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Summary

The argument of the thesis focuses on Knowledge-Enhanced Conversational Agents.
In particular, it focuses on the implementation of a specific type of Recurrent Neural
Network, Long Short-Term Memory (LSTM), to leverage the temporal dependencies
of dialogue turns for extracting knowledge from a knowledge base. The thesis
investigates the use of transformers for encoding multimodal language content
and exploits the hierarchical structure of the knowledge base by creating three
downstream tasks. These tasks are aimed at recognizing the domain, the entities
involved, and the documents referenced in the user’s request. The experiments
are conducted with DSTC11 Track 5, which is a de facto standard for developing
conversational agents.
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Chapter 1

Introduction

Conversational Agents (CAs) are artificial-intelligence powered systems designed to
engage in natural language conversation with users. The term “conversation agent”
is frequently used interchangeably with the terms “intelligent personal assistant”
[1], “chatbot” [2], or “conversational agent” [3]. In a world that is even more digital
every passing year, CAs have gained eminence as tools that simulate human-like
interactions, providing information, assistance, or entertainment through chat-
based interfaces. Leveraging various techniques from natural language processing
(NLP), machine learning, and dialogue management CAs aim to understand the
user request, generate proper responses, and deliver personalized experiences. From
customer support to virtual companions, CAs are employed in a wide variety of
applications, transforming the way we interact with technology and providing a
seamless bridge between humans and machines.

Initial efforts and first developments about CA had been done in previous
century. Schöbel et al. consider the improvements done in this field in five different
waves [4] (see Fig. 1.1). In 1950, one of the foundational contributors of theoretical
computer science and artificial intelligence Alan Turing, in his well-known paper
[5] proposed his test to assess whether a machine can think or has a conscience.
This paper was the introduction of the ongoing discussion around the “humanness”
of machines and the technical feasibility and future of machines. Less than 20
years later, first chatterbot (in modern times, chatbot) ELIZA was introduced
based on natural language communication by Joseph Weizenbaum [6] and it served
as foundation for subsequent chatbot and conversational AI research, inspiring
the development of more sophisticated systems with advanced NLP techniques.
This phenomenon also caused emergence of so-called “ELIZA effect” [7] which is
the tendency of individuals to attribute human-like understanding or intelligence
to computer programs or chatbots. The achievement of a computer program
that can resemble a conversation with a human under specific conditions that are
predetermined represent first wave of research on CAs.
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The second wave of CA research, for the first time, made use of NLP and
statistical methods and took process a lot further. Thus, this stage of development
is considered as “exploration” phase. Moreover, with this wave, methods such as
pattern recognition and the first simple AI solutions entered CA research. Due
to this, specialized languages and considerably more sophisticated CAs entered
the market. The chatbot A.L.I.C.E. (release 1995) and the special language it was
programmed with, the so-called artificial intelligence markup language [8] is the
most prominent example of this period.

In the third wave, improvements gained significant momentum in every part of
entire topic of CA research based on technological advancements made in the 2000s
and the mid-2000s so, the period is called “kick-off”. Of course, this development
revealed itself in emergence of further technologies and implementations like IBM
Watson in 2006. This made IBM the first big-tech company to release a sophisticated
product in CAs domain and it led other big-tech companies to give attention in
the following years.

The groundwork for the fourth wave of CA research was built with the revolution
of the mobile phone market (i.e., the release of the Apple iPhone in 2007) and
general consumer electronics that followed during the 2010s and the technological
improvements that came with it. Especially, in the 2010s, significant improvements
particularly in AI and NLP led CAs to become mainstream and occupy more
attention. The shift from text-based to voice-based CAs made them more reachable
to the broader population, given that they can be operated without the need to type
in the text. Thus, the popularity increased tremendously, and it showed itself in
research and, financial investment into these agents, not only by researchers but also
from big companies like Google and Amazon who realized the massive potential. In
2011 Apple Siri was launched alongside the iPhone 4S, introducing voice-activated
virtual assistants to a wide audience and it attained huge popularity. Then in 2014,
Amazon Alexa was released integrated with the Amazon Echo smart speaker and
it was followed by Google Assistant in 2016, leveraging Google’s knowledge graph
and machine learning capabilities.

The fifth wave of CA covers the last few years of research and the near future
of it. One of the key focuses is the pursuit of “true” or “general” AI through
automation or autonomous CAs. Technologies like Google’s LaMDA [9] and
OpenAI’s ChatGPT have emerged as prominent advancements, enhancing natural
language interactions and enabling a wide range of tasks. Especially, by the
release of beta version of OpenAI’s ChatGPT in November 2022, many experts
called this AI technology the most disruptive of all in that year and the future
[10]. This technology enables a wide variety of tasks during a conversational
interaction, such as writing essays, helping with coding and, many other creative
tasks. All these developments aim to make CAs more human-like, blurring the line
between human and machine. Additionally, the fifth wave emphasized improved
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understanding of natural language, including sarcasm, through advanced deep
learning and Natural Language Understanding (NLU) methods. Besides of text-
based CAs and voice-based CAs, embodied CAs become also popular by integrating
embodiment and virtual agents, such as avatars, and this further enhances the
anthropomorphic qualities of CAs. These advancements pave the way for highly
customizable CAs with unprecedented social presence. Ultimately, the fifth wave
emphasizes adaptability, personalization, and individualization of human-computer
interactions, creating seamless and integrated experiences in various aspects of life.

Conversational agents, while achieving promising results, also have many limita-
tions such as contextual understanding, domain expertise, common sense reasoning,
handling ambiguity, emotional intelligence, and ethical considerations. They strug-
gle with accurately interpreting the context of conversations, especially in unfamiliar
domains. Their responses may lack depth and relevance outside their specialized
knowledge areas. CAs often struggle with understanding ambiguous queries and
fail to exhibit emotional intelligence in recognizing and responding to user emotions.
Ethical concerns include privacy, data security, and biases. Overcoming these
limitations requires advancements in NLU, domain adaptation, common-sense rea-
soning, emotional modeling, and adherence to ethical guidelines. Of course, there
are more than we mentioned and overcoming these limitations requires continued
research and development in areas such as NLU, context modeling, knowledge
representation, and ethical guidelines to enhance the capabilities and reliability of
CAs.

Figure 1.1: The five waves of Conversational Agent Research [4]
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In the context of the fifth track of the Dialogue System Technology Challenge
11 (DSTC11), this study demonstrates the application of the attention mechanism
to leverage the temporal dependencies of dialogue turns between the user and the
system. Additionally, it is combined with the exploitation of the hierarchical struc-
ture of the knowledge base during information retrieval to enhance the effectiveness
and efficiency of KCAs. The information provided in the subsequent chapters is
summarized below:

• Chapter 2: This section provides information about Knowledge-enhanced
Conversational Agents and DSTC challenges, with an in-depth discussion of
the specific task at hand.

• Chapter 3: In this section, the related work on text data manipulation
techniques and information retrieval methods is discussed.

• Chapter 4: Here, the adopted methodology is framed with an evaluation of
the method alongside its predecessors to provide an in-depth understanding.

• Chapter 5: In this section, the experiments conducted are presented, detailing
the experimental setup and the results yielded by the methods.

• Chapter 6: Conclusion.
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Chapter 2

Task

Our work in this experiment concentrates on the task introduced by Amazon in the
eleventh Dialogue System Technology Challenge (DSTC), specifically focusing on
Track 5: Task-oriented Conversational Modeling with Subjective Knowledge [11].
The goal of this challenge is to improve Task-oriented Dialogue (TOD) Systems,
which traditionally rely on domain APIs and structured knowledge bases to answer
user requests. The aim is to incorporate a new, unstructured knowledge base that
includes subjective knowledge, thereby enhancing the system’s ability to provide
comprehensive responses. For this reason, this chapter will provide a detailed
overview of the task at hand.

In section 2.1, KCAs are detailed, highlighting their distinctive features and
characteristics to enhance understanding of their objectives. The following section
delves into DSTC11 - Track 5. It begins with an overview of the DSTC challenges,
setting the stage for a discussion on the precursors to the current task, thereby
providing a comprehensive background. This section then progresses to present de-
tailed information about the current challenge, including its specific characteristics,
the dataset utilized, and the evaluation metrics employed. Exploring the evolution
of the topic from general information about KCAs, through DSTC challenges,
to the specific features of DSTC11 Track 5, provides a deeper understanding by
tracing how the topic has developed over time.

2.1 Knowledge-enhanced Conversational Agents
In recent years, the development of Knowledge-enhanced Conversational Agents
(KCAs) has marked a significant advancement in the field of artificial intelligence.
These sophisticated systems leverage extensive knowledge bases [12] to provide ac-
curate, contextually relevant responses, setting a new standard for user interaction.

Unlike their predecessors, which relied on simple machine learning (ML) models
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or predefined rules, KCAs integrate structured information from diverse sources,
such as databases and knowledge graphs, thereby providing factual and up-to-
date responses. This integration allows for interactions that are not only more
informative but also more engaging.

The NLU capabilities of these systems are particularly deserving attention.
Advanced algorithms enable the agents to comprehend complex queries, facilitating
a more natural conversational flow. Furthermore, some agents possess dynamic
learning abilities, allowing them to update their knowledge bases with new informa-
tion accumulated from ongoing interactions [13], thus continually improving their
performance.

A key feature of knowledge-enhanced conversational agents is their multi-domain
expertise. By accessing domain-specific knowledge bases, these agents can handle
inquiries across various fields, from everyday topics like weather and news to more
specialized areas such as healthcare [14] and finance. This versatility enhances their
utility across a broad spectrum of applications. The ability to offer personalized
recommendations through understanding user context and preferences significantly
enhances user satisfaction and engagement. Semantic reasoning, another critical as-
pect of KCAs, allows them to infer answers to implicitly stated questions, providing
an interactive experience that closely mimics human conversation [15].

In the advancement of KCAs, the overarching objective is multifaceted, aiming
to refine their comprehension capabilities, broaden the scope of their knowledge
repositories, and tailor interactions to individual user profiles. Integral to their
development is the emphasis on safeguarding user privacy, enabling multimodal
communication channels, adeptly navigating conversational misunderstandings,
and scaling operations to accommodate a growing user base. These enhancements
collectively drive the evolution of conversational AI, setting a new standard for
human-computer interaction.

2.1.1 Characteristics and Typology of KCAs
Knowledge-enhanced Conversational Agents, also called knowledge-based con-
versational agents [16], incorporate external knowledge sources to improve their
understanding, generation, and overall interaction capabilities. These agents lever-
age various forms of knowledge, including databases, knowledge graphs and text
corpora to provide more accurate, relevant and informative responses to the user.
Depending on the perspective from which they are analyzed, these agents can be
categorized into several key groups:

Based on Goal of knowledge used:

• Task-Oriented agents are designed to accomplish specific tasks or help
users achieve particular objectives through conversation. They are usually
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domain-specific, focusing on a narrow set of functions but executing them
efficiently. The goal is to provide quick and accurate responses to user queries
or commands related to the agent’s particular area of expertise. For example,
Personal Assistants which help to manage personal tasks [17] such as setting
reminders, scheduling appointments, sending messages, or providing navigation
instructions.

