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Summary

Dengue fever, caused by the dengue virus and transmitted by Aedes mosquitoes,
presents a significant public health challenge, especially in tropical regions. We
investigate its transmission dynamics using various epidemiological mathematical
models, focusing on both host (humans) and vector (Aedes mosquitoes) popula-
tions. In order to highlight the importance of the climatic region for the disease
spread, we analyze both models within a single area (compartmental) and a model
with a tropical and non-tropical area (network). The initial compartmental pop-
ulation model employs the Susceptible-Infected-Susceptible (SIS) framework for
both the host and the mosquito population, accounting for contagion and recovery
rates. Further compartmental population models incorporate vector population
dynamics using an open Susceptible-Infected (SI) framework, including birth and
death rates while excluding recovery rates, to reflect mosquitoes’ shorter lifespan.
Control measures, such as vector control and health policies, are also integrated
into these models as additional terms in the differential equations. The network
model explores the impact of imported cases and international travel on disease dy-
namics, highlighting how interconnected regions can influence and enhance disease
transmission. The network model is then tested through simulations with parame-
ter values from the literature and some assumptions. What-if scenarios such as the
potential survival of Aedes aegypti in non-tropical regions due to climate change
are explored to predict future trends and outbreak risks. By identifying epidemic
thresholds, analyzing effectiveness of controls and simulating various scenarios with
the choice of parameters, this thesis offers insights into effective strategies for con-
trolling dengue transmission and preventing outbreaks, contributing to the broader
field of epidemiology.
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Chapter 1

Introduction

Dengue fever, a mosquito-borne tropical disease caused by the dengue virus [3],
is transmitted to humans through bites from infected female Aedes mosquitoes.
It poses a significant public health challenge, with over one-third of the global
population at risk. The disease is caused by four related but distinct viruses,
DENV-1 to DENV-4, and can lead to a range of clinical manifestations. These
vary from asymptomatic or mild symptoms, such as fever, headaches, and joint and
muscle pains, to severe and potentially fatal hemorrhagic conditions. Estimates
suggest that over 390 million dengue infections occur annually, with 96 million
showing symptomatic severity.

Primary dengue infections are often asymptomatic, but a secondary infection
with a different serotype is the primary risk factor for severe disease. Infection
with one serotype confers lifelong immunity to that specific virus but only tem-
porary protection against other serotypes. Once this cross-protection diminishes,
a secondary infection with a different serotype increases the risk of severe disease
through Antibody-Dependent Enhancement (ADE). ADE occurs when antibodies
from the first infection recognize the new serotype but instead of neutralizing it,
they facilitate its entry into target cells, increasing viral load and disease severity.

There is no specific treatment for dengue. Uncomplicated cases require only
supportive care, while severe cases necessitate hospitalization. Due to the com-
plexities of dengue, vaccine development aims to create a tetravalent vaccine that
provides long-term protection against all four serotypes. A safe, effective, and af-
fordable tetravalent vaccine would significantly aid in controlling the disease and
reducing transmission and mortality rates.

While several candidate tetravalent vaccines are in development, with two hav-
ing completed phase 3 clinical trials, an effective and safe one is not yet available.

Therefore, vector control is still the primary strategy for preventing dengue
transmission, and epidemic models happen to be crucial for guiding decisions,
since they offer insights into the complex epidemiological dynamics of dengue. [4]
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Introduction

Figure 1.1: Dengue cases from January to December 2023 [1]

Increasing temperatures and rainfall are extending the range of mosquitoes
carrying the dengue virus, leading to a significant rise in cases. Over 4.5 million
dengue cases have been reported in 80 countries in 2023, with projections indicating
that by 2080, an additional 2 billion people could be at risk. These outbreaks have
been particularly severe, with a World Health Organization official calling them a
"canary in the coal mine of the climate crisis".

Reported dengue cases have surged from around 500,000 in 2000 to 5.2 million
in 2019. Improved diagnostics and reporting partly explain this increase, but
factors such as population growth, urbanization, travel, and climate change also
play significant roles. Aedes mosquitoes thrive in warmer temperatures, leading to
higher transmission rates and expansion into new areas.

As global temperatures rise, new areas will become hospitable for these mosquitoes.
Scientists predict an expansion of the transmission belt northwards and upwards,
with more months suitable for transmission and increased opportunities for the dis-
ease to spread. Moreover, cases can be reported in both endemic and non-endemic
countries due to the importation of viremic travelers, facilitated by international
travel. In Europe, three countries reported sporadic autochthonous cases between
January 1 and December 5, 2023. Italy recorded the highest number with 82 cases,
followed by France with 43 cases, and Spain with 3 cases. [5][6]
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Introduction

Travelers to tropical regions can contract the infection through bites from Aedes
aegypti mosquitoes, which are primarily responsible for spreading dengue fever in
these areas. In non-tropical regions, transmission mainly occurs via Aedes albopic-
tus, a secondary vector with a broader range of hosts, including birds, cats, dogs,
and other mammals.

The rapid speed of travel by planes and trains enables viremic travelers to move
from disease-endemic regions to non-endemic ones. This movement, coupled with
the increasing presence of competent vectors in non-endemic regions due to global
warming and globalization, allows viremic travelers to potentially transmit the
virus to local susceptible populations. However, the diagnosis of dengue is often
delayed due to its mild and undifferentiated symptoms, hindering timely treatment
and actions to prevent transmission. This situation can lead to an imported index
case causing autochthonous transmission, potentially spiraling into an outbreak.

Endemicity is further facilitated by factors such as conducive breeding sites in
crowded urban communities, lack of vector control, climate change, and vector
adaptation. Given the emerging global impact of imported dengue, understand-
ing the trend of dengue importation and its geographical sources is crucial. This
knowledge can inform policy, risk assessment, and intervention strategies to pre-
vent and delay dengue outbreaks. [7]

This thesis aims to present a series of dengue-specific epidemiological compart-
mental models, organized by increasing complexity. Initially, the objective is to
accurately simulate the contagion dynamics, wherein the spread of infection in
a host population is interdependent with that in a vector population, and vice
versa. Subsequently, the focus shifts to studying the dynamics resulting from im-
ported dengue cases, an issue of growing concern for health authorities in Europe
and other regions where dengue is not endemic. As is common in mathematical
epidemiological studies, this research focuses on identifying the necessary condi-
tions to achieve a disease-free equilibrium in the models, thereby determining the
epidemic thresholds when possible. Additionally, some models incorporate spread
controls that can be interpreted as vector control measures or health policies aimed
at counteracting or promoting behaviors in host populations. The last among the
developed models, which is the one over a network, is also tested through simu-
lations using parameter choices derived from studies that attempted to estimate
them, along with other assumptions. Among the simulations, we include what-if
scenarios such as the potential survival of Aedes aegypti in non-tropical regions
due to climate change to predict future trends and outbreak risks.
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(a) European countries reporting imported cases of dengue
over the years [7]

(b) Sources of imported dengue into Europe over the years [7]

Figure 1.2
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Chapter 2

Background theory

To begin, let us introduce the fundamental concepts of graph theory, compartmen-
tal epidemic models and dynamical systems’ stability theory, including character-
ization of monotonicity, as these will form the foundation of the models we will
develop.

2.1 Basic elements of graph theory
Graphs are mathematical objects consisting of nodes (also known as vertices) con-
nected by links (also known as edges).

