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Abstract

Time Sensitive Networking (TSN) covers the need for real-time appli-

cations, focusing on the Industrial Internet of Things (IIoT), of a low la-

tency deterministic synchronous affordable network. IEEE 802.1Qbv work-

ing group defines a guideline to develop a Time-Aware Shaper (TAS) to

guarantee Time-division multiple access (TDMA) for different time-critical

requests to the network. Starting from the literature, in which the TSN

class of traffic is limited to a homogeneous local network, this work aims

to develop a TAS scheduler to support heterogeneous networks with in-

terfaces with varying characteristics, such as throughput and propagation

delay. This thesis treats TAS scheduling as an optimization problem. It

produces two conceptual models, respectively an ILP model and a heuristic

one, to maximize the number of accepted requests and the determinism of

the network and minimize the latency. The goal is achieved by estimating

the jitter and delay of each time-critical transmission. To support the spec-

ification of a heterogeneous network, this work implements transformation

functions to solve the space and time division problems and a transmission

pipeline pattern to mitigate the effect of high propagation delay of a trans-

portation network. Conceptual models are validated with a simulation of a

hypothetical scenario where a request traverses both WiFi interfaces and a

transport network.
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Chapter 1

Provisioning of TS, QoS, and
BE traffic in transport
network

IIoT applications1 typically have stringent requirements on the dependabil-
ity and transmission metrics of communication networks. For such appli-
cations, it is crucial that the network can provide latency guarantees and
maximize the determinism of the transmission. In contrast, legacy Ethernet-
based networks can only provide a Best Effort (BE) delivery service. To cope
with the lack of determinism in traditional Ethernet and the obscurity of
proprietary protocols, a set of amendments about TSN in IEEE 802.1Q
standard Ethernet has been specified [3].

End-to-end TSN services entail the support of operators’ transport net-
works that are currently carrying traffic from users, businesses, and datacen-
tres, just to mention a few on a BE basis; such traffic is commonly encap-
sulated into Multiprotocol Multiprotocol Label Switching (MPLS) Label-
Switched Paths (LSP) at Layer 2 for traffic engineering purposes [21].

As soon as operators’ transport networks will provide support to TSN
traffic to guarantee the committed quality of service of Time sensitive, con-
strained in delay and jitter (TS) flows and allow for the coexistence of TS,
Quality of service (QoS) and BE traffic on the same network infrastructure.

1.1 IEEE 802.1Qbv

The Time-Sensitive Networking Task Group is part of the Institute of Elec-
trical and Electronics Engineers (IEEE) 802.1 Working Group. The charter
of the TSN group is to provide deterministic services through IEEE 802

1Such as industrial surveillance, smart manufacturing, real-time process optimization,
predictive maintenance, energy distribution, and infrastructure optimization.
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1.2. Provisioning of TS and non-TS flows

networks[10], thus providing mechanisms that enable low and predictable
transmission latency and high availability for demanding applications such
as real-time audio/video streaming, automotive, and industrial control.

To provide the required guarantees, TSN integrates different traffic shap-
ing2 mechanisms including 802.1Qbv, 802.1Qch, and 802.1Qcr, allowing
for the coexistence of different traffic classes with different priorities on the
same network.

Focusing on IEEE 802.1Qbv TAS, it is designed to separate the commu-
nication on the Ethernet network into fixed-length, repeating time cycles,
defined Super Frame (SF). The basic concept is a TDMA 3. Establishing vir-
tual communication channels for specific periods, in the following schedul-
ing windows, can separate time-critical communication from non-critical
background traffic. The definition of the scheduling window is demanded by
each specific protocol implementation, in section 2.6.2 more details about it,
the general idea is of an atomic quantum of time in which a network inter-
face gate is assigned to a specific resource, which is identified by a Virtual
local area network (VLAN) id.

The IEEE 802.1Qbv time-aware scheduler has to ensure that the Ether-
net interface is not busy with the transmission of a frame when the scheduler
changes from one time slice into the next, it achieves this by putting a guard
band at the edge of every scheduling window that carries time-critical traffic.

1.1.1 Frame format

From [10] specifications: 802.1Q header is the 4 bytes field between the
source MAC address and the EtherType fields, thus the maximum frame
size is extended from 1518 bytes to 1522 bytes. The minimum frame size is
64 bytes. Figure 1.1 shows the schema of the frame. Table 1.1 describes the
802.1Q header fields.

1.2 Provisioning of TS and non-TS flows

Paper [20] studies the combinability of multiple TS flows while leaving re-
sources available for non-TS flows. Given the realistic heterogeneous sce-
nario in which flow provisioning requests arrive, each of them needs to be
accepted or rejected based on the possibility of providing the required per-
formance as well as ensuring that the performance of already established

2The process of controlling the flow of network traffic to ensure a smooth and efficient
distribution of bandwidth. It helps in implementing Quality of Service policies by priori-
tizing certain types of traffic over others. This ensures that critical applications, such as
time-sensitive flows, receive sufficient bandwidth and low latency.

3The channel access method used in digital communication networks, in which the
available transmission bandwidth is divided into time slots, and each station in the network
is assigned one or more of these time slots for transmitting data

18



Chapter 1. Provisioning of TS, QoS, and BE traffic in transport network

Figure 1.1: IEEE 802.1Q frame

Tag protocol identifier (TPID) A 16-bit field set to a value of
0x8100 to identify the frame as an
IEEE 802.1Q-tagged frame.

Tag control information (TCI)

Priority code point (PCP) A 3-bit field which refers to the
IEEE 802.1p class of service (CoS)
and maps to the frame priority
level.

Drop eligible indicator (DEI) A 12-bit field specifying the VLAN
to which the frame belongs.

VLAN identifier (VID) If active, this flag marks the frame
as eligible to be dropped in the
presence of congestion.

Table 1.1: IEEE 802.1Q header description

TS and non-TS flows is guaranteed. Figure 1.2 shows in section a the
heterogeneous TSN scenario considered. It includes network nodes with
and without TSN capabilities. The network supports both TS and non-TS
packet flows, which are mixed in some of the network interfaces, TS flows are
exclusively supported through TSN-capable devices. An illustrative exam-
ple is presented in section b, which includes two TSN-capable WiFi Access
point (AP), three TSN Ethernet switches, and two non-TSN-capable packet
routers. The network connects two robotic arms, two servers, and several
users. Two TS flows (denoted TS-1 and TS-2) are routed through a path
connected to Server B, although that traffic is considered of low priority,
e.g., best effort (BE)

Control Plane

A TSN Connectivity Manager (CM) provides End-to-end (E2E) control and
includes:

• Path computation element (PCE) implementing algorithms with dif-

19



1.2. Provisioning of TS and non-TS flows

Figure 1.2: Heterogeneous network scenario for TS and non-TS packet flows
from L. Velasco, G. Graziadei, Y. El Kaisi, J. Villares, O. Munoz, J. Vidal,
and M. Ruiz. Provisioning of time-sensitive and non-time-sensitive flows:
from control to data plane. IFIP Networking 2024, TENSOR, 2024.

ferent policies computes the path of a new request

• TAS in charge of producing scheduling for the TS flows to be deployed
in the network

• Network digital tween that evaluates a set of KPIs of non-TS flows
before new (TS or non-TS) flows are deployed.

Figure 1.3 shows the CM decision flowchart. When a new TS flow request
arrives at the TSN CM, a provisioning process is followed that includes
path computation, scheduling planning (in the case of a TS flow), and per-
formance evaluation. In the case that the flow request is accepted, the TSN
CM uses SDN controllers’ north-bound interfaces to send them precise in-
structions for the new flow. Specifically, in the case of a TS flow, the TSN
CM sends the computed network scheduling plan to the TSN controllers
that will subsequently provide that plan to the packet schedulers running in
the TSN-capable nodes.

This work implements the TAS module of the control plane, the mech-
anism of propagation of the output of the TAS module is not implemented
and it is demanded as an implementation detail.

Queuing system

To achieve the coexistence of varying classes of traffic over the network each
interface has to support different queues:

• TS-queue: for each request mapped over the interface there is a FIFO
queue which is opened and closed according to the scheduling data
plane generated by TAS scheduler.
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Chapter 1. Provisioning of TS, QoS, and BE traffic in transport network

Figure 1.3: Provisioning of TS and non-TS Flows control plane from L.
Velasco, G. Graziadei, Y. El Kaisi, J. Villares, O. Munoz, J. Vidal, and
M. Ruiz. Provisioning of time-sensitive and non-time-sensitive flows: from
control to data plane. IFIP Networking 2024, TENSOR, 2024.

• QoS-queue: frames are marked with different priority levels, this
queue 4 is implemented according to policies and scheduling algorithm.

• BE-queue: FIFO queue.

Figure 1.4 illustrates an example of queuing system of a network interface.
The TS-queues are aggregated in a main TS-queue according to the output
of the scheduler. Given a timestamp it is possible to define the cycle id,
then the corresponding time slot only with bit-shifting module operations:

t = 1 + ceil(
time() % T

τe
) (1.1)

where T is the duration of SF and τe is the duration of a time slot. Given
the data plane it is possible to obtain the TS-request which the time-slot
is assigned, thus the main TS-queue opens the TS-queue of the request. A
TS-request identifier is included in the TSN-header as VLAN id.

Details about the QoS queue are off-topic.

1.3 TAS scheduling related works

In the literature, there are a lot of approaches to solving the TSN scheduling
problem summarized in the following categories:

4The policies are defined a-priori by the network provider and are included in the
control plane. The algorithms for the queue implementation are Weighted Fair Queuing
(WFQ), Priority Queuing (PQ), and Class-Based Weighted Fair Queuing (CBWFQ).
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Figure 1.4: Queuing system for the aggregation of multiple traffic classes

• Approximative: find the local optimal, feasible solution

– Heuristic as Greedy + Local Search (LS)

– Meta-heuristic as Greedy randomized adaptive search procedure
(GRASP)

– Genetic as Biased Random Key Genetic Algorithm (BRKGA)

– Machine learning as Deep reinforcement learning

• Exact: find the global optimal, feasible solution

– Integer linear programming (ILP)

– SMT

– Dynamic programming

Table 1.2 from [3] reports papers that discuss the TAS scheduling prob-
lem from 2021 up to date.

Reference Category Approach

[15], [17] ILP Job-shop flow

[19], [23] Heuristic Vector bin packing

[13] Heuristic Dynamic programming +
Greedy

[8] Z3 SMT/OMT OMNeT++ simulation

[12] Genetic algorithm BRKGA

[1], [22] Machine learning Deep reinforcement learning

[16] Machine learning Reinforcement learning

Table 1.2: TAS scheduling algorithm literature

This work focuses on developing an ILP model and a Heuristic one.
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Chapter 2

TSN scheduling in
heterogeneous network
model

In this chapter the statement of the TAS scheduling problem, the heteroge-
neous network model, the input parameters and expected output definition,
the simplification hypothesis and mathematical restrictions.

2.1 Problem statements

Given a heterogeneous time-sensitive network and a set of signal requests
constrained in time in jitter and delay, generate the optimal scheduling plan.
There are two possible statements of the problem:

• Scheduling without reconfiguration: Given a time-sensitive net-
work with a previous scheduled TS-load, accepting a new TS request
if feasible.

• Scheduling with reconfiguration: Given a time-sensitive network
and an incumbent scheduling plan with allocated resources of different
TS requests, accepting as input a new TS-request and producing, if
feasible, as output the new scheduling plan reducing the number of
performed changes between it and the incumbent one.

2.2 Optimization objectives

In this section, the optimization objectives are categorized according to [3].

The table 2.1 defines a framework to evaluate each produced model.
The first number of the objective ID refers to the group of the objective as
described in the following list.
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2.2. Optimization objectives

Objective id Description

Primary optimization objectives

3.1 Maximize the deter-
minism

Minimize the maximum jitter of the network.

3.2 Improve the trans-
mission metrics

Minimize the end-to-end delay in the transmis-
sion.

Secondary optimization objectives

2.1 Maximize the load
balancing

Balance the loading of the TS traffic over the
nodes of the network. In the model function
performed by the path computation module.

2.2 Minimize the length
of the path

Function performed by the path computation
module. A lower-size path means using a lower
number of resources, thus increasing the num-
ber of feasible requests.

2.3 Minimize the frag-
mentation

Maximize the number of contiguous available
time slots over each interface of the network.

3.3 Maximize security Include additional bands of guards or slots re-
served for the verification of checksum of the
headers.

3.4 Maximize robust-
ness

Include additional bands of guards or slots re-
served for synchronization of the distributed
system’s nodes.

Thirdly optimization objectives

4.1 Minimize data plane
update cost

Minimize the cost in terms of transmission per-
formances when a new data plane is installed.
Minimize the peak traffic produced by schedul-
ing plan updates.

4.2 Minimize solving
time

Guarantee solving time compatible with the SF
duration.

Non optimization objectives

1.1 Minimize topology
cost

How the model scheduling performances are
dependent on topology changes.

1.2 Multicasting Support multicast traffic and the interfaces
load improvement produced.

Table 2.1: Scheduling algorithm optimization objectives

1. Objectives in the first group function more as acceptance criteria for
solutions rather than as optimization goals. If a solution meets these
criteria, it is considered suitable for a specific use case.

2. The second group of objectives aims to enhance overall system perfor-
mance rather than solely ensuring the schedulability of time-sensitive
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flows. These objectives include distributing spare capacity and bal-
ancing link loads.

3. One of the key goals in TSN is to provide bounded latency guaran-
tees to streams, necessitating the reduction of non-determinism caused
by factors like variable delay and synchronization errors. Minimizing
jitter, particularly at the last hop of the delivery path, is crucial for
achieving determinism.

4. Specific problem statement objectives. In scheduling with reconfigu-
ration, the scheduling algorithm aims to reduce the number of changes
between the incumbent data plane and the new one generated when
a new feasible request is produced. The algorithm has to guarantee a
real-time response, compatible with the SF duration.

2.3 Heterogeneous network model

In a generic heterogeneous network, it’s necessary to consider different inter-
faces with varying transmission means and different layer 1 and 2 protocols.
The first aim is to define an abstract model that can describe a heteroge-
neous network, software side it means to implement an abstract factory
pattern.

2.3.1 Abstract factory pattern

This pattern provides a way to create families of related objects without
imposing their concrete classes. It encapsulates a group of individual facto-
ries that have a common theme without specifying their concrete classes. A
client software component creates a concrete implementation of the abstract
factory and then uses the generic interface of the factory to create concrete
objects that are part of the family [24].

This pattern separates the details of the implementation of a set of ob-
jects from their general usage and relies on object composition, and this is
exactly what is required by this problem: a way to treat different implemen-
tations and protocols that describe the same functional processes.

Figure 2.1 shows the Unified Modeling Language (UML) diagram, the
implementation of the factory pattern, and the class relationships definition.
At the abstract level, the classes SchedulingPlan (in the role of incumbent
and new computed), the TimeSlot and its Assignment are required. Given
the cardinality of their relationships, in the implemented version they are
embedded in the Network class. The diagram contains an example of how
it is possible to generalize the algorithm in a heterogeneous network, and
how to implement a specific class for an interface typology starting from
its abstract factory. The class AP1 to SW1 covers all the interfaces that
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2.3. Heterogeneous network model

Figure 2.1: TAS scheduling algorithm UML diagram. Abstract factory pat-
tern implementation.

connect the access point of the family AP1 to switches of family SW1, note
that in this case the connection is guaranteed by an optical cable which has
its characteristics.

Each of the classes in UML implements a factory for a specific actor
of the TSN scheduling module. The next subsections discuss the factory
classes and their methods.

2.3.2 NetworkInterface factory class

The following principal attributes describe a factory class for the object
NetworkInterface. Note that if a duplex interface between two hops a, b is
represented by two different directed links e1 : a→ b, e2 : b→ a.

Throughput

The throughput is a specific metric that measures how many bits can be
sent per unit of time for the given interface. In the model, the attribute
that describes this information for the interface e is Be. In the case that
an interface can offer different speeds 1, the lowest speed is considered.

1E.g. commonly, wireless interfaces can adapt their modulation format as a function
of the quality of the signal of the receiver
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This assumption guarantees the performance of the TS flows even under the
worst-case scenario.

There are different definitions of throughput [25]:

• Maximum throughput closely related to the channel capacity of
the system, is the maximum possible quantity of data that can be
transmitted under ideal circumstances. The best-case assumption in
terms of throughput is the worst-case assumption in terms of schedul-
ing because a higher quantity of data per time unit means a higher
TAS scheduling complexity. In the following, the model will refer to
this throughput’s definition.

• Asymptotic throughput is usually estimated by sending or simu-
lating a very large sequence of data packets through the network and
measuring the network path throughput in the destination node.

• Peak measured throughput is throughput measured by a real or
simulated system over a short period. Given that the system is syn-
chronous and the SF is cyclic, this definition of throughput has to
reach the asymptotic throughput for the TS traffic in one cycle.

Network interface propagation delay

The worst-case propagation delay de over the interface. It is influenced
by factors such as the distance between sender and receiver, the medium
through which the signal is transmitted (such as wire, fiber optic cable,
or wireless transmission), and the speed at which the signal can propagate
through that medium. The next section describes how the model manages
the end-to-end delay.