• Non-Task-Oriented (Social) agents often referred to as chatbots or social
bots, are designed for open-ended conversation and social interaction. These
agents aim to mimic human-like conversational abilities, providing companion-
ship or entertainment rather than performing specific tasks. They are usually
open-domain, and capable of discussing a wide range of topics to keep the
user engaged.

• Hybrid Systems that combine elements of both task-oriented and non-
task-oriented conversational agents. These hybrids aim to provide a more
versatile user experience by being capable of performing specific tasks while
also engaging in more open-ended, social interactions. For example, Google
Assistant is hybrid because it combines task-oriented functionalities like man-
aging personal tasks and controlling smart devices with non-task-oriented
conversational abilities for engaging social interactions and entertainment.

Based on Method of Knowledge Integration:

• Static Integration agents incorporate fixed set of knowledge at the design
time, which doesn’t change during interactions.

• Dynamic Integration agents continuously update or draw knowledge in
real-time from various sources like the web, databases, or through user request.

• Hybrid Integration agents combine both static and dynamic knowledge
sources to enhance versatility and depth.

Based on the Nature of the Conversational Interface

• Text-based agents interact with users through text input and output, conve-
nient for chat applications and text messaging services.

• Voice-based agents utilize speech recognition and synthesis to enable spoken
language interactions, useful for hands-free applications and accessibility.

• Multimodal agents combine heterogeneous forms of input and output, in-
cluding text, voice, and even visual elements, to provide a richer interaction
experience to the user.
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Based on Application Domain

• Single-domain agents focuses on a specific area or function, providing deep
but narrow expertise. For instance, an agent solely dedicated to scheduling
medical appointments is a single-domain agent.

• Multi-domain agents on the contrary operate across multiple, distinct areas
(domains) within a broader context, capable of handling a variety of tasks
or topics within that context. For instance, an arbitrary agent called Travel
Planner which covers information related to flights, hotel bookings, local
attraction suggestions etc. would be considered multi-domain agent.

• Open-domain agents are designed to engage in conversations on a wide range
of topics without being restricted to a specific domain or set of tasks. These
agents aim to simulate human-like interactions, capable of discussing virtually
any subject matter the user wishes to explore. The goal is to maintain a
coherent and contextually relevant dialogue over a broad spectrum of topics,
mirroring the conversational flexibility of humans. Systems like ChatGPT [18]
are examples of open-domain conversational agents capable of engaging users
in discussions on a multitude of subjects, from science and technology to art
and philosophy.

Based on Interaction Complexity

• Single-Turn agents handle one query and provide one response per interaction
cycle, without maintaining the context or flow of conversation beyond that
single exchange. Each query is treated as an isolated event, with no memory of
previous interactions within the same session. Single-turn agents are typically
used for straightforward tasks, such as answering specific questions or executing
simple commands, where the interaction does not require follow-up questions
or clarification.

• Multi-Turn agents are capable of engaging in conversations that involve
multiple exchanges between the user and the agent, maintaining context and
remembering the flow of conversation across several turns. This ability allows
them to handle more complex interactions, such as resolving ambiguities,
asking for clarifications, and progressively building upon the user’s inputs to
reach a conclusion or fulfill a request. Multi-turn conversations mimic more
natural human dialogue, where the discussion evolves and the context from
earlier parts of the conversation influences responses later on.
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2.1.2 Architecture of KCAs

While there are various types of KCAs differing in several aspects, a general
architecture that encompasses all of them can still be outlined. Fig. 2.1 depicts the
general architecture of KCAs with its key components [19]. The components are:

• User Interface: Through this component user interacts with the system. It
could be a chat or a voice interface where the users input their requests and
receive system responses.

• NLU: This module is for processing the user’s input and understanding the
intent (what the user wants to achieve) and the context (the relation of the
input to the dialogue history) of the conversation.

• Dialogue Manager: This module is the central part of the architecture that
communicates between the NLU, the response generator, and data sources. It
controls the flow of the conversation by deciding what action to take based on
the user’s intent and the context.

• Response Generator: Once the dialogue manager has decided on a course of
action, the response generator creates a natural language response to the user’s
query. It is responsible for translating the system’s action into something
understandable and informative for the user.

• Data Sources: These are the unstructured or structured, internal or external
knowledge sources from which the system retrieves information to ground its
responses.

• Action execution/Information retrieval: These are tasks the system may
perform to address the user’s request. Action execution is about taking the
user’s intent, which has been understood and processed, and turning it into a
real-world action or result. Information retrieval is the process of finding the
relevant data from the knowledge base.
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Figure 2.1: Modular architecture of KCAs

2.2 The Dialogue System Technology Challenge
The Dialog System Technology Challenges (DSTC) also formerly known as The
Dialogue State Tracking Challenges are annually held, series of competitions aimed
at speeding up the advancement of conversational AI technologies and encouraging
new work that advances the state-of-the-art methods. Initiated in 2013, these
challenges bring together researchers and practitioners from around the world
to address pressing problems in dialogue system development, including NLU,
dialogue management, and response generation. To reflect the evolving needs and
emerging trends within the field of conversational AI, each challenge iteration
focuses on specific themes. Through these years, DSTC has expanded its scope
from dialogue state tracking to include tasks like end-to-end dialogue modeling,
knowledge-grounded conversations, and the integration of subjective knowledge
into CAs.

From DSTC1 to DSTC5, the challenges progressively focused on enhancing
dialogue systems, starting with dialogue state tracking (also called “belief tracking”)
[20] only in a restaurant domain and gradually expanding to more complex scenarios.
Each challenge introduced new elements, DSTC3 tested adaptability to unseen
domains [21], DSTC4 explored multi-domain dialogues [22], and DSTC5 added cross-
lingual capabilities [23]. This evolution demonstrated a continuous push towards
improving the robustness, versatility, and real-world applicability of conversational
AI technologies.

From DSTC6 onwards, the challenges further expanded the scope (unlike pre-
vious editions, multiple tracks proposed) and complexity of conversational AI
research. DSTC6 introduced end-to-end dialogue systems and multimodal dialogue
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capabilities, marking a shift towards more integrated and versatile conversational
models [24]. With DSTC7, the focus had widened to include end-to-end conver-
sation modeling and response generation, emphasizing the generation of more
contextually relevant and coherent responses [25]. DSTC8 continued this trajec-
tory by exploring multi-domain dialogues and knowledge-grounded conversations,
aiming to boost the capability of dialogue systems to provide more informative
and accurate responses based on external knowledge sources [26]. DSTC9 built
upon these themes, introducing tracks related to interactive evaluation, domain
adaptation, and beyond domain APIs, pushing the envelope in terms of system in-
teractivity and adaptability [27]. DSTC10 pushed the boundaries of conversational
AI further through a range of innovative challenges, from enhancing dialogues with
internet memes to grounding conversations in external knowledge, and advancing
multimodal AI. It also focused on improving reasoning in scene-aware dialogues
and developing better evaluation tools for dialogue systems, reflecting a broad
effort to make AI interactions more engaging, context-aware, and secure [28].

In DSTC11, the focus was on integrating subjective knowledge into task-oriented
conversations and improving cross-lingual and cross-domain dialogue state tracking.
This challenge underscored the shift towards creating conversational AI systems
that are not only adaptable across languages and domains but also capable of
personalized interactions, reflecting a deepened commitment to enhancing user
experience. The proposed tracks are (1) Ambiguous Candidate Identification
and Coreference Resolution for Immersive Multimodal Conversations; (2) Intent
Induction from Conversations for Task-Oriented Dialogue; (3) Speech-Aware Dialog
Systems Technology Challenge; (4) Robust and Multilingual Automatic Evaluation
Metrics for Open-Domain Dialogue Systems; (5) Task-oriented Conversational
Modeling with Subjective Knowledge.

We focus on "Knowledge Selection" sub-task of Track 5 which aims to enhance
dialogue systems by integrating subjective user preferences and knowledge into
task-oriented conversations, and to create more personalized and context-aware
interactions.

2.2.1 DSTC9 - track 1 and DSTC10 - track 2
As already mentioned, each year, the DSTCs evolve by introducing more complex
and diverse tasks, progressively enhancing conversational AI’s capabilities in un-
derstanding, adaptability, and interaction with humans and external knowledge
sources. Before diving into DSTC11 - track 5, it would be better to introduce how it
came to this point. "Beyond Domain APIs: Task-oriented Conversational Modeling
with Unstructured Knowledge Access" track of DSTC9 and "Knowledge-grounded
Task-oriented Dialogue Modeling on Spoken Conversations" track of DSTC 10 are
predecessors of our concerned topic that we should particularly mention.
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In DSTC9 - track 1, the aim was to address a significant challenge in con-
versational AI: enabling task-oriented dialogue (TOD) systems to go beyond the
limitations of predefined domain-specific APIs and structured databases (DBs).
This track searched ways to explore and develop methodologies that allow dialogue
systems to dynamically access, interpret, and utilize unstructured knowledge sources
such as text from websites, documents, or open-domain corpora to enhance their
conversational competence. For this reason, the turns that could be handled by the
existing task-oriented conversational models with no extra knowledge requirement
disregarded, and the focus put on the turns that require knowledge access. This task
addressed with the following three subtaks: 1) Knowledge-seeking Turn Detection,
2)Knowledge Selection, and 3) Knowledge-grounded Response Generation (see Fig.
2.2).

Figure 2.2: Architecture of the task that focuses on the knowledge access branch
in the shaded box [29]

At the end of challenge task, top 12 teams in the overall objective score were
selected and their best entries manually evaluated by humans in terms of Accuracy
and Appropriateness. Then the Spearman’s rank correlation coefficient (Spearman
1961) was calculated between the ranked lists of all the entries in every pair of
objective and human evaluation metrics. As a result, it has been revealed that
the Knowledge Selection (Task2) metrics has stronger correlations than the other
subtasks’ (Task1-Detection, Task3-Generation) metrics to the final ranking (see
Fig. 2.3) [30]. This denotes how the knowledge selection is a key task to improve
end-to-end performance and it helped in later works to researchers to have a deeper
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view of the task.

Figure 2.3: Correlations between the objective and human evaluation metrics

In DSTC10 - track 2, two sub-tracks were proposed: 1) multi-domain dialogue
state tracking and 2) task-oriented conversational modeling with unstructured
knowledge access [31]. Second sub-track was direct extension of the DSTC9 - track
1. The novelty introduced in this challenge was related to spoken conversations.
Unlike before, where emphasize put on written conversations, introduction of
additional spoken conversations within dataset was also introduction of additional
problems to solve and tackle with. Because obviously, the manner of speaking and
writing differs, even when the context, intent, and meaning of the conversations are
the same. Spoken conversations are prone to have extra noises from disfluencies1

or barge-ins2 which are usually not the case in processing written texts. Moreover,
errors from speech recognition introduce further complexities in the practical
development of spoken dialogue systems and researchers addressed these problems.

