POLITECNICO DI TORINO

Master degree course in Computer Engineering

Master Degree Thesis

How to Measure Game Testing:
a Survey of Coverage Metrics
and an Implementation on the

ivdXR Framework

- gl N

0,’3%@ _A}A ¢ Politecnico

N
{,llm A ||||| u di Torino
W\ 1859 M
Supervisors Candidate
prof. Riccardo Coppola Serenella Manzi

prof. Francesco Strada

dr. Tommaso Fulcini

ACADEMIC YEAR 2023-2024

Summary

With the increase in their popularity, video games have evolved to become
highly complex products that require ever larger funds and huge, diverse
teams to be developed. Due to the growing complexity of the software, how-
ever, video games are highly prone to bugs, often appearing on day one and
sometimes in such large quantities that they cause release delays and neg-
atively impact the product’s economic success. To mitigate this issue, it is
essential to conduct a structured testing phase to assess and evaluate the
software’s quality.

In the video game industry, automated testing using autonomous agents
holds particular potential. These tools are trained with artificial intelligence
to explore the game environment and test various gameplay modes and sit-
uations by dynamically changing their strategies.

However, the literature includes few studies on the application of automated
testing to video games, and there is a complete lack of attempts to classify
and standardize specific coverage metrics for video games. This gap makes
very difficult to assess the quality of testing and compare results.

Hence the motivation for this work, which consists of two objectives: a first
phase of literature review aimed at identifying and classifying specific cov-
erage metrics for video games, providing a foundation for building testing
models that address the core aspects of a video game; and a second im-
plementation phase, during which several gameplay coverage metrics were
implemented using iv4XR, a promising open-source framework that employs
autonomous agents for testing Extended Reality systems.

The results of the first phase is a taxonomy of 26 specific metrics employed
in video game testing, grouped into six categories depending to the domain
to which they relate.

In the second phase, some of these metrics were implemented in iv4XR using
their designated testing game, LabRecruits, and evaluated on both newly
written test cases and demo tests provided by the developers.

From the results of this second phase, it becomes clear that currently it is

3

not yet possible to build a general coverage model that is applicable to every
video game, due to limitations arising from the specificities that differentiate
video games and from existing testing frameworks, which are often closely
tied to the specific game or require, at the very least, the development of a
specific interface between the framework and the game to be tested (as in
the case of iv4XR).

Future work could focus on reducing these limitations by using automated
testing to efficiently test as many video games as possible, leveraging and
expanding the proposed taxonomy of metrics, developing tools that natively
implement said taxonomy and test environments that are increasingly inde-
pendent from specific games.

Contents

List of Tables

List of Figures

1

2

Introduction

Background

2.1 Techniques for software testing
2.1.1 Manual testing L.
2.1.2 Automated testing

2.2 Video game testing
2.2.1 Autonomous agents

2.3 Coverage models

A Taxonomy of Coverage Metrics for Game Testing

3.1 Methodology
3.1.1 Systematic Literature Review
3.1.2 Taxonomy definition through Open Coding

3.2 Categories
3.2.1 Functionality
3.2.2 Multimedia L
3.2.3 Operability and user experience (UX)
3.2.4 Performance and Reliability

IvaXR Framework and Metrics Implementation

4.1 Testing tools.o

4.2 Iv4XR Framework
4.2.1 Goal-solving test agents
4.2.2 Architecture and Environment interface.

4.3 Implementation of game metrics in ivdXR

6

11

13
13
18
18
20
24
25

4.3.1 LabRecruits
4.3.2 Coverage testing workflow

5 Coverage test session results
5.1 Session of custom-written tests
5.2 Session of provided demo-tests
5.3 Final considerations

6 Conclusion and future work

Bibliography

63
63
73
79

81

85

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6

Functionality - Ul metrics 37
Functionality - Gameplay metrics 38
Multimedia metrics L 39
Operability and UX metrics 41
Performance metrics L 43
Reliability metricso L 44

List of Figures

2.1 Testing pyramid L
2.2 Video game testing stages
3.1 Taxonomy of video game testing coverage metrics
4.1 Iv4XR approach overview
4.2 Simple tactic to move the agent
4.3 More complex tactic L
4.4 Iv4XR architecture
4.5 1v4XR architecture related to environment implementation . .
4.6 WorldModel and WorldEntities structure
4.7 Agent state structure
4.8 Screenshot of a LabRecruits level
4.9 Class diagram of LabRecruitsTestServer
4.10 Class diagrams of LabRecruitsTestAgent, LabRecruitsEnvi-
ronment, BeliefState 00000
4.11 Class diagrams of LRFloorMap
4.12 Class diagrams of CoverageTest
5.1 Testresultsonlevel 1.
5.2 Test level 1 screenshot
5.3 Testresultsonlevel 2.
5.4 Test level 2 screenshot
5.5 Testresultsonlevel 3.
5.6 Test level 3 screenshot
5.7 Test resultsonlevel 4.
5.8 Test level 4 screenshot
5.9 Test results on level 5 - first run
5.10 Test results on level 5 - second run
5.11 Test level 5 screenshot 1
5.12 Test level 5 screenshot 2
5.13 Test resultsondemo test 1.
5.14 Test resultsondemo test 2.

5.15 Test results on demo test 3
5.16 Test results on demo test 4
5.17 Demo test 4 screenshot . .

10

Chapter 1

Introduction

In recent years, video games have gained popularity, resulting in the growth
of the industry from niche markets to mainstream. In 2022 the game in-
dustry has generated 182.9 billion US dollars in worldwide revenue, with an
estimated growth of +2.9% by 2025 [1]. Nowadays video games are incredibly
complex products, requiring the combination of aspects such as captivating
design, increasingly realistic graphics, and non-deterministic behavior to be
entertaining across multiple platforms and devices.

However, with this growing complexity, it is almost inevitable to have a good
amount of bugs. An emblematic example in this sense is the case of Cyber-
punk 2077 [2]: released after years of development and delays, it received
heavy criticism for multiple and significant bugs, to the extent that it forced
the producer to issue refunds and release immediate corrective patches.

To launch a successful game its quality is essential, and to assure quality,
testing is crucial. Accurate testing can prevent the game from being released
in a buggy state that would make it a commercial flop [3].

In traditional software development, tests and their automation are consid-
ered a crucial part. This is not yet true for video game development, though,
where there is a lack of comprehensive testing, often limited only to manual
playtesting. In recent years, a good number of testing tools and frameworks
has been created, based on a variety of approaches such as machine learning
models, reinforcement learning, autonomous agents, exploration. However, it
seems that most researchers are more interested in the performance of testing
tools rather than focusing on testing itself; also, game developers still rely
mostly on manual testing, remaining skeptical about other approaches [1].

11

1 — Introduction

The lack of a clear and standard testing method in video games development
is evident from scientific literature. The aim of this work is to build a test-
ing model which can provide an overall coverage of the main aspects to be
tested in a video game. This model is useful as a structured basis to later
build a game-specific and more articulate testing process during the game
development. After conducting a systematic literature review, 26 metrics
specifically employed in video game testing were identified and grouped into
five main categories according to the area of relevance. The categories and
metrics definitions are discussed in chapter 3.

To highlight both the potential and the limitations of the model thus con-
structed, part of it has been implemented in one of the most promising
framework in the current video game testing landscape: ivdxr [35]. The
implementation and the results are discussed in chapters 4, 5.

12

Chapter 2

Background

2.1 Techniques for software testing

Considering all the advances in software development industry, undetected
faults become increasingly more expensive. Software testing is the main so-
lution to mitigate this, by assessing and evaluating the quality of software.
It is also a complex and expensive phase of software development, with an
estimated 50% of the total cost [1].

Essentially, testing purpose is to ensure that the software under examination,
so called System Under Test (SUT), perform as intended and, if present, to
identify faults in order to facilitate their correction.

Software testing is usually classified according to the level at which the tests
are conducted, and a visual classification of these levels is given by the so
called testing pyramid, shown in Figure 2.1.

The testing pyramid is a concept introduced by Mike Cohn in his 2009
book "Succeeding with Agile: Software Development Using Scrum ', and essen-
tially outlines the different kinds of tests that developers and testers should
include in their collection of automated tests, setting an order of priority of
execution and size.

As you move down the pyramid, the tests become more numerous but simpler
and easier to execute, while as you move towards the top, the tests become
more complex and computationally expensive, but also fewer in number.

13

2 — Background

/\ A

End-to-end testing

/ \

Integration testing

May be closed-box tests

Smaller, cheaper tests

Only open-box tests

$159) aAIsuadxa asow ‘1obie

Unit testing

Quantity of tests

A
v

Figure 2.1. Testing pyramid

Image source:

Starting from the base of the testing pyramid, there are three types of
testing:

e Unit testing: unit tests’ aim is checking on individual functionalities,
focusing on small portions of code, like functions or methods. These uni-
ties of code are tested separately from the entire system. This isolation
allows developers to catch and correct bugs at an early stage, before the
integration of these components into the bigger software system.

The main objective is to guarantee the correct functionality of each code
portion, and by doing so to reduce the time and the costs for future test-
ing. Therefore, Unit tests should be plentiful and generally quick to write
and run, so they relies at the base of the testing pyramid.

To safeguard existing features from being unintentionally disrupted by
new code, and to consistently uphold a high level of code quality through-
out development, unit tests should be run frequently. Hence, unit testing
allows for more frequent releases and also for code refactoring and up-
grading.

14

https://circleci.com/blog/testing-pyramid/

2.1 — Techniques for software testing

« Integration testing: integration testing focuses on testing multiple
functional units as a group.
It evaluate how these modules interact and exchange information with
each other and/or with external modules, so its primary aim is to uncover
any faults or issues that surface when these components work together.
Integration testing typically takes place after unit testing but before a
full system analysis, occupying the middle part of the testing pyramid.

Since integration tests are more involved, they are run less often than
unit tests. Unlike unit tests, which are plentiful and quick to run, inte-
gration tests are conducted less frequently due to their complexity and
cost.

They are strategically scheduled for key development milestones, such as
after significant features or changes are incorporated into the main code
section. So, while unit tests provide a microscopic view with frequent
execution, integration tests offer a broader perspective at critical stages,
verifying the overall system’s functionality and cohesion.

There are essentially four different approaches to integration testing:
big-bang, bottom-up, top-down, and mixed.

Big-bang approach is the most immediate one and consists of combining
all the modules together after individual testing and test the structure
thus built. This method is time saving, but it also only applicable for
small groups of modules, because with size it also increases the difficulty
to localize eventual bugs.

In the bottom-up testing approach, testing starts with the smallest and
low-level components and progresses upwards to test larger, more com-
plex components. The testing sequence continues until all levels of the
software hierarchy have been thoroughly tested, in an incremental ap-
proach: initially, individual low-level modules are integrated and tested.
Once these integrated components pass their tests, they are grouped into
the next higher level of modules for further integration testing. This
method is particularly effective when most or all modules at each devel-
opment level are completed. It also enables clear tracking of software
development stages and facilitates reporting of testing progress.

15

2 — Background

On the contrary, top-down approach is useful when low-level modules
are not yet integrated: high-level components are tested first and so on
until lower-level modules are test, and at the end these are integrated
with the complex modules to ensure that the structure functionality is
correct.

Finally, the mixed testing approach is a combination of bottom-up and
top-down approaches: this technique overcome the limitations of the
other two, namely the need to have high-level modules ready (unit-
tested) for top-down and the lower-level modules for bottom-up. This
mixed approach prove to be very useful in big projects, but it is also
significantly more costly and complex to implement than the others.

End-to-end or System testing: system testing aims to evaluate the
overall functionality of the complete software system, so to test that the
workflow of the system is flawless end-to-end. The starting point are
the tested integrated components, which are then evaluated as a whole
system in their correspondence to the required functionalities.

System testing also evaluate the functionalities of the software appli-
cation user side, checking for example user interfaces and databases in-
teraction: to do so, system test often consists of tools that simulate the
end users possible actions.

This type of testing is on top of the testing pyramid: it is very complex,
as it requires a fully designed software system, very time consuming and
require high cost and resource consumption to be carried on. Therefore,
system tests should be run less frequently and in a fewer number with
respect to integration tests, so at milestone points in which is useful to
test the workflow of the application to simulate the final one, for exam-
ple next to a release or before adding significant changes.

System testing is useful because at this stage will uncover almost ev-
ery possible bug of failure, hence assuring reliability and quality of the
software.

In figure 2.1, there is further separation line between unit testing and inte-

gration testing: while unit testing are only open-box tests, from integration
testing and above tests may be closed-box.

In fact, in software testing there is also a distinction concerning the access to
the source code: these different approaches are called Black box (closed-box),

16

2.1 — Techniques for software testing

White box (open-box), and Grey box testing.

In White box type of testing, the tester has access to its source code and
is so aware of the internal logical structure of the software.

The inner knowledge of code workings is used to design test cases that ex-
plore different code paths: testers pick specific inputs to trigger these paths
and predict the corresponding outputs.

White box testing is not specific for unit testing as it can be applied also at
other levels, but it’s most commonly used at the unit level.

This allows testers to examine code flow within a single unit, interactions
between units during integration tests, and even communication between
subsystems during a system test.

On the contrary, in Black box type of testing the tester doesn’t have ac-
cess to the source code and only uses the SUT specifications to generate test
cases.

