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systems.
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Master’s thesis Théo Marchetta, iPCS

Contents

Contents 1

1 Introduction 2

2 Model 3
2.1 Vector autoregressive model . . . . . . . . . . . . . . . . . . . . . 3
2.2 Some properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Linear regression in Machine Learning is related to linear re-

sponse theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Determination of the optimal empirical response function . . . . 6

3 Study of the response function in the classical case, extension
to the large dimensional limit 7
3.1 Causal links in the case of small sizes systems . . . . . . . . . . . 7
3.2 Derivation of the theoretical response function . . . . . . . . . . 8
3.3 Limiting case : from classical multivariate statistics to the curse

of dimensionality. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Determination of the deterministic equivalent . . . . . . . . . . . 11

4 Numerical simulations 12
4.1 Implementation of the model . . . . . . . . . . . . . . . . . . . . 12
4.2 Classical limit : small matrices and high number of measures . . 13
4.3 Large dimensional limit . . . . . . . . . . . . . . . . . . . . . . . 16

5 Conclusion 18

A Solution of the Fokker-Planck
equation 19

B Loss function 20

References 20

1



Master’s thesis Théo Marchetta, iPCS

1 Introduction

Nature is a complex causal network where every event can be seen as the end
point of a causal chain. Thus, the causal relationships between different entities
has always been of interest for the scientists. This is particularly studied in the
context of Earth’s climate system, an up to date exemple being El Niño. The
origin of El Niño is a time-periodic perturbation of the atmospheric circula-
tion. This phenomenon then causes an heating of the east coast of the pacific
ocean, itself inducing some global movements of fishes and a perturbation of the
climate of the area [1]. A better knowledge of the behavior of this climate phe-
nomenon would be helpful to predict and limitate the socio-economical effects.
For a physical system, causality is a principle at the basis of special relativity,
which induces no faster-than-light flow of information. This has been a source
of motivation to understand deeper our knowledge of the world due to numerous
paradoxes that emerged, the most famous one being the EPR paradox, where
locality and causality are closely related. This paradox has been solved in the
early 80’s by the 2022 Nobel Prize Alain Aspect [2].
Note also that two variables may be correlated even when no causal link is
present. This is called a spurious relationship, the main reason being the pres-
ence of a third variable being causal of both of them. This misconception has
been already identified in the old societies, which already warned the fallacy
of the argument with the sentence “cum hoc sed non propter hoc” (“with this,
therefore because of this”), to be distanced from “post hoc ergo propter hoc”
(“after this, therefore because of this”).

There are two ways to obtain information about causal relationships. The
first one is called the interventional causality, where you modify one parameter
of your system and see the evolution of the others. This approach has been built
on a bayesian theory by the computer scientist Judea Pearl [3]. When the inter-
vention on your system is small enough, one can use the linear response theory,
which has first been developed in order to study out-of-equilibrium systems in
statistical physics. For a nondeterministic system with two variables xi and xj ,
the response from xj at time 0 to xi at time t is defined as :

Rj→i(t) = Rij(t) ≡ lim
δx0,j→0

δxt,i

δx0,j
(1)

where the overline stands for an average over the probability distribution of the
system we are looking at.
However, if you apply a small perturbation on your system, this one doesn’t
“know” if the perturbation is done by an external agent or by random fluc-
tuations. Thus, it is possible for certain systems to compute the theoretical
relaxation after the perturbation. This is Onsager’s regression hypothesis [4].
In the case of non-linear systems, depending on the strength of the non-linearity,
the linear response approximation may break down. In this case, one may use
the tools from Machine Learning (ML) and try to build a specific neural network
which is able to learn the true non-linear causal links between variables. This
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idea has been explored by an ex master student in the lab [5]. However, new
architectures may be needed in order for the problem to be called solved.

In a real-world setting, having an intervention on a specific system may be
difficult or impossible due to technical reasons. Thus, one would like to infer
the causality between variables just by having in possession a set of data. This
observational causality is said to be harder to reach, because not perturbing
the system gives you less information about it. It is however a much more
flexible technique. Finding a general framework in order to consistently recover
the causality between different parameters would be a lead forward as it would
significantly help our comprehension of the world around us.
The objective of this master’s thesis is to infer observationaly and analyse the
causality between different variables interacting in a linear way. In particular, we
will see how the noise, which may be intrinsic to our system or linked to hidden
variables may impact the dynamics of learning of our model. Interestingly, if
the number of parameters interacting together is sufficiently big, one can expect
some sort of concentration of measures [6].
This would mean that, in certain limits, the theory or Random matrices, which
will be introduced thereafter may be useful in order to make conclusions on our
model and to get additional insights.