2.2.2 DSTC11 - track 5
TOD systems focus on developing CAs that assist users in reaching specific objec-
tives, such as making hotel or restaurant reservations. Traditionally, these systems
have concentrated on delivering information and executing tasks based on user
requests, limited to the capabilities of predefined DBs [32] or APIs [33]. While being
able to help simple user queries like booking hotel, reserving seat in restaurant
etc. they fall short to answer follow-up questions user may have, such as "whether

1Interruptions or hesitations, such as "um," "uh," repetitions, or corrections.
2When a speaker interrupts another speaker before they have finished talking.
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they are allowed to bring pets" or "what the cancellation policy is". To address
this issue, DSTC9 - track 1 proposed exploiting information coming from FAQs by
accessing external unstructured knowledge sources. This was effective strategy but
it had some gaps too. For instance, when the system gets subjective user requests
like "Is the WIFI reliable?" or "Does the restaurant have a good atmosphere?"
agent is not able to answer these questions only by using FAQs. In DSTC11 -
track 5 for addressing this issue, integration of subjective knowledge sources was
introduced as a major target by Zhao et al. [11] to research community. This
novel subjective-knowledge-based TOD (SK-TOD) also introduced first correspond-
ing dataset with knowledge-seeking dialogue contexts and manually annotated
responses which grounded in subjective knowledge.

As every novelty this one also introduced some intrinsic challenges to tackle
with. Unlike its predecessors where factual information (FAQs) about particular
entity was required to answer the user request, here there can be cases where we
should refer more than one entity to provide satisfying response. Because subjective
insights, such as the experiences, opinions, and preferences of other customers
which we refer to ground the system response are qualitative concepts. So, the
cases where we should compare two or more places for quality of particular facility
are inevitable. Also, in cases where even only information about particular entity
is required, the system has to ground final response with all the related reviews
retrieved, since some customers write positive comments about facility and some
of them do not like, and mention it in a negative way. So, the final response
should contain general information to let the user to understand what is going
on. In fig. 2.4, we see how responses were grounded with subjective knowledge.
Above we see customer reviews of corresponding hotels. In below part, dialogue
sessions between the system (denoted by S) and three different users (denoted by
U) were given, where the last user utterances are knowledge-seeking turns with
subjective knowledge asking WIFI quality of the hotel(s). Last system responses
which highlighted are system responses grounded with subjective knowledge where
response with comparison of two entities (second) and response which covers both
positive and negative reviews (third) are shown.

Task Description

In the field of human-computer interaction, particularly in conversational systems
or chatbots, understanding the flow and history of a conversation is crucial for
generating relevant and coherent responses. This understanding is encapsulated
in what is known as the dialogue context. The dialogue context is a structured
representation of the conversation that captures both the user’s inputs and the
system’s responses up to the current point in time. It serves as a foundation for the
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Figure 2.4: Examples of the SK-TOD task [11]

system to interpret the user’s latest utterance3 and decide on the most appropriate
response.

The dialogue context C = [U1, S1, U2, S2, . . . , Ut] is given between the user and
the system. Each user utterance Ui is followed by system response Si, aside
from the last user utterance Ut. The conversation involves one or more entities,
denoted as E = {e1, e2, . . . , em}. Beside this we have subjective knowledge source
B = [(e1, R1), (e2, R2), . . .] which contains all the entities and their corresponding
customer reviews. Each entity e has multiple reviews (also called knowledge
snippets) R = {R1, R2, R3, . . .} and each review can be divided into segments

3Spoken or written statement that conveys a complete idea or thought by a speaker or writer
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[K1, K2, . . .], such as paragraphs, sentences, sub-sentences.
The architecture of SK-TOD is similar to precedent challenges’ architecture.

There is only a small difference in Knowledge Selection phase which is separated
into two steps (EntityTracking + KnowledgeSelection) unlike before. In Figure
2.5, the pipeline architecture is shown with all four sequential sub-tasks. Each
sub-task has its unique goal:

• Knowledge-seeking Turn Detection: The goal here is to define if the last
user utterance Ut in the given dialogue requires external knowledge access
or not. It is regarded as a binary classification problem, where the dialogue
context C is used as an input, and the output is a binary indicator.

• Entity Tracking: In this step, the goal is to determine a subset of relevant
entities from the pool E = {e1, e2, . . . , em}. This step is added to decrease
computational cost since it reduces number of candidates to look in knowledge
selection phase.

• Knowledge Selection: The goal here is to select relevant knowledge snippets
for the user’s request. Given the dialogue context C and the set of candidate
knowledge snippets K of the previously determined relevant entity or entities
E, K+ ⊆ K subset of relevant knowledge snippets selected. There is no exact
number K+ to retrieve relevant knowledge snippets like previous challenges.

• Response Generation: Final step, where the goal is to create system
response utterance St. Given the dialogue context C and the selected relevant
knowledge snippets K+, the response is generated.

Figure 2.5: Architecture of the SK-TOD [11]
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Dataset

In DSTC11 - track 5, organizers introduced an augmented version of MultiWOZ 2.1
[34] dataset for the participants. The dataset includes newly introduced subjective
knowledge-seeking turns and it was collected via Amazon Mechanical Turk4 by
English-speaking crowd workers from the USA, CA, and GB, who underwent
pre-qualification tests and whose work was manually validated for quality. Data col-
lection included review generation with specified personas, aspects, and sentiments
based on common hotel and restaurant review criteria.

In total, 19,695 instances with subjective user requests and subjective knowledge-
grounded responses were collected. Besides this, another 18,363 dialogues without
subjective user requests were sampled from the original MultiWOZ dataset to
support the knowledge-seeking turn detection task. After creating a mixture of
both, the final dataset was split into 75% training set, 10.8% validation set and
14.2% test set. In the validation and test sets, there are unseen instances, meaning
their aspects are not included in the training set. This is to evaluate the model’s
ability to generalize to arbitrary aspects. Also, as previously mentioned, this
challenge involves numerous cases where dialogue contexts are associated with
multiple ground-truth entity labels, adding to the task’s complexity. The number of
instances with multiple entities for each set, along with all the previously mentioned
statistics, are detailed in Table 2.1.

Train Val Test
Full data 28,431 4,173 5,475

Knowledge-seeking data 14,768 2,129 2,798
Seen instances 14,768 1,471 1,547

Unseen instances 0 658 1,252
Multi-entity instances 412 199 436

Table 2.1: General statistics of DSTC11 - track 5

4Crowdsourcing platform that connects businesses and developers with a global workforce to
complete tasks that require human intelligence
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The challenge dataset is organized as follows: It comprises a Dialogue dataset,
which features conversations between users and a system (see Fig. A.3), and a Labels
dataset, containing ground-truth labels for the corresponding instances in the dia-
logue dataset (see Fig. A.5). Additionally, there’s a Knowledge dataset (knowledge
base), which consists of reviews and FAQs related to each specific domain/entity
(see Fig A.2). Here, domain refers to categories like "hotel" and "restaurant," and
entity denotes individual names, such as a specific hotel (e.g., BRIDGE GUEST
HOUSE) or a restaurant (e.g., ALEXANDER BED AND BREAKFAST). Each
entity is accompanied by its unique collection of review documents and FAQs. The
review documents not only contain textual sentences but also include metadata
providing further details on each review, covering aspects such as traveler type (e.g.,
Couples, Business Travelers), notable dishes (e.g., Beer-Braised Chicken Stew), and
drinks (e.g., Beer, Ale). The FAQs are stored as question-and-answer pairs. Figure
2.6 illustrates an example of a knowledge-seeking dialogue context between a user
and a system, shown in the upper section, with its corresponding ground-truth
label displayed in the lower section. In this example, only one knowledge snippet
is identified as the ground-truth label for the Knowledge Selection task. Generally,
there is more than one ground-truth knowledge snippet. This particular example
has been selected solely for visualization purposes. All the information in the
knowledge section refers to the corresponding knowledge snippet in the knowledge
base (KB).

Table 2.2 provides statistical data on domains, showing that there are only two
distinct domains across all examples. It details their distribution in the training
and validation sets and lists the number of unique entities within each domain.

Hotel Restaurant
Dialogues(Train) 7,859 6,909

Dialogues(Val) 1,436 693
Entities 33 110

Table 2.2: Statistics for Domain

Evaluation metrics

In this challenge, each participating team is permitted to submit up to five system
outputs, each containing the results for all three tasks on the unlabeled test
instances. Evaluation is done in two phases. Firstly, each submission is evaluated
using task-specific objective metrics (see Table 2.3) by comparing to the ground-
truth labels and responses. Then, based on the overall objective score, the finalists
are selected and manually evaluated.
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Figure 2.6: Example of knowledge-seeking dialogue and its corresponding label
instance

Tasks Evaluation metrics
Knowledge-seeking turn detection Precision/Recall/F1score

Knowledge selection Precision/Recall/F1score/Accuracy

Response generation BLEU/ROUGE/METEOR

Table 2.3: Task-specific objective metrics for DSTC11- track5

Given the interconnected nature of tasks within the pipelined framework, the
final scores for knowledge selection and response generation are computed by taking
into account the initial step of knowledge-seeking turn detection, specifically its
recall and precision metrics, as follows:

Sp(X) =
q

xi∈X(s(xi) · f1(xi) · f̃1(xi))q
xi∈X f̃1(xi)

, (2.1)
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Sr(X) =
q

xi∈X

1
s(xi) · f1(xi) · f̃1(xi)

2
q

xi∈X f1(xi)
, (2.2)

Sf (X) = 2 · Sp(X) · Sr(X)
Sp(X) + Sr(X) , (2.3)

where f1(x) and f̃1(x) represent the reference and the predicted outcomes for
the task of knowledge-seeking turn detection and, s(x) denotes the score associated
with either knowledge selection or the response generation, based on a target metric
for an individual instance x ∈ X.

Then a set of multiple scores across different tasks and metrics are aggregated
into a single overall objective score to define the finalists. This score is mean
reciprocal rank and it is computed as follows:

Soverall(e) = 1
|M|

|M|Ø
i=1

1
ranki(e) , (2.4)

where ranki(e) is the submission entry e ranking in the i − th metric with
respect to all the other submissions and, M is the number of metrics that have
been considered.

After defining finalists, manual evaluation phase is done by the following two
crowd-sourcing tasks:

• Appropriateness: whether the response is fluent and naturally connected to
the dialogue context.

• Accuracy: whether the sentiment proportion provided by the response is
accordant with that of the subjective knowledge.
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Chapter 3

Related work

In this chapter, related work is discussed. It is started with an explanation of how
text data is handled in machine learning. The techniques used are examined, and
their development is demonstrated by providing how each technique was proposed
to address some issues related to those existing at that period of time. Then, the
most famous information retrieval techniques are discussed, especially in the context
of DSTC challenges. Their strengths and weaknesses are precisely demonstrated to
lay the base for the choice of future methodology.