If a graph comprises n nodes, they collectively form a set of positive integer
indices V = {1, . . . , n}. Nodes are connected through a set of directed links E ⊆
V × V , such that (i, j) ⊆ E .

For any pair of nodes i, j ∈ V , we define the connection strength aij ≥ 0, which
indicates the degree of connection from node i to node j, such that aij > 0 ⇐⇒
(i, j) ∈ E . These connection strengths are organized into a (weighted) adjacency
matrix A ∈ Rn×n

≥0 . The triple G = (V , E , A) defines the graph.
A network is considered undirected if its corresponding adjacency matrix is

symmetric, i.e., A = A⊤; otherwise, it is labeled as directed. A network is connected
(strongly connected for directed networks) if its adjacency matrix A is irreducible,
meaning that for any pair of nodes i and j, there exists a sequence of nodes
v1 = i,v2,. . .,vk = j such that (vl, vl+1) ∈ E for l = 1, . . . , k − 1. A network
is unweighted if the adjacency matrix of the corresponding graph A has binary
entries, where all non-zero entries (representing links) are equal to 1.

Given a node i ∈ V , ki denotes its (weighted) degree, defined as ki = q
j∈V aij.

In an unweighted network, the degree ki equals the number of nodes that node
i is connected to, known as its neighbors.

A dynamic network is characterized by a time-varying graph G(t) = (V , E(t), A(t)),
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where t may be a discrete or continuous index. The n nodes in the node set
V = 1, . . . , n remain unchanged over time and are interconnected through a time-
varying set of links E(t). The matrix A(t) ∈ Rn×n

≥0 represents the time-varying
(weighted) adjacency matrix, indicating the strengths of connections between
nodes at time t. [8]

A B

C D

1

2 1

2

1 1

Figure 2.1: A directed and weighted graph with nodes A, B, C, and D. Some edges
have a weight of 1 and others have a weight of 2.

2.2 Basic elements of compartmental models in
epidemiology

2.2.1 Standard SI model
The simplest model of an infectious disease, known as the SI model, classifies
individuals as either susceptible (S) or infective (I). In this model, susceptible
individuals can become infective through contact with infective individuals. We
assume that the population is well-mixed, meaning every person has an equal
probability of coming into contact with any other person. Note that this is a
significant approximation.

To derive the governing differential equation for the SI model, we analyze the
number of individuals who become infective over a small time interval ∆t. Let
β∆t represent the probability that a random infective individual infects a random
susceptible individual during this interval. With S susceptible individuals and
I infective individuals, the expected number of new infections in the population
during time ∆t is given by β∆tSI. Therefore,

I(t + ∆t) = I(t) + β∆tS(t)I(t)

Taking the limit as ∆t → 0, we obtain the differential equation:
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2.2 – Basic elements of compartmental models in epidemiology

dI

dt
= βSI

Assuming a constant population size N and neglecting births and deaths, we
have S + I = N . This allows us to eliminate S and rewrite the equation as:

dI

dt
= βNI

3
1 − I

N

4
This equation is recognized as a logistic equation, with a growth rate of βN

and a carrying capacity of N . As t → ∞, I → N , meaning the entire population
will eventually become infective. [9]

2.2.2 SI model with vital dynamics
To incorporate vital dynamics into an SI model, let ω and µ represent the birth
and death rates, respectively. To maintain a constant population size, one should
assume ω = µ. The ordinary differential equations (ODEs) for the model then
become: 

dS
dt

= ω − βSI − µS
dI
dt

= βSI − µI

The terms ω and µS in the equation for dS
dt

account for the births and deaths
among the susceptible individuals, while βSI represents the infection process. Sim-
ilarly, in the equation for dI

dt
, βSI represents the new infections, and µI accounts

for the deaths among the infective individuals.
To find the steady-state solution, we set dS

dt
= 0 and dI

dt
= 0:0 = ω − βSI − µS

0 = βSI − µI

From the second equation:

S = µ

β

As mentioned, when ω = µ, it implies that the population remains constant, so
S + I = N . Therefore:

I = N − S = N − µ

β

Thus, the final number of infected individuals is related to both the vital dy-
namics and the infection rate β. The parameter β can be determined by analyzing
the steady-state condition, as shown in the equations above. [10]
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S I
β

µS µI

ω

cS cI

Figure 2.2: In an SI model with vital dynamics, susceptible individuals (S) tran-
sition to infective individuals (I) with rate β. The birth rate (ω) contributes to
the susceptible population, while the death rate (µ) reduces both the susceptible
and infective populations. Additionally, when dealing with a population of vec-
tors that spread a disease, control terms with weight c may be included to model
interventions.

2.2.3 SIS model
The standard SI model may be extended to the SIS model, where an infective
can recover and become susceptible again. We assume that the probability that
an infective recovers during time ∆t is given by γ∆t. Then the total number of
infective people that recover during time ∆t is given by Iγ∆t, and

I(t + ∆t) = I(t) + β∆tS(t)I(t) − γ∆tI(t)
or as ∆t → 0,

dI

dt
= βSI − γI

Using S + I = N , we eliminate S to obtain

dI

dt
= (βN − γ)I

A
1 − I

N − γ/β

B
which is again a logistic equation, but now with growth rate βN−γ and carrying

capacity N − γ/β. In the SIS model, an epidemic will occur if βN > γ. And if
an epidemic does occur, then the disease becomes endemic with the number of
infectives at equilibrium given by I∗ = N − γ/β, and the number of susceptibles
given by S∗ = γ/β.

In general, an important metric for whether or not an epidemic will occur is
called the basic reproductive ratio or number. The basic reproductive ratio is de-
fined as the average number of people that one infected individual will transmit the
infection to in a fully susceptible population. To compute the basic reproductive

18



2.2 – Basic elements of compartmental models in epidemiology

ratio, define l(t) to be the probability that an individual initially infected at t = 0
is still infective at time t. Since the probability of being infective at time t + ∆t is
equal to the probability of being infective at time t multiplied by the probability
of not recovering during time ∆t, we have

l(t + ∆t) = l(t)(1 − γ∆t)

or as ∆t → 0,

dl

dt
= −γl

With initial condition l(0) = 1,

l(t) = e−γt

Now, the expected number of secondary infections produced by a single pri-
mary infective over the time period (t, t + ∆t) is given by the probability that the
primary infective is still infectious at time t multiplied by the expected number
of secondary infections produced by a single infective during time ∆t; that is,
l(t)S(t)β∆t. Here, the definition of the basic reproductive ratio assumes that the
entire population is susceptible so that S(t) = N . Therefore, the expected num-
ber of secondary infectives produced by a single primary infective in a completely
susceptible population is

Ú ∞

0
βl(t)N dt = βN

Ú ∞

0
e−γt dt = βN

γ

The basic reproductive ratio, written as

R0 = βN

γ

We can see that in the SIS model an epidemic will occur if R0 > 1. In other
words, an epidemic can occur if, on average, one infected individual in a fully
susceptible population infects more than one other individual.

In the SIS model, after an epidemic occurs the population reaches an equilibrium
between susceptible and infective individuals. The effective basic reproductive
ratio of this steady-state population can be defined as βS∗/γ, and with S∗ = γ/β
this ratio is equal to 1. Clearly, for a population to be in equilibrium, an infective
individual must infect on average one other individual before he or she recovers.
[9]
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S I

β

γ

Figure 2.3: In a simple SIS model, S transitions to I with parameter β, and I
transitions back to S with parameter γ.

