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Abstract

AI applications are pervasive today and the significant environmental concerns
has been posed by the energy consumption of large language models (LLMs),
such as OpenAI’s GPT-4, during their training processes. By developing and
employing specialized tools, this study quantifies GPU energy consumption across
various stages of deep learning model training, highlighting considerable energy
usage during forward propagation, particularly in convolutional layers. The study
systematically analyzes how factors like hardware variations, dataset character-
istics, batch size, and model architecture influence energy consumption. From
these insights, predictive models have been constructed to estimate energy usage,
providing forecasts that consider both the models’ multiply-accumulate operations
(MACs) and their configuration without incorporating accuracy. Furthermore, the
thesis explores the integration of renewable energy sources solar power and battery
systems with the electrical grid to enhance the energy efficiency of GPU operations.
An innovative energy dispatch model, tailored to optimize energy utilization and
reduce costs, has been tested under various operational conditions. The findings
advocate for more sustainable AI training practices by demonstrating substantial
potential for cost reductions and energy savings.

Keywords: AI energy consumption, deep learning models, GPU efficiency,
predictive energy model, energy dispatch model
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Chapter 1

Introduction

1.1 Background
AI applications are ubiquitous in today’s technological landscape, with most innova-
tive applications embedding AI solutions to enhance their functionality. The release
of the ChatGPT-4 model by OpenAI has brought large language models (LLMs) into
the spotlight, driving significant attention and research in this area. These models,
while powerful, require substantial computational resources, leading to considerable
energy consumption. For instance, training OpenAI’s GPT-3 model once demands
approximately 1287 MWh of energy [1]. This substantial energy requirement un-
derscores the importance of addressing the environmental impact of AI technologies.

Recent recommendations from the European Commission highlight the urgency
of governing and reducing CO2 emissions from software assets [2]. This directive
is particularly pertinent to AI solutions, which are increasingly integrated into
various applications and systems. Consequently, there is a critical need to develop
tools and methodologies capable of providing reliable and realistic estimations
of the energy consumption associated with AI technologies and their resultant
environmental impacts. This necessity forms the impetus for our research, which
seeks to contribute to the emerging field of green AI by focusing on energy-efficient
AI model training and operation.

1.2 Objective
The primary objective of this research is to quantify and investigate the environmen-
tal impact of AI training through the development and application of specialized
tools. These ad hoc tools represent a preliminary but crucial step towards the
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Introduction

implementation of green AI approaches, aimed at minimizing the electricity cost of
AI technologies.

This master’s thesis is structured into two main parts. The first part is to find
out the key performance indicators (KPIs) that can affect energy consumption
during the training of deep learning models. Then, considering two different precon-
ditions, an energy consumption prediction model was proposed, and the proposed
model was validated.

Based on the insights gained in the first part, the second part focuses on con-
structing a mathematical model designed to analysis the economic cost during
training centralized AI algorithms. This model will elucidate the relationships
between the power limit and running performance. Additionally, the model incorpo-
rates a dynamic allocation strategy for computational resources, which adjusts the
resources dedicated to AI algorithm training according to the energy production
from locally installed photovoltaic (PV) panels. This dynamic allocation aims
to maximize the use of clean energy during the training process of AI models,
thereby aligning the energy requirements of AI model training with environmentally
sustainable practices which leads to the minimum cost.

In summary, this research aims to provide a comprehensive framework for as-
sessing and reducing the economic cost of AI training. By developing reliable
estimation tools and a dynamic energy allocation model, we seek to advance the
field of green AI and promote the adoption of more sustainable AI practices.

1.3 Literature Review
Literature[3] defines the concept of GreenAI and introduces various methods to
reduce carbon emissions during the training of AI models. In terms of energy con-
sumption calculation, Literature [4] proposes a method for estimating the carbon
footprint of Generative AI throughout its lifecycle. Literature[5] and literature[6]
primarily focus on energy consumption and carbon emission estimation models
for different models and hardware facilities in local and cloud computing clusters,
respectively.

Regarding specific model energy consumption estimation, literature[7] analyzes
the performance of different GPUs and CPUs in deep model training scenarios,
verifying that GPUs outperform CPUs. Literature[8] analyzes the operational
characteristics of models on different hardware devices. Literature[9] provides a
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mathematical model of energy consumption for GPUs based on an analysis of
GPU architecture at a low level. Literature[10] investigates the DVFS (Dynamic
Voltage and Frequency Scaling) technology for GPUs and identifies the perfor-
mance of GPUs under different operating conditions through DVFS adjustments.
Literature[11] collects energy consumption data for different models on a single
dataset and proposes a method for predicting energy consumption based on different
model structures.

Considering data center operations, Literature[12] provides a detailed analysis
and modeling of data center energy consumption, from subsystems such as servers,
processors, memory, and storage to the entire data center. Literature[13] intro-
duces a data center power supply strategy that considers multiple renewable energy
sources and finds the cost-minimizing power supply mode through the optimal
allocation of energy from different renewable sources. Literature[14] discusses an
optimization algorithm for sizing the electric infrastructure using combinations of
standard microgrid approaches and quantifying the level of grid utilization when
data centers consume/export electricity from/to the grid to determine the required
effort from the grid operator. Literature[15] achieves the goal of minimizing both
the energy costs and overall carbon emissions of data center operations through an
optimization algorithm that combines various renewable energy sources and grid
power. This is accomplished by dynamically allocating arriving jobs to different
clusters to minimize the overall energy cost of the data center.

Regarding the characteristics of GPUs during deep learning model training,
Literature[16] identifies the operating speeds of GPUs under different power limits.
Based on this, an optimization algorithm is proposed to adjust the power limits
and batch size settings in subsequent model training to ensure that overall energy
consumption remains as low as possible.

Considering all the referenced literature, this thesis firstly involved modeling
multiple deep learning models and selecting appropriate measurement tools to
collect energy consumption data for various parts of the training process. This
provided energy consumption characteristics for each part and overall model energy
data. Subsequently, the collected energy data was analyzed in relation to model
structure, dataset size, and training parameter settings. Multiple potential factors
influencing the energy consumption of deep learning model training were identified
and analyzed using the collected data.

Next, based on the available data, energy consumption predictions were made for
the models, both considering and not considering accuracy. The proposed models
were then validated. Finally, a mathematical model was constructed to simulate the
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power supply scenario involving solar panels and storage batteries, combined with
grid energy, to power a GPU-centric computation center. Optimization algorithms
were applied to identify the minimal cost and relevant factors influencing the cost
of GPU training tasks.