3.1 Generation of Sentence Embeddings
The focus in NLP is on the interactions between computers and human language
and, in particular, on how to program computers to process this textual data
efficiently. As is well known, machines inherently lack the capability to process
language data in its raw form. Consequently, it is imperative to represent textual
information numerically before any form of processing or analysis can be undertaken.
For this reason, various techniques are applied to obtain embeddings of words or
sentences, transforming textual data into a numerical representation that machines
can process.

Sentence embeddings are a common method in NLP that involves mapping
sentences into fixed-length vectors of real numbers in a high-dimensional space,
moving beyond the focus on individual words, as seen in word embeddings. Sentence
embeddings can be obtained either through sparse vectorization methods like Bag-of-
Words or TF-IDF, which create high-dimensional, sparse representations, or through
dense vectorization methods like Recurrent Neural Networks or Transformer-based
models, which generate continuous, low-dimensional embeddings capturing semantic
meaning in dense vector spaces. The second approach is designed to encapsulate the
semantic content of sentences, incorporating not just the specific words present, but
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also the broader context and subtle nuances of their arrangement. Such embeddings
are crucial to a variety of NLP applications that require understanding the meaning
of texts at a higher level than individual words, such as Semantic Textual Similarity,
Information Retrieval, and Question Answering. By transforming sentences into
vectors that carry their semantic meaning, sentence embeddings facilitate the
processing and analysis of text at a nuanced level, crucial for the sophisticated
understanding and interaction that modern NLP tasks require.

3.1.1 Sparse Vector Representation
Sparse vector representation methods are fundamental and pioneering techniques
in NLP and in general ML, used to convert text data into numerical vectors. These
methods encode text information into vectors with mostly zero elements, making it
compact and efficient for storage and processing. Despite its simplicity, sparse vector
representation provides essential benefits, they are straightforward to implement
and understand, adaptable to apply various NLP tasks and computationally efficient.
Techniques like the Bag of Words model and TF-IDF rely on sparse vectors, laying
the groundwork for subsequent advancements in text representation.

The Bag of Words (BoW)

BoW method represents text data by breaking down sentences into individual
words or phrases and counting their occurrences, disregarding grammar and word
order but maintaining multiplicity. Simply, the idea is to transform textual data
into numerical features that can be used for various computational tasks. It treats
every word as equally significant, without considering the word’s relevance across
the corpus. This can sometimes lead to overemphasizing common words1 that
might not be useful for some tasks such as classification and, search.

For a corpus C containing D documents {d1, d2, . . . , dD} and a vocabulary V
consisting of N unique words {w1, w2, . . . , wN} extracted from the corpus, the
BoW representation of a document di is a vector vi = [vi1, vi2, . . . , viN ], where each
element vij corresponds to the frequency of the word wj in the document di.

The frequency of a word wj in a document di can be represented as:

vij = freq(wj, di) (3.1)

where vij is the number of times wj appears in di.

1The words that have higher frequency across documents
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Term Frequency-Inverse Document Frequency (TF-IDF)

The TF-IDF method provides an improvement to a limitation that is inherently
introduced by the BoW method. As already stated, the BoW method simply counts
word occurrences and it often mistakenly assigns high importance to common
articles like ’the’, despite their minimal contribution to a sentence’s meaning. TF-
IDF solves this problem by weighing the term frequencies (TF) with the inverse
document frequency (IDF), thereby reducing the weight of words that occur too
frequently across documents and are thus less informative. In summary, TF-IDF
provides a more nuanced and balanced representation of text data, emphasizing
words that are particularly characteristic of a document.

The objective of the TF is to measure how frequently a term (word) occurs in a
document. Since each document’s length differs, it is probable that a term would
appear more frequently in longer documents than in shorter ones. Hence, the term
frequency is often divided by the document length (the total number of terms in
the document) as a way of normalization:

TF (wj, di) = freq(wj, di)qN
k=1 freq(wk, di)

(3.2)

where TF (wj, di) is the term frequency of word wj in document di.
The objective of IDF is to measure how important the term is. While computing

TF, all terms are considered equally important. However, it is known that certain
terms, such as "is", "for", and "this", may appear a lot of times but have little or no
importance. Therefore we need to weigh down the frequent terms while scaling up
the rare ones, by calculating the following equation:

IDF (wj, C) = log
A

D

1 + |{di ∈ C : wj ∈ di}|

B
(3.3)

where |{di ∈ C : wj ∈ di}| is the number of documents where the word wj appears
(i.e., dfj), and D is the total number of documents in the corpus. The addition
of 1 in the denominator is to avoid division by zero for terms that appear in all
documents.

Finally, the TF-IDF score is calculated by multiplying these two values:

TF -IDF (wj, di, C) = TF (wj, di) × IDF (wj, C) (3.4)

23



Related work

Disadvantages

These methods have some drawbacks because of their innate structure. Below the
most significant ones are described:

• High dimensionality: Since the size of the vector representation increases
proportional to the size of the vocabulary, having large dataset equals to
having high-dimensional vectors and it leads to inefficiency in terms of storage
and processing time.

• Sparsity: Since each document typically contains only a small subset of the
vocabulary, most of the elements in the vectors are zeros and this also leads
to inefficiency in terms of memory usage and may not be optimized for some
ML algorithms, which perform better with dense input features.

• Loss of order: Since the models disregard the syntax and structure of the
words within the sentence, it leads to a loss of contextual information.

• Semantic understanding: Inherently, these models do not capture the
semantic relationships between words, which limits their ability to understand
the text meaningfully.

3.1.2 Dense Vector Representation
While we have discussed the pros and cons of sparse vector representation methods,
they are not as widely used as before, except in certain specific applications.
Sentence embeddings, generated by deep learning models such as Recurrent Neural
Networks and Transformer-based models, quickly became more prevalent following
their introduction as a tool. These dense vector representations transform sentences
into continuous, high-dimensional vectors where semantically similar sentences are
mapped to proximate points in the vector space. Unlike sparse representations,
which result in high-dimensional vectors with many zeros, dense vectors are typically
lower-dimensional and fully populated, meaning every dimension has a meaningful
value.

Recurrent Neural Networks (RNNs)

RNNs [35] are a special kind of deep learning models and they are used to detect
patterns in sequential data. They have a form of "memory" that retains information
from previous computations, enabling them to predict subsequent elements in a
sequence. This feature allows RNNs to perform tasks that require an understanding
of temporal dynamics where the context evolves over time, such as language
modeling, speech recognition, and time-series analysis. In particular for text data,
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these models handle phrases, sentences, and entire documents by processing them
word by word or sentence by sentence based on target, capturing the sequential
information, thus generating representations that consider order and the context of
words or sentences.

We can show the core functionality of RNNs with simple yet powerful set of
equations. At each time-step t, the hidden state ht of the network is computed
based on the current input xt and the previous hidden state ht−1:

ht = σ(Whhht−1 + Wxhxt + bh) (3.5)
where Whh and Wxh are weight matrices, bh is a bias vector, and σ represents a

non-linear activation function, such as tanh or ReLU. The output at each time-step,
yt, is then calculated from the current hidden state:

yt = Whyht + by (3.6)
Since having mentioned how RNNs function and what kind of advantages they

bring, now it is also important mention the disadvantages come with them such
as vanishing and exploding gradients. These issues arise as the errors get back-
propagated through each time-step and can either shrink exponentially, becoming
negligible (vanishing), or increase exponentially, becoming too large to manage
(exploding), which makes training RNNs on long sequences a challenging task.
Moreover, RNNs can struggle with long-term dependencies due to their inherent
design of sequential processing, meaning that they might not successfully retain in-
formation from earlier time-steps in long sequences and, this sequential nature also
restricts parallel processing capabilities, impacting training efficiency on modern
hardware.

Long Short-Term Memory Units (LSTMs)

LSTM network [36] was introduced as a sophisticated solution to improve the
limitations of RNNs with its special gating mechanism that regulates the flow
of information. This architecture allows LSTM to effectively retain important
information across long sequences while filtering out unnecessary data, solving the
problem of vanishing gradients and enhancing the model’s capability to capture
long-term dependencies within the data.

The effectiveness of LSTM lies in its unique cell structure, which consists of
several key components: the cell state and three types of gates: forget gate, input
gate, and output gate. These components work together to control the flow of
information like an orchestra.

1. Forget Gate (ft): This gate determines which information the LSTM should
discard from the cell state. It checks the previous hidden state ht−1 and the
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current input xt, passing them through a Sigmoid function σ, which outputs
numbers between 0 (forget) and 1 (keep).

ft = σ(Wf · [ht−1, xt] + bf ) (3.7)

2. Input Gate (it) and Candidate Cell State (C̃t): Together, these compo-
nents define which new information will be added to the cell state. The input
gate determines the values to update, and the candidate cell state creates a
vector of new candidate values that can be added to the state.

it = σ(Wi · [ht−1, xt] + bi) (3.8)

C̃t = tanh(WC · [ht−1, xt] + bC) (3.9)

3. Cell State Update: The old cell state Ct−1 is updated to the new cell state
Ct. This update is a combination of forgetting the things marked by the forget
gate and incorporating the new candidate values adjusted by how much we
decide to update each state value.

Ct = ft ∗ Ct−1 + it ∗ C̃t (3.10)

4. Output Gate (ot) and Hidden State (ht): The output gate defines what
the next hidden state ht should be. The hidden state includes information
about previous inputs and is used for predictions. The output gate checks the
previous hidden state and the current input and determines which parts of the
cell state to output. Then, we filter the cell state through tanh (to push the
values to be between -1 and 1) and multiply it by the output of the output
gate, so the output is only the parts we decided to.

ot = σ(Wo · [ht−1, xt] + bo) (3.11)

ht = ot ∗ tanh(Ct) (3.12)

Even if LSTM provides all these benefits over RNNs, it also comes with its trade-
offs. LSTM has high computational complexity which makes it more challenging to
train and demands significant computational resources. Nevertheless, its proficiency
in capturing profound temporal patterns in data makes it invaluable for various
applications such as language translation and predicting stock market trends.
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Transformers

The Transformer model architecture had been introduced by Vaswani et al. to
the deep learning community in 2017 with the paper called "Attention Is All You
Need" [37] and this change revolutionized the field of NLP. Transformers, like RNN
and LSTM models, also belong to the category of deep learning models specifically
designed for processing sequential data, but unlike them, instead of processing
data sequentially, these models use a mechanism called self-attention to weigh the
importance of different parts of the input data. This allows them to process all
words or sentences in the sequence simultaneously and, it leads to more efficient
training on modern hardware. Moreover, this mechanism captures relationships
between words better than previous models regardless of their distance in the text.
In summary, transformers are more flexible and easy to generalize on a wide variety
of deep learning tasks.

In the original paper, the transformer model was composed of an encoder and a
decoder, each consisting of a stack of identical layers (see Fig. 3.1).