Scheduling unit definition

According to the IEEE 802.1Qbv, the time-aware scheduler is designed to
separate the communication on the network into fixed-length, repeating time
cycles. For each interface e, is defined Te which is the set of the scheduling
units. The scheduling unit definition is specific for each interface and de-
pends on its characteristics. In the following, we define it as a time slot of
the network interface. Each time slot of the scheduling plan of the interface e
has two fixed attributes: the duration in time τe and the number of bits pro-
cessed ae. The process of defining the scheduling unit and the relationship
in time and space between different interfaces with different characteristics
is the main problem of scheduling in a heterogeneous scenario. This problem
is discussed in section 2.6. For optical interfaces, the propagation delay is
evaluated as:

de =
Distance ∗ n

c
(2.1)
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where c is the speed of light travelling through a vacuum and n is the
reflective index which is usually equal to 1.5. For WiFi interfaces, it depends
not only on throughput and distance but also on the WiFi technologies,
interference and congestion. For a factory scenario, the correct dimension
of propagation delay is of some us [2].

Synchronization methods

The IEEE 802.1Qbv time-aware scheduler has to ensure that the interface
is busy for the transmission of another TS request. The time-aware sched-
uler achieves this by putting a guard band at the edge of every scheduling
window that carries time-critical traffic. During this guard band time, no
new frames transmission may be started, only already ongoing transmis-
sions may be finished. The duration of the guard band is not defined by
IEEE802.1Qbv, it could be as long as it takes the maximum frame size to
be safely transmitted2. Ge is the set of the not available time slots of the
network interface e, also the guard time slots are included in it.

Signal processing mode

Different interfaces process the signal differently. The model covers the
following processing modes 3.

• Express Transmission Mode: data is transmitted immediately as
it becomes available, without waiting for the entire message to be re-
ceived. This mode is characterized by low latency, as data is sent
without buffering or waiting for verification of the entire message.
It is commonly used in real-time applications where timely delivery
of data is crucial, such as voice and video communication and other
time-critical flow. In virtual circuit design is not required to wait to re-
ceive the header to read the MAC destination, the next hop is already
known.

• Store-and-Forward Transmission Mode: the entire message is re-
ceived and stored in a buffer before being forwarded to the next hop
on the network. This mode allows for error checking and correction
before forwarding the message, improving reliability. It is commonly
used in networks where reliability is more important than low latency
or scenarios characterised by a higher probability of error in transmis-
sion.

2In the model, it is designed to protect the transmission in the worst-case scenario,
which is when a network interface e sends exactly ae bits during the time slot. According
to this, the band of guard is defined as several contiguous time slots.

3Cut-through switching and fragment-free switching are processing modes not imple-
mented by the model. This is not a restriction, to support them is possible to Overload
the pipeline function discussed in the section space division problem 2.6.2.
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Figure 2.2: Comparison between different processing modes for the same
TS-flow in the same network configuration. In the first scenario the express
transmission mode, in the second one the store and forward.

• Adaptive Transmission Mode: the interleaving of the express and
store and forward processing modes for the same directed link in dif-
ferent superframes is the base implementation of the model of the
adaptive mode.

Figure 2.2 shows a comparison between express and store and forward
transmission modes. The network configuration and TS flow parameters are
the same for both examples: ae1 = 24bit, ae2 = 8bit and τe1 = 8t.u, τe2 =
1t.u.. The propagation delay is approximated to 0.

Transmission mode

Network interfaces can operate in various transmission modes classified as
follows4:

• Simplex: the communication occurs in one direction only. One device
sends data, and the other device can only receive it.

• Half-Duplex: communication can occur in both directions, but not
simultaneously. Devices can both send and receive data, but not at
the same time. Instead, they take turns transmitting and receiving.

• Full-Duplex: communication can occur in both directions simulta-
neously. Devices can send and receive data simultaneously, allowing
faster and more efficient communication. This mode is common in
modern Ethernet-switched networks and most wired and wireless com-
munication standards.

4Following a practise approach, ethernet interfaces typically support full-duplex oper-
ation, allowing for simultaneous bidirectional communication. Older Ethernet interfaces
and certain wireless standards may support half-duplex operation. Simplex mode is less
common in computer networking but is used in scenarios where data only needs to flow
in one direction, such as broadcasting or monitoring systems.
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Figure 2.3: Half-duplex radio transmission mode scenario.

In the model, each interface is abstracted by a directed link, thus the in-
terfaces work in Simplex. The network interfaces that work in Full-Duplex
should be abstracted by two different directed links that work simultane-
ously in Simplex. The network interfaces that work in Half-duplex should
be abstracted by two network interfaces e1, e2 that cannot send over si-
multaneously time slots. According to this, it is required to define for the
Half-Duplex interfaces the UL which is the set of time slots dedicated to the
up-link and the DL which is the set of time slots dedicated to the down-link.
Each interface can only transmit in time slots in UL, then the time slots in
DL are not available and they are included in Ge, the set of not available
time slots of e. Between e1, e2 the following relationship is valid:

ULe1 = DLe2 (2.2)

Figure 2.3 shows a real case example of the half-duplex transmission in a
radio scenario. The user equipment is a warehouse robot that sends with
the interface e1 a synchronous signal to the access point. The access point
sends the command signal with the interface e2. The super frame has a
duration of 10 time units, the duration of the time slot is the same for e1
and e2 and it is equal to 1 time unit. In blue the time slots are dedicated
to the transmission synchronization (a.k.a. preamble). In grey the DL time
slots, thus not available for the transmission.
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2.3.3 TSFlow factory class

This factory class is the abstract representation of the main attributes and
methods of a generic TS-flow f .

• Period Pf which is the periodicity in time of the TS signal. Starting
from Pf is possible to compute an aggregate attribute Tf which is the
number of periods (a.k.a iterations) that f has over the SF of period
T 5.

Tf =
T

Pf
(2.3)

• Size #f which is the number of bits that are transmitted at each
period of f .

• Path Ef which is the sorted list with the id of each directed link e
included in the path of the time sensitive f 6.

• The maximum delay δf that the flow f can support.

• The maximum jitter υf that the flow f can support.

2.3.4 Network class

We extract the following principal attributes that can describe a factory
class for the object Network.

• Duration of the scheduling of SF T. This number usually depends on
the specific time-sensitive traffic that the network supports and it is
maxf∈FPf . To guarantee better compatibility with different scenarios,
this is considered an input of the algorithm 7.

• The topology of the network is represented with a graph G in
which each node is a hop and each directed link is an interface of class
NetworkInterface. Note that the scheduling problem only required to
abstract the interfaces, not each hop. According to the model, the
information about each hop is not taken.

• The set F of the objects of the TSFlow class.

• The set E of the objects of the NetworkInterface class.

5As better discussed in the paragraph 2.5 mathematical restrictions between the period
Pf and the duration of SF T are required. These restrictions guarantee that the division
T
Pf

always produces an integer result.
6As example a path defined as Ef = [1, 4] where e1 : a → b and e4 : b → z is equal to:

- interface 1 from the hop a to the hop b - interface 4 from the hop b to the hop z
7The characteristics of the classes of time-sensitive flows are well-known a-priori and

to schedule all of them it is possible to establish T. It has to be higher than the maximum
period and the maximum delay admitted in the TS network.
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• The current scheduling plan of the network NSF = {SFe∀e ∈ E}.
Every SFe defines the allocations of slots to flows. SFe = {sft∀f ∈
F,∀t ∈ Te}, where sft is equal to 1 iff the time slot t over e is assigned
to the flow f , 0 otherwise.

2.4 End-to-end delay and jitter definitions

The model is deterministic and it cannot cover the randomness of factors of
a real environment but according to the following simplification hypothesis
is possible to treat the main random variables and metrics’ contributions
that afflict the network scenario.

2.4.1 End-to-end delay

The end-to-end delay is the amount of time it takes for data to travel from its
source to its destination. It is the additive result of different contributions:

• Delay of the signal dsignal, which is a contribution that depends on
the error of the signal period. This is a stochastic dimension.

• Propagation Delay dpropagation, which is the time it takes for the
signal to travel through the transmission medium and is approximated
to a worst-case deterministic value. 8

• Processing Delay dprocessing. Processing devices, such as routers,
switches, or other network equipment, introduce delays as they process
the signal. The approximation for the store and forward processing
mode is described in the section 2.4.3.

• Clock Synchronization differences in clock frequencies or synchro-
nization errors can introduce additional delays. We assume that this
problem is out of the scope of this work because, as input, we have a
synchronous heterogeneous network.

• Queuing delay to guarantee different QoS classes. The queuing delay
depends on factors such as network congestion, packet prioritization,
and the scheduling algorithm used by the network device. In our
model, traffic is allocated in specific time slots with the highest priority
for data traffic 9, thus we assume there is no queuing delay.

• Scheduling delay dscheduling, which is specific to the scheduling prob-
lem and depends on scheduling constraints. It is provided in terms of
time slots and thus is a deterministic dimension.

8In the model, this contribution, specific for an interface e is evaluated as de and it is
treated as an input parameter.

9The highest priority is given to the control plane.
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The following equation summarizes the definition of the end-to-end delay:

d = dsignal + dpropagation + dprocessing + dscheduling (2.4)

To estimate the dsignal, given its nature, means to define a random distri-
bution of probability. According to this, it cannot be optimized, thus it is
out of the scope of the optimization model and could be approximated to 0.
This is defined as a simplification hypothesis:

• Simplification hypothesis 1 (SH 1) dsignal = 0. The first bit of
each flow is transmitted synchronously to the start of the allocated
time slot over the first interface of the path.

In the worst case dpropagation for a flow f is defined as the sum of the prop-
agation delay at each hop of the path as:

dpropagation =
∑
e∈Ef

de (2.5)

Figure 2.4 shows time graphs with the estimation of the E2E delay in
generic scenarios. The time spent by the first bit in the buffer for process-
ing purposes is highlighted in yellow, while the time spent on queuing or
scheduling purposes is shown in brown. The purple squares represent the
time required to complete the transmission hop by hop. In (a) the scenario
involves a store-and-forward processing mode, where the entire frame is pro-
cessed and checked before being delivered to the next hop. In (b) express
processing mode.

2.4.2 End-to-end jitter

The jitter is the variation in the delay of a transmission theoretically peri-
odical. It is the deviation from the average delay experienced by packets
as they travel through a network. Jitter is typically caused by varying net-
work congestion, routing changes, or fluctuations in transmission latency. In
real-time time-sensitive communication applications, high jitter can lead to
packet loss, degraded signal quality, and overall instability of the communi-
cation channel. By the nature of the delay, the jitter is defined as additive
components in which there are also stochastic components. Assuming that
the delay is a stochastic variable the definition of the jitter is defined by the
following equation:

j = E
[
(d− µd)

2
]
= E

[
d2
]
− µ2

d (2.6)

Assuming that the mean signal period error is 0 the term µ2
d is well eval-

uated, however, to solve E
[
d2
]
is required to treat also the propagation

and processing delay contribution as a stochastic variable and evaluate the
eventual covariance between the different delay contributions.
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(a) Store and forward processing mode

(b) Express processing mode

Figure 2.4: Estimation of E2E delay with different processing modes.

To guarantee the determinism of the model the following simplification
hypothesis is valid:

• Simplification hypothesis 2 (SH 2). The jitter of each flow de-
pends on the deterministic scheduling component of the delay.

2.4.3 Processing time

Each interface could perform the following operations in the processing
phase:

• Reception of Data Packet, the device captures the entire packet

34



Chapter 2. TSN scheduling in heterogeneous network model

from the network interface.

• Buffering: the device temporarily stores the entire packet in a buffer
memory. In store and forward processing mode, buffer memory can
hold the complete packet until it’s ready to be forwarded.

• Error Checking: once the packet is stored in the buffer, the network
device performs error checking on the packet. This may involve veri-
fying the integrity of the packet by checking for errors in the packet’s
header, payload, or any other relevant fields.

• Transmission: If the packet passes error checking and the device de-
termines the correct outgoing interface or port, it forwards the packet
to the next hop.

Each operation requires time, but it depends on the performance of the
interface. The buffering time depends on the processing mode, the trans-
mission of the frame is the time allocated to a scheduling window. Other
components of processing time depends on interface and are implementation
detail, the following simplification hypothesis is valid:

• Simplification hypothesis 3 (SH 3) The processing time for error
checking, reception of frame and other actions not listed elsewhere
is approximated to 0. If the approximation cannot be valid the time
could be evaluated for optimization purposes as an additive component
of the propagation delay.

2.5 Mathematical restrictions

The scheduling problem is not always feasible. To reach a solution it is
required that between the input parameters are valid same mathematical
restrictions according to the space and time division problem10.

• The period of each flow Pf is a divisor of the T duration of the super
frame SF .

MCD (Pf , T ) = Pf ∀f ∈ F (2.7)

This constraint is fundamental because if we try to negate this, then
Pf is not a divisor of T and after n superframe the network cannot
serve the flow and the request is blocked.

Figure 2.5 shows an example of the time division problem in the case
in which 2.6 is violated. In the example, T is equal to 8 t.u. and Pf to

10Usually in each network domain the throughput is given in power of 2, the size of a
packet in WiFi transmission is given in power of 2, and the duration of a period of TSN
flow is given in a power of 2. The restrictions are specified to complete the model but in
the general scenario, all the restrictions are matched.
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Figure 2.5: Mathematical restriction between flow and super frame periods
violation example

7 t.u., thus Pf is co-prime with T . With different colours is possible
to understand the duration of each iteration of the flow. In red is the
error generated by the scheduling at each SF. The error increases at
each cycle, thus after 8 SF one iteration of the flow f is lost. The
additional negative effect is that the flow is asynchronous with the
SF, which means that when the signal is generated it cannot be sent
but it is stored in the buffer of the network interfaces. To summarise
the restriction is required to not lose transmissions and overload the
buffers of the network. The scenario in the figure is not possible, the
request is a-priori rejected.

• The number of bits transmitted in one time slot by different directed
links e1, e2 are not co-prime.

MCD (ae1 , ae2) > 1 ∀(e1, e2) ∈ E (2.8)

• The duration of each time slot for each directed link e is a divisor of
T .

MCD (τe, T ) = τe ∀e ∈ E (2.9)

2.6 Heterogeneous transformations

This section treats the problem of heterogeneous transformations. How to
synchronize different interfaces with different throughputs without imposing
performance limitations. The problem consists of different definitions of the
concept of time unit t over each interface e according to its duration and
the different number of bits transmitted during it.

In the DirectedLinkFactory class, two attributes are defined such that
the throughput definition 2.10 is valid:

• ae which is the number of bits processed per time slot over e

• τe which is the duration of each time slot over the directed link e
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Be =
ae
τe
∀e ∈ E (2.10)

Only two of the three parameters are required in input, the third one is
evaluated according to the previous relationship.

According to a top-down analysis, the problem can be divided into two
sub-problems: time division problem and space division problem.

2.6.1 Time division problem

Each directed link e divides the time of the superframe T into time slots
of duration τe. The number of time slots is equal to T

τe
which according to

mathematical restrictions produces an integer result.
The method get T e() of the NetworkInterface class returns a bit array.

Each cell of index (t− 1) is equal to 1 if the time slot t is available over the
NetworkInterface e, 0 otherwise.

It is possible to pre-compute the time slots not available in SFe
11.

Ge contains all the id of the time slots that for different purposes are not
available. The following pseudo-code shows the pre-computation of Te

Require: e ∈ E
1: te ← T

τe
2: for t ∈ [1, te] do
3: Te[t− 1]← ¬Ge[t− 1] & Te[t− 1]
4: end for

Given a heterogeneous scenario, the duration of the time slot is not fixed
among different network interfaces. This dimension depends on the through-
put of the interface and could be necessary to pass between two different
representations of the time between the interface e1 and e2. According to
the mathematical restrictions, this transformation is always feasible. It is
possible to pre-compute a time transformation matrix L = {li,j ∈ Q|∀(i, j) ∈
E × E}.

Require: E
1: for e1 ∈ E do
2: for e2 ∈ E do
3: le1e2 ←

τe1
τe2

4: end for
5: end for

11As discussed the preamble and guard time slots are not available by the IEEE
802.1Qbv guideline, the Half-duplex cannot assign the downlink (DL) time slots.
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A built-in function can solve the time transformation problem. Given a
time slot t over e1, it is possible to obtain the complimentary in time t∗ over
e2.

Algorithm 1 Time transformation function : timeTransform()

Require: e1, e2 ∈ E, t ∈ Te1

1: t← t ∗ le1,e2
return < t >

2.6.2 Space division problem

Each time slot t of the interface e transmits ae bits. Given a flow f with
#f bits transmitted per period, it is required to implement the concept of
scheduling window, also defined scheduling slice of TAS.

A scheduling window is a list of contiguous time slots over an interface
e that have to be allocated to f to guarantee the transmission of all the #f
bits. Each time slot is an atomic unit in the number of bits transmitted,
according to this, it is not possible only to allocate a part of it. A matrix
W is defined:

W = {wfe ∈ N |f ∈ F, e ∈ E} (2.11)

where wfe is the scheduling window size for f over each directed link of the

path e ∈ EF and it is equal to ceil(#f
ae

) 12 if e ∈ Ef , 0 otherwise.