1.4 Overall Structure
• Chapter 2 compares different energy consumption testing tools and analyzes

the energy consumption of different layers in the forward propagation process
of a deep learning network based on the selected tool to have an deeper
understanding of the model characteristics of deep learning.

• Chapter 3 considers the prediction methods of energy consumption, firstly,
the energy consumption data is collected by building several different deep
learning models, then based on the collected data, two prediction methods
are considered and the prediction methods are verified.

• Chapter 4 shows the simulation results of the different models and the
verification of the prediction methods.

• Chapter 5 firstly analyzes the relationship between the energy consumption
of the hardware and the operation speed. Then based on this, a model is built
to test the effect of different training durations and corresponding training
speeds on the final energy consumption and corresponding overheads in the
case of multiple forms of energy supply.

• Chapter 6 summarize the results and present the future works.

4



Chapter 2

Methodology

2.1 Hardware and Measurement Tools
This section introduces the hardware devices used in the thesis and the tools
employed for measuring energy consumption.

2.1.1 Hardware
The hardware devices used in this thesis include a RTX3060 GPU and a RTX4090
GPU. The 3060 GPU has different power limits under different GPU drivers, which
are 80W(under driver version 545) and 95W(under driver version 525) respectively.
The 4090 GPU has a power limit of 450W(under driver version 545).

2.1.2 Measurement tools
For the energy consumption measurement tools, two tools at first were taken into
consideration: codecarbon [17] and nvidia-smi [18].

Codecarbon is a lightweight python pip package, it can be used to estimate the
energy consumption as well as the carbon emission during training deep learning
models.

However, during the testing, it was found that codecarbon calculates energy con-
sumption using an estimation method. Specifically, it assigns a fixed corresponding
energy consumption value to each device and then multiplies it by the correspond-
ing training time to obtain an approximate estimate. In our hardware tests, the
power consumption of the 3060 GPU in codecarbon dataset was theoretically set
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to a maximum of 130W, which differs from the actual power consumption 80W.
Considering that this thesis requires more precise energy consumption data for
each epoch, codecarbon is not very suitable for this purpose.

The NVIDIA System Management Interface (nvidia-smi) is a command line
utility, based on top of the NVIDIA Management Library (NVML), intended to
aid in the management and monitoring of NVIDIA GPU devices.It can record the
power consumption per second during the training of deep learning models. By
collecting energy consumption data of each epoch in this way, more accurate data
can be obtained for this thesis compared to codecarbon.

2.2 Calculation Method of Energy Consumption
Data

In this study, all subsequent energy consumption records are obtained using nvidia-
smi, which records the average per-second energy consumption during each epoch
of the training process of each round. For the energy consumption calculation of
each part, the total energy consumption of each epoch is divided by the runtime
of each epoch, resulting in the average energy consumption per second within an
epoch. By multiplying the energy consumption per second by the corresponding
runtime of a given part, the energy consumption for the part can be obtained. By
calculating energy consumption in this way, the runtime can be equivalent to the
energy consumption of each part during the training process.

2.3 Energy Consumption of Different Layers
This section primarily uses the testing tools mentioned earlier to analyze the time
consumption of different layers during the forward propagation process of a deep
learning model.

To test the energy consumption of different layers, which is the time consumed by
different layers during the training process in thesis, we selected the AlexNet model
[19], the architecture is shown in Figure 2.1. The dataset selected is FashionMNIST
[20], in which the size of the image is 1*28*28. In this dataset, there are 60,000
training samples and 10,000 test samples. During the training process, we set the
number of epochs to 20 and the batch size to 128.
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Figure 2.1: AlexNet

During the forward propagation process, the layers of the deep learning model
were categorized based on their different functions into convolutional layers, acti-
vation layers, pooling layers, linear layers, dropout layers, and flatten layers. In
each epoch, the runtime of layers with the same function was summed. Finally,
the average energy consumption time over 20 epochs was calculated. The results
are shown in the Figure 2.2.

It can be observed that during the forward propagation process of AlexNet, the
convolutional layers consume most of the training time. This is because, during
computation, the kernel function of the convolutional layers needs to compute
row by row with the image, thus requiring the most computation and time. For
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Figure 2.2: Average time per layer

the Dropout and Flatten part, the required time is very short and can even be
considered negligible.

Additionally, there is no significant relationship between computation time and
the number of parameters in each layer. Among all the layers, the fully connected
layer has the largest number of parameters, but its computation time is almost the
same to that of the max pooling layer, which has no parameters. The number of
parameters in the convolutional layer is related to the size of the kernel and the
number of channels. Although it has fewer parameters than the fully connected
layer, it consumes the most time.
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Chapter 3

Data Preparation

The content of this chapter and Chapter 4 is primarily aimed at building a model
that can predict the energy consumption of deep learning models during the training
process and validating the proposed model.

This chapter introduces the data collection steps undertaken to build the energy
consumption prediction model. These steps include the building various deep learn-
ing models from scratch, the identification of potential factors that may influence
energy consumption.

3.1 Building Deep Learning Models

In this section, multiple deep learning models were built from scratch, enabling
the measurement of energy consumption (i.e., corresponding time consumption)
of different layers during the forward propagation process in the training phase
using the previously mentioned software tool, nvidia-smi, as well as the energy
consumption (i.e., time consumption) data at different stages of the entire training
process.

In addition to the previously mentioned AlexNet, ResNet[21], VGG [22], Mo-
bileNet [23] and GoogleNet [24] were also built to a better look of the energy
consumption of training deep learning models.
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3.1.1 VGG

The VGG model was proposed by the University of Oxford in 2014, and its
architecture consists of a series of convolutional layers. In the data collection
section, three VGG models were selected: VGG11, VGG13, and VGG16. Taking
VGG11 as an example, its architecture is shown in the Figure 3.1.

3.1.2 MobileNet

MobileNet is a model proposed by Google in 2017, designed for image recogni-
tion on mobile and embedded devices, and it has a wide range of applications.
In this thesis, 2 types of this model have been built: MobileNetV1 and MobileNetV2.

The MobileNet model structure is mainly composed of multiple depth-wise
separable convolutions. The structure of depth-wise separable convolutions(DSC)
is shown in the figure, and as for the model architecture, taking MobileNetV1 as
an example, is illustrated in the Figure 3.2.

3.1.3 ResNet

ResNet is a highly influential model proposed by Kaiming He et al. in 2016 [21],
and it won the championship in the 2015 ImageNet image recognition competition.
ResNet is primarily composed of a series of residual blocks. The main architecture
of a residual block is shown in the Figure 3.3.