2 Model

2.1 Vector autoregressive model

We will put ourself in the frame of graph theory. Let G = (V,E) be a directed
graph where V is the set of vertices. In the following, |V | = D where D will be
called the dimension of our system while E is the set of vertices. This graph can
be totally described by an adjacency matrix A where the value Aij represents
the weight of the edge linking node i to node j. If Aij = 0, no connexion is
present between edges i and j.
We are interested in the system :

Xt+1 = AXt + ξt (2)

where Xt, ξt ∈ RD, ξt ∼ N (0, σ2) is a gaussian white noise, that is
〈
ξtξ

⊤
t′

〉
=

δt,t′1D and 1D is the identity matrix of size D×D. Since no confusion will occur
in the following, we will simply write it as 1. For the sake of convergence, the
spectral radius of A need to be strictly smaller than 1. If one of the eigenvalues
of the response matrix is equal to 1, then the system is said to be marginal.
However, due to the noise term, no statistical convergence will be observed as
the system would obey an usual D-dimensional random walk.
Eq (2) has the structure of a vector autoregression, that is a model evolving in
time where every variable depends linearly on the others. More specially, it is
said to be of order 1 because the state of the D-dimensional vector X at time
t only depends on the state of X at time t− 1.
This type of equation has been largely studied in the litterature. Let us give
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some usual properties that will be needed in the following of this thesis.

2.2 Some properties

Eq (2) is a discrete stochastic differential equation. In the limit of large time,
this can be made continuous :

dX = (A− 1)Xdt+ dW (t) (3)

where dW (t) is a Wiener process. We see that this model converges to an
Ornstein-Uhlenbeck process, which eventually relaxes to its mean value in the
case of a positive semi-definite matrix A. The full derivation of the probability
of a specific state X∗ as a function of time, p(X = X∗, t) has been done in
appendix A.

- Expected value.
E[Xt+1] = AE[Xt] + E[ξt] (4)

Suppose that the process starts at a time tstart = −∞. Then, we may expect
that for a time t > 0, the process has attained a stationary state, that is all the
statistical variables such as the expected value do not depend on time. This
means that we have E[Xt+1] = E[Xt] ≡ E[X] and, by using the property of
the noise :

E[X] = 0 (5)

- Correlation.
By multiplying Eq (2) by X⊤

t+1, in the case of a stationary state, we end up
with :

C0 ≡ E[XX⊤] = AC0A
⊤ + 1 (6)

This equation is know as a discrete-time Lyapunov equation. The closed form
solution can be written as an infinite sum :

C0 =

+∞∑
k=0

AkAk⊤ (7)

The subscript 0 is associated to the time delay between the two variables for
which we compute the correlation time. C0 is also called the population matrix.

-Autocorrelation.
The autocorrelation matrix can be expressed as a function of the population
matrix. For a delay of 1, we have :

C1 ≡ E[Xτ+1X
⊤
τ ] = E[(AXτ + ξτ ) (Xτ )]

= AC0

(8)
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This is because the noise sampled at time τ , ξτ can only impact the variables
at time at least t+ 1. Consequently, E[ξτXτ ] = 0. More generally, if one looks
at the correlation at a time difference t :

Ct ≡ E[Xt+τX
⊤
τ ] = AtC0 (9)

Finally, another useful relation for the following is :

Xt = AtX0 +

t−1∑
τ=0

At−τ−1ξτ (10)

which can be found by doing a simple recurrence, starting from Eq (2).

2.3 Linear regression in Machine Learning is related to
linear response theory

Now, imagine that you have a finite set of measures during a time serie of length
T, {{Xs

t }, t ∈ [[0;T−1]]; s ∈ [[1;N ]]} and that you want to do a linear regression

in order to fit your data. The objective is to infer the response matrix R̂(t) at
each discrete time that fits the best your observations, that is:

Xt = R̂(t)X0 (11)

In the following, the notation R̂(t) is intended to be read as R̂t for any
matrix. This is to avoid any confusion with the transpose of a matrix.
We see that, in this case, the matrix R̂(t) can be interpreted as a response
function defined in the linear response theory. To begin with, we have :

R̂ij(t) =
∂Xt,i

∂X0,j
(12)

Moreover, by taking an empirical average defined, for an observable O as ⟨O⟩N =

1/N
∑N

s=1 O
s, we have : 〈

R̂ij(t)
〉
N

=

〈
∂Xt,i

∂X0,j

〉
(13)

Moreover, if we suppose the process to be already stationary at time t = 0 and
in the case where we have a sufficient amount of measures, the empirical average
can be seen as an approximation of an ensemble average. In this limiting case,
the empirical response converges to the response defined in the linear response
theory, as exposed in Eq (1) :

lim
N→∞

〈
R̂ij(t)

〉
N

→ Rij(t) (14)
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2.4 Determination of the optimal empirical response func-
tion

When there are fewer number of measures than the number of parameters in a
ML model, in our case N < D, we fall in the undetermined regime where the
optimized values of our set of parameters is not unique. On the contrary, if you
have a number of measures that is close but superior to the size of the matrix
R̂(t), N ≳ D one falls in the overfitting regime where your function inferred fits
almost perfectly your dataset. However, this model would have high variance
due to its high dependency to the dataset we are given.

