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Abstract

This study explores the potential of improving weed identification accuracy and
reducing herbicide usage through the use of computer vision analysis, specifically
incorporating imaging datasets that include both RGB and near-infrared (NIR)
channels. The thesis investigates the application of deep learning models, namely
YOLO and U-Net, to improve the detection of weeds and their semantic
segmentation in precision agricultural contexts. It utilizes two meticulously
annotated datasets: ACRE for object detection and Sunflower for semantic
segmentation. Additionally, the study considers the effect of varying NDVI
thresholds on segmentation performance, finding that fine-tuning these thresholds
can be key to enhancing outcomes. The customized U-Net model deployed for
segmentation offers promising results, outpacing several leading models in
effectiveness, particularly with integrating NIR data. Combining RGB images with
NIR channels has shown a notable boost in the deep learning models’ ability to
differentiate between weeds and crops—an essential step forward for precision
agriculture. The findings reveal marked progress in segmentation accuracy, with
the UNet-ResNet50 model incorporating RGB+NIR data achieving significant
benchmarks: a mean Intersection over Union (IoU) score of 0.88, a Crop IoU of
0.93, and a Weed IoU of 0.71, respectively with an improvement of 2.7%, 4%, and
3%.
Conversely, YOLO models have demonstrated solid capabilities in object detection
tasks utilizing only RGB data. YOLOv8 achieves a mean average precision (mAP)
of 0.48, which is competitive with the state-of-the-art models in object detection.
While surpassing some traditional methods, these encouraging outcomes highlight
the promising role that multispectral imaging could play in transforming precision
agriculture. This research suggests a path toward an era where the merging of
sophisticated imaging technologies fundamentally changes precision agriculture. In
summary, the study presents evidence that combining NIR data with RGB
channels can significantly boost the precision and effectiveness of weed
segmentation systems, contributing to the development of more eco-friendly
agricultural practices.
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Chapter 1

Introduction

1.1 Smart Farming

The primary objective of smart farming is to fundamentally transform traditional
agriculture through the deployment of cutting-edge technologies such as artificial
intelligence (AI), Big Data, and the Internet of Things (IoT). These technologies
serve to enhance the quality and quantity of agricultural output by enabling more
efficient use of resources and reducing environmental impacts, thereby securing a
stable food supply, promoting sustainable farming methods, and ensuring robust
agricultural production [1]. At the heart of smart farming lies precision
agriculture, which employs these sophisticated technologies and meticulous data
analysis to optimize crop yields, curtail waste, and amplify productivity. This
approach is marked by strategic decision-making and the meticulous integration of
leading-edge technologies, enhancing the precision of agricultural operations. For
instance, AI empowers farmers to make informed decisions by providing detailed
insights into crop health, soil conditions, and climatic variables. Furthermore,
computer vision technology equips machines with the ability to ’see’ and ’interpret’
the farm environment, facilitating early detection of potential issues and ongoing
monitoring of crop development[1]. These technological tools collaborate
seamlessly to enable farmers to achieve greater outputs with fewer inputs, thereby
reducing costs and enhancing both the quantity and quality of the produce. The
integration of AI and IoT in smart farming establishes a data-driven
decision-making framework that significantly augments the capacity of farmers to
anticipate and address various agricultural challenges effectively. Advanced sensing
and imaging technologies play a crucial role in detecting subtle changes in plant
health, which allows for timely interventions that can preempt crop diseases or
pest infestations, thereby mitigating potential losses. This forward-thinking
strategy not only preserves resources but also minimizes dependence on chemical
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Introduction

treatments, supporting more sustainable agricultural practices[1].

1.2 Challenges in Weed management

Weeds pose significant threats to agricultural productivity as they compete
directly with crops for space and essential resources such as water, soil, nutrients,
and sunlight and according to Wang[2], an average of 34% of crop production is
lost due to this problem. Effective weed management is crucial for maintaining
optimal crop yields and quality. Additionally, the detection of weeds becomes
challenging due to their irregular distribution throughout the field and their
tendency to blend in with crop plants. Traditional methods to control weed
infestation have included manual weeding and the use of chemical herbicides.
Although manual weeding is effective, it requires a significant amount of labor and
is economically unsustainable on a large scale [3]. On the other hand, although
chemical herbicides are more feasible for extensive farming operations, they carry
environmental risks. These risks include potential pollution of ecosystems and the
development of herbicide-resistant weed strains, which can further complicate
weed control efforts. Instead of the conventional approach of broadly applying
herbicides over entire cultivated fields, Precision Agriculture enhances farming
practices through the automatic localization and classification of crops and weeds.
This advanced method significantly boosts both the efficiency and sustainability of
agricultural management. By precisely targeting herbicides only to the areas
where they are needed, or even by mechanically removing weeds without any
chemical usage, which decreases the most drawbacks of manual weeding[4].
However, mechanized weeding also presents its challenges, including high energy
consumption, potential risk of crop damage, intricate system designs, and possibly
substantial maintenance costs for the equipment[2]. it is also notable that the
constant mutation of weeds and regulatory removal of some key herbicides have
significantly reduced the availability of effective selective herbicides for many crops.
Moreover, the lengthy process required for agribusinesses to discover and market
new alternatives is further constraining the supply of such options[5]. Moreover,
Weed management is complex due to the variability in weed behavior across
different conditions and seasons. For example, while the tall, fast-growing fat hen
weed poses a threat to nearby crops, its late-summer seedlings are smaller and less
harmful. Additionally, some weeds coexist with crops initially but later compete
vigorously for resources. Identifying the precise moment when weeds begin
impacting crop yield is challenging. Given these challenges, there is a growing
need for innovative weed management strategies that are both efficient and
environmentally friendly.
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1.3 Imaging Technologies
Imaging, whether through RGB or multispectral cameras, is increasingly utilized
in agriculture for detecting and segmenting weeds from crops. These imaging
technologies are central to innovative weed management techniques that are both
efficient and environmentally friendly. RGB imaging captures light in red, green,
and blue bands, mirroring what the human eye sees. it offers a snapshot of field
conditions by showing the number and maturity of plants. This information aids
ground-level scouting, helping to identify and locate areas of concern by
integrating the data with Global Positioning System(GPS) coordinates for precise
navigation to problem spots[6]. However, RGB cameras may not always
distinguish between crops and weeds effectively, especially under variable lighting
conditions or when the plants exhibit similar colors. Unlike RGB cameras,
multispectral imaging captures light across multiple wavelengths beyond the
visible spectrum, including near-infrared (NIR).To be more precise, "The RGB
spectral bands are in the visible range (400-700 nm), whereas the NIR spectral
band is beyond the visible range (700-1100 nm)"[7][8]. The NIR band, positioned
in the electromagnetic spectrum between the visible and mid-infrared bands, spans
a broad wavelength range and delivers clear image information, even under
low-light conditions[8]. To be more specific, While RGB sensors provide a visible
representation of the field, facilitating the counting of plants, multispectral sensors
are designed to capture the way light reflects off plant leaves. This approach
emphasizes different spectral properties, offering insights into plant health that are
not visible to the naked eye. It also utilizes indices like the NDVI to offer further
detailed analysis[6]. Hence, an image captured using RGB-NIR technology displays
a diverse range of features. Additionally, the use of the NIR band in multispectral
cameras enhances weed detection capabilities. The NIR band’s ability to detect
subtle differences in how crops and weeds reflect infrared light enables more
precise identification of these plants. This increased precision in identifying weeds
allows for more targeted herbicide application, potentially reducing overall
herbicide use and minimizing environmental impact. By accurately distinguishing
weeds from crops, NIR technology ensures that herbicides are applied only where
necessary, thus supporting more sustainable agricultural practices[9]. A
comparison between RGB and multispectral images is made in Fig1, Fig2.

3
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Figure 1: An RGB image of a farm, showing the visible spectrum that provides
clear views of plant coverage and field conditions. This image serves as a straight-
forward example of RGB imaging in agricultural applications[6].

Figure 2: A multispectral Normalized Difference Vegetation Index(NDVI) image
highlighting the health of vegetation by assessing the density and vitality of the
crops. NDVI images like this are crucial for precision agriculture, offering detailed
insights into plant health not visible in RGB spectra[6].

1.4 Applications of Multispectral Sensors
Multispectral sensors provide a range of insights that are crucial for effective
agricultural management. They allow for the evaluation of how crops react to
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essential inputs, which informs future application decisions. These sensors also
track the crop canopy to monitor growth rates and assess plant maturity
throughout the growing season. In terms of plant health, multispectral imaging
helps spot areas of stress, aiding in the development of targeted mitigation
strategies. Additionally, they offer an understanding of soil health by analyzing
how effectively plants absorb nutrients from the soil. Moreover, multispectral
sensors can forecast potential drought conditions, enabling more precise
management of water resources and the formulation of strategic irrigation plans.
Integrating remote sensing with these capabilities enhances the ability to observe
and manage agricultural fields remotely, leading to more informed and precise
farming practices[6].

1.5 Role of Deep Learning
Deep learning(DL), a specialized branch of machine learning(ML), leverages
multi-layered neural networks to analyze diverse data types effectively. This
approach is particularly advantageous in image analysis, where it excels at
autonomously identifying complex patterns and features within extensive datasets.
Such capabilities render DL an invaluable asset for critical agricultural tasks like
object recognition, classification, and anomaly detection. At the core of DL’s
utility in image analysis are Convolutional Neural Networks (CNNs). These
networks are tailored to extract features from images automatically and
efficiently—a key factor in precise weed detection. Unlike conventional image
processing methods that depend on manual feature selection and adjustment,
CNNs adapt to recognize vital features directly from provided training data. This
adaptation simplifies the analysis process and enhances its reliability, making it
especially suited to the dynamic and diverse conditions encountered in agriculture.
In the realm of precision agriculture, DL frameworks such as You Only Look
Once(YOLO) and U-Net have transformed weed detection and management.
YOLO excels in real-time object detection, swiftly identifying and categorizing
various objects, including weeds, across different agricultural fields. U-Net, initially
developed for biomedical image segmentation, is adept at intricately segmenting
complex images, thus effectively differentiating between weeds and crops at a
granular level [10]. The incorporation of these advanced models into farming
practices facilitates more precise and efficient weed management strategies. By
enhancing weed detection accuracy, deep learning not only furthers sustainable
agriculture initiatives—optimizing resource use and maximizing crop yields—but
also supports the overarching goals of modern, sustainable agriculture. Thus, deep
learning not only boosts the efficacy of weed detection and segmentation systems
but also contributes significantly to the broader objectives of contemporary,

5



Introduction

sustainable agriculture by promoting smarter, data-driven farming decisions.
These advancements mark a pivotal evolution in agricultural practices, bringing
them into closer alignment with the principles of precision agriculture.

1.6 Research Problem and Objectives
Despite these technological advances, significant challenges remain in effectively
managing weed populations without incurring high environmental costs or labor
demands. The primary research problem this thesis addresses is the need for an
integrated approach that enhances the accuracy and efficiency of weed detection
and segmentation, reducing reliance on chemical herbicides while ensuring crop
health and yield. To comprehensively address this problem, this study will embark
on several focused objectives: 1. Evaluating the effectiveness of convolutional
neural networks (CNNs) in differentiating weeds from crops using multispectral
imaging, specifically comparing the performance of the RGB dataset against the
RGB+NIR dataset: Implementing YOLO algorithms for object detection training
on standard RGB dataset and comparing results with models trained on combined
RGB+NIR dataset using the UNet architecture for precise image segmentation 2.
Investigating the impact of integrating additional spectral data with standard
RGB channels on the accuracy of weed segmentation: Exploring several
combinations of spectral data integration, including RGB+NIR (near-infrared),
G+NIR (green and near-infrared), and G+NIR+NDVI (green, near-infrared, and
Normalized Difference Vegetation Index). The effectiveness of these combinations
will be evaluated based on their Intersection over Union (IoU) metrics to determine
which configuration most significantly enhances weed detection and segmentation
accuracy. This analysis will help identify the optimal spectral channel combination
for improving the precision of automated weed management systems.

1.7 Scope and Limitations
Scope of the Study: The study focuses on optimizing convolutional neural network
architectures, utilizing UNet for RGB-NIR datasets to enhance the precision of
weed identification in agricultural fields while employing YOLO exclusively on
RGB datasets. The analysis is based on existing datasets that have been
annotated for crop and weed detection and segmentation to train and test the
proposed models. Limitations of the Study: 1. Data Availability and Quality: The
effectiveness of deep learning models in agricultural applications is heavily
dependent on the quantity and quality of the training data. One significant
limitation is the availability of comprehensive, well-annotated datasets specifically
for weed detection in agriculture. The scarcity of labeled weed data can constrain
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the training process, potentially affecting the generalizability and accuracy of the
models. 2. Visual Characteristics of Crops and Weeds: Differentiating between
crops and weeds using image data is challenging due to their similar visual
characteristics. Traditional image segmentation techniques that rely on
preprocessing and pixel-based classification may not adequately address the subtle
differences between these plant types, necessitating more sophisticated DL
approaches. 3. Environmental and Operational Variabilities: The variability in
environmental conditions such as lighting, weather, and stress on plants can
significantly impact image quality and the consistency of image data. Variations in
illumination at different times of the day or changes in weather conditions during
data collection can introduce inconsistencies that complicate the segmentation and
detection tasks. Potential errors such as mislabeled crop/weed samples or shifts in
crop/weed boundaries due to growth or external factors also pose challenges,
affecting the training accuracy and model reliability.
In response to the critical dependency of deep learning models on high-quality,
well-annotated training data, our research utilized two key datasets: ACRE
Dataset for Object Detection: We employed the ACRE dataset, a well-annotated
resource known for its comprehensive coverage of agricultural scenes, specifically
designed for object detection tasks. This dataset has been instrumental in training
our models to accurately detect and differentiate between various objects within
agricultural fields, including weeds and crops. Sunflower Dataset for Semantic
Segmentation: For segmentation tasks, particularly focusing on precise delineation
of plant boundaries, we utilized the Sunflower dataset. This dataset provides
detailed annotations necessary for training models like U-Net, which require
pixel-level accuracy for effective image segmentation. Furthermore, we used
transfer learning leveraging pre-trained models on similar tasks which allowed us
to utilize learned features that can be adapted to the specific requirements of weed
detection along with segmentation, thereby reducing the dependency on extensive
labeled weed data.