2.3 Stability in dynamical systems
Let χ be a locally compact metric space. A dynamical system (also known as a
flow map) with state space χ is a continuous function

ϕ : R × χ → χ

such that:

1. ϕ(0, x) = x for every x ∈ χ;

2. ϕ(t, ϕ(s, x)) = ϕ(t + s, x) for every t, s ∈ R and x ∈ χ.

For a dynamical system ϕ : R × χ → χ and x ∈ χ:

• The orbit through x is the set γ(x) = {ϕ(t, x) : t ∈ R}.

• The positive orbit through x is the set γ+(x) = {ϕ(t, x) : t ≥ 0}.

• x is an equilibrium if ϕ(t, x) = x for all t ∈ R, i.e., if γ(x) = {x}.

• x is a periodic point if x is not an equilibrium and there exists T > 0 such
that ϕ(T, x) = x. The smallest such T is the period.

• A cycle is the orbit of a periodic point.

For a dynamical system ϕ(t, x), a set M ⊆ χ is:

• Invariant if x ∈ M =⇒ γ(x) ⊆ M.

• Positively invariant if x ∈ M =⇒ γ+(x) ⊆ M.

For a point x ∈ χ:

• The positive limit set is Λ+(x) = {y ∈ χ : ∃ sequence tk → +∞ s.t. ϕ(tk, x) →
y}.

20



2.3 – Stability in dynamical systems

• The prolonged orbit is D+(x) = {y ∈ χ : ∃ yk → y, xk → x, tk ≥
0 s.t. ϕ(tk, xk) = yk}.

• The prolonged limit set is J+(x) = {y ∈ χ : ∃ yk → y, xk → x, tk →
+∞ s.t. ϕ(tk, xk) = yk}.

Theorem 2.3.1 (Poincaré-Bendixson). Let χ = R2 and let x be a point such that
the trajectory γ+(x) is bounded. Then the following alternatives hold:

• The set Λ+(x) consists of an equilibrium point.

• The set Λ+(x) consists of a cycle.

• The set Λ+(x) consists of the support of a closed curve, on which at least one
equilibrium point lies, and which can be represented as the union (finite or
infinite) of equilibrium points and open trajectories.

Corollary 2.3.2. If x ∈ R2 is such that γ+(x) ⊆ C where C ⊆ R2 is bounded and
contains no equilibrium points, then there exists a cycle in C.

Corollary 2.3.3. If C ⊆ R2 is the interior region of a cycle, then C contains at
least one equilibrium point.

Definition 2.3.1. Given a dynamical system ϕ(t, x), a compact M ⊆ χ and a set
B(M, δ) = t

x∈M B(x, δ) where B(x, δ) is a sphere of centre x and radius δ:

• The system is Lagrange stable if γ+(x) is bounded for every x ∈ χ.

• M is (Lyapunov) stable if for every ϵ > 0 there exists δ > 0 such that

x ∈ B(M, δ) =⇒ γ+(x) ⊆ B(M, ϵ).

Definition 2.3.2. Given a point x ∈ χ and a set M ⊆ χ

• x is attracted by M if limt→+∞ dist(ϕ(t, x), M) = 0.

• x is uniformly attracted by M if for every ϵ > 0, there exist δ > 0 and
T > 0 such that dist(x, y) < δ =⇒ dist(ϕ(t, y), M) < ϵ for all t ≥ T .

• A(M) = {x ∈ χ | x is attracted by M} is the basin of attraction of M.

• Au(M) = {x ∈ χ | x is uniformly attracted by M} is the basin of uniform
attraction of M.

Note that the distance between the point ϕ(t, x) and the set M is defined as
dist(ϕ(t, x), M) = infy∈M ∥ϕ(t, x) − y∥.
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Definition 2.3.3. Given a compact M ⊆ χ

• M is an attractor if there exists η > 0 such that B(M, η) ⊆ A(M).

• A cycle that is an attractor is called a limit cycle.

Theorem 2.3.4. If M is compact and stable, then A(M) = Au(M).

Definition 2.3.4. A compact set M ⊆ χ is asymptotically stable if it is a
stable attractor. In this case, A(M) = Au(M) is the region of asymptotic stability.

Theorem 2.3.5. If M ⊆ χ is compact, positively invariant, and a uniform at-
tractor, then M is stable.

Definition 2.3.5. The motion associated with a point x is:

• Stable if for every ϵ > 0 there exists δ > 0 such that dist(x, y) < δ =⇒
dist(ϕ(x, t), ϕ(y, t)) < ϵ for all t ≥ 0.

• (Locally) asymptotically stable if it is stable and there exists δ0 > 0 such
that dist(x, y) < δ0 =⇒ limt→+∞ dist(ϕ(x, t), ϕ(y, t)) = 0.

Definition 2.3.6 (Global stability). A compact set M is globally asymptoti-
cally stable if A(M) = χ.

Finite-dimensional continuous-time dynamical systems associated with autonomous
ordinary differential equations (ODEs) can be written in the form

ẋ = f(x)

where x ∈ Rn is the state vector and f : Rn → Rn is a vector field of class Cr

(r ≥ 1).

Theorem 2.3.6 (Stability via first-order approximation). Given a system in the
form

ẋ = Ax + f̃(x), x ∈ Rn

where f̃ is a function such that lim∥x∥→0
∥f̃(x)∥

∥x∥ = 0. If all the eigenvalues of A have
negative real parts, then the origin is a (locally) asymptotically stable equilibrium
for the system. If A has one or more eigenvalues with positive real parts, the origin
is unstable for the system.

[11][2]
Note that any nonlinear system ẋ = f(x), with f ∈ C1 and f(0) = 0, can

be rewritten as ẋ = f(x) = Ax + f̃(x), where A = Jf (0) is the Jacobian matrix
evaluated at 0, and ∥f̃(x)∥ = O(∥x∥2) as x → 0.
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Moreover, by employing a change of variables, we are able to linearize around
any equilibrium. Let y be such that y = x − x∗, where x∗ is an equilibrium point
for ẋ = f(x). Then the system can be rewritten in terms of y as:

ẏ = g(y), where g(y) = f(y + x∗).

Note that g(0) = f(x∗) = 0. The Jacobian matrix Jg of g(y) at y = 0 is given by:

Jg = ∂g

∂y

-----
y=0

.

Since g(y) = f(y + x∗), it follows that:

Jg = ∂f

∂x

-----
x=x∗

.

Thus, Jg is the Jacobian matrix of f(x) evaluated at the equilibrium point x∗.
If all eigenvalues of the Jacobian matrix Jg have negative real parts, the equi-

librium point x∗ is asymptotically stable. If at least one eigenvalue of Jg has a
positive real part, the equilibrium point x∗ is unstable. If all eigenvalues of Jg

have non-positive real parts (with at least one eigenvalue having a real part equal
to zero), further analysis is required. In this case, linearization may be inconclu-
sive, and other methods, such as Lyapunov’s direct method, may be necessary to
determine stability.

Figure 2.4: System with a single equilibrium point and a single cycle [2]
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2.4 Monotone dynamical systems
In this section, we provide an introduction to monotone dynamical systems, i.e.,
dynamical systems that preserve a partial order in the state space. A partial order
on a set χ is a binary relation ≤ that is reflexive (i.e., x ≤ x for every x ∈ χ),
antisymmetric (i.e., if x ≤ y and y ≤ x then x = y), and transitive (i.e., if x ≤ y
and y ≤ z then x ≤ z). Note that the term "partial" indicates that not every
pair of elements in χ needs to be comparable. When every two elements in χ are
comparable, the order is called "total".