Algorithm 2 Pre-omputation of the scheduling windows

Require: F,E
1: for f ∈ F do
2: for e ∈ E do
3: if e ∈ Ef then

4: wfe ← ceil(#f
ae

)
5: else
6: wfe ← 0
7: end if
8: end for
9: end for

Given two different interfaces e1 and e2 that have different throughput,
thus different time slot duration τe1 and τe2 and different number of bits
transmitted per time slot ae1 and ae2 , and given a time slot t such that
is the starting time slot over e1 for the flow f , function firstTimeSlot() 3
returns the first time slot available over e2 in which the transmission can

12As discussed the time slot is an atomic unit. The ceil function guarantees that If at
least one bit of t is required by f then the entire time slot t has to be allocated to f .
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start after the end of the transmission in e1. This scenario covers exactly
what happens in store and forwarding transmission mode.

Algorithm 3 Transformation function : firstTimeSlot()

Require: (e1, e2) ∈ E, t ∈ Te1 , wfe1

1: t← t+ wfe1

2: t← timeTransform(e1, e2, t)
return < t >

2.6.3 Pipeline optimization

Given a heterogeneous scenario, the number of bits transmitted per time
slot is not fixed, it depends on the throughput of the interface and could be
necessary to pass between two different representations of the space between
the interface e1 and e2. According to the mathematical restrictions, this
transformation is always feasible. It is possible to pre-compute a space
transformation matrix H = {hi,j ∈ Q| ∀(i, j) ∈ E × E}.

Require: E
1: for e1 ∈ E do
2: for e2 ∈ E do
3: he1e2 ←

ae2
ae1

4: end for
5: end for

The H matrix solves the space transformation problem, for example,
given two interfaces e1 and e2 with Be1 = 1GBit/s,Be2 = 10GBit/s the
value of he1e2 = 10, when τe1 = τe2 . It means that 10 time slots of e1
transmit the same quantity of bit of one slot of e2, according to this given a
path that has e1, e2 in series, the transmission of over e2 can start in parallel
with the 10th time slot of e1. According to this example, the solution of
starting after the end of the transmission in e1 implemented by the function
firstTimeSlot() is not optimal for the express transmission mode.

Inspired by the pipeline concept 13 it is possible to convert each transmis-
sion into a pipeline in which each interface e is a processing element in which
each of the wfe time slots is a stage. The dependencies in our pipeline are
only of input-output type and the topology graph of the network describes

13A pipeline consists of a chain of processing elements, arranged so that the output of
each element is the input of the next; each processing element is arranged into atomic sub-
elements. In instructions pipelining (base, without reordering) each interaction performs
the following stages: fetch, decode, execute and store. The problem is similar but in
our case, each interface performs only a fetch stage per each time slot involved in the
scheduling window.
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them with the direction of the directed link arrow. In this game, the only
constraint is to overlap stages of different interfaces of the same path ac-
cording to the coefficient computed in the space transformation matrix H.
Table 2.2 defines the pipeline problem.

Objective Minimizing the distance in time between the start of
scheduling windows of two different contiguous interfaces
declared in Ef .

Constraint 1 The input-output dependency between two interfaces
claims that it is not possible to send a bit without the
bit being received by the interface.

Constraint 2 The preemption is not allowed. Each scheduling window
is an atomic unit of wfe time slots.

Constraint 3 The lower bound between the starting of two scheduling
windows in contiguous interfaces e1, e2 is the propagation
delay of the e1.

Constraint 4 The solution has to cover two different transmission
modes: express and store and forwarding. In the store
and forwarding mode all the bits in one frame have to be
received by the receiver to a check, instead in express mode
the transmission doesn’t require any check is a stream of
bits.

Table 2.2: Pipeline problem definition

Different approaches are valid to solve the pipelining problem, we focused
on the iterative solution given the pre-computed matrix H.

Given two different interfaces e1 and e2 that have different throughput,
thus different time slot duration τe1 and τe2 and different number of bits
transmitted per time slot ae1 and ae2 , and given a time slot t such that is
the starting time slot over e1 for the flow f , the function returns the mini-
mum required time between the two starting time slots in two consecutive
interfaces of Ef . Algorithm 4 solves the pipelining problem.

The example in figure 2.6 covers three scenarios of the pipelining problem
from interface 1 to interface 2. In these examples, the propagation delay of
transmission is approximated to 0.

• Scenario 1: ae1 = 24bit, ae2 = 8bit and τe1 = 8t.u, τe2 = 1t.u., thus
he1e2 = 1

3 . The windows size are wfe1 = 3 wfe2 = 9. According to the
pseudo-code the pipeline() result for the express mode is firste2−τe2 ∗
(wfe2 − ceil(he2e1)) = 18t.u., for the store and forward mode 24t.u..

• Scenario 2: ae1 = 8bit, ae2 = 8bit and τe1 = 1t.u, τe2 = 1t.u., thus
he1e2 = 1. The windows size are wfe1 = 18 wfe2 = 18. According to
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Algorithm 4 Overlapping optimization function : pipeline()

Require: e1, e2 ∈ E, τe1 , de1 , wfe1 , τe1 , wfe2 , he1e2 , he2e1 , le1e2
1: laste1 ← wfe1 ∗ τe1
2: firste2 ← timeTransform(e1, e2, laste1)
3: if e1.mode == store&forward then
4: sigma← firste2
5: else if e1.mode == express then
6: if τe2 ≤ τe1 ∗ he1e2 then
7: sigma← firste2 − τe2 ∗ (wfe2 − ceil(he2e1))
8: else
9: sigma← le1e2 ∗ τe2

10: end if
11: end if
12: sigma← sigma+ de1 // adding propagation delay

return < sigma >

Figure 2.6: Three different scenarios of the pipelining problem from interface
1 to interface 2. The time unit is defined in the first row. The cell in yellow
represents the first available time slot for the express mode, and the blu one
is the first available in store and forward mode.

the pseudo-code the pipeline() result for the express mode is 1t.u., and
for the store and forward mode 18t.u..

• Scenario 3: ae1 = 8bit, ae2 = 24bit and τe1 = 1t.u, τe2 = 8t.u., thus
he1e2 = 3. The windows size are wfe1 = 18wfe2 = 6. According to the
pseudo-code the pipeline() result for the express mode is 8t.u., and for
the store and forward mode 24t.u. as in the first scenario.

The complexity of this problem, according to this formulation, is con-
stant in time and O(|E|2) in memory.

The pipeline optimization improves two aspects:

• Delay and jitter performance: overlapping in time the scheduling
for different interfaces means reducing the amount of time required to
transmit in the network the frame.
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• Colors optimization: according to heuristic criteria involves parti-
tioning T into regions of varying lengths. Each request’s period can
only be addressed within a single region. By minimizing the duration
of these regions, we can maximize the number of available regions, thus
enhancing the algorithm’s capacity to accommodate more requests.
Reducing the latency of individual periods translates to augmenting
the probability of accommodating a new TS-request.

Figure 2.7 compares the result of the scheduling plane produced for the same
scenario but with the two different implementations discussed. The output is
produced with the ILP model which is discussed in the next chapter. Gantt
chart (a) is produced with store and forward mode and (b) is a schedule
produced with the pipeline optimization in express transmission mode. The
scenario is the same: a flow f with a path Ef : [1, 2, 3] at the first period
in the SF , the three links have respectively a time slot duration of 2us,
4us and 2us, the physical propagation delays for the interfaces are 0.5us,
2us, 0.5us. The grey time slots are reserved as preamble or guard. Over
SH 1 the first bit of the signal is produced to the instant 0, according to
this the delay in the first scenario is 28.5 us and in the second scenario is
22.5 us with an expected improvement in performance e2e estimated delay
of 21.05%. According to the color heuristic criteria the region to schedule
the first period of the flow f has a length of 32us in the first scenario and
26us in the second one with an expected improvement of 18.75%. Note also
that in the first scenario, the time between 14us and 16us is lost because
τe2 = 4, thus in e2 it is possible to allocate only in multiple of 4us.

(a) Store and forward (b) Express

Figure 2.7: Comparison of scheduling for varying processing mode.

2.7 Parameters

Table 2.3 summarizes the input parameters of the problem. The resolution
of the time unit depends on the highest throughput, for example in the case
of the presence of 10Gbits interfaces the resolution is 0.8 ns. The resolution
in bits processed per time slot has to be homogeneous per all the interfaces
(Be, ae) and requests (#f), it could be expressed in bytes or bits.
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Table 2.4 summarizes the pre-processed parameters or aggregated class’s
attributes as described in the previous sections. In this table a new request
r is treated as a normal time-sensitive flow because, at the pre-processing
layer, the new request is already part of the scheduling problem and the
algorithm has to evaluate its feasibility, in other words, r as each already
scheduled flow f has to be scheduled.

Parameter Description

SF definition

T Duration of the scheduling superframe of the time-
sensitive network.

E Set of directed links in the topology; index e.

F Set of time-sensitive flows. Index f .

SFe SF for the network interface e. SFe = {set}, each
component is equal to 1 if time slot t is available for
e, i.e., both it is not already allocated to an existing
TS flow and it can be used for transmission.

NSF Network SF defined as a set of SFe∀e ∈ E

Network interfaces definition, index e

Ge Set of fixed not available time slots for the network
interface e. It can be extended, in the model it
covers the guard time slots and the DL time slots of
Half Duplex transmissions.

Te The set of time slot t of the interface e

τe Time duration of each t ∈ Te

ae Bit processed by each t ∈ Te

Be Throughput of the network interface e

de Propagation delay of the network interface e

modee Frame processing mode for the network interface e

Time sensitive flows definition, index f

Ef Sorted list of network interfaces in the path of the
flow f

Pf Period of the flow f

δf Maximum allowed delay for f

υf Maximum allowed jitter for f

New flow request definition r

r = {Er, Pr, δr, υr} New scheduling request for the time-sensitive flow
r.

Table 2.3: Problem input parameters
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Parameter Description

Tf Number of iterations (a.k.a. periods) in the SF for the
scheduled flow f

te Number of time slots in one SF for the network interface e

L Matrix of network interface time division. L = {le1e2}
where le1e2 is the ratio between the duration of the time
slot between the network interfaces e1, e2.

H Matrix of network interface space division. H = {he1e2}
where he1e2 is the different speed coefficient between the
interfaces e1, e2.

W Matrix of scheduling window. W = {wfe} where wfe is
size of the flow f over the network interface e ∈ Ef .

Table 2.4: Problem pre-processed parameters

2.8 Problem statements comparison

The scheduling algorithm has the following expected output:

• The scheduling window size of the flow f over the directed link e
wfe∀f ∈ F, e ∈ E

• The new scheduling plan SFe∀e ∈ E with resources allocation for TS
traffic, if feasible. In the scheduling plan, the starting time slot per
each flow of the scheduling window.

• For the problem of scheduling with reconfiguration: the list of changes
performed between the new scheduling plan and the incumbent one.

• Estimated end-to-end delay and jitter, according to simplification hy-
pothesis, for the transmission in the network of each TS flow.

Table 2.5 summarizes the statement of the problem in the case of schedul-
ing without the reconfiguration of the data plane for the already assigned
request. Table 2.6 summarizes the statement of the problem in the case of
scheduling with reconfiguration.
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Input problem restrictions

F = {r} The time-sensitive flows set con-
tains only the new scheduling re-
quest.

SFe = {set = 0} ∀e ∈ E For each network interface e the
scheduling set is empty. The in-
cumbent scheduling plan assigna-
tions s−1

et are added in the set Ge

of the not available time slot.

Ge ← Ge ∪ {t | s−1
et = 1} ∀e ∈ E

Output

SFe∀e ∈ Er Data plan (a.k.a scheduling plan)
of the new request restricted to the
time-sensitive flow r.

wre∀e ∈ Er Scheduling window size for each
network interface in the path of the
new request.

di 1 ≤ i ≤ Tr Estimated end-to-end delay for
each iteration (a.k.a. period) of the
new request r.

j Estimated end-to-end jitter of the
new request r.

Table 2.5: Scheduling without reconfiguration statement

Input problem restrictions

F = {f1, f2, ..., f, ..., r} All the flows scheduled and the new
request.

Output

SFe∀e ∈ E Data plan (a.k.a scheduling plan) of
the network.

wfe∀f ∈ F∀e ∈ E Scheduling window size for each
time-sensitive flow f , for each net-
work interface of its path.

dfi ∀f ∈ F, 1 ≤ i ≤ Tr Estimated end-to-end delay for
each iteration (a.k.a. period) of
each request.

jf∀f ∈ F Estimated end-to-end jitter of each
time-sensitive flow scheduled.

∆SFe∀e ∈ E Scheduling changes performed to
the data plane of each interface of
the network.

Table 2.6: Scheduling with reconfiguration statement
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ILP Model

The optimization problem could be solved with ILP. It is required to define
a mathematical model with three different elements

• Decision variables (X) represent the matrix with the unknown in-
formation in a constraint programming problem. In the ILP model, the
decision variables are integers: model structure hypothesis 1 (MSH 1).

• Constraints set (A) are rules defined in the statement of the prob-
lem. In the ILP model, the constraints are represented with linear
equations: model structure hypothesis 2 (MSH 2).

• Objective function F evaluates the optimality of the solution. In the
ILP model, the objective function is linear: model structure hypothesis
3 (MSH 3).

According to these definitions and given the input parameters set (B) as
described in the section 2.7 the solution of the model is expressed by

AX = B (3.1)

where the solution X, if exists, assigns to the decision variable the values
that maximize or minimize the evaluation for the objective function F(X).
The algorithm is equal in both cases, an F(X) maximization problem could
be converted as the minimization problem of the function F(-X). The com-
plexity of the algorithm is np-complete.

TSN TAS scheduling problem belongs to the class of Job Shop Scheduling
Problem (JSSP) [26]. A classical JSSP can be described as follows: in a job
shop environment containing several machinesM = {M1,M2, ...,Mm}, there
are several jobs J = {J1, J2, .., Ji, .., Jn}, each job, say Ji, contains a serial
of operations Oi = {Oi1, Oi2, .., Oij , .., Oin} which need to be processed in a
predefined technological sequence. Each operation is assigned a machine in
M to be processed with a given processing time pij . Sequencing needs to be
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done for operations in all machines to minimize the maximum completion
time of all jobs, i.e., to minimize the makespan.

In TAS scheduling, each network interface is a JSSP machine, and each
request submitted to the scheduler module is a JSSP job. Each job is divided
into tasks that must be processed in the order defined in the request path
Ef . The duration of each task over a specific machine is wfe. As discussed in
the literature there are a lot of articles as [4] that solve the IEEE 802.1Qbv
time-aware sharpers problem. The contribution of this work in JSSP field
is the allocation of tasks in a real-time heterogeneous scenario in which
the duration of the scheduling unit is different between different machines.
The solvers used for the model are Cplex [9] and Gurobi [7], the Python
framework to build and optimize the .lp file (input solver file) is pulp [18].
The source code is available in the Appendix.

3.1 Scheduling with reconfiguration

This section implements an ILP model to solve the problem in the statement
of the reconfiguration of the network data plane.

3.1.1 Decision Variables

In the following section are described the decision variables introduced in
the model.

• The starting time slot binary matrix

X = {xfeti} (3.2)

where 1 ≤ f ≤ |F |, 1 ≤ e ≤ |E|, 1 ≤ t ≤ |Te|, 1 ≤ i ≤ Tf . xfeti = 1 iff
the start of the window allocation for the flow f at iteration i in the
network interface e starts at the timeslot t, 0 otherwise.

• The slot allocation binary matrix

Y = {yfeti} (3.3)

where 1 ≤ f ≤ |F |, 1 ≤ e ≤ |E|, 1 ≤ t ≤ |Te|, 1 ≤ i ≤ Tf . yfeti = 1 iff
the the timeslot t over the network interface e is allocated to the flow
f at iteration i, 0 otherwise.

• The changes binary matrix

C = {cfet} (3.4)

where 1 ≤ f ≤ |F |, 1 ≤ e ≤ |E|, 1 ≤ t ≤ |Te|. cfet = 1 if there is
a change between the incumbent and the new data plane in the time
slot t over the directed link e, 0 otherwise.
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• The estimated delay integer matrix

D = {dfi} (3.5)

where 1 ≤ f ≤ |F |, 1 ≤ i ≤ Tf . dfi contains information about the
E2E delay for the transmission of the flow f at the iteration i defined
according to SH 1. The error of the approximation depends on the
duration of time slot τdest over the last directed link of the path of
Ef [−1].

• The estimated jitter integer vector

J = {jf} (3.6)

where 1 ≤ f ≤ |F |. jf is the jitter for the flow f in the SF . It is
evaluated on the subset of D where the flow is fixed to f according to
SH 2.

• A continuous variable W that indicates the maximum estimated delay
of the system. It is introduced to balance and minimize the delay.

• A continuous variable Z that indicates maximum estimated jitter. It
is introduced to balance and minimize the jitter.

3.1.2 Constraints

1. Each time slot t of the network interface e (e, t), could be assigned
only once. ∑

f∈F

∑
i∈Tf

yfeti ≤ 1 ∀e ∈ E, ∀t ∈ Te (3.7)

2. Each iteration i of a flow f has to be scheduled once in all the directed
links of the flow of f Ef .∑

t∈Te

xfeti = 1 ∀f ∈ F, ∀e ∈ Ef , ∀i ∈ [1;Tf ] (3.8)

3. If the scheduling window for iteration i of a flow f starts over (e, t),
then wfe contiguous time slot are allocated to f starting from t.

xfeti ≤ yfeki ∀f ∈ F, ∀e ∈ Ef , ∀t ∈ Te, ∀i ∈ [1, Tf ], ∀k ∈ [t; t+ wfe]
(3.9)

Figure 3.1 shows the value of the decision variables X and Y for the
first flow iteration over the network interface e2.
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Figure 3.1: Assignment of wfe contiguous time slots for each iteration of a
flow f .

