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Summary

This thesis explores the theoretical underpinnings and practical implications of In-
tegrated Sensing and Communication (ISAC) within future wireless networks. As a
transformative technology, ISAC merges sensing and communication functionalities
to optimize the utilization of spectrum and hardware resources, a necessity driven
by the increasing demands of modern applications such as autonomous vehicles
and immersive technologies.

The research addresses the critical need to understand the fundamental trade-
offs between sensing and communication within ISAC systems. It investigates the
Bayesian Cramér-Rao Bound (BCRB) as a metric for evaluating the performance
limits of ISAC systems under various conditions. This bound is particularly relevant
given the non-realistic nature of assuming known state information in dynamic
channel environments, necessitating continuous estimation.

This thesis evaluates the performance of different transmission strategies by
developing a comprehensive theoretical model. It balances the conflicting require-
ments of sensing and communication, thus providing insights into the optimal
allocation of power and resources. The simulation results validate the theoretical
predictions, demonstrating how ISAC can enhance spectral, energy, and economic
efficiencies in next-generation wireless networks.

The findings contribute significantly to the field by laying the groundwork
for future research to integrate further and optimize sensing and communication.
The methodologies and insights presented in this work are expected to drive
the development of advanced ISAC solutions, pushing the boundaries of what is
achievable in wireless communication systems.
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Chapter 1

Introduction

Integrated Sensing and Communication (ISAC) is emerging as a critical technology
for future wireless networks, blending sensing and communication to efficiently
utilize spectrum and hardware resources. This convergence is driven by the demands
of applications such as autonomous vehicles and immersive technologies, alongside
advancements in millimeter wave and massive MIMO technologies. ISAC promises
to mitigate spectrum congestion and enhance spectral, energy, and economic
efficiencies. While initial research has focused on practical ISAC system designs,
understanding the theoretical limits of ISAC is crucial for bridging the gap between
current capabilities and potential performance peaks. This involves exploring the
trade-offs between sensing and communication functions to guide the development
of more effective ISAC solutions. As a cornerstone of next-generation networks,
ISAC represents a synergistic approach that significantly boosts both sensing
and communication capabilities, ensuring the adaptability and efficiency of future
wireless systems.

Extensive research has been done on the fundamental tradeoff of ISAC [1] under
the assumption of known state information from a communication point of view.
This is, however, non-realistic as channels often change and need to be continuously
estimated.

We start by reviewing the literature on ISAC and related topics used in this
dissertation. The model on which we focus is then shown and presented. We
proceed with a detailed explanation of what has been done to achieve the results,
which are commented on in the end.

1.1 Notation Convention
We denote with a, a, and A scalar random variables, random vectors, and random
matrices, respectively. With A, we denote known quantities, e.g., P is the power.

1



Introduction

With Ex{·}, we denote the expected value of the argument with respect to x. With
tr{·}, we denote the trace of a (square) matrix. We use | · | for the absolute value
of a scalar and ∥ · ∥p for the lp norm of a vector which is the Euclidean norm
when the subscript is omitted. With diag(b), we denote a diagonal matrix with
b being its diagonal. The notations [·]∗ and [·]H are used to indicate the complex
conjugate and the Hermitian transpose of the argument, respectively. We denote
with ℜ{·} and ℑ{·} the operators returning their argument’s real and imaginary
parts, respectively. The notation CM×N denotes the set of complex-valued matrices
with M rows and N columns. The notation â, denotes the unit norm vector
obtained by dividing the vector a by its norm.

1.2 Concepts and Background
This section will present the main concepts needed to understand this dissertation,
with a short theoretical explanation.

1.2.1 Bayesian Cramér-Rao Bound
The Cramér-Rao Bound (CRB) is a lower bound on the variance (Var{·}) of any
unbiased parameter estimator [2]. In simpler terms, it tells us the best accuracy we
can achieve when estimating a parameter from noisy observations. Mathematically,
for an unbiased estimator θ̂ of a parameter θ, the CRB states that:

Var(θ̂) ≥ 1
I(θ) , (1.1)

where I(θ) is the Fisher Information and can be computed as:

I(θ) = −E
C

∂2 log L(θ)
∂θ2

D
, (1.2)

where L(θ) is likelihood function.
The Bayesian Cramér-Rao Bound (BCRB) [3] can be used when prior infor-

mation about the parameter is available. This bound incorporates both the prior
distribution of the parameter and the likelihood of the observations, giving a more
general lower bound on the estimator’s variance. It integrates over all possible
values of the parameter:

E[(θ̂ − θ)2] ≥
A
E
C

∂2

∂θ2 ln p(y|θ)
D

+ E
C

∂2

∂θ2 ln p(θ)
DB−1

, (1.3)

where p(y|θ) is the likelihood function and p(θ) is the prior distribution.
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1.2.2 Communication Rate and Mutual Information
The communication rate is the rate at which information can be transmitted over
a communication channel, usually measured in bits per channel use (bpcu). It is
constrained by the channel capacity, which can be found by maximizing the mutual
information between the transmitted and received signal.

Mutual information measures the amount of information one random variable
contains about another [4]. In the context of communication, it quantifies the
amount of information transmitted from the sender to the receiver. For a channel
with input X and output Y , the mutual information I(X; Y ) is given by:

I(X; Y ) = h(X) − h(X|Y ) (1.4)

where h(X) is the differential entropy of X and h(X|Y ) is the conditional differential
entropy of X given Y . The differential entropy can be defined as:

h(X) = −
Ú ∞

−∞
fX(x) log fX(x)dx, (1.5)

where fX(x) is the pdf of X.

1.2.3 Von Mises Distribution
The Von Mises Distribution [5] is a probability distribution for circular data
analogous to the normal distribution for linear data. It is used when dealing with
angles or periodic phenomena. The probability density function (pdf) of the Von
Mises distribution is:

f(θ; µ, κ) = eκ cos(θ−µ)

2πI0(κ) , (1.6)

where µ is the mean direction, κ is the concentration parameter (analogous to the
inverse of the variance), and I0(κ) is the modified Bessel function of the first kind.
The support of the pdf is an interval of length 2π centered at µ. Note that 1/κ
plays a role similar to σ2 (the variance) in the Gaussian distribution.

The von Mises distribution is particularly useful for modeling data that are
directional or cyclical, such as phases, angles, or the time of day.

1.2.4 Steering Vectors and MIMO Antennas
Steering Vectors are used in array signal processing to describe the phase shifts
required to steer the beam of an antenna array toward a specific direction. In
a far-field Line-of-Sight (LoS) MIMO model [6], the steering vector a(θ) for a
direction θ is usually defined by:

a(θ) = 1√
M

è
1, ejkd cos(θ), ej2kd cos(θ), . . . , ej(M−1)kd cos(θ)

éT
, (1.7)

3
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where k is the wavenumber, d is the distance between antennas, and M is the
number of antennas. This normalization by

√
M

−1 ensures that the steering vector
has unit length.

Note that the steering vectors of an antenna with M elements, where M = 2æM+1,
can be written with indexes n ∈

î
−æM, −æM + 1, . . . , æM − 1, æMï

. Namely:

a(θ) = 1√
M

5
ej(− åM)kd cos(θ), ej(− åM+1)kd cos(θ), . . . , 1, . . . , ej( åM)kd cos(θ)

6T

. (1.8)

This formulation above ensures the orthogonality between the steering vector
and its derivative, ȧH(θ)a(θ) = 0.

Multiple-input multiple-output (MIMO) systems use multiple antennas at both
the transmitter and receiver to improve communication performance. MIMO
technology exploits spatial diversity and spatial multiplexing to increase data rates
and reliability.

1.3 Goals of Dissertation
This dissertation aims to study the fundamental limits of ISAC systems under a
specific set of assumptions. In particular, we focus on deriving the BCRB for the
joint estimation of two targets. We then proceed with the study of the optimal
sensing and communication points. Finally, we study various transmission strategies
to achieve an inner bound for the BCRB-Rate region and identify the ISAC tradeoff
in our scenario.

We attempt to obtain similar results as in [1] in a more realistic scenario. Hence,
we communicate with targets that must be sensed and assume only partially
known channel state information at the receiver. A Base Station (BS) estimates
the angle of arrivals of targets in the vicinity. Already acquired targets are
communication receivers, while other targets may appear on the scene and thus
must be estimated and characterized by different prior distributions. Our goal is
to derive the fundamental Rate-BCRB tradeoff region.

Under these different assumptions, we study the new tradeoffs in the system,
proposing a simple outer bound and several communication strategies to achieve
some inner bounds.

4



Chapter 2

Previous Work

The state-of-the-art ISAC reflects a variety of approaches, ranging from theoretical
foundations to practical implementations and standards. The conceptualization of
ISAC can be traced back to the necessity for coexistence and coordination between
radar and communication systems within the same spectral resources. Early
works focused on understanding and defining the potential synergies between these
functionalities. Paper [7] provides an extensive review of the fundamental limits of
ISAC, exploring how traditional radio sensing and emerging ISAC approaches can
be unified under a comprehensive framework. Similarly, the work in [8] delineates
a novel relationship between mutual information and the minimum mean-square
error in Gaussian channels. This fundamental concept underpins the theoretical
limits of ISAC performance.

As we transition from 5G to 6G, ISAC is identified as a key technology that
exploits dense cellular infrastructures to create highly perceptive networks. Paper
[9] highlights how ISAC could integrate within 6G networks, enhancing both the
performance and functionality of RANs by incorporating sensing capabilities. This
vision aligns with the trends in IoT, where ISAC could redefine the architectural
layers. Paper [10] discusses the transition towards a unified signaling layer in IoT,
driven by ISAC technologies, indicating a shift towards more integrated and efficient
network frameworks. Practical implementations of ISAC have been explored in
various domains, including vehicular networks and cooperative systems. Paper [11]
introduces a predictive beamforming approach in vehicular networks, showcasing
how ISAC can effectively reduce overhead while improving the accuracy of vehicle
localization and communication. This application demonstrates the practical
benefits and efficiency gains from deploying ISAC in dynamic environments.

ISAC can be broadly classified into two categories: device-free ISAC and device-
based ISAC [7]. In device-free ISAC, the sensing targets cannot transmit or receive
signals, or the sensing procedure does not rely on the target’s transmit/receive
capabilities. A typical example is radar sensing, where a radar transmits a probing

5
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signal, and the echo reflected from the target is used for sensing. In device-based
ISAC, the sensing functionality is achieved by device-based sensing, where the
sensing targets can transmit and receive signals. A common example is localization
and communication in cellular networks.

Despite the promising advances, ISAC still faces significant challenges, par-
ticularly in balancing the dual-functional performance and optimizing resource
allocation. The research highlighted in [10] and [7] identifies these challenges and
proposes future research directions, including the development of more sophisti-
cated integration techniques and the exploration of optimal trade-offs between
sensing and communication capabilities. We focus on the latter problem studied in
[1] under the model of having some targets to sense and others to communicate
with under known state information at both the transmitter and receiver. The
theoretical studies allow us to understand the limits one can try to achieve in
practical scenarios. For this reason, we try to fill the gap in the literature caused
by the lack of more realistic settings.