In other words, testers are only aware of the functionalities that the ap-
plication should meet, but not of how they are implemented. In this case
developers design test cases based on specified requirements which can sim-
ply verify that for a given input, the system produce a certain output (or
functionality). The correctness of the output is often checked using an oracle
or a precedent value that for sure is correct.

Grey box testing is a combination of White box and Black box: developers
have a partial knowledge of the inner workings of software and algorithms
implementation, and they also have knowledge of high-level requirements,
using these informations to define test cases executed at Black box level, but
combined with the code-targeted type of tests of White box.

Software testing can be further divided into two more ways of testing: Man-
ual or Automated.

17

2 — Background

2.1.1 Manual testing

Manual testing involves human testers to run and examinate test cases. A
test case is an important part of testing activity and consist of two compo-
nents: a description of the input data and a description of the correct output
for that specific input data, a so called oracle. By comparing the outputs
produced by the SUT with the oracle, it is determined whether the test case
has passed or failed.

Manual testing is an essential step during software development, but on a
large scale, it’s a very costly method as it requires someone to manually set
up an environment and run the tests, which can be prone to human errors
such as typos or missing steps in the test script.

2.1.2 Automated testing

Automated testing is the logical answer to reduce cost and complexity, by
improving efficiency and reducing human errors. The most common method
of automated testing is re-running test scenarios quickly and repeatedly while
executing test scripts, but it’s not the only one.

In general, automated testing is “the use of special software (separate from
the SUT) to control the execution of tests and the comparison of actual out-
comes with predicted outcomes” [1]. Tt is useful to automate necessary but
repetitive tests or execute test difficult to perform in a manual way, avoiding
the need of a human tester. Automated testing is a growing field and the
discussion on which parts of testing process is more convenient to automate
is in progress [5]. Automation is also facilitated by advancements in other
sectors that yield applicable solutions, such as the latest machine learning
techniques [0].

Automated testing approaches

There are many different approaches to automated testing, some of the most
employed are model-based testing, capture/replay, random testing, fuzz test-
ing, scripted based testing.

« Model-based testing is essentially an application of model-based de-
sign method to software testing: an abstract model is created to rep-
resent partially the required behaviour of the software application, and

18

2.1 — Techniques for software testing

then used by testing tools that create test cases automatically or semi-
automatically based on the model. The real outputs of these test case are
then confronted with the expected ones. This approach is usually useful
for complex systems which may be in multiple states or behaviours. The
model can either be static or dynamic, when static models are usually
employed for GUI testing (Graphical User Interface) and dynamic ones
for API testing. Combining a model-based approach with automation is
beneficial since does not require to manually write test cases and allows
to create a variety of accurate test cases.

Capture and replay approach is widely employed to test principally
GUI and other features of web applications [18]. It consists of recording
each interaction of the user with the software application interface and
then using these actions to produce test scripts which will be executed
several times to automatically reproduce those interactions. Capture
and replay test case are easy to produce and don’t require particular
skills since they are generated over a sequence of recorded interactions,
but they can be difficult to maintain because even a small change in the
GUI potentially invalidate and require to re-write the test cases.

Random testing is a black-box approach that consists of generating
random inputs, feed them to the software system and then check whether
the test is successful or failed by comparing the final output with the
expected one described in features specifics. Each phase can be auto-
mated, from the generation of the random data, to the execution of test
cases, to their final confrontation [19]. Random testing is a relatively
cheap type of testing that can lead to discover eventual inconsistencies
between the requirements and the actual application behaviour.

Fuzz testing can be considered a sub-group of random testing in which
the input data are specifically generated to be invalid or incorrect and
that can lead to crashes of failures of the system. Fuzz testing pro-
cess usually starts by generating a set of inputs data, then mutating
these inputs again and again and giving them to the system, and finally
evaluating if those data produce the desired behaviour, recording what
happened [50]. The final goal is always to produce some sort of bug or
crash. Hence, fuzz testing is useful to reveal any sort of bugs or critical
security problems in software applications.

Scripted testing approach is opposed to scriptless or exploratory test-
ing approach, and consists in writing scripts (so sequential procedures)

19

2 — Background

for each test case, either manually or using automated tools or ap-
proaches such as Capture and replay. The scripts are generated before
the execution of test cases, and can later be used to automate their ex-
ecution, while in scriptless type of testing the tester or any automated
tool does not generate scripts, but the testing sequences are created on
the run during test execution [51]. Two famous tools employed for test-
ing web application are Selenium [52], for the scripted approach, and
Testar [53], which follows a scriptless approach.

2.2 Video game testing

Nowadays, video game testing is a multi-stage process which involves both
developers and final players, and can be summarized into five key stages,
reported in figure 2.2:

& GAMEACE
1 PLANNING

TESTING IN THE
DEVELOPMENT STAGE

5 KEY TESTING

STAGES FOR 3 ALPHATEST
VIDEO GAMES

BETA TEST

5 POST-PRODUCTION
TESTING

Figure 2.2. Video game testing stages

Image source: game-ace.com

1. Planning: Before testing, a detailed testing strategy based on the spec-
ified requirements is created to guide the future process.

20

https://game-ace.com/blog/video-game-testing-stages/

2.2 — Video game testing

2. Early Testing (during development stage): Developers and testers work
together to identify and fix bugs early in the development cycle.

3. Alpha Test: after the core functionalities are implemented on a basic
level, a dedicated QA (Quality assurance) team conducts in-depth test-
ing of the game’s core functionalities.

4. Beta Test: in this phase, the game should be almost ready to be re-
leased. Actual gamers provide feedback on the game, helping identify
final corrections.

5. Post-Production Testing: Testing continues even after release to address,
because end players will encounter issues and provide further feedback.

But while in traditional software development testing is essential, there is
currently no exhaustive and systematic report available on the testing prac-
tices (or lack of them) employed by game developers, especially regarding
automated testing.

This is primarily due to the inherent characteristics of a video game, that
make the system under test different from most other software applications,
presenting specificities that need to be considered when creating an efficient
testing process and making it challenging to adapt some common software
testing techniques [7].

Generalizing, we can consider video game testing a subset of software test-
ing, as the main software testing techniques are essentially applicable to video
game testing as well. However, going into more detail, it becomes evident
that a video game is a complex product made up of a set of different compo-
nents that interact with each other [24]. These modules and their presence
can vary greatly from game to game, but in general, we can have:

e Scripts and code modules: these define game’s functionality, so they
represent the true core of the game, encompassing everything related to
the gameplay and game logic. These scripts define game events from the
given inputs, such as character and enemy behaviors, game mechanics,
win/lose and scoring mechanisms, and user interfaces.

o Al: an Artificial Intelligence module is often used to manage NPCs (Non-
player character) and enemies behavior, creating the illusion of intelli-
gence as if controlled by a human player, and thus generating more
engaging challenges.

21

2 — Background

o Graphics/Multimedia: these modules are in charge of everything related
to rendering graphic elements and audio processing in the game, often
delegated to a game engine (Unity, Unreal).

o Physics engine: essential in modern 3D video games, the physics engine
ensures that all elements of the game world behave according to physics
laws, increasing realism. This applies, for example, to throwable or
destructible objects, or to the movement of natural elements such as
fire, water, wind.

e Inputs: these modules manage all commands from the player and thus
has to deal with different input devices such as keyboards, mice, gamepads,
joysticks, VR sensors, or more special purpose ones such as steering
wheels for driving games.

o Networking: another important aspect is the handling of multiplayer, in
which many users interact with each other in the game world, requiring
communication protocols and reliability of game servers.

All these elements focus on visual quality and productivity, but games by
definition aim to provide an engaging and enjoyable experience rather than
purely technical performance.

This is the first big difference: traditional software development focus is
to provide an useful service, while video games’s primary purpose is enter-
tainment, aiming to deliver an immersive and enjoyable experience, not just
productivity. This aspect is particularly hard to test and at the moment
relies essentially on human testers, even though some approaches based on a
quantitative description of certain emotional states are emerging [33] [34].

An aspect hard to test, especially in an automated way, is also the cou-
pling between the user interface (UI) and the game mechanics, which can be
very complex depending on the case [54].

In relation to code, in general, there is little or no code reuse in video game
development compared to traditional software development. In traditional
software development, there are many similarities between products, while
video games strive to deliver unique experiences, and each component of a
video game is often written specifically for that particular product [55].

Also, video games are software products that require frequent changes and

22

2.2 — Video game testing

releases, for example, in case of mobile games, they are made to be con-
tinuously upgraded over time. This makes difficult to automate the testing
process, because if code and/or design is constantly changing the process
becomes obsolete very fast and requires new implementation [7].

Another testing difficulty is related to the large set of possible game states,
which grow along with the game complexity, and ideally require to cover a
huge quantity of possible game paths [51].

The set of possible game states increases even more if we think about the
randomness that is a main attribute of any game [55]: the non-determinism
is a desired features, but the lack of a pattern or predictability makes testing
really challenging, as it requires to reproduce some of that randomness to
eventually recreate and discover bugs.

For all these reasons, nowadays the primary testing technique used is man-
ual game-play testing, also called play-testing, performed by developers or
specific quality teams.

Despite the difficulties, automated tests in game development can be highly
beneficial: they are resistant to human errors, are executed in less time,
are easier to organize and reproduce and in general they ensure fewer bugs.
Hence, there is a necessity for fresh initiatives to explore alternative methods
of automating game testing, methods that do not solely depend on human
play-testers.

23

2 — Background

2.2.1 Autonomous agents

Autonomous agents are software tools designed to perform a series of com-
plex tasks in order to achieve a goal or objective function [30]. Training these
agents with artificial intelligence and machine learning techniques, they can
work undirected and dinamically change their strategies.

Their applications range from personal assistants to autonomous vehicles,
to healthcare, finance and so on, but, thanks to their features, they also have
great potential in the field of game testing.

They can replicate various player actions such as moving, attacking, solv-
ing puzzles, and interacting with objects in the game world, testing how the
game responds to different types of behaviors.

Thanks to artificial intelligence and machine learning, they can adapt and
learn from the game environment, which allows them to test a broader range
of scenarios compared to a human tester. Also, they can run tests continu-
ously and execute repetitive tasks quickly, with a considerable saving of time.
Lastly, by mimicking human interactions within the game, they can test and
Improve user experience.

For all these reasons, autonomous agents have been employed in various
works to test multiple aspects of video games.

In [8], autonomous agents built on the belief concept within iv4XR framework
[35] are employed to evaluate robustness and consistency between changes
in design and development of video games, considering a change of in-game
entities locations, changes in the game world and changes in the game logic.

The approach described in [10] makes use of autonomous agents to high-
light uncorrect functionalities by operating on two types of goals: synthetic
ones based solely on game scenario, and human-like ones trained from human
data with reinforcement learning. These two types of agents are employed
for bug finding; and finally, a comparison between human-like agents and
human playtesters is discussed.

In [15] agents built on a model of memory regarding in-game entities and
decision making based on them are employed in PathOS, a tool created as
a Unity extension with the aim to facilitate the automation of testing at

24

2.3 — Coverage models

development stage.

Dynamic game balancing refers to the adaptability of the game to the evolv-
ing level of the player, maintaining a certain degree of balance and believabil-
ity. In [17], adaptive agents trained with reinforcement learning are employed
to address dynamic balancing.

ICARUS [20] is framework focused on testing the core functionality and
riddles of adventure games in a bug finding way, and this research utilizes
automated players programmed to perform "speedruns" with the purpose to
identify and report any crashes, freezes, or situations that prevents progress.

An agent-based approach for automated UX (user experience) testing is pro-
posed in [34]: agents have some problem-solving capacities and a core affect
model based on two dimensions, valence (which increases when the agent is
able to solve his goal) and arousal (which increase when the agent find new
interactable items), leading to model a simple artificial state of emotions.

2.3 Coverage models

The efficiency of test cases is evaluate through coverage metrics, which are
quantitative measures of how much of a component or aspect of system under
test has been executed during the running of test cases.

Two of the most used coverage metrics in software testing are code cov-
erage and test coverage [29)].

Cove coverage metrics essentially measure in several ways how much source
code has been executed during test cases. Hence, it is a white-box type of
metric, requiring knowledge of code, and performed principally at unit test-
ing level.

So, code coverage is performed by developers, that, by doing this, can assess
whether the number of tests executed is adequate to effectively test the soft-
ware application or whether there is a need to expand the test suite.

Code coverage is also useful to assure a certain standard of code correctness
to be maintained after changes or new releases.

Furthermore, measuring the code coverage means discover areas of dead or
unused code, that can be eliminated to assure efficiency.

25

2 — Background

Code coverage can be performed at several levels. The most common criteria
includes:

e Function coverage: measures how many of the functions or sub-modules
are been called during the execution of test cases.

« Statement coverage: measures the percentage of statement (definitions,
declarations, boundary cases...) executed during test cases.

e Line coverage: how many lines of code have been executed during tests.

e Condition coverage: measures how many of the conditional statements
(boolean expressions) have been executed.

o Branch coverage: measures the percentage of branches of each control
structures (such as if-else and do-while) executed during test cases. For
example, for a "if" statement, both the "true" and "false" branch should
be covered.

» Modified condition/decision coverage (MC/DC): this is a combination
of function and branch coverage, and cover the invocation of every point
of entry and exit and all possible outcomes based on decisions.

o Path coverage: measures how many of the possible paths have been
executed during tests.

e Loop coverage: measures the coverage of every loop in the program
execution.