4. The delay dfi iteration i of a flow f is evaluated as the difference
between the time in which the transmission of the frame in the des-
tination hop starts xfedestti and the time in which the physical signal
produces the first bit. This approximates the transmission delay and
evaluates the only contribution the scheduling algorithm gives as ex-
plained by SH 1. The delay is measured in the number of time slots
according to the time granularity of the destination-directed link.

dfi =
∑

t∈Tedest

(t−1)∗xfedestti−
Pf

τedest
(i−1) ∀f ∈ F, ∀i ∈ [1;Tf ] (3.10)

Figure 3.2 shows in two scenarios the estimation of the end-to-end
delay (cells in green). For the first scenario dfi = 1 and in the second
scenario dfi = 18. dfi approximates the delay in the number of time
slots of the last network interface, thus it has to be converted into
time units. Over the hypothesis that the last interface does not have a
propagation delay, tn the first scenario, the approximated end-to-end
delay is dfi ∗ τe2 = 8t.u., in the second scenario the delay is 18t.u.

Figure 3.2: End-to-end delay estimation examples

5. The jitter is the deviation from the true periodicity of a presumably
periodic signal. According to this and the simplification hypothesis
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row
∑Tf

i=1 xfeti
∑Tf

i=1 sfeti cfet
1 True False True
2 True True False
3 False False False
4 False True True

Table 3.1: True table cfet definition

SH 2, the jitter for a flow f could be evaluated as the variance of
the transmission delay of the Tf iterations over the SF . The general
mathematical definition of the variance of an aleatory variable X of

mean µ is E
[
(X − µ)2

]
. This definition is quadratic, not linear against

MSH 2. Minimizing the variance is equivalent to minimising the
distance between the maximum and minimum delay for a flow f . For
this reason, the jitter could be approximated as the difference between
maximum and minimum delay for different iterations ia, ib of the same
flow f , according to the following linear relationship:

jf ≥ dfi2−dfi1 ∀f ∈ F,∀i1, i2 s.t.1 ≤ i1 ≤ i2 ≤ Tf , dfi1 ≤ dfi2 (3.11)

Note that according to the equation, iff Tf = 1 then jf is equal to 0
(MSH4).

6. In time-sensitive protocol the delay for each iteration of the flow f is
time-constrained according to its maximum acceptable delay δf .

τedest ∗ dfi + dedest ≤ δf ∀f ∈ F, ∀i ∈ [1;Tf ] (3.12)

7. In time-sensitive protocol the jitter of the flow f is time-constrained
according to its maximum acceptable jitter υf .

τedest ∗ jf ≤ υf ∀f ∈ F (3.13)

8. The decision variable cfet evaluates the differences between the new
scheduling plan and the incumbent one.

In particular, it evaluates if there is a scheduling change for the flow f
over (e, t). True table 3.1 defines the concept of the scheduling change.
Figure 3.3 shows an example of reconfiguration of the network and the
values of the cfet decision variable.

• Row 1: If in the new scheduling plan f is allocated over (e, t) and
f is not allocated over (e, t) in the incumbent configuration there
is a change, thus cfet is True.
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Figure 3.3: An example of reconfiguration of the network between a new
data plan and an incumbent one. The cells in red mark a change in the data
plane. They are mapped over a true value of the decision variable cfet.

Tf∑
i=1

xfeti = 1 ∧
Tf∑
i=1

sfeti = 0⇒ cfet = 1

¬(
Tf∑
i=1

xfeti = 1 ∧
Tf∑
i=1

sfeti = 0) ∨ cfet = 1

¬(
Tf∑
i=1

xfeti ∧ ¬
Tf∑
i=1

sfeti) ∨ cfet

Applying De Morgan law

(¬
Tf∑
i=1

xfeti ∨
Tf∑
i=1

sfeti) ∨ cfet

The logical equation can be rewritten as a linear equation

[(1−
Tf∑
i=1

xfeti) +

Tf∑
i=1

sfeti] + cfet ≥ 1 (3.14)

The final equation is:

cfet ≥
Tf∑
i=1

(xfeti − sfeti) ∀f ∈ F, ∀e ∈ Ef , ∀t ∈ Te (3.15)

• Row 2: If in the new scheduling plan, f is allocated over (e, t)
and it is allocated over (e, t) in the incumbent one there is not a
change, thus cfet is False. We proceed as in the previous equa-
tion definition, the complete demonstration is available in the
Appendix 7.1.1.
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The final equation is:

cfet +

Tf∑
i=1

(xfeti + sfeti) ≤ 2 ∀f ∈ F, ∀e ∈ Ef , ∀t ∈ Te (3.16)

• Row 3: If in the new scheduling plan, f is not allocated over
(e, t) and also f is not allocated over (e, t) in the incumbent one
there is not a change, thus cfet is False. The demonstration of
the constraint definition is available in the Appendix 7.1.1.

The final equation is:

cfet ≤
Tf∑
i=1

(xfeti + sfeti) ∀f ∈ F, ∀e ∈ Ef , ∀t ∈ Te (3.17)

• Row 4: If in the new scheduling plan, f is not allocated over
(e, t) and f is allocated over (e, t) in the incumbent one there is
a change, thus cfet is True. The demonstration of the constraint
definition is available in the Appendix 7.1.1. The final equation
is:

cfet ≥
Tf∑
i=1

(sfeti − xfeti) ∀f ∈ F, ∀e ∈ Ef , ∀t ∈ Te (3.18)

9. Given an iteration i of the flow f and e1, e2 ∈ Ef , the scheduling of
the window frame over e2 cannot start before the minimum pipeline
time according to the heterogeneous space transformation problem
discussed in the section 2.6.3.

∑
t∈Te2

(t− 1) ∗ xfe2ti ≥ pipeline(e1, e2) +
∑
t∈Te1

(t− 1) ∗ xfe1ti

∀f ∈ F, ∀i ∈ [1, Tf ], ∀(e1, e2) ∈ Ef (3.19)

10. Given two iterations i1 and i2 of the same flow f s.t. i1 < i2 over a link
e ∈ Ef , i1 starts in time slot t1 and i2 starts in t2 s.t. t1 < t2. This
constraint expresses the precedence between iterations of the same
flow.∑

t∈Te

t ∗ xfeti2 ≥
∑
t∈Te

t ∗ xfeti1 + 1

∀f ∈ F,∀i1, i2 s.t. 1 ≤ i1 < i2 ≤ Tf , ∀e ∈ Ef (3.20)
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11. Z is the maximum between the jitter of the flows of the SF.

Z ≥ jf ∗ τlast ∀f ∈ F, last← Ef [−1] (3.21)

12. W is the maximum between the delay of the flows of the SF.

W ≥ dfi ∗ τlast + dlast ∀f ∈ F, ∀i ∈ [1, Tf ], last← Ef [−1] (3.22)

Constraints optimization and combination

To improve the performance of the algorithm is possible a-priori restrict the
solution space according to the following criteria:

1. Given a flow f and a time slot t over e ∈ Ef , t is a feasible starting
point for f over e if it is free and there is a sequence of at least wfe−1
time slots contiguous to t.

2. Given a flow f the scheduling of the iteration i has to start after
Pf ∗ (i− 1)t.u..

According to the previous criteria is possible to precompute the matrix
N = {νfeti} where νfeti is equal to 1 if the time slot (e, t) is a feasible
starting time slot for the iteration i of the flow f . The algorithm 5 defines
the pre-computation for N .

Algorithm 5 ILP required pre-computation : ilp precomputing()

Require: F,Ef , Te ∀e ∈ E,W
1: N ← {0} //init to 0 each element of the matrix
2: for f ∈ F do
3: for e ∈ Ef do
4: mask ← [1 ∗ wfe]
5: for i ∈ [1, Tf ] do
6: lower ← Pf ∗ (i− 1)
7: for t ∈ Te.bitsearch(mask) do
8: if (t− 1) ∗ τe ≥ lower then
9: νfeti ← 1

10: end if
11: end for
12: end for
13: end for
14: end for

return < N >
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Figure 3.4: The optimization of the space of solution according to the pre-
vious criteria. In orange, the space was removed according to optimization
criteria 1 and in green the space was removed according to optimization
criteria 2.

According to the previous pre-computation, the model is simplified in
solving complexity and the following constraint is added 1

xfeti ≤ νfeti ∀f ∈ F,∀e ∈ Ef , ∀i ∈ [1, Tf ],∀t ∈ Te (3.23)

Figure 3.4 shows an example of space reduction. The SF duration is equal
to 40 t.u., the wfe = 4, period of the flow Pf = 10, thus Tf = 2 iterations.
The first row refers to the first iteration of the time-critical request, and the
second row to the second iteration.

3.1.3 Circular shifting optimization

Inspired by the circular buffer, it is possible to treat the SF as a circular
frame. In this way, it is possible to achieve the acceptance of a higher num-
ber of requests 2. The optimization is achieved considering the scheduling
for two consecutive super frames SF = {SF1 ∪ SF2} 3 and then in post-
processing merging them. Figure 3.5 shows an example of a circular shifting
optimization. Two slots of different SF of a link e are defined complements
if their distance is equal to te. Two complements have to be mutually allo-
cated to guarantee a correct post-processing:

yfe(t+te)i = 1⇒ yfeti = 0, t ∈ [1, te] (3.24)

1Adding this constraint simplifies the model because set to 0 is the initial value for all
non-priori feasible space of solution. This constraint is not included in the problem size
evaluation for this reason.

2The optimization solves the problem for each flow that starts in the SF but given its
duration cannot complete the allocation in the current SF. With circular fashion alloca-
tion the remaining scheduling windows are allocated in the next SF, thus in the circular
correspondents time slots.

3This strategy increases the solving time complexity, thus this is not always a good
application. The scenario which is correct for adopting this optimization is the presence
in the network of an old or high-loaded interface.
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Figure 3.5: Circular shifting optimization example.

The logical condition is expressed by the following additional constraint:∑
f∈F

∑
i∈[1,Tf ]

[yfeti + yfe(t+te)i] ≤ 1 ∀e ∈ E, ∀t ∈ Te (3.25)

The algorithm 6 post-processes the data plan to apply the circular shift-
ing optimisation.

Algorithm 6 ILP circular buffer merging : ilp circularbuffermerge()

Require: Y
1: for f ∈ F do
2: for e ∈ Ef do
3: for i ∈ [1, Tf ] do
4: for t ∈ [te, 2 ∗ te] do //considering two contiguous super

frames.
5: if yfeti == 1 then
6: yfe(t−te)i ← 1
7: yfeti ← 0
8: end if
9: end for

10: end for
11: end for
12: end for

Figure 3.5 shows an example of circular shifting optimization. There are
two SF of a duration of 24 t.u. The scheduling windows allocated in SF2

with a dashed border are circularly shifted in post-processing in SF1 to the
time slot with a dashed red border.

3.1.4 Objective function

The objective function is formulated according to the objectives of the op-
timization problem described in Section 2.2. The following equation is the
mathematical formulation

minimize p1 ∗ Z + p2 ∗W + p3 ∗
∑
f∈F

∑
e∈E

∑
t∈Te

cfet (3.26)
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where P = {p1, p2, p3} is the weights set defined as follows to guarantee the
different relevance for the different objectives as defined in the section 2.2.

p1 =
|P |

maxf∈Fυf
(3.27)

p2 =
|P | − 1

maxf∈F δf
(3.28)

p1 =
|P | − 2∑

f∈F
∑

e∈E
∑

t∈Te
1

(3.29)

Each weight contains a normalization factor at the denominator which is the
maximum value in the domain that the variable can assume and a scaling
factor at the numerator that depends on the priority that the objective has
to assume. In the model, the priority is linear according to the problem
objectives declared.

Table 3.2 evaluates with the framework defined in 2.1 the quality of the
ILP model. The following list describes per each objective group how the
model evaluates archives the goal.

1. If a request is feasible the integer linear programming produces the
optimal configuration, otherwise the request is blocked. Solving an
ILP guarantees that the request is blocked only if infeasible. The first
objective is already scored by the deterministic approach of the ILP.

2. According to the second group of objectives, the balanced loading
between different links is guaranteed by the module that defines the
provisioning over the network. The scheduling plane that the model
describes is synchronous, thus the probability of overlaps in time and
bandwidth waste is reduced.

3. The main objective of section three is to maximize the determinism
of the network to guarantee the best performances and affordability
of the estimated metrics. Maximizing determinism means minimizing
the jitter, and the first additive component of the objective function
ensures it. Minimizing the latency means also minimizing the delay,
and the second additive component of the objective function ensures
it.

4. The last additive component of the objective function ensures the
problem-specific objective. The minimization in the number of changes
between the incumbent configuration and the new computed. Given
two or more possible configurations the algorithm takes the scheduling
reconfiguration that reduces the number of required changes.
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Objective id Scored (Y/N/-)

Primary optimization objectives

3.1 Maximize the deter-
minism

Y (first term of the obj. function)

3.2 Improve the trans-
mission metrics

Y (second term of the obj. function)

Secondary optimization objectives

2.1 Maximize the load
balancing

- (The input list Ef contains the path of the
flow f)

2.2 Minimize the length
of the path

N

2.3 Minimize the frag-
mentation

N

3.3 Maximize security Y (not explicitly, including the required addi-
tional guards’ time slots in the set Ge per each
network interface)

3.4 Maximize robust-
ness

Y (Not explicitly, including the required addi-
tional guard time slots in the set Ge per each
network interface)

Thirdly objectives

4.1 Minimize data plane
update cost

Y (third term of the obj. function)

4.2 Minimize solving
time

N (integer linear programming is np-
complete).

Non optimization objectives

1.1 Minimize topology
cost

Y (Not explicitly, when the topology changes
the minimization of the changes produced in
the scheduling data plan limits the peak traffic
produced by the update)

1.2 Multicasting N

Table 3.2: ILP model with data plane reconfiguration, objectives framework
evaluation
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3.1.5 Model size

According to 3.1 is possible to define the size of the problem. The table 3.3
approximates it. In the worst case, the following hypotheses are valid:

• The maximum number of accepted flows with a load of the network of
100% is |F | ≈ |E|. Over each time unit one flow is scheduled over one
network interface.

• The minimum period of a request must be lower than or equal to the
duration of a time unit. According to this maxf∈F (Tf ) ≤ maxe∈E(

T
τe
)

• The maximum length of a scheduling window has to be lower than
or equal to the maximum number of time slots of the interfaces, thus
maxf∈F,e∈Ef

(wfe) ≤ maxe∈E(
T
τe
).

• The following equation is valid: maxe∈E(
T
τe
) = T

mine∈Eτe
= T∗max(Be)

min(ae)

To summarize the size of the model is approximated to:

size ≈ |E|4 ∗ (T ∗max(Be)

min(ae)
)5 (3.30)

In conclusion, the size of the model depends on the topology of the network
(factor |E|), it increases with the increasing of the number of edges, and the
granularity of the scheduling. In detail, granularity depends on the number
of time units T and the maximum throughput and the minimum quantum
of bit transmitted per time slot. A higher granularity is synonymous with
lower bandwidth waste, increasing the parameter ae means increasing the
wasted throughput but reducing the complexity of the algorithm.

Given a real scenario with a maximum throughput of 10Gbits and a
packet size of 90Bytes, figure 3.6 shows the graph of the size function. The
function explodes in complexity with increasing granularity of the time unit,
in detail with T ≥ 6 ∗ 105.

3.2 Scheduling without reconfiguration

In this section the implementation of the ILP model to solve the problem
without the reconfiguration of the network data plane. The problem is
treated as a simplification of the previous statement in which the cardinality
of the set of the TS-requests is 1.

5The main contribution is given by the maximum number of time slots of network
interfaces. According to this is possible to proceed with the approximation.
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3.2. Scheduling without reconfiguration

Figure 3.6: Size of the ILP model with a reconfiguration for a real scenario,
frame of 90 Bytes and throughput less than or equal to 10Gbits.

Decision variables (a.k.a space complexity)

X |F | ∗ |E| ∗ maxe∈E( T
τe

) ∗ maxf∈F Tf

Y |F | ∗ |E| ∗ maxe∈E( T
τe

) ∗ maxf∈F Tf

C |F | ∗ |E| ∗ maxe∈E( T
τe

)

D |F | ∗ Tf

J |F |

≈ O(X) O(|F | ∗ |E| ∗ maxe∈E( T
τe

) ∗ maxf∈F Tf )4

Constraints

C1 |E| ∗ maxe∈E( T
τe

)

C2 |F | ∗ |E| ∗ maxf∈F Tf

C3 |F | ∗ |E| ∗ maxf∈F Tf ∗ maxe∈E( T
τe

) ∗ maxf∈F,e∈Ef
wfe

C4 |F | ∗ maxf∈F Tf

C5 |F | ∗ maxf∈F Tf

C6 |F | ∗ maxf∈F Tf

C7 |F |

C8 3 ∗ |F | ∗ |E| ∗ maxe∈E( T
τe

)

C9 |F | ∗ 2 ∗ |E| ∗ maxf∈F Tf

C10 |F | ∗ |E| ∗ 2 ∗ maxf∈F Tf

C11 |F |

C12 |F | ∗ maxf∈F Tf

≈ O(A) O(|F | ∗ |E| ∗ maxf∈F Tf ∗ maxe∈E( T
τe

) ∗ maxf∈F,e∈Ef
wfe

5

≈ O(A) ∗ O(X) = |F |2 ∗ |E|2 ∗ max2
e∈E( T

τe
) ∗ maxf∈F Tf ∗

maxf∈F,e∈Ef
wfe

Table 3.3: ILP model with data plane reconfiguration, problem size compu-
tation
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3.2.1 Decision Variables

In the following section are described the decision variables defined by the
model.