The work in [1], which we will reference the most, stands as one of the first
to address the fundamental trade-off in ISAC from both information-theoretic
and estimation-theoretic perspectives. It demonstrates that the optimal sensing
performance is achieved when the sample covariance matrix RX = 1

T
XXH has

a deterministic trace, and the distribution p (RX) (and hence p(X)) is restricted
to the optimal solution set of a deterministic CRB minimization problem. If the
solution is unique, the sensing-optimal sample covariance matrix RX itself should be
deterministic. The authors define the CRB-rate region as the set of all achievable
communication rate and sensing CRB pairs. They propose a pentagon inner
bound of the CRB-rate region that can be achieved through a simple time-sharing
strategy. Within this framework, they study ISAC performance at the two corner
points of the CRB-rate region: PCS (minimum achievable CRB constrained by
maximum communication rate) and PSC (maximum achievable communication rate
constrained by minimum CRB). The paper derives the high-SNR communication
capacity for the sensing-optimal point PSC . It proves that it can be asymptotically
achieved by a strategy based on uniform sampling over the set of semi-unitary
matrices (the Stiefel manifold). Additionally, they provide lower and upper bounds
for the sensing CRB at the communication-optimal point PCS. The paper reveals
a two-fold trade-off in ISAC systems:

• Subspace Trade-Off (ST): Balances resource allocation between the subspaces
spanned by sensing and communication channels.

• Deterministic-Random Trade-Off (DRT): Depicts the exploitable degrees of
freedom (DoFs) in ISAC signals.

The authors propose an outer bound and various inner bounds for the CRB-rate
region based on these trade-offs. We will expand upon their work by changing
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the assumptions made on the model, considering an incomplete knowledge of the
channel state information. We also consider a case with two targets to be jointly
sensed, where one of the two is also a communication target. By studying this new
setting, we provide a step forward to completely understanding ISAC tradeoff and
its limits in real-life scenarios.

7



Chapter 3

System Model

For the sake of simplicity, we consider a two-dimensional (i.e., no z-coordinate)
scenario with one communication target and one additional separate sensing target,
as illustrated in Fig. 3.1.

Figure 3.1: Representation of setting considered in this dissertation, with one
communication target (end-user) and one sensing target.

The Base Station (BS) is simultaneously a transmitter for the communication
receivers and a mono-static radar for the sensing targets. The BS comprises a
transmitting uniform linear antenna array (ULA) with MTX elements, characterized
by the steering vector a ∈ CMTX×1, and a receiving ULA with MRX elements,
characterized by the steering vector b ∈ CMRX×1. The BS operates in full-duplex
mode. We make the idealized assumption that there is no self-interference on
the TX side from the RX side. Future work will investigate even more realistic
scenarios.

8



System Model

The communication receiver, or UE for ‘user equipment,’ has a ULA with MUE
elements, characterized by the steering vector u ∈ CMUE×1. The UE reflects the
BS-transmit signal back to the BS-receiver, which enables it to estimate their angle
of arrival.

3.1 Channel Model
The BS transmits signal is denoted by X ∈ CMTX×T , where T is the channel
coherence time. We assume the sensing parameters vary synchronously with the
communication channel parameters every T channel uses. At the same time, the
BS receives the signal Ys ∈ CMRX×T from the reflections of targets and objects
present in the surroundings. The UE receives the signal Yc ∈ CMUE×T . We write
the received signals as

Yc = HcX + Zc, Hc = α u(θ1)aH(θ1), (3.1)

Ys = HsX + Zs, Hs =
NsØ
ℓ=1

βℓ b(θℓ)aH(θℓ), (3.2)

where:
• X ∈ CMTX×T is the transmit signal subject to

E {tr {RX}} ≤ PTXMTX, (3.3)

where RX := T −1XXH is the ‘sample covariance matrix.’ Note that PTX has
the meaning of average power constraint per transmit antenna.

• Zc has entries assumed i.i.d., circularly symmetric, complex Gaussian, with
zero mean and variance σ2

c .

• Zs has entries assumed i.i.d., circularly symmetric, complex Gaussian, with
zero mean and variance σ2

s .

• Hc ∈ CMUE×MTX is the down-link communication channel matrix. θ1 ∈ [0,2π]
denotes the angle of arrival of the transmit signal, and α ∈ C is the channel
attenuation, both assumed perfectly known at the UE.

• Hs ∈ CMRX×MTX is the sensing channel matrix, where Ns is the number of sens-
ing targets, assumed known at the BS. The angles of arrival (θ1, θ2, . . . , θNs) ∈
[0,2π]Ns must be estimated. (β1, β2, . . . , βNs) ∈ CNs is the vector of channel
gains from the targets to the BS. We assume that the prior distribution on
the target parameters factorizes as

Pθ1,θ2,...,θNs ,β1,β2,...,βNs
=

NsÙ
ℓ=1

Pθℓ
Pℜ{βℓ}Pℑ{βℓ}. (3.4)

9
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3.2 Sensing Task
The sensing task consists in estimating the angle of arrivals in Hs in (3.2). As a
metric for this sensing task, we use the BCRB [1], a lower bound for the Mean
Squared Error (MSE) of weakly unbiased estimators. The BCRB is defined as

ϵ := EX
î
tr
î
J−1

θ|X

ïï
, (3.5)

where Jθ|X is the Bayesian Fisher Information Matrix (BFIM) of the parameters
we wish to estimate. The BFIM of the parameters θ, is given by [12]:

Jθ|X := E
I

∂ ln pYs|X,θ (Ys | X, θ)
∂θ

∂ ln pYs|X,θ (Ys | X, θ)
∂θT

----- X
J

+ E
I

∂ ln pθ(θ)
∂θ

∂ ln pθ(θ)
∂θT

J
.

(3.6)

3.3 Communication Task
The communication task consists of reliably transmitting information to the UE
with received signal Yc in (3.1). As a metric for this communication task, we use
the ergodic achievable rate: [1]

R := 1
T

I(X; Yc|Hc), s.t. E {tr {RX}} ≤ PTXMTX. (3.7)

Note that the channel Hc is a random variable with known prior distribution;
hence the expected value implied by the definition of mutual information is to be
considered with respect to the prior probability density function of Hc.

3.4 ISAC Region
Overall, we are interested in obtaining the lowest possible estimation error and
the highest possible rate. The minimum sensing error is obtained by minimizing
(3.5) with respect to the pdf of the transmit signal X. On the other hand, the
maximum achievable rate is obtained by maximizing (3.7) with respect to the pdf
of the transmit signal X. These two tasks are conflicting, so we define the ISAC
region where the power constraint on X is introduced.

The ISAC region is defined as the set of achievable pairs (ϵ, R), where ϵ is the
BCRB for the joint estimation of all the angles we need to estimate, and R is the

10
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ergodic communication rate. This region can be mathematically expressed as:

RISAC =
Û

pX(X)∈X (PTXMTX)

I
(ϵ, R)

----- ϵ = EX
î
tr
î
J−1

θ|X

ïï
, R = 1

T
I(X; Yc|Hc)

J
(3.8)

where X (PTXMTX) is the set of all possible distributions for the input signal that
meet the average power constraint PTXMTX, i.e., E {tr {RX}} ≤ PTXMTX.
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Chapter 4

Fundamental Quantities for
the Characterization of
ISAC Scheme

In this chapter, we dive deeper into the definition of the errors for the joint
estimation of two targets and the general formulation of the communication rate.
A general form was derived in [13]; here, we apply the general results to obtain the
case of interest of two targets.

4.1 Bayesian Cramér-Rao Bound for Two Targets
It is key for our study to evaluate the BCRB for the joint estimation of the
unknowns in the sensing channel matrix: the angles and the complex amplitudes.
We start by defining the following quantities based on the parameters in (3.2):

B =
è
b (θ1) b (θ2)

é
, A =

è
a (θ1) a (θ2)

é
, (4.1)

θ =
è
θ1 θ2

é⊤
, β =

è
β1 β2

é⊤
, B = diag(β). (4.2)

We also define

Ḃ =
è

∂b(θ1)
∂θ1

∂b(θ2)
∂θ2

é
, Ȧ =

è
∂a(θ1)

∂θ1

∂a(θ2)
∂θ2

é
. (4.3)

According to [13], we can write the Fisher Information matrix as

F = 2

 ℜ (F11) ℜ (F12) −ℑ (F12)
ℜ⊤ (F12) ℜ (F22) −ℑ (F22)

−ℑ⊤ (F12) −ℑ⊤ (F22) ℜ (F22)

 , (4.4)
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where

F11 = T

σ2

1
ḂHḂ

2
⊙
1
B∗AHR∗

XAB
2

+ T

σ2

1
ḂHB

2
⊙
1
B∗AHR∗

XȦB
2

+ T

σ2

1
BHḂ

2
⊙
1
B∗ȦHR∗

XAB
2

+ T

σ2

1
BHB

2
⊙
1
B∗ȦHR∗

XȦB
2

, (4.5)

F12 = T

σ2

1
ḂHB

2
⊙
1
B∗AHR∗

XA
2

+ T

σ2

1
BHB

2
⊙
1
B∗ȦHR∗

XA
2

, (4.6)

F22 = T

σ2

1
BHB

2
⊙
1
AHR∗

XA
2

. (4.7)

For clarity, we simplify the notation during the derivation by using b1 = b(θ1),
b2 = b(θ2), a1 = a(θ1) and a2 = a(θ2). We can thus write:

F11 = T

σ2

C
∥β1∥2 β∗

1β2
β∗

2β1 ∥β2∥2

D

⊙

C ∥ḃ1∥2 ḃH
1 ḃ2

ḃH
2 ḃ1 ∥ḃ2∥2

D
⊙
C

aH
1 R∗

Xa1 aH
1 R∗

Xa2
aH

2 R∗
Xa1 aH

2 R∗
Xa2

D

+
C

ḃH
1 b1 ḃH

1 b2
ḃH

2 b1 ḃH
2 b2

D
⊙
C

aH
1 R∗

Xȧ1 aH
1 R∗

Xȧ2
aH

2 R∗
Xȧ1 aH

2 R∗
Xȧ2

D

+
C

bH
1 ḃ1 bH

1 ḃ2
bH

2 ḃ1 bH
2 ḃ2

D
⊙
C

ȧH
1 R∗

Xa1 ȧH
1 R∗

Xa2
ȧH

2 R∗
Xa1 ȧH

2 R∗
Xa2

D

+
C

∥b1∥2 bH
1 b2

bH
2 b1 ∥b2∥2

D
⊙
C

ȧH
1 R∗

Xȧ1 ȧH
1 R∗

Xȧ2
ȧH

2 R∗
Xȧ1 ȧH

2 R∗
Xȧ2

D,

(4.8)

F12 = T

σ2

C
β∗

1 0
0 β∗

2

D

⊙

C ḃH
1 b1 ḃH

1 b2
ḃH

2 b1 ḃH
2 b2

D
⊙
C

aH
1 R∗

Xa1 aH
1 R∗

Xa2
aH

2 R∗
Xa1 aH

2 R∗
Xa2

D

+
C

bH
1 b1 bH

1 b2
bH

2 b1 bH
2 b2

D
⊙
C

ȧH
1 R∗

Xa1 ȧH
1 R∗

Xa2
ȧH

2 R∗
Xa1 ȧH

2 R∗
Xa2

D,

(4.9)

F22 = T

σ2

C
bH

1 b1 bH
1 b2

bH
2 b1 bH

2 b2

D
⊙
C

aH
1 R∗

Xa1 aH
1 R∗

Xa2
aH

2 R∗
Xa1 aH

2 R∗
Xa2

D
. (4.10)

