR will provide data from the energy consumption of the LECs which
not only is not annotated with labels, but also potentially contains anomalies.
Therefore, if one wants to train models on the provided data, it is fundamental to
take into account the presence of anomalies in the training set.

One could argue, though, that even in absence of annotations, it could still be
possible to identify anomalies in the dataset and remove them from the training set.
Statistical methods like the Inter-Quartile Range are useful to identify outliers in
the data distribution. In particular, mild outliers can be identified as those points
which belong outside of the following interval:

[Q1 − 1.5 · (Q3 −Q1), Q3 + 1.5 · (Q3 −Q1)] (3.1)
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where Q1 is the first quartile, so the value corresponding to the 25th percentile of
the data and Q3 the third quartile, corresponding to the 75th percentile.
Extreme outliers are the points belonging outside of the following interval:

[Q1 − 3 · (Q3 −Q1), Q3 + 3 · (Q3 −Q1)] (3.2)

One could identify outliers in the dataset thanks to this method and apply an
appropriate strategy to make the time series represent the normal energy consump-
tion. The problem is, though, that this would tackle only one type of anomaly, but
datasets often comprise also contextual and collective ones, which would still be
left in the time series data by such method, thus enabling a model to eventually
only improve in correspondence of point anomalies.

Therefore, we are going to leave all the anomalies in the data and work with
anomalous data points also when training the model.
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3.2 Dataset
The dataset used to train, validate and test the models is the one presented in
the LEAD - Large-scale Energy Anomaly Detection Kaggle competition 1. It was
extracted from the dataset used for the Great Energy Predictor III competition
hosted by the ASHRAE organization and presented in [23].

It comprises electricity measurements taken by smart meters present in 200 build-
ings, which collect data with an hourly frequency for the whole year of 2016. Each
data point is further enriched with information from 57 features: some of them refer
to the building characteristics, some to atmospheric and meteorological conditions
and others are generated features, as either aggregation of features already present
in the dataset or particular encodings of those. For the purpose of this thesis it
was decided to keep only a few of them, excluding in particular the generated
ones, as they could be always re-generated, in such a way as to render the code
generalisable, to be able to use it with few modifications on the data that DATA
CELLAR is going to provide.
Among the most interesting features to retain for the task we have:

• building_id: a unique identification number for each building present in the
dataset

• timestamp: the temporal indication of the energy measurement collected

• meter_reading: the energy consumption collected by the smart meters, which
constitute the real target of our analysis

• anomaly: this column contains the labels which characterize each point as an
anomaly (1) or not (0). Note that, given that the entire work takes place in an
Unsupervised setting and given the premises stated in the previous paragraph,
the information represented by this column is not used in any way during
the development, training and testing of each model, but exclusively to assess
the performances in terms of the usual metrics of Precision, Recall, F1 and
ROC-AUC score

• site_id: a unique identifier for the city area in which the building is sited

• primary_use: an indication of the type of building, whether it is a school, an
office, a church, a residential building, ...

• square_feet

1https://www.kaggle.com/competitions/energy-anomaly-detection
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• year_built: the year in which the building was built

• floor_count: an indication of how many floors are contained in the building

• air_temperature: in Celsius degrees

• cloud_coverage: fraction of the sky obscured by clouds on average when
observed from a particular location

• dew_temperature: temperature at which the water vapor in air at constant
barometric pressure condenses into liquid water at the same rate at which it
evaporates

• precip_depth_1_hour : an indication of at what depth liquid precipitation
would cover a horizontal surface in an observation period if nothing could
drain, evaporate or percolate from this surface

• sea_level_pressure

• wind_direction

• wind_speed

• is_holiday: an indication of whether the day on which a measurement was
taken was a holiday or not

When dealing with time series it is often useful to perform feature engineering
and enrich the dataset with temporal and energy-related information. Typically,
the following features are particularly interesting:

• lag features: each data point is enriched with information regarding energy
consumptions which correspond to previous or successive timestamps with
respect to the current one. It could be useful to consider for each data point
the consumption relative to 1, 24, 168 hours prior and following

• differencing features: for each data point compute the difference between its
energy consumption measurement and a lagged one

• rolling features: always for the energy consumption, consider sliding a window
over the values and compute statistics for each of them, like the standard
deviation, the mean and median

• temporal features: extract temporal information from the timestamp, like the
month, the day and the weekday. The year is not relevant as all measurement
belong to 2016

32



Methodology

• trigonometric features: apply sinusoidal functions over time-related features
in order to obtain a continuous representation of time

All the feature engineering operations are performed after imputing the missing
values, which are present exclusively in the meter_reading column, and the missing
timestamps.

For what concerns the former, a custom made technique has been employed.
The basic idea is that given a missing measurement, one can take the first previous
and following values and average them. If this happens at the beginning of the
year, there is no previous value that can be taken for the imputation, therefore
in this case the average value over the consumption of a specific building is taken
instead of the previous value. Similarly if the missing data point is at the end of
the year.

Note that if there are multiple sequential missing values, after the imputation of
the first one in the sequence, for the others the previous imputed values are used
to compute the average, so as to continue the trend.

A limitation of the imputation of missing consumptions is linked to the fact
that there are some buildings which completely lack of measurements for a consid-
erable amount of time, in some cases even five months consecutively: this implies
that the imputation will result into a straight line near the average value of the series.

Another important step is making sure that all the time series present in the
dataset have the same length, so 24 ∗ 366 = 8784 measurements, considering that
the smart meters collect data every hour and that 2016 is a leap year. The time
series are made evenly-timestamped and a simple forward fill strategy is used to
impute the corresponding missing values.

As stated before, the measurements present in the dataset are taken from 200
different buildings, each belonging to a specific category. Table 3.1 shows the 12
primary uses that the dataset contains and the corresponding number of buildings
for each of them.
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Primary Use Number of buildings
Education 80

Office 62
Entertainment/public assembly 23

Lodging/residential 13
Public services 7

Healthcare 5
Services 3

Manufacturing/industrial 2
Parking 2

Food sales and service 1
Religious worship 1

Other 1

Table 3.1: Distribution of buildings per primary use

It is evident to notice how the majority of buildings are related to education
(schools, universities) and offices. It becomes interesting to visually inspect the
time series present in the dataset in order to understand if the fact that a certain
building belongs to a specific category of use implies that all those which belong to
the same one have similar characteristics.

Figure 3.1 shows two examples of buildings belonging to the "Education" category.
The top subfigure, (3.1a) shows an evident weekly pattern for most of the year,

which is understandable given the nature of the building: in fact, typically, a
school or a university is open during the first five days of the week and closed
during the weekend, so it is not a surprise to notice higher consumptions within
the week with respect to Saturdays and Sundays. Moreover, there are some cases
in which the measurements taken from the smart meters have a very low value, in
correspondence of holidays, like Easter and Christmas, or of the summer break.

The bottom subfigure, (3.1b), instead, shows a completely different pattern in
the evolution of the energy consumption throughout the year, as no evident weekly
seasonality is present, which would give even a visual indication of the type of
building it refers to.

This is particularly interesting to notice and to take into account, as one would
expect Deep Learning models to behave similarly within a specific category, in
terms of performances, as they would be able to recognize typical patterns. In
reality this is not always the case, as not all buildings of the same kind express
the same patterns in terms of the energy consumption, thus leading potentially to
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significant differences in the performances of the models for the anomaly detection
task.

(a) Educational building (id: 730), with weekly seasonal pattern

(b) Educational building (id: 925), without any evident pattern

Figure 3.1: Comparison of two time series representing the energy consumption
of two different educational buildings. The red dots represent the anomalies as
annotated in the dataset.