More quantitatively, the usual protocol that one does to best determine R̂(t)
is to minimize the overall euclidian distance between Xt and R̂(t)X0, taking
into account the N different measures. This can be done by defining a loss
function built on the mean squared error :

L[R̂(t)] =
1

2N

N∑
s=1

(
Xs

t − R̂(t)Xs
0

)⊤ (
Xs

t − R̂(t)Xs
0

)
(15)

and minimizing it with respect to every components of the inferred matrix
R̂ij(t). To counteract the possible overfitting, one can add another constraint
on the norm of the elements of the matrix. This additional term is called a
regularizer and is added to the loss function :

Lreg[R̂(t)] = αL[R̂(t)] + L(R̂) (16)

Usually, what is used in the literature are function of the form L(R̂) =
∑

i,j |R̂ij |
(L1 regularization) or L(R̂) = 1

2Tr[R̂(t)⊤R̂(t)] (L2 regularization). L1 regular-
ization tends to make the inferred matrix sparser than L2. Note that we intro-
duced a parameter α in order to give more or less power to this regularization.
This parameter has to be fine tuned empirically in order to see how well is the
generalization of your model.
In the following, we will concentrate ourselves with the L2 regularizer, as the
L1 one do not give a closed form expression for the coefficient of the response
matrix. This is because the function y = |x| is not differentiable in x = 0 [7].
To solve the inference problem, first we define the sample correlation matrix Ĉ0

and the sample autocorrelation matrix Ĉt as :

Ĉ0 ≡ 1

N

N∑
s=1

Xs
0X

s⊤
0 (17)

Ĉt ≡
1

N

N∑
s=1

Xs
tX

s⊤
0 (18)

By using the L2 regularizer and minimizing the loss function expressed in Eq
(16), one finds (for a demonstration, see appendix B) :

R̂(t) = αĈtĜ
(D) (19)

6



Master’s thesis Théo Marchetta, iPCS

Where we defined Ĝ(D) ≡ (1+ αĈ0)
−1. The superscript D is here specified to

show the finite size of our system. This will be analyzed in more detail in the
following.
We see in Ĝ(D) the importance of the regularizer. Adding the identity to the
correlation matrix make its diagonal elements bigger, which are themselves re-
lated to the variance of the vector state X. We can interpret this addition
as bringing less correlation between different directions, which means a higher
possibility to have a fully-ranked matrix, necessary for the inversion.
Let us look at both the small and the big α regime. When α tends to +∞, one

has limα→∞ R̂(t) = ĈtĈ0
+
, where Ĉ0

+
is the pseudoinverse of the matrix Ĉ0.

The pseudoinverse is defined as A+ ≡
(
A⊤A

)−1
A⊤. If the matrix is invertible,

then the pseudoinverse reduces to the usual inverse operation. This formula is
the one that we recover without adding the regularizer in the loss function.
On the contrary, limα→0 R̂(t) = 0. This is the regime where only the L2 regu-
larization occurs and all the values of the matrix R̂(t) tends to be as small as
possible, eventually converging to 0.

3 Study of the response function in the classical
case, extension to the large dimensional limit

3.1 Causal links in the case of small sizes systems

In the frame of this thesis, we are interested in whether or not there is a causal
link from the variable Xj , located at node j, to Xi. Therefore, we will focus

ourselves in quantities of the form R̂ij(t) = αe⊤i ĈtĜ
(D)ej . If a causal link

is present, the response is expected to show a non-null value at a time t∗,
corresponding to the presence of a directed path from Xj to Xi of length t∗ on
the underlying graph. To give a clear example which was explored in a previous
thesis [5], consider the 3× 3 adjacency matrix A as being :

A =

0.5 ϵ 0
0.5 0.5 0
0.5 0 0.5


And the model we are looking at is given by Eq (2). By definingX = (X1 X2 X3 )

⊤
.

The system can be equally rewritten as :
X1,t+1 = 0.5X1,t + ϵX2,t

X2,t+1 = 0.5X1,t + 0.5X2,t

X3,t+1 = 0.5X1,t + 0.5X3,t

(20)

We see that X2 and X3 are linked to the variable X1. In the case where ϵ = 0,
we expect the response fromX2 toX3 to be 0. However, if you set ϵ to be a small
but non-zero value, a causal relationship should emerge by the intermediary of
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X1.
This can be explained as follow : at the first time step, X1,t+1 gets modified
depending on the value of X2,t then, at the next time step, the variable X3,t+2

is changed depending on the value of X1,t+1, and so by the value ofX2,t. In this
case, the variable X2 is causal to X3. The theoretical response of the system
without regularizer, R(t) = CtC

+
0 is shown in Fig 1 for multiple values of ϵ. As

expected, the bigger the value of ϵ, the bigger the causal link.