In the energy consumption data collection section, three types of ResNet models
are selected: ResNet18, ResNet34, and ResNet50. Taking ResNet18 as an example,
its architecture is shown in the Figure 3.4.

3.1.4 GoogLeNet

GoogLeNet is a deep learning model proposed by Google in 2014, based on the
inception module. Its characteristic feature is that the inception module is a multi-
branch block. The structure of the inception module is shown in the Figure 3.5,
and the architecture of the GoogLeNet model used in this thesis is also illustrated
in the Figure 3.6.
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3.2 Potential KPIs
Potential KPIs that may influence the energy consumption during the training
process of deep learning models include hardware devices type, different datasets, set-
tings of epoch and batch size during training, model’s MACs (Multiply-Accumulate
Operations), and model’s multi-branch structure.

3.2.1 Hardware Devices
Different hardware devices may exhibit varying energy consumption levels even
when using the same deep learning model, given the same dataset, identical initial
settings, and the same epoch and batch size configurations. This is because with
the iterative advancements in hardware technology, computational capabilities have
been improving. Therefore, for the same deep learning model training tasks, newer
versions of GPUs may have energy efficiency advantages over older versions. The
GPUs selected for this thesis are the 3060 and 4090.

3.2.2 Different Datasets
In different datasets, the image size, number of channels, and the quantity of
training and test samples all vary. Therefore, during the training process, the same
deep learning model will exhibit different energy consumption levels when trained
on different datasets.

In this section, the selected datasets are FashionMNIST and CIFAR-100. Fash-
ionMNIST has already been mentioned previously. The images in the CIFAR-100
dataset [25] have a size of 3*28*28. The dataset contains 100 classes, with 600
images per class. The total number of training samples is 50,000, and the test set
comprises 10,000 images.

3.2.3 Epoch and Batch Size Settings
The number of epochs represents how many times the dataset needs to be trained.
More epochs will increase the training duration and energy consumption. The
batch size affects the number of images trained in each batch. If the batch size is
too large, it may lead to insufficient GPU memory, slowing down the training speed
or even interrupting the training task. Conversely, if the batch size is too small,
more batches will be required to complete training in one epoch, increasing the
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frequency of data exchange in the GPU memory, which may subsequently increase
training duration and energy consumption.

3.2.4 MACs of Model
MACs refer to the number of multiply-accumulate operations in a model. Using
ptflops [26], we can obtain the MACs for different models, indicating that the
computational requirements for each image passing through the model vary. Mod-
els with higher computational requirements imply that more energy is needed for
computation. Therefore, the differences in the number of MACs may affect the
energy consumption of different deep learning models during the training process.

3.2.5 Multi-branch Structure
Even with similar MACs, different models may have significant differences in
training energy consumption due to variations in their architectures. Therefore,
in this section, the multi-branch structure design of GoogLeNet is considered as a
potential factor influencing energy consumption.

3.3 Energy Consumption Prediction Models
Through the collection of the simulation data and the analysis of potential factors
affecting energy consumption, this section primarily proposes two models for energy
consumption prediction.

• Energy consumption prediction model without considering accuracy.
The first prediction model is designed to predict the energy consumption
during the training process, given a specified model, dataset, and the set
parameters of epoch and batch size.

• Energy consumption prediction model considering accuracy. The
second prediction model aims to build upon the first model, attempting
to predict the energy consumption required for a model to achieve a given
accuracy level during testing.
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Figure 3.1: VGG11
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Figure 3.2: MobileNetV1
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Figure 3.3: ResNet
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Figure 3.4: ResNet18
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Figure 3.5: Inception
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Figure 3.6: GoogLeNet
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Chapter 4

Cases Study

By utilizing the various models mentioned in Chapter 3, simulation data is used
to validate the potential factors affecting energy consumption discussed earlier,
assessing their impact on energy consumption. Subsequently, energy consumption
prediction models are proposed and validated.

4.1 Analysis of Potential KPIs

4.1.1 Hardware Devices
To analyze the differences in energy consumption for deep learning model training
on different hardware devices, the selected hardware devices are the 3060 and 4090
GPUs. Simulations have been conducted for two deep learning models (AlexNet
and ResNet18). The dataset used in this section is FashionMNIST. All models
were set to run for 10 epochs during the training process, with a batch size of
128.The results are shown in the Figure 4.1.

It can be observed from the figure that the energy consumption difference
between the two hardware devices when training the AlexNet model is not very
significant. On average, the energy consumption per epoch for the 3060 GPU is
only 212.36J higher than that for the 4090 GPU. However, in the ResNet model,
the average energy consumption per epoch for the 3060 GPU is 3034.89J higher
than that for the 4090 GPU.

This is because, compared to the 3060 GPU, the 4090 GPU has more advanced
manufacturing technology and more computational units. During operation, its
average power consumption per second is higher than that of the 3060 GPU, but
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Figure 4.1: Energy consumption comparison between 3060 and 4090

its runtime is shorter. Considering the models, the number of MACs in the ResNet
model is higher than in AlexNet. Therefore, when running AlexNet, the energy con-
sumption difference between the two hardware devices is not significant. However,
as the number of MACs increases, the difference in energy consumption between
the hardware becomes more significant.

4.1.2 Different Datasets
To analyze the impact of different datasets, the 4090 GPU was selected as the
hardware device. Two different datasets, FashionMNIST and CIFAR-100, were
considered. To verify the differences in energy consumption caused by different
datasets across various models, we selected AlexNet, ResNet18, GoogLeNet, and
VGG11 for comparison. For each model, the number of epochs was set to 20 and
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the batch size was set to 256 during the training process. The results are shown in
the Figure 4.2.

Figure 4.2: Energy consumption comparison between different datasets

It can be observed from the Figure 4.2 that for the relatively simple AlexNet
model, the energy consumption on the CIFAR-100 training set is higher than that
on the FashionMNIST dataset. However, for the other three models, the energy
consumption for training on the FashionMNIST dataset is higher than that on the
CIFAR-100 dataset.

The reason for this result is due to the relatively simple structure of the AlexNet
model. When training on this model, the CIFAR-100 dataset, which has images
with 3 channels, results in higher energy consumption compared to the FashionM-
NIST dataset, which has images with only 1 channel. After adjusting the input
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channels for the AlexNet model, it can be observed that the MACs for the AlexNet
model when training on the FashionMNIST dataset is 665.53 MMAC, whereas
it is 712.39 MMAC when training on the CIFAR-100 dataset. Additionally, the
FashionMNIST training set contains 60,000 images, while the CIFAR-100 training
set contains 50,000 images. Calculations show that when using the AlexNet model
for training, the MACs for the CIFAR-100 dataset is higher than that for the
FashionMNIST dataset. This means that training the CIFAR-100 dataset with
AlexNet requires more computation, and consequently, more energy consumption
compared to training the FashionMNIST dataset.