On the contrary, Test coverage follows a black-box approach as it measures
how many tests have been executed, aiming to evaluate how well the software
application has been tested.

Hence, it can be performed by quality assurance teams at any level of testing,
from unit testing, to integration testing and finally at system /functional level.
It is useful to improve the quality of test cases and evaluate if there is a need to
expand the test coverage, to identify earlier defects and eliminate eventually
redundant tests.

There are several types of test coverage:

o Features coverage: measures how many of the software application fea-
tures are covered.

26

2.3 — Coverage models

» Risk coverage: address the risks related to the application and based
on requirement documentation, considering the probability of them to
happen in a real scenario.

» Requirement coverage: how many of the requirements described in the
application specifications are met during tests.

o Compatibility coverage: verifies the compatibility of the software ap-
plication across different platform, browser or devices, with different
configurations or interaction with other software.

e Boundary value coverage: selecting test cases that fall near or between
boundary values is useful to uncover any issues related to boundary
constraints and data.

o Number of issues: it’s important a system level to report the quantity of
eventual bugs, crashes, faults or in general every issue emerged during
testing.

The choice on implementing code coverage or test coverage and in what mea-
sure has to be considered on the specific applications needs and requirements,
but usually a balanced approach between the two is preferable.

For an effective and measurable process of software testing, considering a
standardized taxonomy of coverage metric is crucial.

A taxonomy is a scheme of classification in the context of a knowledge field.
Taxonomies can have different structures, but their role is to set a uniform
and common interpretation of knowledge in a specific area of interest [37].
This is clearly useful in terms of providing comparable results and setting a
standard reference.

In the field of software testing, there are many studies focused on taxonomies
of requirement coverage metrics, some better organized than others: this
disorder is explained by the lack of shared and clear definitions of coverage
metrics [38].

But while interest in standardizing metrics in various fields of software testing
has increased in recent years, work regarding video game testing is progress-
ing slowly.

Currently, there are no clear definitions of specific coverage metrics for video

27

2 — Background

game testing, as each study either defines new ones or adopts internal mea-
surements without providing precise definitions. Hence the need to provide
a coverage model that serves as a basis for future work.

28

Chapter 3

A Taxonomy of Coverage
Metrics for Game Testing

3.1 Methodology

The objective of the first phase of this work is to identify existing or definable
coverage metrics specific for video games and create a taxonomy useful as a
standardized base to be expanded and improved in future.

Hence, the methodology followed essentially consists of two phases: a sys-
tematic literature review and the taxonomy formulation.

3.1.1 Systematic Literature Review

A Systematic literature review is a rigorous and unbiased approach used to
identify, evaluate, and synthesize all existing research relevant to a particular
topic. The literature review has been conducted in a systematic way by using
a search string on a group of scientific literature repositories, based on the
guidelines defined by Kitchenham in [50].

Additionally, also Grey literature has been considered, performing in fact
a Multivocal systematic literature review as defined in [57]. Grey literature
consists of non-published studies, such as reports, blog posts, theses, working
papers and so on, opposed to White literature, which is traditional academic
literature.

Including grey literature is useful to have a more a comprehensive under-
standing of the topic, encompassing both the state of practice and the aca-
demic literature, and thus to generally avoid to miss important aspects of
the topic.

29

3 — A Taxonomy of Coverage Metrics for Game Testing

The multivocal literature review has been conducted following essentially
the guidelines described in [58].

Quality assessment techniques and snowballing are not reported because their
application did not lead to significant improvements.

After a planning phase to further define the objective of the literature re-
view, the next step is to select the primary repositories providing white and
grey literature to be searched.

Selected white literature repositories

o Google scholar

ACM Digital library

Science direct

Springer Link

IEEE Xplore

Research Gate

Considered grey literature sources

e Google search
o Game Developer

e Browser Stack

Search string

Next step of the literature review is to formulate search strings, which is
usually an incremental search process, where the first searches reveal more
effective search strings. In order to efficiently scan the literature, the search
string was defined to be as inclusive as possible, containing words like 'Game"
(or "Video Game'"), "Test" or "Testing", "Metric", "Coverage"; and finally
adapted to work with the specific syntax of each repository.

30

3.1 — Methodology

Inclusion/Exclusion criteria for Source selection

To filter the results obtained from applying the search string and only con-
sider the relevant ones, the following inclusion/exclusion criteria were defined:

o IC1: the source is directly related to the topic of video game testing.

o IC2: the source explicitly defines or employ metrics or measures to eval-
uate and track the test execution process.

o IC3: the source is written in a language the author understand (English
or Italian).

o IC4: the source can be either a formally published article (white litera-
ture) with accessible full text, or a publicly available report or document
(grey literature) published between 2012 and 2023.

Exclusion criteria are not defined because they can be formulated essen-
tially as opposite to inclusion criteria.

The initial search results after applying the search string identified 65
sources. After filtering for duplicates and applying the inclusion criteria de-
fined above, they were reduced to a final set of 25 relevant sources, including
22 academic publications and 3 grey literature sources.

3.1.2 Taxonomy definition through Open Coding

After conducting the systematic literature review, the results can be used to
develop a structured classification system for metrics used to measure how
thoroughly game testing covers different aspects of the game.

To define this taxonomy, Grounded theory approach was followed, based on
the guidelines described in [59].

Grounded theory is a general and systematic research methodology based
on inductive type of reasoning, in which theories are generalized and defined
from a collection of observations. This approach is well-suited for developing
taxonomies because emphasizes data-driven insights and reduces confirma-
tion bias.

31

3 — A Taxonomy of Coverage Metrics for Game Testing

The sites selected for the research are the sources resulting from the mul-
tivocal literature review performed before, and the data collection strategy
is based on technical observations.

Open Coding

The process of categorizing and labeling observations is called "coding". The
approach followed to perform coding is Straussian technique of Open coding
[60]: an analytic process of capturing concepts from observations during data
analysis.

Open coding consists of breaking down the data into meaningful units and
assigning them short descriptive labels, often consisting of a single word or
a brief phrase; this allows to identify key concepts within the data.

The application of Open coding led to formulate the low-level concepts, or
codes, of the taxonomy, based on the key aspects identified.

After that, a set of standardized and common definitions has been devel-
oped, and used to classify each individual metric identified or derived in the
literature sources.

The codes of the taxonomy are considered mutually exclusive, meaning there
is a 1-N kind of relationship between codes and metrics (one metric can be
assigned to one code only).

To ensure the taxonomy captured the full range of metrics, it was built in an
incremental way: if a new metric defined from the literature sources didn’t
fit into any existing code, a new code was added specifically for that metric,
and so on.

Metrics inclusion criteria

To decide whether to include or not a metric in the taxonomy, the following
criteria were followed.

First of all, the metric has to be explicitly used for video game testing.
Common coverage definitions usually employed in software unit testing, such
as branch, condition or line coverage, were not included in the set of selected
metrics because they are generic across software domains and can implicitly
be applied also to video game testing.

32

3.1 — Methodology

Moreover, the metric has to be measurable and effectively be used to evaluate
a defined aspect.

Finally, duplicate metrics were avoided by merging metrics that were practi-
cally identical at a high level, differing only in minor details or in the name
defined in that specific work.

Axial Coding

Following the completion of the Open Coding phase and the definition of
low-level codes, the Axial Coding procedure was applied in two passes to the
newly formulated codes.

Axial Coding, as defined in [60], is a process in grounded theory with the aim
to relate codes to each other, putting back data from Open coding process
by making connections of themes between them.

The application of Axial Coding thus is essential to define a structured model
and identify different levels or categories in the taxonomy.

Results

After the data analysis of the sources collection derived from the systematic
literature review and the application of Open coding procedure, a set of 26
codes (metrics definitions) has been formulated.

The following application of Axial coding process resulted in the definition
of 6 high-level categories of metrics: Functionality, which includes User
interface (UI) and Gameplay, Multimedia, Operability and User ex-
perience (UX), Performance and Reliability.

Next, a description of these six categories and the aspects of testing they
cover is provided.

The taxonomy defined in this way is reported in Tables 3.1, 3.2, 3.3, 3.4,

3.5, 3.6, along with references to existing literature for each metric. Also, a
graphical representation of the taxonomy is reported in Figure 3.1.

33

3 — A Taxonomy of Coverage Metrics for Game Testing

Widget Coverage
User Interface (UI) Screen Coverage

Interactable objects

coverage
Interaction/Collision g
Interactable NPC

Functionality characters coverage

e Number of
Player Statistics Player Statistics

Gameplay Level exploration
Level Level coverage

Path coverage

Plot Plots coverage

Enemies coverage

Hazards .
Environment hazards
coverage

Animations Animations coverage

Multimedi
ultimedia Sound effects

Audio coverage

Speech/dialogues
coverage

Game testing
coverage metrics Difficulty

Number of attempts

Balance Time to

Operability and User complete a level

Experience (UX)

Playtesting Playstyle coverage

Fun factor Fun factor value
Memory usage
FPS value
Performance
CPU usage
GPU usage

Battery usage

Number of

Fault tolerance/ bugs

Reliability Recovery
Number of

crashes

Figure 3.1. Taxonomy of video game testing coverage metrics

34

3.2 — Categories

3.2 Categories

3.2.1 Functionality

This category refers to functional testing, whose definition is very broad and
potentially encompasses many different types of tests [39]. Testing the func-
tionality of a software system means testing whether the application meets
the specifications and functional requirements provided by the original de-
sign: the behavior of the system must be consistent with the expected fea-
tures.

Usually, functional testing is black-box since the aim is not to test the code
but rather the functional characteristics.

In video game testing there is no single definition of functional testing. In
fact, many works arbitrarily consider as functionality testing evaluations of
graphical elements and realism, technical performance, game mechanics, and
user experience [10] [41].

In this work, the Functionality category considers the elements that make
up the backbone of the video game, those without which the video game
cannot be defined as such: User interface (UI), so checking that the lay-
out and widgets are meeting the design and functionality requirements, and
Gameplay, concerning functional aspects of game mechanics and players’
interactions with the game.

User interface (UI)

User interface can be considered as anything the end-user will interact with
when using some software [12]. In particular, GUI (Graphical User interface)
testing includes checking all the graphical components and widgets, such as
toolbars, menus, text boxes, buttons, checkboxes; and their interactions.

In game applications that present a GUI, it is necessary to test that all
graphical components such as statistics, buttons, menus, and maps are dis-
played and updated correctly, and that the interactive ones respond to the
functional specifications.

Additionally, it is necessary to test the various game screens, as they can
vary greatly depending on the application, such as loading, settings, pause,
game over, menu, or gameplay screens.

35

3 — A Taxonomy of Coverage Metrics for Game Testing

GUI testing techniques can be manual or automated, and range from em-
ploying the exact coordinates of components to using artificial intelligence
algorithms to test the correctness of visual screens [358]. For example, in [12]
a convolutional neural network is trained to detect buttons in Ul images and
perform an automated exploration to test as many Uls as possible.

Gameplay

This category considers the core functionality of the game and all game-
play mechanics. The aspects to be tested can vary greatly depending on the
type of game, its structure, and the presence or absence of certain game-
play mechanics. If there is a playable character, it’s necessary to test that
movements/actions work correctly. If it’s a level-based game, it’s essential to
check that all levels are functioning and that all intended paths are accessible.

Modern video games offer a vast 3D world, often open world, which con-
tains a variety of interactable sections or objects, such as colletibles (objects
which can be taken to achieve achievements or unlock content), goal objects
(objective items to win a level or continue the plot) or environmental hazards
(game world objects which can damage the player). [15]

This aspect also includes any NPCs (Non-player character), which are char-
acters in a game that are not controlled by the player but with which he can
interact for plot purposes: they can be enemies, allies, traders of equipment
or items. Testing should include verifying for example that the player does
not get stuck in specific parts of the game world and that he can interact
correctly with each game entity.

Many modern video games offer a dynamic storyline which changes accord-
ing to the player’s decisions through the game, for example by establishing
a system of good/bad actions around which the game world is built [31], so
the narrative must be tested as well.

Gameplay is potentially the broadest category to test, since the aspects to
be tested increase along with the complexity of the video game, and also the
one that can vary the most depending on the game, making it difficult to
generalize.

36

3.2 — Categories

Table 3.1. Functionality - UI metrics

Sub-category Metric

Definition

Screen coverage Screen coverage

Widget coverage Widget coverage

Number of covered screens
of the game over total num-
ber of screens

Number of covered widgets
in the game over total num-
ber of widgets

37

3 — A Taxonomy of Coverage Metrics for Game Testing

Table 3.2.

Functionality - Gameplay metrics

Sub-category

Metric

Definition

Interaction/
Collision

Interaction/
Collision

Interactable objects
coverage

Interactable NPC
characters coverage

Interactable objects triggered
by test cases over the total
number

Interactable ~ NPC (Non-
Playing Characters) triggered
by test cases over the total
number

Player statis-
tics

Number of player
statistics

Player statistics exercised or
modified by the test cases over
the total number of player
statistics available

Level

Level

Level

Level exploration

Level coverage

Path coverage

Explored percentage of levels
in terms of a specified in-game
measure (e.g., meters or square
meters)

Number of levels completed
over the total number of avail-
able levels in the game

Number of paths covered in a
single level over the total num-
ber of possible paths in the
level

Plot

Plots coverage

Number of tested dynamic
plots (depending on the play-
ers’ choices) over the total

number of available plots

Hazards

Hazards

Enemies coverage

Environment haz-

ards coverage

Number of interacted enemies
over the total number of ene-
mies present in a level

Number of the triggered envi-
ronment hazards over the total
number of hazards present in a
level

38

3.2 — Categories

3.2.2 Multimedia

Another fundamental element of a video game is multimedia, including a va-
riety of animations for characters, objects and environments which should be
as fluid as possible. As the complexity of the video game increases, so does
the technical quality of animations and graphic detail (textures, 3D models).