1.8 Research Questions and Hypothesis
1.What advancements have been made in the application of deep learning for weed
detection and segmentation in agriculture over the past decade? This question
seeks to explore the progression and technological evolution in the use of deep
learning models for identifying and managing weed species across various
agricultural settings. We answered this Question in Chapter2.
2. How effective are different deep learning models, such as YOLO and UNet,
when applied to RGB and multispectral (RGB-NIR) imaging datasets for weed
detection along with segmentation? This inquiry focuses on evaluating the
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performance of specific deep learning architectures in processing and analyzing
different types of imaging data to enhance the accuracy and efficiency of weed
detection. This question is answered in Chapter4.
3. Can an existing Convolutional Neural Network, trained using an RGB dataset,
be effectively utilized to segment weeds from a multispectral image? We
hypothesize that the neural network pre-trained on RGB data will exhibit
transferability to multispectral images for weed segmentation. The inherent
features learned from the RGB dataset, combined with the additional spectral
information available in multispectral imagery, are expected to enhance the
network’s performance in accurately delineating weeds from the background. This
question is answered in Chapter 3.
4. What challenges and limitations are currently faced in the practical application
of deep learning for weed detection, and how can these be addressed to improve
future models? This question aims to identify key obstacles such as dataset
limitations, computational demands, and model adaptability, proposing pathways
for research and development to overcome these challenges. This question is
answered in Chapter2.

1.9 Organization of the Thesis
Chapter 1: Introduction

The introduction of this thesis outlines the advancements and challenges in smart
farming and precision agriculture, explores the role of imaging technologies and
deep learning, and defines the research objectives and significance within the
context of enhancing sustainable agricultural practices

Chapter 2: Literature Overview

The literature overview chapter provides a comprehensive review of existing
research on ML and imaging techniques in agriculture. It discusses traditional
methods, advancements in deep learning applications such as YOLO and U-Net,
and their optimization to enhance the precision of weed identification in
agricultural fields.

Chapter 3: Methods

Chapter 3 of the thesis details the methods, describing the datasets, the specific
configurations of the convolutional neural network architectures used, and the
experimental setups for both the RGB and RGB-NIR datasets to systematically
evaluate the performance of YOLO and U-Net in weed detection and segmentation.
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Chapter 4: Results and discussions

This chapter presents the experimental results, analyzing the effectiveness of the
YOLO and UNet models in weed detection and segmentation across different
datasets, and discusses the impact of integrating NIR data on the accuracy and
reliability of weed identification. Also, this chapter offers a discussion of the
findings, interpreting the implications of the experimental results in comparison
with state-of-the-art methods

Chapter 5: Conclusion

Chapter 5 represents the Conclusion by assessing the contributions of the study to
the field of precision agriculture, along with recommendations for future research
and potential improvements in weed management strategies.
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Chapter 2

Literature Review

2.1 Traditional Machine Learning Weed
Detection Methods

In the realm of weed identification research, a variety of traditional ML methods,
grounded in image processing techniques, have been utilized. These methods
include support vector machines (SVM) [11],decision tree[12]-based random forest
algorithm[13],and K-nearest neighbor (KNN) classifiers[14]. These techniques
primarily focus on extracting features such as color, texture, shape, and spectrum
from weed images through intricate manual processes. For example, Le et al.[15]
successfully differentiated between corn and certain weeds using SVM along with
Local Binary Pattern (LBP) texture features. Chen et al.[16] created a
multi-feature method for locating weeds in soybean fields based on shape and color
attributes, and Zhu et al.[17] devised a classification approach for five different
weed types in agricultural settings focusing on shape and texture. Zhang et al.[18]
performed a comparative study on the grayscale distribution of weeds in RGB,
HSV, and HIS color spaces at the pea seedling stage, developing a method for
weed segmentation and extraction based on R-B color difference features.
Additionally, some researchers have enhanced identification accuracy using plant
height[19] or positional data[20], though these techniques can be affected by
vibration and other uncontrollable movements in field applications. Despite these
advances, challenges persist, particularly in distinguishing similar weed species
when image extraction is not comprehensive or features are obscured. In the
foundational stages of this field, researchers widely adopted these ML algorithms
in conjunction with image features to efficiently detect weeds. These traditional
methods are beneficial due to their low requirement for large data samples and
short training periods; they also place minimal demands on graphics processing
units. Consequently, they provide a cost-effective solution for incorporation into
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agricultural machinery, enabling reliable plant identification and weed detection
via image processing. This effective use of machine vision technology, which
continuously evolves to refine the process of extracting elementary weed features
for subsequent classification, underscores the successful integration of smart
technologies in agricultural applications. Initially, the differentiation between crops
and weeds is achieved by assessing the image’s textural, shape, color, and spectral
properties. Additionally, certain studies have concentrated on utilizing a single
feature for plant identification, resulting in low accuracy and limited reliability. To
address the challenges posed by complex field environments and the limitations of
using single features for plant recognition, researchers have developed methods
that combine multiple features to enhance accuracy and stability. For example, He
et al.[21]integrated various recognition information including plant leaf shape,
fractal dimension, and texture, leveraging the strengths of SVM for small sample
classifications and the benefits of Dempster–Shafer evidence theory in managing
incomplete and uncertain information. This approach of multi-feature decision
fusion has demonstrated improved stability and higher recognition accuracy
compared to single-feature methods. Similarly, Sabzi et al[22] developed a machine
vision prototype that utilizes video processing and meta-heuristic classifiers,
incorporating features from the Gray-level Co-occurrence Matrix (GLCM), color,
texture, invariant moments, and shape to identify and classify a large dataset of
potato and weed species with high accuracy online. Deng et al.[23] integrated
color, shape, and texture features into a 101-dimensional feature set to address the
poor recognition accuracy of single features in rice fields. Although these
innovations mark significant advances in image-based plant recognition and weed
detection technologies, they predominantly focus on leaf identification rather than
precise in-field crop or weed detection. Furthermore, there remains a scarcity of
studies that tackle the identification and localization of plants and weeds against
complex, practical field backgrounds, indicating that further research is essential
to enhance weed detection and identification in actual farmland settings. table1
summarizes various studies on the use of traditional ML techniques for identifying
or classifying plant leaves. These methods are effective in controlled settings with
specific plant species and backgrounds but fall short in rapid, large-scale image
processing in natural environments. The application of drone imagery for
large-scale vegetation classification and weed detection is gaining traction.
Object-Based Image Analysis (OBIA) is progressively replacing older pixel-based
classification methods. One of the main challenges with OBIA is determining the
optimal parameter settings. To address this, Torres-Sánchez et al.[24] utilized
Unmanned Aerial Vehicles images(UAV) to develop an automatic thresholding
algorithm that operates within the OBIA framework, facilitating unsupervised
classification of various herbaceous row crops. UAV offer the advantage of less
restriction by field conditions, enabling broad-scale monitoring of weed

11



Literature Review

populations. They also provide high-resolution images, which are crucial for
detecting low densities of weeds and allow for flexible timing of image capture,
thereby enhancing the potential for extensive applications in high-input
agricultural environments. Table 1 presents the accuracy and associated problems
of various traditional ML methods used for plant and leaf identification.

Table 1: Overview of Traditional Machine Learning Techniques and Their Chal-
lenges

Purpose Accuracy Problems
Utilizing HOG features alongside
SVM for grape leaf identification

83.50% Single-feature detection suf-
fers from low stability and ac-
curacy.

Improved detection of plant
leaves using enhanced LBP

79.35% Single-feature detection suf-
fers from low stability and ac-
curacy.

Investigating the impact of SVM
and ANN on sugar beet and weed
detection

93.33% Inadequate feature selection
analysis.

Utilizing Gabor wavelet and gra-
dient field distribution for weed
categorization

93.75% Inadequate feature selection
analysis.

Categorizing fresh tea with im-
proved LBP and GLCM

94.80% Only identifies one type of
leaf.

2.2 Conventional Methods and Their Pros and
Cons for Common Weed Detection

The traditional methods for weed detection through image processing, which are a
focus of discussion in this section of the thesis, rely on differentiating plant leaves
from weeds based on distinct image features. This discussion critically examines
the advantages and drawbacks of utilizing four key features—texture, shape,
spectrum, and color—in the detection and recognition of weeds.

2.2.1 Texture Features
Texture features are key identifiers in image classification, reflecting the spatial
relationships between pixels. Commonly found in plant leaves, these features vary
based on vein patterns and surface textures, aiding in the differentiation of crops
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from weeds. These texture methods fall into four main types: statistical,
structural, model-based, and transform-based. Commonly used descriptors include
(GLCM)[25] LBP, which are effective in analyzing microstructures and maintaining
consistency across image rotations and translations. These methods, however, face
challenges under complex agricultural conditions, such as overlapping plants and
varying weed densities. Advanced applications of these descriptors are crucial for
enhancing precision in detecting subtle differences between plant types, thereby
improving both the efficiency and accuracy of automated weed management
systems.

2.2.2 Shape Features
In the field of image analysis for weed detection, shape features are critically
important. They describe the geometrical attributes of objects within an image,
including aspects like perimeter, area, major and minor axis lengths, and more
intricate measures such as eccentricity, compactness, and solidity. These features
help in distinguishing between different plant species by their morphological traits.
Additionally, sophisticated algorithms such as Hu moment invariants[26] are
employed to ensure these features are invariant to rotation, scaling, and
translation, enhancing their utility across varied imaging conditions. However, the
effectiveness of shape features alone is limited when plant leaves are distorted by
environmental factors such as disease, insect damage, or mechanical impacts.
Furthermore, field conditions often present challenges like overlapping leaves and
occlusion, complicating weed identification. To overcome these challenges,
combining shape features with other descriptors is essential to enhance the
accuracy and robustness of the detection process.

2.2.3 Spectral Features
Spectral features are essential in distinguishing plants based on their leaf colors
and are particularly effective when the spectral reflectance between weeds and
crops is distinct. These features are less sensitive to partial occlusions and are
efficient in computation. Researchers have harnessed visible light, near-infrared
spectra (Vis–NIR)[27], multispectral/hyperspectral imaging, and fluorescence[28]
to identify various plant species. Additionally, capturing a multispectral image is
influenced by daily climatic conditions, which alter plant reflectivity based on light
absorption. Techniques that leverage spectral indices have been successful in
differentiating between crop species by analyzing chlorophyll and carotenoid
content. While spectral sensors provide detailed data, their ability to distinguish
between plant species in early growth stages is limited due to similar reflective
characteristics. Despite promising results in identifying weeds using specific
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spectral bands, the effectiveness is often compromised by environmental factors
like moisture, disease, and growth stages. Hence, combining spectral data with
other features like shape and texture is advisable to improve identification
accuracy in diverse field conditions[29].

2.2.4 Color Features
The accuracy of color-based plant detection relies heavily on the specific plant
species and the contrast in their colors. This method excels in resisting changes in
scale, size, and orientation, and is often utilized to separate plants from
backgrounds by capitalizing on these color differences. Notable research by
Hamuda et al[30] and Tang et al[31] has detailed the strengths and limitations of
color index-based segmentation approaches. Despite the robustness of color
properties, they are not infallible and are influenced by various environmental
factors like lighting, which can obscure the color distinctions necessary for effective
weed and crop differentiation. Consequently, many researchers opt to transition
from the RGB color spectrum to other color spaces such as HIS, HSV, Lab, and
YCrCb, aiming to improve the accuracy of segmentation and analysis. However,
color remains a variable feature in plant identification, susceptible to alterations by
plant health, seasonal changes, or inconsistent lighting conditions, potentially
complicating the discrimination of weeds from crops under real-world conditions.
Table 2 Table 2 offers an examination of the strengths and weaknesses associated
with four prevalent image features utilized in weed detection.
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Table 2: Comparison of the Advantages and Disadvantages of Four Common
Features Used in Weed Detection

Features Advantages Disadvantages
Texture Offers high precision and

adaptability, with a strong re-
silience against disruptions

GLCM processing is slow and
not suitable for real-time ap-
plications.

Shape Operates independently of
any geometrical transforma-
tions and is robust against
noise interference

Prone to deformation from
external factors such as dis-
ease or physical damage, and
may struggle with overlap-
ping shapes.

Color Remains consistent despite
changes in scale, size, and ori-
entation, providing vital dif-
ferentiation

Struggles with similar colors
in different plants, affected by
environmental conditions.

Spectral Effective even with partial
blockages

Performance varies with
plant growth stages and
environmental conditions,
less stable.

2.2.5 Multi-Feature Fusion
The challenge of detecting weeds using a single image feature is compounded by
the similarity between weeds and crops. This has led researchers to explore
multi-feature fusion methods, aiming to enhance accuracy and stability in weed
detection, particularly in non-ideal field conditions. Multi-feature fusion in weed
detection is an advanced approach that integrates different types of data derived
from images to enhance the accuracy of identifying weeds among crops. This
technique combines several types of image features—shape, texture, color, and
spectral—each providing unique insights that contribute to a more robust
classification system. For instance, shape features to focus on the geometry of the
plants, texture features analyze the surface characteristics, color features capture
the visible hues, and spectral features assess information from various light
spectrums. An example of successful multi-feature fusion is the study by He et
al[21], who explored the integration of these features for identifying crop and weed
species. Their system improved detection accuracy significantly by leveraging the
complementary strengths of each feature type, demonstrating how multi-feature
fusion can overcome the limitations of using single features alone, particularly in
complex agricultural environments. While multi-feature fusion has advanced weed
detection, further research is needed to address persistent issues in experiment
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accuracy and stability under varying field conditions.

2.2.6 Classifier
SVMs and ANNs are pivotal in the classification of crops and weeds[9], benefiting
from their ability to handle nonlinear, high-dimensional patterns and small sample
sizes. SVMs are especially effective in avoiding nonlocal minima issues, while
ANNs excel in learning from untrained data due to their robust learning
capabilities. Besides these, methods like KNN and random forests are frequently
mentioned in research, alongside naive Bayesian[32] and AdaBoost algorithms[33]
for their strong classification performances. Recent advancements have seen
researchers applying these classifiers in varied contexts. For instance, Jeon et al[34]
utilized ANNs for weed detection in outdoor settings, adapting to challenging
lighting conditions. Chen et al[35] combined KNN with advanced algorithms to
enhance weed classification, achieving high accuracy. Similarly, Rumpf et al[36]
used sequential SVM models to differentiate between types of weeds and crops,
illustrating the adaptability of SVMs to complex agricultural scenarios. Moreover,
the integration of multiple classifiers is becoming commonplace to leverage the
strengths of various approaches. Bakhshipour and Jafari[11] compared the
effectiveness of SVMs and ANNs in detecting weeds in sugar beet fields, finding
SVMs generally more accurate. The combined use of different classifiers not only
enhances the precision but also broadens the applicability in diverse field
conditions. However, despite the successes, challenges such as recognizing multiple
weed types in complex environments persist. Continued research is crucial for
refining these technologies to ensure they meet the demands of modern agriculture,
indicating the importance of ongoing innovation in multi-feature fusion and
classifier optimization.