As one typically does for training any model, the dataset needs to be split
in train, validation and test set. In this case, we proceeded firstly to obtain the
training data and testing data, by leveraging the building_id. In particular, 3.3
explains how the division has been made:train− val← building_id mod 5 < 4

test← building_id mod 5 == 4
(3.3)

Then, in order to obtain training and validation set, train-val was divided by
considering putting 80% of the data in the training set and the remaining in the
validation one: in particular, in order to make sure that no building had part of
its measurements in one set and part in another, the 80− 20 split was performed
based on the building_id unique values. This resulted in using 129 buildings for
training the models, 33 for validating and 38 for testing.
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Finally, the data has been prepared in a similar way for all the methods chosen
for the task (here presented in the following section).

Considering separately the energy consumption measurements for each building,
a sliding window has been applied over the time series: the set of windows obtained
as such is going to constitute the input of each model. Such architectures are going
to be firstly trained on the training set, and validated, then the test set is going to
be used to assess its performances for the task of anomaly detection. In the next
section, I am going to go more into depth about the entire process.
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3.3 Methods
The following Figure 3.2 represents the basic pipeline followed in order to train the
different models to perform anomaly detection.

Figure 3.2: Workflow representation

The input for each model chosen is a sequence of sliding windows over the
time series of each building. At training time, training and validation set are
employed: in both cases, the corresponding loss used is the Mean-Squared Error:
given the input ground truth Y = {yi}, i = 1...N and the output of each model
Ŷ = {ŷi}, i = 1...N , either in the form of a sequence of predicted timestamps or of
a sequence of reconstructions, the loss is computed as

MSE = 1
N

NØ
i=1
|yi − ŷi|2 (3.4)

In alternative, one could choose to use the Mean Absolute Error (MAE):

MAE = 1
N

NØ
i=1
|yi − ŷi| (3.5)

At inference time, instead, the test set is passed to the models. The resulting
output is then compared with a ground truth, that differs based on the chosen
model, and their difference is subject to the anomaly detection process: often, if
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this is bigger than a predefined threshold for a specific data point, then this will be
labelled as anomalous.

Chapter 2 presented an overview of the main methodologies that can be used for
performing anomaly detection in the Unsupervised setting. In particular, three main
possibilities were pointed out: forecasting, reconstruction and generative methods.
In this thesis we investigate all these three approaches, both in a univariate setting
and in a multivariate one. In the former case, exclusively the real target of our
analysis, the energy consumption value, was taken into consideration. In the latter,
almost 20 features were used: some referred to the environmental conditions, like
the air temperature and the sea level pressure; some were temporal informations
regarding the weekday, the hour and the month of the measurements, encoded in a
continuous form; also lagged features were taken into consideration, alongside with
their difference with respect to the target; finally, the residual component of each
time series was used as additional information that could be useful for the model
to have.

3.3.1 Forecasting method
For what concerns the forecasting approach, LSTMs were used in the following way:
after having obtained the windows from the time series, each of them was passed
through the LSTM network in order to make it predict a value corresponding to
the following timestamp.

Architecture Input Dimension Output Dimension
LSTM(n_features, 32) (128, 168, n_features) (128, 32)

ReLU (128, 32) (128, 32)
Dropout(rate = 0.2) (128, 32) (128, 32)

Linear(32, n_features) (128, 32) (128, n_features)

Table 3.2: Architecture of the LSTM model with indications regarding the
dimensions of the inputs and outputs of each layer.

The LSTM network employed consists of a single layer and 32 cells. Given an
input sequence in the form (batch_size, window_lenght, num_features), where
batch_size was chosen as 128 for all experiments and window_length as 168 for
forecasting, i.e. the equivalent of one week measurements, the LSTM layer would
produce an output of size (batch_size, 32). This would be then passed through
a Fully Connected layer, to reduce the dimensionality from 32 to the number of
features of the input sequence.
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As ground truth, the values corresponding to the next timestamp for each feature
were taken into consideration: the forecast made by the model was then compared
with this ground truth and the resulting forecasting error was used to determine
whether a point was to be considered as anomalous or not, based on a predefined
threshold.

3.3.2 Reconstruction method
In this setting the Autoencoder was taken into consideration to tackle the anomaly
detection task from another point of view.

When using this kind of model, the goal is that of obtaining a reconstruction
of the input sequence, which consists of a set of windows sliced from the time
series. Theoretically, an Autoencoder is able to learn the most important character-
istics of the input, thus enabling a reconstruction which should not be accurate in
presence of anomalies, as they are deemed as non-fundamental features of the input.

The training of this model is based on the reconstruction error itself, so the
difference between the input sequence and the output of the decoder. This same
error can also be used at inference time as an anomaly score: given the nature of
the model, the score should be higher in presence of anomalies, thus enabling to
easily identify them thanks to the definition of a threshold.

Three different architectures were chosen for the autoencoder:

1. LSTM

2. Convolutional

3. Linear

The input is in the form (batch_size, window_lenght, num_features) for all
the three types of Autoencoders. batch_size was chosen as 128, as stated before,
and window_length as 72, i.e. the equivalent of half-a-week measurements.

Autoencoders are typically built on LSTM layers, if they have to be applied to
perform reconstruction of time series. The main reason is that, given the temporal
nature of this kind of data, LSTMs are able to not only take into account the
short-term dependencies between the data points, but also the long-term ones.
Thus, they are able to perform a reconstruction which not only takes into account
the measurements that were collected immediately before the one that is currently
being considered, which have in general a big impact in determining the evolution
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of the energy consumption, but also those that were collected much before and
that could still be useful especially in presence of patterns within the sequence.

In this case, the Encoder is characterized by a single LSTM layer with 32 cells;
as output, the last hidden state is taken into consideration and passed to the
Decoder, which comprises always a single LSTM layer with 32 cells, and a Fully
Connected layer which reduces the dimensionality of the sequence to the number
of features of the input.

Architecture Input Dimension Output Dimension
ENCODER

LSTM(n_features, 32) (128, 72, n_features) (128, 32)
Dropout(rate = 0.2) (128, 32) (128, 32)

DECODER
Repeat Vector (128, 32) (128, 72, 32)
LSTM(32, 32) (128, 72, 32) (128, 72, 32)

Dropout(rate = 0.2) (128, 72, 32) (128, 72, 32)
Linear(32, n_features) (128, 72, 32) (128, 72, n_features)

Table 3.3: Architecture of the LSTM Autoencoder model with indications re-
garding the dimensions of the inputs and outputs of each layer. Note that for the
multivariate experiments, we asked the model to both output a single feature and
a number of features equal to the input one

An alternative could be that of building Autoencoders with Convolutional layers,
which are able to consider the local patterns characterizing the input sequence,
without handling explicitly the temporal information present in them.

The Encoder is here characterized by three convolutional layers, which apply
half of the filters of the previous layer, starting from 32. The Decoder is built
using three transposed convolutional layers, which apply a number of filters in the
opposite order, to be able to obtain an output with the same dimensionality as the
original input.

Finally, one could decide to use Linear layers to build an Autoencoder. These
layers are often useful when data is characterized by linear relationships and learn
the global patters present in the input sequence. They are not particularly effective
with complex data and they do not handle in any way or form the temporal
information, thus limiting to work in many cases as a dimensionality reduction
mechanism.