Definition 2.4.1. Let χ be a state space equipped with a partial order ≤. A
dynamical system ϕ : R × χ → χ is monotone if

x ≤ y =⇒ ϕ(t, x) ≤ ϕ(t, y), ∀t ≥ 0.

Definition 2.4.1 states that a monotone system is such that, if two initial con-
ditions are ordered, the same same order is kept by the trajectories at any time
t ≥ 0.

While the theory can be developed in a very general setting, we shall now
focus on dynamical systems associated to differential equations on Rn. We shall
use the following notational convention for vectors x, y in Rn: inequalities are
meant to hold true entry-wise: so, e.g., x ≤ y means that xi ≤ yi for every i =
1, . . . , n.Clearly, the relation ≤ induces a partial ordering on Rn. In the following,
we are going to focus on the case where the dynamical system is associated to an
autonomous differential equation

ẋ = f(x)

where f : χ → Rn is a C1 vector field (though Lipschitz-continuity would suf-
fice), and χ ⊆ Rn is a nonempty closed invariant set. In this case, the monotonic-
ity property can be given a simple characterization as illustrated in the following.
First, it is easily seen that every single-dimensional dynamical system is monotone,
as stated below.

Proposition 2.4.1. Every dynamical system ϕ : R × χ → χ with state space
χ ⊆ R is monotone.

We first focus on the class of linear dynamical systems and provide necessary
and sufficient conditions for their monotonicity. To this end, we introduce the
following definitions.

Definition 2.4.2. A dynamical system with state space Rn is positive if it leaves
the nonnegative orthant Rn

+ invariant.
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2.5 – Deterministic network SIS model

Definition 2.4.3. A matrix A ∈ Rn×n is referred to as Metzler if its off-diagonal
entries are nonnegative, i.e.,

Aij ≥ 0 ∀i /= j.

Proposition 2.4.2. Consider a linear dynamical system ẋ = Ax on Rn. The
following statements are equivalent:

1. The system is monotone.

2. The system is positive.

3. The matrix A is Metzler.

We now move on to the case of multi-dimensional non-linear systems.

Lemma 2.4.3. A dynamical system ẋ = f(x) with closed state space χ and
Lipschitz-continuous vector field f : χ → Rn is monotone if and only if

fi(x) ≤ fi(y),
for every x and y in χ and 1 ≤ i ≤ n such that

x ≤ y, xi = yi

Theorem 2.4.4. A dynamical system ẋ = f(x) with closed state space χ ⊆ Rn

and Lipschitz-continuous vector field f : χ → Rn is monotone if and only if the
Jacobian matrix Jf (x) is a Metzler matrix for almost every x in χ.

[12]

2.5 Deterministic network SIS model
We now consider the deterministic network SIS epidemic model. Let n be the
number of populations interacting according to a nonnegative interaction matrix
W ∈ Rn×n

≥0 , where Wij represents the rate at which members of population i meet
members of population j. Let xi(t) and yi(t) be the fractions of susceptible and
infected individuals in population i (i = 1, . . . , n), respectively. Let β > 0 and
γ > 0 be the contagion and recovery rates. The evolution of the epidemic is then
given by:

ẋi = βxi

nØ
j=1

Wijyj − γyi ẏi = βxi

nØ
j=1

Wijyj − γyi

for i = 1, . . . , n. As in the scalar case, we notice that ẋi + ẏi = 0, allowing us
to eliminate the variables xi and rewrite the deterministic network SIS epidemic
model in terms of the fractions of infected individuals in the different populations:
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ẏi = β(1 − yi)
nØ

j=1
Wijyj − γyi, i = 1, . . . , n.

We have the following result:

Lemma 2.5.1. Consider the deterministic network SIS model with an irreducible
interaction matrix W , transmission rate β > 0, and recovery rate γ > 0. Then:

(i) Every equilibrium point y∗ /= 0 is such that y∗ > 0.

(ii) There exists at most one positive equilibrium point y∗ > 0.

Theorem 2.5.2. Consider the deterministic network SIS model with an irreducible
interaction matrix W , transmission rate β > 0, and recovery rate γ > 0. Let λW

be the dominant eigenvalue of W (i.e. |λW| = max{|λ1|, |λ2|, . . . , |λn|}). Then:

• If βλW ≤ γ, then 0 is a globally asymptotic equilibrium point for the system
in [0,1]n.

• If βλW > γ, then 0 is an unstable equilibrium point, and there exists an
endemic equilibrium point y∗ in (0,1]n that is locally asymptotically stable and
attracts the whole [0,1]n \ {0}.

[12]
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Chapter 3

Compartmental models

We are interested in studying dengue spread dynamics to determine the most effec-
tive methods for halting transmission and achieving a disease-free status. Dengue
is prevalent in tropical regions, and cases that are "imported" (where individuals
travel to other countries, contract dengue, and return infected) pose significant
concerns for European authorities. In mathematical modelling, dengue is peculiar
because its spread requires the coexistence of both a host population (humans)
and a vector population (mosquitoes) in the same area since transmission occurs
only when a vector bites a host. Therefore, it is necessary to include at least
one host population and one vector population when formalizing the model. In
the compartmental models, we assume that the human and mosquito populations
coexist within the same region and do not have any external interactions.

3.1 Modeling dengue dynamics with the SIS Frame-
work

The initial model we consider represents the scenario of one host population and
one vector population using the SIS (Susceptible-Infected-Susceptible) framework.

To this purpose let us define the following quantities and parameters:

• s1(t) ∈ [0,1]: The fraction of susceptible hosts in the host population.

• x1(t) ∈ [0,1]: The fraction of infected hosts in the host population.

• s2(t) ∈ [0,1]: The fraction of susceptible vectors in the vector population.

• x2(t) ∈ [0,1]: The fraction of infected vectors in the vector population.

• β1 > 0: The contagion rate from hosts to vectors.

27



Compartmental models

• γ1 > 0: The recovery rate of hosts.

• β2 > 0: The contagion rate from vectors to hosts.

• γ2 > 0: The recovery rate of vectors.

The health states of the populations are described by the two-dimensional state
variables [s1(t), x1(t)]⊤ and [s2(t), x2(t)]⊤, which evolve according to the following
systems of ordinary differential equations (ODEs):ṡ1(t) = −β2x2(t)s1(t) + γ1x1(t)

ẋ1(t) = β2x2(t)s1(t) − γ1x1(t)

ṡ2(t) = −β1x1(t)s2(t) + γ2x2(t)
ẋ2(t) = β1x1(t)s2(t) − γ2x2(t)

.

Since the total mass in both populations is preserved (i.e. ṡi + ẋi = 0, i = 1,2), the
two systems consist of linearly dependent equations. Consequently, they can be
reduced to a single nonlinear ODE for each population, from which it is straight-
forward to observe that the domain [0,1]2 is positively invariant. Therefore, after
coupling the two equations, we obtain the following system:ẋ1(t) = −γ1x1(t) + β2(1 − x1(t))x2(t)

ẋ2(t) = −γ2x2(t) + β1(1 − x2(t))x1(t)
. (3.1)

Let us observe that if we were to consider the specific case β1 = β2 = β and
γ1 = γ2 = γ, we could use the results from 2.5.2: the interaction matrix is

W =
C
0 1
1 0

D
,

and with λW = 1, we have that if β ≤ γ, then 0 is a globally asymptotically stable
equilibrium point for the system in [0,1]2. Otherwise, 0 is an unstable equilibrium
point, and there exists an endemic equilibrium point x∗ in (0,1]2 that is locally
asymptotically stable and attracts the whole [0,1]2 \ 0. In this case, the expression
of the endemic equilibrium is x∗

1 = x∗
2 = β2−γ2

β(β+γ) . The division between the two
behaviors the system can exhibit in the specific case can also be discerned using
the epidemic threshold. This is achieved by determining whether the ratio β/γ is
less than or equal to 1 or greater than 1.