2.3 Weed Detection and Identification Methods
Based on Deep Learning

The significant advancements and widespread availability of image-capturing
devices have simplified the process of capturing images. Concurrently, the
reduction in computer hardware costs and the enhancement in GPU computing
power have facilitated the application of deep learning in agriculture. Deep
learning techniques have shown impressive results in weed detection and
classification[9]. Although traditional ML methods are straightforward and have
seen numerous enhancements, they are often validated in controlled environments
with low-density images, posing challenges such as occlusion, clustering, and
varying lighting conditions in natural settings. DL distinguishes itself with its
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network feature structure, enabling more efficient feature extraction compared to
manual methods. It achieves higher-level features by aggregating local features
from lower levels and integrating them at higher levels, allowing for diverse
task-specific features. In weed detection, DL exploits spatial and semantic feature
variations to enhance the accuracy of identifying and detecting weeds and crops.
Commonly employed deep learning networks in this domain include CNNs and
Fully Convolutional Networks (FCNs). Additionally, semi-supervised and
unsupervised methods have been developed to mitigate labeling costs. DL
algorithms frequently outperform traditional algorithms in classification tasks,
though they require extensive datasets for training. The difficulty of collecting
comprehensive crop and weed images highlights a drawback of DL methods in
weed identification. One of the key advantages of deep learning methods such as
CNNs and FCNs is their automatic feature extraction capability, which surpasses
the efficiency of manually defined features. The higher accuracy of deep learning
models is attributed to their complexity and ability to tackle more intricate
problems. Despite the outstanding performance of DL algorithms, challenges in
data collection and environmental variability remain significant hurdles. In
summary, while DL offers enhanced accuracy and automation in feature extraction
for weed detection, the dependency on large datasets and environmental
complexities continue to pose challenges that need addressing for more effective
application in agricultural practices [3].

2.4 Weed Detection and Identification Methods
Based on CNNs

CNNs have become increasingly popular in weed detection, thanks to their
exceptional performance in classification and identification tasks. Various studies,
such as those by Yu et al[37] have demonstrated the effectiveness of deep CNNs in
this field. For instance, Potena et al[38] used two different CNNs to process RGB
and NIR images, achieving rapid and accurate crop and weed identification. A
lightweight CNN was employed for fast and robust vegetation segmentation,
followed by a deeper CNN to classify the segmented pixels between crops and
weeds. Beeharry and Bassoo[39] evaluated UAV-based weed detection algorithms,
showing AlexNet’s accuracy exceeded 99%, compared to 48% for ANN on the
same dataset. Ramirez et al[40] compared their aerial image weed segmentation
model with SegNet and U-Net, finding that balanced data and better spatial
semantic information improved accuracy. You et al[41] introduced a semantic
segmentation method for weed detection based on deep neural networks (DNNs),
enhancing segmentation accuracy through four additional components, making it
effective for weeds of various shapes in complex environments. These methods do
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not rely on image preprocessing and can autonomously extract useful features
from images, outperforming traditional ML methods with manually designed
features. CNN frameworks like AlexNet[42], ResNet[43], VGG[44], GoogleNet[45],
U-Net, MobileNets, and DenseNet[46] are widely used in weed detection, standing
out from conventional index-based methods. For example, Chechliński et al[46]
measured four different plants in diverse growing places and light conditions, using
a custom framework combining U-Net, MobileNets, DenseNet, and ResNet,
achieving impressive results. CNNs also excel in plant disease detection with high
precision. However, DL methods have drawbacks, including longer training times,
higher complexity, greater computational costs, and the need for large training
datasets. This requirement for extensive training samples poses a challenge in
acquiring sufficient crop and weed images for weed detection, necessitating
improvements to build effective models with limited datasets. The application of
CNNs in weed segmentation has shown significant promise. They effectively
separate crops from weeds in complex environments, leveraging their deep feature
extraction capabilities. By learning spatial and semantic features, CNNs enhance
the accuracy of weed segmentation tasks, making them a valuable tool in precision
agriculture. In summary, CNNs are increasingly used for weed detection and
segmentation due to their high accuracy and ability to automate feature extraction,
addressing many challenges faced by traditional ML methods. While they have
some limitations, ongoing research aims to optimize their performance even with
smaller datasets. To provide a comprehensive comparison of DL methods, Table 3
summarizes the key features, advantages, and challenges of five prominent
CNN-based architectures. This table highlights the primary characteristics of
AlexNet, VGGNet, ResNet, GoogleNet (Inception), and U-Net, showcasing their
contributions to the field of DL and their respective areas of application.
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Table 3: Comparison of Typical CNN-Based DL Methods

Method Features Advantages Challenges
AlexNet Convolutional

layers, max
pooling, ReLU
activation, fully
connected layers

High accuracy, efficient
for large-scale images, re-
duced overfitting with
dropout

Computationally expen-
sive, large number of pa-
rameters

VGGNet Deep convolu-
tional layers,
small receptive
fields, max
pooling, fully
connected layers

Improved accuracy with
deeper layers, simple and
uniform architecture

High memory consump-
tion, slow to train due to
depth

ResNet Residual blocks,
skip connections,
batch normaliza-
tion

Mitigates vanishing gra-
dient problem, allows
training of very deep net-
works

Complex architecture, in-
creased computational
cost

GoogleNet (In-
ception)

Inception mod-
ules, multiple fil-
ter sizes, auxil-
iary classifiers

Efficient computation
with fewer parameters,
high accuracy

Complex architecture, re-
quires careful tuning of
hyperparameters

U-Net Encoder-
decoder struc-
ture, skip
connections, up-
sampling layers

Effective for image seg-
mentation, works well
with small datasets

High computational cost,
requires large memory

2.5 Object Detection
Object detection is a fundamental technology in precision agriculture, enabling the
identification and classification of various objects, such as crops and weeds, within
images. Leveraging DL algorithms, object detection analyzes visual data to make
informed decisions, enhancing farming efficiency and sustainability. object
detection in an image involves several steps. First, an image is passed through a
neural network, which processes it to extract features. This network, often a CNN,
scans the image in a grid-like fashion, creating feature maps that highlight
important aspects such as edges, textures, and patterns. These feature maps are
then analyzed to predict bounding boxes around objects, classifying each box with
a confidence score. The final output includes the locations and labels of the
detected objects within the image. Popular models used for object detection
include YOLO, Faster R-CNN, SSD (Single Shot MultiBox Detector), and Mask
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R-CNN. YOLO models, particularly YOLOv5 and YOLOv8, are favored for their
high speed and accuracy, making them suitable for real-time weed detection and
crop monitoring. These models significantly improve farming efficiency by enabling
precise weed identification and targeted interventions, ultimately supporting
sustainable agricultural practices.

2.5.1 YOLO: A Paradigm Shift in Object Detection
YOLO is a state-of-the-art object detection algorithm that has gained widespread
popularity due to its speed and accuracy. Unlike traditional object detection
systems that apply a classifier to different regions of an image, YOLO frames
object detection as a single regression problem, a single regression task, directly
from image pixels to bounding box coordinates and class probabilities. This
approach significantly speeds up the detection process while maintaining high
accuracy.

2.5.2 YOLOv5 in Weed Detection
YOLOv5, developed by Ultralytics[47], is an enhanced version of the original
YOLO algorithm. It incorporates several improvements that make it highly
effective for agricultural applications, including weed detection. YOLOv5’s
architecture is optimized for real-time object detection, making it suitable for
integration with UAVs and ground robots used in precision agriculture. Key
features of YOLOv5 include: Speed and Efficiency: YOLOv5 can process images
at a high frame rate, enabling real-time weed detection and monitoring. Accuracy:
The model’s ability to accurately detect and classify weeds amidst crops is due to
its advanced feature extraction and learning capabilities. Flexibility: YOLOv5 can
be trained on a variety of datasets, making it adaptable to different agricultural
environments and weed species. Recent studies have highlighted the effectiveness
of YOLOv5 in agricultural applications. For instance, a study by Xie et al[48]
demonstrated that YOLOv5 could accurately detect weeds in maize fields with a
high degree of precision and recall, outperforming traditional ML methods. The
model’s robustness to varying lighting conditions and its ability to detect weeds at
different growth stages were key factors in its success. The real-time detection
capabilities of YOLOv5 enabled efficient monitoring and management of weeds,
reducing the reliance on manual scouting.

2.5.3 YOLOv8: The Next Generation
YOLOv8, also developed by Ultralytics[49], builds upon the strengths of its
predecessors with further enhancements in speed, accuracy, and efficiency.
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YOLOv8 introduces new architectural improvements and training techniques that
make it even more powerful for object detection tasks, including weed detection.
Key improvements in YOLOv8 include: Enhanced Backbone Network: YOLOv8
features a more efficient backbone network that improves feature extraction,
leading to better detection accuracy. Advanced Data Augmentation: Techniques
such as mosaic augmentation and cutout regularization are employed to improve
the model’s robustness to various image conditions. Optimized Training Process:
YOLOv8 uses a more efficient training process that reduces overfitting and
improves generalization across different datasets. Research Using YOLOv8 for
Weed Detection Emerging research has begun to explore the potential of YOLOv8
in agricultural settings. Preliminary studies indicate that YOLOv8 can achieve
even higher accuracy rates compared to YOLOv5. For instance, Zhang et al[50]
utilized YOLOv8 for weed detection in rice fields and reported an accuracy
improvement of 3-5% over YOLOv5, particularly in detecting weeds under
challenging conditions such as dense foliage and varying sunlight.

2.5.4 Challenges of YOLO Models in Weed Detection
While YOLO models are effective for real-time object detection, they face
significant challenges in weed detection. One major issue is their difficulty in
detecting small, overlapping objects, which is common in dense vegetation.
YOLO’s grid-based detection can miss fine details and precise boundaries, leading
to inaccurate classifications and missed detections. This limitation is particularly
problematic in agriculture, where distinguishing between closely situated weeds
and crops is critical. Moreover, YOLO models struggle with high variability in
weed appearances due to different growth stages, lighting conditions, and
occlusions by other plants. These challenges necessitate the use of image
segmentation models like U-Net or Mask R-CNN, which provide pixel-level
accuracy essential for precise differentiation. Segmentation models excel in tasks
requiring detailed analysis, offering improved performance by addressing the
precision challenges posed by YOLO models in complex agricultural settings.
Therefore, while YOLO is advantageous for speed, image segmentation models are
crucial for accuracy in weed detection.

2.6 Image Segmentation
Image segmentation is a key image processing task that groups pixels into coherent
regions based on similarities. Unlike general image classification, which assigns a
single label to an entire image, semantic segmentation classifies each pixel, making
the process more detailed and exhaustive. Traditional methods of segmentation
include techniques like thresholding, region-based methods, edge detection,
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watershed, and clustering. These methods rely heavily on local pixel differences
and gradients to define segments. However, the advent of DL has revolutionized
image segmentation, allowing for more precise results. Neural network models such
as SegNet [51] and U-Net[52] have shown superior performance by leveraging DL
techniques. These models learn to recognize complex patterns and features within
images, making them highly effective for tasks requiring detailed pixel-level
classification. A comparison between object detection and different types of image
segmentation is made in Figure3.
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Figure 3: Comparison of Object Detection, Semantic Segmentation, and Instance
Segmentation. Object detection identifies and locates objects within an image
using bounding boxes. Semantic segmentation classifies each pixel into a category
without distinguishing instances. Instance segmentation combines the strengths of
both methods by identifying and delineating individual instances within the image

2.6.1 Weed Segmentation
Image segmentation is vital for vision-based tasks, including weed detection in
precision agriculture. Segmentation of imagery data is crucial before further
processing, such as quantifying weed presence and determining pesticide
requirements. One of the main challenges in crop and weed segmentation is
distinguishing their visual characteristics. Conventional segmentation techniques
generally involve two stages: pre-processing and pixel-based classification.
Pre-processing often includes image enhancement to reduce noise and illumination
effects. In pixel-based segmentation, several traditional methods are used,
including color index-based segmentation, threshold-based segmentation, and
learning-based segmentation [30]. These methods often employ classifiers such as
Random Forest and SVMs to categorize pixels as belonging to either weeds or
crops. DL approaches, such as CNNs and DNNs [41], have been increasingly used
to enhance the performance of traditional classifiers. These models are capable of
learning complex patterns and features, which significantly improves segmentation
accuracy. An illustration of Conventional Segmentation Methods is shown in Fig4.
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Figure 4: Conventional Segmentation Methods

Moreover, multi-modal approaches using RGB and hyperspectral Cameras have
demonstrated promising outcomes in managing variations in weed and crop
appearances, further improving segmentation accuracy. By integrating data from
multiple sources, these approaches can better distinguish between different plant
species under varying conditions, making them highly effective for precision
agriculture.