Figure 1: Theoretical response from 2 to 3 for different values of ϵ.

3.2 Derivation of the theoretical response function

By doing an inference, we are facing two sources of errors : the bias and the
variance [8]. The bias usually comes out because of a simplified model. In our
case, we have D2 parameters, which is exactly the good number of parameters
to totally define our system. However, the bias here comes into account because
of the regularization that we added in our loss function. This will modify the
solution of the optimization as the global minimum of Lreg[R̂(t)] can only be

bigger or equal than the one of L[R̂(t)].
Moreover, our model is also sensitive to the training data that we have at our
disposition. This is called the variance of the regression. In the case where
you have very few measures to fit your model, you expect it to be very data-
dependant. On the opposite, if your number of measures in infinite, there should
be no variance in your regression. We expect these two terms to show up in our
calculation.
We saw in Section 2.3 that the response is averaged on the different measures
we have at our disposal. However, our system is also subject to some noise,
which has to be averaged. In order to keep a fingerprint of this noise in the
computation, we will first look at the square of the response and then average
over the noise.
Our objective is to get information on the causal link from Xj to Xi. Thus, the

quantity that we will be focusing in is R̂2
ij(t). This can be written as the trace

of a scalar, so that the cyclicity of the trace can be used :

R̂2
j→i(t) = α2TrĜ(D)eje

⊤
j Ĝ(D) Ĉt

⊤
eie

⊤
i Ĉt︸ ︷︷ ︸

(a)

(21)
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Note that the sample autocorrelation matrix can be expressed as a function of
the sample correlation matrix by plugging Eq (10) into Eq (18) (remember that
A(t) ≡ At) :

Ĉt = A(t)Ĉ0 +
1

N

N∑
s=1

t−1∑
τ=0

A(t− τ − 1)ξsτX
s⊤
0 (22)

For now, let us focus us on the last piece of the equation. Using Eq (22),
one finds :

(a) = Ĉ0A
⊤(t)eie

⊤
i A(t)Ĉ0+

1

N

∑
s,τ

Xs
0ξ

s
τ
⊤A⊤(t− τ − 1)eie

⊤
i A(t)Ĉ0+

1

N

∑
s,τ

Ĉ0A(t)⊤eiei
⊤A(t− τ − 1)ξsτX

s
0
⊤+

1

N2

∑
s,s′,τ,τ ′

Xs
0ξ

s
τ
⊤A⊤(t− τ − 1)eie

⊤
i A(t− τ ′ − 1)ξs

′

τ ′X
s′

0

⊤

(23)
By averaging the squared response with respect to the noise,

〈
R2

i→j(t)
〉
ξ
we

have :

〈
R̂2

j→i(t)
〉
ξ
= α2TrĜ(D)eje

⊤
j Ĝ(D)×(
Ĉ0A

⊤(t)eie
⊤
i A(t)Ĉ0+

σ2

N

∑
τ

e⊤i A(t− τ − 1)A⊤(t− τ − 1)eiĈ0

)
(24)

Finally, using the identity αĈ0Ĝ
(D) = 1 − Ĝ(D), one can rewrite the response

as :

〈
R̂2

j→i(t)
〉
ξ
= Tr

{
e⊤i A(t)

(
1− Ĝ(D)

)
eje

⊤
j

(
1− Ĝ(D)

)
A(t)⊤ei

}
+

+ α
σ2

N
Tr
[(
1− Ĝ(D)

)
eje

⊤
j Ĝ(D)

]
e⊤i

(∑
τ

A(t− τ − 1)A⊤(t− τ − 1)

)
ei

(25)
As was said earlier intuitively, the response is now decomposed as a sum of

two terms : the first one is associated with the bias due to the regularizer. This
can be seen by computing limα→∞ Ĝ(D) = 0. This means that in the case where
no regularizer is present, the bias term is exactly given by A2

ij(t). The second
term is linked to the variance : we see explicitly that it decays as a inverse
function of the number of measure. Thus, this term should be negligible in the
scenario where we have at our disposition an infinite number of measures.
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3.3 Limiting case : from classical multivariate statistics
to the curse of dimensionality.