In modern 3D games it’s important to test the goodness of the physics en-
gine, in order to make the game realistic and immersive. For example, when
the player interacts with destructible or throwable items the collision system
should respond correctly in terms of realism. [13]

Testing the physics requires very specific knowledge of the element to be
tested, which can be the movement of natural elements, of humans, animals,
of vehicles, weapons or other objects, and each of them has its own difficulties.

Lastly, another broad multimedia element regard audio testing, which can
include background music and ambient sounds, that varies depending on
the section/point of the game; sound effects, which could be triggered with
specific actions, such as an explosion, the firing of a weapon, a door being
opened, footsteps etc.; and dialogues between characters [11].

Table 3.3. Multimedia metrics

Sub-category Metric Definition Refs
Animations Animations Number of tested animations [l1]
coverage over the total number of anima-

tions present in a level /scene

Audio Sound effects Number of played sounds over [l1]
coverage the total number of sounds
present in a level /scene

Audio Speech/dialogues Number of played speeches or [l1]
coverage dialogues over the total num-
ber of speeches and dialogues
present in a level/scene

39

3 — A Taxonomy of Coverage Metrics for Game Testing

3.2.3 Operability and user experience (UX)

User experience is an important parameter in the testing of any software
application. Testing the usability means testing the user-friendliness of the
application, in terms of ease of use and understanding, flexibility and smooth-
ness of the navigation flow, clarity of the content; finally, also the attractive-
ness of the design [14].

These aspects should also be evaluated in game testing, considering, for
example, the learnability of gameplay mechanics, how understandable the
various interfaces and statistics are, and the clarity of tutorials. This cate-
gory also includes accessibility testing: options for players with disabilities,
such as subtitles, colour configurations and customizable controls.

Two other aspects, however, are exclusive to game testing: balance and the
so called fun factor. Many modern video games are designed to increase in
difficulty in parallel with the player’s progress: it’s important to verify the
fairness of the game and the balance of the game’s parameters also in terms of
level difficulty. But since the ultimate goal of a video game is entertainment,
it becomes primarily important to understand how enjoyable and immersive
it actually is to play, in terms of different emotions such as arousal, tension,
boredom.

End users may also have very different styles of gameplay ("personas'): for
example, some seek to complete as many objectives as possible, some want
to explore the game world more extensively, and others are more interested
in combat.

By their nature, testing regarding balance and fun factor is difficult to au-

tomate and relies essentially on human playtesting; but recent works about
automation make use of autonomous agents [8] [14] [15] [34].

40

3.2 -

Categories

Table 3.4. Operability and UX metrics

Sub-
category

Metric

Definition

Balance

Balance

Balance

Difficulty

Number of attempts

Time to complete a
level

Evaluation of the diffi-
culty of a level or scene, in
terms of time to complete
the level, number of failed
attempts, size of the level,
etc.

Minimum, maximum, av-
erage number of attempts
required by test agents to
complete a level

Minimum, maximum, av-
erage amount of time nec-
essary to complete a level

Playtesting Playstyle coverage

Number of different
playstyles (or "personas”)
applied by automated
agents over the total
number of playstyles
available

Fun factor

Fun factor value

Measurement of the
player’s enjoyment of the
tested levels or scenes (in
terms of arousal, stress,
boredom, etc)

41

3 — A Taxonomy of Coverage Metrics for Game Testing

3.2.4 Performance and Reliability

Software testing techniques for performance and reliability are similar and
often overlap; the difference lies in the metrics and aspects tested: testing
the performance means testing the efficiency in terms of of framerate, re-
sources utilization (RAM, GPU, CPU...) [25], load time, battery usage, so
the responsiveness and fluidity under a particular workload [10]; testing for
reliability considers the ability of a software application to function correctly
and without failures over a certain period, and aims to identify issues that
can potentially damage functionalities [15].

In the context of video games, these testing aspects are very important to
ensure the game has the fluidity and stability necessary to enhance the user
experience and the success of the game itself.

Some of the testing types include stress testing, which involves testing under
intentionally overloaded conditions, such as pressing the same buttons mul-
tiple times, or simulating multiple users logged on server; or soak testing,
which is a duration test, evaluating the efficiency of the game when is on for
long periods of time.

It’s also important to address the compatibility by testing that multiple
components can perform while sharing the same hardware or software en-
vironment, or compatibility with gaming support tools (pads, mouses, key-
boards), and the co-existence between programs and game.

Moreover, video games are software product designed to be continuously
updated over time, so it’s essential to assure maintainability by testing how
efficiently the game can be modified, and to perform regression testing, con-
sidering bugs related to following updates of the software.

Finally, to assure reliability is important to provide a good management

of fault tolerance and recovery, so test the handling of faults consistently
with the game flow and the recovery from crash.

42

3.2 — Categories

Table 3.5.

Performance metrics

Sub-category

Metric

Definition

Refs

Performance

Performance

Performance

Performance

Performance

Memory usage

FPS value

CPU usage

GPU usage

Battery usage

Usage of memory during
the execution of the test
cases

Maximum, minimum or
average FPS (frames per
second) rate during the
execution of the test cases

CPU usage, measured in
time needed to render a
frame or in power con-
sumption per frame

GPU usage measured in
time needed to render a
frame or in power con-
sumption per frame

Consumption of battery
during the execution of
the test cases

43

3 — A Taxonomy of Coverage Metrics for Game Testing

Reliability metrics

Sub-category

Definition

Fault toler-
ance/recovery

Fault toler-
ance/recovery

Table 3.6.
Metric
Number of
bugs
Number of
crashes

Number of bugs discovered
during the execution of test
cases. A bug is a minor func-
tional, behavioural or graph-
ical issue in the execution of
the game, not resulting to
an unexpected closure of the
software.

Number of crashes triggered
during the execution of the
test cases. A crash is a crit-
ical issue in the execution of
the game, resulting to an un-
expected closure of the soft-
ware.

44

Chapter 4

IviaXR Framework and
Metrics Implementation

4.1 Testing tools

The market and scientific literature offer a variety of frameworks and tools
for automated video game testing, ranging from simple to complex, paid or
free. Some of these tools are video games specific, while others are generally
used for software application testing.

Some GUI testing techniques that are applicable to game testing involve im-
age recognition, a machine learning technique that trains models to identify
objects within an image; and /or so called capture/playback or capture/replay
techniques, which consists of recording the system screen, then automatically
replay the same sequence of commands to get to that screen and comparing
the two results [10].

Also for performance and reliability testing non-specific tools for video games
can be used, which evaluate efficiency, server and network stability, resource
consumption, and response to faults.

Regarding the testing of multimedia aspects, a very useful open-source frame-
work is Rivergame [11]. It is a platform-independent tool that allows to test
a variety of aspects using artificial intelligence techniques: visual changes in
the scene and the correctness of the Ul; the quality of animations, through
a set of fixed points for each object that act as a skeleton to calculate its
trajectory and verify it matches the desired one; and finally, the sound, by

45

4 — Iv4XR Framework and Metrics Implementation

comparing spectrograms to test sound effects and background music, and
using NLP (Natural Language Processing) algorithms for dialogues, which
convert the characters’ voices into text.

Several other tools propose techniques to test various aspects of gameplay and
game environment, mainly using agents trained with reinforcement learning
techniques to explore as much as possible in order to find bugs and anoma-
lous behaviors [9] [10].

4.2 Iv4XR Framework

Iv4XR stands for "intelligent verification/validation for extended reality (XR)
based systems' [35]. Extended reality refers to highly interactive systems
such as augmented reality and virtual reality systems, which are employed
in a variety of industries beyond entertainment and video games.

Iv4XR is an agent-based framework that offers a variety of autonomous
agents to automate different types of testing in systems like computer games
or computer simulators, and also support the integration of other tools. Its
functioning is essentially based on an agent-objective solution, illustrated in
figure 4.1.

I test goal T; I

ivdXR
o test goal T, Framework test agents
(WP2)

i

human tester

@, 000
G- 988

SETAs (WP4)

Figure 4.1. 1v4XR approach overview

The testing process begins with the tester/developer defining test goals.
These goals are then fed into the Framework (step 1).

46

4.2 — IvdXR Framework

The Framework takes these goals and deploys intelligent agents (step 2).
These agents, acting like simulated human testers, autonomously interact
with the XR system under test (step 2). As they interact, they aim to
achieve the test goals and verify the expected behaviors (predicates) defined
within those goals.

Throughout the process, the Framework keeps the tester informed of the
agents’ findings (step 3). This information includes both real-time updates
and a comprehensive final report, highlighting any violations of the expected
behaviors. Test agents can be of different types depending on the type of
testing that needs to be conducted.

In fact, in iv4XR there are three types of agents available: goal-solving test
agents, exploratory functional test agents (FTAs) and socio-emotional test
agents (SETAs).

Exploratory functional test agents (FTAs)

Exploratory functional test agents (FTAs) aren’t based on predefined goals
or tactics. Instead, they freely explore the System Under Test (SUT) without
scripts or sequences. While exploring, FTAs analyze the system’s behavior
and identify potentially interesting actions the user might take.

FTAs leverage the ivdXR framework with the integration of TESTAR tool
[53], an automatic scriptless system testing tool that works at the GUI level.
TESTAR’s operating is based on generating test sequences. It achieves this
by connecting to the SUT in its initial state, then continuously selecting
actions to transition the SUT to new states. Throughout this process, the
TESTAR agent checks pre-defined conditions (oracles) to identify any system
failures.

Socio-emotional test agents (SETAs)

Socio-emotional test agents (SETAs) are designed for testing different com-
ponents of UX.

Due to the complex nature of UX, SETAs are designed for modularity, mean-
ing they can be equipped with different modules to test different components
of UX, according to what is most important to testers.

Each module empowers them to predict a specific UX component. This
modular design also allows for easy expansion with new modules as research
uncovers novel UX predictors.

47

4 — Iv4XR Framework and Metrics Implementation

One of the these modules for SETAs agents is an emotional prediction mod-
ule leveraging the PAD model of emotion, which categorizes human emotions
based on three key dimensions: Pleasure, Arousal, and Dominance. The pre-
diction module is trained with machine learning algorithms on data from
SUT in order to predict a user’s emotional state based on their interactions
within the XR environment [34].

A different way to predict emotions implemented for SETAs is a model based
approach that uses the OCC (Ortony, Clore, Collins) theory of emotions to
formalize relevant emotions [33].

Another module for SETAs agents implements Persona Agents, agents that
behave like a specific player or subset of players, addressing the problem of
players that can have pretty different playstyles. This is done by grouping
user behavior togetherin clusters based on how similar it is, and then adjust
the agents to act like the typical user from each group [32].

These modules actually allow for the testing of at least two metrics present
in Table 3.4, namely fun factor value and playstyle coverage. However, other
modules are currently under development that will allow for the testing of
metrics related to difficulty estimation and dynamic plots coverage[31].

4.2.1 Goal-solving test agents

The primary type of agent employed in iv4XR and used in this work is the
goal-solving test agent. Iv4XR approach for these agents draws inspiration
from the concept of BDI (Belief-Desire-Intent) agents [17]: agents are given
a simple goal or a set of goals ("goal structure") and operate through a series
of update cycles.

During each cycle, the agent senses its environment, evaluates its current
state, and makes decisions aimed at achieving its designated goals. The
agent also evaluates whether the current goal has been achieved, should be
discarded, or if another goal should be pursued.

In the case of an Iv4XR agent, "beliet" concept refers to all the observations
the agent has collected up to the current point: the most recent observation

48

4.2 — IvdXR Framework

is considered actual, while older ones may no longer be aligned with the cur-
rent state of the SUT.

[v4XR agents can make decisions based on this belief: for instance, if in
its belief there is a certain object, the agent may assume it still exists in the
actual game world and may decide to go to its location.

The update cycle functioning of these agents ensures high reactivity, and
makes it especially well-suited for controlling a game.

To facilitate test automation, iv4XR introduces the concept of tactics for
simpler tasks, which allow the developer to specify in which way the agents
should try to solve their goals. Iv4xr’s internal libraries handle the execution
of tactics and communication between agents, making agent programming
simpler and more abstract for the developer.

For more complex testing scenarios, multiple goals can be structured into
hierarchical arrangements ("goal structures").

A very simple example of a tactic is shown in Figure 4.2.

var tactic, = ANYof{
action().do1(B — B.env().moveUp()) .on(g,),
action().do1(B — B.env().moveDown()) .on(g,),
action().do1(B — B.env().movelLeft()) .on(g,),
action().do1(B — B.env().moveRight()) .on(g,))

Figure 4.2. Simple tactic to move the agent

This is a tactic to move the agent by choosing the direction based on
guards (gl, g2..), that must be set to true to enable that direction. The
combinator ANYof simply chooses randomly one of the directions enabled.

49

4 — Iv4XR Framework and Metrics Implementation

More structured tactics can be built by combining simpler ones: an ex-
ample is reported in Figure 4.3.