2.6.2 U-Net-based segmentation
U-Net is a DL model designed specifically for image segmentation, introduced by
Ronneberger, Fischer, and Brox in 2015[10]. It has become one of the most
popular models in the field due to its ability to perform well with limited training
data. The architecture of U-Net consists of two main parts: downsampling and
upsampling. During downsampling, pooling layers reduce the image resolution
while maintaining the number of channels, which helps in abstracting information
and reducing complexity. The upsampling part then uses convolutional layers to
increase the resolution, producing more precise outputs. The U-Net model has
been widely applied across various image segmentation tasks, including medical
imaging, remote sensing, and computer vision. It has been shown to outperform
other DL models such as SegNet [51], FCNs, and ResNet in several benchmarks.
In the context of weed detection, U-Net has been employed effectively. For
instance, Asim et al [53] utilized U-Net alongside vegetation indices to detect
weeds. Moreover, U-Net has been used for background removal by segmenting
leaves and soil, facilitating tasks such as disease detection in cassava leaves[54] and
herbal leaf classification [55]. This model’s ability to handle such varied tasks
underscores its versatility and robustness in image segmentation. An illustration of
U-Net architecture is shown in Fig.5.
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Figure 5: U-NET Architecture
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Chapter 3

Methods

3.1 The ACRE Dataset

"The data collection for the ACRE dataset took place from June 8th to June 10th,
2022, during the first ACRE Field Campaign at the Institut National de Recherche
pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) site in Montoldre,
France. The experimental plots included two types of crops: maize (Zea mays) and
beans (Phaseolus vulgaris). Moreover, four types of weeds were planted: ryegrass
(Lolium perenne), mustard (Sinapis arvensis), matricaria (Matricaria chamomilla),
and lamb’s quarter (Chenopodium album). Maize was sown in two-row plots with
a spacing of 0.75 meters between rows, while beans were sown in three-row plots
with a 0.375-meter spacing between rows. The planting density for maize was 0.14
meters and for beans 0.07 meters between plants within the same row. These plots,
each approximately 40 meters in length, were sown on May 19th, 2022. By the
time of data collection, the bean plants had grown to a height of 0.08 to 0.1 meters,
and the maize plants were between 0.1 and 0.15 meters tall. Data was gathered
using a four-wheel skid-steering robot equipped with a Basler acA2000-50gc RGB
camera, mounted perpendicularly to the ground. The camera, with a resolution of
2046 x 1080 pixels, captured images as the robot, teleoperated at an average speed
of 0.2 meters per second, moved through the fields. Data collection occurred at
different times of the day to capture various lighting conditions, including diffused
sunlight using a white tissue and direct sunlight. A total of ten acquisition batches
were performed, resulting in 1000 RGB images stored in ten folders, each
representing a batch. Every image comes with an XML file containing instance
segmentation annotations. The ACRE dataset is valuable for the development and
enhancement of weed detection algorithms, applicable in tasks such as object
detection, semantic segmentation, and instance segmentation"[56].
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3.1.1 Annotation
"The annotation process for the ACRE dataset was supervised by the French
Laboratoire national de métrologie et d’essais (LNE) to avoid potential machine
learning biases. Manual annotations were carried out by subcontractors, ensuring
accuracy and thoroughness. Each annotation in the dataset includes several critical
elements: Polygons that precisely define the boundaries of each plant, referred to
as "clipping" in the annotation XML files. If possible, the coordinates of the center
of each plant where the stem meets the ground. Labels indicating the type of plant
(crop, weed, or unknown species). Labels with the plant’s name, either selected
from a predetermined list or entered manually. A high-quality annotation should
use as many vertices as needed to accurately outline the plant’s shape, with a
minimum of three vertices per polygon. Annotators follow specific rules for
ambiguous cases, such as foliage gaps, plant overlaps, plants at the image edge,
"natural" weeds (different from seeded varieties), blurred plants, and plants outside
the field area. Annotators receive training from an expert using LNE-DIANNE
software and practice on different image types. An example annotation is
illustrated in Figure 6. After training, a "test batch" of 10% of the images is
annotated and undergoes quality control by LNE to identify issues and provide
guidance for improvement. Additionally, 10% of the images are annotated twice to
ensure inter-annotator consistency, and a manual random sample quality control is
conducted. Subcontractors report on the task and any encountered difficulties,
noting image characteristics that caused ambiguity, such as high plant density,
sunny weather leading to overexposure and harsh shadows, and motion blur from
tall maize plants[56]." An illustrative example of an annotation is shown in Figure6.

27



Methods

Figure 6: The screenshot of the annotations displays crops outlined in green and
weeds highlighted in yellow. Each plant’s center is marked with a cross symbol.

3.1.2 Data Processing and Splitting

The ACRE dataset has been efficiently processed using Roboflow[57], a robust
platform designed to streamline the preparation and management of image
datasets for machine learning projects. Roboflow enhances the ACRE dataset by
providing comprehensive tools for augmentation and preprocessing, which are
crucial for training deep learning models. In the case of the ACRE dataset,
Roboflow facilitated several key preprocessing steps. These included auto-orienting
images to ensure consistent alignment and resizing the images to a uniform
dimension of 640x640 pixels. Standardizing the input size is essential for
optimizing model performance and ensuring uniformity during the training process.
The dataset was methodically split into three distinct sets:700 images for training,
200 images for validation, and 100 images for testing were used. This strategic
division ensures that the models have sample data for learning, validating, and
testing, allowing for accurate evaluation and adjustment of the model’s
performance. By leveraging the capabilities of Roboflow, researchers can ensure
high-quality preprocessing of the ACRE dataset, which is pivotal for developing
robust and effective weed detection models. This preparation supports the training
of deep learning models that can accurately identify and distinguish between crops
and weeds, thereby advancing precision agriculture.
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3.1.3 Model Architecture and Hyperparameter
Configuration

All experiments were conducted using YOLO models developed by Ultralytics.
Our primary goal was to identify the optimal configuration of hyperparameters
and model size for weed detection on the ACRE dataset. To achieve this, we
trained models on the ACRE dataset using various splits for training and
validation. We did not exclude any images due to annotation errors or low quality;
instead, we utilized the entire dataset as provided. We employed different YOLO
versions for our experiments, specifically YOLOv5 and YOLOv8. For YOLOv5, we
used the yolov5s and yolov5m models, while for YOLOv8, we experimented with
yolov8s, yolov8m, and yolov8n models. The dataset was divided into training and
validation sets to ensure robust model evaluation, with performance showcased on
the ACRE "test_dev" split. To test the impact of various hyperparameters, we
experimented with image sizes of 640x640, 1024x1024, and 1600x1600 pixels, and
batch sizes of 16, 32, and 64. Notably, we observed that the choice of model size
had minimal impact on the resulting mAP95 (mean Average Precision at an
IoU=[0.50:0.95]) and mAP50 (mean Average Precision at an IoU=0.50).
Throughout the training process, we closely monitored losses and metrics to
prevent overfitting. We found that training for 50 epochs was sufficient for our
dataset/batch combination. This careful monitoring and adjustment ensured that
the models were effectively trained without overfitting, which is crucial for
achieving high accuracy in weed detection tasks. In summary, the experiments
conducted with YOLOv5 and YOLOv8 on the ACRE dataset helped us determine
the most effective configurations for weed detection, taking into account various
model sizes, image resolutions, and batch sizes. This process is essential for
optimizing the performance of deep learning models in practical agricultural
applications.

3.2 The Sunflower Dataset
For the segmentation part of the research, we utilized a publicly available dataset
known as the Sunflower dataset Fawakherji et al[58]. Examples of scenes taken
from the sunflower farm on different days are shown in Fig7. This dataset was
specifically chosen for its relevance in crop and weed segmentation tasks. The
dataset was gathered with a 4-channel (RGB + NIR) JAI AD-13 camera mounted
on an agricultural robot in Jesi, Italy. The dataset comprises three subsets,
Totaling 500 scene images, which were captured at various times and on different
days, these images represent three distinct stages: the emergence stage, a
subsequent growth stage, and the final stage for applying chemical treatments.
From these, we used 318 images from the first two stages for our experiments. The
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Figure 7: "An example of scenes from the field, from top to bottom: the emer-
gence state, a subsequent growth state, and the last state for applying chemical
treatments"[3]

U-Net model was trained using 254 images and tested on 64 images using the
hold-out method to evaluate segmentation performance. This approach involves
splitting the dataset into two parts: one for training the model and the other for
testing its performance. By doing so, we ensured that the model’s effectiveness
was evaluated on unseen data, providing a more robust measure of its
segmentation capabilities and helping to prevent overfitting. To ensure that
images used for training were not used for testing, we employed the random split
method from PyTorch, which guarantees a random split and that no image in the
training set is included in the test set. The hold-out method is particularly
advantageous as it helps prevent overfitting, ensuring that the model generalizes
well to new, unseen images. This method enabled us to assess the U-Net model’s
effectiveness in accurately segmenting crops and weeds across various growth
stages, demonstrating its potential application in precision agriculture. The
ground truth images in this dataset are annotated with specific colors: black for
soil, green for crops, and red for weeds.
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3.2.1 Challenges of dataset
The field environment introduces several challenges in creating datasets and
obtaining image samples for the Sunflower dataset. After planting the crops, they
may experience various stresses and weather conditions that are not easily
controllable. Additionally, due to data collection occurring on different days and at
different times, the lighting or illumination conditions can vary significantly across
scene images, as demonstrated in this dataset. This variability in lighting can
complicate the training process for DL models. There are also potential issues
such as mislabelled crop or weed samples and changes in crop or weed boundaries
within the same samples. Mislabelled samples can significantly impact the
performance of a deep learning model, leading to incorrect results. For instance, if
a crop sample is mistakenly labeled as soil, the model might learn incorrect
associations and produce erroneous outputs when applied to new data. Similarly,
if a mislabelled sample is used in the test set, it would lead to an inaccurate
evaluation of the model’s performance because the mask IoU calculation would
consider the incorrect label as the ground truth. The soil background in the field
is often not purely soil; it may include aggregates, rocks, dead leaves, and other
elements. For example, a dead leaf labeled as a weed in the ground truth image
could be misclassified as soil by the model. This misclassification may contribute
to a lower IoU for the weed class, which is already a minority class in the dataset.
Furthermore, the pixel values at the boundaries of crops and weeds can change
across consecutive scene images of the same sample. This variability can affect
segmentation results because the model might be trained or tested on different
labels for the same pixel values. This issue is likely due to the natural field
environment and the resolution limitations of the image sensors used. Ensuring
the accuracy and consistency of labels in both the training and test data is
essential. Accurate labelling enables the model to learn correct relationships and
provides a reliable evaluation of its performance, thereby improving its
effectiveness in real-world applications.

3.2.2 Image Pre-processing
In the preprocessing step of this thesis, two significant techniques were applied to
enhance the quality and utility of the dataset: NDVI and the Gaussian Bilateral
Filter on NIR images. These methods are essential for improving the accuracy and
reliability of the models used for weed detection and segmentation.NDVI is a
widely used remote sensing index that measures vegetation health by comparing
the red and NIR light reflected by vegetation. The formula for NDVI is:

NDV I = NIR − Red

NIR + Red
(3.1)
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This index ranges from -1 to 1, where higher values indicate healthier and denser
vegetation. NDVI is particularly useful in agricultural applications for monitoring
crop health, detecting plant stress, and differentiating between crops and weeds.
By incorporating NDVI into the preprocessing pipeline, the model benefits from
enhanced contrast between vegetation and non-vegetation areas, improving its
ability to accurately identify and segment crops and weeds[59]. The Gaussian
Bilateral Filter is a non-linear, edge-preserving, and noise-reducing smoothing
filter[60]. It combines the advantages of Gaussian smoothing and edge-preserving
properties by taking into account both the spatial closeness and the intensity
difference of neighboring pixels. The bilateral filter works as follows:

filtered(x) = 1
Wp

Ø
y∈Ω

I(y) · exp
A

−∥x − y∥2

2σ2
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where: I(y) is the intensity value at pixel y, , Ω is the neighborhood of pixel x, ,σs

is the spatial standard deviation, , σr is the range standard deviation, , Wp is the
normalization factor, defined as:
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In this study, the Gaussian Bilateral Filter was applied to NIR images to reduce

Figure 8: NIR image (left) and the result of the bilateral filter image (right)

noise while preserving important edges, which is crucial for accurate segmentation
tasks. By smoothing out noise and maintaining the integrity of edges, the bilateral
filter enhances the clarity and quality of the images, leading to better performance
of the deep learning models. A NIR image and its corresponding Filtered-NIR are
shown in Fig 8. Furthermore,in agricultural datasets, such as the sunflower
dataset, certain data augmentation techniques may not always be appropriate.
Vertical flips, for example, are not realistic because crops and weeds typically grow
upwards due to gravity, and it is rare to observe them upside down naturally.
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Horizontal flips might be more acceptable as they can represent a change in the
camera’s perspective relative to the rows of crops. Rotations can also be useful if
the camera capturing the images might be tilted or if the scenes might be observed
from different angles. However, after conducting experiments with various data
augmentation techniques, it was found that they did not improve the results and,
in some cases, led to lower performance. As a result, no data augmentation
techniques were used in this part. This decision was made to ensure that the
training data remained representative of real-world conditions, thus improving the
model’s generalization and performance. Moreover, the function
transforms.Normalize(mean, std) is a common preprocessing step used in image
processing with deep learning models, particularly when using the PyTorch library.
we used this function to normalize the image pixel values to have a specific mean
and standard deviation, which helps the neural network to learn more effectively.
Normalizing the images helps the model to converge faster during training as it
standardizes the input, ensuring that the input features have a similar range and
distribution. This is a crucial step in the preprocessing pipeline for training deep
learning models.

3.2.3 Proposed inputs and Model Architecture
In this work, three different input combinations for the UNet-ResNet50 (UNet
with ResNet50 backbone for enhanced image segmentation) model were proposed
to segment weed, crop, and soil areas in agricultural fields: RGB+NIR(4-channel
input), G+NIR+NDVI(3-channel input), and G+NIR(2-channel input). Following
figures show examples of the different channel combinations used. The combined
image of RGB and NIR channels (9) provides a broad spectrum of information.
This combination integrates the standard RGB channels with the NIR channel.
The addition of the NIR channel enhances the ability to distinguish between crops
and weeds because NIR can capture details not visible in the RGB spectrum.
Vegetation typically reflects more NIR light compared to soil, which helps in
identifying plant health and differentiating between different types of plants. For
the 4-channel configuration (RGB+NIR), the first convolutional layer of the
UNet-ResNet50 model was modified to accept four input channels. This
modification allowed the model to combine the detailed color information from the
RGB channels with the additional spectral information provided by the NIR
channel. The combination of Green, NIR, and NDVI channels (10) offers enhanced
contrast and feature detection. This combination uses the Green channel, the NIR
channel, and the NDVI. NDVI highlights areas with healthy vegetation, as it
measures the contrast between red and near-infrared reflectance of vegetation. The
use of the Green channel in this combination is particularly effective as it has been
shown to significantly influence weed detection. This combination offers enhanced
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contrast and highlights the vegetation, aiding in precise segmentation. The
3-channel configuration (G+NIR+NDVI) involved adjusting the first convolutional
layer to accept three input channels, allowing the network to utilize crucial
spectral information. while the Green and NIR channels (11) focus on specific
spectral bands that are significant for weed detection. The Green channel is
sensitive to vegetation, and when combined with the NIR channel, it helps in
highlighting the plants more distinctly against the soil background. This
combination is simpler yet effective for certain segmentation tasks, leveraging the
strong response of vegetation in these spectral bands. The Green channel (G) was

Figure 9: Combination of RGB and NIR channels enhancing the visibility of
crops and weeds.

included in these combinations because, as indicated by recent state-of-the-art
research[27], the Green channel has a more significant impact on weed detection
than the Blue or Red channels. The original image size of 964x1296 was
maintained for all models to preserve the spatial resolution essential for precise
segmentation tasks. Each model also applied a Gaussian Bilateral Filter on the
NIR images to enhance image quality by reducing noise while preserving edges.
The number of epochs for training was set to eight due to memory constraints and
the observation that additional epochs did not result in significant improvements.
The hyperparameters used in these experiments are detailed in Table 4. In order
to answer to the Research Question 3 presented in chapter1 we utilized the U-Net
model with a ResNet-50 backbone. In this context, the idea of transfer learning is
fundamental. By leveraging a pre-trained ResNet-50 model on an RGB dataset,
we aimed to transfer the learned features to the multispectral domain. The
ResNet-50 model, pre-trained on large-scale RGB image datasets, captures
low-level to high-level features that are essential for effective image segmentation.
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Figure 10: Combination of Green, NIR, and NDVI channels emphasizing the crop
and weeds through high NDVI values.