Now that we got some insights on the different terms of this equation, let us see
some other limiting case. For the following, we may define ρ = N

D as being our
control parameter.
In the case of a finite size system, and a big number of measures, that is ρ → ∞,
one is said to be in the classical multivariate statistics regime, where our intu-
ition usually do not fail. In this regime, we expect a phenomenon of concen-
tration of measure, meaning that Ĉ0 should converge (almost surely) to the
population correlation matrix C0 [9].
Moreover, by looking back at Eq (6) and remembering that a symmetric semidef-
inite matrix only has positive eigenvalues, one can see that the spectrum of C0 is
positive and strictly bigger than 1. Thus, its inverse is defined and we can give
up on the regularizer introduced earlier. This is the same as taking the limit
N,α → ∞. In this regime, one end up with the unbiased response function :〈

R̂2
i→j(t)

〉
ξ
= Tr

{
e⊤i R(t)eje

⊤
j R(t)⊤ei

}
+

+
σ2

N
Tr

{
eieje

⊤
j C−1

0 e⊤i

∑
τ

R(t− τ − 1)R⊤(t− τ − 1)

}
(26)

However, the interesting regime that we will put ourself in is the so-called large
dimensional limit (LDL), that is the regime where N,D → ∞ while ρ = O(1).
In this high dimensional frame, our system exhibits some interesting properties
and should be analyzed with caution. Let us look at some non-intuitive prop-
erties emerging from the LDL.
Consider the easiest exemple for the covariance matrix Ĉ0 = 1

N

∑N
s=1 X

sXs⊤

based on N samples Xs ∼ N (0,1), s ∈ [[1;N ]]. For simultaneously large N,D,
the sample covariance matrix Ĉ0 is only an entry-wise consistent estimator of
the population covariance matrix 1, that is :

||Ĉ0 − 1||ij
a.s.→ 0,∀i, j ∈ [[1; d]] (27)

But a poor estimator in the Frobenius norm sense :

||Ĉ0 − 1||F ̸→ 0 (28)

This is because the Frobenius norm, defined as ||M ||F ≡
(∑

i ̸=j Mij

)1/2
consists

of a sum of D2 term. As a consequence, if the convergence of every component
of Ĉ0 to 1 is smaller than O(1/D2), Ĉ0 cannot be considered as a good estimator
to look at.

Now let us put ourselves in the case where D > N . Then, Ĉ0 is the sum of
N rank-1 matrices, the rank of Ĉ0 is at most D and it so has at least D − N
null eigenvalues. In this frame, convergence to the identity matrix cannot be
attained, even in the entry-wise sense.
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These kind of problems that one is dealing in the high-dimensional frame is
called the curse of dimensionality, which arises nowadays in the context of the
Big data era that we are in.

3.4 Determination of the deterministic equivalent

We just saw that in the LDL, Ĉ0 is a poor estimator. However, it can have a
controlled asymptotic behavior. This is where Random Matrix Theory (RMT)
arises. It has been shown for the first time in one paper from Marchenko and
Pastur [10] that, even if the convergence of a correlation matrix to a determinis-
tic matrix is not given, the spectrum of eigenvalue is universal and converges to
a specific distribution, now called the Marchenko-Pastur distribution. In order
to show this, they used the Stieltjes transform method, which elegantly links
operator theory and complex analysis.
However, this technique does not allow us to have any information on the eigen-
vectors. Some refined techniques emerged, such as the field of free probability,
which is a larger frame than probability theory, as it studies non-commutative
random variables, a framework which is particularly suited for random matri-
ces. Another framework of RMT that we will look at in the following is the one
where we look at deterministic equivalents.
By being able to find deterministic scalar properties of a matrix, such as its
distribution of eigenvalue or the expected values of any quadratic form, defined
as u⊤Qv for some vectors u, v, one could be tempted to look for a deterministic
matrix which has all the same scalar properties of the random matrix we are
interested in.
More formally and to get a suitable example, if one look at a matrix Ĝ(D) =(
1+ Ĉ0

)−1

, where Ĉ0 = 1
N

∑N
s=1 X

sXs⊤, then, in the LDL, that is N,D →
∞, ρ finite, it is possible to find a deterministic matrix G so that :

lim
N,D→∞
N/D=ρ

Tr
(
Ĝ(D) −G

)
a.s.→ 0 (29)

or, by looking at the expected value :

lim
N,D→∞
N/D=ρ

Tr
(
E[Ĝ(D)]−G

)
→ 0 (30)

Marchenko and Pastur explored the case where all of the entries of each vector
Xs are independent and identically distributed gaussian variables . Nowadays,
the Marchenko Pastur distribution has been recovered for much more relaxed
conditions.
No formal derivation for the deterministic equivalent of Ĝ(D) will be given in this
manuscript, as it involves a big mathematical machinery in order to prove the
convergence and some non-intuitive conditions on the moments of X. However
for a heuristic demonstration, one can check the review of Romain Couillet [11],
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Section 2.2.2.
Another method, based on the diagrammatic expansion of the free probability
theory has been done in the appendix of [12]. It is a non-rigorous method,
allowing however for much more interpretation. This method tells us that, due
to the fluctuations induced in our model by the noise, the parameter α, telling
us how negligible is the regularizer in our model, gets renormalized to a value α∗

and end up being smaller, depending only on the parameter ρ. The computation
of the value of α∗ involves solving a self-consistent equation, given by :