The Encoder is based on three linear layers, which have an output dimensionality
which is always half that of the previous layer, starting from 32. As before, the
Decoder consists of three linear layers acting on the dimensionalities of the latent
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Architecture Input Dim. Output Dim.
ENCODER

Conv1D(n_features, 32,
kernel = 7, padding = 3, stride = 2) (128, n_feats, 72) (128, 32, 36)

ReLU (128, 32, 36) (128, 32, 36)
Dropout(rate = 0.2) (128, 32, 36) (128, 32, 36)

Conv1D(32, 16,
kernel = 7, padding = 3, stride = 2) (128, 32, 36) (128, 16, 18)

ReLU (128, 16, 18) (128, 16, 18)
Conv1D(16, 8,

kernel = 7, padding = 3, stride = 2) (128, 16, 18) (128, 8, 9)

ReLU (128, 8, 9) (128, 8, 9)
DECODER

Conv1DTransposed(8, 16,
kernel = 7, padding = 3, stride = 2) (128, 8, 9) (128, 16, 18)

ReLU (128, 16, 18) (128, 16, 18)
Dropout(rate = 0.2) (128, 16, 18) (128, 16, 18)

Conv1DTransposed(16, 32,
kernel = 7, padding = 3, stride = 2) (128, 16, 18) (128, 32, 36)

ReLU (128, 32, 36) (128, 32, 36)
Conv1DTransposed(32, n_features,
kernel = 7, padding = 3, stride = 2) (128, 32, 36) (128, n_feats, 72)

Sigmoid (128, n_feats, 72) (128, n_feats, 72)

Table 3.4: Architecture of the Convolutional Autoencoder model with indications
regarding the dimensions of the inputs and outputs of each layer. The dimensions
refer to the case where n_feats = 1.

vector in the opposite way with respect to the encoder.

Tables 3.3, 3.4 and 3.5 propose and in-depth description of the architectures
of the three models, with the indications of the dimensionality of the input and
output of each element constituting the model.

It is evident how some regularization techniques were used. Dropout is particu-
larly useful to avoid overfitting, as during training it randomly shuts down some of
the neurons present in the neural networks, according to a certain probability p:
this implies that the corresponding connections are associated to weights which are
not involved in the updates of the backpropagation process, as the related neurons
are not active.
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Architecture Input Dim. Output Dim.
ENCODER

Linear(72*n_feats, 36*n_feats) (128, 72*n_feats) (128, 36*n_feats)
ReLU (128, 36*n_feats) (128, 36*n_feats)

Linear(36*n_feats, 18*n_feats) (128, 36*n_feats) (128, 18*n_feats)
ReLU (128, 18*n_feats) (128, 18*n_feats)

Linear(18*n_feats, 9*n_feats) (128, 18*n_feats) (128, 9*n_feats)
ReLU (128, 9*n_feats) (128, 9*n_feats)

DECODER
Linear(9*n_feats, 18*n_feats) (128, 9*n_feats) (128, 18*n_feats)

ReLU (128, 18*n_feats) (128, 18*n_feats)
Linear(18*n_feats, 36*n_feats) (128, 18*n_feats) (128, 36*n_feats)

ReLU (128, 36*n_feats) (128, 36*n_feats)
Linear(36*n_feats, 72*n_feats) (128, 36*n_feats) (128, 72*n_feats)

Sigmoid (128, 72*n_feats) (128, 72*n_feats)

Table 3.5: Architecture of the Linear Autoencoder model with indications regard-
ing the dimensions of the inputs and outputs of each layer.

Activation functions like the ReLU and Sigmoid can be employed in order to
regularize the output of each layer, adding non-linearity and constricting the values
to be within a specific interval.

3.3.3 Generative Method
Instead of using a GAN, we decided to implement a GAN-like approach, always
based on adversarial learning, like USAD, proposed in [18].

We followed the original paper implementation. Both the Autoencoders are
characterized with Linear layers which in the Encoder reduce the dimensionality
of the input sequence iteratively through the use of three layers which reduce it
of half the size every time, while the two Decoders comprise linear layers which
increase the dimensionality in the opposite direction.

The architecture of the Encoder and the two Decoders is the same as the one
depicted in Table 3.5.

3.3.4 Thresholds Definition
All the methods presented up until now are not technically predisposed to perform
anomaly detection.
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The outputs of each of these approaches need to be compared with the corre-
sponding ground truth, which can be either the set of subsequent timestamps with
respect to the input windows in the forecasting case, or the input itself in the other
two settings. Usually one considers their difference. Then, a threshold needs to be
defined in order to identify the anomalous points, as follows:1 if anomaly_score > λ

0 if anomaly_score ≤ λ
(3.6)

where λ is the defined threshold. So, if the anomaly score, i.e. the difference
between outputs and ground truths, is bigger than the threshold for a specific data
point, then this would be labelled as anomalous (1), otherwise as normal (0).

There are different ways to define both the anomaly score and the threshold.
In many cases, the anomaly score can be computed as the absolute difference

between the two quantities to compare, as the relative difference, or even as the
MSE.

For what concerns the thresholds, several types have been tested, some resulting
more effective in performing anomaly detection than others.

The first kind of threshold that one can use is a percentile value of the absolute
loss distribution computed over the validation data.

The absolute error only considers the difference between the predictions or
reconstructions and the actual values. It could be useful to notice that the difference
between the true energy consumption and the one outputted by the models needs
to be related to the magnitude of the consumption. In fact, an absolute error of
10kwh can have a different impact in the analysis, based on whether for example it
reflects a situation in which between prediction and ground truth there is a 1 : 2
ratio or instead a case in which the prediction is 150kwh and the ground truth
140kwh.

This is why a second threshold has been proposed, to take into account the pos-
sibility of scaling the error with respect to the expected values of the consumption.

Another possibility is to directly use a percentile of the distribution over the
relative loss of the validation set.

We argued previously in this work that the IQR, a statistical technique to detect
outliers, was useless for us in order to remove the anomalies from the training set
and train the model on "normal" data. We decided though that it could still be
interesting to use it in order to determine a threshold for the task. Firstly, we
thought of computing the IQR over the relative loss distribution of the validation set
and then compare it with respect to the relative loss of the test data points. Then,
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the idea was to try an approach which took into account the different buildings
present in the test set: we defined a separate threshold for each building based
on the IQR computed over the test relative loss distribution, and then performed
anomaly detection as before. In light of this, a threshold was tried as a weighted
average between the type of threshold just described and one computed as the IQR
over the entire test set.

Finally, we employed an exponential weighted moving average (EWMA) over
the test relative loss, computed the difference between the EWMA and the relative
loss for each point and compared it with the IQR of this same difference. The
EWMA is often used as a smoothing technique for time series data: it leverages
the fact that the most recent data points have a greater impact on the next values,
with respect to previous ones.

In line with the original experiments performed by Audibert et Al. in [18],
the anomaly detection task was also assessed by using as anomaly score the MSE
between the ground truth and the outputs of the models, or a weighted average
of the MSE of the ground truth and the output of the first Autoencoder and that
computed with respect to the second Autoencoder, having as input the output of
the first one, in case of USAD. Then such value was compared to a threshold which
could be either defined by finding a percentile over the distribution of the anomaly
scores, or by considering the thresholds used to compute the Receiver Operating
Curve (ROC) and selecting the one corresponding to where the difference of the
Equation 3.7 is non-zero.

sign (tpr− (1− fpr)) (3.7)

where tpr is the true positive rate and fpr the false positive one.
Note that for these experiments, the anomaly score was compared with respect

to ground truth labels which were obtained by considering a sliding window over
the original labels present in the dataset: if in a specific window there was at least
one anomaly, then that whole sequence was to be considered as anomalous, and
was indicated as such in the ground truth labels.
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3.3.5 Comparison with SWaT
To properly understand the goodness, or badness, of the chosen models, it was
decided to perform a comparative study on the SWaT (Secure Water Treatment)
dataset, which has been used by the authors of USAD.

Goh et Al. present this new dataset in [24]. SWaT is a scaled down version of
an industrial water treatment plant, consisting of several tanks in which water is
collected: the data regarding this process was collected in two modes, normal and
attacked. The system run for 11 days: for the first seven, it operated normally,
without any faults, while during the remaining days cyber and physical attacks were
launched. A cyber attack is an attack that is transmitted through a communication
network with an intention to cause some economic harm, while a physical attack
involves a physical component in order to disrupt the state of the system.

The data was recorded thanks to several sensors and actuators, which are re-
sponsible for turning the water pump on or off, present in the water tanks. 946722
samples were collected through 11 days, characterized by 51 features, each being
the measurements taken by the different sensors or actuators.

The following two Figures, 3.3 and 3.4, represent two features in the SWAT
dataset.