Figure 11: Combination of Green and NIR channels highlighting the crop and
weeds.

These features include edges, textures, and complex patterns that are crucial for
distinguishing between crops and weeds. When the pre-trained model is fine-tuned
on multispectral images, the additional spectral information, particularly from
NIR channel, provides complementary data that can significantly improve
segmentation accuracy. For the ResNet-50 backbone and RGB-NIR channels, the
parameters for the additional NIR channel in the first convolutional layer are not

35



Methods

Table 4: Hyperparameters for the U-Net model

Hyperparameters Value
Epochs 8
Batch Size 2–4
Loss Function Combined Loss (Dice Loss and Cross-Entropy)
Activation Softmax
Optimizer Adam
Evaluation Metric IoU Score

present in the pre-trained model because it was trained on RGB images. To
handle this, the first convolutional layer is modified to accept four input channels
(RGB+NIR). The weights for this new convolutional layer are initialized randomly
since pre-trained weights are only available for the original three RGB channels.
During training, the entire network, including this new layer, is fine-tuned on the
multispectral dataset to learn the appropriate features for all four channels. The
ResNet-50 architecture is known for its depth and ability to capture intricate
features through its residual learning framework. This architecture, when
integrated into the U-Net framework, combines the robust feature extraction
capabilities of ResNet-50 with the precise segmentation abilities of U-Net.
Additionally, a custom U-Net architecture was implemented from scratch, with
specific layers designed to optimize performance for this task. The custom
architecture includes double convolution layers for downsampling, max pooling
layers, and upsampling layers, which combine features from different levels of the
network to produce high-resolution segmented images. Moreover,in this thesis, the
U-Net architecture was selected due to its exceptional suitability for image
segmentation tasks, especially in scenarios with high class imbalance, such as weed
detection. U-Net is a CNN designed to accurately identify both the overall shapes
and fine textures of objects within images. One of its key advantages is the
incorporation of skip connections between the down-sampling and up-sampling
paths, which allows the network to utilize both local and global information for
decision-making. This feature significantly improves the accuracy of the model,
particularly when the positive class (weeds) is underrepresented in the training
data. Furthermore, U-Net’s design is computationally efficient, an essential
attribute for real-time applications in weed detection. The network’s relatively
small number of parameters ensures that it can perform effectively without
requiring extensive computational resources. These characteristics make U-Net an
ideal choice for our segmentation tasks, as it balances accuracy with efficiency. To
optimize the training process, a combination of Dice Loss and CrossEntropyLoss
was used as the loss function. Dice Loss is particularly effective for segmentation
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tasks as it directly optimizes the overlap between the predicted and true masks,
which is crucial for accurate segmentation. CrossEntropyLoss, on the other hand,
is widely used for multi-class classification problems and helps to differentiate
between the classes effectively. Combining these two loss functions leverages their
strengths, improving both the accuracy and robustness of the segmentation model.
For models incorporating NDVI, a custom NDVI thresholding function was
implemented. This function calculates the NDVI index using the NIR and Red
channels, scales the values to a range of 0-255, and applies a threshold to generate
a binary mask. To implement these models, an RGB+NIR camera is necessary to
capture the required channels. Although this might seem like a drawback, NIR
cameras have become widely available and affordable. NIR images provide crucial
information about the target area, which enhances segmentation accuracy. As
demonstrated by [5], NIR cameras are valuable for segmentation tasks. BoniRob,
an agricultural field robot with sensors and a JAI AD-130GE camera, utilizes an
RGB+NIR camera, highlighting its practical applications in agricultural robotics.
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Chapter 4

Results and Discussions

4.1 Evaluation Metrics
Evaluation metrics play a crucial role in understanding the performance of
machine learning models, particularly in tasks like object detection and image
segmentation. The appropriate choice of metrics provides insights into the
strengths and weaknesses of the models and guides improvements. This section
covers key evaluation metrics, including "Precision, Recall, mAP, and IoU."

4.1.1 Evaluation metrics for Object Detection Models
Precision is the ratio of correctly predicted positive observations to the total
predicted positives. It is a measure of the accuracy of the positive predictions
made by the model. Mathematically, it is expressed in the formula 4.1.

Precision = TP

TP + FP
(4.1)

where TP is the number of true positives( number of correctly identified objects),
and FP is the number of false positives(number of incorrectly identified objects).
In agricultural settings, high precision in weed and crop detection ensures that the
majority of identified weeds are indeed weeds, minimizing the risk of mistakenly
identifying crops as weeds. This is vital because inaccurate identification can lead
to unnecessary application of herbicides, which not only harms the crops but also
wastes resources. Accurate detection is essential for efficient resource use and
maintaining crop health, directly impacting agricultural productivity and
profitability. Precision plays a significant role in reducing the misuse of herbicides.
In precision agriculture, herbicides are applied based on the detection of weeds.
High precision ensures that herbicides are applied only where necessary, thus
preventing damage to crops and reducing chemical usage. Misidentifying crops as
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weeds (false positives) leads to the unnecessary application of herbicides, harming
crops and wasting resources. Therefore, precision is key to achieving sustainable
agricultural practices. Moreover, precision in weed detection enhances crop yield
by ensuring that weed removal processes are targeted and effective. Accurate
identification and removal of weeds allow crops to grow without competition,
promoting better growth and higher yields. This is particularly important in
densely planted fields where competition for resources is intense. Achieving high
precision in weed and crop detection, however, is challenging due to the visual
similarities between crops and weeds, especially in their early growth stages. This
similarity can make it difficult to distinguish between them. Additionally, varying
outdoor conditions, such as different lighting and shadows, can affect the
appearance of plants, making accurate detection even more complex. Overlapping
plants and occlusions further complicate the task, requiring sophisticated models
capable of handling these complexities. The quality of the training dataset and the
accuracy of annotations significantly impact the model’s precision. Properly
labeled data is crucial for the model to learn the differences between crops and
weeds accurately. High-quality annotations ensure that the model receives
accurate information during training, leading to better performance. Recall (also
known as Sensitivity or True Positive Rate) is the ratio of correctly predicted
positive observations to all observations in the actual class. It indicates the
model’s ability to capture all relevant cases. The formula for Recall is:

Recall = TP

TP + FN
(4.2)

where TP is the number of true positives( number of correctly identified objects),
and FN is the number of false negatives(the number of actual positive instances
that were missed by the model). In agricultural object detection, high recall is
particularly important because it ensures that most, if not all, of the crops and
weeds present in the images are correctly identified. This is vital for several
reasons. Firstly, effective weed management relies on identifying all weeds; missing
any can lead to inadequate weed control, allowing the weeds to continue
competing with crops for essential resources like nutrients, water, and sunlight,
which can negatively impact crop yields and the overall health of the agricultural
field. Secondly, accurate recall ensures that all crops are detected, which is
essential for precise agricultural practices such as targeted fertilization, irrigation,
and harvesting. Missing a crop could result in parts of the field not receiving the
necessary attention, leading to suboptimal farming outcomes. Thirdly, in scenarios
where the detection system informs the application of herbicides or other
treatments, high recall ensures that all necessary areas are treated, preventing
patches of weeds from being missed and subsequently proliferating.
mAP is a widely used metric for evaluating object detection models. It provides a
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comprehensive performance measure by combining precision and recall across
different classes and IoU thresholds. The calculation of mAP involves several steps:
The first step in computing mAP is to determine the Average Precision (AP) for
each class. The AP for each class is determined by calculating the area under the
precision-recall curve. This curve plots precision against recall for different
confidence thresholds. Once the AP is calculated for each class, the mAP is
determined by taking the mean of these AP values across all classes. This provides
a single scalar value that summarizes the model’s performance across different
object categories. There are different variations of mAP based on the IoU
thresholds used: mAP@0.5 (mAP50): This metric calculates the average precision
at a single IoU threshold of 0.5. It indicates how well the predicted bounding
boxes overlap with the ground truth boxes by at least 50%. mAP@0.5:0.95
(mAP50-95): This metric calculates the average precision over multiple IoU
thresholds ranging from 0.5 to 0.95 in steps of 0.05. It provides a more robust
evaluation by considering the model’s performance across a range of IoU
thresholds. In the context of the ACRE dataset, mAP is used to evaluate the
performance of YOLOv5 and YOLOv8 models in detecting weeds and crops. This
dataset comprises various images with annotated bounding boxes for weeds and
crops, making it ideal for object detection evaluation. By calculating mAP, we can
understand how well these models perform in accurately identifying and localizing
weeds and crops under different IoU thresholds.
The confusion matrix is a tool that provides a more detailed breakdown of the
model’s performance by displaying the counts of TP, true negative (TN), false
positive(FP), and FN predictions. It helps to visualize the performance of the
model and is instrumental in understanding the balance between precision and
recall. The confusion matrix is structured as follows:

Table 5: Confusion Matrix

Predicted Positive Predicted Negative
Actual Positive TP FN
Actual Negative FP TN

• True Positives (TP): The number of correctly predicted positive instances.

• True Negatives (TN): The number of correctly predicted negative
instances.

• False Positives (FP): The number of incorrectly predicted positive
instances.

• False Negatives (FN): The number of incorrectly predicted negative
instances.
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Precision and Recall are often used together to provide a more comprehensive
evaluation of a model’s performance. They can be combined into a single metric
known as the F1 Score, and it is calculated as the harmonic mean of Precision and
Recall. The F1 Score provides a balance between Precision and Recall, especially
useful when dealing with imbalanced datasets, where one class (e.g., weeds) is
more prevalent than the other (e.g., crops). The formula for the F1 Score is:

F1 Score = 2 × Precision × Recall
Precision + Recall (4.3)

4.1.2 Evaluation Metrics for Semantic Segmentation
Models

The performance of a segmentation model can be gauged by evaluating the
quality of the segmentation results, which involves comparing how accurately the
shapes and positions of the segmentation outputs align with the true labels or
target masks. The most commonly used evaluation metric for this purpose is IoU.
IoU is a robust metric that quantifies the overlap between the predicted
segmentation and the ground truth. IoU is calculated as follows:

IoU = Intersection
Union = |A ∩ B|

|A ∪ B|
(4.4)

where A represents the predicted segmentation and B represents the ground truth
segmentation. The intersection (|A ∩ B|) is the number of pixels where the
predicted and true segmentations overlap, while the union (|A ∪ B|) is the total
number of pixels present in both the predicted and true segmentations combined.
Using IoU, we can comprehensively evaluate how well the model performs in
segmenting different classes within the dataset. High IoU values indicate better
performance, signifying that the model’s predictions closely match the actual
segmentation masks. In the context of the Sunflower dataset, IoU is particularly
useful due to the presence of multiple segmentation challenges such as varying
lighting conditions, overlapping plants, and different growth stages.

4.2 Exprimental Results

4.2.1 Results for ACRE Dataset
Results for Different Hyper-parameter Settings of the YOLOv5 Model

The table shows the performance of the YOLOv5s model on the ACRE dataset. It
includes metrics for overall performance, as well as specific results for detecting
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Table 6: Performance of a single model over the test_dev split of the ACRE
dataset (model size: yolov5s - small).

Class Images Instances Precision (P) Recall (R) F1 Score mAP50 mAP50-95
All 100 11472 0.774 0.682 0.725 0.721 0.425
Crop 100 1205 0.85 0.807 0.828 0.845 0.577
Weed 100 10267 0.699 0.557 0.619 0.598 0.273
Epochs 50
Batch Size 16
Image Size 640
Model Size yolov5s

crops and weeds. Additionally, the table lists the model’s training parameters,
including the number of epochs, batch size, and image size used during training.

Figure 12: Training and Validation Loss and Metrics Plots

• These plots display the training and validation loss for the bounding box
(box), objectness (obj), and class (cls) losses, as well as the metrics for
precision, recall, mAP@0.5, and mAP@0.5:0.95 during the training of the
YOLOv5s model over 50 epochs. These plots help in understanding the
model’s learning behavior and convergence during the training process.
Components in the Plots: Train/Validation Box Loss: Measures the accuracy
of the predicted bounding box coordinates compared to the ground truth.
Train/Validation Objectness Loss: Evaluating how well the model predicts
whether an object exists in a given box. Train/Validation Class Loss:
Assesses the accuracy of the predicted class probabilities for each object. The
training and validation losses for the bounding box (box), objectness (obj),
and class(cls) show a steady decrease over the 50 epochs, indicating that the
model is learning effectively and converging well. Lower values in the
validation loss compared to the training loss suggest that the model is not
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overfitting and is generalizing well on the validation data.

• The following confusion matrix illustrates the performance of the YOLOv5s
model in predicting crops, weeds, and background classes. It shows the true
positive, false positive, and false negative rates for each class, providing
insight into the model’s accuracy and misclassification rates.

Figure 13: Confusion Matrix for Crop and Weed Detection

Table 7: Confusion Matrix Interpretation for Crop, Weed, and Background Classes

Class Metric Percentage Description
Crop True Positives (TP) 83% Correctly identified crops
Crop False Positives (FP) 5% Incorrectly identified as crops
Crop False Negatives (FN) 17% Actual crops not identified
Weed True Positives (TP) 66% Correctly identified weeds
Weed False Positives (FP) 8% Incorrectly identified as weeds
Weed False Negatives (FN) 33% Actual weeds not identified
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Table 8: Performance of a single model (yolov5s) over the test_dev split of the
ACRE dataset.

Class Images Instances Precision (P) Recall (R) F1 Score mAP50 mAP50-95
All 100 11472 0.759 0.703 0.730 0.737 0.433
Crop 100 1205 0.829 0.831 0.830 0.863 0.587
Weed 100 10267 0.688 0.576 0.627 0.611 0.279
Epochs 50
Batch Size 32
Image Size 640
Model Size yolov5s

Figure 14: Training and Validation Loss and Metrics Plots

Table 9: Confusion Matrix Interpretation for Crop and Weed Classes

Class Metric Percentage Description
Crop True Positives (TP) 85% Correctly identified crops
Crop False Positives (FP) 6% Incorrectly identified as crops
Crop False Negatives (FN) 15% Actual crops not identified
Weed True Positives (TP) 68% Correctly identified weeds
Weed False Positives (FP) 39% Incorrectly identified as weeds
Weed False Negatives (FN) 32% Actual weeds not identified

Table 10: Performance of a single model over the test_dev split of the ACRE
dataset (model size: yolov5s - small).