In general (β1 /= β2 and γ1 /= γ2), the equilibria are 0 and (x∗
1, x∗

2), withx∗
1 = β1β2−γ1γ2

β1(γ1+β2)

x∗
2 = β1β2−γ1γ2

β2(γ2+β1)
.
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Using 2.3.6, we can determine the conditions under which the disease-free equi-
librium is locally asymptotically stable.

Let us call

f(x1, x2) =
C
ẋ1
ẋ2

D
,

then we can calculate the Jacobian matrix of f(x1, x2), which is

Jf (x1, x2) =
C
−γ1 − β2x2 β2 − β2x1
β1 − β1x2 −γ2 − β1x1

D
.

Remark 1. Consider the dynamical system 3.1. There are no limit cycles in the
system because it is positive monotone, given that the Jacobian matrix Jf (x) is
Metzler.

Theorem 3.1.1. Consider the dynamical system 3.1. The epidemic threshold is
determined by the ratio β1β2

γ1γ2
, and the following statements hold:

• If β1β2
γ1γ2

< 1, the disease-free equilibrium (xo
1, xo

2) = (0, 0) is globally asymptot-
ically stable.

• If β1β2
γ1γ2

> 1, the disease-free equilibrium (xo
1, xo

2) = (0, 0) is unstable, and there
exists a unique endemic equilibrium (x∗

1, x∗
2) that is globally asymptotically

stable.

Proof. The Jacobian matrix at the disease-free equilibrium (0, 0) is:

Jf (0,0) =
C
−γ1 β2
β1 −γ2

D

The eigenvalues of Jf (0,0) are the solutions to the characteristic equation:

det(Jf (0,0) − λI) =
-----−γ1 − λ β2

β1 −γ2 − λ

----- = 0

Hence, we find the following:

λ1,2 =
−(γ1 + γ2) ±

ñ
(γ1 + γ2)2 − 4(γ1γ2 − β1β2)

2

The disease-free equilibrium (0, 0) is locally asymptotically stable if both eigen-
values have negative real parts. This occurs if and only if γ1γ2 > β1β2, i.e.,
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β1β2
γ1γ2

< 1. Moreover, the other equilibrium (x∗
1, x∗

2) exists in χ = [0,1]2 if and only
if β1β2

γ1γ2
> 1.

To determine the stability of (x∗
1, x∗

2), we linearize the system around (x∗
1, x∗

2)
and analyze the Jacobian matrix evaluated at (x∗

1, x∗
2):

Jf (x∗
1, x∗

2) =
 −β1(γ1+β2)

β1+γ2

γ1(β1β2+β2γ2)
β1(γ1+β2)

γ2(β1β2+β1γ1)
β2(γ2+β1) −β2(γ2+β1)

β2+γ1


The eigenvalues of this matrix have negative real parts if and only if β1β2

γ1γ2
>

1, ensuring that (x∗
1, x∗

2) is globally asymptotically stable (note that here 0 is a
singularity and it does not undermine global stability).

Thus, if β1β2
γ1γ2

< 1, the disease-free equilibrium (0, 0) is globally asymptotically
stable. If β1β2

γ1γ2
> 1, the disease-free equilibrium is unstable, and there exists a

unique globally asymptotically stable endemic equilibrium (x∗
1, x∗

2). Hence, the
epidemic threshold of this model is determined by β1β2

γ1γ2
= 1.

In 3.1 and 3.2, we simulate the model’s behaviors for the specific case β1 =
β2 = β and γ1 = γ2 = γ and the general case.

In the specific case simulation, we simulate both β/γ = 1.5 (i.e., above the
epidemic threshold), and β/γ = 1 (i.e., below the epidemic threshold). Below
the epidemic threshold, both trajectories converge to the disease-free equilibrium;
above the epidemic threshold, they both converge to the endemic equilibrium
x∗

i = 1
3 , i = 1,2.

In the general case simulation, we simulate both β1β2
γ1γ2

> 1 (i.e., above the
epidemic threshold) and β1β2

γ1γ2
= 1 (i.e., at the epidemic threshold). At the epidemic

threshold, both trajectories converge to the disease-free equilibrium; above the
epidemic threshold, they converge to population-specific endemic equilibria.
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3.1 – Modeling dengue dynamics with the SIS Framework

(a)

(b)

Figure 3.1: Two trajectories with same initial conditions x1(0) = 0.1 and x2(0) =
0.4 of the two populations SIS model 3.1 with β1 = β2 = β and γ1 = γ2 = γ:
(a) β/γ = 1.5 (i.e., above the epidemic threshold); (b) β/γ = 1 (i.e., below the
epidemic threshold). Below the epidemic threshold, both trajectories converge to
the disease free equilibrium; above the epidemic threshold, they both converge to
the endemic equilibrium x∗

i = 1
3 , i = 1,2.
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(a)

(b)

Figure 3.2: Two trajectories with same initial conditions x1(0) = 0.1 and x2(0) =
0.4 of the general two populations SIS model 3.1: (a) β1β2

γ1γ2
> 1 (i.e., above the

epidemic threshold); (b) β1β2
γ1γ2

= 1 (i.e., at the epidemic threshold). At the epidemic
threshold, both trajectories converge to the disease free equilibrium; above the
epidemic threshold, they converge to population-specific endemic equilibria.
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3.2 Modeling the vector population dynamics with
a SI

When formalizing a dengue spread dynamics model, it is appropriate to consider
the significant gap between the lifespan of hosts and vectors. The lifespan of female
mosquitoes is estimated to be less than two months. Therefore, it is suitable to
omit the recovery dynamics of mosquitoes from dengue disease while incorporating
birth and death rates for the vector population.

In this model, we use an open SI framework to model the vector population
dynamics. For this purpose, we need to redefine the quantities related to the
vector population. We can no longer use fractions of susceptible and infected
vectors, as the set [0,1]3 is not positively invariant. Hence, we define S2 and X2 as
the number of susceptible and infected vectors, respectively, which sum to a total
vector population that varies with time.

However, we keep an SIS framework to model the dynamics in the host pop-
ulation. Therefore, we can still use the quantities s1(t) and x1(t) such that
s1(t) + x1(t) = 1. Let us define ω > 0 and µ > 0 as the vector recruitment
and death rates, respectively. While we start with four ODEs, we find again that
the equations for ṡ1 and ẋ1 are linearly dependent, allowing us to reduce the system
to three equations.

The model is described by the following system of ODEs:
ẋ1(t) = −γ1x1(t) + β2(1 − x1(t))X2(t)
Ṡ2(t) = ω − µS2(t) − β1x1(t)S2(t)
Ẋ2(t) = β1x1(t)S2(t) − µX2(t)

, (3.2)

which is characterized by equilibria


xo
1 = 0

So
2 = ω

µ

Xo
2 = 0


x∗

1 = ωβ1β2−µ2γ1
ωβ1β2+µγ1β1

S∗
2 = γ1µ+β2ω

β2(β1+µ)

X∗
2 = ωβ1β2−µ2γ1

µβ1β2+µ2β2

.