We can further simplify the expressions using the Hermitian operation and

13
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matrix properties. Then:

F11 = T

σ2

C
∥β1∥2 β∗

1β2
β∗

2β1 ∥β2∥2

D

⊙

C ∥ḃ1∥2 ḃH
1 ḃ2

ḃH
2 ḃ1 ∥ḃ2∥2

D
⊙
C

aH
1 R∗

Xa1 aH
1 R∗

Xa2
aH

2 R∗
Xa1 aH

2 R∗
Xa2

D

+
 2Re

î
bH

1 ḃ1ȧH
1 R∗

Xa1
ï

bH
1 ḃ2

1
ȧH

1 R∗
Xa2 − sin θ1

sin θ2
aH

1 R∗
Xȧ2

2
bH

2 ḃ1
1
ȧH

2 R∗
Xa1 − sin θ2

sin θ1
aH

2 R∗
Xȧ1

2
2Re

î
bH

2 ḃ2ȧH
2 R∗

Xa2
ï 

+
C

∥b1∥2 bH
1 b2

bH
2 b1 ∥b2∥2

D
⊙
C

ȧH
1 R∗

Xȧ1 ȧH
1 R∗

Xȧ2
ȧH

2 R∗
Xȧ1 ȧH

2 R∗
Xȧ2

D,

(4.11)

F12 = T

σ2

 β∗
1

1
ḃH

1 b1aH
1 R∗

Xa1 + bH
1 b1ȧH

1 R∗
Xa1

2
0

0 β∗
2

1
ḃH

2 b2aH
2 R∗

Xa2 + bH
2 b2ȧH

2 R∗
Xa2

2  .

(4.12)
By including prior information, the BFIM can be written as

Jθ|X = F + JP , (4.13)

where, from (3.4), the prior Fisher information matrix is a matrix of 2 × 2 matrices
along its diagonal and zeroes everywhere else. The matrices along the diagonal
express the prior information of the angles and the real and imaginary parts of the
complex amplitudes, namely:

JP =

JP
θ 0 0
0 JP

ℜ{β} 0
0 0 JP

ℑ{β}

 . (4.14)

Since we are only interested in the estimation of the angles of arrival, we consider
the equivalent Bayesian Fisher information matrix (BFIM) [1][12] by treating the
complex amplitudes as nuisance parameters, namely,

Je(θ) = 2Eβ {F11} + JP
θ

− 4Eβ {F∗
12}

1
2Eβ {F22} + JP

β

2−1
Eβ {F12} . (4.15)

We also work under the assumption that the complex amplitudes β1, β2 are
circularly symmetric, which implies that E{βi} = E {βi

∗} = 0, and that JP
Re{βi} =

JP
Im{βi} = JP

βi
[1]. This also implies that Eβ{F∗

12} = Eβ{F12} = 0.
We can thus focus on F11 to obtain the CRB. We now introduce the assumption

of uncorrelated complex coefficients, hence E{β1β2} = E{β1}E{β2}. When taking
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the expected value (which is with respect to the nuisance parameter β), due to the
circularly symmetric assumption of the complex amplitudes, we have the following:

Eβ

IC
∥β1∥2 β∗

1β2
β∗

2β1 ∥β2∥2

DJ
=
C
Eβ1{∥β1∥2} 0

0 Eβ2{∥β2∥2}

D
. (4.16)

By choosing the phase reference point of the transmitting and receiving arrays
such that bH

1 ḃ1 = ḃH
1 b1 = bH

2 ḃ2 = ḃH
2 b2 = 0, we arrive at:

E{F11} = T

σ2
s

C
E{|β1|2} f1(RX) 0

0 E{|β2|2} f2(RX),

D
(4.17)

where

fi(RX) := Eθi
{∥ḃ(θi)∥2tr

î
a(θi)aH(θi)R∗

X

ï
+ ∥b(θi)∥2tr

î
ȧ(θi)ȧH(θi)R∗

X

ï
}. (4.18)

An alternative way to express fi(RX) is obtained by defining Mi = Eθi
{M∗(θi)},

with M(θi) being

M(θi) = ∥ḃ(θi)∥2a(θi)aH(θi) + ∥b(θi)∥2ȧ(θi)ȧH(θi). (4.19)

It is key to highlight that the matrix JP
θ defines the prior knowledge on the

distribution of the angles θ1 and θ2. Such matrix is assumed diagonal; hence, the
priors of the angles are uncorrelated, with entries JP

θ1 and JP
θ2 . The two entries

are the inverse of the known variances of the prior distribution for the two angles
and can be either approximated using σ2 ≈ 1

κ
or by using the more accurate

approximation σ2 = 1 − I1(κ)
I0(κ) , where Ii(κ) is the modified Bessel function of order i.

It is possible to invert the resulting diagonal matrix and finally obtain:

ϵ = EX


A

2T

σ2
s

Eβ1{|β1|2} f1(RX) + JP
θ1

B−1
ü ûú ý

ϵθ1

+ EX


A

2T

σ2
s

Eβ2{|β2|2} f2(RX) + JP
θ2

B−1
ü ûú ý

ϵθ2

.

(4.20)

The derived expression for ϵ is the sum of two errors: the estimation of θ1 and
θ2. We can keep this distinction and study how the rate changes in relation to
these two errors. We also remark that the BCRB depends on the transmit signal
X through RX.
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We can rewrite the errors as follows:

ϵθi
= EX


A

2TE {|βi|2}
σ2 tr

î
MiRX

ï
+ JP

θi

B−1
 . (4.21)

If we only focus on estimating the angle θi, the optimal choice of RX is known
from previous work [1]. However, a closed form optimal solution for the joint
estimation of multiple angles is not available. An optimal deterministic signal X
can be found numerically by using convex optimization tools such as CVX [14][15].

4.2 Optimal Communication and Sensing Points
In ISAC, we are trying to share resources between the sensing and communication
tasks to optimize our transmission. Before diving into the proposed strategies, it is
good to consider the optimal achievable points if the two tasks are not done jointly.
Hence, here we study the deterministic optimal choice of X that minimizes the
total estimation error and the optimal X that maximizes the ergodic rate. The
goal is to find in the next chapter an achievable ISAC region that interpolates
between these points.

4.2.1 Optimal Sensing Point
It is known [1] that to minimize the BCRB ϵθi

of a single angle, hence falling
back to the problem of single target estimation, we can achieve the optimal result
by transmitting in the direction of the eigenvector corresponding to the largest
eigenvalue of the matrix Mi.

However, finding an analytical solution is not as straightforward when investi-
gating the joint minimization of both angles, which we have seen corresponds to
minimizing the sum of the estimation error on each angle. It is left for future works
to find a closed-term optimal solution for this problem, while for this dissertation
to provide a reliable achievable point, we rely on a numerical optimization for any
angle pair.

Since [1] provided the result that the rank of the optimal solution to this issue
is equal to 2 and that by analyzing our resulting matrix RX it has two main
eigenvalues, we select the two main directions (the two eigenvectors corresponding
to the two largest eigenvalues) of our numerical evaluation of the matrix RX. We
will refer to these two directions as r̂1,opt and r̂2,opt.

4.2.2 Optimal Communication Point
The optimal communications strategy for the communication-only point is obtained
by solving
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C = max
RX: E{tr{RX}}≤PTXMTX

R; (4.22)

R := EHc

è
log2

---I + 1
σ2

c
HH

c EX[RX]Hc

---é = Eα,θc

è
log

1
1 + |α|2

σ2
c

aH(θc)EX[RX]a(θc)
2é

;
(4.23)

which is again solvable with a numerical optimizer such as CVX.
Our simulations consider a LoS channel with a single receiver antenna; hence,

the channel can be written as hc. If we consider the uncertainty on hc small, the
optimal solution is simply to transmit Gaussian information alongside the direction
that is the hermitian of the channel. We will refer to this direction as r̂c,opt.

4.3 Ways to Characterize the ISAC Region
In this dissertation, we have studied the optimal sensing and communication points,
practically providing an outer bound for the BCRB-Rate region, and are now
interested in characterizing an inner bound. This problem can be solved in different
ways:

1. Evaluation of parameterized achievable scheme and computation of the convex
closure of achievable pair (R, ϵ).

2. Solve the constrained optimization problem:

max
pX(X)∈X (PTXMTX)

I(X; Yc | Hc) s.t. ϵ = ϵθ1 + ϵθ2 ≤ ϵfix, ∀ϵfix ∈ [ϵmin, 1],
(4.24)

where X (PTXMTX) is the set of all possible distributions for the input sig-
nal that meet the average power constraint PTXMTX, i.e., E {tr {RX}} ≤
PTXMTX = PTXMTX; and ϵmin is the error obtained with (4.20) by using the
RX obtained via CVX as described in section 4.2.1.

3. Solve the constrained optimization problem:

min
pX(X)∈X (PTXMTX)

ϵ s.t. I(X; Yc | Hc) ≤ Rfix, ∀Rfix ∈ [0, Rmax], (4.25)

where Rmax = maxpX(X)∈X (PTXMTX) I (X; Yc | Hc).

4. Solve the constrained optimization problem:

max
pX(X)∈X (PTXMTX)

î
I(X; Yc | Hc) − ζϵ

ï
, (4.26)

where X (PTXMTX) is the set of all possible distributions for the input signal
that meet the average power constraint PTXMTX, i.e., E {tr {RX}} ≤ PTXMTX,
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and the parameter ζ ∈ [0, +∞) is making it possible to optimize the curve so
that for any given value of the rate the lowest error on the joint estimation of
the angles is achieved, and that for any given value of ϵ the maximum rate is
achieved.

However, only the first way to solve the problem provides clear interpretability
of the results regarding the optimal transmission strategy. For this reason, we focus
on the first one in the next chapter.
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Chapter 5

Achievable Transmission
Strategies for
Characterization of ISAC
Tradeoff

5.1 General Communicating Strategy to the UE
We transmit a signal X that needs to be optimized to obtain the lowest possible
estimation error on the angles and the highest possible communication rate. In the
signal X, we must decide the direction(s) we want to send the signal and how we
want to deliver information.

The next sections will apply different strategies to study the ISAC tradeoff. All
of the strategies proposed in this work can be written in a general way as follows:

X = [X1, . . . , XT ] : Xt =
NBØ
b=1

ñ
Ps;b,t sb,t +

ñ
Pc;b,t cb,tGb,t, (5.1)

where NB is the number of beams one wishes to use, sb,t is a deterministic vec-
tor for sensing of unit length, and cb,t is a communication-beamforming vector
which is normalized and ‘modulated’ by the information-carrying i.i.d. N (0,1)
Gaussian random variable Gb,t. The signal X is subject to the power constraintqNB

b=1 Ps;b,t + Pc;b,t ≤ PTXMTX, which ensures that E[tr {RX}] ≤ PTXMTX.
We will analyze specific choices of the various parameters on the proposed ISAC

scheme, with specific channel parameters, to provide some case studies. We will
use for each proposed strategy different choices for the directions of sensing and
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communication. Those directions will be spanned through selection of parameters
λi, such that qi λ1 ≤ 1 and each λi ∈ [0,1].