Class Images Instances Precision (P) Recall (R) F1 Score mAP50 mAP50-95
All 100 11472 0.745 0.53 0.62 0.575 0.336
Crop 100 1205 0.822 0.581 0.682 0.647 0.433
Weed 100 10267 0.668 0.479 0.56 0.503 0.24
Epochs 50
Batch Size 16
Image Size 1024
Model Size yolov5s
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Figure 15: Training and Validation Loss and Metrics Plots

Figure 16: Confusion Matrix for Crop and Weed Detection

Table 11: Confusion Matrix Interpretation for Crop, Weed, and Background
Classes

Class True Positives (TP) False Positives (FP) False Negatives (FN)
Crop 60% 5% 40%
Weed 53% 6% 47%
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Table 12: Performance of a single model over the test_dev split of the ACRE
dataset (model size: yolov5m - medium).

Class Images Instances Precision (P) Recall (R) F1 Score mAP50 mAP50-95
All 100 11472 0.774 0.654 0.709 0.691 0.423
Crop 100 1205 0.855 0.752 0.800 0.789 0.553
Weed 100 10267 0.694 0.556 0.618 0.592 0.294
Epochs 50
Batch Size 16
Image Size 1024
Model Size yolov5m

Figure 17: Training and Validation Loss and Metrics Plots

Figure 18: Confusion Matrix for Crop and Weed Detection
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In this section, we interpreted the results from the confusion matrix for crop and
weed classification. The table below provides an overview of TP, FP, and FN for
both crop and weed classes.

Table 13: Confusion Matrix Interpretation for Crop, Weed, and Background
Classes

Class True Positives (TP) False Positives (FP) False Negatives (FN)
Crop 76% 6% 24%
Weed 62% 8% 37%

Table 14: YOLOv5 Model Performance Insights

Model Image Size Batch Size Performance Insight
YOLOv5s 640 16 Balanced performance

with decent precision,
recall, and F1 scores
across all classes.

Lower batch size with
moderate image size
ensures the model
learns effectively with-
out overfitting.

YOLOv5s 640 32 Slightly decreases pre-
cision and recall but
improves mAP, espe-
cially for crops.

Larger batch sizes pro-
vide better gradient
estimates, enhancing
mAP but slightly low-
ering precision and re-
call.

YOLOv5s 1024 16 Larger image size re-
duces recall and mAP,
indicating increased
complexity and noise.

Higher image resolu-
tion introduces more
details, which might
overwhelm the model,
leading to poorer per-
formance.

YOLOv5m 1024 16 Improves precision, re-
call, and mAP metrics,
showing a significant
performance boost.

A more complex model
better handles larger
image sizes and more
details, resulting in im-
proved detection accu-
racy.

Table 14 summarizes the effects of varying image sizes and batch sizes on model
performance, including precision, recall, and mean Average Precision (mAP), along
with insights into how these hyper-parameters influence the learning process and
detection accuracy. Impact of Image Size: An image size of 640 was generally
more effective for the smaller YOLOv5s model, leading to higher F1 scores and
mAP values. This suggests that a moderate image resolution is sufficient for
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accurate object detection without incurring the computational overhead associated
with larger image sizes. Increasing the image size to 1024 for the YOLOv5s model
resulted in a decrease in both recall and F1 Score for weed detection, indicating
potential overfitting or increased difficulty in processing larger images efficiently
within the given epoch limit. Batch Size Considerations:
A batch size of 32 demonstrated improved performance metrics for the YOLOv5s
model compared to a batch size of 16. This highlights the advantage of larger
batch sizes in achieving better gradient estimates during training, thereby
enhancing model performance. For the YOLOv5m model, a batch size of 16
provided a balance between computational efficiency and model accuracy,
particularly for crop detection.

Results for Different Hyper-parameter Settings of the YOLOv8 Model

The table blow presents the performance metrics of a YOLOv8n (nano) model
evaluated on the ACRE dataset. The evaluation considered various
hyperparameters, including an image size of 640, a batch size of 16, and 50 epochs.
The metrics provided include Precision (P), Recall (R), F1 Score, mAP50, and
mAP50-95 for three classes: All(which averages the performance across all
instances), Crop, and Weed.
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Table 15: Performance of a single model over the test_dev split of the ACRE
dataset (model size: YOLOv8n - nano).

Class Images Instances Precision (P) Recall (R) F1 Score mAP50 mAP50-95
All 100 11472 0.75 0.685 0.715 0.732 0.447
Crop 100 1205 0.799 0.831 0.815 0.866 0.606
Weed 100 10267 0.701 0.539 0.61 0.599 0.287
Epochs 50
Batch Size 16
Image Size 640
Model Size YOLOv8n

The YOLOv8n model with an image size of 640 and batch size of 16 demonstrates
balanced performance with good precision and recall for both crops and weeds.
The F1 score and mAP metrics are reasonably high, indicating effective detection
capabilities for this lightweight model.

Table 16: Performance of the YOLOv8s model over the test_dev split of the
ACRE dataset (model size: YOLOv8s - small).

Class Images Instances Precision (P) Recall (R) F1 Score mAP50 mAP50-95
All 100 11472 0.762 0.717 0.739 0.753 0.469
Crop 100 1205 0.814 0.852 0.833 0.874 0.627
Weed 100 10267 0.71 0.581 0.639 0.632 0.311
Epochs 50
Batch Size 16
Image Size 640
Model Size YOLOv8s

The YOLOv8s model with an image size of 640 and batch size of 16 shows a
consistent performance improvement over the YOLOv8n model. This model
demonstrates better precision, recall,mAP50,mAP50-95 and F1 scores across all
classes.
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Table 17: Performance of YOLOv8m model over the test_dev split of the ACRE
dataset (model size: YOLOv8m -medium).

Class Images Instances Precision (P) Recall (R) F1 Score mAP50 mAP50-95
All 100 11472 0.772 0.711 0.740 0.761 0.477
Crop 100 1205 0.815 0.878 0.844 0.848 0.631
Weed 100 10267 0.73 0.573 0.642 0.645 0.322
Epochs 50
Batch Size 16
Image Size 640
Model Size YOLOv8m

The YOLOv8m model demonstrates superior performance, particularly in recall
and mAP scores for both crops and weeds. When comparing the models, it is
evident that the YOLOv8m model provides the best overall performance across all
evaluation metrics. It shows higher precision, recall, F1 score, mAP50, and
mAP50-95 values for both crops and weeds compared to the YOLOv8n and
YOLOv8s models. For crop detection, the YOLOv8m model achieves the highest
F1 score and mAP50, indicating its robustness in accurately identifying crops. For
weed detection, although the recall is slightly lower for the YOLOv8m model
compared to the YOLOv8s model, it compensates with higher precision and
mAP50 scores.

Table 18: Performance of YOLOv8m model over the test_dev split of the ACRE
dataset (model size: YOLOv8m -medium).

Class Images Instances Precision (P) Recall (R) F1 Score mAP50 mAP50-95
All 100 11472 0.777 0.716 0.745 0.762 0.478
Crop 100 1205 0.833 0.847 0.840 0.886 0.640
Weed 100 10267 0.721 0.584 0.645 0.638 0.316
Epochs 50
Batch Size 32
Image Size 640
Model Size YOLOv8m

The YOLOv8m model with an image size of 640 and batch size of 32 shows an
improvement in recall and mAP metrics compared to its batch size 16 counterpart.
While the differences may be slight, the model with a batch size of 32 shows
slightly better recall and mAP metrics overall.
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Figure 19: mAP50 Metric for All Class (which averages the performance across
all instances.) YOLOv8m Model,Batch Size = 32, Image Size = 640

Figure 20: Precision Metric for All Class (which averages the performance across
all instances). YOLOv8m Model,Batch Size = 32, Image Size = 640
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Figure 21: Recall Metric for All Class (which averages the performance across all
instances). YOLOv8m Model,Batch Size = 32, Image Size = 640

Table 19: Performance of a single model over the test_dev split of the ACRE
dataset (model size: YOLOv8m -medium).

Class Images Instances Precision (P) Recall (R) F1 Score mAP50 mAP50-95
All 100 11472 0.781 0.714 0.746 0.766 0.480
Crop 100 1205 0.832 0.853 0.842 0.888 0.639
Weed 100 10267 0.729 0.576 0.644 0.643 0.321
Epochs 50
Batch Size 64
Image Size 640
Model Size YOLOv8m

The YOLOv8m model with an image size of 640 and batch size of 64 shows
consistent performance with slight variations in metrics compared to the batch size
32 variant. Effect of Batch Size on YOLOv8m: Increasing the batch size from 16
to 32 improves recall and mAP metrics for both crops and weeds. However,
further increasing the batch size to 64 results in minor variations, with a slight
decrease in recall for weeds but consistent precision and F1 scores.
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Table 20: Performance of a single model over the test_dev split of the ACRE
dataset (model size: YOLOv8s - small).

Class Images Instances Precision (P) Recall (R) F1 Score mAP50 mAP50-95
All 100 11472 0.746 0.718 0.732 0.752 0.473
Crop 100 1205 0.803 0.832 0.817 0.859 0.612
Weed 100 10267 0.688 0.604 0.643 0.645 0.334
Epochs 50
Batch Size 16
Image Size 1600
Model Size YOLOv8s

Increasing the image size to 1600 improves the model’s ability to capture finer
details, leading to better overall performance.

Table 21: Performance of a single model over the test_dev split of the ACRE
dataset (model size: YOLOv8s - small).

Class Images Instances Precision (P) Recall (R) F1 Score mAP50 mAP50-95
All 100 11472 0.747 0.653 0.697 0.691 0.443
Crop 100 1205 0.789 0.768 0.778 0.797 0.583
Weed 100 10267 0.704 0.539 0.610 0.586 0.303
Epochs 50
Batch Size 16
Image Size 1024
Model Size YOLOv8s

The performance metrics slightly decline compared to the image size of 1600, but
it remains robust and effective.
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Table 22: YOLOv8 Model Performance Insights

Model Image Size Batch Size Performance Insight
YOLOv8m - 16 vs. 32 Consistent perfor-

mance with slight
improvements in recall
and mAP metrics as
batch size increases.

Indicates that the
YOLOv8m model is
relatively stable and
can handle larger
batch sizes without
significant perfor-
mance degradation.

YOLOv8m - 32 vs. 64 Marginal increase in
performance metrics
when moving from a
batch size of 32 to 64.

Suggests that the
model’s performance
is optimized around
these batch sizes,
providing flexibility
in training configura-
tions.

YOLOv8s 1600 vs. 640 - Larger image size sig-
nificantly enhances the
model’s ability to de-
tect finer details, im-
proving performance
metrics, particularly
for crop detection.

Higher precision,
recall, F1 score, and
mAP metrics with
larger image size.

YOLOv8s 1024 vs. 640 - Slightly lower perfor-
mance metrics than
with an image size of
1600 but maintains ro-
bust detection capabil-
ities.

Indicates that even a
moderate increase in
image size can en-
hance detection perfor-
mance.

Table 22 compares YOLOv8 model configurations on the ACRE dataset, detailing
the impact of varying image sizes and batch sizes on performance metrics such as
precision, recall, F1 score, and mean Average Precision (mAP). The table provides
insights into the stability and efficiency of the models under different training
conditions, highlighting how changes in hyper-parameters affect detection accuracy
and model learning. The YOLOv8m model with an image size of 640 and batch
size of 32 provides the best overall performance for weed detection, with the
highest F1 score and competitive mAP metrics. This configuration demonstrates
the optimal balance between precision and recall for the specific task of weed
detection in the ACRE dataset.
Improvements Using YOLOv8 Over YOLOv5: The YOLOv8m model achieves
higher mAP50 and mAP50-95 scores compared to the YOLOv5s model, indicating
improved detection capabilities and more accurate bounding box predictions.
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Table 23: Comparison of YOLOv8 model results with YOLOv5 model results.
This table summarizes the performance metrics, including mAP50, mAP50-95, and
F1 score, highlighting the improvements in detection capabilities and architectural
advancements in YOLOv8.

Metric YOLOv8m YOLOv5s Analysis
mAP50 0.638 0.611 The YOLOv8m model shows a no-

ticeable improvement in mAP50
compared to the YOLOv5s model,
indicating better precision and re-
call at an IoU threshold of 0.50.

mAP50-95 0.316 0.279 The YOLOv8m model also out-
performs the YOLOv5s model in
mAP50-95, which averages preci-
sion over multiple IoU thresholds
from 0.50 to 0.95. This suggests
better overall performance across
a range of IoU values.

F1 Score 0.645 0.627 The higher F1 score of the
YOLOv8m model indicates a bet-
ter balance between precision and
recall for weed detection compared
to the YOLOv5s model.

Additionally, the improved F1 score of YOLOv8m demonstrates a better trade-off
between precision and recall, leading to more reliable detection of weeds without a
significant increase in false positives or false negatives. These advancements are
likely attributed to YOLOv8’s enhancements in neural network architecture,
including improvements in backbone networks, neck designs, and detection heads,
which result in more efficient feature extraction and better overall performance.

4.2.2 Comparison of YOLOv5 and YOLOv8 Results with
State-of-the-Art Results

To evaluate the performance of our models, we compared our results with
state-of-the-art benchmarks in object detection tasks. The tables below summarize
the best results obtained from YOLOv5[52] and YOLOv8[56] models in the
existing literature.
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YOLOv5 vs. State-of-the-Art

Table 24: Performance Comparison of YOLOv5 with State-of-the-Art Methods

Networks Precision (%) Recall (%) F1 Score mAP(%)
YOLOv3 89.0 99.0 0.88 91.80
YOLOv5 88.0 99.0 0.89 92.40
Faster R-CNN 65.9 98.0 0.78 92.15

While the precision and recall are slightly lower in the YOLOv5 ACRE results
compared to the state-of-the-art benchmarks, the model still demonstrates a
robust F1 score and mAP, indicating its effectiveness in the specific application of
weed detection in agricultural datasets.
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Table 25: This table presents the performance metrics for state-of-the-art YOLOv8
models on the ACRE dataset. The results include model size, image size, batch
size, epochs, mAP95, precision (P), recall (R), and F1 score for both crop and weed
detection. The average (avg) values for each metric are also provided, highlighting
the differences in detection performance across various configurations

# imgs model size img size batch epochs mAP95 key P R F1
2479 SMALL 1024 16 50 0.4596 crop 0.79 0.85 0.82

weed 0.69 0.68 0.69
avg 0.7 0.7 0.7

2479 SMALL 1600 16 50 0.4765 crop 0.776 0.88 0.825
weed 0.647 0.742 0.691
avg 0.661 0.756 0.705

2479 MED 640 32 50 0.4561 crop 0.802 0.903 0.85
weed 0.594 0.67 0.682
avg 0.706 0.694 0.699

2479 MED 640 64 50 0.4581 crop 0.779 0.883 0.828
weed 0.664 0.684 0.674
avg 0.676 0.705 0.69

Table 26: Comparison of YOLOv8 Small Model Performance Metrics with Thesis
Model. The table summarizes the precision, recall, F1 score, and mAP50-95 for
both weed and crop detection, highlighting the differences in performance between
the state-of-the-art YOLOv8 Small model and the Thesis YOLOv8s model under
identical configurations (Image size: 1024, Batch size: 16).