Tactic navigateToTactic(id) {
return
FIRSTof(survivalTactic(),
travelTo(id) .lift(),
explore() .lift(),
Abort) i)

Figure 4.3. More complex tactic

Here, the combinator FIRSTof will execute the first enabled tactic. This
means that, for example, if the game object with said id is not anymore
present in the agent’s belief, the travelTo tactic will not be enabled; or if
the agent’s health state goes too low, the survivalTactic will be enabled and
executed; and so on.

50

4.2 — IvdXR Framework

4.2.2 Architecture and Environment interface

The overall iv4XR architecture is summarized in Figure 4.4.

The core library is called aplib, which stands for Agent Programming Li-
brary, and it contains: the implementation of tactics, goals, and the algo-
rithms used to solve them; tools for collecting traces and data during test
execution; and the library that handles the representation and management
of the game environment. Aplib then interfaces with the different types of
agents through specific goal libraries and with the SUT through a game en-

vironment interface.

/

Goal-solving
test agent

Explorative
test agent

TESTAR

Affective
TA

Solvers

MBT

v

[Goal-Library

Interface 1}J

SUT-specific Environment and } [RL

Tactic and Goal Language
(embedded in Java)

Data collection and
verification

Pathfinding and exploration
algorithms.

WV4XR'

Output
e fail/pass
(Junit)
e traces
e coverge

e)
Environment core
wWoM
world entities L
{object With Interaction
properties) Commands
(e.g move)
Navigation
Graph

\

\ ivdxr Framework Core (aplib)

/

Environment
-y

(interface)

System Under
Test
(SUT)

Figure

4.4. Iv4XR architecture

o1

4 — Iv4XR Framework and Metrics Implementation

As shown in Figure 4.4, [v4XR cannot be used without the implementa-
tion of an interface to connect the internal libraries and representations with
the specific features of the SUT. This is due to the fact that video games
are very diverse in the representation of their states, making it impossibile
to find a standardized way to interface with them.

This interface, called Environment, allows test agents to be connected to
the SUT and hence perform their test-goals; and it should be implemented
by the developers at least to provide a method to observe the current state of
the game and other methods to handle the atomic actions that the agent can
perform within the game, for example to interact with object and characters,
or moving to a certain point.

The level of complexity that the interface can reach is at the developers’

discretion, which can decide how many actions to implement and how much
of the game world can be observed.

In Figure 4.5 a more detailed description of what is needed to be imple-
mented for the environment interface is shown.

52

4.2 — Iv4XR Framework

IvdxrAgentState Q IvdxrEnvironment
(3
TestAgent T WorldModel T
MyAgentState < MyAgentEnv

system/game under test
(SUT)

= (@) ®

Goals Lib

SUT specific
Tactics and @

Figure 4.5. Iv4XR architecture related to environment implementation

Several key components are needed to get everything working:

1. implementation of Iv4dxrEnvironment class: this class acts as a bridge
between the agent and the system under test (SUT). For example, allows
to send commands to the SUT and retrieve information about its current
state.

2. implementation of IvdxrAgentState: this component holds all the infor-
mation the agent knows about the SUT. It includes a general represen-
tation of the game state called WorldModel.

3. implementation of WorldModel and WorldEntity: these are generic build-
ing blocks used to represent the game state (WorldModel) and individual
objects within the SUT (WorldEntity).

4. building a translator: this custom-built component takes actual objects
and the game state from the SUT and translates them into the generic
WorldEntity and WorldModel formats. It essentially turns the game’s
unique language into something the agent can understand.

5. customized and game specific tactics and goals library, supported by
tools like pathfinding and exploration algorithms provided by ivdXR.

A more accurate description of WorldModel and WorldEntity is reported in
figure 4.6.

53

4 — Iv4XR Framework and Metrics Implementation

I
WorldEntity
WorldModel : Idést?t{i%en velocity, extent
* agantld . gmeslar;w ! O
e position, velocity, extent 0 or stamp 0 or more
" e previous state
s timestamp more e properties (name-value
pair)

Figure 4.6. WorldModel and WorldEntities structure

A WorldModel, or WOM, provide a snapshot of a specific agent’s perspec-
tive. It includes the agent’s ID and location, along with details about the
surrounding objects (WorldEntities). These WorldEntities, each representing
a game object, hold information like their ID, location, and custom proper-
ties. Both WOMs and WorldEntities are time-stamped, ensuring up-to-date
information about the agent and its environment.

Instead, in figure 4.7 is reported the general structure of IvdxrAgentState,
which represent the state of the agent, hence his belief. An instance of
IvdxrAgentState holds a WOM, which is the last game state observed,a Navi-
gatable which represent a navigation graph, and an instance of IvdxrEnvironment,
essential to give the agent control over the game. Agent states also have an
updateState() method, which will be periodically called to refresh the state
informations.

Iv4xrAgentState
e wom()
e worldNavigation WorldModel
e env()
e updateState() -

— Navigatable]

system/game
V under test
— Iv4xrEnvironment J (SUT)

.

Figure 4.7. Agent state structure

54

4.3 — Implementation of game metrics in iv4XR

4.3 Implementation of game metrics in ivdXR

The second objective of this thesis work is to implement a subset of the cov-
erage metrics previously defined in the taxonomy into the ivdXR framework.
The goal is to verify the effectiveness of the metrics formulated before in
a process of game testing, and to investigate the feasibility of making the
coverage model applicable to the testing of any video game.

4.3.1 LabRecruits

To perform the testing, the targeted game is LabRecruits [01], iv4dXR’s des-
ignated testing game.

LabRecruits is a 3D computer game developed in Unity intended for Al test-
ing. After launching, it’s possible to load a level, which can be defined by
testers through an ASCII-based CSV file.

A level is essentially a maze, which can be multi-level, and can contain deco-
rative objects, such as plants, chairs, lights, tables, and a set of interactable
objects, such as buttons and flags. Doors act as blocking-access gates, and
buttons act as switches, controlling the opening and closing of the doors.
Buttons and door can be in a many-to-many kind of relationship, to make
the game resolution more complicated.

Flags can be of two different types: healing flags, that restore a part of health
points when toggled, and finish flag, that mark the level as completed when
toggled.

In a level there may be two types of hazards: an environmental one, in
the form of a fire, which can be walked through but it will decrease player’s
health score; and enemies in the form of infected humans, that will chase the
player if he gets too close to them and will damage his health if they manage
to touch him.

Enemies cannot be fought, but after touching the player, they will freeze for
a brief period, providing an opportunity for the player to escape.

There can also be present one or more NPC characters, that cannot be con-
trolled by the player.

95

4 — Iv4XR Framework and Metrics Implementation

In figure 4.8 is reported an example of a LabRecruits level, with buttons,
doors and fire hazards.

Open Level &l Stop Agent agentD

Snap!

Figure 4.8. Screenshot of a LabRecruits level

Player start with an health score of 100 points that will decrease if he
comes into contact with fire hazards or enemies and will increase if he touches
a healing flags.

Some actions can be rewarded and increase the statistic named "score": com-
ing into contact with a button for the first time and toggle it, touching heal
flags of finish flags.

The goal is not the same for each level, and defining it is not mandatory,
for example a level can be created with the intention to explore it, thus not
containing a finish flag.

o6

4.3 — Implementation of game metrics in iv4XR

4.3.2 Coverage testing workflow

For the testing process, the implementation focus is on the gameplay cate-
gory, particularly on coverage metrics for interactive objects (buttons, flags,
doors) and entities with which the player interacts (fires, enemies, NPCs).
The testing process has been performed using iv4dXR/’s goal-solving autonomous
agents, and test are implemented as JUnit test classes.

To be able to write tests, two classes are essential: class LabRecruitsTest-
Server, in order to establish a connection between the framework and the
game, and class LabRecruitsEnvironment, which provides basic methods to
interact with the instance of LabRecruits game currently connected.

To launch the communication channel, an instance of LabRecruitsTestServer
is created and method waitForGameToLoad() is invoked. This will launch
an instance of Lab Recruits and create a dedicated server. Class diagram of
LabRecruitsTestServer is reported in figure 4.9.

LabRecruitsTestServer

+ Process server

void LabRecruitsTestServer(Boolean useGraphics)
void start(Boolean useGraphics, String binaryPath)
void waitForGameTolLoad()

void close()

boolean isRunning()

void waitFor(Function<Process, Boolean=> eval)

Figure 4.9. Class diagram of LabRecruitsTestServer

Once this server is running, a LabRecruitsEnvironment object can be created
using an instance of LabRecruitsConfig, which represent the configuration of
the selected level, and will automatically connect to the server, giving control
over the launched game instance.

57

4 — Iv4XR Framework and Metrics Implementation

Next essential step is create a test agent with class LabRecruitsTest Agent,
which is a subclass of iv4dXR TestAgent. The state structure is provided by
class BeliefState, which act as an internal model for each test agent, rep-
resenting its understanding of the game world, and considers the in-game
entities the agent encounters and the accessible areas it can navigate. Class
diagrams are provided in figure 4.10.

Beliefstate

+float DIST_TO_MEMORIZED_GOALLOCATION_SOFT_REPATH_THRESHOLD
+ List<WorldEntity> ch:

INT_UPDATE_THRESHOLD

LabRecruitsTestAgent

ring id)
voi ring id, String role)
LabRecruitsTestAgent attachState(BeliefState state)

erve(String agentld) L.
L agentid, Vec3 Vec3 targetLocation) LabRecruitsTestAgent setGoal(GoalStructure g)

(String agentld, String targetld, String La estAgent setTestDataCollector(TestDataCollector dc)

ess()

B
B
Bool
Object sendCommand_(EnvOperation cmd)

Figure 4.10. Class diagrams of LabRecruitsTestAgent, LabRecruit-
sEnvironment, BeliefState

Test execution

The basic workflow of executed tests, handled in class CoverageTest, is the
following:

First, server is started, and instances of LabRecruitsEnvironment and LabRe-
cruitsTestAgent are created. The selected level is load using method load-

World().

A log structure, namely levellnfo, and containing relevant informations on
the selected level’s composition is created via class LRFloorMap, which es-
sentially is written to handle the logical extracted map of a level, and kept
for the final comparison.

LRFloorMap divide a level configuration parsed by a CSV file into logical
cells (tiles) which can be of different types considering the game entities,
identify the type and position of entities and the relationship buttons-door.
Class diagram of LRFloorMap is reported in figure 4.11.

o8

4.3 — Implementation of game metrics in iv4XR

LRFloorMap enum TileType

+ TileType tileType FLOOR,
LRLevellnfo + LRTile tile DOOR,

+ LRLevellnfo levellnfa [—— BUTTON,
+int width WALLLIKE,
* Tm height Pair<Integer,Integer> floorSize(List<String> floor) GOALFLAG,
+int walkables h ENEMY,
+String name boolean isFloor(String cell) NPC,
+ Pair<String Vec3> agent boolean isWall(String cell) AGENT
+ Map<String,Vec3> enemies boolean hasFire(String cell)
+ Map<String Vec3> hazards String getGoalFlagld(String cell)
+ Map<5tring,Vec3> npc String getDoorld(String cell)
+ Map<5tring,Vec3> flags String getButtonld(String cell)
+Map<String, Vec3> doors String getEnemyld(String cell) LRTile
+ Map<String,Vec3> buttons String getNPCId(String cell))
+ Set<Pair<String,String>> connections String getAgentid(tring cell) : ;‘::Iéps ty

I

List<LRTile> parseRow(String row)

LRTile[][] parseFloor(List<String> rows, int elevation)
LRTile[][] parseFirstFloorFromFile(String file)
Set<Pair<Integer,Integer>> firstFloorWalkableTiles(String file)

+ Boolean fire
+Vec3 center

Figure 4.11. Class diagrams of LRFloorMap

A state of type BeliefState is created and attached to the agent using attach-
State method. A testing task of type GoalStructure is defined and attached
to the agent using the method setGoal, along with the environment, us-
ing method attachEnvironment, and eventual data collectors, using method
setTestDataCollector; all these method are from class LabRecruitsTest Agent.

Then, the simulation is started using the related method startSimulation()
of LabRecruitsEnvironment, and until the testing goal is completed or failed,
the state of the agent keeps updating through the method updateState() of
class BeliefState.

Once the agent has completed its task, a comparison is made between the
entities present in the log and those contained in the agent’s state (i.e., those
with which it interacted in the game), and the corresponding coverage metrics
are calculated in form of percentages, using the method computeCoverage of
class CoverageTest.

Finally, the simulation and the server connection are closed.

The final test results are graphically shown using showTestResults method
and include percentages of total interactable items coverage, and buttons,
doors, flags, NPCs, enemies and hazards coverage.

The testing task is designed to encourage interaction with as many buttons

99

4 — Iv4XR Framework and Metrics Implementation

and doors as possible, leading to significant exploration of the game world.
If the agent doesn’t see anything, it explores for a short period using method
explore, which essentially makes the agent to wander for a period of time
specified by the budget variable.

The strategy is to interact with doors in order of distance, provided by
method sortDoorsByDistance, from the agent: when the agent sees a door,
a dedicated algorithm is invoked to determine which button will open that
door based on the current state.

If the button exists and is reachable, it is pressed and the door is opened,
and so on to the next door.

Also, if the agent sees a flag along the way, it will interact with it.

In figure 4.12 the overall diagram of test execution class is reported.