5.1.1 Communication Rate for Given Strategy
It is equally important in this study to evaluate the rate for any given structure of
the signal we want to transmit. Based on the generic transmitted signal in (5.1),
we can compute the rate as:

R(ϵfix) = Ehc

 TØ
t=1

log
1 + 1

Tσ2
c

NBØ
b=1

Pc;b,t|hH
c cb,t|2

 . (5.2)

5.1.2 BCRB for Given Strategy
To compute the BCRB for the given strategy, we take the transmitted signal X
and directly apply:

ϵ = ϵθ1 + ϵθ2 , (5.3)

where:

ϵθi
= EX


A

2TE {|βi|2}
σ2 tr

î
MiRX

ï
+ JP

θi

B−1
 . (5.4)

Note that we refer to θ1 as the angle of the sensing only target and to θ2 as the
angle of the communication target to send data to and to sense at the same time.

5.2 Strategy 1: One Information Carrying Beam
For the first strategy, we send only in the direction we send i.i.d. Gaussian random
variables, hence Ps,t = 0. We also transmit in the same direction for all t ∈ [1, T ].
The transmit signal is then:

X = [X1, . . . , XT ] : Xt =
ñ

PTXMTX cfirstGt. (5.5)

For this strategy, a closed form solution of (4.21) is derived in [1]:

ϵθi,first =
1
2(T − 1) SNRs cH

firstMicfirst
2−1

(1 + rζ) , (5.6)

where SNRs = MTXPTXE {|β|2} σ−2
s . The correction term rζ is given by

rζ =
T −2Ø
n=1

(−1)nζnrn
i=1(T − i − 1) + (−1)T −1 · eζζT −1Γ(0, ζ)

Γ(T − 1)ü ûú ý
O(ζT −1 log ζ)

, (5.7)
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where Γ(a, x) =
s∞

x ta−1e−t dt, denotes the incomplete Gamma function, and
the variable ζ is computed as ζ = JP

θi

1
2 SNRs cH

firstMcfirst
2−1

.
For what concerns the communication rate, this strategy yields:

R = Ehc

5
log2

3
1 + Ehc [∥hc∥2]−1

---cH
firsthc

---2 SNRc

46
, (5.8)

where SNRc = MTXPTXEhc [∥hc∥2]σ−2
c .

5.2.1 Choice 1: Spanning among the two main eigenvectors
of M1, and the two main eigenvectors of M2

For the direction cfirst, we start by spanning between the two eigenvectors corre-
sponding to the largest eigenvalues of the matrices M1 and M2. The choice is
motivated by the fact that the error on the estimation of each angle is minimized by
choosing as direction the “main” eigenvector corresponding to the largest eigenvalue
of the corresponding Mi matrix [1], and since if the angle distribution is very narrow
the rank of the matrices is 2, by choosing the two main directions we try to see if
for the case of joint target angles estimation, using a direction different than the
main one can help. Denoting by v1 and v2 the two main eigenvectors of M1, and
as v3 and v4 the ones of M2, we can write the direction of transmission as:

r =
ñ

λ1v1 +
ñ

λ2v2 +
ñ

λ3v3 +
ñ

λ4v4, cfirst = r
∥r∥

. (5.9)

5.2.2 Choice 2: Spanning among the Directions of the
Optimal Sensing and the Direction of Optimal Com-
munication

Another strategy is to span between the two optimal directions obtained via CVX for
the overall minimization of the BCRB and the optimal direction of communication.
We construct our direction of transmission as follows:

r =
ñ

λ1r̂1,opt +
ñ

λ2r̂2,opt +
ñ

λ3r̂c,opt cfirst = r
∥r∥

. (5.10)

5.3 Strategy 2: One Information-less Beam
For the second strategy, we send only in the direction without Gaussian random
variables, hence Pc,t = 0. We also transmit in the same direction for all t ∈ [1, T ].
The transmit signal is then:

X = [X1, . . . , XT ] : Xt =
ñ

PTXMTX ssecond. (5.11)
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For this strategy, a closed form solution of 4.21 is derived in [1]:

ϵθi,second =
1
2T SNRs sH

secondMissecond + JP
θi

2−1
. (5.12)

Due to the lack of information, the resulting rate will be zero. Given that
this strategy returns a zero rate, it is presented to provide some insights into the
minimum values for the joint estimation of the two angles.

5.3.1 Choice 1: Spanning among the two main eigenvectors
of M1, and the two main eigenvectors of M2

The first spanning choice uses the same direction as the first direction choice in
5.2.1 to compare them. Hence, the direction is chosen as follows:

r =
ñ

λ1v1 +
ñ

λ2v2 +
ñ

λ3v3 +
ñ

λ4v4, ssecond = r
∥r∥

. (5.13)

5.3.2 Choice 2: Spanning among the main eigenvector of
M1, the main eigenvector of M2 and the Directions
of Optimal Sensing

The second choice uses the main components of the Mi matrices and the optimal
directions for minimizing the BCRB obtained via CVX. The direction is then
chosen as follows:

r =
ñ

λ1r̂1,opt +
ñ

λ2r̂2,opt +
ñ

λ3v1 +
ñ

λ4v3 ssecond = r
∥r∥

. (5.14)

5.4 Strategy 3: Both One Information Carrying
Beam and One Information-less Beam

For the third strategy, we send in both the directions highlighted in the general
transmission signal (5.1). We transmit in the same directions or all t ∈ [1, T ]. The
transmit signal is then:

X = [X1, . . . , XT ] : Xt =
ñ

Ps sthird +
ñ

Pc cthirdGt. (5.15)

Note that power allocation becomes a key factor for this strategy. When spanning
among different directions we will also be affecting the power allocation towards
Ps and Pc, respectively.

For what concerns the communication rate, this strategy yields:

R = Ehc

5
log2

3
1 + Ehc [∥hc∥2]−1

---cH
third(λ)hc

---2 SNRc

46
, (5.16)
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where SNRc = PcEhc [∥hc∥2]σ−2
c . We will express Pc as a function of the maximum

power PTXMTX based on the directions used.

5.4.1 Choice 1: Spanning among the main eigenvector of
M1, the main eigenvector of M2 and the Direction of
Optimal Communication

As a first choice, we use for the sensing direction s the main eigenvector correspond-
ing to the largest eigenvalue of M1 and M2, which are v1 and v3 respectively. The
optimal communication direction r̂c,opt is used for the communication direction c.
We can write the directions as:

r1 =
ñ

λ1v1 +
ñ

λ2v3, sthird = r1

∥r1∥
, (5.17)

r2 =
ñ

λ3r̂c,opt, cthird = r2

∥r2∥
. (5.18)

The spanning choice allows us to compute the power devoted to the sensing-
focused direction Ps and communication-focused direction as Ps = (λ1+λ2)PTXMTX
and Pc = λ3PTXMTX, respectively.

5.4.2 Choice 2: Spanning among the Directions of the
Optimal Sensing and the Direction of Optimal Com-
munication

As a second choice, we choose the sensing direction s to span between the two
optimal directions for sensing obtained via CVX. For the communication side, we
utilize instead the optimal direction r̂c,opt. We can write the directions as follows:

r1 =
ñ

λ1r̂1,opt +
ñ

λ2r̂2,opt, sthird = r1

∥r1∥
, (5.19)

r2 =
ñ

λ3r̂c,opt, cthird = r2

∥r2∥
. (5.20)

The spanning choice allows us to compute the power devoted to the sensing-
focused direction Ps and communication-focused direction as Ps = (λ1+λ2)PTXMTX
and Pc = λ3PTXMTX, respectively.
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5.4.3 Choice 3: Spanning among the main eigenvector of
M1, the main eigenvector of M2, the Directions of
the Optimal Sensing, and the Direction of Optimal
Communication

As a third and final choice we use a combination of the previous choices in 5.4.1
and 5.4.2. For the sensing-focused direction s, we use a combination of both the
main eigenvector corresponding to the largest eigenvalue of M1 and M2, and also
the two optimal directions for sensing obtained via CVX. For the communication-
focused direction, we use optimal communication direction r̂c,opt. We can write the
directions as follows:

r1 =
ñ

λ1v1 +
ñ

λ2v3 +
ñ

λ3r̂1,opt +
ñ

λ4r̂2,opt, sthird = r1

∥r1∥
, (5.21)

r2 =
ñ

λ5r̂c,opt, cthird = r2

∥r2∥
. (5.22)

The spanning choice allows us to compute the power devoted to the sensing-
focused direction Ps and communication-focused direction as Ps = (λ1 + λ2 + λ3 +
λ4)PTXMTX and Pc = λ5PTXMTX, respectively.
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Chapter 6

Simulation Results

In this chapter, we provide different simulations for each of the strategies and
choices of direction presented in the previous chapter.

We start with a batch of simulations sharing the same parameters specified in
6.1 to be able to compare them effectively. Note that we assume colocated TX and
RX antennas; hence, the spacing and number of antennas are the same.

Table 6.1: Parameters Used to Compare Different Strategies

Configuration Value
No. antennas (MTX = MRX) 10

Antennas spacing 1/2 wavelength
Max. Sensing Receiving SNR 20dB per Antenna

Max. Communication Receiving SNR 33dB per Antenna
Coherence Time (T ) 3

Mean Sensing Angle (θs) 30◦

Concentration of Sensing Angle (κ) 131.8
Mean Communication Angle (θc) 42◦

Concentration of Communication Angle (κ) 131.8
Number of Simulated Sensing Angles 10,000

Number of Simulated Communication Angles 1,000
Number of Simulated Gaussians 10,000

Since the theoretical formulas for the first strategy are available, the theoretical
plots are provided and compared with the simulated results. The presented plots
can either represent the total BCRB, given by the sum of the ones on each angle,
against the rate or the relationship between each BCRB on the x and y axes,
respectively, with the rate represented through colors. Since the total rate is zero
for the second transmission strategy, representing the total error vs. the rate does
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not provide insights.

6.1 Strategy 1: One Information Carrying Beam

6.1.1 Choice 1: Spanning among the two main eigenvectors
of M1, and the two main eigenvectors of M2

The results shown in 6.1 confirm the validity of our simulation compared to the
theoretical results in 6.2. It is possible to appreciate how, by using the eigenvectors
of the matrices M1 and M2, it is possible to achieve the lowest errors on the single
angle estimation. However, it is in our interest to study the joint estimation; hence,
having more points in the low-left corner of both figures would be desirable. It is
also important to highlight that using this strategy, it is possible to achieve optimal
communication rates, as confirmed by the results in 6.3 and 6.4. However, the choice
of this strategy does not allow us to reach the minimum overall achievable error on
the estimation, which requires a deterministic signal. This can be confirmed by
the result in 6.5, in which the outer bound of the scatter plot in 6.4 is taken. It
is possible to appreciate the difference between the overall minimum achievable
error and the one we can achieve with the first strategy. Note how there is a gap
between the total error we obtain with this choice of direction and the minimum
achievable error for the first strategy. This is because, as mentioned, there is a lack
of points that produce low errors on both the estimation of θ1 and θ2.

Figure 6.1: First Strategy, First Direction Choice, BCRB-Rate Simulated Points.
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Figure 6.2: First Strategy, First Direction Choice, BCRB-Rate Theoretical Points.

Figure 6.3: First Strategy, First Direction Choice, Total BCRB-Rate Simulated
Points.
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Figure 6.4: First Strategy, First Direction Choice, Total BCRB-Rate Theoretical
Points.