(α∗)
−1

= (α)
−1

+
1

ρ

∫
ν(x)x (1 + α∗x)

−1
dx (31)

Where ν(x) is the spectral density of the population matrix C0. If ρ is big
enough, α∗ ≈ α. This means that in the case where your number of measures is
much bigger than the parameter that one has to infer, the fluctuations have no
real impact on the inferred response matrix R̂. On the countrary, if ρ gets close
to one, the importance of the renormalization gets important and one must
be careful about the effects of fluctuations on our model. Our deterministic
equivalent will be decomposed on the modes of the population matrix and will
be of the form :

G = (1+ α∗C0)
−1

(32)

The interesting point here is that we found a formula of the inferred response
function, based only on the population matrix, which is a quantity that can be
computed for a large range of models. This means that we have a quantitative
method to judge the precision of our inference, in the case where the underlying
model is a linear one. Note that the regime that we are putting ourselves in is
a theoretical one. Meaning, that we should have corrections in our formula of
order O(1/N). This will be studied more carefully in the following month.

4 Numerical simulations

4.1 Implementation of the model

In order to validate our theory, one needs a procedure in order to implement a
numerical simulation of the computation of the response matrices and compare
quantitatively the response function using the method of empirical correlation
matrices and the one based only on the population matrix.
The first step is to sample an adjacency matrix A based on a random directed
Erdős-Rényi graph with parameter(D,p), D being the number of nodes of our
system while p is the average number of vertices coming out of a vertex. Our
graph has to be weighted and directed. Thus, for every edges created, we sam-
ple a weight uniformly between 0 and 1. Finally, we compute the eigenvalues of
the non-symmetric matrix A and rescale the whole matrix so that its spectral
radius is less than 1, ensuring statistical convergence. In our case, we decided
to set it to 0.9.
We set a time T for which we want to study the response. Our objective will

12
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be to compute T different matrices R̂(τ), τ ∈ [[1;T ]] through the computation
of the correlation matrices from one side, and from the theoretical formula from
the other side.
To compute the empirical correlation matrices, we apply iteratively the autore-
gressive model, that is, for each t, we sample a noise term ξt ∈ RD, ξt ∼ N (0,1)
and compute

Xt+1 = AXt + ξt (33)

We iterate this process at each timestep until t+T and add values of correlations
to Ĉ0, Ĉτ . At the step t + τ + 1, one is tempted to compute new values of the
correlation matrices directly. However, there are some correlation between the
measures done at time t and at time t + τ + 1. Thus, we must be careful and
have to wait during a characteristic time, that we fixed by looking at the biggest
eigenvalues of the population correlation matrix, computed numerically using
Eq (9). We finally divide the two computed matrices by the number of values
we did the average on. Note that for the process, the initial condition is given by
X0 ∼ N (0,1), that is pure noise. Also, the process first runs for a sufficiently
long amount of time so that it forgets about initial condition and converges to
an attractor of the system. We are then able to compute R̂ij(t) = αĈtĜ

(D).
The theoretical response presented in Eq (25) must be computed by finding a
good candidate for Ĝ(D), which is a random matrix. We are able to compute
it theoretically using Eq (32). Note that the matrices we will use in our sim-
ulation will not be of infinite size, meaning that we should have corrections in
our formula of order O(1/N). This will be studied more carefully in the fol-
lowing month. We now have a procedure in order to compare our two different
responses.

4.2 Classical limit : small matrices and high number of
measures

In the case where the number of measures is much bigger than the number of
parameters to infer, that is ρ ≫ 1, the response calculated using correlation ma-
trices should be really close to the theoretical one. As a consequence, we would
be able to effectively determine if a causal link is present or not, depending on
the shape of the curve R̂(t).
Let us look at a system of size D = 10, with N = 106 measures and an average
out-degree of 2. We sampled an adjacency matrix, according to the rules ex-
posed in Subsection 4.1. We inferred the empirical adjacency matrix using the
correlation matrices in the case of a big regularization (α = 10) and a small one
(α = 103). The graphs are depicted in Fig 8. One can see the importance of
the parameter α on the inference that we are doing. Even with a big number
of measures, when the regularization is strong enough, there is a residual error
in the inferred graph. To confirm that this is not a finite size effect due to the
noise inherent to our model, we now have to compare the response functions
that we computed. This will be done by centering our analysis around vertex
5, abbreviated as 5 in the following. One can distinguish three different cases :

13
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(a) True graph (b) α = 10 (c) α = 1000

Figure 2: True graph and the errors in our inference for multiple values of α. A
threshold has been set to 0.02 so that the small residual links do not show up.

i) pure noise : Consider the response from 5 to 6. No causal link is present.
However, due to the finite α, the bias imposes a non-null response function.
This is depicted in Fig 3.