As the models become more complex, the MACs for training the same model
on two different datasets no longer show significant variation. Taking the VGG11
model, which has the highest number of MACs, as an example, its MACs is 7.58
GMACs when training on the FashionMNIST dataset and 7.64 GMACs when
training on the CIFAR-100 dataset. In this case, compared to the AlexNet model,
the primary factor influencing energy consumption when training different datasets
shifts from the number of MACs to the number of images in the training set. This
explains why, for the other three models, the energy consumption for training on
the FashionMNIST dataset is higher than that for training on the CIFAR-100
dataset. Moreover, for these three models, the larger the number of MACs, the
greater the difference in energy consumption results when training on the two
datasets.

4.1.3 Epoch and Batch Size Settings
In this section, the AlexNet model is used for analysis. The selected dataset is
FashionMNIST, and the hardware devices used for model training are the 3060
and 4090 GPUs.

To analyze the impact of different epochs and batch sizes, and considering the
varying computational capabilities of different hardware, the epoch numbers on the
3060 GPU were set to [10, 20, 30], and the corresponding batch sizes were set to [64,
128, 256, 512], resulting in a total of 12 epoch and batch size combinations. During
the training process, each epoch and batch size combination was repeated 5 times
to obtain the final average energy consumption. The results are shown in Figure 4.3.

It can be observed that on the 3060 GPU, as the batch size increases, the average
energy consumption per epoch gradually decreases. Additionally, with the increase
in batch size, the rate of decrease in energy consumption also slows down. When
the batch size increases from 256 to 512, the reduction in energy consumption per

22



Cases Study

epoch is much smaller compared to the increase from 64 to 128. This is because
as the batch size increases, the number of images that need to be loaded into the
GPU memory for computation in each batch increases. When the GPU memory
is sufficient, increasing the batch size reduces the number of times data needs to
be swapped in the memory, thus improving computational efficiency and reducing
energy consumption. However, when the number of images becomes too large,
it is limited by the physical constraints of the hardware, which prevents further
improvements in computational speed, resulting in less significant reductions in
energy consumption.

Figure 4.3: Energy consumption comparison between different epochs and batch
sizes in 3060

On the 4090 GPU, the AlexNet model was also used for training. Considering
that the 4090 GPU has higher hardware performance than the 3060 GPU, the
epoch numbers were set to [10, 20, 30] with corresponding batch sizes of [64,
128, 256, 512, 1024, 2048]. For epoch numbers set to [40, 50], the corresponding
batch sizes were [64, 128, 256, 512]. Therefore, a total of 26 epoch and batch
size combinations were set on the 4090. Each combination was repeated 3 times
to obtain the final average energy consumption. The results are shown in Figure 4.4.

23



Cases Study

It can be observed that on the 4090 GPU, when the batch size increases from
64 to 128, the average energy consumption for different epochs increases. However,
with further increases in batch size, the average energy consumption per epoch
begins to decrease.

This is because when the batch size is increased from 64 to 128 on the 4090
GPU, the utilization of the GPU’s computational resources improves, with average
power consumption increasing from 140W to 160W, leading to increased energy
consumption. However, as the batch size continues to increase beyond 128, the
reduction in energy consumption per epoch verifies the previous analysis on the
3060 GPU. Furthermore, it can be clearly seen that due to the improved hardware
performance of the 4090 GPU, when the batch size increases from 256 to 512, there
is a more significant overall decrease in energy consumption per epoch compared
to the decrease observed on the 3060 GPU.

Figure 4.4: Energy consumption comparison between different epochs and batch
sizes in 4090

Additionally, the impact of the number of epochs can be clearly observed: an
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increase in epochs results in higher overall training energy consumption. The
validation results on both the 3060 and 4090 GPUs are shown in Figure 4.5 and
Figure 4.6.

Figure 4.5: Energy consumption vs epoch number in 3060

4.1.4 MACs of Model
In the analysis of this section, the hardware used was the 4090 GPU. All models
were set to 20 epochs and a batch size of 256 during the training process. The
dataset is FashionMNIST, and all the selected models include all the models men-
tioned in Chapter 3, as well as some modified versions of GoogLeNet, making a
total of 20 models. The final relationship between the MACs of the models and
their training energy consumption is shown in Figure 4.7.

It can be observed from the figure that different models with varying numbers of
MACs correspond to different final training energy consumptions. Moreover, in a
logarithmic coordinate system, this relationship appears to be approximately linear.

4.1.5 Multi-branch Structure
This section primarily analyzes the impact of the multi-branch structure on the
energy consumption of models during training.
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Figure 4.6: Energy consumption vs epoch number in 4090

Figure 4.7: MACs vs Energy consumption per epoch of different models on
FashionMNIST
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In this section, the hardware used is the 4090 GPU. The model was set to 20
epochs and a batch size of 256 during the training process. The dataset used for
training is FashionMNIST.

Considering the multi-branch structure in the original GoogLeNet model, which
is the Inception block, we made some modifications to analyze the energy con-
sumption of different modified Inception block, without taking the final accuracy
of model training into account, given a fixed number of training epochs.

For the adjustments to the inception block, this thesis considers whether different
numbers of branches would have an impact. Additionally, the structure within the
inception block was modified to verify the trend of energy consumption changes
under different MACs. The structure of the modified inception block is shown in
Figure 4.8.

Figure 4.8: The structure of the modified inception block

The training energy consumption results of the GoogLeNet model and its modi-
fied versions on the FashionMNIST dataset are shown in Figure 4.9.

It can be observed from the figure that the multi-branch structure affects the
model’s energy consumption. For the GoogleNet_mod8 and GoogleNet_mod12
models, the number of branches in their modified inception block is 4, while the
number of branches in the modified inception block of the GoogleNet_mod1 model
is 1. Although these three models have similar MACs, the energy consumption
during training for GoogleNet_mod8 and GoogleNet_mod12, which have fewer
MACs, is higher than that of the GoogleNet_mod1 model. This demonstrates
that increasing the number of branches in the multi-branch structure raises the
model’s energy consumption during training. However, from the overall trend, the
relationship between MACs and energy consumption still approximately exhibits a
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clear linear relationship in a logarithmic coordinate system.