Figure 6.5: First Strategy, First Direction Choice, Total BCRB-Rate Outer
Bound.
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6.1.2 Choice 2: Spanning among the Directions of the
Optimal Sensing and the Direction of Optimal Com-
munication

We mentioned the importance of having points in the low-left of the figures
representing the CRB of each angle in the x and y-axis, respectively. This is
possible using the directions obtained via CVX, as seen in 6.6 and 6.7. As expected,
as a consequence of this, it is also able to achieve a lower total error than the
previous choice, as it can be seen in 6.8 and 6.9. The comparison is even more
appreciable in 6.11, where the choices for this strategy are compared.

Overall, from this first strategy, we could say that using the eigenvectors of the
matrices M1 and M2 is more suitable if interested in one specific angle. Using a
more optimal solution for the joint estimation is certainly more suitable for the
overall minimization of the total error.

Figure 6.6: First Strategy, Second Direction Choice, BCRB-Rate Simulated
Points.

6.2 Strategy 2: One Information-less Beam

6.2.1 Choice 1: Spanning among the two main eigenvectors
of M1, and the two main eigenvectors of M2

The second strategy, returning a zero rate, focuses on the sensing side of our study.
Since we are now sending a deterministic signal, achieving the optimal estimation
errors is possible. In particular, with this first choice of direction, it can be seen
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Figure 6.7: First Strategy, Second Direction Choice, BCRB-Rate Theoretical
Points.

Figure 6.8: First Strategy, Second Direction Choice, Total BCRB-Rate Simulated
Points.
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Figure 6.9: First Strategy, Second Direction Choice, Total BCRB-Rate Theoretical
Points.

Figure 6.10: First Strategy, Second Direction Choice, Total BCRB-Rate Outer
Bound.
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Figure 6.11: First Strategy, Comparison of Direction Choice, Total BCRB-Rate
Outer Bound.
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in 6.12 that by using the eigenvectors of M1 and M2 it is possible to reach the
optimal values for the estimation of each of the angles by themselves. However, as
in the previous strategy, having points in the low-left region would be desirable if
focusing on minimizing the joint estimation of the angles.

Figure 6.12: Second Strategy, First Direction Choice, BCRB-Rate Simulated
Points.

6.2.2 Choice 2: Spanning among the main eigenvector of
M1, the main eigenvector of M2 and the Directions
of Optimal Sensing

As per the results for the previous strategy, it is possible to see in this scenario as
well how by using the optimal directions found via CVX, it is possible to fill the
plot’s lower-left portion in 6.13.

In this case, since we are also spanning among the eigenvectors of M1, we reach
the minimum estimation error for θ1, which was not reached in 6.7 as we were
spanning on the optimal directions or the joint sensing only.

6.3 Strategy 3: Both One Information Carrying
Beam and One Information-less Beam

This strategy combines the things we could notice from the previous two. Without
sending Gaussian i.i.d. random variables (information-less beam), we can achieve
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Figure 6.13: Second Strategy, Second Direction Choice, BCRB-Rate Simulated
Points.
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the minimum BCRB point, while we need the information carrying beam to achieve
the highest possible rate.

6.3.1 Choice 1: Spanning among the main eigenvector of
M1, the main eigenvector of M2 and the Direction of
Optimal Communication

As expected, in 6.14, we can see that by using the eigenvectors of M1 and M2, we
can achieve the lowest error on the single angle estimation of θ1 or θ2. Using this
strategy, we can span between points that optimize the single angle estimation and
points that optimize the communication rate. This could provide a valid strategy
for using ISAC in this two-angle scenario by using proper power allocation between
the beams if interested in minimizing the single-angle estimation error.

Figure 6.14: Third Strategy, First Direction Choice, BCRB-Rate Simulated
Points.

6.3.2 Choice 2: Spanning among the Directions of the
Optimal Sensing and the Direction of Optimal Com-
munication

Using the optimal directions for the joint estimation, it is possible to have more
points in the low-left region in 6.17 compared to the previous choice (in 6.14). This
leads to an overall lower error when considering the joint estimation of the angles
as in 6.18. However, we again highlight that the minimum points for the single
angle estimations have not been reached.
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Figure 6.15: Third Strategy, First Direction Choice, Total BCRB-Rate Simulated
Points.

Figure 6.16: Third Strategy, First Direction Choice, Total BCRB-Rate Outer
Bound.
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This could provide a valid strategy for using ISAC in this two-angle scenario,
using proper power allocation between the beams if we want to minimize the joint
angle estimation error.

Figure 6.17: Third Strategy, Second Direction Choice, BCRB-Rate Simulated
Points.

Figure 6.18: Third Strategy, Second Direction Choice, Total BCRB-Rate Simu-
lated Points.
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Figure 6.19: Third Strategy, Second Direction Choice, Total BCRB-Rate Outer
Bound.
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6.3.3 Choice 3: Spanning among the main eigenvector of
M1, the main eigenvector of M2, the Directions of
the Optimal Sensing, and the Direction of Optimal
Communication

Finally, we combine the previous choices of directions seen in this strategy to obtain
what we expect to be the more comprehensive inner bound for ISAC performance
(in terms of BCRB-Rate tradeoff) in this scenario.

In 6.20, we can appreciate that the optimal points for single angle estimation
and points focusing on the joint estimation are now reached.

It is key to compare in 6.23 the difference among the different direction choices
while using this transmission strategy. These results provide a more comprehensive
inner bound for the considered ISAC scenario.

Finally, it is possible to compare in 6.24 the overall comparison between the
choices presented for the first strategy and those presented for the third one, further
validating what has been discussed and commented on.

Figure 6.20: Third Strategy, Third Direction Choice, BCRB-Rate Simulated
Points.
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Figure 6.21: Third Strategy, Third Direction Choice, Total BCRB-Rate Simulated
Points.

Figure 6.22: Third Strategy, Third Direction Choice, Total BCRB-Rate Outer
Bound.
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Figure 6.23: Third Strategy, Comparison of Direction Choice, Total BCRB-Rate
Outer Bound.

Figure 6.24: First and Third Strategy, Comparison of Direction Choice, Total
BCRB-Rate Outer Bound.
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Chapter 7

Conclusion

In this dissertation, we have conducted a comprehensive analysis of the ISAC
tradeoff in a practical scenario involving the joint estimation of two targets, where
one target is also an end-user for communication. This scenario represents a
crucial step towards generalizing ISAC systems to more complex environments
with multiple targets.

This work contributes by deriving the Bayesian Cramer-Rao Bound (BCRB)
for the joint estimation of two angles of arrival representing the sensing and
communication targets. Under certain assumptions, we demonstrated that the
BCRB can be reduced to a sum of single-target estimation bounds, simplifying
the analysis. Furthermore, we employed convex optimization techniques (CVX) to
obtain the optimal sensing solution.

We have characterized the outer bound for the BCRB-Rate region, which
describes the fundamental tradeoff between sensing accuracy and communication
rate in ISAC systems. This was achieved by identifying the optimal sensing
and communication points, providing valuable insights into the limits of ISAC
performance.

We explored several achievable inner bounds through different transmission
strategies to further understand and characterize these limits. These strategies
involved one or two beams aimed at the sensing direction, communication direction,
or a combination thereof. We identified a promising transmission strategy that
allows achieving the optimal sensing and communication points based on the power
allocation, effectively balancing the sensing and communication requirements.

This work represents a significant step forward in understanding and fully char-
acterizing the ISAC tradeoff, a critical aspect of exploiting the full potential of this
emerging technology. The theoretical foundations established in this dissertation
pave the way for more efficient and effective integration of sensing and communica-
tion in future wireless networks, enabling a wide range of applications that demand
seamless convergence of these functionalities.
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Conclusion

Looking ahead, the insights and methodologies developed in this research can
serve as a foundation for further exploration and generalization to more complex
ISAC scenarios, ultimately driving the development of innovative solutions that
push the boundaries of what is achievable in integrated sensing and communication
systems.
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Appendix A

Matlab Code

1 c l c
2 c l o s e a l l
3 c l e a r a l l
4 format longG
5

6 %% Simulat ion Parameters
7 theta_1 = deg2rad (30) ; % Sens ing t a r g e t
8 theta_2 = deg2rad (42) ; % Communication t a r g e t
9 theta_1_var = deg2rad (5 ) ^2 ;

10 theta_2_var = deg2rad (5 ) ^2 ;
11

12 optimize_with_solver = f a l s e ;
13 number_vectors_span_over = 4 ; % Remember to change g r a n u l a r i t y too
14 g r a n u l a r i t y = 1/40 ; % Step s i z e f o r d i s c r e t i z a t i o n
15 t ransmi s s i on_st ra tegy = ’ th i rd ’ ; % S e l e c t ’ f i r s t ’ , ’ second ’ , or ’

th i rd ’
16

17 n_sim_theta_s = 1e4 ;
18 n_sim_theta_c = 1e2 ;
19 n_sim_gauss = 1e4 ;
20

21 N_T = 10 ;
22 k = 2∗ pi ;
23 d_lambda = 0 . 5 ;
24 T = 3 ;
25 SNR_s = 20 ; % maximum SNR of s en s ing RX in dB/antenna
26 SNR_c = 33 ; % maximum SNR of communication RX in dB/

antenna
27

28 save_f i gure s = 0 ;
29 name_path = ’ ResultsJune5 ’ ; % s p e c i f y your path here
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30 sim_type = ’ 1_1_strategy ’ ; % s p e c i f y your s imu la t i on type s t r i n g here
31

32 %% Plo t t i ng Parameters
33 FontAxis = 25 ;
34 FontSizenum = 25 ;
35 FontTit l e = 25 ;
36 i f i s e q u a l ( t ransmis s ion_strategy , ’ f i r s t ’ )
37 t r an smi s s i on_des c r i p t i on = ’One Di r e c t i on with Gaussian , e . g . \ bf

X\rm = \ surd {P_2} [\ bf c\rm g_1 , \ bf c\rm g_2 , . . . , \ bf c\rm g_T] ’ ;
38 e l s e i f i s e q u a l ( t ransmis s ion_strategy , ’ second ’ )
39 t r an smi s s i on_des c r i p t i on = ’One Di r e c t i on without Gaussian , e . g .