(a) α = 10 (b) α = 1000

Figure 3: Response from 5 to 6 for 2 different values of alpha.

ii) first order causation : As seen on the true graph of our system 8, there is
a unidirectional direct response from 6 to 5, meaning that the edge from 6 to 5
exists and that 6 is not caused by any other vertices. This makes it impossible
for directed loops to go back to 6. This situation is depicted in Fig 4. In this
specific case, the regularization doesn’t seem to be that important. However,
the system predicts a loop of order 4 which is not present in the true graph.

iii) higher order causation : Let us look at a more complex situation. 5 is
directed only toward 9 and only 8 is directly causal to 5. However, we have
different sized-loop that start and end on 5, namely the 3-loop 5-9-8-5, the 4-
loop 5-9-4-8-5 and the 5-loop 5-9-3-4-8-5. The response functions from 5 to
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(a) α = 10 (b) α = 1000

Figure 4: Response from 6 to 5 for 2 different values of alpha.

8, illustrated in fig 5 show multiple spike. The spikes at times t = 2, 3, 4 are
present due to the paths we characterized above. The spikes at later time are
characteristic of the loops and are qualified as being harmonics of our system.
For example, the spike at t = 6 corresponds to the sum of the 4-loop and the
path 5-9-8 plus the 3-loop and the path 5-9-4-8.

(a) α = 10 (b) α = 1000

Figure 5: Response from 5 to 8 for 2 different values of alpha.

The apparition of harmonics becomes more and more common as we increase
the average out-degree of the Erdos-Renyi directed graph. This is because we
also increase the probability of creating loops in our graph. For example, con-
sider a directed graph with D = 100 nodes and an average out-degree of 5. To
analyze the likelihood of forming a 3-cycle, we consider the number of nodes
reachable within 3 steps, which is approximately 53 = 125. Since this exceeds
the total number of nodes, it implies a high probability of revisiting nodes and
forming cycles during the exploration process. We expose in Fig 6b a limiting
case. If one look at a fully connected graph with D = 5 and N = 106, the
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response should be maximum at t = 1 and decay slowly after. However, since
the graph is weighted, one can look at the link between 4 and 0, which is small
( in this case 0.07), while the response is bigger at t = 2. This is because you
have the contribution from 3 different paths, namely 4-1-0, 4-3-0 and 4-2-0.

(a) Sampled fully connected graph. (b) Response from 4 to 0, α = 100.

Figure 6: Limiting case of a fully connected graph.

4.3 Large dimensional limit

In the LDL, we expect the identification of the causal links to be much more
difficult than in the classical limit. However, we may think that, since we
were able to separate the bias and the variance term in the theoretical formula,
looking only at the bias term would allow us to get some information on the
graph we are working on.
We sampled a graph with D = 103, N = 103 and an average out-degree of 2. In
the following, we set α = 103. To begin with, let us look at the response between
two points which are not causal one to the other, namely the response from 0
to 417. This is exposed in Fig 7. One can see the importance of the variance,
that doesn’t have the same order of magnitude with respect to the empirical
response. This is still being explored nowadays and we expect a mistake in the
numerical simulation.

Because of this, we will now concentrate ourselves only on the theoretical bias
and the empirical response in order to confirm if our method may be suitable
to recover the causality between our different variables. We were able to find
1, 2 and 3-order causation by looking at the adjacency matrix. This will help
us selecting the good edges to look at in the response function. In Fig 8 is
exposed 4 different responses function, accounting only for the bias term and
the empirical response. We can see that the theoretical bias computed by our
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Figure 7: Plot of the usual response one get in the LDL.

(a) No causal link (b) First order causal link

(c) Second order causal link (d) Third order causal link

Figure 8: Empirical response function and bias term of the theoretical formula.
One can see that the bias is non zero in subfigures (b) and (c), while for (d) the
third order causality cannot be observed.

formula indeed recover first and second order causal links in the case where
ρ = 1. This means that one would expect the possibility to theoretically recover
the underlying dependence between the variables, even in the case where the
number of measures is of the same order of magnitude than the number of
variables in the LDL.
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5 Conclusion

In this master’s thesis, we explored the integration of causality into machine
learning models with a particular focus on high-dimensional data. Beginning
with an in-depth analysis of linear regression, we linked it to linear response
theory, deriving a closed-form solution for the empirical response function while
accounting for bias and variance. Our investigation extended to the complexities
of identifying causal relationships in high-dimensional settings, addressing the
challenges posed by the curse of dimensionality.

Through numerical simulations, we saw that observational causality can be
inferred in high-dimensional contexts. This means that, by focusing only on the
bias term, valuable insights can be found for a general high-dimensional linear
system.