Figure 4.9: MACs vs Energy consumption per epoch of GoogLeNet model and
its modified versions

4.2 Energy Consumption Prediction Models
4.2.1 Without Considering Accuracy
In this section, we use all the collected data to find out that all the potential factors
mentioned earlier indeed affect the final energy consumption during model training.

However, it can also be observed that the magnitude of influence of different
factors on energy consumption varies. During the initial phase of training, given a
dataset and the set number of epochs and batch size, the factors analyzed earlier
indicate that the final energy consumption is primarily influenced by the MACs
of the selected model, the hardware used for training, and whether the model’s
structure includes elements like the multi-branch structure.

In this context, using the 4090 GPU, with the training set to 20 epochs and
a batch size of 256, the 20 models mentioned earlier were trained on the Fash-
ionMNIST and CIFAR-100 datasets. Ignoring accuracy, the energy consumption
data for different models were collected. The relationship between the number
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of MACs of all models and the final energy consumption is shown in the fig-
ure. The relationship between the energy consumption data and the MACs of
the models during training on the CIFAR-100 dataset is also illustrated in Figure ??.

It can be observed that on different datasets, the MACs of the models and
the final training energy consumption exhibit a linear relationship. Based on
this, further analysis was conducted by timing each model during training in
four segments: time to device, forward, backward. This was done to identify the
running characteristics of each part during the model’s training process, thereby aid-
ing in the construction of a more accurate energy consumption prediction algorithm.

Figure 4.10: MACs vs Energy consumption per epoch of different models on
CIFAR-100

Using the data from the training process on the FashionMNIST dataset as an
example, the results are shown in Figure 4.11, Figure 4.12 and Figure 4.13.

It can be observed that there are no significant characteristics during the data
import process. The time taken to import data does not show a clear relationship
with the MACs of the models and is generally around 48 seconds. This is because
the same hardware is used when training different models, so the hardware charac-
teristics required to import data into the GPU at the start of model training are
consistent. Therefore, the time taken for the "Time to device" part is generally
consistent and unrelated to the model’s characteristics.
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Figure 4.11: MACs vs Total time to device of different models on FashionMNIST

Figure 4.12: MACs vs Total forward energy of different models on FashionMNIST
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Figure 4.13: MACs vs Total backward energy of different models on FashionM-
NIST

However, in the energy consumption graphs for the forward and backward
propagation processes, it is evident that the energy consumption for both forward
and backward propagation shows a clear linear relationship with the number of
MACs in a logarithmic coordinate system.

Based on the above analysis, this thesis proposes an energy consumption predic-
tion model 4.1.

EnergyConsumption = HC × MACs (4.1)

where HC represents hardware characteristics, referring to the energy consump-
tion required by the selected hardware to process each MAC operation during
training. Different hardware will have different hardware characteristics.

4.2.2 Verification of Model
Considering that the collected data shows an approximately linear relationship
between each model’s MACs and its energy consumption during training, this
thesis uses linear regression to estimate the approximate energy consumption value
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for each MAC operation on the 4090 GPU.

Using the collected data for different models on the FashionMNIST and CIFAR-
100 datasets, a linear regression model can be applied to obtain the predicted linear
relationship between energy consumption and different models for each dataset.
The results are shown in the Figure 4.14.

It can be observed that as the number of MACs increases, the predicted energy
consumption for model training on the FashionMNIST dataset is higher than on
the CIFAR-100 dataset. This result corroborates the analysis in section 4.1.2,
which indicates that as the number of MACs grows, the impact of the training
set’s sample size on energy consumption becomes greater than the impact of the
number of channels in the images.

Figure 4.14: Predicted linear relationships between energy consumption and
different models on FashionMNIST and CIFAR-100 dataset in 4090

Through the above analysis, it can be estimated that on the 4090 GPU, the com-
putational cost for each MAC operation in a model is approximately 5.9 × 10−11 J.

To validate this value, the energy consumption of all models was recorded during
training on the CIFAR-10 dataset [27]. Using our predicted HC for the 4090 GPU,
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which represents the average energy consumption for each MAC operation during
training, the energy consumption of each model on the CIFAR-10 dataset was
predicted. The results of this energy consumption prediction model, along with the
prediction results obtained through linear regression on other datasets, are shown
in Figure 4.15. It can be observed from Figure 4.15 that the energy consumption
prediction model closely matches the energy consumption prediction curve obtained
through linear regression on the CIFAR-100 dataset.

Figure 4.15: Comparison between prediction model result and linear regression
result on different models on FashionMNIST, CIFAR-10 and CIFAR-100 dataset
in 4090

Additionally, this thesis also applied a linear regression model to the training
energy consumption data collected from the CIFAR-100 dataset to determine the
relationship curve between training energy consumption and MACs. The results
are shown in Figure 4.16.

It can be observed from Figure 4.16 that when training on the CIFAR-10 dataset,
the relationship curve between MACs and energy consumption for each model has
a slope that is almost identical to that of the energy consumption prediction model
proposed in this thesis.
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In summary, the energy consumption prediction model proposed in this thesis,
which does not consider accuracy, is feasible.

Figure 4.16: Linear regression result on different models on FashionMNIST,
CIFAR-10 and CIFAR-100 dataset in 4090

4.2.3 With Considering Accuracy
When considering accuracy, our goal is to predict the approximate energy consump-
tion required to achieve a given accuracy threshold for a model, given the training
set, the number of epochs and batch size set during training, and the model itself.

To construct this model, we first trained AlexNet and ResNet18 on the Fashion-
MNIST and CIFAR-100 datasets with different epoch settings in 4090 to observe
the accuracy levels that these models could achieve.

From the data in Figure 4.17 and Figure 4.19, it can be observed that on the
FashionMNIST dataset, both models can achieve high accuracy. However, on the
CIFAR-100 dataset, the accuracy of both models hovers around 50%. Even with the
number of epochs set to 100 for AlexNet, higher accuracy cannot be achieved. This
is due to the relatively simple structure of the models. When faced with a more
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Figure 4.17: AlexNet on FashionMNIST

Figure 4.18: AlexNet on CIFAR-100
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Figure 4.19: ResNet18 on FashionMNIST

Figure 4.20: ResNet18 on CIFAR-100
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complex dataset like CIFAR-100, the structural limitations of the AlexNet model
prevent it from capturing all the features necessary for classification, resulting in
an inability to further improve accuracy.