\ bf X\rm = \ surd {P_1} [\ bf s \rm, \ bf s \rm , . . . , \ bf s \rm ] ’ ;
40 e l s e i f i s e q u a l ( t ransmis s ion_strategy , ’ t h i rd ’ )
41 t r an smi s s i on_des c r i p t i on = ’One Di r e c t i on with Gaussian and One

Without , e . g . \ bf X\rm = [\ surd {P_1}\ bf s \rm + \ surd {P_2}\ bf c\rm
g_1 , . . . , \ surd {P_1}\ bf s \rm + \ surd {P_2}\ bf c\rm g_T] ’ ;

42 e l s e
43 e r r o r ( ’ I n c o r r e c t Choice o f Transmiss ion Strategy ’ )
44 end
45

46 num_fig = 0 ;
47 fig_names = {} ;
48

49 %% Precomputation o f Use fu l Var i ab l e s
50 rng (665093593) % Fix ing seed
51 zero_to l = 1e −12; % To check computations with Matlab ’ s

p r e c i s i o n
52 N_T_vec = −(N_T−1) / 2 : (N_T−1) /2 ;
53 SNR_s_lin = db2pow(SNR_s) ;
54 SNR_c_lin = db2pow(SNR_c) ;
55

56 i f i s e q u a l ( t ransmis s ion_strategy , ’ second ’ )
57 n_sim_theta_c = 1 ;
58 n_sim_gauss = 1 ;
59 end
60

61 %% I n i t i a l i z a t i o n o f Angle ’ s D i s t r i b u t i o n s and Pr i o r s
62 k_VonMises_1 = double ( find_k_VonMises ( theta_1_var ) ) ∗2 ;
63 theta_1_vec = circ_vmrnd ( theta_1 , k_VonMises_1 , [ 1 , n_sim_theta_s ] ) ;
64 I_0 = b e s s e l i (0 , k_VonMises_1) ;
65 I_1 = b e s s e l i (1 , k_VonMises_1) ;
66 J_theta_P_1 = (1−I_1^2/I_0^2) ^(−1) ;
67

68 k_VonMises_2 = double ( find_k_VonMises ( theta_2_var ) ) ∗2 ;
69 theta_2_vec = circ_vmrnd ( theta_2 , k_VonMises_2 , [ 1 , n_sim_theta_s ] ) ;
70 theta_c_vec = circ_vmrnd ( theta_2 , k_VonMises_2 , [ 1 , n_sim_theta_c ] ) ;
71 I_0 = b e s s e l i (0 , k_VonMises_2) ;
72 I_1 = b e s s e l i (1 , k_VonMises_2) ;
73 J_theta_P_2 = (1−I_1^2/I_0^2) ^(−1) ;
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74

75 J_theta_P = [ J_theta_P_1 , 0 ;
76 0 , J_theta_P_2 ] ;
77

78 %% Communication S t e e r i ng Vector
79 h_c = ze ro s (N_T, n_sim_theta_c ) ;
80 f o r ind_theta_c = 1 : n_sim_theta_c
81 h_c ( : , ind_theta_c ) = exp (1 i ∗ N_T_vec ∗ k ∗ d_lambda ∗ cos (

theta_c_vec ( ind_theta_c ) ) ) . ’ ; % rx s t e e r i n g vec to r (comm)
82 end
83 h_c_true = exp (1 i ∗ N_T_vec ∗ k ∗ d_lambda ∗ cos ( theta_2 ) ) . ’ ;
84 h_c_true_hat = h_c_true/norm( h_c_true ) ;
85 max_rate_theo = find_Rate (1 , h_c_true_hat , h_c , n_sim_theta_c ,

SNR_c_lin ) ;
86

87 %% Sens ing S t e e r i ng Vectors
88 M_1 = ze ro s (N_T, N_T, n_sim_theta_s ) ;
89 M_2 = ze ro s (N_T, N_T, n_sim_theta_s ) ;
90

91 f o r i t e r = 1 : n_sim_theta_s
92 a_1 = exp(−1 i ∗ N_T_vec ∗ k ∗ d_lambda ∗ cos ( theta_1_vec ( i t e r ) ) )

. ’ ; % tx s t e e r i n g vec to r
93 a_2 = exp(−1 i ∗ N_T_vec ∗ k ∗ d_lambda ∗ cos ( theta_2_vec ( i t e r ) ) )

. ’ ; % rx s t e e r i n g vec to r (comm)
94 a_1_dot = a_1 . ∗ (1 i ∗ N_T_vec ∗ k ∗ d_lambda ∗ s i n ( theta_1_vec (

i t e r ) ) ) . ’ ;
95 a_2_dot = a_2 . ∗ (1 i ∗ N_T_vec ∗ k ∗ d_lambda ∗ s i n ( theta_2_vec (

i t e r ) ) ) . ’ ;
96

97 M_1( : , : , i t e r ) = norm(a_1_dot ) ^2 ∗ (a_1 ∗ a_1 ’ ) . . .
98 + norm(a_1) ^2 ∗ ( a_1_dot ∗ a_1_dot ’ ) ;
99 M_2( : , : , i t e r ) = norm(a_2_dot ) ^2 ∗ (a_2 ∗ a_2 ’ ) . . .

100 + norm(a_2) ^2 ∗ ( a_2_dot ∗ a_2_dot ’ ) ;
101

102 i f n_sim_theta_s == 1
103 a_1 = exp(−1 i ∗ N_T_vec ∗ k ∗ d_lambda ∗ cos ( theta_1 ) ) . ’ ;

% tx s t e e r i n g vec tor
104 a_2 = exp(−1 i ∗ N_T_vec ∗ k ∗ d_lambda ∗ cos ( theta_2 ) ) . ’ ;

% rx s t e e r i n g vec to r (comm)
105 a_1_dot = a_1 . ∗ (1 i ∗ N_T_vec ∗ k ∗ d_lambda ∗ s i n ( theta_1 ) )

. ’ ;
106 a_2_dot = a_2 . ∗ (1 i ∗ N_T_vec ∗ k ∗ d_lambda ∗ s i n ( theta_2 ) )

. ’ ;
107

108 M_1 = norm(a_1_dot ) ^2 ∗ (a_1 ∗ a_1 ’ ) . . .
109 + norm(a_1) ^2 ∗ ( a_1_dot ∗ a_1_dot ’ ) ;
110 M_2 = norm(a_2_dot ) ^2 ∗ (a_2 ∗ a_2 ’ ) . . .
111 + norm(a_2) ^2 ∗ ( a_2_dot ∗ a_2_dot ’ ) ;
112 end
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113 end
114

115 M_1_bar = mean( conj (M_1) , 3) ;
116 M_2_bar = mean( conj (M_2) , 3) ;
117

118 [V_M_1_bar, D_M_1_bar ] = e i g (M_1_bar) ;
119 [V_M_2_bar, D_M_2_bar ] = e i g (M_2_bar) ;
120

121 v_1_hat = V_M_1_bar( : , N_T−1) ;
122 v_2_hat = V_M_1_bar( : , N_T) ;
123

124 v_3_hat = V_M_2_bar( : , N_T−1) ;
125 v_4_hat = V_M_2_bar( : , N_T) ;
126

127 i f opt imize_with_solver
128 R_x_opt = R_x_opt_solver (N_T, T, SNR_s_lin , J_theta_P , M_1_bar ,

M_2_bar) ;
129 [ V_opt , D_opt ] = e i g (R_x_opt) ;
130 v_1_opt = V_opt ( : , N_T) ;
131 v_2_opt = V_opt ( : , N_T−1) ;
132 end
133

134 %% Finding t h e o r e t i c a l boundar ies
135 min_eps_1_theo = rad2deg ( rad2deg ( find_CRB_theo (v_2_hat , v_2_hat ,

M_1_bar , J_theta_P (1 , 1 ) , SNR_s_lin , T, N_T, ’ second ’ ) ) ) ;
136 min_eps_2_theo = rad2deg ( rad2deg ( find_CRB_theo (v_4_hat , v_4_hat ,

M_2_bar , J_theta_P (2 , 2 ) , SNR_s_lin , T, N_T, ’ second ’ ) ) ) ;
137 tot_min_eps_theo = min_eps_1_theo + min_eps_2_theo ;
138

139 f i rst_eps_1_theo = rad2deg ( rad2deg ( find_CRB_theo (v_2_hat , v_2_hat ,
M_1_bar , J_theta_P (1 , 1 ) , SNR_s_lin , T, N_T, ’ f i r s t ’ ) ) ) ;

140 f i rst_eps_2_theo = rad2deg ( rad2deg ( find_CRB_theo (v_4_hat , v_4_hat ,
M_2_bar , J_theta_P (2 , 2 ) , SNR_s_lin , T, N_T, ’ f i r s t ’ ) ) ) ;

141 tot_f i r s t_eps_theo = first_eps_1_theo + first_eps_2_theo ;
142

143 %% Simulat ion
144 Lambdas = generateCombinations ( number_vectors_span_over , g r a n u l a r i t y )

;
145 [ row_Lambdas , ~ ] = s i z e (Lambdas ) ;
146 eps_1_theo = ze ro s (1 , row_Lambdas) ;
147 eps_2_theo = ze ro s (1 , row_Lambdas) ;
148 eps_1_avg_gauss = ze ro s (1 , row_Lambdas) ;
149 eps_2_avg_gauss = ze ro s (1 , row_Lambdas) ;
150 r a t e = ze ro s (1 , row_Lambdas ) ;
151

152 f o r ind_l = 1 : row_Lambdas
153 lambda = Lambdas ( ind_l , : ) ;
154

155 r_1_tx = ze ro s (N_T, 1 ) ;
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156 r_2_tx = ze ro s (N_T, 1 ) + sq r t ( lambda (1 ) ) ∗ v_1_hat + sq r t ( lambda
(2) ) ∗ v_2_hat + sq r t ( lambda (3) ) ∗ v_3_hat + sq r t ( lambda (4 ) ) ∗
v_4_hat ;

157 p_1_tx = 0 ;
158 p_2_tx = lambda (1) + lambda (2 ) + lambda (3) + lambda (4) ;
159

160 i f i s e q u a l ( t ransmis s ion_strategy , ’ f i r s t ’ ) && p_1_tx~=0
161 e r r o r ( ’ I n c o n s i s t e n t cho i c e o f power with t ransmi s s i on

s t r a t e gy . With f i r s t s t r a t e gy p_1_tx should always be 0 . ’ )
162 e l s e i f i s e q u a l ( t ransmis s ion_strategy , ’ second ’ ) && p_2_tx~=0
163 e r r o r ( ’ I n c o n s i s t e n t cho i c e o f power with t ransmi s s i on

s t r a t e gy . With second s t r a t e gy p_2_tx should always be 0 . ’ )
164 end
165

166 r_1_tx_hat = normal ized ( r_1_tx ) ;
167 r_2_tx_hat = normal ized ( r_2_tx ) ;
168 i f i snan ( r_1_tx_hat )
169 r_1_tx_hat = ze ro s (N_T, 1) ;
170 e l s e i f i snan ( r_2_tx_hat )
171 r_2_tx_hat = ze ro s (N_T, 1 ) ;
172 end
173

174 [ err_1_theo , err_2_theo , err_1_avg_gauss , err_2_avg_gauss ,
rate_out ] = myfun (p_1_tx , p_2_tx , r_1_tx_hat , r_2_tx_hat , . . .