60

4.3 — Implementation of game metrics in iv4XR

LabRecr

LRLevellnfo

+ int width
+int height

+ int walkables

+ String name

+ Pair<String Vec3> agent

+ Map<StringVec3> enemies

+ Map<StringVec3> hazards

+ Map<stringVec3> npc

+ Map<stringVec3> flags

+ Map<String, Vec3> doors

+ Map<StringVec3> buttons

+ Set<Pair<StringString>> connections

CoverageTest

+ Process server

void LabRecrutsTestServer(Boolean useGraphics)
void start{Boolean useGraphics, String binaryPath)
void waitForGameTol.oad()

void close()

boolean isRunning()

void waitFor(Function<Process, Boolean> eval)

void start()

void close()

(Goalstructure explore(int budiget)

List<Map Entry<String, Vec3>> sortDoorsByDistance(LRLevellnfo level_info)

, Vec3> tot_entities, Li known_entities)
void RLevelinfo level_info, nt,
CountDownLatch latch)
void executeTest()

LabRecruitsEnvironment

.

:

LRFloorMap

enum TileType

+ TileType tileType
LRTile tile

+ LRLevellnfo levelinfo

Pair<integer.Integer> floorSize(List<String> floor)
boolean isFloor(string cel)

boolean iswall(string cell

boolean hasFire(String cell)

String getGoalFlagid(String cell

String getDoorld(String cell)

String getButtonld(String cell)

String getEnemyld(String cell)

String getNPCId(String cell)

String getAgentld(String cell)

List<LRTile> parseRow(String row)

LRTile(J(] parseFloor(List<String> rows, it elevation)
LRTile[J] parseFirstFloorFromFile(string fle)

file)

FLOOR,
DOOR,

LRTile

+ TileType ty
+ string id

+ Boolean fire
+ Vec3 center

BeliefState

+ float DIST_TO_MEMORIZED_GOALLOCATION_SOFT_REPATH_THRESHOLD
+ List<WorldEntity> changedEntities

+ float DIST_TO_WAYPOINT_UPDATE_THRESHOLD

+String i

+Vec3 memorizedGoalLocation

+ List<Vec3> memorizedPath

+long goalLocationTimeStamp.

LabRecruitsTestAgent

+ LabRecruitsConfig gameconfig

+ List<Vec3> recentPositions
+ Set<string> usedHealingFlags

|void BeliefState()

void LabRecruitsEnvironment(LabRecruitsConfig gameConfig)
LabRecruitsConfig gameConfig()

void loadWorld)

LabWorldModel observe(String agentid)

L agentid, Vec3 agentLocat

void LabRecruitsTestAgent(String id)
Void LabRecruitsTestAgent(String id, String role)
LabRecruitsTestAgent attachstate(Beliefstate state)

LabWorldModel interact(String agentid, String targetld, String interactionType)
Boolean startsimulation)

Boolean pausesimulation()

Boolean close()

Object sendCommand_(EnvOperation cmd)

Figure 4.12.

L (TestDataC 1

eny)

boolean success()

void printstatus()

BeliefState getState()
LabRecruitsEnvironment env()

tor dc)

Collection<Worldentity> knownEntities()
LabWorldModel worldmodel(
List<WorldEntity> knownButtons()
List<WorldEntity> knownDoors()
List<WorldEntity> knownNPCs()
List<WorldEntity> knownEnemies()
List<Worldentity> knownFlags()
List<WorldEntity> knownHazards()
Long age(Worldentity e)

boolean isOn(WorldEntity button)
boolean isOpen(WorldEntity door)
double distanceTo(WorldEntity e)

r[

61

List<Vec3> canReach(String id)
Pair<Vec3,List<Vec3>> findPathTo(Vec3 g, boolean forcelt)
boolean isstuck()

[void updatestate(string agentid)

LabRecruitsenvironment envl)
Beliefstate setEnvironment(Environment e)

Class diagrams of CoverageTest

62

Chapter 5

Coverage test session
results

The coverage metrics for objects and interactable entities coverage were eval-
uated in two different subcases: considering the newly described testing
methodology applied to different levels of LabRecruits, and considering demo
tests provided by the developers instead.

Each test has been executed two times in order to verify if the results are
consistent or can change between different runs.

5.1 Session of custom-written tests

The testing methodology applied in this phase is the one described previ-
ously, where the testing goal assigned to the agent is formulated to be as
general as possible (not specific to a particular level) and to make it open as
many doors as possible based on its belief.

Five different levels were considered, on which the test was applied, and
the coverage metrics for interactable entities were evaluated.

Level 1

Level considered is called buttons doors_ 1. This is a relatively small level,
containing 3 doors, 4 buttons, and a single fire hazard. The test results are
shown in Figure 5.1.

63

5 — Coverage test session results

by Test results - m}

Level name: buttons_doors_1
Level size: 13 x 8
Walkables: 41

¥ Test results -

Level name: buttons_doors_1
Level size: 13x 8
Walkables: 41

Results of interactable objects coverage

Results of interactable objects coverage

Total coverage: |

Total coverage: | sut of 8)

Buttons coverage: |

Buttons covered: [button4, button2, button3, button1]

Buttons coverage: | 25% (1 out of 4)

Buttons covered: [button2]

Doors coverage: |

Doors covered: [door3, door2, doori]

Doors coverage: |

Doors covered: [door3, doori]

Flags coverage: | 0% (0 out of 0)

Flags covered: []

Flags coverage: | 0% (0 out of 0)

Flags covered: []

NPCs coverage: | 0% (0 out of 0)

NPCs covered: []

NPCs coverage: | 0% (0 out of)

NPCs covered: [

Enemies coverage: | 0% (0 out of)

Enemies covered: []

Enemies coverage: | 0% (0 out of 0)

Enemies covered: []

Hazards coverage: | | Hazards coverage: | |

Figure 5.1. Test results on level 1

As can be seen from the results, during the first run the test was indeed
able to achieve 100% coverage metrics, in the sense that the agent came into
contact with all the entities present in the level.

During the second run, on the other hand, there was no total coverage:
this was caused by the fact that depending on how the agent decides to ad-
vance, sometimes it fails to "see" the button hidden by the wall as shown in
the figure 5.2, therefore it does not interact with it and cannot open all the
doors.

64

5.1 — Session of custom-written tests

Agent agent1

D |agentl
HP (00 Score (1

Figure 5.2. Test level 1 screenshot

Level 2

Level considered is named HZRDDirect, and it’s a medium size level contain-
ing 3 doors, 3 buttons, and plenty of fire hazards, as shown in figure 5.4. The
results of the two runs for this level were the same, and are shown in figure 5.3.

In this level the formulated test has reached 100% of coverage of interactable

entities without any problem, while, as will be reported in the section dedi-
cated to demo tests, in that case total coverage will not be achieved.

65

5 — Coverage test session results

Open Level

EPS Test results - O

Level name: HZRDDirect
Level size: 15 x 28
Walkables: 201

Results of interactable objects coverage

Total coverage: |

Buttons coverage: |

Buttons covered: [b4.1, b5.2, b1.1]

Doors coverage: |

Doors covered: [d1, d2, d4, d5, dn1]

Flags coverage: | 0% (0 out of 0)

Flags covered: []

NPCs coverage: | 0% (0 out of 0}

NPCs covered: []

Enemies coverage: | 0% (0 out of 0}

Enemies covered: []

Hazards coverage: |

Figure 5.3. Test results on level 2

Figure 5.4. Test level 2 screenshot

66

Agent 0

5.1 — Session of custom-written tests

Level 3

The level considered here is called fbk mediumlevel.
bigger than previous one, and contains 5 buttons, 3 doors and 1 flag. It is

structured to have long empty corridors between doors.
Results of two runs are reported in figure 5.5.

gj Test results —

Level name: fbk_mediumlevel
Level size: 30 x 30

Walkables: 681

gﬁ Test results —

Level name: fbk_mediumlevel
Level size: 30 x 30
Walkables: 681

Results of interactable objects coverage

Results of interactable objects coverage

Total coverage: |

It’s a level slightly

Total coverage: |

Buttons coverage: |

Buttons covered: [b2, b3, b0, b1]

Buttons coverage: | % (2 out of 5)

Buttons covered: [b4, b0]

Doors coverage: |

Doors covered: [door2, door1, door0]

Doors coverage: |

Doors covered: [door2, door1, door(]

Flags coverage: | 0% (0 out of 1)

Flags covered: []

Flags coverage: |

Flags covered: [gf0]

NPCs coverage: | 0% (0 out of 0)

NPCs covered: []

NPCs coverage: | 0% (0 out of 0)

NPCs covered: []

Enemies coverage: | 0% (0 out of 0)

Enemies covered: []

Enemies coverage: \ 0% (0 out of 0)

Enemies covered:]

Hazards coverage: | 0% (0 out of 0)

Hazards coverage: | 0% (0 out of 0)

Figure 5.5. Test results on level 3

As can be seen from the images, the test had two different final outcomes
but in both cases failed to achieve total coverage of the interactable entities.
The first run achieved to cover almost all buttons (4 out of 5), but didn’t
cover the flag; while the second run covered less buttons (2 out of 5) but was
successful to cover the flag.

This is due to the fact that there are many corners and angles in this level,
and the agent often has difficulties to overcome them and gets stuck, unable
to continue (despite the internal implementation of an unstuck technique),
an example of this in figure 5.6.

67

5 — Coverage test session results

Agent Agent1

‘Whal was that?

Figure 5.6. Test level 3 screenshot

Level 4

The level considered is named R8_ fire3, and it’s a big level that contains 11
buttons, 11 doors, 2 flags, 5 enemies in the form of infected humans (repre-
sented graphically as red characters) and 53 fire hazards.

Test results of the two runs on this level are reported in figure 5.7.

In this case as well, the test yielded two different outcomes: in the first
run, the coverage was lower, at 37%, covering fewer doors, buttons, and fire
hazards.

In the second run, there was a higher total coverage of 59%, covering more
doors, buttons, and fire hazards.

In both cases, only one of the two flags was covered, and 2 out of 5 enemies
were encountered.

This was due to the fact that at a specific point in the level, shown in figure
5.8, the agent gets stuck between a wall and one of the enemies that attacks
it, unable to free itself and eventually being killed by the enemy.

68

5.1 — Session of custom-written tests

g3 Test results —

Level name: R8_fire3
Level size: 97 x 70
Walkables: 1181

Results of interactable objects coverage

P Test results

Level name: R8_fired
Level size: 97 x 70
Walkables: 1181

Results of interactable objects coverage

Total coverage: | % (31 out of 82)

Total coverage: |

82)

Buttons coverage: | 27% (3 out of 11)

Buttons covered: [b0, b1, b2]

Doors coverage: | 27% (3 out of 11)

Doors covered: [door3, door1, door10]

Flags coverage: | but of 2) |
Flags covered: [gf1]

NPCs coverage: | 0% (0 out of D) |
NPCs covered: []

Enemies coverage: | % (2 out of 5) |

Enemies covered: [infectedd4, infected3]

Buttons coverage: | 6% (4 out

of 11)

Buttons covered: [b0, b1, b2, b9]

Doors coverage: |

of 11)

Doors covered: [door10, door3, door2, door1, door0, door9]

Flags coverage: | out of 2) |
Flags covered: [gf1]

NPCs coverage: | 0% (0 out of 0) |
NPCs covered: []

Enemies coverage: | % (2 out of 5) |

Enemies covered: [infected3, infected4]

Hazards coverage: | (22 out of 53)

Hazards coverage: |

Figure 5.7. Test results on level 4

Open Level

Figure 5.8.

Agent Elono

Test level 4 screenshot

69

Dead

5 — Coverage test session results

Level 5

The level tested here is called labl. This is a medium-sized level but full of
walls, decorative objects, and interactable entities, without many empty or
open spaces and with intricate paths, as can be seen in figures 5.11 and 5.12.
In particular, it contains 20 buttons 13 doors, 1 flag and 15 fire hazards.
Test results are reported in figures 5.9 and 5.10.

The test results of the two runs on this level differ very little, considering
that the first run covers only one button and one fire hazard more than the
second.

However, neither run achieves total coverage, reaching a maximum of 32%
in the first run.

This is probably due to the way the level is structured, which is not partic-
ularly compatible with the applied testing methodology: the fact that there
are many doors and many buttons confuses the agent, which could for ex-
ample notice a door that can be opened by more than one button, but only
have knowledge of one of these buttons which may not be reachable from its
current position (e.g., because behind a wall).

On levels like this that present multiple and intricate button-door relation-
ships and complex opening patterns, the testing methodology used does not
perform very well, due to the potential to encounter obstacles that hinder
the ability of the agent to reach all interactive elements.