The Jacobian of the system is

Jf (x1, S2, X2) =

−γ1 − β2X2 0 β2(1 − x1)
−β1S2 −µ − β1x1 0
β1S2 β1x1 −µ

 .

Theorem 3.2.1. Consider the dynamical system 3.2. The epidemic threshold for
this model is determined by the condition:

β1β2ω

γ1µ2 = 1.
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If β1β2ω
γ1µ2 < 1, the disease-free equilibrium

1
0, ω

µ
, 0
2

is locally asymptotically sta-
ble. If β1β2ω

γ1µ2 > 1, the disease-free equilibrium is unstable and the endemic equilib-
rium (x∗

1, S∗
2 , X∗

2 ) is locally asymptotically stable.

Proof. Consider the Jacobian of the system at the disease-free equilibrium
1
0, ω

µ
, 0
2
:

Jf

A
0,

ω

µ
, 0
B

=


−γ1 0 β2
−β1ω

µ
−µ 0

β1ω
µ

0 −µ

 .

The eigenvalues are given by:


λ1 = −µ

λ2,3 = 1
2µ

3
−γ1µ − µ2 ± √

µ
ñ

γ2
1µ − 2γ1µ2 + µ3 + 4β1β2ω

4 .

To ensure that
1
0, ω

µ
, 0
2

is locally asymptotically stable, all eigenvalues must
have negative real parts. This is true if and only if:

β1β2ω

γ1µ2 < 1.

Whereas

Jf (x∗
1, S∗

2 , X∗
2 ) = Jf

A
ωβ1β2 − µ2γ1

ωβ1β2 + µγ1β1
,

γ1µ + β2ω

β2(β1 + µ) ,
ωβ1β2 − µ2γ1

µβ1β2 + µ2β2

B
=


−γ1µβ1+ωβ1β2

µ(µ+β1) 0 µγ1β1β2+µ2γ1β2
ωβ1β2+µγ1β1

−β1γ1µ+β1β2ω
β2(β1+µ) −µ − ωβ1β2−µ2γ1

ωβ2+µγ1
0

β1γ1µ+β1β2ω
β2(β1+µ)

ωβ1β2−µ2γ1
ωβ2+µγ1

−µ

 ,

whose eigenvalues are
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λ1 = −µ

λ2,3 = 1
2β1β2µ(β1 + µ)(γ1µ + β2ω)×− β2

1β2γ
2
1µ2 − β3

1β2
2µω − 2β2

1β2
2γ1µω − 2β2

1β2
2µ2ω − β1β

2
2µ3ω − β2

1β3
2ω2

+
3

β2
1β2γ

2
1µ2 + β3

1β2
2µω + 2β2

1β2
2γ1µω + 2β2

1β2
2µ2ω + β1β

2
2µ3ω + β2

1β3
2ω2

42

− 4
3

− β4
1β2

2γ3
1µ5 − 2β3

1β2
2γ3

1µ6 − β2
1β2

2γ3
1µ7 + β5

1β3
2γ2

1µ3ω

− 3β3
1β3

2γ2
1µ5ω − 2β2

1β3
2γ2

1µ6ω + 2β5
1β4

2γ1µ
2ω2 + 3β4

1β4
2γ1µ

3ω2

− β2
1β4

2γ1µ
5ω2 + β5

1β5
2µω3 + 2β4

1β5
2µ2ω3 + β3

1β5
2µ3ω3

4 1
2

.

These eigenvalues are all with negative real part when the following condition
holds:

1
β1γ

2
1µ2 + β2µ(β2

1 + µ2 + 2β1(γ1 + µ))ω + β1β
2
2ω2

22
>

+ γ3
1µ4(8β1µ

2 + 4µ3 + β2
1(γ1 + 4µ))

+ 2β2γ
2
1µ3(−β3

1 + 7β1µ
2 + 4µ3 + 2β2

1(γ1 + µ))ω
+ β2

2µ2(β4
1 + 4β3

1(−γ1 + µ) + 4β1µ
2(γ1 + µ)

+ µ3(4γ1 + µ) + β2
1(6γ2

1 − 4γ1µ + 6µ2))ω2

− 2β1β
3
2µ(β2

1 + µ2 + 2β1(−γ1 + µ))ω3 + β2
1β4

2ω4,

which simplifies to the expression

β1β2ω

γ1µ2 > 1.

When this condition holds, the equilibrium
1
0, ω

µ
, 0
2

is unstable, while the en-
demic equilibrium (x∗

1, S∗
2 , X∗

2 ) is locally asymptotically stable.
Therefore, the epidemic threshold for this model is determined by the condition:

β1β2ω

γ1µ2 = 1.
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In 3.3 we perform time simulations of this model with the conditions (ω, µ, β1, β2, γ1) =
(1,0.1,0.2,0.2,0.3) (indicating the system is above the epidemic threshold since
β1β2ω
γ1µ2 = 13.33) and with (ω, µ, β1, β2, γ1) = (1,0.2,0.2,0.2,1) (indicating the sys-

tem is at the epidemic threshold since β1β2ω
γ1µ2 = 1). Above the epidemic threshold,

the disease becomes endemic among both populations, whereas at the epidemic
threshold, the number of susceptible vectors and the fraction of susceptible hosts
both converge to 0.

Note that in the simulation the ratio is well above the epidemic threshold.
Interestingly, for values of the ratio close to 1 but greater, the human population
reaches a disease-free equilibrium, while the mosquito population does not.
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3.2 – Modeling the vector population dynamics with a SI

Figure 3.3: Two trajectories with initial conditions x1(0) = 0.4, S2(0) = 8 and
X2(0) = 2 for the model with vector dynamics as SI and host dynamics as SIS 3.2:
(a) with (ω, µ, β1, β2, γ1) = (1,0.1,0.2,0.2,0.3) (i.e., above the epidemic threshold
since β1β2ω

γ1µ2 = 13.33); (b) with (ω, µ, β1, β2, γ1) = (1,0.2,0.2,0.2,1) (i.e., at the
epidemic threshold since β1β2ω

γ1µ2 = 1). Above the epidemic threshold, the disease
becomes endemic among both populations; at the epidemic threshold, the number
of susceptible vectors and the fraction of susceptible hosts both converge to 0.
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Chapter 4

Epidemic control over the
SI-SIS compartmental
model

4.1 Adding a vector control term

We now try adding a linear vector control term u1. This term shall be interpreted
as vector killing, which affects both susceptible and infected vectors. We first con-
sider the linear vector control terms u11 = −c1S2(t) and u12 = −c1X2(t).