175 M_1_bar , M_2_bar , T, N_T, SNR_s_lin , J_theta_P ,
n_sim_gauss , h_c , n_sim_theta_c , SNR_c_lin , t ransmi s s i on_st ra tegy )
;

176

177 eps_1_theo ( ind_l ) = err_1_theo ;
178 eps_2_theo ( ind_l ) = err_2_theo ;
179 eps_1_avg_gauss ( ind_l ) = err_1_avg_gauss ;
180 eps_2_avg_gauss ( ind_l ) = err_2_avg_gauss ;
181 r a t e ( ind_l ) = rate_out ;
182 end
183

184 %% Finding minimum e r r o r and maximum rate po in t s
185 tot_eps_gauss = eps_1_avg_gauss + eps_2_avg_gauss ;
186 vec_eps_theo_2D = l i n s p a c e (min ( tot_eps_theo ) , max( tot_eps_theo ) , 2) ;
187 vec_eps_1_theo_3D = l i n s p a c e (min ( eps_1_theo ) , max( eps_1_theo ) , 2) ;
188 vec_eps_2_theo_3D = l i n s p a c e (min ( eps_2_theo ) , max( eps_2_theo ) , 2) ;
189 vec_eps_gauss_2D = l i n s p a c e (min ( tot_eps_gauss ) , max( tot_eps_gauss ) ,

2) ;
190 vec_eps_1_gauss_3D = l i n s p a c e (min ( eps_1_avg_gauss ) , max(

eps_1_avg_gauss ) , 2) ;
191 vec_eps_2_gauss_3D = l i n s p a c e (min ( eps_2_avg_gauss ) , max(

eps_2_avg_gauss ) , 2) ;
192 vec_rate = l i n s p a c e (min ( ra t e ) , max( ra t e ) , 2) ;
193

194 %% Plo t t i ng 2D Thore t i c a l
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195 i f i s e q u a l ( t ransmis s ion_strategy , ’ f i r s t ’ )
196 num_fig = num_fig + 1 ;
197 fig_names{end + 1} = ’BCRB_tot−Rate_Theo ’ ;
198 f i g u r e
199 hold on
200 p lo t ( vec_eps_theo_2D , max_rate_theo∗ ones (1 , 2 ) , ’ r−− ’ , LineWidth

=2)
201 p lo t ( tot_min_eps_theo∗ ones (1 , 2 ) , vec_rate , ’b−− ’ , LineWidth=2)
202 s c a t t e r ( eps_1_theo + eps_2_theo , r a t e )
203 g r id on
204 s e t ( gca , ’ FontSize ’ , FontAxis ) ;
205 t i t l e ( [ ’ Total BCRB−Rate Theo r e t i c a l Points f o r \ theta_s = ’ ,

num2str ( round ( rad2deg ( theta_1 ) ) ) , . . .
206 ’ ^o and \ theta_c = ’ , num2str ( round ( rad2deg ( theta_2 ) ) ) , ’

^o , T = ’ , num2str (T) ] , ’ FontSize ’ , FontTit l e )
207 s u b t i t l e ( [ ’ Transmiss ion Strategy : ’ , t r an smi s s i on_des c r i p t i on ] , ’

FontSize ’ , FontTit le −2)
208

209 x l a b e l ( ’CRB_{\ theta_1} + CRB_{\ theta_2} [ deg ^2] ’ , ’ FontSize ’ ,
FontSizenum )

210 y l a b e l ( ’ Rate [ bpcu ] ’ , ’ FontSize ’ , FontSizenum )
211 end
212 %% Plo t t i ng 2D Gaussian
213 i f ~ i s e q u a l ( t ransmis s ion_strategy , ’ second ’ )
214 num_fig = num_fig + 1 ;
215 fig_names{end + 1} = ’BCRB_tot−Rate_Gauss ’ ;
216 f i g u r e
217 hold on
218 p lo t ( [ tot_min_eps_theo −0.001 , tot_min_eps_theo +0.01 ] ,

max_rate_theo∗ ones (1 , 2 ) , ’ r−− ’ , LineWidth=2)
219 p lo t ( tot_min_eps_theo∗ ones (1 , 2 ) , [ −1 ,max_rate_theo +5] , ’b−− ’ ,

LineWidth=2)
220 s c a t t e r ( eps_1_avg_gauss + eps_2_avg_gauss , r a t e )
221 g r id on
222 l egend ( ’Maximum Achievable Rate ’ , ’Minimum Achievable Error ’ , ’

Locat ion ’ , ’ bes t ’ )
223 s e t ( gca , ’ FontSize ’ , FontAxis ) ;
224 t i t l e ( [ ’ Total BCRB−Rate Simulated Points f o r \ theta_s = ’ ,

num2str ( round ( rad2deg ( theta_1 ) ) ) , . . .
225 ’ ^o and \ theta_c = ’ , num2str ( round ( rad2deg ( theta_2 ) ) ) , ’

^o , T = ’ , num2str (T) ] , ’ FontSize ’ , FontTit l e )
226 s u b t i t l e ( [ ’ Transmiss ion Strategy : ’ , t r an smi s s i on_des c r i p t i on ] , ’

FontSize ’ , FontTit le −2)
227

228 x l a b e l ( ’CRB_{\ theta_1} + CRB_{\ theta_2} [ deg ^2] ’ , ’ FontSize ’ ,
FontSizenum )

229 y l a b e l ( ’ Rate [ bpcu ] ’ , ’ FontSize ’ , FontSizenum )
230 xlim ( [ 4 , 8 . 5 ] ∗ 1 e−3)
231 ylim ( [ 0 , 1 2 ] )
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232 end
233 %% Plo t t i ng 3D Theo r e t i c a l with Colors
234 i f ~ i s e q u a l ( t ransmis s ion_strategy , ’ t h i rd ’ )
235 num_fig = num_fig + 1 ;
236 fig_names{end + 1} = ’BCRB−Rate_Theo ’ ;
237 f i g u r e
238 hold on
239 p lo t ( vec_eps_1_theo_3D , min_eps_2_theo∗ ones (1 , 2 ) , ’−− ’ , ’ c o l o r ’ ,

[ 0 . 1 , 0 . 1 , 0 . 1 ] , LineWidth=2)
240 p lo t ( min_eps_1_theo∗ ones (1 , 2 ) , vec_eps_2_theo_3D , ’−− ’ , ’ c o l o r ’ ,

[ 0 . 5 , 0 . 5 , 0 . 5 ] , LineWidth=2)
241 s c a t t e r ( eps_1_theo , eps_2_theo , [ ] , rate , ’ f i l l e d ’ )
242 colormap ( j e t )
243 co l o rba r
244 g r id on
245 s e t ( gca , ’ FontSize ’ , FontAxis ) ;
246 t i t l e ( [ ’BCRB−Rate Theo r e t i c a l Points f o r \ theta_s = ’ , num2str (

round ( rad2deg ( theta_1 ) ) ) , . . .
247 ’ ^o and \ theta_c = ’ , num2str ( round ( rad2deg ( theta_2 ) ) ) , ’

^o , T = ’ , num2str (T) ] , ’ FontSize ’ , FontTit l e )
248 s u b t i t l e ( [ ’ Transmiss ion Strategy : ’ , t r an smi s s i on_des c r i p t i on ] , ’

FontSize ’ , FontTit le −2)
249

250 x l a b e l ( ’CRB_{\ theta_1} [ deg ^2] ’ , ’ FontSize ’ , FontSizenum )
251 y l a b e l ( ’CRB_{\ theta_2} [ deg ^2] ’ , ’ FontSize ’ , FontSizenum )
252 z l a b e l ( ’ Rate [ bpcu ] ’ , ’ FontSize ’ , FontSizenum )
253 end
254 %% Plo t t i ng 3D Gaussian with Colors
255 num_fig = num_fig + 1 ;
256 fig_names{end + 1} = ’BCRB−Rate_Gauss ’ ;
257 f i g u r e
258 hold on
259 p lo t ( vec_eps_1_gauss_3D , min_eps_2_theo∗ ones (1 , 2 ) , ’−− ’ , ’ c o l o r ’ ,

[ 0 . 1 , 0 . 1 , 0 . 1 ] , LineWidth=2)
260 p lo t ( min_eps_1_theo∗ ones (1 , 2 ) , vec_eps_2_gauss_3D , ’−− ’ , ’ c o l o r ’ ,

[ 0 . 5 , 0 . 5 , 0 . 5 ] , LineWidth=2)
261 s c a t t e r ( eps_1_avg_gauss , eps_2_avg_gauss , [ ] , rate , ’ f i l l e d ’ )
262 colormap ( j e t )
263 co l o rba r
264 g r id on
265 s e t ( gca , ’ FontSize ’ , FontAxis ) ;
266 t i t l e ( [ ’BCRB−Rate Simulated Points f o r \ theta_s = ’ , num2str ( round (

rad2deg ( theta_1 ) ) ) , . . .
267 ’ ^o and \ theta_c = ’ , num2str ( round ( rad2deg ( theta_2 ) ) ) , ’^o ,

T = ’ , num2str (T) ] , ’ FontSize ’ , FontTit l e )
268 s u b t i t l e ( [ ’ Transmiss ion Strategy : ’ , t r an smi s s i on_des c r i p t i on ] , ’

FontSize ’ , FontTit le −2)
269 % c a x i s ( [ 6 . 2 , 1 0 . 8 ] )
270 % xlim ( [ min ( eps_1_theo ) −0.3 ∗ 1e −3, max( eps_1_theo ) +0.3 ∗ 1e −3])
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271 % ylim ( [ min ( eps_2_theo ) −0.3 ∗ 1e −3, max( eps_2_theo ) +0.3 ∗ 1e −3])
272

273 x l a b e l ( ’CRB_{\ theta_1} [ deg ^2] ’ , ’ FontSize ’ , FontSizenum )
274 y l a b e l ( ’CRB_{\ theta_2} [ deg ^2] ’ , ’ FontSize ’ , FontSizenum )
275 z l a b e l ( ’ Rate [ bpcu ] ’ , ’ FontSize ’ , FontSizenum )
276

277 %% Plo t t i ng Outer Bound
278 i f ~ i s e q u a l ( t ransmis s ion_strategy , ’ second ’ )
279 i f i s e q u a l ( t ransmis s ion_strategy , ’ f i r s t ’ )
280 x = tot_eps_theo ;
281 e l s e
282 x = tot_eps_gauss ;
283 end
284 y = rat e ;
285

286 % Combine x and y in to a matrix o f po in t s
287 po in t s = [ x ( : ) , y ( : ) ] ;
288 % Compute the convex h u l l
289 h u l l I n d i c e s = convhul l ( po in t s ( : , 1 ) , po in t s ( : , 2 ) ) ;
290 % Extract the h u l l po in t s
291 hu l lPo in t s = po in t s ( h u l l I n d i c e s , : ) ;
292 % Get the l e f t and top s i d e po in t s
293 boundaryPoints = getLef tTopSidePoints ( hu l lPo in t s ) ;
294

295 f i g u r e
296 num_fig = num_fig + 1 ;
297 fig_names{end + 1} = ’ Outer_Bound ’ ;
298 hold on
299 p lo t ( [ tot_min_eps_theo −0.01 , tot_min_eps_theo +0.01 ] ,

max_rate_theo∗ ones (1 , 2 ) , ’ r−− ’ , LineWidth=2)
300 p lo t ( tot_min_eps_theo∗ ones (1 , 2 ) , [ −1 ,max_rate_theo +5] , ’b−− ’ ,

LineWidth=2)
301 p lo t ( boundaryPoints ( : , 1 ) , boundaryPoints ( : , 2 ) , ’ k− ’ , LineWidth=3)
302 g r id on
303 l egend ( ’Maximum Achievable Rate ’ , ’Minimum Achievable Error ’ , ’

Locat ion ’ , ’ bes t ’ )
304 s e t ( gca , ’ FontSize ’ , FontAxis ) ;
305 t i t l e ( [ ’ Total BCRB−Rate Simulated Bound f o r \ theta_s = ’ , num2str

( round ( rad2deg ( theta_1 ) ) ) , . . .
306 ’ ^o and \ theta_c = ’ , num2str ( round ( rad2deg ( theta_2 ) ) ) , ’