• Encoder: The input of sequence of symbol representations (x1, . . . , xn) is
mapped into a sequence of continuous representations z = (z1, . . . , zn) by
the encoder. Each encoder layer consists of two sub-layers: a multi-head
self-attention mechanism and a position-wise fully connected feed-forward
network. Residual connections around each of these sub-layers, followed by
layer normalization, help to facilitate deep network training.

• Decoder: Given z, the decoder is responsible for producing an output sequence
(y1, . . . , yn) of symbols. Each decoder layer contains the two sub-layers present
in the encoder, with an additional multi-head attention layer that focuses
on the encoder’s output. This architecture allows the decoder to focus on
relevant parts of the input sequence, facilitating tasks like translation where
the alignment between input and output elements is crucial.

Later adaptations of transformers have been tailored for specific tasks that may
use only the encoder or decoder part. Encoder-only transformer models, like BERT
(Bidirectional Encoder Representations from Transformers) [38], are excellent at
understanding and analyzing text, making them a perfect fit for tasks like sentiment
analysis and question answering. They operate by processing input sequences
to generate comprehensive embeddings that represent the sequence’s context.
Conversely, decoder-only models, like GPT (Generative Pretrained Transformer)
[39], excel in generating coherent and contextually relevant text based on a given
input, making them perfect fit for applications in text generation and CAs. Both
types of models leverage the transformer architecture’s strengths, with encoder-
only models focusing on input interpretation and decoder-only models on output
generation.
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The main drawbacks of transformer models include their need for significant
computational resources, particularly for larger models, and the complexity of the
attention mechanism, which makes them challenging to interpret and understand.

Figure 3.1: The Transformer model architecture [37]
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3.2 Information retrieval techniques
Information retrieval (IR) is the discipline of extracting information relevant to
a particular need from a large collection of data. This domain integrates various
aspects of computer science, library science, and information science to manage,
search, and organize information in a way that makes it easily accessible to users.
The main objective of IR techniques is to find, understand, and provide information
that meets a user’s request, covering everything from simple keyword searches to
complicated natural language queries. There are various fields of IR applications
such as Web Search Engines, Social Media and Content Platforms and Question
Answering Systems. Each field requires particular approaches and in DSTC Task-
oriented Conversational Modeling challenges two methods have got special attention
for Knowledge Selection sub-task, Passage Re-Ranking and Dense Knowledge
Retrieval. Picking proper IR technique to apply is crucial in terms of accuracy of
retrieval process and computational cost.

3.2.1 Passage Re-Ranking
Passage Re-Ranking (PRR) [40] is a method, where for an input query, candidate
passages (knowledge snippets) in database are re-ranked based on their relevance.
PRR integrates advanced models such as BERT into the retrieval process to refine
search results, leading to outcomes that are more accurate and contextually relevant
compared to traditional methods. For instance, in case of BERT, the query and
the passage are concatenated with [CLS]2+ query+ [SEP ]3+ passage structure
and fed to the model to calculate relevance score. In general, the process can be
outlined simply as follows:

• Feature extraction: Given a final user utterance Ut and knowledge base
K = (k1, . . . , kn) consisting of knowledge snippets, each (Ut, ki) pair is fed to
the model and relevance score si is calculated.

• Re-ranking: Based on the scores, knowledge snippets are re-ranked.

• Retrieval: K+ ⊆ K relevant knowledge snippets are retrieved based on
defined strategy which can be top n documents or all knowledge snippets
above defined relevance threshold.

2Special marker added at the beginning of input sequences in transformer models, used to
aggregate a representation of the entire sequence for classification tasks.

3Special marker used in transformer models like BERT to indicate the separation between
sentences or the end of a sentence in a sequence
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The choice of loss function for training the model is essential for a method like
PRR. Binary Cross-entropy loss is one of the most prevalent function for fine-tuning
PRR models. Given the query, this loss function optimizes the model to correctly
classify passages as either relevant or irrelevant (positive or negative).

L = −
Ø

j∈Jpos

log(sj) −
Ø

j∈Jneg

log(1 − sj) (3.13)

• The first part of the equation −q
j∈Jpos log(sj) is for penalizing the model

when it assigns low scores for positive passages where Jpos is the set of all
positive instances and sj is the model’s predicted relevance score for each
positive instance in the set. The logarithm function amplifies the penalty
when sj deviates from the actual label (which is 1 for positives), pushing the
model to increase these scores.

• The second part of the equation −q
j∈Jneg log(1 − sj) does the opposite. It

penalizes the model when it assigns high scores to negative passages. Here
Jneg is the set of negative instances. The loss function pushes the model to
lower the scores for negative passages, the penalty increases when the model
incorrectly assigns high relevance score (sj) to a passage that is actually not
relevant.

Although PRR is a very effective method for informational retrieval process, it
is not so efficient. Since the inference is conducted online, the re-ranking process
must also be performed in real-time for each query, making it a computationally
expensive process. Furthermore, given that time complexity increases linearly with
the size of the knowledge base, its practicality for real-world scenarios may be
questionable.

3.2.2 Dense Knowledge Retrieval
Dense Knowledge Retrieval (DKR) [41], also known as Dense Passage Retrieval [42]
is another sophisticated method in the field of information retrieval which uses the
power of advanced models, particularly in the context of question answering and
various other NLP tasks. Traditional retrieval methods, such as TF-IDF or BM25
[43], rely on sparse vector representations, leading to the loss of various features
which we extensively discussed in previous sections. In contrast, DKR uses dense
vector representations for both queries and documents, enabling more nuanced and
semantically rich matching between them. The DKR method also mitigates the
issue of time complexity during the inference phase, a primary limitation associated
with the PRR method. It does so by indexing all the knowledge snippets in a
low-dimensional and continuous space one single time offline, such that it can
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retrieve efficiently the relevant snippets to the input request for the reader at
run-time.

• Offline phase: Embedding space is created by indexing all the knowledge
snippets in knowledge base K = (k1, . . . , kn).

• Online phase: When the system gets user query Ut, the query is converted
into dense vector representation. The same model is used as was used for the
knowledge snippets. Then the system calculates the dot product or cosine
similarity between the query embedding and knowledge embeddings to find
the most relevant ones to the query embedding.

The choice of loss function for training the model to generate effective embeddings
for both queries and knowledge snippets is crucial in DKR method. The goal is
the same with PRR method, ensuring that the embeddings of queries are close to
the embeddings of their relevant knowledge snippets (positives) while being distant
from the embeddings of irrelevant ones (negatives). Triplet loss [44] is a widely
adopted function for fine-tuning models by simultaneously feeding an anchor, a
positive, and a negative sample during training. Here α distance margin is used to
ensure the positive is at least α away from the negative example (see fig. 3.2). The
loss function is described below:

L(a, p, n) = max
1
d(ai, pi) − d(ai, ni) + margin, 0

2
(3.14)

where a, p, n are anchor, positive and negative respectively, d is distance
function.

Figure 3.2: A visual representation illustrates how Triplet Loss brings the positive
example closer to the anchor and pushes the negative example α margin away,
based on the Euclidean distance function.
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Like most methods, DKR comes with its trade-offs. While it reduces inference
time through offline embedding space generation and enables fast retrieval from
large corpora, the compromise lies in accuracy. The point of the issue is that in
the embedding space, knowledge snippets with similar sentence meanings receive
similar embeddings. Consequently, during inference, there’s a high likelihood of
retrieving incorrect knowledge snippets without considering their actual entities.
For instance, a user query regarding the wifi quality of a particular hotel may
receive high similarity scores for knowledge snippets of other hotels mentioning
the same topic, which fails to satisfy the user’s request. Thus, although the DKR
method is well-suited for open-domain information retrieval tasks, its effectiveness
may be limited in domain-specific contexts due to this disadvantage.
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Chapter 4

Methodology

In the context of IR tasks, it is extremely important to retrieve relevant information
to satisfy users’ requests. That’s why researchers put emphasis on accuracy in the
first place. However, inference time is also a vital aspect of these tasks. Without
efficient inference time, methods developed for high-accuracy tasks may not be
practical for real-world scenarios. Researchers often face trade-offs between accuracy
and efficiency, making it crucial to find a balanced approach that delivers highly
accurate results within a reasonable timeframe.

In this chapter, the methodology adopted is discussed, providing a deep under-
standing of the reasons behind the choice of methods. This explanation begins with
an overview of how predecessor methods have been applied in similar information
retrieval processes. It then proceeds to highlight the developments in terms of
accuracy and efficiency that these applications have undergone, thereby framing
the work within an evolutionary context.

4.1 Effective and Efficient Information Retrieval

4.1.1 Hierarchical PRR and DKR
The DSTC9 Track 1 challenge was fruitful, yielding a variety of useful methods
proposed for the KCA task. The research conducted by Thulke et al. [41] was
notable for its application of various techniques aimed at enhancing the efficiency
of the retrieval process without compromising accuracy. They introduced two
approaches to enhance task efficiency: Hierarchical Selection and Dense Knowledge
Retrieval.

In the hierarchical selection method, they focused on improving inference time by
dividing retrieval task into three parts. Because they detected that one of the main
issues related baseline PRR method was its computational complexity. Considering
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the knowledge base K with all its knowledge snippets, the computational complexity
of the PRR task is given by:

O(|K|) = O
A

|D| · |E|
|D|

· |K|
|E|

B
, (4.1)

where D is total number of domains and, E is total number of entities. So, the
total number of computations required is equal to the total number of knowledge
snippets. Moreover, use of larger encoder models for more accurate results will
increase the computation time of a single operation and consequently the PRR
method’s feasibility is questionable for real-world scenarios. For this reason, the
hierarchical selection method proposes a strategy to decrease inference time by
eliminating most of the unrelated knowledge snippets from the computation process.
It achieves this by dividing the retrieval process into three sub-parts. By leveraging
the metadata available in the knowledge base, the relevant domain is initially
identified based on the user query. Consequently, all knowledge snippets belonging
to other domains are automatically excluded. Subsequently, the relevant entity
within that domain is determined. In the final stage, only the knowledge snippets
associated with that entity are encoded and compared to the user query to identify
the relevant ones. Below the complexity of the task is given:

O
A

|D| + |E|
|D|

+ |K|
|E|

B
, (4.2)

As can be seen, the complexity has decreased drastically in comparison to the
baseline PRR method applied in the challenge [29]. In this case, we only need to
consider the knowledge snippets that satisfy K ∈ E ∈ D to be passed through the
encoder model.

Although the hierarchical selection method offers significant improvements, its
efficiency in real-world scenarios is not guaranteed either. This is because knowledge
bases for retrieval tasks tend to have a tremendous amount of knowledge snippets,
even for a single entity within a domain. For this reason, they have also tested
the Dense Knowledge Retrieval method, which promises even greater efficiency.
This approach utilizes dense representations of sentences for information retrieval
tasks, derived from pre-trained transformer models that capture deeper semantic
meanings. A proposed Siamese network architecture includes two components: a
dialogue context encoder that operates during inference and a knowledge snippets
encoder that runs offline. This structure allows for the application of an appropriate
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ranking function, framing the task as a metric learning problem. RoBERTa [45]
models had been applied for the encoders.