Therefore, we obtain the following system of ODEs:


ẋ1(t) = −γ1x1(t) + β2(1 − x1(t))X2(t)
Ṡ2(t) = ω − µS2(t) − β1x1(t)S2(t) − c1S2(t)
Ẋ2(t) = β1x1(t)S2(t) − µX2(t) − c1X2(t)

. (4.1)

The system is characterized by the following equilibria:

x
∗(1)
1 = 0

S
∗(1)
2 = ω

µ + c1

X
∗(1)
2 = 0

and

39



Epidemic control over the SI-SIS compartmental model

x
∗(2)
1 = −c2

1γ1 − 2c1γ1µ − γ1µ
2 + β1β2ω

β1(c1γ1 + γ1µ + β2ω)

S
∗(2)
2 = c1γ1 + γ1µ + β2ω

β2(c1 + β1 + µ)

X
∗(2)
2 = −c2

1γ1 − 2c1γ1µ − γ1µ
2 + β1β2ω

β2(c1 + µ)(c1 + β1 + µ)

The Jacobian of the system is

Jf (x1, S2, X2) =

−γ1 − β2X2 0 β2(1 − x1)
−β1S2 −µ − c1 − β1x1 0
β1S2 β1x1 −µ − c1

 .

Theorem 4.1.1. Consider the dynamical system (4.1). The epidemic threshold
for this model is determined by the condition:

β1β2ω

γ1(µ + c1)2 = 1.

If β1β2ω
γ1(µ+c1)2 < 1, the disease-free equilibrium

1
0, ω

µ+c1
, 0
2

is the sole equilibrium
and it is locally asymptotically stable. If β1β2ω

γ1(µ+c1)2 > 1, the disease-free equilibrium
is unstable and the endemic equilibrium

1
x

∗(2)
1 , S

∗(2)
2 , X

∗(2)
2

2
is locally asymptotically

stable.

Proof. Consider the Jacobian of the system at the disease-free equilibrium
1
0, ω

µ+c1
, 0
2
:

Jf

A
0,

ω

µ + c1
, 0
B

=


−γ1 0 β2

− β1ω
µ+c1

−µ − c1 0
β1ω

µ+c1
0 −µ − c1

 .

To ensure that
1
0, ω

µ+c1
, 0
2

is locally asymptotically stable, all eigenvalues must
have negative real parts. This is true if and only if:

β1β2ω

γ1(µ + c1)2 < 1.

When this condition is satisfied,
1
0, ω

µ+c1
, 0
2

is the sole equilibrium, and thus,
it is locally asymptotically stable.

Whereas
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4.2 – Adding a control term for hosts

Jf

1
x

∗(2)
1 , S

∗(2)
2 , X

∗(2)
2

2
=


−γ1(µ+c1)+β2ω

µ+c1
0 β2(β1β2ω−c2

1γ1−2c1γ1µ−γ1µ2)
β1(µ+c1)(µ+c1+β1)

− β1ω
β2(c1+β1+µ) −(µ + c1) − ωβ1β2−µ2γ1

µβ1β2+µ2β2
0

β1ω
β2(c1+β1+µ)

ωβ1β2−µ2γ1
ωβ2+µγ1

−(µ + c1)

 ,

whose eigenvalues are all with negative real part when the following condition
holds:

β1β2ω

γ1(µ + c1)2 > 1.

When this condition holds, the equilibrium
1
0, ω

µ+c1
, 0
2

is unstable, while the
endemic equilibrium

1
x

∗(2)
1 , S

∗(2)
2 , X

∗(2)
2

2
is locally asymptotically stable.

Therefore, the epidemic threshold for this model is determined by the condition:

β1β2ω

γ1(µ + c1)2 = 1.

As we work with increasingly complex models, it is clear that the Jacobian
associated with the system often ceases to be Metzler. Consequently, we cannot
readily conclude that the system lacks limit cycles. Instead, we must employ
other analytical or numerical methods to investigate this. A common approach to
detect limit cycles is by simulating the system’s state space orbits. In Figure 4.1,
we simulate several orbits for the 4.1 model. Although their behavior appears to
suggest absence of limit cycles, proving it may be challenging.

4.2 Adding a control term for hosts
Let us now consider an extension of the previous model that incorporates an ad-
ditional term: a control factor representing self-protective behavior by the hosts.
This behavior reduces the infection rate between host and vector populations, and
it can be implemented in various ways, such as wearing long sleeves to reduce the
chance of being bitten, using body gel, limiting the time windows are left open, or
exercising caution when encountering mosquitoes.

The system of ODEs is the following:
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ẋ1(t) = −γ1x1(t) + (β2 − c2)(1 − x1(t))X2(t)
Ṡ2(t) = ω − (µ + c1)S2(t) − β1x1(t)S2(t)
Ẋ2(t) = β1x1(t)S2(t) − (µ + c1)X2(t)

. (4.2)

Equilibria of this system are two, and the endemic equilibrium is characterized
by a very long and complex expression.

The disease-free equilibrium is (0, ω
µ+c1

,0).

The Jacobian is:

Jf (x1, S2, X2) =

−γ1 − (β2 − c2)X2 0 (β2 − c2)(1 − x1)
−β1S2 −(µ + c1) − β1x1 0
β1S2 β1x1 −(µ + c1)

 .

Jf (0, ω
µ+c1

,0) has eigenvalues


λ1 = −µ − c1

λ2,3 = 1
2(c1+µ) ×

1
−c2

1 − c1γ1 − 2c1µ − γ1µ − µ2 ∓ (c1 + µ) 1
2 (c3

1 − 2c2
1γ1 + c1γ

2
1 + 3c2

1µ−
4c1γ1µ + γ2

1µ + 3c1µ
2 − 2γ1µ

2 + µ3 − 4c2β1ω + 4β1β2ω) 1
2
2 .

Therefore, (0, ω
µ+c1

,0) is locally asymptotically stable iff

g(c1, c2) = β1β2ω − c2
1γ1 − 2c1γ1µ − γ1µ

2 − c2β1ω < 0.

When introducing controls, it is important to consider the associated costs.
Costs can be economic or can represent the level of restrictions that a government
wants to minimize for the well-being of the population. In order to achieve the
controls’ minimization, it is useful to formalize an optimization problem for a cost
or budget function where we ensure to stay under the epidemic threshold. This
approach aims to determine the minimal controls required to achieve the disease-
free equilibrium.

We are interested in implementing this problem and will employ a linear cost
function to do so:
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4.2 – Adding a control term for hosts

C(c1, c2) = ac1 + bc2,

where a > 0 and b > 0 are arbitrary weights.
Hence, the optimization problem is

minimize C(c1, c2)
subject to g(c1, c2) ≤ 0,

− c1 ≤ 0,

− c2 ≤ 0,

c2 − β2 ≤ 0.

Proving that the minimum of the problem is found for values which are at the
border of g(c1, c2) (i.e. g(c1, c2) = 0) is simple: since a > 0 and b > 0, the value
of C(c1, c2) will increase with c1 and/or c2. Let us assume, for contradiction, that
there exist a point (c′

1, c′
2) such that g(c′

1, c′
2) < 0 and such that C(c′

1, c′
2) is the

minimum. But we find that by reducing slightly the value of either c′
1 or c′

2 or
both, while still maintaining the constraint, the value of C(c′

1, c′
2) decreases: hence

C(c′
1, c′

2) does not uphold the definition of minimum.

The optimal value of the problem is the following:

p∗ =



bβ1β2ω−γ1µ2

β1ω
if (a > 2bγ1µ

β1ω
∧ γ1µ2

β1ω
< β2 ≤ b2γ2

1µ2−2abβ1γ1µω+a2β2
1ω2

b2β1γ1ω
)

−aµ + a
ñ

β1β2ω
γ1

if (a > 2bγ1µ
β1ω

∧ β2 >
b2γ2

1µ2−2abβ1γ1µω+a2β2
1ω2

b2β1γ1ω
)

∨ (a ≤ 2bγ1µ
β1ω

∧ β2 > γ1µ2

β1ω
)

0 if β2 ≤ γ1µ2

β1ω

+∞ otherwise

So, among the possible optimal values obtainable when the problem is feasible,
we are dealing with the following values of c∗

1 and c∗
2: (0, β1β2ω−γ1µ2

β1ω
), (
ñ

β1β2ω
γ1

−µ,0),
and (0,0).