Figure 3.3: Example of time series in
SWAT - FIT101

Figure 3.4: Another time series in
SWAT - LIT101

It is evident to notice how the nature of the data is very different from the
energy consumptions characterizing our dataset. The proposed time series seem to
be constituted by less oscillating values, which could result in better performances.

Using such dataset for comparison can be useful for two main reasons: assessing
the correct functioning of the models and evaluating the difference in the perfor-
mances between the two different ways to set up the anomaly detection task. In fact,
given that this dataset has a clear distinction between normal data and anomalous
one, the Unsupervised models can be used in the traditional way, training on the
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first set and testing on the one that contains also anomalies.

The models have been slightly adapted to the SWaT dataset, as shown in the
following tables, 3.6, 3.8, 3.9, 3.7, but the overall architecture has been kept the
same, to make the results as comparable as possible. Note, moreover, that given
the nature of the features in the dataset, the experiments in this case were mainly
conducted in a multivariate setting, as it does not make much sense to consider
a univariate one, given that each feature represents the evolution over time of a
measurement taken from different sensors and actuators.

Architecture Input Dimension Output Dimension
LSTM(51, 32) (7919, 12, 51) (128, 32)

ReLU (128, 32) (128, 32)
Dropout(rate = 0.2) (128, 32) (128, 32)

Linear(32, 51) (128, 32) (128, 51)

Table 3.6: Architecture of the LSTM model for the SWaT dataset, which was
divided into windows of 12 measurements.

Architecture Input Dim. Output Dim.
ENCODER

Linear(51*12, 51*6) (7919, 51*12) (7919, 51*6)
ReLU (7919, 51*6) (7919, 51*6)

Linear(51*6, 51*3) (7919, 51*6) (7919, 51*3)
ReLU (7919, 51*3) (7919, 51*3)

Linear(51*3, 12*40) (7919, 51*3) (7919, 12*40)
ReLU (7919, 12*40) (7919, 12*40)

DECODER
Linear(12*40, 51*3) (7919, 12*40) (7919, 51*3)

ReLU (7919, 51*3) (7919, 51*3)
Linear(51*3, 51*6) (7919, 51*3) (7919, 51*6)

ReLU (7919, 51*6) (7919, 51*6)
Linear(51*6, 51*12) (7919, 51*6) (7919, 51*12)

Sigmoid (7919, 51*12) (7919, 51*12)

Table 3.7: Architecture of the Linear Autoencoder model for SWaT
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Architecture Input Dimension Output Dimension
ENCODER

LSTM(51, 32) (7919, 12, 51) (7919, 32)
Dropout(rate = 0.2) (7919, 32) (7919, 32)

DECODER
Repeat Vector (7919, 32) (7919, 12, 32)
LSTM(32, 32) (7919, 12, 32) (7919, 12, 32)

Dropout(rate = 0.2) (7919, 12, 32) (7919, 12, 32)
Linear(32, 51) (7919, 12, 32) (7919, 12, 51)

Table 3.8: Architecture of the LSTM Autoencoder model for SWaT

Architecture Input Dim. Output Dim.
ENCODER

Conv1D(51, 32,
kernel = 7, padding = 3, stride = 2) (7919, 51, 12) (7919, 32, 6)

ReLU (7919, 32, 6) (7919, 32, 6)
Dropout(rate = 0.2) (7919, 32, 6) (7919, 32, 6)

Conv1D(32, 16,
kernel = 7, padding = 3, stride = 2) (7919, 32, 6) (7919, 16, 3)

ReLU (7919, 16, 3) (7919, 16, 3)
Conv1D(16, 8,

kernel = 7, padding = 3, stride = 2) (7919, 16, 3) (7919, 8, 2)

ReLU (7919, 8, 2) (7919, 8, 2)
DECODER

Conv1DTransposed(8, 16,
kernel = 7, padding = 3, stride = 2) (7919, 8, 2) (7919, 16, 3)

ReLU (7919, 16, 3) (7919, 16, 3)
Dropout(rate = 0.2) (7919, 16, 3) (7919, 16, 3)

Conv1DTransposed(16, 32,
kernel = 7, padding = 3, stride = 2) (7919, 16, 3) (7919, 32, 6)

ReLU (7919, 32, 6) (7919, 32, 6)
Conv1DTransposed(32, 51,

kernel = 7, padding = 3, stride = 2) (7919, 32, 6) (7919, 51, 12)

Sigmoid (7919, 51, 12) (7919, 51, 12)

Table 3.9: Architecture of the Convolutional Autoencoder for SWaT
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3.4 Use case: DATACELLAR

DATA CELLAR has provided access to some data through an API, which was
developed by the project participant CTIC in order to gather data from an energy
community in the Asturias region in Spain [25]. This is going to be used to apply
the developed models also on real-life data and to perform a qualitative evaluation
of these, given the absence of annotations regarding anomalous data points.

The collected data represent energy consumption measurements collected also in
this case every hour by smart energy meters placed in residential buildings. Unlike
the LEAD dataset, the measurements, reported in KWH, do not span an entire
year, but rather a single month during 2021, 2022, 2023 and 2024. The data have
been collected for the same buildings throughout the different years.

The features which are present here are the following:

• _id: a unique identifier for each measurement; given that this does is not
useful in any way it will not be considered during the experiments

• user_id: the equivalent of building_id in LEAD; it represents a unique
identifier for the user to which the smart meter belongs to

• local_date_str : an indication of the actual date of the measurement with
respect to the current location

• datetime: the indication of the hour, day, month and year at which the
measurement was collected, according to the Greenwich time zone

• data: the energy consumption measurement collected at each timestamp

Let’s analyze the data regarding 2021.

They have been collected for the whole month of July over 7 different buildings.
Each of the seven time series does not present neither missing values for what
concerns the measurements, nor missing dates, therefore the preprocessing steps in
this case will start directly with the definition of windows and the corresponding
normalization.

The following Figure 3.5 shows three examples of time series provided by DATA
CELLAR.
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Figure 3.5: Examples of three time series from 2021

We notice how such time series are different with respect to the LEAD dataset:
in fact, the measurements reflect consumptions which values are quite close to 0
kwh, reaching at most a value of 2.8kwh within the whole dataset. Moreover, the
presence of spikes brings us to thinks that those could be point anomalies, but
given that the data is not annotated this is just a supposition.

Because of this, it is not possible within this thesis to assess the performances
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of the models for the downstream task of anomaly detection. Therefore, the only
possibility is that of assessing how good or bad are the trained models to generalize
to unseen data and how they are able to perform the forecasts or reconstructions
over real data values.
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Chapter 4

Experimental Results

Several experiments have been made to test out the capabilities of the chosen
methods to perform anomaly detection in a completely unsupervised setting.

In all the experiments, firstly the models were trained on sequences of windows
extracted from the time series, which were appropriately normalized within the
interval [0, 1]. In all the cases the MSE was used as a loss, aside from the LSTM
Autoencoder, for which a MAE loss was used. Then, the testing was performed on
a different set, as explained in the previous Chapter, and the anomaly detection
task was performed by defining different kinds of thresholds. Some post processing
operations were performed to take into account the initial missing values: given
that the missing energy consumption measurements always corresponded to non-
anomalous points, it made sense to change the class of each of these data points
to normal when performing anomaly detection, so as to not have them influence
negatively the performances.

All the experiments have been performed on the LINKS Foundation internal
servers, using a single GPU, NVIDIA GeForce RTX 2080 Ti. The training of the
models took on average 40 minutes, in the univariate setting, and 70 minutes in
the multivariate one. The testing was in all cases quite short, reaching a maximum
of 10 minutes.

4.1 Evaluation Methods
To evaluate the performances of the models, the labels present in the dataset were
leveraged and the metrics employed are the typical metrics one would use for a
classification task. All the results that are going to be presented in the next chapter
refer to the metrics computed over the anomaly class.
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Precision: as the ratio between the number of data points correctly classified as
anomaly and the total number of points classified as such.