Since the embeddings of the knowledge snippets can be pre-computed, only the
embedding of the current dialogue context needs to be generated during runtime.
If the total number of these snippets is relatively small, i.e. in the thousands as
in case of the DSTC9 Track 1, the k nearest neighbor search to find the closest
embedding is quite negligible compared to the inference time of the transformer
model like in PRR method. Thus, the complexity of inference for this method is
given by:

O(1). (4.3)

Even when dealing with a very large number of knowledge snippets, there are
efficient means of search [46].

Task Model R@1 Runtime (sec.)

Selection Baseline (PRR) 62.0 276.53
Hierarchical (PRR) 89.9 13.79
DKR 84.4 0.04

Table 4.1: Results on DSTC9 Track 1 test data

The results of these experiments were as expected. Table 4.1 partially presents
results for the selection sub-task. The hierarchical selection model achieved the best
result for R@11, which is the highest indication of the final response’s relevance
to the user request. As shown in the table, this model also drastically reduced
inference time compared to the baseline model. However, the best performance was
achieved by the DKR method. In conclusion, both methods yielded better results
than the baseline method, but each has its trade-offs when compared to the other.

4.1.2 Hierarchical Dense Knowledge Retrieval
The experiments conducted by Thulke et al. [41] offered comprehensive insights
into enhancing the accuracy and efficiency of KCAs within the scope of the DSTC9
Track 1 challenge. Given that Hierarchical Selection offers better accuracy and
DKR yields faster inference times, Caffaro, in his master’s thesis, proposed a
new method called Hierarchical Dense Knowledge Retrieval (HDKR) [47], which
combines the strengths of both approaches. So, both offline embedding generation

1This metric checks if the most relevant item appears as the first recommendation or retrieval
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and online information retrieval processes are done in a hierarchical manner by
exploiting intrinsic structure of knowledge base K. The whole process can be
framed as below:

1. Dense Domain Retrieval: A transformer model is trained to bring closer
the vector representations of dialogue context U and corresponding domain
dU ∈ D to ensure that the dialogue contexts and their relevant domains are
proximate in the embedding space. This model serves as a domain encoder
and offline, it is used to get the embedding vectors of all domains presented
in knowledge base K. At inference, the domain encoder computes only the
embedding of the new dialogue context, and based on similarity score the
most relevant domain is retrieved.

2. Dense Entity Retrieval: In this phase, given the dialogue context U and its
domain dU , a transformer model is trained to bring the vector representations
of the dialogue context and its corresponding entity eU ∈ E. This model
functions as an entity encoder and offline, it is used to get the embedding
vectors of all entities presented in K. During inference, similar to the domain
case, the entity encoder computes the embedding of a new dialogue context,
then compares it to pre-computed entity embeddings. It identifies the most
relevant entity by evaluating their similarity scores.

3. Dense Knowledge Retrieval: This is the final phase, designed to retrieve
relevant knowledge snippets in response to a user’s request. Given the dialogue
context U , its domain dU and the entity eU , a transformer model is trained
to create embedding space where the vector representations of the dialogue
context and its corresponding knowledge snippets K+ ∈ K are proximate.
This model, the knowledge encoder, calculates the embedding vectors of all
knowledge snippets contained in K offline. During inference, it calculates the
embedding of a new dialogue context to identify the top n relevant knowledge
snippets based on similarity scores. The final retrieved knowledge snippets
are then used for Response Generation sub-task, this is why, accuracy of
Knowledge Selection task is critical.

The results provided in the work [47] proves the effectiveness of the proposed
method. As presented in Table 4.2, the R@1 metric improved with the implemen-
tation of HDKR compared to the original DKR method proposed by Thulke et
al. [41]. Moreover, while DKR provides tremendous improvement on inference
time, by ignoring unrelated domains and their respective entities while similarity
comparison, HDKR provides additional decrease on inference time.
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Task Model R@1 Runtime

Selection HDKR 87.4 0.028
DKR 83.8 0.040

Table 4.2: Results (originally provided) on DSTC9 Track 1 test data

Like any method, HDKR is not without its trade-offs. One notable drawback is
that its hierarchical information retrieval process, due to its cascading architecture,
is prone to error propagation. Incorrectly identifying a domain or entity can lead
to the retrieval of entirely incorrect knowledge snippets, resulting in inaccurate
response generation.

4.1.3 Importance of Granularity in Dialogue Context

The relationship between efficiency and accuracy is discussed till now by mentioning
related research done for developing highly effective KCAs. Each proposed method
has significantly improved upon the weaknesses of its predecessors. The overall
performance of HDKR is remarkable, but its propensity for error propagation
deserves attention. The root of the problem lies in the representation of dialogue
context vectors. This method involves feeding new dialogue contexts into pre-trained
models to generate embedding vectors, which are then compared with pre-computed
embeddings of domains, entities, or knowledge snippets. The cascading architecture
of the retrieval method make sure that subsequent stages of process yield wrong
results and consequently, wrong response generated. The issue often stems from
overlooking the granularity in understanding dialogue context. The problem arises
because the model receives the dialogue context in its entirety, yet it hasn’t been
trained to track the dialogue’s development through to the final user utterance.
Without emphasizing the key parts that define the final target of the dialogue
context, it’s highly likely that errors will occur. For instance, Fig. 4.1 serves as
an excellent example of how the dialogue context can evolve up by switching the
focus to the last user request, which seeks subjective knowledge. Initially, the user
inquires about the restaurant domain, and as the conversation progresses, they
narrow down to a specific choice within that domain. However, the conversation
doesn’t end there. The user then shifts the focus to the hotel domain, and before
the final utterance, the system suggests a specific entity (a particular hotel name).
This dialogue context demonstrates shifts in both domain and entity, making it
challenging for a model to accurately identify the target without considering the
context’s granularity in detail.
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Figure 4.1: A dialogue context in which the user’s initial and final target differ.
Parts colored violet pertain to the restaurant domain and its associated entity,
while red-colored parts relate to the hotel domain and its corresponding entity.

Addressing granularity to catch the essence of the text data is a primary objec-
tive of Document Summarizaton task which is performed through various methods
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like Extractive Summarization2 or Abstractive Summarization3 etc. In various
research papers, new methods have been proposed to enhance text summarization
by emphasizing sentences that convey more important insights and ignoring the
redundant parts [48, 49]. Inspired by the methods proposed in document summa-
rization research and the sequential nature of dialogue contexts, LSTM models
can be applied to effectively capture the evolving interaction between the user
and the system, thereby enhancing the vector representation of dialogue context
for preventing error propagation in HDKR. Specifically, the LSTM network’s last
output, or the final hidden state, encapsulates the cumulative representation of the
entire dialogue context up to the last time step. Key benefits in terms of dialogue
understanding include:

• Long-term Context Retention: LSTMs are designed to remember infor-
mation for long periods which provides better understanding of the dialogue
context which spans for several exchanges between the user and the system.

• Sequential Data Processing: LSTMs are particularly useful for dialogue
systems because they process information sequentially and can understand the
order of user inputs, thus providing a strong grasp of the conversation flow.

• User Intent Recognition: By analyzing the entire dialogue context with
sentence-level granularity, the system can accurately determine user intent,
which is crucial for generating relevant responses.

• Complexity Management: The LSTM’s capability to handle and leverage
large volumes of sequential data is especially valuable in complex dialogues,
characterized by shifts in topics (such as domain changes) or the need to recall
specific details from earlier parts of the conversation.

• Adaptability to User Corrections: In a dialogue context, user may correct
or clarify previous statements. The LSTM model’s memory cells can adjust
the conversation’s context based on new user utterances, which is essential for
responding appropriately to user corrections or clarifications.

• Handling Varied Sentence Structures: The LSTM’s ability to understand
long-term dependencies makes it resilient to variations in sentence construction,
enabling it to consistently perform well even as users articulate similar concepts
using diverse expressions.

2Selects and concatenates the most important portions of the text directly from the original
document

3Generates new sentences to convey the main ideas of the text, often paraphrasing and
condensing the original content
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In summary, utilizing the final output of an LSTM model is a powerful method
for understanding dialogue context, even when there are ambiguities or shift of
topics in conversation.

4.1.4 The Framework of the Method
The DSTC11 Track 5 presents a more challenging task compared to its predecessors,
offering greater flexibility in the number of entities and knowledge snippets to be
retrieved. This increased flexibility introduces additional complexity to the task,
necessitating the adoption of different measures. In this work, the HDKR method
is integrated into the context of this challenge due to its efficiency and effectiveness.
Figure 4.2 illustrates the architecture of the application. Based on specific needs,
various techniques are applied at different stages of the pipeline, and each will be
discussed in depth individually. To define the relevance between dialogue context
and a domain, entity, or knowledge snippet, cosine similarity is employed alongside
the appropriate selection strategy depending on the target. The equation for cosine
similarity is as follows:

cosine similarity(A, B) = A · B
∥A∥∥B∥

(4.4)

Where A and B are given vectors:

• A · B represents the dot product of vectors A and B, calculated as qn
i=1 aibi

for vectors A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn).

• ∥A∥ and ∥B∥ denote the Euclidean norms (magnitudes) of the vectors A and
B, respectively, calculated as ∥A∥ =

ñqn
i=1 a2

i and ∥B∥ =
ñqn

i=1 b2
i .

• The Euclidean norm ∥V∥ for a vector V computes the straight-line distance
from the origin of the space to the point V, applying Pythagoras’ theorem4.

The similarity score ranges from -1 to 1, where a score close to 1 indicates high
similarity between the texts, a score around 0 suggests no similarity, and a score
close to -1 implies that the compared texts have completely opposite meanings.
Mathematically, we get score 1 when the vectors are in the same direction, -1 when
the vectors are exactly in the opposite direction and 0 for orthogonal vectors5.

4In a right-angled triangle, the square of the length of the hypotenuse is equal to the sum of
the squares of the lengths of the other two sides

5Vectors that meet at a right angle (90 degrees), indicating no linear correlation or dependence
between them
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Domain Retrieval

In the dataset for the challenge, only two distinct domains are presented: hotel and
restaurant. Passing single utterances through an LSTM layer could deepen context
understanding for improved vector representation, or at least offer a comparison
with the transformer encoder method. However, in the context of this challenge,
this approach loses its significance as the transformer model alone yields highly
effective results for this phase of the pipeline.