• The starting time slot binary matrix

X = {xeti} (3.31)

where 1 ≤ e ≤ |E|, 1 ≤ t ≤ |Te|, 1 ≤ i ≤ Tf . xeti = 1 iff the start of the
window allocation for the iteration i in the network interface e starts
at the time slot t, 0 otherwise.

• The estimated delay continuous matrix

D = {di} (3.32)

where 1 ≤ i ≤ Tf . di contains information about the E2E delay for the
transmission of the flow at the iteration i defined according to SH 1.
Its granularity depends on the duration of time slot τdest over the last
directed link dest of the path of f.

• A continuous variable J that indicates the maximum estimated jitter.
It is introduced to balance and minimize the jitter. It is evaluated over
the subset of D according to SH 2.

• A continuous variable W that indicates the maximum estimated delay.
It is introduced to balance and minimize the delay.

3.2.2 Constraints

1. Each time slot t of the network interface e, (e, t) could be assigned
only once. ∑

i∈Tf

xfeti ≤ 1 ∀e ∈ E, ∀t ∈ Te (3.33)

2. Each iteration i has to be scheduled once in all the directed links of
the path of the flow Ef .∑

t∈Te

xeti = 1 ∀f ∈ F, ∀e ∈ Ef , ∀i ∈ [1;Tf ] (3.34)

3. Given an iteration i of the flow f and e1, e2 ∈ Ef , the scheduling of
the window frame over e2 cannot start before the minimum pipeline
time according to the heterogeneous space transformation problem
discussed in the section 2.6.3.
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3.2. Scheduling without reconfiguration

∑
t∈Te2

(t− 1) ∗ xe2ti ≥ pipeline(e1, e2) +
∑
t∈Te1

(t− 1) ∗ xe1ti

∀i ∈ [1, Tf ], ∀(e1, e2) ∈ Ef (3.35)

4. The delay di of the iteration i is evaluated as the difference between
the time in which the transmission of the frame in the destination hop
starts xedestti and the time in which the physical signal produces the
first bit. This approximates the delay according to SH 1. The delay is
measured in the number of time slots according to the time granularity
of the destination-directed link.

di =
∑

t∈Tedest

(t− 1) ∗ xedestti −
Pf

τedest
(i− 1) ∀i ∈ [1;Tf ] (3.36)

5. W is the maximum between the delay of the flows of the SF.

W ≥ di ∗ τdest + ddest ∀i ∈ [1, Tf ], dest← Ef [−1] (3.37)

6. In time-sensitive protocol the delay for each iteration of the flow is
time-constrained according to its maximum acceptable delay δf .

W ≤ δf (3.38)

7. The jitter is the deviation from the true periodicity of a presumably
periodic signal. According to simplification hypothesis SH 2, the jit-
ter for a flow f could be evaluated as the variance of the transmission
delay of the Tf iterations over the SF . As discussed for the previ-
ous model the jitter could be approximated as the difference between
maximum and minimum delay for different iterations ia, ib of the flow,
according to the following linear relationship:

j ≥ di2 − di1 ∀i1, i2 s.t. 1 ≤ i1 ≤ i2 ≤ Tf , di1 ≤ di2 (3.39)

8. In time-sensitive protocol the jitter is time-constrained according to
its maximum acceptable jitter υf .

τedest ∗ j ≤ υf (3.40)

9. Given two iterations i1 and i2 of the same flow f s.t. i1 < i2 over a link
e ∈ Ef , i1 starts in time slot t1 and i2 starts in t2 s.t. t1 < t2. This
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constraint expresses the precedence between iterations of the same
flow.

This constraint is implicitly satisfied in a scenario in which the sched-
uler has to handle only one request to minimize the non-determinism.

Constraints optimization and combination

As described for the ILP model with network reconfiguration, it is possible
to precompute the matrix N = {νeti} where νeti is equal to 1 if the time
slot (e, t) is a feasible starting time slot for the iteration i. The algorithm 7
defines the pre-computation for N .

Algorithm 7 ILP required pre-computation in scheduling without recon-
figuration : ilp precomputing2()

Require: F,Ef , Te ∀e ∈ E,W
1: N ← {0} //init to 0 each element of the matrix
2: for e ∈ Ef do
3: mask ← [1 ∗ wfe]
4: for i ∈ [1, Tf ] do
5: lower ← Pf ∗ (i− 1)
6: for t ∈ Te.bitsearch(mask) do
7: if (t− 1) ∗ τe ≥ lower then
8: νeti ← 1
9: end if

10: end for
11: end for
12: end for

return < N >

According to the previous pre-computation, the model is simplified in
solving complexity and the following constraint is included in the model6

xeti ≤ νeti ∀e ∈ Ef ,∀i ∈ [1, Tf ],∀t ∈ Te (3.41)

3.2.3 Circular shifting optimization

Inspired by the circular buffer, it is possible to treat the SF as a circular
frame. In this way, it is possible to accept a higher number of requests. The
problem is described in the previous model implementation, in this section
it is adapted to work also for the ILP model without reconfiguration. Two

6Adding this constraint simplifies the model because set to 0 is the initial value for all
non-priori feasible space of solution. This constraint is not included in the problem size
evaluation for this reason.
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Figure 3.7: Circular shifting optimization example

complements 7 have to be mutually allocated to guarantee a correct post-
processing:

xeki = 1⇒ xeti = 0, t ∈ [1, te] ∀k ∈ [t+ te − wfe, t+ te + wfe − 1] (3.42)

Note that in this scenario the mutual exclusion condition is applied from
one time slot to a set of time slots. The following constraint overloads C1:

∑
i∈[1,Tf ]

xeti +
∑

i∈[1,Tf ]

t+te+wfe−1∑
k=t+te−wfe

xeti ≤ 1 ∀e ∈ E, ∀t ∈ Te (3.43)

Figure 3.7 shows an example of circular shifting optimization. The exam-
ple is the same as figure 3.5: there are two SF of a duration of 24 t.u.
The scheduling windows allocated in SF2 with a dashed border are cir-
cularly shifted in post-processing in SF1 to the time slot with a dashed
red border. To guarantee the mutual exclusion assignation of resources in
post-processing, extending the window of not-compatible configuration is
required. If the slot t is allocated then the slots marked in yellow have to
be available.

The algorithm 8 post-processes the data plane to apply the circular shift-
ing optimisation.

3.2.4 Objective function

The objective function is formulated according to the optimization prob-
lem objectives described in the section 2.2. The following equation is the
mathematical formulation

minimize j (3.44)

7Comparing the two implementations of the circular shifting optimization, the first
developed for scheduling with reconfiguration and the second developed for scheduling
without reconfiguration, the definition of complement is different. In both is a time slot
with a distance of te time slots, however for the scheduling without reconfiguration, this
definition is limited to the starting time slot of a scheduling window, thus the optimization
has a granularity of wfe contiguous time slots.
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Algorithm 8 ILP circular buffer merging in scheduling without reconfigu-
ration : ilp circularbuffermerge2()

Require: Y
1: for e ∈ Ef do
2: for i ∈ [1, Tf ] do
3: for t ∈ [te, 2 ∗ te] do //considering two contiguous super frames.
4: if xeti == 1 then
5: xe(t−te)i ← 1
6: xeti ← 0
7: end if
8: end for
9: end for

10: end for

Table 3.4 evaluates with the framework defined in 2.1 the quality of the
produced ILP model. The following list describes for each objective group
how the model evaluates archives the goal.

1. Solving an ILP guarantees that the request is blocked only if infeasible.
The first objective is already scored by the deterministic approach of
the ILP.

2. As for the previous model: according to the second group of objec-
tives, the balanced loading between different links is guaranteed by the
module that defines the provisioning over the network. The scheduling
plane that the model describes is synchronous, thus the probability of
overlaps in time and bandwidth waste is reduced.

3. The main objective of section three is to maximize the determinism
of the network to guarantee the best performances and affordability
of the estimated metrics. Maximizing determinism means minimizing
the jitter, this is the aim of the objective function. This may be non-
optimal because in this model is not possible to reconfigure the data
plane (a.k.a. shifting previous allocations).

4. The minimization of the number of changes between the incumbent
configuration and the new computed is not achieved, because there is
no comparison between the new and incumbent data plane.

3.2.5 Model size

According to 3.1 is possible to define the size of the problem. The table 3.5
approximates it. In the worst case, the following hypotheses are valid:

• The minimum period of a request has to be Pf ≤ 1. According to this
maxf∈F (Tf ) ≤ maxe∈E(

T
τe
)
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Objective id Scored (Y/N/-)

Primary optimization objectives

3.1 Maximize the deter-
minism

Y (first term of the obj. function)

3.2 Improve the trans-
mission metrics

N

Secondary optimization objectives

2.1 Maximize the load
balancing

- (The input list Ef contains the path of the
flow f)

2.2 Minimize the length
of the path

N

2.3 Minimize the frag-
mentation

N

3.3 Maximize security Y (not explicitly, including the required addi-
tional guards’ time slots in the set Ge per each
network interface)

3.4 Maximize robust-
ness

Y (Not explicitly, including the required addi-
tional guards’ time slots in the set Ge per each
network interface)

Thirdly objectives

4.1 Minimize data plane
update cost

N

4.2 Minimize solving
time

N (integer linear programming is np-
complete).

Non optimization objectives

1.1 Minimize topology
cost

N

1.2 Multicasting N

Table 3.4: ILP model without data plane reconfiguration, objectives frame-
work evaluation
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Figure 3.8: Size of the ILP model without reconfiguration for a real scenario,
frame of 90 Bytes and throughput less than or equal to 10Gbits.

• The following equation is valid: maxe∈E(
T
τe
) = T

mine∈Eτe
= T∗max(Be)

min(ae)

To summarize the complexity of the model is approximated to:

size ≈ |E|2 ∗ (T ∗max(Be)

min(ae)
)2 (3.45)

In conclusion, as for the model with the reconfiguration the size of the model
depends on the topology of the network (factor |E|), it increases with the
increasing of the number of edges, and the granularity of the scheduling.
In detail, granularity depends on the number of time units T , the maxi-
mum throughput of a network interface, and the minimum quantum of bit
transmitted per time slot.

Given the scenario proposed for the previous model with a maximum
throughput of 10Gbits and a packet size of 90Bytes, figure 3.8 shows the
graph of the size function. The function explodes in complexity with the
increase of the time unit granularity, in detail with T ≥ 4 ∗ 105. Comparing
the previous model with the scheduling without reconfiguration the dimen-
sion of the size value has a scale of 1016 instead of 1037, the simplification of
the model has produced an asymptotic reduction of the size of the problem
of a factor 1021.

8The main contribution is given by the maximum number of time slots of network
interfaces. According to this is possible to proceed with the approximation.
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Decision variables (a.k.a space complexity)

X |E| ∗ maxe∈E( T
τe

) ∗ T
Pf

D T
Pf

≈ O(X) O(E| ∗ maxe∈E( T
τe

) ∗ T
Pf

)8

Constraints

C1 This constraint reduces the solution space, it doesn’t increase the size
complexity

C2 |E| ∗ maxe∈E( T
τe

)

C3 |E| ∗ Tf

C4 |E| ∗ Tf

C5 |E| ∗ Tf

C6 Tf

C7 |E|

≈ O(A) O(|E| ∗ 2 ∗ maxe∈E( T
τe

)

≈ O(A) ∗ O(X) = |E|2 ∗ maxe∈E( T
τe

)2

Table 3.5: ILP model without reconfiguration, problem size computation
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Heuristic model

In this chapter, starting from [19] and [13] a Greedy + LS TAS scheduling
algorithm. According to the problem statement section, the algorithm is
split into two parts:

• Constructive phase: given a set of flows as input and an empty schedul-
ing data plane generate the local best scheduling. This section solves
only the scheduling without reconfiguration problem for one or multi-
ple requests in F .

• LS phase: given a new request that cannot be allocated in the in-
cumbent scheduling plan, explore the optimal local solutions that can
accept the new scheduling closer to the incumbent scheduling plan.
This section solves the scheduling with the data plane reconfiguration
problem.

The greedy algorithm is characterized by the components described in
table 4.1.

4.1 Constructive phase

The problem can be split into two sub-problems:

• Find the local optimal starting time slot t over the source network
interface of the path.

• Given the starting time slot t define the optimal allocation for balanc-
ing and minimizing the scheduling delay.

Starting from the first problem, to find the first allocation time slot tstart
over the source network interface of the path Ef [0] the following heuristic
criteria restrict the searching area in the space of solutions:
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Symbol Description

Ω TAS solves a combinatorial problem. Ω is the space of so-
lution, it contains all the combinations between TS-flows,
network interfaces, time slots and iterations.

C = {cfi} C is the set of candidates. A candidate cfi for the flow f
ad the iteration in SF i is a sorted list of tuples (e, t) where
e ∈ Ef and t ∈ Te. The order is given by the key e according
to the path of f .

cost(.) Each candidate has a cost that is represented by ∆j , which
is the variation of the flow’s jitter if the candidate is chosen,
delay, which is the e2e estimated delay and tstart which is
the first allocated time slot in the source link of the path.

S ⊂ Ω The solution of the scheduling problem. Per each iteration
of each flow, one candidate is chosen.

Table 4.1: Heuristic components definition

1. Resources cannot be allocated to the TS-flow before the signal has
generated the first bit. According to SH 1 the following equation
declares the heuristic criteria:

τEf [0] ∗ (tstart − 1) ≥ Pf ∗ (i− 1) (4.1)

2. The minimum flow latency plus the starting scheduling delay has to
be lower than the maximum admitted delay δf

startingdelay + latencyf ≤ δf (4.2)

Where the minimum latency is evaluated in the case of express trans-
mission with he1e2 = 1 1 according to algorithm 9. The starting delay
is the time in which the packet available for transmission has to wait
in the buffer of the source interface defined as:

startingdelay = τEf [0] ∗ (tstart − 1)− Pf ∗ (i− 1) (4.3)

3. To allocate Tf iterations of the flow f is required that at iteration i:

T − τEf [0] ∗ (tstart + wfe) ≥ τEf [0] ∗ wfe ∗ (Tf − i) (4.4)

This criterion guarantees that there is space to allocate all iterations
of the flow f over the source network interface.

1Reference about the coefficient definition 2.6.2
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Algorithm 9 Min latency for a flow f : latency()

Require: Ef

1: latency ← 0
2: for e ∈ Ef do
3: latency ← latency + τe + de
4: end for

return < latency >

Figure 4.1: Starting time slot searching problem, space reduction example.

Figure 4.1 shows an example of the problem with pruning of the searching
space according to the previous heuristic conditions. In the figure T = 40t.u.,
Pf = 10 t.u, Tf = 3 iterations, wfe = 9 slots, τEf [0] = 1, the minimum
latency is 3t.u. and δf = 9t.u. The final allocation of iteration 3 is marked in
the esource row. In the searching area row: in green the possible starting time
slots, in grey excluded according to the heuristic criteria. For each criterion,
the cells in red are the pruned space. According to 1: tstart − 1 ≥ 10 ∗ 2;
according to 2: startingdelay + 3 ≤ 9; according to 3: 40 − (tstart + 9) ≥
9 ∗ (4 − 3). Applying all the heuristic pruning conditions the problem, in
this scenario, is reduced from a searching space of 40t.u. to only 2t.u. with
a pruning ratio of 90%.

Turning on the second problem algorithm 10 implements the constric-
tive heuristic approach while algorithm 112 implements the generation of
a candidate given a tstart, which is the output of the first problem. The
candidate() function follows the first available allocation strategy which is
explained in the next section about the research of patterns in a bit array
starting from the time slot tstart. Line 4 updates the tstart time slot ac-
cording to the transformation problem for the next interface in the path.
Overall, the goal is to allocate all the iterations of all requests while mini-
mizing and balancing the estimated E2E delay. As declared in the problem

2The coefficient le,enext is defined in the time division problem section, it is a coefficient
to pass between different time slots of different network interfaces at the corresponding
time. The function findF irt() is defined in the next section: Time slots pattern search.
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statement section, the variance of the delay is the jitter of the transmis-
sion. For optimization purposes, its definition is simplified as the difference
between the maximum and minimum delay of iterations of the same flow:
model structure hypothesis 5 (MSH 5).

Each iteration i of a flow f has a maximum allowed delay δf and a
maximum allowed jitter υf . At the first iteration allocation, the objective is
to find the best allocation to minimize the delay, for the following iterations
incrementally the algorithm has to balance the delay to minimize the jitter.
For each flow f , two thresholds f.min delay and f.max delay are defined,
thus the space between them is the variance of the delay for f in SF. When
a candidate c for the flow f at iteration i is generated the following metrics
are computed:

• End-to-end estimated delay which is cost(c).delay

• Estimated variation of the space of variance of f which is cost(c).∆j .