70

5.1 — Session of custom-written tests

i Test results - m} *

Level name: lab1
Level size: 26 x 31
Walkables: 400

Results of interactable objects coverage

Total coverage: [32% (16 out of 49)

Buttons coverage: [] 20% (4 out of 20)

Buttons covered: [b_lab_e, b_hall_x, b_hall_1, b_finish]

Doors coverage: 53% (7 out)]

Doors covered: [d_hall_2, d_hall_1, d_sidehall, d_store_n, d_store_e, d_finish, d_lab_e]

Flags coverage: | 0% (0 out of 1)

Flags covered: [

NPCs coverage: | 0% (0 out of 0)

NPCs covered: []

Enemies coverage: | 0% (0 out of 0)

Enemies covered:]

Hazards coverage: [T 33% (5 out of 15)

Figure 5.9. Test results on level 5 - first run

|8 Test results - O 8

Level name: lab1
Level size: 26 x 31
Walkables: 400

Results of interactable objects coverage

Total coverage: [28% (14 out of 49)

Buttons coverage: [| 15% (3 out of 20)

Buttons covered: [b_hall_x, b_hall_1, b_finish]

Doors coverage: ERERVE gaf 13)

Doors covered: [d_hall_2, d_hall_1, d_sidehall, d_store_n, d_store_e, d_finish, d_lab_e]

Flags coverage: | 0% (0 out of 1)

Flags covered: []

NPCs coverage: \ 0% (0 out of D)

NPCs covered: []

Enemies coverage: \ 0% {0 out of 0)

Enemies covered: []

Hazards coverage: [T 26% (4 out of 15)

Figure 5.10. Test results on level 5 - second run

71

5 — Coverage test session results

Open Level

Agent agent0

D [agen)

L

Figure 5.11. Test level 5 screenshot 1

Open Level Agent agentD

Snapl

Figure 5.12. Test level 5 screenshot 2

72

5.2 — Session of provided demo-tests

5.2 Session of provided demo-tests

In this section, the evaluation of the coverage metrics for interactable entities
was performed on 4 demo tests provided by LabRecruits’ developers.

These tests are specifically designed for each level and involve formulating
the testing goal as a sequence of specific actions (such as to interact with
an entity with given id, or to move forward to an indicated positon) to be
executed sequentially to test a particular path or objective.

Demo test 1

First demo test considered is called RoomReachability test, and is formu-
lated on level buttons doors 1 considered also in 5.1.

The primary objective of this test is to confirm that the player can access
the eastern closet. To achieve this, the player must be able to open the door
guarding the closet, which likely requires navigating a sequence of switches
and unlocking additional doors beforehand.

This is done by formulating the testing goal with sequential instructions to
interact with the right button in order to open the door on the right path.

The result of coverage metrics evaluation on this test are reported in fig-
ure 1, and as can be seen achieved a total coverage.

73

5 — Coverage test session results

¥ Test results — O X

Level name: buttons_doors_1
Level size: 13 x 8
Walkables: 41

Results of interactable objects coverage

Total coverage: 100% (8 out of 8)
Buttons coverage: 100% {4 out of 4)

Buttons covered: [button4, button2, button3, button1]

Doors coverage: 100% (3 out of 3)

Doors covered: [door3, door2, doori]

Flags coverage: | 0% (0 out of 0) |

Flags covered: []

NPCs coverage: | 0% (0 out of 0) |
NPCs covered: []

Enemies coverage: | 0% (0 out of 0) |

Enemies covered: []

Hazards coverage: 100% {1 out of 1)

Figure 5.13. Test results on demo test 1

74

5.2 — Session of provided demo-tests

Demo test 2

The demo test considered is called FireHazardLevel 1 test, and is written
on HZRDDirect level considered in 5.1, which contains plenty of fire hazards.

This level features a room designated as the target area, marked by a fire
extinguisher.

The objective of the test is to ensure the agent can reach this target room
while maintaining a sufficient health level (defined as retaining at least half
of its initial health).

To achieve this, the agent follows a set of predetermined waypoints designed
to minimize risk.

However, it must still navigate independently between these waypoints.
Coverage results on this test are reported in figure 5.14.

Py Test results — O X

Level name: HZRDDirect
Level size: 15 x 28
Walkables: 201

Results of interactable objects coverage

Total coverage: | |

Buttons coverage: | |
Buttons covered: [b1.2, b1.1]

Doors coverage: | |
Doors covered: [d1, d2, dn1]

Flags coverage: | 0% (0 out of 0) |

Flags covered: []

NPCs coverage: | 0% (0 out of 0) |
NPCs covered: []

Enemies coverage: | 0% (0 out of 0) |

Enemies covered: []

Hazards coverage: | |

Figure 5.14. Test results on demo test 2

75

5 — Coverage test session results

As shown, it was achieved a total coverage of 96%, covering all the inter-
actable entities except for one button.

Comparing this result with the 100% coverage reached during the execu-
tion of the custom made test reported in 5.3, it can be observed that the
more general testing methodology likely leads the agent to explore the level
more thoroughly compared to a test generated based on a specific path that
does not cover all entities.

Demo test 3

Demo test 3 is formulated on R8 fire3 also considered in 5.1, which had fire
hazards and enemies.

This test scenario simulates a specific sequence of actions to try to reach
the flag labelled as Finish point.

The objective is to verify that the agent can successfully reach the Finish
point while maintaining its health within a specific range (between 20 and
50 health points) after passing a specified door. Additionally, the agent must
have accumulated at least 34 points at this stage.

Upon reaching the Finish point, the agent’s health should be fully restored
to 100, and its total points should be at least 524.

This approach requires defining the specific actions needed to open each door,
that involves specifying interactions with certain buttons as prerequisites for
unlocking specific doors.

Coverage test results are reported in figure 5.15.

76

5.2 — Session of provided demo-tests

¥y Test results - O X

Level name: R8_fire3
Level size: 97 x 70
Walkables: 1181

Results of interactable objects coverage

Total coverage: | out of §2) |

Buttons coverage: | of 11) |
Buttons covered: [b0, b1, b2, b3, b4, b9]

Doors coverage: | of 11) |

Doors covered: [door3, door2, door1, door0, door10, door7]

- Flags coverage: | 0% (0 out of 2) |

Flags covered: []

NPCs coverage: | 0% (0 out of 0) |
NPCs covered: []

Enemies coverage: |)% (2 out of 5) |

Enemies covered: [infected1, infected(]

Hazards coverage: | out of 53) |

Figure 5.15. Test results on demo test 3

The agent failed to fullfill this testing goal as it died before the reaching
of the finish flag, because of enemies and fire hazards.

Comparing this result with the ones obtained during the runs executed be-
fore in 5.1, it can be seen that the 48% of total coverage achieved here is mid
way to the ones obtained during the previous run, which were 37% and 59%
respectively.

However, the best result has been obtained before with 59% of total cov-
erage, but it’s worth mentioning that it also covered one flag that was not
covered here instead.

77

5 — Coverage test session results

Demo test 4

The last demo test in examination is called LablTest and is written for level
called labl, considered also in 5.1.

As for the precedent demo test, also in this case the objective is to ver-
ify that the level can be completed by reaching the finish flag placed in the
room with a fire extinguisher.

Also for this testing goal the approach is to specify to the agent which doors to
open in order to reach the final flag, through a sequence of sequential actions.

Results of the coverage on this test are reported in figure 5.16.

¥y Test results - O *

Level name: lab1
Level size: 26 x 31
Walkables: 400

Results of interactable objects coverage

Total coverage: | |

Buttons coverage: | |

Buttons covered: [lightbutton_3, lightbutton_4, b_hall_1, b_store, lightbutton_1,
lightbutton_2, bintersection, b_finish, b_side, b_closet, b_lab_n, b_secret_2...]

Doors coverage: | |

Doors covered: [d_hall_2, d_hall_1, d_lab_w, d_sidehall, d_theater_e, d_bcroom,
d_finish, d_theater_s, d_lab_e, d_tofinish, d_closet, d_store_n, d_store_e]

Flags coverage: | |

Flags covered: [finish]

NPCs coverage: | 0% (0 out of 0) |
NPCs covered: []

Enemies coverage: | 0% (0 out of 0) |

Enemies covered: []

Hazards coverage: | |

Figure 5.16. Test results on demo test 4

The one considered here is the level on which the methodology of testing

78

5.3 — Final considerations

used in 5.1 performed worst, due to the complexity of door-buttons relation-
ship.

The result of the demo test is 95% of total coverage, very good considering
that it only missed to cover two buttons, but reached the finish flag, as shown
in figure 5.17, rather than the coverage results of previous case in 5.9.

Agent agent0

Figure 5.17. Demo test 4 screenshot

5.3 Final considerations

During the conduction of these two testing sessions, several observations have
been made.

In general, crafting more generic and adaptable tests that can accommo-
date diverse level configurations yields superior coverage results.

This approach encourages the agent to interact with a wider range of entities
within the game environment, leading to a more thorough exploration of the
level’s layout and mechanics.

However, this methodology proves less effective when dealing with highly
dense levels that involve intricate door/button combinations and complex
navigation paths.

In such scenarios, a more suitable approach involves constructing tests specif-
ically tailored to the level, guiding the agent through the intended path in a
sequential manner.

79

5 — Coverage test session results

This targeted approach ensures that the agent explores the level in a more
efficient and effective manner, allowing to specify to the agents key elements
and interactions that you want to test.

30

Chapter 6

Conclusion and future
work

The work of this thesis highlights the problem of the scarcity of literature
related to video game testing, which focuses mostly on technical performance
and bug finding, neglecting fundamental aspects such as multimedia compo-
nents and user experience (UX), and concentrates mainly on system-level
testing, neglecting unit and integration testing. Considering this lack, video
game testing could greatly benefit from more elaborate and automated tech-
niques and a more structured strategy.

Therefore, through a systematic literature review and the application of
Straussian methodology of grounded theory, a taxonomy containing 26 spe-
cific coverage metrics for game testing has been created, divided into 6 macro-
categories.

This taxonomy can be an important starting point for formulating a stan-
dardized video game testing methodology that provides comparable results,
using a common strategy to evaluate testing done with different approaches,
with consequent time savings and reduction of any inconsistencies.

An example of this can be found in the second part of this thesis, as the
application of defined and standard coverage metrics for the LabRecruits
game during the test sessions made it possible to evaluate the quality of dif-
ferent testing methods and compare their effectiveness.

In the future, it would certainly be possible to expand the taxonomy to
make it as comprehensive as possible, covering every possible aspect of a

81

6 — Conclusion and future work

video game with specific metrics, and deepening research on the aspects that
have been somewhat neglected so far.

It would also be possible to evaluate in the current academic or industrial
landscape which testing tools or frameworks could potentially implement
such metrics.

As an additional future step, it would be possible to conduct in-depth com-
parisons through empirical studies and thus assess various game testing
methodologies and approaches using a set of chosen metrics from our estab-
lished taxonomy, expanding the produced comparable results and allowing
to discuss their quality.

Finally, a future work could be the developing of testing tools and frame-
work that natively implement the defined taxonomy, in order to save time
and make the application of coverage metrics more accessible.

However, considering the implementation of the metrics in ivdXR and the
relative results obtained in chapter 4 and 5, it is clear that there are still
significant limitations on the eventual possibility of making the taxonomy
and its implementation a general standard applicable to every video game.

Firstly, each game has in-game entities, a game world, levels, and in gen-
eral a structure, gameplay, and objects/characters defined in ways that can
be very different from each other, making it necessary to adapt the metrics
to the specifics, as in the case of iv4XR where interactable objects could be
doors, buttons, flags.

This is due to the fact that video games are more valuable when they of-
fer a unique experience, on the contrary, for other software applications it’s
preferable to have similar functioning across the systems, in order to facili-
tate usability for the end user and compatibility across platforms.
Therefore, the challenge would be to define general metrics that can satis-
factorily cover every possible variation of in-game entities, characters, and
every element of the game world.

One could think for example of creating subcategories for the type of video
game and start from there to create coverage models valid within those sub-
categories.

As emerged from the systematic literature review, iv4XR is currently the
most comprehensive video game testing framework in the academic land-
scape (which is why it was considered in this work), as it provides libraries
to implement a wide range of agent-based testing typologies, and is under

82

6 — Conclusion and future work

continuous development as it is currently adding features to test also aspects
of the user experience related to the agent’s emotional state.

During the second phase of this work, the possibility of evaluating the imple-
mentation of coverage metrics in iv4XR on a game other than LabRecruits
had been considered, in order to assert its effectiveness.

However, in order to test a video game using iv4XR, it is still necessary
to write a dedicated interface (environment) that acts as a "translation" con-
nection of the game elements to the framework.

This step is currently not bypassable, and therefore prevents the generaliza-
tion of tests to different video games.

Looking ahead, potential directions to mitigate the generalization issue could
include developing more and more standardized interfaces or adapters that
bridge the gap between iv4XR and various game engines, enabling seamless
integration and cross-game testing capabilities.

83

84

Bibliography

[1] Tom Wijman, Newzoo’s video games market size estimates and forecasts
for 2022. Newzoo.com, May 2023.

2] :

[3] Gabriel Ullmann, Cristiano Politowski, Yann-Géel Guéhéneuc, Fabio
Petrillo, What Makes a Game High-rated? Towards Factors of Video
Game Success. IEEE/ACM 6th International Workshop on Games and
Software Engineering (GAS), 2022.

[4] Cristiano Politowski, Yann-Gaél Guéhéneuc, Fabio Petrillo, Towards Au-
tomated Video Game Testing: Still a LongWay to Go. Proceedings of the
6th International ICSE Workshop on Games and Software Engineering,
2022.

[5] Vahid Garousi, Mika V. Mantyla, When and what to automate in soft-
ware testing? A multi-vocal literature review. Information and Software
Technology, Volume 76, 2016, Pages 92-117.

[6] Vinicius H. S. Durelli, Rafael S. Durelli, Simone S. Borges, et al, Machine
Learning Applied to Software Testing: A Systematic Mapping Study.
IEEE Transactions on Reliability (Volume: 68, Issue: 3, 2019).

[7] Cristiano Politowski, Fabio Petrillo, Yann-Géel Guéhéneuc, A Survey of
Video Game Testing. IEEE/ACM International Conference on Automa-
tion of Software Test (AST), 2021.