A transformer model ED is fine-tuned to detect the domain of the conversation.
Offline the embedding vectors of distinct domains WD are obtained with the help
of ED. Online the whole dialogue context U is fed to domain encoder ED to get
vector representation wU . Relevant domain dU is determined by comparing dialogue
context vector wU with domain embeddings WD in terms of cosine similarity score
S. Here Top-1 6 selection strategy is applied.

dU = argmax
1
S(wU , WD)

2
. (4.5)

Entity Retrieval

DSTC11 Track 5 challenge requires different approach for entity selection. Unlike
previous challenges, for a dialogue context more than one entity can be true label.
The measure should be taken respectively. Given the 33 distinct entities in the
hotel domain and 110 in the restaurant domain, ambiguities in dialogue contexts
can lead to the retrieval of incorrect entity (or entities, as required by the situation).
Due to this, processing the dialogue context demands special attention. Two entity
encoder models are experimented, one with only transformer model, EEt, another
transformer + LSTM, EE(t+l). The embedding vector for the dialogue context is
obtained for each case as follows:

• Transformer + LSTM: Dialogue context U is not handled as a whole, firstly
utterances {u1, u2, . . . , ut} are fed to transformer model and then passed
through LSTM layer one by one to obtain the final dialogue vector representa-
tion wU . The process is depicted in Figure 4.2, Entity retrieval part.

• Transformer: Dialogue context U is fed to transformer model as a whole to
get the dialogue embedding vector wU .

Considering all entity embedding vectors WE obtained by corresponding encoder
model are set aside, for retrieval of relevant entity or entities, based on the pre-
defined domain dU of a dialogue context, only the subset entity embedding vectors

6Choosing the option with the highest score or probability from a set of candidates
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Figure 4.2: Architecture of the hierarchical retrieval process

WEd
∈ WE are used for computation of similarity scores with dialogue embedding

wU . The relevant entities are defined based on pre-defined similarity threshold T
(based on evaluation set), retrieving those with scores exceeding this threshold.

e+
U =

1
S(wU , WEd

)
2
, where S ≥ T. (4.6)

Knowledge Retrieval

This is the final stage of the retrieval process. In this challenge, the number
of knowledge snippets to be retrieved is not pre-defined as predecessors (top-1,
top-5), thus the threshold is the method applied. Till this part of retrieval, based
on the given dialogue context U and the domain dU and entity or entities e+

U

concerning the dialogue are defined. Only the knowledge snippets of detected entity
or entities are considered for cosine similarity calculation. In this case, since the
final knowledge-seeking user utterance ut is important for knowledge retrieval, the
embedding vector of this utterance wut is obtained by fine-tuned knowledge encoder
model EK and compared to embedding vectors of knowledge snippets WKe ∈ WK

belonging to previously retrieved entities. The comparison is done in terms of
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cosine similarity and the ones with higher similarity scores than the pre-defined
similarity threshold T are retrieved.

k+
ut

=
1
S(wut , WKe)

2
, where S ≥ T. (4.7)
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Chapter 5

Experiments

In this chapter, the experimental setup and the results are presented. To conduct
the experiments presented in this thesis, Google Colab was utilized as the primary
development and execution environment. It provides a flexible and accessible
platform for running Python code, alongside the benefit of easy access to powerful
hardware accelerators [50]. In particular, the experiments leveraged Nvidia’s T4
GPUs, selected for their balance of computation power and energy efficiency, which
significantly reduced the computational time for complex models and datasets.
Additionally, the Colab environment was configured with high RAM capacity to
accommodate the extensive data processing and model training requirements of
this work.

Also, this work greatly benefited from the use of the Sentence Transformers
library. Sentence Transformer models are designed to generate efficient and se-
mantically meaningful sentence embeddings [51]. These models adopt traditional
transformer-based architectures like BERT and they are fine-tuned on tasks re-
quiring comprehension of whole sentences, improving upon BERT’s methods of
creating sentence embeddings. This fine-tuning results in embeddings that capture
the semantic essence of sentences more effectively and efficiently, making these
models especially useful for NLP tasks such as semantic similarity, clustering, and
information retrieval.

5.1 Setup
The training process was conducted in three phases. In each phase, the model was
trained to detect a specific target. To facilitate this, the hierarchical structure of
the DSTC11 Track 5 knowledge base was exploited. The sub-tasks involved in
this process are as follows: Domain Detection, Entity Detection, and Knowledge
Detection.
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5.1.1 Domain Detection
For the domain detection sub-task, the ’all-MiniLM-L6-v2’ model from the Sentence
Transformers library was fine-tuned. This model is versatile, designed for a wide
range of use cases, and has been trained on a large and diverse dataset comprising
over 1 billion training pairs. Its specialty is the balance between speed and average
performance. This balance of being fast while maintaining high accuracy makes it
the best fit for domain detection among available models. Although it is neither
the fastest nor the most accurate model available, the trade-off between speed and
accuracy is what sets it apart.

Given that there are only two distinct domains, this sub-task is slightly easier
than the others. TripletLoss was used for the fine-tuning process. During the
data pre-processing phase, triplets are generated from the training data, where
the dialogue context serves as the anchor, and the true label domain is selected
as positive. Since there is only one other label for each dialogue context besides
the true label, it is automatically assigned as negative every time. The dialogue
context is reversed for anchors based on the idea that the domain of the conversation
is generally mentioned in the final utterances, while transformer models typically
focus on the initial parts of the text. At the end, 14768 triplets are generated
which is equal to the number of knowledge-seeking turns. The cosine distance
was utilized as the distance metric between two embeddings, with a margin set at
0.25. The model was trained for 4 epochs with a batch size of 16. The AdamW
optimizer was employed, using a learning rate of 2e − 5.

5.1.2 Entity Detection
This sub-task is more complex compared to the previous one, as some of the
dialogue contexts contain multiple entities as true labels. Consequently, two
different methods were experimented with: one using a transformer model and the
other combining a transformer with an LSTM. As an encoder, the ’all-mpnet-base-
v2’ model from the Sentence Transformers library was used. Although this model
performs slower than the previous one, it has the highest average performance
among all Sentence Transformer models. It is a versatile, all-around model, tuned
for a wide range of use-case scenarios and trained on over 1 billion training pairs.

Both models are fine-tuned using triplet loss, with slight variations in anchor
generation to accommodate their specific requirements. To keep consistency with
the retrieval phase of the work, while generating triplets to train the models for
entity detection,the domains of the entities are strictly kept the same for both
positive and negative of each triplet pair. For instance, for an anchor and positive
pair, the negative is randomly selected among the entities that belong to the same
domain of the positive. Since the retrieval process is hierarchical and only the
detected domain’s entities are considered as potential candidates, this is the best
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strategy to pursue. Also, if there are more than one true label entity, for instance,
in case of two entities are true labels, two anchor, positive pairs are generated by
making sure that while selecting negative entity for one pair, another pair’s positive
is removed from potential negatives list. This approach ensures coherence in
training process and aligns with the hierarchical nature of the retrieval mechanism.
In the end, 15299 triplets were generated. This is different than the number of
knowledge-seeking turns as expected since there are multi-entity dialogue contexts.

Transformer

In this approach, anchors for the model were generated by reversing and concate-
nating the dialogue context like in the domain detection case. The cosine distance
was utilized with a margin set to 0.30. In total, the model was trained for 6 epochs
with batch size of 16. The AdamW optimizer was employed with 2e − 5 learning
rate.

Transformer + LSTM

In this process, anchors were generated by concatenating each dialogue utterance in
their original sequence, using a [SEP] token as a delimiter between them. During the
training phase aimed at generating embeddings corresponding to these utterances,
the concatenated string is first dissected into individual utterances. Each utterance
is then processed by a sentence transformer model to produce an embedding.
Subsequently, these embeddings are fed through two LSTM layers to create a final
embedding for the dialogue context. This final embedding is then used to perform
comparison with positive and negative examples. Two optimizers were employed
for adjusting parameters of transformer model and LSTM separately. In both
cases, AdamW optimizer was the selection, for the transformer with 1e − 6 learning
rate,and for LSTM with 1e − 5 learning rate. Early stopping mechanism was
applied with patience counter set to 3 to save the best performing model. In total,
the model was trained for 25 epochs with batch size of 16. The cosine distance was
used for triplet loss as usual with a margin of 0.30.

5.1.3 Knowledge Detection
This sub-task is particularly interesting. Because unlike previous challenges, here
there are subjective knowledge snippets additional to FAQs and while retrieval
it is possible that the document contains a mix of subjective and FAQ knowledge
snippets. Moreover, there is no limit in retrieval process as before, so the number
of ground-truth knowledge snippets is flexible.

In the triplet generation process, only the final user utterance from the dialogue
context is used to form an anchor. The number of triplet pairs generated for each
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dialogue context depends on the quantity of available ground-truth knowledge
snippets. For each anchor, an equivalent number of pairs are created with positive
examples, while negative examples are randomly selected from a pool of negatives.
These negatives are chosen to ensure they belong to the same entity as the positive
examples, with the additional criterion of excluding any other ground-truth labels
from the selection pool for each positive. In the end 56056 triplets were generated.

As in the case of previous sub-task ’all-mpnet-base-v2’ model was fine-tuned
because of its capability to provide more semantically enriched representation. The
cosine distance was used for triplet loss with a margin of 0.25. In total, the model
is trained for 6 epochs with batch size of 16. AdamW optimizer was employed
with learning rate of 2e − 5.

5.2 Results
This section discusses the results of the experiments. As mentioned in previous
chapters, this work concentrates on the Knowledge Selection sub-task. This focus
is facilitated by the challenge’s internal structure, which allows for concentration
on specific parts of the pipeline. Consequently, for the experiments, all dialogue
contexts with knowledge-seeking turns are considered by disregarding Turn De-
tection phase. In Chapter 2, the evaluation metrics are presented mathematically.
However, it would be beneficial to describe each metric verbally before delving into
the results, to foster a deeper understanding. Respectively, they are:

• Precision: measures the proportion of selected items that are relevant out of
all the predicted knowledge items. It is an effective way to assess the model’s
ability to avoid selecting irrelevant knowledge. However, a high precision
score does not necessarily indicate that the model is identifying all relevant
knowledge.

• Recall: measures the proportion of the selected items that are relevant out of
all the reference knowledge items. A higher recall indicates that the model is
proficient at identifying relevant knowledge. However, since recall does not
account for the irrelevant knowledge that is selected alongside the relevant
ones, it is possible for precision to be relatively low for the same predictions.

• F1 Score: is calculated as the harmonic mean of precision and recall, providing
a balanced measure between these two metrics.

• Exact Match Accuracy: measures the proportion of instances in which all
predicted knowledge items exactly match those of the reference instance. It is
considered a strict metric because it disregards the quality of predictions in
cases of any slight deviation.
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Within the context of the challenge, for each instance, predicted knowledge
documents are compared to reference knowledge documents to define true positives1

(TP), false positives2 (FP), false negatives3 (FN), and an exact match metric (scored
as either 0 or 1). These metrics are accumulated across all predictions, allowing
for the aggregated computation of final scores for Precision, Recall, F1, and Exact
Match Accuracy.