The algorithm 12 implements the cost(.) function. Algorithm 13 implements
the comparator pattern to compare two candidates, thus selecting the best
one, which minimizes the cost. When a candidate is selected in lines 22 and
25 the thresholds of the TS-flow are updated.

Figure 4.2 shows an example of the scheduler decisions for a TS request
with 10 iterations in SF with randomly allocated network loading of 50%.
The graph shows for each iteration the cost of the selected candidate. While
points in red have a cost in terms of delay variance, points in green choose
a feasible configuration inside the variance area between the two thresholds,
thus they don’t have a cost. E.g. iterations 6,8,9,10 have better candidates
in terms of delay but they are not accepted to evict a jitter additional cost.

4.1.1 Time slots pattern search

For each network interface e, the array Te is represented as a bit array, in
which the element at the index (t−1) is equal to 1 iff the time slot t ∈ [1, te]
is available 0 otherwise. This is the heart of the solving time performance of
the heuristic algorithm. The array is chunked in words of 8 bytes, in practice
it is represented as a list of integers, each integer is represented over 32bits,
thus each integer represents 32 time slots. For the implementation in python
the library [11] provides all the required API.

E.g. representing with te = 100 requires a list of 4 integers, according
to this the memory complexity has an enhancement of x32. To access the
time slot t = 31, thus at the index 30 is required to access the first integer
in the list with the following bit-mask 0x2.

The algorithm 14 implements the function findF irst(.) which returns
the first available time slot over an interface e such that it is followed by
wfe − 1 available time slots.
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Algorithm 10 Constructive phase for heuristic solution: construct()

Require: F, I //Given a set of requests and a set of iterations for the
requests

1: S ← {}
2: for f ∈ F do
3: f.min delay ← δf
4: f.max delay ← 0
5: f.jitter ← 0
6: for i ∈ I do
7: C ← {}
8: ltstart ←

Pf∗(i−1)
τEf [0]+1

9: ut2start ← ltstart + δf − latency(f)
10: ut3start ← tEf [0] − wfEf [0] ∗ (Tf − 2)
11: for tstart ∈ [ltstart,min(ut3start, ut2start)] do
12: C ← C ∪ candidate(f, i, tstart)
13: end for
14: if C == {} then return INFEASIBLE
15: end if
16: cbest ← argminc∈Ccost(c)
17: S ← S ∪ {cbest}
18: assing(cbest)
19: f.jitter ← f.jitter + cost(cbest).∆j

20: if f.jitter > υ.f then return INFEASIBLE
21: end if
22: if f.min delay > cost(cbest).delay then
23: f.min delay ← cost(cbest).delay
24: end if
25: if f.max delay < cost(cbest).delay then
26: f.max delay ← cost(cbest).delay
27: end if
28: end for
29: end for
30: j ← maxf∈F (f.jitter)
31: d← maxf∈F (f.max delay)

return < S, j, d >
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Figure 4.2: TAS heuristic scheduler best candidates example

Algorithm 11 Candidate definition: candidate()

Require: f, i, tstart
1: for e ∈ Ef do
2: enext ← e+ 1
3: t← findFirst(e, tstart, wfe)
4: tstart ← le,enext ∗ (t ∗ τe + pipeline(e, enext))
5: c← C ∪ [(e, t)]
6: end for
7: if |c| <> |Ef | or cost(c).delay > δf then

return < {} >
8: end if

return < c >

Algorithm 12 Cost function implementation: cost()

Require: cfi
1: delay ← dEf [−1] + (cfi[−1].tstart − 1) ∗ τEf [−1] − Pf ∗ (i− 1)
2: if delay > f.max delay then
3: ∆j ← delay − f.max delay
4: else if delay < f.min delay then
5: ∆j ← f.min delay − delay
6: else
7: ∆j ← 0
8: end if

return < ∆j , delay, c[0].tstart >
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Algorithm 13 Candidates comparator implementation : compare()

Require: c1, c2
1: if c1 == {} then

return c2
2: end if
3: best← c2
4: if cost(c1).∆j ≤ cost(c2).∆j then
5: best← c1
6: else if cost(c1).delay ≤ cost(c2).delay then
7: best← c1
8: else if cost(c1).tstart ≤ cost(c2).tstart then
9: best← c1

10: end if
return best

This function implements also the circular buffer optimization as dis-
cussed in the ILP model. In the heuristic solution is not required to solve
the problem for two contiguous SFs, if there are no available time slots in
the set [t, te], then the function searches for the first available in the set
[1, t− 1].

Algorithm 14 Find the first pattern matching in bitarray: findFirst()

Require: e ∈ E, t ∈ [1, te], wfe

1: mask ← bitarray([1 ∗ wfe])
2: for idx ∈ [t− 1; te − 1] do
3: if Te[idx : idx+ wfe] & mask then

return idx+ 1
4: end if
5: mask ← mask >> 1
6: end for
7: for idx ∈ [0; t− 2] do
8: if Te[idx : idx+ wfe] & mask then

return idx+ 1
9: end if

10: mask ← mask >> 1
11: end for

4.1.2 Jitter optimizer module

The following module has the aim to optimize the jitter of a request f . Given
a scheduling solution S, the module finds an iteration with the minimum
delay for the request f , removes it and performs again a constructive phase
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4.2. Local search

Figure 4.3: Heuristic TAS optimizer feedback scheme

to find the scheduling that better minimizes the jitter of the TS-flow. The
optimization process ends when there are no performed optimizations.

Figure 4.3 shows the cycle of the optimization process. The feedback
mechanism in the cycle guarantees the end of the process.

Algorithm 15 Jitter optimization: jitter optimize()

Require: f, S
1: while True do
2: cmin = argmin{c∈S|c.f==f}cost(c).delay

3: S‘ ← S \ {cmin}
4: deallocate(cmin)
5: f.min delay ← min{c∈S|c.f==f}cost(c).delay
6: < {c}, j, d >= constructive(cmin.f, cmin.i)
7: S‘ ← S‘ ∪ {c}
8: if f.min delay < cost(cmin).delay then
9: S ← S‘

10: else
return < S, j, d >

11: end if
12: end while

4.2 Local search

This section is available for the only problem statement that admits the
reconfiguration of the network data plane.

In the scheduling without reconfiguration, when a new request is received
if there are no candidates the request is blocked, in the enhanced version
the request could be accepted after a reconfiguration of the incumbent data
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Figure 4.4: Heuristic TAS with data plane reconfiguration

plane. To reconfigure the data plane is required to evaluate the dependen-
cies of the blocked request, remove that, and then run a new constructive
phase with the removed dependencies and the blocked request sorted by the
level of restriction of the metric constraints. A dependency is an iteration
i of a scheduled request f that collides with the hypothetical scheduling
of r. The LS algorithm 16 describes the process. Figure 4.4 shows how LS
with data plane reconfiguration works. A new request is processed by a con-
structive phase, if it is not feasible, then the dependencies checker removes
dependencies and it runs again constructive phase.

4.3 Optimization objectives and solving complex-
ity

The function cost(.) defines the optimization objectives. For each flow, at
the first iteration, the delay is minimized, and then the delay is balanced
to reduce the cost in terms of jitter. Thus, as for the ILP model, the main
priority is given to the maximization of network determinism. Table 4.2
evaluates with the framework defined in 2.1 the quality of the heuristic
algorithm.

Each module of the heuristic model has a different solving complexity,
however, the main contribution to the solving time is given by the construc-
tive phase. For each flow and each iteration are generated ∆tstart candidates
according to the tstart problem. The number of iterations performed by the
candidate function is equal to |Ef | and for the findFirst function is at most
te access in memory.

To summarize the solving complexity is O(|F | ∗ Tf ∗ ∆tstart ∗ |Ef | ∗ te)
Assuming to schedule the first iteration of a request under the following
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Algorithm 16 LS network reconfiguration: reconfigure()

Require: r, S
1: R← {}
2: S‘ ← S
3: for i ∈ [1, Tr] do
4: R← R ∪ {(r, i)}
5: ltstart ←

Pf∗(i−1)
τEf [0]+1

6: ut2start ← ltstart + δf − latency(f)
7: ut3start ← tEf [0] − wfEf [0] ∗ (Tf − 2)
8: esrc ← Ef [0]
9: for tstart ∈ [ltstart,min(ut3start, ut2start)] do

10: if Tesrc [tstart − 1] == 0 then
11: c← findAssignment(S, esrc, tstart)
12: S‘ ← S‘ \ {c}
13: deallocate(c.f, c.i)
14: R← R ∪ {(c.f, c.i)}
15: end if
16: end for
17: end for
18: R← sort(R, f :

δf
|Ef | , ASC)

19: S“, j, d = constructive(R.flows,R.iterations)
20: if S“ == INFEASIBLE then // The request is blocked

return return < S, j, d >
21: end if
22: S, j, d = merge(S“, S‘)

return < S, j, d >
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worst-case assumptions:

• |F | ≤ |E|: at each time slot only one TS-flow can be assigned to one
network interface.

• Tf ≤ min(te). At most the duration of the period Pf ≤ mine∈Ef
(τe).

• The maximum admitted delay δf ≥ T

• The scheduling window size wfe = 1

• |Ef | ≤ |E|. Suppose that at least one flow has a path with all the
interfaces of the network.

• The max(te) ≤ T . The number of time units of SF is the maximum
allowed number of time slots.

• ∆tstart ≤ te − Tf . According to the maximization of the ∆tstart .

The complexity of the heuristic algorithm is O(|E|2 ∗ t2e ∗ (te−1)) ≈ O(|E|2 ∗
T 3).

The complexity of the heuristic algorithm depends on the topology of the
network and the granularity of the scheduling. Comparing this definition
and the ILP model with the data plane reconfiguration’s size, the heuristic
one is not dependent on the maximum network throughput. The findF irst
function returns the first available pattern with wfe available time slots.
To conclude, the ILP solving complexity is np-complete, and the heuristic
algorithm is polynomial.
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4.3. Optimization objectives and solving complexity

Objective id Scored (Y/N/-)

Primary optimization objectives

3.1 Maximize the deter-
minism

Y (Primary optimization)

3.2 Improve the trans-
mission metrics

Y (the first available time slot is taken by
the candidate function, thus the latency is
bounded).

Secondary optimization objectives

2.1 Maximize the load
balancing

- (The input list Ef contains the path of the
flow f)

2.2 Minimize the length
of the path

N

2.3 Minimize the frag-
mentation

N

3.3 Maximize security Y (not explicitly, including the required addi-
tional guards’ time slots in the set Ge per each
network interface)

3.4 Maximize robust-
ness

Y (Not explicitly, including the required addi-
tional guards’ time slots in the set Ge per each
network interface)

Thirdly objectives

4.1 Minimize data plane
update cost

Y (the dependencies checker module limits the
dependencies definition to the only source net-
work interface)

4.2 Minimize solving
time

Y

Non optimization objectives

1.1 Minimize topology
cost

N

1.2 Multicasting N

Table 4.2: Heuristic model with jitter optimizer and dependencies checker
modules, objectives framework evaluation
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Verification, validation and
benchmarks

A model is built on its underlying hypothesis, and ensuring its correctness
and proper application is essential for its accreditation. They represent how
the author understands the system, conceptualizes the model, and develops
the coding. In the work, the hypothesis and assumptions are declared, in
particular, there are structural and simplification hypotheses. Structural
hypotheses in ILP are validated by the solver layer, thus by [9] and [7].
Simplification hypotheses are not validated. This is a starting point for
future work: demonstrating that stochastic components of the E2E delay
have a variance of at most one time slot of the last network interface of
the path of the TS-flow1. About the data, there are no hypotheses, but
mathematical restrictions in 2.5.

According to [5] validation means ensuring the model is correct, while
verification means ensuring the model has been correctly coded. Accredi-
tation means that the stakeholders believe in the model and will use it to
implement or modify (according to the model results) the system, however,
this phase is out of the scope of this work.

The life cycle of a simulation project is based on the iterative process of
interleaving verification, validation and accreditation sub-processes phases.
The failure of one of them requires a backtrack to the previous steps of
the project. Figure 5.1 form [5] defines the Verification, validation and
accreditation process (VV&A) phases. There are eight of these (in the figure
represented by squares), linked with the references in this work:

1Performing this requires the knowledge of specifications of different IIoT-devices.
First, it needs to measure the signal’s period of a TS-flow lots of time, then evaluate
its probability distribution. At the end compare the variance of the obtained distribution
with the duration of a time slot in the last network interface of the path of the flow. Iterate
this process with different IIoT devices and extract the features to collect the different
produced signals. E.g. with a clustering model it is possible to predict for generic time-
sensitive flow its period variance, according to the extracted features.
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1. Goals, since the clarification of the relevant elements that rule the
organization are a product by itself. In the developed model the goals
are defined in table 2.1.

2. Problem Entity, which is the definition of the problem analyzed. For
the model of this work, the problem statements are defined in table
2.6, 2.5.

3. Conceptual Model, which defines a complete and unambiguous repre-
sentation of the model. The work defines different conceptual models,
two in the ILP section and different combinations in the heuristic sec-
tion.

4. Scenarios/Configurations to be analyzed, described in the Validation
section.

5. Computerized Model, that is the simulator that codes the model. In
the validation section the real-case scenario example. In the future
work section, there is a reference to discrete network simulators as
OMT++/ns-3 which could be a good means to improve this phase of
the process.

6. Solutions, verified with unit and integration tests in the Verification
section.

7. Accepted Solutions, accepted because of a model-based discussion. At
writing time this process is running, thus demanding a future work
report.

8. System itself since it will be modified based on the Accepted Solutions.

5.1 Verification

The function 17 verifies the input of the TAS scheduling model and the
function 18 verifies the validity of a produced solution. Figure 5.2 shows in
a high-level flow chart the point at which each verification function is tested.

5.1.1 Unit tests

With unit tests, each component of the scheduling algorithm is tested au-
tonomously. Withe-box testing is the chosen strategy, each possible scenario
and code branch could be tested. Table 5.1 reports the tests performed with
covered scenarios.
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Figure 5.1: Verification, validation and accreditation process for a simula-
tion model from Fonseca i Casas, P. A Continuous Process for Validation,
Verification, and Accreditation of Simulation Models. Mathematics 2023,
11, 845.
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5.1. Verification

Algorithm 17 Input verification : apriori feasible()

Require: F,E
1: for e1, e2 ∈ E do
2: if MCD(ae1 , ae2) ≤ 1 then return < false > // violated math

restriction
3: end if
4: if MCD(τe, T ) ≤ 1 then return < false > // violated math re-

striction
5: end if
6: re1 ← |Te| // Available time slots after pre-processing
7: end for
8: for f ∈ F do
9: if MCD(Pf , T ) ≤ 1 then return < false > // violated math

restriction
10: end if
11: for e ∈ Ef do
12: re ← re − wfe

13: if re ≤ 0 then return < false > // no enough resources
14: end if
15: end for
16: end for

return < true >
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Algorithm 18 Output verification : valid()

Require: F,E
1: S ← {0} // index f
2: for e ∈ E do
3: test← Te // Available time slots after pre-processing
4: for (f, t) ∈ SFe do
5: Sf ← Sf + 1
6: if Sf > Tf then return < false > // flow scheduled twice (or

more)
7: end if
8: for j ∈ [t− 1, t+ wfe − 2] do
9: if test[j] == 0 then return < false > // overlapping in

resources
10: else
11: test[j]← 0
12: end if
13: end for
14: end for
15: end for
16: for f ∈ F do
17: if Sf ≤ Tf then return < false > // flow not scheduled
18: end if
19: for e1, e2 ∈ Ef do
20: for i ∈ [1, Tf ] do
21: t1 ← τe1 ∗ (SFe1 [f, i]− 1)
22: t2 ← τe2 ∗ (SFe2 [f, i]− 1)
23: if t2 < t1 + pipeline(e1, e2) then return < false >
24: end if
25: end for
26: end for
27: end for

return < true >
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Test ID Coverage apriori feasible() valid()
Scheduling feasibility: Empty network with 3 links with time
slot duration τ and a bit processed.
U1 Given a request f, the e2e delay of f is constant the jitter is 0 and

each iteration i of f precedes the iteration i+1 in all the directed
links of Ef

true true

U2 Given two requests f1, f2, where Ef1
= Ef2

true true

U3 Given two requests f1, f2, where Ef2
! = Ef1

true true

U4 Given two requests f1, f2, where Ef2
! = Ef1

for the order of the

link

true true

U5 Given a request f where Tf > te. (not enough time slots) false -

U5 Given a request f where Pf = 3 ∗ T . (The period of the flow f is
higher than T)

false -

U6 Given a request f where δf = 1t.u. (The flow is not scheduled,
too restrictive admitted delay)

true false

U7 Given a request f where Pf = 1t.u. (The flow is not scheduled,
too many iterations)

true false

U7 Given a request f where Ef = []. Expected e2e delay and jitter
0.

true true

Heterogeneous scenario: Empty network with 2 links with dif-
ferent time slot duration and processed bits.
U9 Given two requests f1, f2 true true
U9.1 Given two requests f1, f2 where ae1