In the case of the ResNet18 model, due to GPU resource limitations, higher
numbers of epochs were not run on this model. However, according to informa-
tion available on this website, ResNet18 can achieve an accuracy of 79% with
fine-tuning when the number of epochs reaches 300. Additionally, after reviewing
relevant literature, no papers were found that discuss the correlation between energy
consumption and accuracy. Currently, due to the lack of a clear mathematical
relationship between accuracy and energy consumption, it is not yet possible to
propose an energy consumption prediction model that considers model accuracy.
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Chapter 5

Energy Dipatch Model

5.1 Power Limit and Running Speed
This section primarily explores the performance of GPUs under different power
limits. In this section, we use the 3060 GPU. By changing its driver to Nvidia 525,
we increased its operating power from 80W to 95W. We used the GreenWithEnvy
[28] software to ensure that the GPU remains within a set power limit during
training. During the testing process, we chose the AlexNet model with the epoch
and batch size set to 10 and 128, respectively. The power limits were set to [40,
45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95]. During the simulations, we recorded the
average power consumption per epoch, the total energy consumption, and the final
accuracy of the model under each power limit.

From Figure 5.1, it can be seen that when the power limit is set between 45W
and 70W, the increase in running speed shows a linear relationship with the increase
in power limit. However, as the power continues to increase beyond this range, the
relationship between running speed and power no longer follows a linear pattern.
The improvement in running speed with increasing power becomes smaller. This
is because, as power increases, the GPU’s computational units approach satura-
tion, causing the rate of increase in computational speed to gradually diminish
and eventually reach a maximum. At a power limit of 40W, the running time is
significantly higher than at 45W, and the energy consumption is also higher. This
is because the power is too low, causing the GPU frequency to drop significantly,
which in turn reduces the running speed.

From Figure 5.2, it can be observed that as the power limit of the GPU increases,
the overall energy consumption during the model’s training process shows an in-
creasing trend. However, the final accuracy of the model does not show significant
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Figure 5.1: Relationship between average energy and average time

differences under different power limits. This indicates that the training results of
the model per epoch remain consistent regardless of the GPU power limit settings
during training.

5.2 Power Supply Data
This section focuses on constructing a model to simulate various power supply
modes for powering a GPU executing a model training task. The primary power
sources include three types: solar panels, storage batteries, and the power grid.
The power supply logic is as follows:

• Solar Panels

– When solar panels can generate sufficient power, they are prioritized for
supplying power to the GPU.

– Any excess power generated by the solar panels will be partially stored in
the storage batteries as a backup.

– If there is still surplus power, it can be sold back to the power grid.
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Figure 5.2: Comparison of accuracy and energy consumption across power limits

• Storage Batteries

– When the solar panels cannot generate enough power to supply the GPU,
the power stored in the storage batteries will be used.

• Power Grid

– When neither the solar panels nor the storage batteries can provide
sufficient power, electricity will be drawn from the power grid to supply
the GPU.

By using this multi-source power supply model, we aim to minimize energy costs
while ensuring a stable power supply for GPU operations during model training.
The data for different GPU power limits and corresponding operating speeds, as
described in the previous section, will be integrated into this model.

5.2.1 Parameters
• Start time of total jobs: Ts (h)

• End time of total jobs: Te (h)
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• Supplied power to data center: Pt (W)

• Power generated by solar panels: Gsolar
t (W)

• Unit price generated by solar panels: Qsolar
t (€/kWh)

• Power generated by grid: Ggrid
t (W)

• Unit price taken by grid: Qgrid
t (€/kWh)

• Power sold back to grid: Wt (W)

• Unit price of sold back to grid: Qgrid′

t (€/kWh)

• Power consumption in time-slot t: Ct (W)

• Solar power to supply the data center: P solar
t (W)

• Solar power to restore to the ESD: Rsolar
t (W)

• Solar power sold back to grid: W solar
t (W)

• Grid power to supply the data center: P grid
t (W)

• Grid power to restore to the ESD: Rgrid
t (W)

• Restored power in ESD: Rt (W)

• Power sold back to the grid: W grid
t (W)

• ESD discharge to grid: Dgrid
t (W)

• ESD discharge to data center: Ddc
t (W)

• ESD power in each time slot: ESDt (W)

• ESD Maximum capacity: ESDmax (W)

• Model training time: Jt (h)

5.2.2 GPU Data
Based on the GPU performance characteristics at different power limits identified
in the previous section, and incorporating data referenced in the literature [16] , we
selected the GPU data and corresponding operating speeds mentioned in the paper.
This data will be used for the GPU component in our cost-minimizing model. The
data graph is shown in Table 5.1. The first row represents the different GPU power
limits set. The second row shows the time required for the GPU to run a specific
model training task under the given power limits.
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Table 5.1: GPU data and corresponding operating speed

Max.GPU power P(W) 100 125 150 175 200 225 250
Appr.training time J(h) 32 28 26 25 24 23 22

5.2.3 Solar Panel Data
In this thesis, a solar panel system was configured using the PVWatts website [29],
selecting Turin as the location for weather data. The operation interface is shown
in Figure 5.3. On the website, considering the GPU power requirements in the
model proposed in this chapter, a 4-square-meter solar panel was configured. The
generated data includes the hourly energy production of the solar panel throughout
the year. A screenshot of this data is shown in Figure 5.4. Here, we primarily
focus on the last column of data, which represents the AC system output power
generated by the solar panels each hour.

Figure 5.3: Solar panel model
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Figure 5.4: Solar panel data

5.2.4 Storage Battery Data
To construct the energy dispatch model, we need to integrate a model of the storage
batteries. Using the parameters set on these websites [30][31], we configure the
charge/discharge efficiency, self-discharge rate, and overall capacity of the batteries.
In this thesis, the storage batteries are configured to provide 250Wh, which is
enough to power the GPU at its maximum power for 1 hour. And the efficiency
paramters can be found in Table 5.2.

Charge
efficiency α

Discharge
efficiency β

Self-discharge
efficiency θ

ESD 0.9 0.9 0.005

Table 5.2: ESD efficiency parameters

5.2.5 Grid Data
In this model, we primarily consider the price of electricity from the grid. We
simplified the grid pricing by using a time-of-use pricing model for residential
electricity in Table 5.3, where different time periods correspond to different prices.
Additionally, the price for selling excess electricity back to the grid is simplified to
a fixed value.
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Tariff Time slot Qgrid
t €/kWh Qgrid′

t €/kWh
F1 08:00 – 20:00 0.45 0.3
F2 20:00 – 23:00 0.35 0.3
F3 23:00 – 08:00 0.25 0.3

Table 5.3: Tariff price

5.3 Building the Energy Dispatch Model
Based on the references and data mentioned in the previous sections, the math-
ematical model for energy dispatch is constructed and each formula is explained
below. The schematic diagram of the energy dispatch model is shown in Figure 5.5.