[8] Samira shirzadehhajimahmood, 1. S. W. B. Prasetya, Frank Dignum,
Mehdi Dastani, and Gabriele Keller, Using an Agent-Based Approach
for Robust Automated Testing of Computer Games. A-TEST 2021: Pro-
ceedings of the 12th International Workshop on Automating TEST Case
Design, Selection, and Evaluation, 2021.

[9] Cong Lu, Raluca Georgescu, Johan Verwey, Go-Ezxplore Complex 3D
Game Environments for Automated Reachability Testing. IEEE Trans-
actions on Games, 2022.

85

https://newzoo.com/resources/blog/the-latest-games-market-size-estimates-and-forecasts
https://newzoo.com/resources/blog/the-latest-games-market-size-estimates-and-forecasts
https://www.cyberpunk.net/ca/en/

Bibliography

[10] Sinan Ariyurek, Automated Video Game Testing Using Reinforcement
Learning Agents. Graduate school of informatics of the middle east tech-
nical university, 2022.

[11] Ciprian Paduraru, Miruna Paduraru, Alin Stefanescu, RiverGame - a
game testing tool using artificial intelligence. IEEE Conference on Soft-
ware Testing, Verification and Validation (ICST), 2022.

[12] Xudong Li, Dajun Zhou, Like Zhang, Yanqing Jing, Human-like Ul Au-
tomation through Automatic Exploration. ISBDAI '20: Proceedings of
the 2020 2nd International Conference on Big Data and Artificial Intel-
ligence, 2020.

[13] Xiaoyin Wang, VRTest: An Extensible Framework for Automatic Test-
ing of Virtual Reality Scenes. IEEE/ACM 44th International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion),
2022.

[14] Oleguer Canal Anton, Automatic game-testing with personality: Multi-
task reinforcement learning for automatic game-testing. KTH, School of
Electrical Engineering and Computer Science (EECS), 2021.

[15] Samantha Stahlke, Atiya Nova, Pejman Mirza-Babaei, Artificial Players
in the Design Process: Developing an Automated Testing Tool for Game
Level and World Design. CHI PLAY ’20: Proceedings of the Annual
Symposium on Computer-Human Interaction in Play, 2020.

[16] Simon Liu, Li Chaoran, Li Yue et al, Automatic generation of tower de-
fense levels using PCG. FDG ’19: Proceedings of the 14th International
Conference on the Foundations of Digital Games, 2019.

[17] Gustavo Andrade, Geber Ramalho, Hugo Santana, Vincent Corruble,
Automatic computer game balancing: a reinforcement learning approach.
AAMAS ’05: Proceedings of the fourth international joint conference on
Autonomous agents and multiagent systems, 2005.

[18] Sven Charleer, Francisco Gutiérrez, Kathrin Gerling, Katrien Verbert,
Towards an Open Standard for Gameplay Metrics. CHI PLAY 18 Ex-
tended Abstracts: Proceedings of the 2018 Annual Symposium on
Computer-Human Interaction in Play Companion Extended Abstracts,
2018.

[19] Raphaél Marczak, Jasper van Vught, Gareth Schott, Lennart E. Nacke,
Feedback-based gameplay metrics: measuring player experience via au-
tomatic visual analysis. IE '12: Proceedings of The 8th Australasian
Conference on Interactive Entertainment: Playing the System, 2012.

[20] Shengmei Liu, Atsuo Kuwahara, James J Scovell, Mark Claypool, The
Effects of Frame Rate Variation on Game Player Quality of Experience.

36

Bibliography

CHI "23: Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems, 2023.

[21] Mark Claypool, Kajal Claypool, Perspectives, frame rates and resolu-
tions: it’s all in the game. FDG ’09: Proceedings of the 4th International
Conference on Foundations of Digital Games, 2009.

[22] Saman Zadtootaghaj, Steven Schmidt, Sebastian Moller, odeling Gam-
ing QokE: Towards the Impact of Frame Rate and Bit Rate on Cloud
Gaming. IEEE Tenth International Conference on Quality of Multime-
dia Experience (QoMEX), 2018.

[23] Benedikt Dietich, Nadja Peters, Sangyoung Park, Samarjit,
Chakraborty, FEstimating the Limits of CPU Power Management
for Mobile Games. IEEE 35th International Conference on Computer
Design, 2017.

[24] Farouk Messaoudi, Gwendal Simon, Adlen Ksentini, Dissecting games
engines: The case of Unity3D. IEEE International Workshop on Network
and Systems Support for Games (NetGames), 2015.

25
Gamebench, 2019.

[26] Johannes Pfau, Jan David Smeddinck, Rainer Malaka, Automated Game
Testing with ICARUS: Intelligent Completion of Adventure Riddles via
Unsupervised Solving. CHI PLAY ’17 Extended Abstracts: Extended
Abstracts Publication of the Annual Symposium on Computer-Human
Interaction in Play, 2017.

[27] Rodrigo Casamayor, Lorena Arcega, Francisca Pérez, Carlos Cetina, Bug
Localization in Game Software Engineering: Evolving Simulations to Lo-
cate Bugs in Software Models of Video Games. MODELS ’22: Proceed-
ings of the 25th International Conference on Model Driven Engineering
Languages and Systems, 2022.

[28] Simon Varvaressos, Kim Lavoie, Sébastien Gaboury, Sylvain Hallé, Au-
tomated Bug Finding in Video Games: A Case Study for Runtime Mon-
itoring. Computers in Entertainment Volume 15 Issue 1, 2017.

[29]

[30] Geeta Rani, Upasana Pandey, Aniket Anil Wagde, Vijaypal Singh
Dhaka, A deep reinforcement learning technique for bug detection in
video games. International Journal of Information Technology, 2022.

[31] Carolina Veloso, Rui Prada, Validating the plot of Interactive Narrative
games. 2021 IEEE Conference on Games (CoG), 2021.

[32] Fernandes Pedro M., Jonathan Jgrgensen, Niels NTG Poldervaart,

87

https://blog.gamebench.net/game-performance-metrics-that-matter
https://www.browserstack.com/guide/code-coverage-vs-test-coverage
https://www.browserstack.com/guide/code-coverage-vs-test-coverage

Bibliography

Adapting Procedural Content Generation to Player Personas Through
Fvolution. TEEE Symposium Series on Computational Intelligence
(SSCI), 2021.

[33] Ansari Saba Gholizadeh, et al., An Appraisal Transition System for
Fvent-Driven Emotions in Agent-Based Player Experience Testing. In-
ternational Workshop on Engineering Multi-Agent Systems, Springer,
Cham, 2021.

[34] Fernandes Pedro M., Manuel Lopes, Rui Prada, Agents for automated
user experience testing. IEEE International Conference on Software Test-
ing, Verification and Validation Workshops (ICSTW), 2021.

[35] https://iv4dxr-toolkit.eu/.

[36] Al Agents in Software Testing. https://testrigor.com/

[37] Muhammad Usmana, Ricardo Britto, Jiirgen Borstler, Emilia Mendes,
Taxonomies in software engineering: A Systematic mapping study and a
revised taxonomy development method. Information and Software Tech-
nology, Volume 85, 2017.

[38] Riccardo Coppola, Emil Alégroth, A taxonomy of metrics for GUI-based
testing research: A systematic literature review. Information and Soft-
ware Technology, Volume 152, 2022.

[39] Functional testing, https://en.wikipedia.org/wiki/Functional

testing

[40] Johan Hoberg, Game Testing: Exploring the Test
Space, https://www.gamedeveloper.com/programming/
game-testing-exploring-the-test-space, 2014.

[41] Testing and quality assurance tips for
Unity projects, https://unity.com/how-to/

testing-and-quality-assurance-tips-unity-projects

[42] UI Testing: A Detailed Guide, https://www.browserstack.com/
guide/ui-testing-guide

[43] Johan Hoberg, Differences between Software Testing and
Game Testing, https://www.gamedeveloper.com/programming/
differences-between-software-testing-and-game-testing, 2014.

[44] What is UX testing with example, https://www.browserstack.
com/guide/what-is-ux-testing#: ~:text=A%20user’,
20experience’20test’20is, application’20from/%20the’20user’ s’
20perspective.

[45] Reliability Testing — Software Testing, https://www.geeksforgeeks.
org/software-testing-reliability-testing/

[46] Xiongfei Wu, Jiaming Ye, Ke Chen et al., Widget Detection-based Testing

88

https://iv4xr-toolkit.eu/
https://testrigor.com/
https://en.wikipedia.org/wiki/Functional_testing
https://en.wikipedia.org/wiki/Functional_testing
https://www.gamedeveloper.com/programming/game-testing-exploring-the-test-space
https://www.gamedeveloper.com/programming/game-testing-exploring-the-test-space
https://unity.com/how-to/testing-and-quality-assurance-tips-unity-projects
https://unity.com/how-to/testing-and-quality-assurance-tips-unity-projects
https://www.browserstack.com/guide/ui-testing-guide
https://www.browserstack.com/guide/ui-testing-guide
https://www.gamedeveloper.com/programming/differences-between-software-testing-and-game-testing
https://www.gamedeveloper.com/programming/differences-between-software-testing-and-game-testing
https://www.browserstack.com/guide/what-is-ux-testing#:~:text=A%20user%20experience%20test%20is,application%20from%20the%20user's%20perspective.
https://www.browserstack.com/guide/what-is-ux-testing#:~:text=A%20user%20experience%20test%20is,application%20from%20the%20user's%20perspective.
https://www.browserstack.com/guide/what-is-ux-testing#:~:text=A%20user%20experience%20test%20is,application%20from%20the%20user's%20perspective.
https://www.browserstack.com/guide/what-is-ux-testing#:~:text=A%20user%20experience%20test%20is,application%20from%20the%20user's%20perspective.
https://www.geeksforgeeks.org/software-testing-reliability-testing/
https://www.geeksforgeeks.org/software-testing-reliability-testing/

Bibliography

for Industrial Mobile Games. IEEE/ACM 45th International Conference
on Software Engineering, 2023.
[47] Belief-desire—intention software model,

[48] Maurizio Leotta, Diego Clerissi, Filippo Ricca, Paolo Tonella, Capture-
replay vs. programmable web testing: An empirical assessment during
test case evolution. 20th Working Conference on Reverse Engineering
(WCRE), 2013.

[49] Yoonsik Cheon, Automated Random Testing to Detect Specification-Code
Inconsistencies. Departmental Technical Reports (CS), 2007.

[50] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks,
FEvaluating Fuzz Testing. Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security.

[51] Axel Bons, Beatriz Marin, Pekka Aho, Tanja E.J. Vos, Scripted and
scriptless GUI testing for web applications: An industrial case. Informa-
tion and Software Technology, Volume 158, June 2023.

52]

[53]

[54] Henna-Riikka Ruonala, Agile Game Development: A Systematic Liter-
ature Review. M.S. thesis, University of Helsinki, Faculty of Science,
Department of Computer Science, 2016.

[55] Emerson Murphy-Hill, Thomas Zimmermann and Nachiappan Nagap-
pan, Cowboys, Ankle Sprains, and Keepers of Quality: How Is Video
Game Development Different from Software Development?. ICSE 2014:
Proceedings of the 36th International Conference on Software Engineer-
ing.

[56] Barbara A Kitchenham, Systematic review in software engineering:
where we are and where we should be going. Proceedings of the 2nd in-
ternational workshop on Evidential assessment of software technologies,
2012.

[57] Vahid Garousi, Michael Felderer, and Mika V Mantyla, The need for
multivocal literature reviews in software engineering: complementing sys-
tematic literature reviews with grey literature. Proceedings of the 20th
international conference on evaluation and assessment in software engi-
neering, 2016.

[58] Vahid Garousi, Michael Felderer, Mika V. Méntyla, Guidelines for in-
cluding grey literature and conducting multivocal literature reviews in
software engineering. Information and Software Technology, Volume 106,
February 2019, Pages 101-121.

89

https://en.wikipedia.org/wiki/Belief%E2%80%93desire%E2%80%93intention_software_model
https://en.wikipedia.org/wiki/Belief%E2%80%93desire%E2%80%93intention_software_model
https://www.selenium.dev/
https://testar.org/

Bibliography

[59] Paul Ralph, Toward methodological guidelines for process theories and
tazonomies in software engineering. IEEE Transactions on Software En-
gineering, 2018.

[60] Johanna C Van Niekerk, JD Roode,Glaserian and Straussian grounded
theory: similar or completely different?. Proceedings of the 2009 An-
nual Research Conference of the South African Institute of Computer
Scientists and Information Technologists.

[61]

90

https://github.com/iv4xr-project/labrecruits

	List of Tables
	List of Figures
	Introduction
	Background
	Techniques for software testing
	Manual testing
	Automated testing

	Video game testing
	Autonomous agents

	Coverage models

	A Taxonomy of Coverage Metrics for Game Testing
	Methodology
	Systematic Literature Review
	Taxonomy definition through Open Coding

	Categories
	Functionality
	Multimedia
	Operability and user experience (UX)
	Performance and Reliability

	Iv4XR Framework and Metrics Implementation
	Testing tools
	Iv4XR Framework
	Goal-solving test agents
	Architecture and Environment interface

	Implementation of game metrics in iv4XR
	LabRecruits
	Coverage testing workflow

	Coverage test session results
	Session of custom-written tests
	Session of provided demo-tests
	Final considerations

	Conclusion and future work
	Bibliography