Precision = TP

TP + FP
(4.1)

Where TP is the number of True Positives, the ones correctly classified as the
positive (anomaly) class, and FP is the number of False Positives, those that were
erroneously classified as anomalies, when they were normal points.

Recall: as the ratio between the number of data points correctly classified as
anomalies and the total number of data points actually belonging to the positive
class.

Recall = TP

TP + FN
(4.2)

Where FN is the number of False Negatives, the data points which have been
erroneously assigned to the normal class, when they are actually anomalies.

F1: an harmonic mean between Precision and Recall

F1 = 2 ∗ Precision ∗Recall

Precision + Recall
= 2 ∗ TP

2 ∗ TP + FP + FN
(4.3)

ROC-AUC: a Receiver Operating Characteristic (ROC) curve is a graph show-
ing the performance of a binary classification model at all classification thresholds.
It takes into consideration the True Positive Rate (TPR), also known as Recall
for the anomaly class, which considers the fraction of correct classifications over
the total number of positives present in the dataset, and the False Positive Rate
(FPR), which considers the fraction of elements incorrectly classified as belonging
to the positive class, over the total number of elements belonging to the negative
class. AUC is the Area Under the ROC curve, which could be interpreted as the
probability that the model ranks a random positive example more highly than a
random negative one.

Notation

For the sake of simplicity, the following notation is going to be used to present the
results of the different experiments:
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• Anomaly Score - ROC: the results are based on the usage of the MSE between
the ground truth and the output of the models. Such predictions are compared
with the anomaly labels, which are obtained by considering the original labels
in windows: if a window contains at least one anomaly, then the entire window
is going to be considered as anomalous. Then, a threshold is determined based
on the ROC between the predictions and the obtained labels

• Anomaly Score - Perc: in this case, the threshold is determined by considering
a percentile, typically the 93rd or 80th, over the distribution of the anomaly
scores

• Method 0: the threshold is determined based on the absolute loss on the
validation set

• Method 1: the threshold is based on the normalized absolute loss with respect
to the expected value of the prediction

• Method 2: the threshold is based on the relative loss of the validation set

• Method 3: the threshold is based on the IQR over the validation set

• Method 4: the threshold is based on the IQR over the test set, divided by
building

• Method 5: the threshold is based on the Exponential Weighted Moving Average
over the test set

• Method 6: the threshold is based on the weighted combination of the IQR
over the entire test set, and the one computed per building
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4.2 Univariate Setting
First of all, the models were trained in a univariate setting: the target of the
analysis, the energy consumption, has been used without additional features, as the
exclusive input for all the models. All the models have been trained for 40 epochs.

The following five Tables, 4.1, 4.3, 4.4, 4.5 and 4.2, present the results for each
of the methodologies.

Threshold Prec Rec F1 ROC-AUC
Anomaly Score - ROC 0.31 0.51 0.39 0.5139
Anomaly Score - Perc 0.31 0.32 0.32 0.5129

Method 0 0.17 0.08 0.11 0.5362
Method 1 0.12 0.51 0.19 0.7107
Method 2 0.22 0.47 0.30 0.7131
Method 3 0.15 0.49 0.23 0.7130
Method 4 0.23 0.47 0.31 0.7164
Method 5 0.11 0.47 0.18 0.6909
Method 6 0.26 0.47 0.33 0.7199

Table 4.1: Univariate experiments for LSTM

Threshold Prec Rec F1 ROC-AUC
Anomaly Score - ROC 0.21 0.58 0.31 0.5783
Anomaly Score - Perc 0.27 0.33 0.29 0.5767

Table 4.2: Univariate experiments for USAD

Threshold Prec Rec F1 ROC-AUC
Anomaly Score - ROC 0.26 0.65 0.38 0.6502
Anomaly Score - Perc 0.54 0.23 0.32 0.5961

Method 0 0.28 0.15 0.19 0.5688
Method 1 0.18 0.49 0.27 0.7193
Method 2 0.24 0.47 0.32 0.7181
Method 3 0.16 0.50 0.24 0.7188
Method 4 0.29 0.47 0.36 0.7202
Method 5 0.13 0.43 0.20 0.6801
Method 6 0.32 0.47 0.38 0.7252

Table 4.3: Univariate experiments for LSTM Autoencoder
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Threshold Prec Rec F1 ROC-AUC
Anomaly Score - ROC 0.25 0.63 0.35 0.6280
Anomaly Score - Perc 0.30 0.37 0.33 0.5987

Method 0 0.16 0.06 0.09 0.5268
Method 1 0.20 0.47 0.28 0.7129
Method 2 0.24 0.46 0.31 0.7121
Method 3 0.16 0.50 0.24 0.7172
Method 4 0.18 0.50 0.27 0.7215
Method 5 0.11 0.52 0.18 0.7092
Method 6 0.20 0.49 0.29 0.7211

Table 4.4: Univariate experiments for Convolutional Autoencoder

Threshold Prec Rec F1 ROC-AUC
Anomaly Score - ROC 0.28 0.67 0.40 0.6700
Anomaly Score - Perc 0.37 0.46 0.41 0.6556

Method 0 0.26 0.11 0.16 0.5528
Method 1 0.17 0.51 0.26 0.7236
Method 2 0.25 0.48 0.33 0.7231
Method 3 0.15 0.53 0.24 0.7284
Method 4 0.26 0.51 0.34 0.7361
Method 5 0.13 0.47 0.20 0.6972
Method 6 0.24 0.50 0.32 0.7322

Table 4.5: Univariate experiments for Linear Autoencoder

It is evident to notice how the best performing model is the Linear Autoencoder,
followed shortly by the LSTM Autoencoder. The worst model is USAD.

The results here reported are computed for the entire dataset: it becomes
interesting to assess how the performances vary among the different buildings,
evaluating the average performance and on which building the models work best or
worst.

For sake of simplicity, the proposed results are obtained by considering the last
thresholding method (6), aside from USAD, for which we used the anomaly score.

We can see how the average performance is higher than the one we obtained
by considering the anomaly detection task over the entire dataset. This can be
explained by the following table, 4.6, as it is evident how each method can work
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Model Prec Rec F1 ROC-AUC
LSTM 0.41 0.54 0.43 0.7525

LSTM Autoencoder 0.40 0.53 0.43 0.7525
Convolutional Autoencoder 0.37 0.56 0.40 0.7560

Linear Autoencoder 0.38 0.57 0.42 0.7646
USAD 0.54 0.35 0.30 0.5919

Table 4.6: Average performances for each model, based on method 6 for threshold

better on certain buildings, rather than others.

On average, the models chosen are able to reach a F1 score of 0.41 and at most
a ROC-AUC score of 0.76. It thus becomes interesting to understand how the
models perform with respect to the different kinds of anomalies that are present in
the dataset.

Table 4.7 and 4.8 show the performances respectively with respect to proper
outliers and contextual anomalies. The distinction was made based on the IQR: all
the anomalies whose value fell outside of this range were considered as outliers, the
others as contextual.

Model Prec Rec F1 ROC-AUC
LSTM 0.73 0.91 0.81 0.9527

LSTM Autoencoder 0.72 0.92 0.80 0.9572
Convolutional Autoencoder 0.75 0.90 0.82 0.9477

Linear Autoencoder 0.69 0.92 0.79 0.9600
USAD 0.41 0.40 0.41 0.6766

Table 4.7: Performances of the models with respect to Point Anomalies (Outliers)

Model Prec Rec F1 ROC-AUC
LSTM 0.11 0.25 0.15 0.6080

LSTM Autoencoder 0.14 0.24 0.17 0.6076
Convolutional Autoencoder 0.08 0.27 0.13 0.6135

Linear Autoencoder 0.10 0.28 0.25 0.6206
USAD 0.19 0.27 0.22 0.5785

Table 4.8: Performances of the models with respect to Contextual Anomalies
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As was actually to be expected, the models perform way better on point anoma-
lies rather than on contextual. Despite being trained on anomalous data, the first
kind of uncommon behaviours in data is still quite easy to recognize: this is due to
the fact that the forecast or reconstruction may not be as good in correspondence
of those points as it is instead at modelling contextual anomalies, which are learnt
as normal behavior and as such not recognized as often.