Figure 5.5: Energy dispatch model

As shown in Figure 5.5, during the model training process, various power limit
settings correspond to different required working durations. In the model, it is
assumed that setting different power limits for the GPU corresponds to varying
completion times for the training task. When a higher power limit is set, the
time required for the GPU to complete the training task under this power limit is
shorter. Conversely, when a lower power limit is set, the time required for the GPU
to complete the training task under this power limit is longer. Additionally, it is
assumed that during the training process, the training task is completed uniformly,
i.e., each hour completes a fraction of the task corresponding to one divided by
the total working duration. the training task is completed uniformly, i.e., each
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hour completes a fraction of the task corresponding to one divided by the total
working duration. To ensure that there is sufficient power for the training task,
three different power sources are considered: solar energy, storage batteries, and
the power grid. The objective is to minimize the costs incurred during the training
process.

5.3.1 Objective Function
We assume the data center has 3 kinds of power supply: power grid, solar panel,
and ESD (Energy Storage Devices), which can be seen in the right part of Figure
1. The solar panel generates renewable energy Gsolar

t , which can be used to power
the data center P solar

t directly, or stored into ESD Rsolar
t for later use, or sold back

to the power grid W solar
t to finance part of the high energy expenditure of the data

center.

An alternative option for greening the data centers is to buy electricity from
the power grid P grid

t when the solar energy is insufficient. To make the best use of
renewable energy, we use ESD to store renewable energy Rsolar

t when its supply is
abundant, or store the electricity from the grid Rgrid

t when the outside electricity
price is low. The energy stored in ESD can be discharged to power the data center
Ddc

t when the outside electricity price is high, or sold back to the power grid Dgrid
t

to lower the overall energy cost.

• The objective function:

min
TeØ

t=Ts

Ct (5.1)

Ct = Ggrid
t · ∆T · Qgrid

t − W grid
t · ∆T · Qgrid′

t (5.2)

∆T = 1 hour (5.3)

• The decision variable is:
yt,k ∈ {0, 1} (5.4)

when the value is 1, means at time slot t the power level of data center is set
to level k.
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k is the power level number of data center:

k ∈ {1,2,3,4,5,6,7} (5.5)

Pk is the power level of data center:

Pk ∈ {100,125,150,175,200,225,250} (5.6)

At each time slot, only one level can be selected:

7Ø
k=1

yt,k = 1 ∀t ∈ [Ts, Te] (5.7)

The selected power level is:

Pt = yt,k ∗ Pk ∀t ∈ [Ts, Te] (5.8)

5.3.2 Power Supply Constraints
• The power range generated by solar panels:

0 ≤ Gsolar
t ≤ Gsolar

tmax ∀t ∈ [Ts, Te] (5.9)

Gsolar
t = P solar

t + Rsolar
t + W solar

t ∀t ∈ [Ts, Te] (5.10)

• The power range generated by power grid:

0 ≤ Ggrid
t ≤ Ggrid

max ∀t ∈ [Ts, Te] (5.11)

Ggrid
t = P grid

t + Rgrid
t ∀t ∈ [Ts, Te] (5.12)

• The power charged to ESD:

Rt = Rsolar
t + Rgrid

t ∀t ∈ [Ts, Te] (5.13)
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• The power sent back to grid:

W grid
t = W solar

t + βDgrid
t ∀t ∈ [Ts, Te] (5.14)

• Update ESD power in each time slot:

ESDt = (1 − θ) · [ESDt−1 − Ddc
t−1 − Dgrid

t−1 + αRt−1] ∀t ∈ [Ts, Te] (5.15)

ESD1 = 0, Ddc
1 = 0, Dgrid

1 = 0 ∀t ∈ [Ts, Te] (5.16)

0 ≤ ESDt ≤ ESDmax ∀t ∈ [Ts, Te] (5.17)

0 ≤ Ddc
t + Dgrid

t ≤ ESDt ∀t ∈ [Ts, Te] (5.18)

0 ≤ Rt ≤ ESDmax − ESDt ∀t ∈ [Ts, Te] (5.19)

• Total power supply to data center:

Pt = P solar
t + P grid

t + βDdc
t ∀t ∈ [Ts, Te] (5.20)

• Power consumption in each time-slot should be less than or equal to the
selected GPU power:

Ct ≤ Pt ∀t ∈ [Ts, Te] (5.21)

• Model training task progress:

TØ
t=1

1
Jt

≥ 1 ∀t ∈ [Ts, Te] (5.22)
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5.4 Simulation Scenarios
In the simulation of this mathematical model of energy dispatch, the following
assumptions are made:

• Once the training task starts on the GPU, it runs continuously until the task
is completed, without any interruptions.

• The start time of the training task is set to any hour between the 0th and
143rd hour of the year (out of a total of 8760 hours in a year).

• The duration of the training task is set between 23 and 32 hours.

The simulation results of solar power supply and corresponding electricity cost
of every hour are shown in Figure 5.6. The red line in the figure represents the
hourly energy generated by the solar panels during the first week, and the blue
line represents the final cost data for starting the training task at different times
within the week, with the task duration set to a maximum of 23 hours. It can
be observed that, with the task duration set to 23 hours, the minimum cost for
the training task is approximately 0.2 euros, with the optimal start time for the
training task set at the 115th hour.

Furthermore, from the data patterns in Figure 5.6, it can be seen that when the
weather conditions during the day are relatively good, meaning that solar energy is
abundant, the total cost of the training task generally remains at a relatively low
level. However, when the weather conditions are poor, and solar energy generated
during the day is insufficient to provide adequate power for model training, it
becomes necessary to draw power from the grid to ensure the GPU’s operation,
resulting in higher costs. Additionally, with the task duration set to 23 hours,
starting the training task around noon each day leads to a local maximum in costs.
This is because starting the task at this time means that the solar panels cannot
provide enough energy for a significant portion of the training period, and the GPU
must rely on grid power during the evening hours, thus incurring higher expenses.

Furthermore, when considering different training task completion times, the
final cost scenario is illustrated in Figure 5.7.