Our research bridged the gap between statistical mechanics and machine
learning, offering new perspectives on understanding and inferring causal rela-
tionships in complex systems. This work contributes to the field of machine
learning by providing methods to uncover causality in high-dimensional scenar-
ios where traditional approaches often fail, ultimately paving the way for more
robust and interpretable AI systems.
The following works will focus on :

i) manage to numerically correct for the variance term.
ii) see if the causality can also be recovered in the case where we do not

observe all of the variables but only a fixed fraction of them. We may look
for an eventual theoretical formula connecting the number of measures, the
dimension of our system and the minimal number of variables that one would
have to observe in order to recover the causality.

iii) explore other types of dependency between variables, namely nonlinear
systems. This may help us to recover the causal link in any situation, as soon
as the system is of sufficiently large dimension, which is usually the framework
that we are in in the era of Big Data.
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Appendix A Solution of the Fokker-Planck
equation

In the following, we will follow a derivation from [13]. The intuition behind this
computation is that the time independent probability distribution related to a
Fokker-Planck equation is known to be a gaussian. One may so expect that the
time-dependent distribution also has a gaussian form. One thus need only the
first two moments in order to fully determine the law.
We first write the Fokker-Planck equation associated to the process :

∂

∂t
p(X, t) = −∇X [(A− 1)Xp(X, t)] +

1

2
∇X∇Xp(X, t) (34)

In the following and for clarity, we will set A − 1 ≡ A. By multyplying
by X and integrating over X Eq (34), one gets, after an integration by part
and assuming that the probability distribution decays sufficiently fast on the
extremes of the domain of definition of X :

∂

∂t
⟨X⟩ = A ⟨X⟩ (35)

Which is solved by:
⟨X(t)⟩ = eAt ⟨X(0)⟩ (36)

In the same way, By multyplying by XX⊤ and integrating over X Eq 34,
we have :

∂

∂t

〈
XX⊤〉 = A

〈
XX⊤〉+ 〈XX⊤〉A⊤ + 1 (37)

Next, using the vocabulary of quantum mechanics, one goes to the interaction
picture. This is usually done to find the time dependence of the creation and
annihilation operators. We so define :〈

XX⊤〉 ≡ eRt
〈
XX⊤〉∗ eR⊤t (38)

By taking the time derivative of Eq (38), one finds the constraint :

∂

∂t

〈
XX⊤〉∗ = e−t(R+R⊤) (39)

By solving and plugging back into 38, one finds :〈
XX⊤(t)

〉
= eRt

〈
XX⊤(0)

〉
eR

⊤t + eRt(R+R⊤)−1
(
1− e−t(R+R⊤)

)
eR

⊤t

(40)
We can now define the time-dependant covariance matrix Σ(t) ≡

〈
XX⊤(t)

〉
−

⟨X(t)⟩ ⟨X(t)⟩⊤. One can check that the probability distribution :

P (X, t) = (2π)−d/2(detΣ)−1/2 exp

[
−1

2
(X − ⟨X(t)⟩)⊤ Σ−1 (X − ⟨X(t)⟩)

]
(41)

indeed solves the Fokker-Planck equation of our system.
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Appendix B Loss function

We set a loss function for R̂ that is composed of the L2 regularizer and of the
mean squared error :

L[R̂(t)] = Tr
[R̂(t)⊤R̂(t)]

2
+

α

2N

∑
s

(Xs
t − R̂(t)Xs

0)
⊤(Xs

t − R̂(t)Xs
0) (42)

=
∑
i

R̂2
ii(t)

2
+

α

2N

∑
s

∑
i

Xs
t,i −

∑
j

R̂ij(t)X
s
0,j

Xs
t,i −

∑
j

R̂ij(t)X
s
0,j


(43)

We want to infer on the matrix R̂ that is the closest to explain the model. Thus
, we look at the derivative :

∂L

∂R̂ij(t)
= R̂ij(t)δij +

α

N

∑
s

−Xs
0,j

Xs
t,i −

∑
j

R̂ij(t)X
s
0,j

 (44)

= R̂ij(t)δij −
α

N

∑
s

Xs
0,jX

s
t,i +

α

N

∑
s

Xs
0,j

(
R̂(t)Xs

0

)
i

(45)

This equation can be put in matrix form. Moreover, we set the derivative to be
equal to 0 :

0
!
= R̂(t)1− α

N

∑
s

Xs
tX

s
0
⊤ +

α

N
R̂(t)

∑
s

Xs
0X

s
0
⊤ (46)

The final formula for the inferred response function is recovered :

R̂(t) = αĈtĜ
(D) (47)
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Master’s thesis Théo Marchetta, iPCS

[6] P. W. Anderson. More is different. Science, 177(4047):393–396, 1972.

[7] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society. Series B (Methodological), 58(1):267–288,
1996.

[8] Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and
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