Let’s now assess the performances of the single buildings.

For example, building 439 is the one on which all the methodologies perform
worse, regardless of the threshold. From Figure 4.1 it is evident to notice how
anomalies are mainly contextual: in fact, the ground truth anomalies (in green) do
not correspond to extremely high or low consumption measurements, but rather
to consumptions which were not in line with previous ones. In this case, the
reconstruction is quite precise with respect to the energy consumptions, but the
difference is such that with the chosen thresholding method many anomalies are
identified which are not truly present in the dataset. The performances are: 0.02
of Precision, 0.07 of Recall, 0.03 of F1 score and 0.3754 of ROC-AUC score. This
method identifies 2674 anomalies, over a ground truth number of 567.

Figure 4.1: Example of reconstruction of the LSTM Autoencoder on a portion of
the time series related to building 439. In red the reconstruction, in green the true
anomalies, as labelled in the dataset, in yellow the identified anomalies according
to thresholding method 3

Unlike the case of the worst performing building, which is the one just presented
in almost all the experiments, there is no building which achieves the highest
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performances on all models. In some cases it is building 739, in others 994.

To just provide an example of good performances, it could be interesting to
analyze building 889, of which a portion is presented in Figure 4.2.

Figure 4.2: Example of reconstruction of the LSTM Autoencoder on a portion of
the time series related to building 884. In red the reconstruction, in green the true
anomalies, in yellow the identified ones according to thresholding method 3

On this building, the LSTM Autoencoder reaches 0.71 of Precision, 0.88 of
Recall, 0.78 of F1-score and 0.9366 of ROC-AUC score. The Figure above is an
example of how the model is able to identify the majority of the anomalies, even
though the reconstruction is such that other non-anomalous points are flagged
as anomalies. Despite this, one could still argue that the identification of such
abnormal behaviors in the time series depends also on how an anomaly is defined
technically: for example, in this case, the data points between February 23 and 24,
which have been flagged as anomalies, could be accepted as such given that they
correspond to a rapid change in the energy consumption that then lead to a 0 kwh
measurement that lasted almost one day.

It becomes interesting to evaluate the performances for the different primary_use
present in the test set. Tables 4.9, 4.10, 4.11 and 4.12 show the metrics computed
considering method 6 for the threshold definition for each of the models.
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Primary_use Prec Rec F1 ROC-AUC
Education 0.20 0.64 0.31 0.7959

Entertainment/public assembly 0.14 0.44 0.21 0.6791
Lodging/residential 0.41 0.65 0.50 0.8086

Office 0.11 0.33 0.17 0.6166
Parking 0.03 0.47 0.06 0.6166

Public services 0.32 0.52 0.40 0.7416

Table 4.9: Performances of the models with respect to the category of each
building in the test set with the LSTM Autoencoder

Primary_use Prec Rec F1 ROC-AUC
Education 0.34 0.67 0.45 0.8231

Entertainment/public assembly 0.17 0.39 0.23 0.6642
Lodging/residential 0.36 0.64 0.46 0.7996

Office 0.16 0.32 0.22 0.6388
Parking 0.05 0.57 0.09 0.6924

Public services 0.24 0.51 0.32 0.7308

Table 4.10: Performances of the models with respect to the category of each
building in the test set with the Linear Autoencoder

Primary_use Prec Rec F1 ROC-AUC
Education 0.28 0.65 0.39 0.8089

Entertainment/public assembly 0.16 0.40 0.23 0.6659
Lodging/residential 0.32 0.61 0.42 0.7829

Office 0.12 0.30 0.17 0.6229
Parking 0.04 0.41 0.07 0.6113

Public services 0.33 0.5 0.4 0.7340

Table 4.11: Performances of the models with respect to the category of each
building in the test set with the Convolutional Autoencoder

59



Experimental Results

Primary_use Prec Rec F1 ROC-AUC
Education 0.35 0.65 0.46 0.8116

Entertainment/public assembly 0.21 0.39 0.27 0.6709
Lodging/residential 0.34 0.61 0.44 0.7855

Office 0.15 0.28 0.20 0.6198
Parking 0.04 0.38 0.08 0.6165

Public services 0.29 0.42 0.34 0.6949

Table 4.12: Performances of the models with respect to the category of each
building in the test set with the LSTM (forecasting)

While for the LSTM and Convolutional Autoencoder, the kind of buildings with
the highest overall performances are the Residential ones, the Linear Autoencoder
works well also in the case of Educational buildings, while the LSTM model used
in forecasting works best on this last kind, which is followed shortly by residential
constructions.
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4.2.1 Models Visual Comparison
It is interesting to understand how the different models perform in terms of their
respective reconstructions or forecastings.

For this purpose, we are going to assess their capabilities on building 889, which
constitutes one of the time series on which the models perform better.

The LSTM Autoencoder identifies 190 anomalies, over a ground truth of 167: it
achieves 0.75 of Precision, 0.86 of Recall, 0.80 of F1 score and 0.9254 of ROC-AUC
score. From Figure 4.3 it is evident to see how the reconstruction is more or less
precise: it does not reconstruct exactly the measurements which correspond to
what we would consider as outlier sequences o points, which is actually good for
the task of anomaly detection. It has some difficulties in identifying contextual
anomalies, as the reconstruction error is not as high as in other cases.

Figure 4.3: Reconstruction of LSTM Autoencoder on building 889, using thresh-
olding method 3. In red the reconstruction, in green the true anomalies, as labelled
in the dataset, in yellow the identified anomalies.

The Convolutional Autoencoder identifies 191 anomalies, achieving 0.80 of
Precision, 0.91 of Recall, 0.85 of F1 and 0.9528 of ROC-AUC score. Figure 4.4
shows a reconstruction which is almost perfect: there are only some spikes which
this model is not able to reproduce perfectly. Note that in this case, even though
with a reconstruction as good one would think that the model would not identify
almost any anomaly, this is not the case due to the thresholding method: even if
the reconstruction error is extremely small, anomalies are still detected due to the
presence of the threshold which is defined on the distribution of the relative error
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computed on the test set.

Figure 4.4: Reconstruction of Convolutional Autoencoder on building 889, using
thresholding method 3. In red the reconstruction, in green the true anomalies, as
labelled in the dataset, in yellow the identified anomalies.

The Linear Autoencoder identifies 209 anomalies, with a 0.71 Precision, 0.89
Recall, 0.79 F1 and 0.9396 ROC-AUC score. The reconstruction shown in Figure
4.5 seems to be a compromise between the two previously presented: it is quite
precise, except in correspondence of extremely low or high values.

Figure 4.5: Reconstruction of Linear Autoencoder on building 889, using thresh-
olding method 3. In red the reconstruction, in green the true anomalies, as labelled
in the dataset, in yellow the identified anomalies.
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Finally, the LSTM model identifies with its forecasting task 170 anomalies,
reaching a Precision of 0.87, a Recall of 0.89, a F1 score of 0.88 and a ROC-
AUC score of 0.9418. Figure 4.6 presents a forecast which is quite good, but
is characterized by some noise especially when the real consumptions assume a
value equal to 0: the LSTM model produces an oscillating output in this case, not
modelling precisely the measurement, but it is still able to identify those points as
anomalies thanks to the thresholding method.

Figure 4.6: Reconstruction of LSTM model on building 889, using thresholding
method 3. In red the reconstruction, in green the true anomalies, as labelled in the
dataset, in yellow the identified anomalies.