Metric State-of-the-Art YOLOv8 Small Thesis YOLOv8s
Weed Crop Avg Weed Crop All

Precision (P) 0.69 0.79 0.70 0.704 0.789 0.747
Recall (R) 0.68 0.85 0.70 0.539 0.768 0.635
F1 Score 0.69 0.82 0.70 0.610 0.778 0.697
mAP50-95 0.4596 0.303 0.583 0.443

Weed Class Performance: The thesis model achieves a higher precision of 0.704
compared to the state-of-the-art model’s precision of 0.69. This indicates that the
thesis model is more accurate in predicting true positive weed instances. However,
the state-of-the-art model has a higher recall of 0.68, while the thesis model’s
recall is 0.539. This suggests that the state-of-the-art model is better at capturing
all actual weed instances. The F1 score for the state-of-the-art model is 0.69,
which is higher than the thesis model’s F1 score of 0.610. This reflects a better
balance between precision and recall in the state-of-the-art model. In terms of
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mAP50-95, the state-of-the-art model’s overall mAP95 is 0.4596, indicating
superior performance compared to the thesis model’s mAP50-95 for weeds at 0.303.
Crop Class Performance: Both models have similar precision for crops, with
the thesis model at 0.789 and the state-of-the-art model at 0.79. The
state-of-the-art model achieves a higher recall of 0.85 compared to the thesis
model’s 0.768. This suggests that the state-of-the-art model better captures true
positive crop instances. The state-of-the-art model also has a higher F1 score of
0.82 compared to the thesis model’s 0.778, indicating a better balance of precision
and recall. The thesis model, however, achieves a higher mAP50-95 for crops at
0.583 compared to the state-of-the-art model’s overall mAP95 of 0.4596. This
indicates strong performance in crop detection by the thesis model.
Overall Performance (All Classes): When considering all classes, the thesis
model has a higher overall precision of 0.747 compared to the state-of-the-art
model’s average precision of 0.70. However, the state-of-the-art model has a higher
overall recall of 0.77 compared to the thesis model’s recall of 0.635. The
state-of-the-art model achieves a higher overall F1 score of 0.70, whereas the thesis
model’s F1 score is 0.697. In terms of mAP50-95, the thesis model has an overall
score of 0.443, which is slightly lower than the state-of-the-art model’s overall
mAP95 of 0.4596.

Table 27: Comparison of YOLOv8 Small Model Performance Metrics with Thesis
Model. The table summarizes the precision, recall, F1 score, and mAP50-95 for
both weed and crop detection, highlighting the differences in performance between
the state-of-the-art YOLOv8 Small model and the Thesis YOLOv8s model under
identical configurations (Image size: 1600, Batch size: 16).

Metric State-of-the-Art YOLOv8 Small Thesis YOLOv8s
Weed Crop Avg Weed Crop All

Precision (P) 0.647 0.776 0.661 0.688 0.803 0.746
Recall (R) 0.742 0.88 0.756 0.604 0.832 0.718
F1 Score 0.691 0.825 0.705 0.645 0.817 0.732
mAP50-95 0.4765 0.334 0.61 0.473

Weed Class Performance: The thesis model has higher precision (0.688)
compared to the state-of-the-art model (0.647), indicating better accuracy in
predicting true positive weed instances. However, the state-of-the-art model has
higher recall (0.742 vs. 0.604), better capturing all actual weed instances. The
state-of-the-art model also has a higher F1 score (0.691 vs. 0.645), showing a
better balance between precision and recall.
Crop Class Performance: The thesis model achieves higher precision (0.803)
than the state-of-the-art model (0.776), but the state-of-the-art model has higher
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recall (0.88 vs. 0.832), suggesting it captures true positive crop instances better.
The state-of-the-art model also has a slightly higher F1 score (0.825 vs. 0.817).
Overall Performance (All Classes): The thesis model demonstrates higher
overall precision (0.746 vs. 0.661) but lower recall (0.718 vs. 0.756) compared to
the state-of-the-art model. The thesis model has a higher F1 score (0.732 vs.
0.705), but slightly lower mAP50-95 (0.473 vs. 0.4765).

Table 28: Comparison of YOLOv8 Medium Model Performance Metrics with
Thesis Model. The table summarizes the precision, recall, F1 score, and mAP50-95
for both weed and crop detection, highlighting the differences in performance
between the state-of-the-art YOLOv8 Medium model and the Thesis YOLOv8m
model under identical configurations (Image size: 640, Batch size: 32).

Metric State-of-the-Art YOLOv8 Medium Thesis YOLOv8m
Weed Crop Avg Weed Crop All

Precision (P) 0.694 0.802 0.706 0.721 0.833 0.777
Recall (R) 0.691 0.903 0.694 0.584 0.847 0.716
F1 Score 0.682 0.85 0.699 0.645 0.84 0.745
mAP50-95 0.4561 0.316 0.64 0.478

Weed Class Performance: The thesis model achieves a higher precision of 0.721
compared to the state-of-the-art model’s precision of 0.694. This indicates better
accuracy in predicting true positive weed instances. However, the state-of-the-art
model has a higher recall of 0.691, while the thesis model’s recall is 0.584. This
suggests that the state-of-the-art model is better at capturing all actual weed
instances. The F1 score for the state-of-the-art model is 0.682, which is higher
than the thesis model’s F1 score of 0.645, reflecting a better balance between
precision and recall in the state-of-the-art model.
Crop Class Performance: For crop detection, the thesis model achieves a
higher precision of 0.833 compared to the state-of-the-art model’s 0.802. The
state-of-the-art model has a higher recall of 0.903 compared to 0.847 in the thesis
model, suggesting better capture of true positive crop instances. The
state-of-the-art model has a higher F1 score of 0.85 compared to the thesis model’s
0.84.
Overall Performance (All Classes): The thesis model achieves a higher overall
precision of 0.777 compared to the state-of-the-art model’s average precision of
0.706. The thesis model has a higher overall recall of 0.716 compared to the
state-of-the-art model’s recall of 0.694. The state-of-the-art model achieves a lower
overall F1 score of 0.699, whereas the thesis model’s F1 score is 0.745. In terms of
mAP50-95, the thesis model has an overall score of 0.478, which is slightly higher
than the state-of-the-art model’s overall mAP95 of 0.4561.

59



Results and Discussions

Table 29: Comparison of YOLOv8 Medium Model Performance Metrics with
Thesis Model. The table summarizes the precision, recall, F1 score, and mAP50-95
for both weed and crop detection, highlighting the differences in performance
between the state-of-the-art YOLOv8 Medium model and the Thesis YOLOv8m
model under identical configurations (Image size: 640, Batch size: 64).

Metric State-of-the-Art YOLOv8 Medium Thesis YOLOv8m
Weed Crop Avg Weed Crop All

Precision (P) 0.664 0.779 0.676 0.729 0.832 0.781
Recall (R) 0.684 0.853 0.705 0.576 0.853 0.714
F1 Score 0.674 0.828 0.69 0.644 0.842 0.746
mAP50-95 0.4581 0.321 0.639 0.48

Weed Class Performance: The thesis model achieves a higher precision of 0.729
compared to the state-of-the-art model’s precision of 0.664. This indicates better
accuracy in predicting true positive weed instances. However, the state-of-the-art
model has a higher recall of 0.684, while the thesis model’s recall is 0.576. This
suggests that the state-of-the-art model is better at capturing all actual weed
instances. The F1 score for the state-of-the-art model is 0.674, which is higher
than the thesis model’s F1 score of 0.644, reflecting a better balance between
precision and recall in the state-of-the-art model.
Crop Class Performance: For crop detection, the thesis model achieves a
higher precision of 0.832 compared to the state-of-the-art model’s 0.779. The
thesis model also has a similar recall of 0.853, suggesting equivalent capture of
true positive crop instances. The thesis model has a higher F1 score of 0.842
compared to the state-of-the-art model’s 0.828.
Overall Performance (All Classes): The thesis model achieves a higher overall
precision of 0.781 compared to the state-of-the-art model’s average precision of
0.676. The state-of-the-art model has a lower overall recall of 0.705 compared to
the thesis model’s recall of 0.714. The state-of-the-art model achieves a lower
overall F1 score of 0.69, whereas the thesis model’s F1 score is 0.746. In terms of
mAP50-95, the thesis model has an overall score of 0.480, which is about 2%
higher than the state-of-the-art model’s overall mAP95 of 0.4581.
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Figure 22 demonstrates the model’s performance in identifying both categories. In
this particular image, the model successfully distinguishes crops from weeds, with
crops being labeled as ’crop’ and weeds as ’weed.’ Confidence scores are displayed
for each detection, indicating the model’s certainty. For instance, crops are
detected with high confidence scores of 0.93 and 0.91, showcasing the model’s
effectiveness in crop identification. The presence of multiple weed detections with
varying confidence levels also highlights the model’s capability to handle a diverse
and cluttered field environment, ensuring accurate weed identification. This
performance is crucial for precision agriculture applications, where accurate
detection and classification can significantly enhance weed management practices
and crop yield predictions.

Figure 22: Detection and classification of crops and weeds using the YOLOv8
model. This image illustrates the model’s ability to accurately detect and classify
crops (labeled as ’crop’) and weeds (labeled as ’weed’) with associated confidence
scores. Notable crop detections include labels with confidence scores of 0.93 and
0.91.

4.2.3 Results for Sunflower Dataset
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Table 30: Results for Different Configurations of RGB+NIR Model for Sunflower
Dataset
Combination
of Channels

Num
Epochs

Image
Size

Batch
Size

Filter on NIR Model NDVI
Thresh-
old

Soil
IOU

Crop
IOU

Weed
IOU

Mean
IOU

RGB+NIR 8 964x1296 4 Gaussian bilateral fil-
ter

UNET-
RESNRT50

- 0.99 0.93 0.71 0.88

RGB+NIR 8 964x1296 2 Gaussian bilateral fil-
ter

UNET-
RESNRT50

- 0.99 0.86 0.67 0.84

RGB+NIR 8 964x1296 4 Gaussian bilateral fil-
ter

Custom UNET - 0.99 0.90 0.69 0.86

RGB+NIR 8 964x1296 2 Gaussian bilateral fil-
ter

Custom UNET - 0.99 0.86 0.60 0.82

IoU metric for the soil class is consistently high (0.99) across all configurations,
indicating excellent accuracy in identifying soil. Crop IOU metric shows variability.
The best performance is observed with the UNET-RESNRT50 model using a batch
size of 4 (0.93), while the lowest performance is with the Custom UNET model
using a batch size of 2 (0.86). Weed IOU metric exhibits the most variability. The
best performance is observed with the UNET-RESNRT50 model using a batch size
of 4 (0.71), while the lowest performance is with the Custom UNET model using a
batch size of 2 (0.60). The average IoU across all classes (soil, crop, and weed) is
highest with the UNET-RESNRT50 model using a batch size of 4 (0.88) and
lowest with the Custom UNET model using a batch size of 2 (0.82).
In summary, the UNET-RESNRT50 model generally outperforms the Custom
UNET in terms of Mean IOU, particularly with a batch size of 4. The batch size
appears to influence performance, with a larger batch size yielding better results
for the UNET-RESNRT50 model. The Weed IOU is the lowest among the classes,
indicating that distinguishing weeds from other classes is more challenging. This
analysis suggests that for this specific task, the UNET-RESNRT50 model with a
larger batch size performs better overall.
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Table 31: Results for Different Configurations of G+NIR+NDVI Model for
Sunflower Dataset
Combination
of Channels

Num
Epochs

Image
Size

Batch
Size

Filter on NIR Model NDVI
Thresh-
old

Soil
IOU

Crop
IOU

Weed
IOU

Mean
IOU

G + NIR +
NDVI

8 964x1296 4 Gaussian bilateral fil-
ter

UNET-
RESNRT50

0.5 0.99 0.86 0.61 0.82

G + NIR +
NDVI

8 964x1296 4 Gaussian bilateral fil-
ter

UNET-
RESNRT50

0.45 0.97 0.53 0.25 0.58

G + NIR +
NDVI

8 964x1296 4 Gaussian bilateral fil-
ter

UNET-
RESNRT50

0.4 0.98 0.36 0.36 0.57

G + NIR +
NDVI

8 964x1296 4 Gaussian bilateral fil-
ter

UNET-
RESNRT50

0.35 0.99 0.79 0.38 0.72

G + NIR +
NDVI

8 964x1296 4 Gaussian bilateral fil-
ter

UNET-
RESNRT50

0.3 0.98 0.40 0.23 0.53

G + NIR +
NDVI

8 964x1296 4 Gaussian bilateral fil-
ter

UNET-
RESNRT50

0.6 0.99 0.75 0.41 0.72

The NDVI threshold significantly impacts the segmentation performance for crops
and weeds, while the soil IoU remains relatively stable across different thresholds.
This is likely because the soil class is distinct and consistently identifiable
regardless of the NDVI value, whereas the differentiation between crops and weeds
is more nuanced and sensitive to the chosen threshold.

• Optimal Threshold: 0.5

An NDVI threshold of 0.5 yields the highest mean IoU (0.82). This threshold
effectively balances the distinction between vegetation (crops and weeds) and
non-vegetation areas (soil). At this threshold, the segmentation algorithm can
accurately identify the boundaries between different classes, resulting in the best
overall performance.

• Lower Thresholds (0.45, 0.4, 0.3):

These thresholds result in lower mean IoUs, particularly affecting the crop and
weed IoUs. Lower NDVI thresholds can lead to misclassification because they may
not effectively separate vegetation from non-vegetation. Specifically:

• 0.45: Decreases crop and weed IoUs significantly, indicating that some areas
of vegetation are not being correctly identified as crops or weeds.

• 0.4: Further decreases in performance suggest that this threshold might be
too low to distinguish crops and weeds accurately.

• 0.3: The lowest performance, indicating substantial misclassification. At this
threshold, many vegetation pixels might be misclassified as non-vegetation,
leading to poor segmentation of crops and weeds.

• Higher Threshold: 0.6
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This threshold provides a relatively high mean IoU (0.72), similar to the threshold
of 0.35. A higher NDVI threshold ensures that only the areas with the highest
vegetation density are classified as crops or weeds. While this improves the
accuracy of identifying very dense vegetation, it can lead to the exclusion of less
dense areas, resulting in a balanced but slightly lower mean IoU compared to the
optimal threshold.