^o , T = ’ , num2str (T) ] , ’ FontSize ’ , FontTit l e )
307 s u b t i t l e ( [ ’ Transmiss ion Strategy : ’ , t r an smi s s i on_des c r i p t i on ] , ’

FontSize ’ , FontTit le −2)
308

309 x l a b e l ( ’CRB_{\ theta_1} + CRB_{\ theta_2} [ deg ^2] ’ , ’ FontSize ’ ,
FontSizenum )

310 y l a b e l ( ’ Rate [ bpcu ] ’ , ’ FontSize ’ , FontSizenum )
311 xlim ( [ 4 , 8 . 5 ] ∗ 1 e−3)
312 ylim ( [ 0 , 1 2 ] )
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313 end
314 %% Save f i g u r e s
315 i f s ave_f i gure s
316 % Loop over each f i g u r e
317 f o r i = 1 : num_fig
318 % Create a f i g u r e i f i t doesn ’ t e x i s t ( comment t h i s l i n e i f

f i g u r e s a l r eady e x i s t )
319 f i g u r e ( i ) ; % t h i s l i n e i s j u s t to c r e a t e sample f i g u r e s
320

321 % Res ize the f i g u r e to f u l l s c r e en or a s p e c i f i c s i z e
322 s e t ( gcf , ’ Units ’ , ’ normal ized ’ , ’ OuterPos i t ion ’ , [ 0 0 1 1 ] ) ;
323

324 % Generate the f u l l path f o r the f i g u r e
325 f i le_name = s t r c a t (name_path , ’ / ’ , fig_names{ i } , ’ / ’ ,

sim_type ) ;
326

327 s a v e f i g ( gcf , [ f i le_name ’ . f i g ’ ] )
328 pr in t ( gcf , f i le_name , [ ’−d ’ , ’ png ’ ] , ’−r300 ’ ) ;
329

330 end
331

332 end
333

334 %% Functions
335 f unc t i on [ err_1_theo , err_2_theo , err_1_avg_gauss , err_2_avg_gauss ,

rate_out ] = myfun (p_1_tx , p_2_tx , r_1_tx , r_2_tx , . . .
336 M_1_bar , M_2_bar , T, N_T, SNR_s_lin , J_theta_P ,

n_sim_gauss , h_c , n_sim_theta_c , SNR_c_lin , option_theo )
337 [ err_1_theo ] = find_CRB_theo ( r_1_tx , r_2_tx , M_1_bar , J_theta_P

(1 , 1 ) , SNR_s_lin , T, N_T, option_theo ) ;
338 [ err_2_theo ] = find_CRB_theo ( r_1_tx , r_2_tx , M_2_bar , J_theta_P

(2 , 2 ) , SNR_s_lin , T, N_T, option_theo ) ;
339

340 [ err_1_avg_gauss ] = find_CRB_avg(p_1_tx , p_2_tx , r_1_tx , r_2_tx ,
M_1_bar , J_theta_P (1 , 1 ) , SNR_s_lin , T, N_T, n_sim_gauss ) ;

341 [ err_2_avg_gauss ] = find_CRB_avg(p_1_tx , p_2_tx , r_1_tx , r_2_tx ,
M_2_bar , J_theta_P (2 , 2 ) , SNR_s_lin , T, N_T, n_sim_gauss ) ;

342

343 rate_out = find_Rate (p_2_tx , r_2_tx , h_c , n_sim_theta_c ,
SNR_c_lin ) ;

344

345 err_1_theo = rad2deg ( rad2deg ( err_1_theo ) ) ;
346 err_2_theo = rad2deg ( rad2deg ( err_2_theo ) ) ;
347

348 err_1_avg_gauss = rad2deg ( rad2deg ( err_1_avg_gauss ) ) ;
349 err_2_avg_gauss = rad2deg ( rad2deg ( err_2_avg_gauss ) ) ;
350 end
351
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352 f unc t i on [ err_theo ] = find_CRB_theo ( r_1_tx , r_2_tx , M_bar , J_theta ,
SNR_s_lin , T, N_T, option_theo )

353 i f i s e q u a l ( option_theo , ’ f i r s t ’ )
354 R_x = r_2_tx ∗ r_2_tx ’ ;
355 corr_term = 0 ;
356 p s i = r e a l ( J_theta ∗ (2∗SNR_s_lin∗ t r a c e (M_bar∗R_x) ) ^(−1) ) ;
357 i f T==1
358 err_theo = r e a l ( ( SNR_s_lin ∗ t r a c e (M_bar ∗ R_x) ) ^(−1) ∗

p s i ^(T−1) ∗ exp ( p s i ) ∗ gammainc ( ps i , 1−T) ) ;
359 e l s e
360 f o r n=1:T−2
361 prod_denom = 1 ;
362 f o r i =1:n
363 prod_denom = prod_denom ∗ (T−i −1) ;
364 end
365 new_term = (( −1)^n ∗ p s i ^n) / (prod_denom) + (−1) ^(T

−1)∗ ( exp ( p s i ) ∗ p s i ^(T−1)∗gammainc ( ps i , 0) ) / (gamma(T−1) ) ;
366 corr_term = corr_term + new_term ;
367 end
368 err_theo = r e a l ( ( 2 ∗ (T−1) ∗ SNR_s_lin ∗ t r a c e (M_bar ∗

R_x) ) ^(−1) ∗ (1+corr_term ) ) ;
369 end
370 e l s e i f i s e q u a l ( option_theo , ’ second ’ )
371 R_x = r_1_tx ∗ r_1_tx ’ ;
372 err_theo = r e a l ( (2 ∗ T ∗ SNR_s_lin ∗ t r a c e (M_bar ∗ R_x) +

J_theta ) ^(−1) ) ;
373 e l s e i f i s e q u a l ( option_theo , ’ t h i rd ’ )
374 R_x = r_1_tx ∗ r_1_tx ’ ;
375 err_theo = r e a l ( (2 ∗ T ∗ SNR_s_lin ∗ t r a c e (M_bar ∗ R_x) +

J_theta ) ^(−1) ) ;
376 end
377 end
378

379 f unc t i on [ err_gauss_avg ] = find_CRB_avg(p_1_tx , p_2_tx , r_1_tx ,
r_2_tx , M_bar , J_theta , SNR_s_lin , T, N_T, n_sim_gauss )

380 err_gauss = ze ro s (1 , n_sim_gauss ) ;
381 gauss_rnd = (1/ sq r t (2 ) ) ∗ ( randn (T, n_sim_gauss ) + 1 i ∗ randn (T,

n_sim_gauss ) ) ;
382 f o r ind_gauss = 1 : n_sim_gauss
383 X_tx = ze ro s (N_T, T) ;
384 f o r t =1:T
385 X_tx ( : , t ) = sq r t (p_1_tx) ∗r_1_tx + sq r t (p_2_tx) ∗r_2_tx ∗

gauss_rnd ( t , ind_gauss ) ;
386 end
387 R_x_gauss = 1/T ∗ (X_tx ∗ X_tx ’ ) ;
388

389 err_gauss ( ind_gauss ) = r e a l ( (2 ∗ T ∗ SNR_s_lin ∗ t r a c e (M_bar
∗ R_x_gauss ) + J_theta ) ^(−1) ) ;

390
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391 end
392 err_gauss_avg = mean( err_gauss ) ;
393 end
394

395 f unc t i on rate_avg = find_Rate (p_2_tx , r_2_tx , h_c , n_sim_theta_c ,
SNR_c_lin )

396 r a t e = ze ro s (1 , n_sim_theta_c ) ;
397 R_x = r_2_tx ∗ r_2_tx ’ ;
398 i f p_2_tx == 0
399 rate_avg = 0 ;
400 e l s e
401 f o r ind_theta_c = 1 : n_sim_theta_c
402 r a t e ( ind_theta_c ) = log2 ( det (1 + norm(h_c ( : , ind_theta_c ) )

^(−2) ∗ r e a l (h_c ( : , ind_theta_c ) ’ ∗ R_x ∗ h_c ( : , ind_theta_c ) ) ∗
SNR_c_lin ∗ p_2_tx) ) ;

403 end
404 rate_avg = mean( ra t e ) ;
405 end
406 end
407

408 f unc t i on [ R_x_opt ] = R_x_opt_solver (N_T, T, SNR_s_lin , J_theta_P ,
M_1_bar , M_2_bar)

409 % I n i t i a l i z e CVX
410 cvx_begin sdp
411 % Var iab le d e f i n i t i o n
412 v a r i a b l e X(N_T, N_T) hermit ian
413 v a r i a b l e eps_1
414 v a r i a b l e eps_2
415 v a r i a b l e t1
416 v a r i a b l e t2
417 minimize ( eps_1 + eps_2 )
418

419 % Const ra in t s
420 sub j e c t to
421 t r a c e (X) == 1
422 X >= 0 % X must be p o s i t i v e s e m i d e f i n i t e
423 2 ∗ T ∗ SNR_s_lin ∗ t r a c e (M_1_bar ∗ X) + J_theta_P (1 , 1 )

>= t1
424 2 ∗ T ∗ SNR_s_lin ∗ t r a c e (M_2_bar ∗ X) + J_theta_P (2 , 2 )

>= t2
425 eps_1 >= inv_pos ( t1 )
426 eps_2 >= inv_pos ( t2 )
427 cvx_end
428

429 % Optimal s o l u t i o n
430 R_x_opt = X;
431 end
432

433 % Function to f i n d the l e f t and top s i d e po in t s
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434 f unc t i on boundaryPoints = getLef tTopSidePoints ( hu l lPo in t s )
435 % Sort the po in t s by x−coord ina te ( ascending )
436 so r t edPo in t s = sort rows ( hu l lPo int s , 2) ;
437 x = sor t edPo in t s ( : , 1 ) ;
438 y = sor t edPo in t s ( : , 2 ) ;
439

440 [ min_x , ind_min_x ] = min ( x ) ;
441 [ max_y, ind_max_y ] = max( y ) ;
442 max_x = x ( ind_max_y) ;
443 min_y = y ( ind_min_x) ;
444

445 boundaryPoints = [ ] ;
446 maxsize = s i z e ( sor tedPoints , 1) ;
447

448 % Loop through so r t ed po in t s to f i n d l e f tm o s t po in t s
449 f o r i = 1 : maxsize
450 i f s o r t edPo in t s ( i , 1 ) >= min_x && sor t edPo in t s ( i , 1 ) <= max_x

&& sor t edPo in t s ( i , 2 )>= min_y && sor t edPo in t s ( i , 2 )<=max_y
451 i f i >1
452 i f s o r t edPo in t s ( i , 2 ) == boundaryPoints ( end , 2 )
453 e l s e
454 boundaryPoints = [ boundaryPoints ; s o r t edPo in t s ( i ,

1) , s o r t edPo in t s ( i , 2) ] ;
455 end
456 e l s e
457 boundaryPoints = [ boundaryPoints ; s o r t edPo in t s ( i , 1) ,

s o r t edPo in t s ( i , 2) ] ;
458 end
459 end
460 end
461

462 % i f min ( y )~=0
463 % boundaryPoints = [ min_x , 0 ; boundaryPoints ] ;
464 % end
465 % i f max_x < 8.5∗1 e−3
466 % boundaryPoints = [ boundaryPoints ; 8 .5∗1 e −3, max_y ] ;
467 % end
468 end
469

470 f unc t i on y = normal ized ( x )
471 y = x/norm( x ) ;
472 end
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