One could decide, in order to try to avoid such noise in the forecast, to perform
a progressive substitution of the predicted anomalies: when the model predicts an
anomaly in correspondence of a certain data point, the value predicted is substituted
to the original energy consumption measurement, so as to take such prediction into
consideration when applying the model to the following window. This smooths out
the forecast, as shown in Figure 4.7, avoiding the noise which characterizes the
original output of the LSTM model.
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Figure 4.7: Reconstruction of the "corrected" LSTM model on building 889, using
thresholding method 3. In red the reconstruction, in green the true anomalies, as
labelled in the dataset, in yellow the identified anomalies.

The main downside of this practice is the fact that the process becomes quite
lengthy, because it is no longer possible to forecast the entire time series and then
perform anomaly detection, but after forecasting the next time stamp for a specific
window, it it necessary to immediately evaluate whether that point, based on a
predefined threshold, is to be considered as anomalous or not in order to eventually
perform the substitution which is going to be employed when considering the next
time window.
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4.3 Multivariate Setting
To have a comprehensive view of the task, other trials have been performed by
considering additional features with respect to the energy consumption. Note that
in this case the performances were assessed using the anomaly score as exclusive
metric, unless the models were built in such a way as to output a single value,
corresponding to the energy consumption, thus using the other features as additional
information, instead of outputting a prediction/forecast for all the input features.

For what concerns the Convolutional and LSTM Autoencoder, the experiments
were conducted as to output, on one hand, a number of predictions or reconstructions
equal to the number of input features, and on the other hand as to output a single
feature, the one corresponding to the energy consumption. Note that in the latter
case, the Tables below propose all the thresholding methodologies, while in the
former exclusively the ones based on the anomaly score.

Tables 4.13 and 4.14 show the performances of the LSTM Autoencoder recon-
structing multiple features.

Threshold Prec Rec F1 ROC-AUC
Anomaly Score - ROC 0.19 0.55 0.29 0.5531
Anomaly Score - Perc 0.25 0.11 0.15 0.5235

Table 4.13: Multivariate experiments for Convolutional Autoencoder: the model
outputs a number of features equal to those in input

Threshold Prec Rec F1 ROC-AUC
Anomaly Score - ROC 0.24 0.62 0.34 0.6160
Anomaly Score - Perc 0.37 0.16 0.22 0.5532

Method 0 0.15 0.06 0.09 0.5277
Method 1 0.19 0.47 0.28 0.7129
Method 2 0.21 0.47 0.29 0.7130
Method 3 0.14 0.50 0.23 0.7164
Method 4 0.19 0.49 0.27 0.7219
Method 5 0.10 0.52 0.17 0.7084
Method 6 0.20 0.49 0.23 0.7221

Table 4.14: Multivariate experiments for Convolutional Autoencoder: the model
outputs one feature

Tables 4.15 and 4.16 show the performances of the LSTM Autoencoder recon-
structing multiple features.
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Threshold Prec Rec F1 ROC-AUC
Anomaly Score - ROC 0.22 0.59 0.32 0.5873
Anomaly Score - Perc 0.36 0.15 0.21 0.5499

Table 4.15: Multivariate experiments for LSTM Autoencoder: the model outputs
a number of features equal to those in input

Threshold Prec Rec F1 ROC-AUC
Anomaly Score - ROC 0.22 0.59 0.32 0.5947
Anomaly Score - Perc 0.39 0.17 0.24 0.5596

Method 0 0.20 0.14 0.17 0.5635
Method 1 0.06 0.56 0.11 0.6781
Method 2 0.19 0.46 0.27 0.7045
Method 3 0.17 0.47 0.25 0.7069
Method 4 0.31 0.45 0.37 0.7151
Method 5 0.14 0.41 0.20 0.6736
Method 6 0.34 0.45 0.38 0.7142

Table 4.16: Multivariate experiments for LSTM Autoencoder: the model outputs
one feature

For what concerns, instead, the other three methods, the LSTM (Forecasting),
the Linear Autoencoder and USAD, the experiments were performed by asking the
models to output a reconstruction for all the features.

Threshold Prec Rec F1 ROC-AUC
Anomaly Score - ROC 0.31 0.51 0.39 0.5144
Anomaly Score - Perc 0.31 0.32 0.32 0.5122

Table 4.17: Multivariate experiments for LSTM: the model outputs a number of
features equal to those in input

Threshold Prec Rec F1 ROC-AUC
Anomaly Score - ROC 0.21 0.58 0.31 0.5784
Anomaly Score - Perc 0.35 0.11 0.15 0.5470

Table 4.18: Multivariate experiments for Linear Autoencoder
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Threshold Prec Rec F1 ROC-AUC
Anomaly Score - ROC 0.20 0.56 0.29 0.5565
Anomaly Score - Perc 0.20 0.09 0.12 0.5108

Table 4.19: Multivariate experiments for USAD

It is evident to notice how the multivariate setting does not allow a great and
significant improvement upon the univariate one: depending on the thresholding
method used and on the metric, the numerical results can be slightly higher or
lower with respect to those the models were able to reach in the univariate setting.
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4.4 Comparison with SWaT
Up until now, the models have been able to achieve an F1-score of at most 0.41.
In order to understand if this is due to too simple models or if it depends on the
dataset, which may be formed by difficult time series to handle for the anomaly
detection task, or even on the difficulty of the task, it was decided to assess the
capabilities of such models on the SWaT dataset, which was one of those used by
the authors of USAD ([18]) to evaluate their proposal.

Model Prec Rec F1 ROC-AUC
LSTM 0.21 0.66 0.32 0.6590

LSTM Autoencoder 0.23 0.68 0.35 0.6832
Convolutional Autoencoder 0.23 0.69 0.35 0.6876

Linear Autoencoder 0.22 0.67 0.33 0.6697
USAD 0.26 0.72 0.38 0.7160

Table 4.20: Performances of each model on SWaT based on the anomaly score.
The threshold is based on the ROC.

Model Prec Rec F1 ROC-AUC
LSTM 0.99 0.57 0.72 0.7844

LSTM Autoencoder 0.97 0.56 0.71 0.7777
Convolutional Autoencoder 0.86 0.49 0.63 0.7405

Linear Autoencoder 0.99 0.57 0.72 0.7831
USAD 0.99 0.62 0.76 0.8087

Table 4.21: Performances of each model on SWaT based on the anomaly score.
The threshold is based on the 93rd percentile.

Tables 4.20 and 4.21 shows the results obtained on this dataset. Note that the
metrics used are anomaly score based and that the experiments were performed in
the multivariate setting, as deemed more significant given the nature of the dataset.

It is evident to see how the models created by me are able to achieve good
results on this dataset. This can be explained according to two main reasonings.

First of all, the task, while still being Unsupervised, has been posed in a different
way: for SWaT, in fact, a training dataset containing exclusively normal measure-
ments has been used to train the model, which would then be able to recognize
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in an easier way anomalies, given that it has not learned them while training. In
our case, instead, we are passing as input of the models a dataset which contains
normal measurements as well as anomalous ones: this implies that the model learns
to recognize anomalies too, as if they were normal energy consumption values, thus
at inference time it is able to forecast or reconstruct them, making it very difficult,
if not impossible in certain cases, to correctly identify anomalies, as the output
models them perfectly.

Secondly, the dataset is quite different from LEAD: as shown in Chapter 3, the
time series are not characterized by rapidly changing values and, from a visual
inspection, they seem to be easier to learn for a model with respect to the time
series present in the LEAD dataset.

69



Experimental Results

4.5 Use Case: DATA CELLAR

In this section I am going to show the capabilities of generalization of the created
models on the DATA CELLAR dataset.

Note that since no labels are available, an assessment of their performances for
the anomaly detection task on real data cannot be performed. What one can do,
though, is look at how well or bad the models are able to perform predictions or
forecasts on the time series present in this setting.

Given the nature and structure of the data, presented in Chapter 3, the exper-
iments were carried out in the univariate setting, as no additional features were
provided by DATA CELLAR itself.