= 3, ae2
= 4, τe1 = 3, τe2 =

4
true true

U9.2 Given two requests f1, f2 where ae1
= 4, ae2

= 3, τe1 = 3, τe2 =
4

true true

U9.3 Given two requests f1, f2 where ae1
= 3, ae2

= 3, τe1 = 3, τe2 =
4

true true

U9.4 Given two requests f1, f2 where ae1
= 3, ae2

= 4, τe1 = 4, τe2 =
3

true true

U9.5 Given two requests f1, f2 where ae1 = 4, ae2 = 3, τe1 = 4, τe2 =
3

true true

U9.6 Given two requests f1, f2 where ae1
= 3, ae2

= 3τe1 = 4, τe2 = 3 true true

U9.7 Given two requests f1, f2 where ae1 = 3, ae2 = 3, τe1 = 4, τe2 =
4

true true

Circula buffer optimization
U10 Given two requests f1, f2 where the last iteration of f1 ends in

the second SF. Check the correctness of the e2e estimated delay.
true true

U11 Given two requests f1, f2 where the Pf1
= T − 1 false -

Space reduction matrix N
U12 Given two requests f1, f2 true true
U13 Given two requests f1, f2 where Ef2

[−1] is full true false

Jitter optimizer module for heuristic in empty network of sec-
tion 1.
U14 Given a request f where Tf = 5, T = 5 ∗Pf e2e jitter expected 0. true true

U14.1 Given a request f where Tf = 10, T = 5 ∗ Pf e2e jitter expected
0.

true false

U14.2 Given a request f where Tf = 1, T = 5 ∗Pf e2e jitter expected 0. true true

LS data plane reconfiguration module for heuristic in 90%
load network.
U15 Given a request f where Tf = 5, T = Pf true true

ILP data plane reconfiguration for ILP with model reconfigu-
ration.
U16 Given a request f and empty network. Expected 0 changes true true
U17 Given a request f and 95% load network. Expected reconfigura-

tion.
true ?(true)

Table 5.1: Unit tests
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Figure 5.2: Verification high-level flow-chart

5.1.2 Integration tests

Integration tests aim to detect interface errors, inconsistencies, and interac-
tion issues between modules that have already been unit-tested. Integration
tests examine the behaviour of multiple components when they are com-
bined, each of them treated as a black box. Given the smallest instance
with 50 requests described in the Benchmark section, at the start empty,
the following configurations are tested:

1. ILP scheduling with data plane reconfiguration + circular shifting op-
timization

2. ILP scheduling without data plane reconfiguration + circular shifting
optimization

3. Heuristic + jitter LS optimization + LS data plane reconfiguration

When a request is accepted the state of the network is stored and the next
request is processed. The statements that accept data plane reconfiguration
can perform changes at the already accepted request allocations. The ex-
pected output data plane can differ for different configurations however the
results of the functions apriori feasible() and valid() have to be true in all
configurations.

5.2 Validation

In this section the validation of the model with the simulation of the TAS
scheduling algorithm in a heterogeneous network scenario with different TS-
flows and a transport network between two user equipment. The simulations
run over a VM with 4 vCore and 32GB of RAM.
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Figure 5.3: Network simulation model. In orange are the radio interfaces
that produce TS traffic as IoT sensors connected to an access point. In
blu are the interfaces of the provider transport network optical wired. In
red are the destination DC interfaces for real-time processing. In green the
destination interfaces reached with a radio connection as IoT servos which
perform undefined functions.

5.2.1 Simulation network configuration

The duration of SF is 10ms. The transport network is optical-wired and the
mean distance between different hops is approximated to 20 km. The mean
propagation delay is 100us for each interface. The time slot duration per
each optical interface is 0.8 ns and its capacity in bit processed is 1Byte,
thus the theoretical throughput is 10Gbits. Each user equipment, which
is the source of a TS-flow is connected to an access point with a WiFi6
interface with Modulation and Coding Scheme (MCS)-52. The duration of
the time slot is 0.5us and the capacity in bits processed is 3 Byte, thus with
a throughput of 48Mbits, the propagation delay is 4us. The last network
interface could be optical-wired or WiFi; for optical-wired, the propagation
delay is evaluated over 100m, thus equal to 500ns.

Figure 5.3 shows an example of a network model for simulation purposes.

5.2.2 Simulation statement

To evaluate different performances for different destination interfaces (op-
tical wired vs WiFi6) and different processing modes (express vs store and

2(MCS)-5 defined by 64-QAM modulation and a coding ratio of 2
3
. To represent 64

symbols is required to transmit 6 bits but only 4 of them transmit data according to the
coding ratio.
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forward), four different simulation configurations are defined in table 5.3.
The TS-traffic is randomly generated between two different classes of ap-
plication, which are described in table 5.2. The label wifi2wifi means a TS
flow generated from an IIoT interface to a WiFi IIoT interface, while the
label wifi2wired means a flow from a WiFi IIoT interface to the data center,
thus the destination interface is optical-wired. The simulation tries to allo-
cate 3000 requests over the TSN described heterogeneous network, for each
request if feasible, thus allocated, the new network status is installed. The
number of the source and destination user equipments is 200.

Application 1

Pf : Period of the flow 1ms

δf : Maximum admitted delay 1ms

υf : Maximum admitted jitter 100 µs

#f : Bit transmitted by each iteration random [90, 120] bytes

Ef : Path randomMST(src,dest)

Application 2

Pf : Period of the flow 10ms

δf : Maximum admitted delay 10ms

υf : Maximum admitted jitter 1ms

#f : Bit transmitted by each iteration random [900, 1200] bytes

Ef : Path randomMST(src,dest)

Table 5.2: Simulation applications

5.2.3 Simulation results

Given the size of the model, the TAS scheduler is implemented with the
heuristic model with the jitter optimization module. Table 5.3 reports the
feasibility of each simulation configuration, in other words, the percentage of
accepted requests over 3000. For each simulation configuration are reported
the following graphs:

• Solving and pre-processing time. The solving time is interpolated
with a cubic polynomial, according to the estimated solving complexity
of T in 4.3.

• KPI extracted for application. Estimated jitter and delay for each
request. Maximum and mean over a dynamic window from the first
request so far. Mean of estimated delay over a mobile window of 100
values.

• Cumulative network performance. Network performance cumu-
lative of Application 1 and 2 traffic increasing the loading.
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Path
Processing mode

express storeAndForward

wifi2wifi C1: 71.1% C2: 69.86%

wifi2wired C3: 80% C4: 77.43%

Table 5.3: Simulation configurations with feasibility percentage
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Figure 5.4: C1 simulation results
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Figure 5.5: C2 simulation results
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Figure 5.6: C3 simulation results
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Figure 5.7: C4 simulation results
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Observations

Observing the graphs 5.4, 5.5, 5.6, 5.7 the following claims are formulated:

1. Each request is independent of the others of the same application class.
The E2E estimated jitter of each request of the Application 2 class is
0 ms because for each cycle there is only one iteration.

2. For all the configurations, about 90% of the requests of class Appli-
cation 2 are satisfied; however, the percentage of the feasibility of
Application 1 traffic depends on different configurations (C1 and C2
about 60%, C3 and C4 about 70%).

3. The solving time follows a cubic polynomial interpolation. In partic-
ular for Application 1, which is composed of 10 iterations, is between
300ms and 500ms and for Application 2 which is composed of only 1
iteration is between 180ms and 300ms.

4. The pre-processing time is constant and depends on the network con-
figuration. It is about 150ms for C1 and C2 and about 4s for C3 and
C4. The substantial difference is given by the memory operation and
the pre-computation of transformation matrices.

5. The maximum cumulative delay and jitter of the system are step func-
tions that increase with increasing loading of the TS-network.

6. The boxplot graphs confirm that the objective function is reached,
the jitter has a minimum variance for both applications and the delay
has a higher variance to balance it for different iterations of the same
request.

7. Variation of the slope of the delay mobile mean over a window of 100
values is justified by the increasing of the maximum allowed jitter for
Application 1.

8. Application 1 reaches the saturation point 3 after 200 requests in C1
and C2, when 600 requests are accommodated in C3, and after 500
requests in C4. The jitter for different requests of this class is between
0us and 100us.

9. For Application 2 the maximum reached delay is 4ms if the destination
is wired, and 5ms if the last is a WiFi interface. The saturation point
is not reached.

3The point in which the maximum allowed delay is reached by a request of the appli-
cation class.
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Figure 5.8: Metrics comparison for different configurations.

Figure 5.8 compares E2E estimated metrics for different configurations.
The label FN2FN is mapped over wifi2wifi and FN2DC is mapped over
wifi2dc. Focusing over 1500 requests accommodated:

1. Overall, the estimated jitter and delay have better performance with
express processing mode.

2. The main contribution to the delay estimation is given by the propa-
gation delay. This explains why, when comparing scenarios in wifi2dc,
the improvements in delay estimation for the express mode are not sig-
nificant. However, when comparing the maximum jitter, Application
1 in express processing mode shows a lower jitter of 30us.

3. The metrics for wifi2dc are better than wifi2wifi. This is explained by
different factors:

• Throughput of the optical wired is higher than WiFi6, thus its
transmission granularity is better.

• The propagation delay for optical-wired is lower than WiFi6 (4us
for WiFi6 and 0.5us for optical connections in data center).

5.2.4 Throughput

In this section throughput analysis given the previous network configura-
tion C2, labelled with wifi2wifi and storeAndForward, varying the number
of bits processed by interfaces, mixing 3000 TS-requests randomly gener-
ated by Application 1 and Application 2. Table 5.4 reports the simulated
configurations and figure 5.9 illustrates the cumulative metrics for each con-
figuration.
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(a) C2.T1 (b) C2.T2

(c) C2.T3 (d) C2.T4

Figure 5.9: Cumulative metrics for throughput simulations.

WiFi Processing [Bytes]
Optical Processing [Bytes]

1 2 5 10

3 C2.T1 - - -

6 - C2.T2 - -

15 - - C2.T3 -

30 - - - C2.T4

Table 5.4: Simulation configurations throughput evaluation

Throughput waste

Starting from the definition of the time slot of the interface e as an atomic
unit of duration τe in which are proceed ae bits it is possible to define the
wasted throughput of a network interface e as:

Bw
e =

∑
f∈F

∑
t∈te

∑
i∈[1,Tf ]

ae ∗ xfeti −
∑

{f∈F |e∈Ef}#f

T
(5.1)

At the numerator, the difference between the amount of allocated processed
bits in the network interface e (a.k.a used capacity) and the number of bits
transmitted by the TS-flows allocated over e, at the denominator the number
of time units of the SF. The contribution given by the band of guards is not
clear and depends on future work, it may be approximated to 5% of traffic
throughput. This analysis doesn’t treat bands of guard contribution.

Simulation results

Figure 5.10 shows the simulated TS traffic throughput (signal traffic through-
put), the network used capacity and the wasted throughput as defined. The
coexistence of different classes of traffic TS, BE, QoS over the provider’s
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(a) C2.T1 (b) C2.T2

(c) C2.T3 (d) C2.T4

Figure 5.10: Throughput for the interfaces with allocated more than or equal
110 Kbits of TS-traffic. Interfaces 1,2,3 are transport network switches,
others are WiFi6 interfaces. With x, the cumulative signal throughput is
allocated over the interface. With the orange line the wasted throughput.
The y-scale is logarithmic to summarize the data.

transport network is feasible. In all scenarios the used capacity of the trans-
port network is about 14Mbits, thus the remaining throughput can be allo-
cated to the other traffic classes. The wasted throughput is approximated
to 0 over the transport network, and it increases according to the increase
in the number of bits processed over each network interface. The wasted
traffic in the WiFi interfaces varies in different configurations up to 1% of
traffic processed.

Focusing on the wasting of throughput, the experiment is repeated for
non-real scenarios described in table 5.5. In this section 100 requests mixed
from Application 1 and Application 2 are accommodated. As expected
increasing the the number of bits processed increases the wasted throughput.

5.2.5 Network loading and scheduling fragmentation

In this section, the network loading is analysed for configurations C2.T1
and C2.T4, which are defined in table 5.4. For each transport network’s
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Transport network
Id Path Optical [Bytes] WiFi [Bytes] Network [Kbps] Signal [Kbps] % Wasted
C2.T5 wifi2wifi 10 30 448 446 0.46
C4.T5 wifi2dc 10 30 482 480 0.41
C2.T6 wifi2wifi 20 60 500 495 1
C4.T6 wifi2dc 20 60 499 495 0.8
C2.T7 wifi2wifi 50 150 479 462 3.55
C4.T7 wifi2dc 50 150 486 467 3.9
C2.T8 wifi2wifi 100 300 451 412 8.65
C4.T8 wifi2dc 100 300 513 471 8.18

Lan network
C2.T5 wifi2wifi 10 30 250 244.5 2.2
C4.T5 wifi2dc 10 30 278 274 1.44
C2.T6 wifi2wifi 20 60 288 279 3.1
C4.T6 wifi2dc 20 60 264.5 255 3.6
C2.T7 wifi2wifi 50 150 301 273 9.3
C4.T7 wifi2dc 50 150 260 250 3.84
C2.T8 wifi2wifi 100 300 292 324 23.3
C4.T8 wifi2dc 100 300 309 287 7.12

Table 5.5: Wasted throughput increasing the bits processed per time slot

interface, the SF is divided into 40 sections of 250us. For each section, the
sequences of contiguous available time slots are evaluated, and their lengths
are determined. This measurement is repeated throughout the simulation
at intervals of 800 requests.

Simulation results

Data are summarized with the boxplot graphs by section id4 in figure 5.11
for link 1, 5.12 for link 2, and 5.13 for link 3. This analysis shows the
increase in the loading and the scheduling fragmentation. A higher number
of requests is equal to a section with a lower number of contiguous time
slots available. For processing a 90B TS-request, which is the minimum TS-
size in the simulation, a scheduling window of at least 0.768us is required
with a throughput of 10 Gbps. The red line marks this lower-bound. If a
section has not this time availability the request is accommodated in the next
section with a delay cost of 250us. Fragmentation afflicts all the sections
with a mean contiguous availability under the red line. Comparing C2.T1
and C2.T10, the fragmentation has a lower negative effect when the size
of processed Bytes and the duration of each time slot are higher. The box
plots also show the effect of the circular buffer optimization, the load is
higher over the starting sections of the SF. Comparing different transport
network’s interfaces the load is homogeneous and well-balanced, validating
the first availability allocation strategy.

5.3 Benchmarks

In this section the comparison of performances of two models:

4The section id is the id of the first time slot of the section.
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(a) 1 Byte, 400 req. (b) 1 Byte, 1200 req. (c) 1 Byte, 2000 req.

(d) 10 Byte, 400 req. (e) 10 Byte, 1200 req. (f) 10 Byte, 2000 req.

Figure 5.11: Loading and scheduling fragmentation transport network inter-
face 1 increasing accommodated requests. In the first row 1 Byte processed
per time slot, in the second row 10 Bytes processed per time slot.

(a) 1 Byte, 400 req. (b) 1 Byte, 1200 req. (c) 1 Byte, 2000 req.

(d) 10 Byte, 400 req. (e) 10 Byte, 1200 req. (f) 10 Byte, 2000 req.

Figure 5.12: Loading and scheduling fragmentation transport network inter-
face 2 increasing accommodated requests. In the first row 1 Byte processed
per time slot, in the second row 10 Bytes processed per time slot.

• ILP model without data plane reconfiguration with circular buffer op-
timization solved with Gurobi [7].

• Heuristic model without data plane reconfiguration with jitter opti-
mization LS.
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(a) 1 Byte, 400 req. (b) 1 Byte, 1200 req. (c) 1 Byte, 2000 req.

(d) 10 Byte, 400 req. (e) 10 Byte, 1200 req. (f) 10 Byte, 2000 req.

Figure 5.13: Loading and scheduling fragmentation transport network inter-
face 3 increasing accommodated requests. In the first row 1 Byte processed
per time slot, in the second row 10 Bytes processed per time slot.

The experiments are conducted according to fractional factorial Design of
experiment (DoE) 5. According to the model’s size, the factors are T which
is the granularity of the scheduling and max(Be) which is the maximum
throughput of an interface in the network. The benchmark evaluates the
solving time and the optimality gap. For each factor, six levels are evaluated
and the benchmark configurations 6 are summarized in table 5.6.The other
simulation parameters are fixed: the network topology is the same as figure
5.3, the optical ae is 1 Byte and the radio ae is 24 Bytes. The duration of time
slots is generated according to the parameter Be. Requests are randomly
generated with a path labeled as wifi2wifi and δf = T , υf = 0.1 ∗ T and a
period Pf = T . The number of bytes for each request is random from 80
to 120. The number of requests generated per instance is 50. As for the
validation section, each accepted instance is stored in the data plane and its
time slots are not available for the next requests.

Given the number of resources and the time cost required to carry out
the ILP experiment, DoE approximates the benchmark of an intermediate
configuration CY extracting the contribution of factor T and the contribu-
tion of max(Be) at specific levels.

5Experimental design is used to study the effects of multiple factors on a response
variable. A full factorial design tests every possible combination of factor levels, instead
in a fractional design only a set of experiments is run.

6This section aims to evaluate how the factors affect the performance and the quality
of the solution in a generic configuration that sure doesn’t replicate a real scenario.