In this section, the training costs for maximum completion times of 23, 25, 27,
29, 31, and 32 hours are presented. It can be observed that as the maximum
completion time increases, both the maximum and minimum costs for starting the
training task at different times decrease. Specifically, under the 23-hour completion
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(a) Solar power at different time

(b) Minimum cost under different start time

(c) Solar power supply and minimum cost

Figure 5.6: Solar power supply vs minimum cost_Duration=23 hours
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time condition, the maximum and minimum costs are 1.32 euros and 0.20 euros,
respectively, which decrease to 0.68 euros and -1.5 euros under the 32-hour comple-
tion time condition.

Furthermore, it can be seen that as the maximum completion time increases, the
shape of the cost curve for starting the training task at different times also changes.
Under the previously mentioned condition of a 23-hour maximum completion time,
starting the training task at noon results in a local maximum cost. However, when
the maximum completion time is extended to 25 hours, starting the training task
around noon becomes a local minimum in terms of cost. This is because, when the
maximum completion time exceeds 24 hours, starting the training task at any time
will ensure that the task spans a full day, allowing it to receive energy from the
solar panels throughout the entire day. In this scenario, starting the training at
noon on the first day enables the utilization of more solar energy, leading to a local
minimum in costs.

5.5 Summary of Energy dispatch Model
In summary, the analysis conducted using the energy dispatch model developed in
this study reveals several key insights:

• Extended Completion Time

– The longer the maximum completion time for the training task, the lower
the average cost during the training process. This trend is evident from the
comparison of maximum and minimum costs across different completion
times.

• Primary Role of Solar Energy

– During the daytime, solar energy generated by the solar panels serves as
the primary power source. Efficient utilization of solar energy significantly
reduces the overall training cost.

• Optimal Utilization of Solar Power

– Ensuring that solar energy is fully utilized can drastically lower the total
cost of training tasks compared to scenarios where solar energy is not
efficiently harnessed. This is particularly apparent when the training
task spans over a complete day, allowing maximum use of available solar
energy.
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(a) Duration=23 hours (b) Duration=25 hours

(c) Duration=27 hours (d) Duration=29 hours

(e) Duration=31 hours (f) Duration=32 hours

Figure 5.7: Minimum cost under different start time of model training

By optimizing the start times and completion durations of training tasks to
align with periods of maximum solar energy availability, the energy dispatch model
demonstrates that training costs can be minimized effectively. This underscores
the importance of integrating renewable energy sources into computational tasks
to achieve cost efficiency and sustainability.
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Chapter 6

Conclusion

6.1 Summary
In this thesis, suitable tools for measuring the energy consumption of GPUs during
model training were identified. Various deep learning models were built from
scratch, allowing for the testing of energy consumption across different layers
during forward propagation and the relationship between energy consumption in
different parts of the model training process (time to device, forward, backward).
Simulation results showed that during the forward propagation phase of model
training, convolutional layers consumed the majority of the total energy.

Next, multiple potential factors that could influence the energy consumption
of deep learning models during training were proposed and analyzed individually
using the controlled variable method. The analysis revealed the following:

• Hardware Differences

– Different hardware, due to their manufacturing processes and design
specifications, results in varying energy consumption when training the
same model. Newer products tend to have lower power consumption.

• Dataset and Model Architecture

– The energy consumption of different deep learning models varies with
the dataset and is influenced by the model architecture and the number
of MACs. For smaller models, the primary factor affecting energy con-
sumption across different datasets is the number of MACs, rather than
the number of training samples. However, for more complex models with
larger MACs, the primary factor becomes the dataset size.
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• Batch Size

– Increasing the batch size generally reduces the energy consumption per
epoch during training. The amount of energy reduction is related to hard-
ware performance. When the batch size is small, meaning there are fewer
data per batch and the hardware is not a bottleneck for training speed,
increasing the batch size can significantly reduce energy consumption (up
to 19.71%). However, as the batch size continues to increase, leading to
more images per batch and increasing memory pressure, the hardware
becomes a bottleneck for training speed. In this case, the reduction
in energy consumption from increasing the batch size becomes smaller
(maximum 0.87%).
Furthermore, the setting of batch size has a significant impact on energy
consumption (close to 20%). However, the energy consumption prediction
model proposed in this thesis is based on fixed epochs and batch size
settings. Therefore, the impact of this factor is not considered in the
construction of the energy consumption prediction model.

• Model MACs

– As model complexity and the number of MACs increase, differences in
energy consumption between different models become more pronounced.
Models with similar numbers of MACs tend to have similar energy con-
sumption.

• Model Structure

– For the same dataset, models with a multi-branch structure tend to
consume more energy during training. However, similar to the relationship
between MACs and energy consumption, this also exhibits a near-linear
relationship.

Next, energy consumption prediction models for training were proposed, both
considering and not considering accuracy.

• Without Considering Accuracy

– A model was proposed to predict energy consumption based solely on
the relationship between the model’s MACs and its energy consumption.
This approach provided a good approximation. An energy consumption
prediction model was developed and validated. The validation results
indicated that the prediction model could accurately predict the energy
consumption of different models on new datasets, proving the feasibility
of the prediction model.
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• With Considering Accuracy

– When considering accuracy, proposing a prediction model proved more
challenging. This was due to the lack of a clear mathematical relation-
ship and the significant differences in model performance across different
datasets. Consequently, it was difficult to establish a prediction model
that accounted for accuracy.

Finally, the variation in GPU running speed under different power limits was
analyzed. Testing revealed that GPU exhibit different running speeds at different
power limits, with a nonlinear relationship. At lower power limits, there is a linear
increase in speed as the power limit increases. However, as the power limit ap-
proaches the GPU’s maximum, the increase in speed slows and eventually stabilizes.

Based on this characteristic, an energy dispatch model was constructed to min-
imize the cost of GPU training tasks when multiple power sources are available.
Simulation results showed that extending the maximum completion time allows
the model to run at lower power limits, reducing GPU power consumption and
maximizing the sale of excess solar energy back to the grid. This minimizes training
costs. Conversely, when the maximum completion time is constrained, minimizing
costs requires starting the training task under optimal weather conditions, ideally
around 8 am, to maximize the use of solar energy during the training phase.

6.2 Future Work
Future work needs to consider energy consumption analysis and prediction for large
models. This involves predicting the energy consumption during the training pro-
cess of large models based on the physical characteristics and operating conditions
of hardware devices, to better allocate resources in advance.

Additionally, in the energy dispatch section, future considerations will include
the actual operating conditions of the power grid. This involves assessing the
behavior of selling electricity from solar panels and drawing power from the grid
based on the load conditions of the power grid at different times.
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