Tables 5.1 and 5.2 display the performance of the experiments at different
stages of the hierarchical retrieval process for the Transformer-only and the Trans-
former+LSTM methods, respectively. The metrics have been calculated by con-
sidering the results of the preceding retrieval stage. For example, for the Entity
phase, the calculation is conducted only for the entities within accurately identified
domains, and for the Knowledge Detection phase, it is done by considering only
accurately detected entities. This approach ensures that the results reflect how
each subsequent stage performs, depending on the accuracy of the previous stage’s
retrieval. As demonstrated by the tables, the Domain Detection phase results are
nearly perfect in both experiments, regardless of whether the test or validation set
is used, while the same Transformer model being utilized in each case. The slight
differences in scores can be attributed to the subsequent stages. This is because if
nothing is retrieved in one of these later stages, the instance is not populated, and
the correctly retrieved domain is not accounted for. Given that there were only
two domains in this challenge, determining the domain of the dialogue context has
been a relatively straightforward task. For the Entity detection phase, in Table 5.1,
it can be seen that the results are similarly high as in the Domain Detection case,
with performances on the test and validation sets being identical. However, for
the Transformer+LSTM method, as indicated in Table 5.2, there is a noticeable
drop in performance compared to the Transformer-only model. While precision
remains high, recall rates are slightly lower, at 0.78 for the test set and 0.83 for
the validation set, indicating a higher incidence of FNs. In the final Knowledge
Detection phase, the performance of both methods is comparable across the test
and validation sets. This is again because of the same model use. However, there is
a notable decrease in precision for the test set compared to recall in both cases. This
indicates that the model generated more FPs, despite being effective at minimizing
FNs. The likely cause is that the test set contains twice as many unseen instances
as the validation set. Overall, the results are quite satisfactory, suggesting that the

1Correctly identified items that the model successfully recognizes as relevant or matching the
criteria.

2Items that the model incorrectly identifies as relevant or matching the criteria when they are
not.

3Relevant items that the model incorrectly fails to identify or recognize as matching the
criteria.
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model is fairly good at retrieving the appropriate knowledge documents.

Data Set Sub-task Precision (P) Recall (R) F1 Score (F1)

Validation
Domain 0.99 0.96 0.98
Entity 0.97 0.94 0.95

Knowledge 0.84 0.87 0.85

Test
Domain 0.99 0.97 0.98
Entity 0.96 0.93 0.94

Knowledge 0.76 0.86 0.81

Table 5.1: Performance of the Transformer-only models experiment on the Vali-
dation and Test sets across different stages of the Hierarchical Retrieval process.

Data Set Sub-task Precision (P) Recall (R) F1 Score (F1)

Validation
Domain 0.99 0.98 0.99
Entity 0.94 0.83 0.88

Knowledge 0.84 0.88 0.86

Test
Domain 0.99 0.98 0.99
Entity 0.93 0.78 0.85

Knowledge 0.77 0.86 0.81

Table 5.2: Performance of the Transformer+LSTM model experiment on the
Validation and Test sets across different stages of the Hierarchical Retrieval process.

Tables 5.3 and 5.4 present the overall results of the experimented methods for
the validation and test sets, respectively, alongside the baseline results provided by
the challenge organizers[52]. As expected, the results for all methods are higher
on the validation set compared to the test set, a discrepancy attributed to the
presence of additional unseen instances in the test set, as previously mentioned.
The Transformer-only method outperforms the Transformer+LSTM method on
both the validation and test sets. While their precision scores are comparable, the
difference in recall is significant, with a gap of 0.08 for the validation set and 0.1
for the test set. This indicates that the Transformer+LSTM method produces
more FNs. The performance gap likely demonstrates the Transformer model’s
superior ability to comprehend the entire dialogue context comprehensively. In
the Transformer-only method, the whole dialogue context is processed to generate
the final embedding, unlike in the Transformer+LSTM approach, where individual
utterances are first encoded separately before obtaining the final embedding through
an LSTM. This suggests that feeding the entire dialogue context to the Transformer
model not only provides a more thorough understanding of the dialogue but also
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better captures long-term dependencies. Furthermore, the inclusion of LSTM adds
complexity to the task, and it can increase retrieval time. The average retrieval time
for the Transformer model experiment is 0.066 seconds for the Test set and 0.064
seconds for the Validation set. Conversely, for the Transformer+LSTM method,
the retrieval times are 0.071 seconds for the Test set and 0.062 seconds for the
Validation set. Given that the LSTM is applied only during the Entity Detection
phase, the increase in retrieval time for the Test set in the Transformer+LSTM
method is noteworthy. The performance difference is further evident in both the F1
score and Exact Match accuracy (EM), which are higher for the Transformer-only
model.

In the baseline method, the organizers achieve the best result by performing
the Knowledge Selection task in two phases. Initially, they apply a fuzzy n-
gram matching4 [53] method to extract relevant entities, followed by employing a
Cross-encoder approach [54] with the DeBERTa [55] model for retrieving relevant
knowledge snippets. The experimented methods underperform compared to the
baseline, likely due to differences in the Entity Detection step. The use of fuzzy
n-gram matching, a more straightforward method for detecting entities, operates at
the string level, in contrast to the transformer model, which is based on embeddings.
It identifies entities through direct comparison, which is particularly effective in
dialogue contexts containing multiple entities to be retrieved. Given this, employing
a transformer model with a detection threshold performs less effective than directly
extracting the appropriate entities through string-level comparison.

Model Precision (P) Recall (R) F1 Score (F1) Exact Match (EM)
Transformer 0.72 0.77 0.75 0.32
Tr+LSTM 0.70 0.69 0.69 0.30
Baseline 0.80 0.88 0.84 0.40

Table 5.3: Results of the Knowledge Selection task with the experimented methods
for the Validation set, including Baseline results from challenge organizers

Overall, the results are quite satisfactory. Following their tradition, the challenge
organizers conducted a human evaluation of the best-performing entries, as done in
previous challenges (DSTC9 - track 1 and DSTC10 - track 2). For this evaluation,
workers were presented with the dialogue context, oracle knowledge snippets, and
all responses (including both reference and generated ones). Consistent with
previous challenges, the knowledge selection metrics showed the highest correlation
with accuracy ratings in the human evaluation (see Fig. 5.1). The F1 score, in

4A technique that compares segments of text by breaking them into sequences of n characters
(n-grams) and allows for approximate matches, accounting for minor differences or errors.
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Model Precision (P) Recall (R) F1 Score (F1) Exact Match (EM)
Transformer 0.66 0.69 0.67 0.23
Tr+LSTM 0.64 0.59 0.62 0.21
Baseline 0.79 0.79 0.79 0.39

Table 5.4: Results of the Knowledge Selection task with the experimented methods
for the Test set, including Baseline results from challenge organizers

particular, demonstrated the highest correlation, indicating that the performance
in the experiments conducted is fairly good. The second-highest correlation was
with EM accuracy, which is understandable since the final response is grounded in
the information provided by retrieved knowledge snippets. However, this metric
alone does not fully explain performance due to its sensitivity; any deviation,
such as retrieving an additional document or missing one relative to the reference
data, results in zero accuracy for the corresponding dialogue context. Therefore,
this metric should always be considered alongside other evaluation metrics for a
comprehensive assessment.

Figure 5.1: Correlations between the objective and human evaluation metrics in
Spearman’s ρ for DSTC11 Track 5 [52].

Figure 5.2 demonstrates a comparison of the strictest metrics across DSTC9,
DSTC10, and DSTC11 based on the entries of all participants. This provides
interesting insight because these challenges are continuations of each other, with
some added new features and requirements each time. The complexity introduced
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by the new features results in decreased scores, especially for those metrics that
require strict compatibility between the predicted and ground-truth snippets. All
of this helps us better understand the complexity of DSTC11. For DSTC9 Track 1
and DSTC10 Track 2, the metric is Recall at 1 (R@1), which measures whether the
top-ranked knowledge snippet (the one the system assigns the highest score) is the
correct, ground-truth snippet. For DSTC11 Track 5, the metric is Exact Match
(EM) accuracy. As previously discussed, it requires that all the predicted knowledge
snippets for a particular instance be exactly the same as the ground-truth snippets,
making it an even stricter measure than the R@1 metric. The median score and
the maximum score observed for a particular metric in the corresponding challenge
are given in the figure. The median is provided because it offers a better general
overview, especially since the mean score can be misleading for skewed distributions.
The maximum score represents the highest entry for the corresponding challenge
among all competitors. It can be seen that DSTC11 Track 5 is more challenging, as
there is a clear decrease in scores. The gap would be even greater if we compared
EM accuracy with R@5, as the latter is less strict than R@1.

Figure 5.2: Comparison of the strictest metrics for Selection sub-tasks across
DSTC9 Track 1, DSTC10 Track 2, and DSTC11 Track 5 challenges: Recall at 1
(R@1) for DSTC9 and DSTC10, and Exact Match Accuracy for DSTC11.
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Conclusion

This thesis explored research and experiments aimed at finding efficient and effective
solutions for the Knowledge Selection task in DSTC11 Track 5. The objective of
this task was to retrieve relevant knowledge snippets from an unstructured knowl-
edge base given the dialogue context. To enhance understanding, the work begins
with a comprehensive overview of Conversational Agents, followed by a detailed
introduction to the challenge, including a review of previous works. Subsequent
sections present related work and offer a detailed explanation of the methodology
employed in this study, ensuring a deep understanding of the process. The HDKR
method was applied to the task under two different settings: one utilizing only
Transformer models for each stage of the retrieval process, and the other incorpo-
rating a Transformer+LSTM approach specifically for the Entity Detection phase.
The Transformer-only setting demonstrated superior performance compared to the
Transformer+LSTM configuration. Overall, the experiments yielded fairly good
results, considering the limitations of the methods and the challenge’s complexity.
A thorough discussion on the strengths and weaknesses of both experimental ap-
proaches was provided, comparing their performance to the baseline method in a
similar manner.
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Appendix

The knowledge base is an unstructured knowledge source, where we refer to select
and ground related information in the tasks. Fig. A.1 shows how knowledge base
is structured, which consists of domain/entity specific Review and FAQs.

Figure A.1: The formatting of the knowledge base

Fig. A.2 shows an abbreviated example section from knowledge base, illustrating
selected Reviews and FAQs related to the "A AND B GUEST HOUSE" entity
within the hotel domain.
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Figure A.2: Abbreviated section from knowledge.json dataset

Fig. A.3 shows two example dialogue contexts from original dataset. "U" stands
for user and "S" stands for system turn. Below each of them, texts are given which
are user requests and system responses in particular. The latest user utterance
is either a knowledge-seeking turn or not. First example’s last user request is
knowledge-seeking turn as it can bee seen from the figure. Second example consists
of only one entry from the user and it is not a knowledge-seeking turn.
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Figure A.3: Abbreviated section from logs.json dataset

Fig. A.4 shows how the labels.json instances are structured and Fig. A.5 shows
an example part from it. There are ground-truth label and human response for the
final user turn of the first instance in fig. A.3. Because Knowledge and Response
only exist for the instances where the final user request is knowledge-seeking turn.

Figure A.4: The formatting of the labels.json
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Figure A.5: Abbreviated section from labels.json dataset
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