Note, nonetheless, that performing multivariate experiments could still be doable,
if one considers as additional attributes exclusively those that can be derived from
either the timestamp of the measurements (so, temporal and trigonometric features)
or the energy consumption values themselves, like lagged features.

All experiments have been performed by taking the models previously trained on
LEAD in the univariate setting: the DATA CELLAR measurements were divided
in windows of the same size as those obtained over the LEAD dataset, then they
were normalized in the same way.

Before showing how the different models were able to perform for their original
tasks of reconstruction or forecasting on such data, it is important to take some
things into account.

First of all, the data provided by DATA CELLAR refers to one type of building,
mainly residential: this was among the top 4 main "primary uses" of the LEAD
dataset, thus the models were able to see some examples of this kind, even though
in proportion to the other kinds of buildings this contained still a very low number
of examples.

Secondly, the data presents measurements which assume values in a very narrow
interval, on average among the four years present, between 0kwh and 2.5kwh: this
could potentially be an issue, because the measurements present in LEAD, instead,
are characterized by higher values. Though, the normalization applied on the data
before testing the models could help in smoothing out this difference and could
still enable the tried methodologies to generalize on such real-life data.

Figure 4.8 shows how the LSTM Autoencoder is able to reconstruct upon the
DATA CELLAR time series.
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Figure 4.8: Examples of reconstructions of three time series from 2021 using
LSTM Autoencoder. In blue the original input, in red the reconstruction, in green
the anomalies as identified with Method 3
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These reconstructions were obtained by applying the models trained on LEAD
on the DATA CELLAR data. We can see that overall the output of the LSTM
Autoencoder does not capture precisely the evolution over time of the consumptions:
it works better in the second and third case, where despite not being able to produce
an almost exact reconstruction of the input, it is still able to follow the overall trend.

Just as a comparison, the following Figures 4.9, 4.10 and 4.11 show how the
reconstructions/forecasts vary based on the model used for what concerns the
second building above presented.

Figure 4.9: Reconstruction of the second building with the Linear Autoencoder

Figure 4.10: Reconstruction of the second building with the Convolutional
Autoencoder
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Figure 4.11: Reconstruction of the second building with the LSTM Model
(forecasting)

With respect to the reconstruction proposed by the LSTM Autoencoder in
Figure 4.8, the one made by the Convolutional Autoencoder is the most precise, as
it follows the evolution of the consumptions almost perfectly. This could be an issue
though for the anomaly detection task, as the error may be such that with some of
the thresholds I developed also points which are not potentially anomalies would
be labelled as such. The Linear Autoencoder produces a good approximation of
the consumptions, while still not being very precise, but just following the trends.

The LSTM model, instead, produces a very noisy forecast of the time series, in
some cases more precise, in others not.

One could always argue that, given that the LEAD dataset is technically an-
notated, a XGBoost classification model could have been trained in a Supervised
setting and then tested on the data provided by DATA CELLAR.

XGBoost, in fact, has proven to be quite effective in identifying the anomalies
present in the LEAD dataset, as shown by the winners of the competition. Instead
of exploring Unsupervised methodologies, as was done with this thesis, one could
have just used such model which proved to be able to reach high results.

The problem that arises with this approach is the complete lack of generalisa-
tion: if in fact one performs a comparative experiment in a univariate setting,
considering exclusively the energy consumption measurements, it becomes notice-
able how XGBoost overfits on the specific dataset, identifying too many anomalies
on the data provided by DATA CELLAR. This can be easily explained by the fact
that the consumptions have different scales within the datasets: the ones of DATA
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CELLAR are very close to 0, and XGBoost has likely learned that measurements
equal or around that value are anomalies, thus resulting in almost all the data
points to be labelled as such.

(a) Anomaly Detection with univariate XGBoost

(b) Anomaly Detection with multivariate XGBoost

Figure 4.12: Comparison of the anomaly detection performed by XGBoost if
trained in a univariate or multivariate setting

Figure 4.12a shows how XGBoost performs on the second building presented:
we can see how over 750 data points, around 691 are flagged as anomalies, the
majority being the observations corresponding to values very close to zero, which
the Unsupervised approaches consider instead as normal points.

The performances can be improved if one trains XGBoost in a multivariate setting,
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considering also lagged features and the differences with respect to the current
measurement. In this case, the model identifies less anomalies than in the univariate
setting.

Figure 4.12b shows the improvement over the second building: this time, XG-
Boost identifies 54 anomalies, which is definitely better than before, but still the
generalisation is quite poor with respect to Unsupervised approaches.

75



Chapter 5

Conclusions

5.1 Conclusions

In this thesis I tackled the problem of performing anomaly detection on energy con-
sumption data in the case in which the dataset is unlabelled and contains anomalies.

The only way of handling the task in this case is using Unsupervised approaches,
which do not rely on the presence of labels, but are traditionally used with a
training dataset which contains only normal instances, thus allowing the models to
be able to easily identify anomalies, given that they did not learn how to reconstruct
or forecast them.

Within this work I assessed the possibility of using those same models when
the training data contains anomalies. This makes the task of anomaly detection
harder, as shown also by the results obtained: all the models are trained also with
anomalous data, which means that they become able to learn those values as if they
were normal consumptions. This is why finding the right threshold for identifying
the anomalies becomes a very important task: the threshold is the main element
responsible for a good performance of a model, as with the right one we can still
be able to identify the anomalous points.

We proved that the Unsupervised models are able to work extremely well with
point anomalies: despite, in fact, seeing the abnormal behavior of the energy
consumptions during the training, the reconstructions or forecasts are usually less
precise in presence of outliers, so extremely high or low values, thus enabling us to
achieve satisfactory results for the downstream task of anomaly detection. Instead,
the proposed approaches have higher difficulties in correctly identifying contextual
anomalies, as they are characterized numerically by values which fall within the
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normal range for the time series, and are thus harder to identify.

We proved, thanks to the comparison with another dataset, that it is not a
problem of the models and their architectures, but rather of the task itself, which is
harder than the way it is tackled traditionally, and of the dataset, which contains
rapidly changing time series that can make it harder for the models to be able to
follow the evolution over time of the measurements.

Finally, we assessed the capabilities of the trained models of generalizing over
the real data provided by DATA CELLAR: it is in fact of great interest to identify
anomalies in energy consumption measurements, to avoid wasting resources and
money and to allow a better management of the LECs that are present in the EU,
which aim is that of becoming more and more sustainable.

The analysis performed on the DATA CELLAR data was a qualitative one, as
labels were not present: the models previously trained on LEAD dataset were used,
at inference time, on this data and the respective reconstructions and forecasts
were analyzed, to understand their capabilities of generalizing on new, unseen data.
Such models were still able to work quite well, despite the differences between the
real data and the LEAD dataset.
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5.2 Future Works
The task of anomaly detection over time series is of great interest in many different
fields, as it becomes increasingly more important to be able to identify abnormal
behaviours in the data.

For what concerns the case of energy consumption data, there are many other
approaches which could be explored, to understand whether it is feasible to handle
at training time anomalous data in such a way that it becomes possible to achieve
good performances for the anomaly detection task.

One possibility could be to further explore the world of GANs, which in this
thesis were used via a model which reproduced their adversarial learning, while not
being a proper Generative Adversarial Network.

I believe, though, that on this particular dataset the Deep Learning Forecast-
ing, Reconstruction and Generative approaches could have reached their limit. It
could be interesting to assess the capabilities of clustering approaches, which aim is
that of creating clusters in which divide points which behave normally from those
which constitute anomalies.

Finally, one could further explore thresholding methods, which are a very im-
portant part of the anomaly detection task: in fact, thresholds are those that allow
us to identify whether a data point is to be considered as an anomaly or not, by
evaluating the difference between the output of the model and the ground truth.
In this work, several possibilities were tried, but it could be interesting to explore
the possibility of using more dynamic approaches, as to better take into account
changes for example within a specific window of observation, and create a more
refined anomaly detection task.
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