101



5.3. Benchmarks

T [ms]
max(Be) [Mbps]

10 20 30 40 80 100

10 C1 C2 C3 C4 C5 C6

20 C7 - - - - -

30 C8 - - - CZ -

40 C9 - - - - -

80 C10 - - CX - -

100 C11 - - - - CY

Table 5.6: Fractional design of experiment for benchmark solving time and
memory vs optimality gap

5.3.1 Execution time

Figure 5.14: Execution time ILP vs Heuristic

Execution time is the amount of pre-processing time and solving time.
During the pre-processing phase, the model is instantiated in memory, and
optimization structures, such as the circular shifting optimization and the
matrix N in ILP, are pre-computed. During the solving time, the solution is
built. Figure 5.14 reports the mean solving and pre-processing time for 50
requests of each instance. ILP by definition is np-complete, thus increasing
the factor as expected the solving time follows an exponential function. The
solving time of the heuristic seems to be constant, however, as demonstrated
by the validation section, follows a cubic polynomial with increasing granu-
larity. For the ILP model, the pre-processing time is linear with increasing
factors but with a low slope. For the heuristic model, the pre-processing
time depends on the network status.
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5.3.2 Feasibility

Figure 5.15: Feasibility ILP vs Heuristic

According to the ILP, all generated instances are feasible. Figure 5.15
shows the feasibility ratio for the heuristic, which is the ratio between the
number of accepted requests of the instance and the number of requests of
each instance (in this case 50). The red lines mean the point at which given
the network configuration the feasibility, is comparable 7 between heuristic
and ILP. The graph demonstrates that for small instances in which the
throughput and the scheduling granularity are low, executing the ILP is the
best choice; in big instances with high granularity, given the increasing of
required memory by ILP, the heuristic model produces a comparable solution
with the global optimal, thus could be the chosen model.

5.3.3 Objectives

Figure 5.16 shows how the optimization objectives are achieved by the two
different models. All instances have a possible data plane configuration
with 0 units of time of estimated jitter. The error of the heuristic model
is explained by the Delay opt. gap, which is the difference between the
maximum delay for the heuristic and ILP after that the 50th request is
evaluated. A negative opt. gap means that the delay has to be higher to
reduce the gap over the global optimal jitter. Increasing the granularity
and the throughput of the network interfaces, the delay has to increase for
two reasons: higher granularity represents the time in a higher number of
time units, and increasing the delay is possible to reduce the jitter gap.

7In this context comparable means that the feasibility of the Heuristic model has an
optimal solution with a gap at most 20%.
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Figure 5.16: Objectives ILP vs Heuristic

This section can be also used to validate the need for a Heuristic jitter
optimization module.
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Conclusion

Developing the TAS scheduling module for E2E TSN is feasible. According
to the benchmark comparison between the two developed models is possible
to claim that for small heterogeneous networks with limited throughput,
the ILP is the global optimal solution. However, increasing the throughput
of the network interfaces, the size of the model explodes and a heuristic
approach is required.

If for a simple vehicle or machine network, in which the throughput and
propagation delay are limited the ILP guarantees the best performances,
in the heterogeneous scenario which involves the transport network of a
provider and its integration with IIoT networks the problem is solved by
the heuristic model.

Analysing benchmarks in a bigger scenario the quality of the results
between ILP and heuristic models are comparable in terms of feasibility,
however, an optimal gap is defined as the distance between the local optimal
solution and the global one, which is the different level of determinism of
the network.

Benchmarks verify that in lots of instances, the price to minimize the
estimated E2E jitter of transmission is an increase of the delay. This could
be not a real problem, as defined in the objectives declaration, table 2.2, TAS
has to guarantee a higher number of accepted TS-requests then to guarantee
the maximum determinism of the network as a secondary objective.

Both models have declared errors in metrics estimation at most the du-
ration of a time slot of the destination network interface. They are open
points of this work, however, to be pragmatic an error at most of 4us over
a signal that has a period of 1ms should be acceptable, and comparable
with the same signal period error. To cover these points, a collaboration
between producers of network interfaces and IoT devices is necessary. The
degree of freedom is adding guard bands in the scheduling as proposed by
[10], accepting the increase of throughput waste in the transport network.

This work proposes two different verified scheduling statements, the first
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one accepts performing changes over an incumbent data plane, and the sec-
ond one tries to allocate resources without the reconfiguration of the data
plane. The difference between them is, that the first one guarantees higher
feasibility, but the practical problem is that reconfiguring allocated flows
produces the loss of frames, thus an implicit increase of the jitter. This in-
crease cannot be estimated because depends on the load of the network. In
the worst case, the jitter can reach one TSN cycle after one reconfiguration,
violating the maximum jitter constraint. Thus each reconfigured flow could
be removed for jitter constraint violation, generating an involution of the
network status.

The simplest way to proceed is supposing the no reconfiguration state-
ment. This hypothesis seems to be verified by the network throughput
graph, which shows that the TS-traffic is limited over the transport network,
about 14Mbps with 3000 requests. The throughput, thus the availability of
network resources, doesn’t seem a problem for the scheduling.

A consistent problem could be the propagation delay of the transport
network. This is a physical bound of the transmission mean; however, the
pipeline optimization for the express transmission mode can reduce its im-
pact over feasibility. Deleting the effect of the wired propagation delay at
the last hop, analysing configurations C1 and C2 of the validation section,
the mean mobile delay in a window of 100 values is about the same. The
difference between C1 and C2 is the processing mode, for the first one is
express and for the second one is store and forward. The improvements of
express processing mode over the E2E delay are covered by the high prop-
agation delay, however the estimated jitter for Application 1 is better in
C1 and for this reason its feasibility is higher of 2 %. Performing the same
comparison the feasibility of C3 (express processing mode) over C4 (store
and forward processing mode) is higher of 3.6%, and the C3 maximum jitter
for Application 1 is 30us lower of the maximum jitter of C4. Analysing the
configurations C2 and C4, thus excluding the effect of the express processing
mode optimization, Application 1 reaches the saturation point 1 in C4 after
400 requests and in C2 after 200 requests. In conclusion, the metrics for
wired terminal interfaces are better and the best performance in estimated
jitter and delay is reached with the express processing mode optimization.

The period of a request is a crucial point; comparing Application 1 with
Application 2, in which the bits transmitted in one SF are about the same
because Application 2 has a payload 10 times the payload of Application 1
and Application 1 has a period 10 times the period of Application 2, the
performance of the Application 2 are better and it doesn’t reach a saturation
point. The cost of the real-time is the faster saturation of the network for the
specific traffic. In the same duration, for example, a sensor of Application 1

1The point in which the estimated e2e maximum delay for a specific application reaches
the maximum delay admitted for the application.
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has updated its value ten times, and the sensor of Application 2 only once.

6.1 Main Contributions

The main contributions of this thesis are:

• In TSN TAS scheduler. This master thesis is in the scope of a project
that aims to reach the feasibility of supporting TS-traffic over the
providers’ transport network and high-performance wireless. The de-
veloped TAS scheduling module has to support heterogeneous net-
work. In the opposite of the cited papers the developed TAS has to
work with interfaces with varying throughputs (from Mbits to Gbits),
thus different inertial frames of reference. TAS scheduler accepts vary-
ing processing modes, store and forward and express. Following a code
pipeline’s fashion approach, the scheduler overlaps the assignation
of resources and minimizes the latency. This contribution is funda-
mental for scheduling TS-traffic over a provider’s transport network
because mitigates the effect of high propagation delay. This master
thesis includes a strategy to accept the reconfiguration of a TS
data plane maximising the determinism of the network during the
installation of a new one. This is achieved by the minimization of
the number of changes between the installed and new generated data
planes. The TAS admits the possibility of multiple iterations of a flow
in SF and implements a circular shifting scheduling in SF inspired
by the circular buffer pattern, to increase the number of accepted
requests.

• In Job Shop Scheduling Problem. The developed tools could be ex-
tended to a general JSSP problem. The particular contribution of ILP
model is for the reconfiguration of a scheduling plan minimizing the
number of changes between the new and the incumbent scheduling.
Another highlightable contribution is given by the pre-computation of
a matrix to prune the space of solution, excluding a-priori non-feasible
solutions.

6.2 List of Publication

6.2.1 Publications in Conferences

• L. Velasco, G. Graziadei, Y. El Kaisi, J. Villares, O. Muñoz, J. Vidal,
and M. Ruiz, ”Provisioning of Time-Sensitive and non-Time-Sensitive
Flows: from Control to Data Plane” accepted in International Work-
shop on Time-Sensitive and Deterministic Networking (TENSOR),
collocated with the IFIP Networking conference, 2024. https://

zenodo.org/records/11393029
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6.3. Future works

At the writing time, we are targeting to extend this paper to a journal paper.

6.3 Future works

While this work has made significant contributions to the field mainly for the
heterogeneous network model definition, several avenues for future research
could extend the topic. In this section some potential directions for future
work.

6.3.1 Improvement of the work

The work could be improved by discrete event simulations with OMNET++
environment using the NeSTiNg - Network Simulator for Time-Sensitive
Networking (TSN) add-in or ns-3 with a custom TSN add-in. Simulators
deliver a real scenario for TSN, thus a good alternative validation method.

To improve the bitarray pattern search in the heuristic model it is possible
to follow the alternative parallel algorithm proposed in [14] which declares
an improvement of x7, combined with hardware accelerator and better man-
agement of the memory. This section is really interesting because with these
two improvements should be possible to solve the scheduling problem for a
new request in real-time about the same duration of SF.

Starting from the comparison of application 1 and 2 traffic, defined in
the validation section, an additive module can be developed to optimize the
scheduling fragmentation. Completing the open point about the estimation
of IIoT period error and accepting the scheduling error of at most one time
slot of the last network interface of the path. Adding the required guards
according to TSN specifications to reach the correct threshold between the
wasted throughput and the acceptance of the synchronization error between
network and signal.

6.3.2 Different approaches

Starting from the definition of the matrix N in the ILP model it is pos-
sible to research a dynamic programming algorithm for TAS. Its existence
is not sure, e.g. [6] proposes a good and innovative dynamic programming
approach, however, as remarked by the paper extension the proof of cor-
rectness given it is unfortunately flawed. Another research opportunity is
the application of deep reinforcement learning starting from reinforcement
learning model as [16], however, this approach could be tricky in the data
plane reconfiguration and it is not guaranteed that its accuracy could be
better than heuristic iterative algorithms. The developed model statement
refers to a cyclic repetitive SF, with DRL could be feasible to develop dy-
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namic requests 2 scheduling and guarantee better performances for the other
classes of traffic (BE, and QoS).

6.3.3 Applications in practice

In this section practical applications of TSN over transport network:

1. Industrial automation: given different geographical and functional
units and one IIoT control centre, it is feasible centralize the manag-
ing and synchronization of them. E.g. in the following scenario there
are two productive units with servo robots and one warehouse with
autonomous mobile robots. While the servo robots produce some-
thing synchronously and with limited latency the warehouse robots
can optimize the warehouse space to accept the new input. This could
minimize the required warehouse space.

2. Autonomous Vehicles and Intelligent Transportation Systems:
TSN can facilitate real-time communication between vehicles, road in-
frastructure, and public transport networks, improving traffic safety
and efficiency. E.g. the monitoring of roadway traffic. Each vehicle
produces TS-traffic as the speed, the peace, and the path. The vehicle
has a radio interface connected to smart mobility access points. The
access points are connected to the provider transportation network.
The data are processed by the roadway control room for real-time
traffic prediction, monitoring speed, and accident notification. The
traffic of a vehicle can also sent to other vehicles as the next one or
the previous one for the real-time trajectory and the peace update.
The real-time updates are the real potentiality of the network as an
example for security reasons.

3. Energy: Synchronization provided by TSN can enhance the man-
agement and control of smart electrical grids, enabling more efficient
energy distribution and better integration of renewable sources. E.g.
reducing the peaks of energy introduced in the network there is a re-
duction of wasted energy and also a financial benefit.

4. Healthcare: supporting real-time communication for telemedicine
and remote surgery applications, ensuring low latency and high re-
liability for critical medical data transmission.

5. Financial: deterministic networking for high-frequency trading plat-
forms, where milliseconds can impact financial transactions signifi-
cantly.

2In different SF a request can transmit the varying amount of bits, or can assume a
varying path e.g. according to the network load.
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6.4 Research Project

European funded project

This master’s thesis is in the scope of NextGeneration UNICO5G Towards
a smart and effIcient telecoM Infrastructure meetiNG current and future
industry needs (TIMING) (TSI-063000-2021-145).

110



Chapter 7

Appendix

7.1 ILP model

7.1.1 Constrain definitions

The mathematical demonstration to define the model’s constraints is avail-
able in this section.

Constraint 8

• Row 2

Tf∑
i=1

xfeti = 1 ∧
Tf∑
i=1

sfeti = 1⇒ cfet = 0

¬(
Tf∑
i=1

xfeti = 1 ∧
Tf∑
i=1

sfeti = 1) ∨ cfet = 0

¬(
Tf∑
i=1

xfeti ∧
Tf∑
i=1

sfeti) ∨ ¬cfet

Applying De Morgan law

(¬
Tf∑
i=1

xfeti ∨ ¬
Tf∑
i=1

sfeti) ∨ ¬cfet

The logical equation can be rewritten as a linear equation

[(1−
Tf∑
i=1

xfeti) + (1−
Tf∑
i=1

sfeti)] + 1− cfet ≥ 1 (7.1)
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• Row 3

Tf∑
i=1

xfeti = 0 ∧
Tf∑
i=1

sfeti = 0⇒ cfet = 0

¬(
Tf∑
i=1

xfeti = 0 ∧
Tf∑
i=1

sfeti = 0) ∨ cfet = 0

¬(¬
Tf∑
i=1

xfeti ∧ ¬
Tf∑
i=1

sfeti) ∨ ¬cfet

Applying De Morgan law

(

Tf∑
i=1

xfeti ∨
Tf∑
i=1

sfeti) ∨ ¬cfet

The logical equation can be rewritten as a linear equation

[

Tf∑
i=1

xfeti +

Tf∑
i=1

sfeti] + 1− cfet ≥ 1 (7.2)

• Row 4

Tf∑
i=1

xfeti = 0 ∧
Tf∑
i=1

sfeti = 1⇒ cfet = 1

¬(
Tf∑
i=1

xfeti = 0 ∧
Tf∑
i=1

sfeti = 1) ∨ cfet = 1

¬(¬
Tf∑
i=1

xfeti ∧
Tf∑
i=1

sfeti) ∨ cfet

Applying De Morgan law

(

Tf∑
i=1

xfeti ∨ ¬
Tf∑
i=1

sfeti) ∨ cfet

The logical equation can be rewritten as a linear equation

[

Tf∑
i=1

xfeti + (1−
Tf∑
i=1

sfeti)] + cfet ≥ 1 (7.3)

7.2 Model implementation

The following GitHub repository reports the model implementation for ILP
and heuristic, and the instances generated for the repetition of simulations.
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7.2.1 Simulations repetition

Script for the validation test. For ILP limit the size of the instance.

Generator of instances

Script instance generator/generator.py generates instances for the simula-
tion. Table 7.1 defines the parameters the script accepts. Each new in-
stance X is stored in the folder instance generator/instances/instance X,
which contains three files description.txt, network.json, and requests.json.
The description reports the instance configuration parameters as the in-
stance size, number of requests and granularity of scheduling, while the
network file contains the network configuration, and requests.json contains
the requests of TS-traffic as declared in table 2.3.

Parameter Description Required
(Y/N)

Accepted val-
ues

Processing
mode (-pm)

Network inter-
faces processing
mode

Y storeAndForward,
fast

SF duration (-t) T parameter of
TSN cycle

Y int

Path generation
mode (-p)

Random gener-
ation of path
strategies

Y wifi2dc,
wifi2wifi

Number of re-
quests (-n)

Random gener-
ation of path
strategies

Y wifi2dc,
wifi2wifi

Size (-s) Minimum size
for the TS-
requests in
bytes

Y int, ≥ 64

Table 7.1: Instances generator parameters

ILP validation

Script validation ilp.py runs the simulation given a generated instance folder.
It allocates iteratively one TS request, then stores the new network configu-
ration and allocates the next requests. The output of the process is a binary
file out ilp.pickle, which is stored in the instance folder. The information
stored is about the solving and pre-processing time, the requests that are
accepted or blocked, and the maximum jitter and delay after each iteration.
Table 7.2 reports the parameters of the script.
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Parameter Description Required
(Y/N)

Accepted val-
ues

Instance (-i) Instance folder
generated with
instance gener-
ator, it contains
at least net-
work.json and
requests.json
files

Y path

Table 7.2: Simulation parameters

Heuristic validation

Script validation heuristic.py runs the simulation given a generated instance
folder. It allocates iteratively one TS request, then stores the new network
configuration and allocates the next requests. The output of the process
is a binary file out heuristic.pickle, which is stored in the instance folder.
The information stored is about the solving and pre-processing time, the
requests that are accepted or blocked, and the maximum jitter and delay
after each iteration. Table 7.2 reports the parameters of the script.

Other scripts in the utility folder take the binary file produced as the
output of the simulation, process it and produce a .csv file with cumulative
maximum and minimum delay per iteration and graphs to summarize the
data. Each script is documented with a script helper which is printed in the
terminal with the parameter -h.
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