Table 32: Results for Different Configurations of G+NIR Model for Sunflower
Dataset
Combination
of Channels

Num
Epochs

Image
Size

Batch
Size

Filter on NIR Model NDVI
Thresh-
old

Soil
IOU

Crop
IOU

Weed
IOU

Mean
IOU

G+NIR 8 964x1296 4 Gaussian bilateral fil-
ter

UNET-
RESNRT50

- 0.99 0.63 0.42 0.68

G+NIR 8 964x1296 4 Gaussian bilateral fil-
ter

UNET-
RESNRT50

- 0.99 0.64 0.41 0.68

G+NIR 8 964x1296 2 Gaussian bilateral fil-
ter

UNET-
RESNRT50

- 0.99 0.67 0.47 0.71

G+NIR 8 964x1296 2 Gaussian bilateral fil-
ter

UNET-
RESNRT50

- 0.99 0.70 0.41 0.70

The Soil IOU remains consistently high (0.99) across all configurations, indicating
excellent accuracy in identifying soil. This suggests that the model is very effective
at distinguishing soil from other classes. The Crop IOU varies between 0.63 and
0.70. The best performance is seen with a batch size of 2 in Configuration 4 (0.70),
suggesting that a smaller batch size may improve the model’s ability to identify
crops accurately. The Weed IOU ranges from 0.41 to 0.47. The best performance
is observed with a batch size of 2 in Configuration 3 (0.47). This indicates that the
model struggles more with distinguishing weeds compared to soil and crops, but a
smaller batch size may slightly improve weed detection. The Mean IOU ranges
from 0.68 to 0.71. The highest Mean IOU is achieved with a batch size of 2 in
Configuration 3 (0.71), indicating that this configuration provides the best overall
segmentation performance across all classes. The analysis suggests that the
UNET-RESNRT50 model performs consistently well in identifying soil across all
configurations. A smaller batch size (2) tends to improve the segmentation
performance for crops and weeds, leading to higher Mean IOU values. The
distinction between crops and weeds is more challenging for the model compared
to soil, but performance can be optimized by adjusting the batch size.
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Table 33: Comparison of RGB+NIR, G+NIR+NDVI, and G+NIR Results Using
Different Configurations. The table summarizes the Weed IOU, Crop IOU, and
Mean IOU for each configuration, highlighting the range of values observed across
different experimental setups

Configuration Weed IOU Crop IOU Mean IOU
RGB+NIR 0.60 to 0.71 0.86 to 0.93 0.82 to 0.88

G+NIR+NDVI 0.23 to 0.61 0.36 to 0.86 0.53 to 0.82
G+NIR 0.41 to 0.47 0.63 to 0.70 0.68 to 0.71

For the RGB+NIR configuration, the rich information from RGB and NIR
channels aids differentiation, with RGB capturing color differences and NIR
enhancing vegetation identification. Larger batch sizes support stable learning,
making this the best and most consistent configuration, and the preferred choice.
The G+NIR+NDVI configuration’s effectiveness varies with the NDVI threshold.
Proper tuning improves detection, but this adds an optimization parameter. This
configuration has less RGB information, relying more on indices, resulting in good
performance with proper tuning but variable outcomes.
The G+NIR configuration uses simpler data with only Green and NIR channels,
which lacks full RGB differentiation but maintains high soil IOU. Smaller batch
sizes (2) yield better results, though the overall performance is stable but lower
compared to the other configurations, making it less effective without additional
channels.
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Table 34: Best Results: ACRE vs. Sunflower Datasets

Task Metric Model (Data) Value
Weed Detection and Segmentation F1 Score YOLOv5s (RGB) 0.627

mAP50 YOLOv5s (RGB) 0.611
mAP50-95 YOLOv5s (RGB) 0.279
F1 Score YOLOv8m (RGB) 0.645
mAP50 YOLOv8m (RGB) 0.648

mAP50-95 YOLOv8m (RGB) 0.321
Weed IoU UNet-ResNet50 (RGB+NIR) 0.71

Crop Detection and Segmentation F1 Score YOLOv5s (RGB) 0.830
mAP50 YOLOv5s (RGB) 0.863

mAP50-95 YOLOv5s (RGB) 0.587
F1 Score YOLOv8m (RGB) 0.842
mAP50 YOLOv8m (RGB) 0.888

mAP50-95 YOLOv8m (RGB) 0.64
Crop IoU UNet-ResNet50 (RGB+NIR) 0.93

Overall F1 Score YOLOv5s (RGB) 0.73
mAP50 YOLOv5s (RGB) 0.737

mAP50-95 YOLOv5s (RGB) 0.433
F1 Score YOLOv8m (RGB) 0.746
mAP50 YOLOv8m (RGB) 0.766

mAP50-95 YOLOv8m (RGB) 0.48
Mean IoU UNet-ResNet50 (RGB+NIR) 0.88

The best model for weed segmentation is UNet-ResNet50 (RGB+NIR), which
benefits from the inclusion of NIR data. This additional spectral information
highlights vegetation characteristics that are not visible in the RGB spectrum,
enhancing weed segmentation capabilities. The pixel-wise segmentation approach
of the UNet-ResNet50 model leverages this extra spectral data effectively, resulting
in superior performance compared to YOLO models using only RGB data.
The combination of RGB and NIR channels provides a more comprehensive set of
features, allowing the model to better differentiate crops from weeds and soil. This
results in improved overall segmentation performance. The UNet model effectively
utilizes the richer data provided by the RGB+NIR combination, leading to higher
IoU scores for crops.

Examples of results for UNet-ResNet50 (Input: 964*1296 RGB+NIR
with batch size 4)

Figure 23 displays the ground truth segmentation for a given agricultural field
image. In this visualization, green regions represent crops, while red regions
denote weeds and black regions represent soil. The ground truth image serves as a
benchmark for evaluating the accuracy of the U-Net model’s predictions. Figure
24 illustrates the segmentation results produced by the U-Net model. The model’s
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predictions are compared against the ground truth to compute Intersection over
Union (IoU) metrics. These results highlight the effectiveness of integrating RGB
and NIR channels in improving segmentation accuracy. The high IoU values across
different classes indicate the U-Net model’s potential for practical applications in
precision agriculture, particularly in automated weed management and crop
monitoring systems.

Figure 23: Ground Truth
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Figure 24: U-Net Prediction

4.2.4 Comparison of U-Net Segmentation Results with
State-of-the-Art Results

Summary of Results from the State-of-the-Art Papers

Table 35: State-of-the-art Results from the Papers

Model / Input Crop IoU Weed IoU Soil IoU Mean IoU
UNet (704 × 704)[61] 0.90 0.76 0.86 0.84
UNet (512 × 512)[61] 0.88 0.75 0.83 0.82
UNet[58][61] 0.68 0.40 0.99 0.69
Bonnet[58][61] 0.88 0.69 0.99 0.86
UNet-ResNet[58][61] 0.70 0.48 0.99 0.72
RGB + NIR[3] (Image size: 512 × 512, Batch size: 8) 0.890 0.681 0.986 0.853
G + NIR + NDVI[3] (Image size: 512 × 512, Batch size: 8) 0.896 0.729 0.990 0.871
RGB + NIR [3](Image size: 704 × 704, Batch size: 4) 0.894 0.658 0.979 0.844
G + NIR + NDVI[3] (Image size: 704 × 704, Batch size: 4) 0.905 0.744 0.982 0.877
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Table 36: Comparison of Custom U-Net (RGB+NIR) with State-of-the-Art U-Net
Models

Model / Input Crop IoU Weed IoU Soil IoU Mean IoU
UNet (704 × 704)[61] 0.90 0.76 0.86 0.84
UNet (512 × 512)[61] 0.88 0.75 0.83 0.82
UNet[58][61] 0.68 0.40 0.99 0.69
Custom UNet (RGB+NIR),

Thesis Results 0.93 0.69 0.99 0.86

Custom UNet (RGB+NIR),
Thesis Results 0.86 0.60 0.99 0.82

The custom UNet (RGB+NIR) model shows a Crop IoU of 0.93, which is higher
than the state-of-the-art UNet (704 × 704) at 0.90, representing an improvement
of 3%, and significantly higher than the other two UNet configurations at 0.88 and
0.68, representing improvements of 5% and 25% respectively. In terms of Weed
IoU, the custom UNet achieves 0.69, which is lower than the state-of-the-art UNet
(704 × 704) at 0.76, representing a decrease of 7%, and UNet (512 × 512) at 0.75,
representing a decrease of 6%, but significantly higher than the UNet[58][61] at
0.40, representing an improvement of 29%. The Soil IoU of the custom UNet
(0.99) surpasses all the state-of-the-art models, indicating exceptional performance
in soil detection, with improvements of 13%, 16% over the UNet (704 × 704),
UNet (512 × 512) respectively. The Mean IoU of the custom UNet is 0.86, which
is slightly higher than the state-of-the-art UNet (704 × 704) at 0.84 and UNet
(512 × 512) at 0.82, representing improvements of 2% and 4% respectively, and
much higher than the UNet[58] at 0.69, representing an improvement of 17%.

Table 37: Comparison of UNET-RESNET50 with State-of-the-Art Models

Model / Input Crop IoU Weed IoU Soil IoU Mean IoU
UNet-ResNet[58][61] 0.70 0.48 0.99 0.72
RGB + NIR[3] (Image size: 512 × 512, Batch size: 8) 0.890 0.681 0.986 0.853
RGB + NIR [3](Image size: 704 × 704, Batch size: 4) 0.894 0.658 0.979 0.844

UNET-RESNET50 (RGB+NIR),
Thesis Results 0.93 0.71 0.99 0.88

UNET-RESNET50 (RGB+NIR),
Thesis Results 0.86 0.69 0.99 0.84

The UNET-RESNET50 (RGB+NIR) achieves a Crop IoU of 0.93, which is
significantly higher than the UNet-ResNet[58][61] at 0.70, representing an
improvement of 23%, and higher than the other two configurations at around
0.894, representing an improvement of 3.6%. In terms of Weed IoU, the
UNET-RESNET50 achieves 0.71, which is notably higher than the UNet-ResNet
at 0.48, representing an improvement of 23%, and also higher than the other
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configurations at around 0.68, representing an improvement of 3%. The Soil IoU of
0.99 for UNET-RESNET50 is consistently high across all configurations, indicating
its strength in soil detection. The Mean IoU of 0.88 for UNET-RESNET50 is
higher than all the compared models, demonstrating its superior overall
segmentation performance, with an improvement of 2.7% over the highest other
model. These results highlight the potential of integrating NIR with RGB
channels and optimizing model architectures such as UNET-RESNET50 to achieve
superior segmentation performance. The improvements in Weed IoU are
particularly significant, as effective weed detection is crucial for precision
agriculture. Further optimization and tuning of hyperparameters, as well as
exploring additional spectral bands, could lead to even greater advancements in
segmentation accuracy and overall model performance.

Comparison of UNet-RESNET50 (G+NIR+NDVI) with
State-of-the-Art Models

Table 38: State-of-the-Art G+NIR+NDVI Models

Model / Input Crop IoU Weed IoU Soil IoU Mean IoU
G + NIR + NDVI[3] (Image size: 512 × 512, Batch size: 8) 0.896 0.729 0.990 0.871
G + NIR + NDVI[3] (Image size: 704 × 704, Batch size: 4) 0.905 0.744 0.982 0.877
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Table 39: Thesis G+NIR+NDVI Results

Model Batch Size NDVI Threshold Crop IoU Weed IoU Soil IoU Mean IoU
UNET-RESNET50 4 0.50 0.86 0.61 0.99 0.82
UNET-RESNRT50 4 0.45 0.53 0.25 0.97 0.58
UNET-RESNET50 4 0.40 0.36 0.36 0.98 0.57
UNET-RESNET50 4 0.35 0.79 0.38 0.99 0.72
UNET-RESNET50 4 0.30 0.40 0.23 0.98 0.53
UNET-RESNET50 4 0.60 0.75 0.41 0.99 0.72

When comparing the state-of-the-art G+NIR+NDVI models to the thesis results,
it is evident that the state-of-the-art models achieve higher metrics across the
board. The state-of-the-art model with an image size of 512×512 and a batch size
of 8 achieves a Crop IoU of 0.896, a Weed IoU of 0.729, and a Mean IoU of 0.871.
The model with an image size of 704×704 and a batch size of 4 achieves slightly
higher metrics with a Crop IoU of 0.905, a Weed IoU of 0.744, and a Mean IoU of
0.877.
In contrast, the thesis results show more variability depending on the NDVI
threshold used. For example, the best Crop IoU achieved is 0.86 with an NDVI
threshold of 0.50, which is lower than the state-of-the-art. The Weed IoU in the
thesis results ranges from 0.23 to 0.61, with the highest Weed IoU being
significantly lower than the state-of-the-art results (0.729 and 0.744). The Mean
IoU in the thesis results ranges from 0.53 to 0.82, with the highest Mean IoU also
being lower than the state-of-the-art models.
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Chapter 5

Conclusion

The research conducted in this thesis aimed to enhance the accuracy and efficiency
of weed detection and segmentation in agricultural fields through the application
of advanced deep learning models, specifically YOLO and UNet, on both RGB and
multispectral (RGB-NIR) imaging datasets. The main discoveries from this
research emphasize significant improvements in weed segmentation accuracy,
particularly when integrating additional spectral data with standard RGB
channels.
The results demonstrated that the inclusion of Near-Infrared (NIR) data in
conjunction with RGB channels substantially improves the performance of DL
models in distinguishing weeds from crops. This improvement is evident in the
higher Intersection over Union (IoU) scores achieved for both crops and weeds.
Specifically, the UNet-ResNet50 model utilizing RGB+NIR data achieved a mean
IoU of 0.88, a crop IoU of 0.93, and a weed IoU of 0.71, with respective
improvements of 2.7%, 4%, and 3% over the best baseline models.
Comparatively, the YOLOv5 and YOLOv8 models applied to the RGB dataset
alone showed robust performance in object detection tasks, with the YOLOv8
model achieving a mean average precision (mAP) of 0.48, which is competitive
with state-of-the-art models in object detection.
Moreover, the integration of NIR data in the UNet model provided a notable edge
in segmentation accuracy, underscoring the value of multispectral imaging in
agricultural applications. The thesis results indicate that incorporating NIR data
with RGB channels enhances model generalization, reduces the impact of
environmental variability, and improves the robustness of weed segmentation
systems. This advancement supports the goal of precision agriculture by enabling
more targeted and efficient weed management strategies, ultimately contributing
to sustainable farming practices.
In conclusion, the research confirms that multispectral imaging combined with
advanced deep learning architectures significantly enhances the precision of weed
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detection and segmentation. Future work could explore the integration of
additional spectral bands and the development of more sophisticated models to
further improve the accuracy and scalability of automated weed management
systems in various agricultural settings.
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