As expected, when the problem is feasible, p∗ is null when no controls are
needed to achieve the disease-free equilibrium. The other two possible values of p∗

indeed lie on the curve defined by g(c1, c2) = 0. Interestingly, with a linear budget
function like C(c1, c2), the optimal values are achieved using either one control or
the other, but not a combination of both.

43



Epidemic control over the SI-SIS compartmental model

In Figure 4.2, we simulate state space orbits for the model described in 4.2.
The simulations did not reveal the presence of limit cycles.
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4.2 – Adding a control term for hosts

(a) State space orbits with (ω, µ, β1, β2, γ1, c1) =
(0.04, 0.2, 0.2, 0.9, 0.9, 0.8) and a population of N = 8
vectors for the model with a vector control term 4.1

(b) State space orbits with (ω, µ, β1, β2, γ1, c1) =
(0.04, 0.2, 0.2, 0.9, 0.9, 0) and a population of N = 8
vectors for the model with a vector control term 4.1; note
that when c1 = 0 equations are equivalent to the ones of 3.2.

Figure 4.1
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Epidemic control over the SI-SIS compartmental model

(a) State space orbits with (ω, µ, β1, β2, γ1, c1, c2) =
(0.04, 0.2, 0.2, 0.9, 0.9, 0.8,0.2) and a population of N = 8 vec-
tors for the model with two control terms 4.2.

(b) State space orbits with (ω, µ, β1, β2, γ1, c1, c2) =
(0.4, 0.2, 0.9, 0.9, 0.9, 0.4,0.4) and a population of N = 8 vec-
tors for the model with two control terms 4.2.

Figure 4.2
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Chapter 5

Network model and
simulations

Dengue disease is becoming an increasing concern for authorities in southern Eu-
rope due to climate change enhancing the chances of Aedes aegypti specimens
surviving the winter and becoming endemic. However, the primary concern at
present is imported cases: when people from areas where Aedes aegypti is non-
endemic travel to countries where it is endemic, they may contract the disease and
bring it back to their home country. Even if Aedes aegypti is not present in their
area, Aedes albopictus may be, and, as stated in the introduction, the latter is also
capable of transmitting the infection. Therefore, imported cases can enhance the
spread of the infection in areas where Aedes aegypti is non-endemic.

We are interested in investigating this dynamic and find it necessary to sepa-
rate the populations of hosts and vectors in tropical and non-tropical areas into
different nodes. Therefore, we use equations for a model with a total of four pop-
ulations: one for hosts and one for vectors in the non-tropical area, and analogous
populations for the tropical area. For simplicity, we will model the population
dynamics of both hosts and vectors using the SIS framework. Thus, we will be
dealing with four populations: two of hosts and two of vectors, each belonging to
either a tropical node or a non-tropical one.

5.1 A geographical network consisting of two nodes
Given this framework, it is helpful to modify the notation to write equations in a
more compact way. We will use the index 1 for the non-tropical region and 2 for
the tropical region. Additionally, since we are using the SIS model, the equations
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Network model and simulations

for susceptible and infected individuals will be linearly dependent. Therefore, we
can reduce the system from eight equations to four, keeping only the equations for
the fractions of infected hosts or vectors. We will denote the fractions of infected
hosts with x and the fractions of infected vectors with y. Hence, we obtain the
following system of ODEs:


ẋ1(t) = βy1y1(t)(1 − x1(t)) − γx1x1(t) + βy2x1y2(t)(1 − x1(t))
ẏ1(t) = βx1x1(t)(1 − y1(t)) − γy1y1(t) + βx2y1x2(t)(1 − y1(t))
ẋ2(t) = βy2y2(t)(1 − x2(t)) − γx2x2(t) + βy1x2y1(t)(1 − x2(t))
ẏ2(t) = βx2x2(t)(1 − y2(t)) − γy2y2(t) + βx1y2x1(t)(1 − y2(t))

. (5.1)

x1

y1

x2

y2

βx1

βy1

βx2

βy2

β
x1 y2

β
y2 x1

β
y1 x2

β
x2 y1

Figure 5.1: Two nodes model’s graph 5.1

As we got back to a SIS framework for all populations, the disease-free equilib-
rium is again 0.

The Jacobian of the system is:

Jf (x1, y1, x2, y2) =
C
A B
C D

D
where

A =
C
−γx1 − βy1y1 − βy2x1y2 βy1(1 − x1)

βx1(1 − y1) −γy1 − βx1x1 − βx2y1x2

D
, B =

C
0 βy2x1(1 − x1)

βx2y1(1 − y1) 0

D
,
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5.1 – A geographical network consisting of two nodes

C =
C

0 βy1x2(1 − x2)
βx1y2(1 − y2) 0

D
, D =

C
−γx2 − βy1x2y1 − βy2y2 βy2(1 − x2)

βx2(1 − y2) −γy2 − βx1y2x1 − βx2x2

D
.

Remark 2. The Jacobian Jf (x1, y1, x2, y2) is a Metzler matrix. Consequently, the
system described in 5.1 is monotone, which implies that the system does not exhibit
limit cycles.

While it is straightforward to identify the disease-free equilibrium of the system
as 0, determining the other possible equilibria, both analytically and computa-
tionally, is challenging. Therefore, we will limit our analysis to the stability of the
disease-free equilibrium. To proceed, let us calculate the Jacobian matrix at the
disease-free equilibrium:

Jf (0, 0, 0, 0) =


−γx1 βy1 0 βy2x1

βx1 −γy1 βx2y1 0
0 βy1x2 −γx2 βy2

βx1y2 0 βx2 −γy2

 .

The expressions for the eigenvalues of Jf (0, 0, 0, 0) are quite complex and diffi-
cult to handle. However, to provide an expression for the condition under which
0 is asymptotically stable, let us consider the specific case:

βx1 = βx2 = βx

βy1 = βy2 = βy

γx1 = γx2 = γx

γy1 = γy2 = γy

.

These equalities describe a scenario where transmission rates within areas and
recovery rates are equal, while cross-area transmission rates may differ. This sce-
nario is significant because, due primarily to climate change, Aedes aegypti may
become endemic in temperate areas, leading to at least a partial convergence of
these rates in the future.

When this applies, expressions of the eigenvalues are the following:

λ1,2 = 1
2(−γx − γy ± (4βxβy + 2βx2y1βy1x2 + 2βx1y2βy2x1 + 2

ñ
4βx1y2βx2y1β2

y

+ 4βxβx2y1βyβy1x2 + β2
x2y1β2

y1x2 + 4βxβx1y2βyβy2x1 + 4β2
xβy1x2βy2x1

− 2βx1y2βx2y1βy1x2βy2x1 + β2
x1y2β2

y2x1) 1
2 + γ2

x − 2γxγy + γ2
y)
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λ3,4 = 1
2(−γx − γy ± ((γx + γy)2 − 2(−2βxβy − βx2y1βy1x2 − βx1y2βy2x1+

(4βx1y2βx2y1β2
y + 4βxβx2y1βyβy1x2 + β2

x2y1β2
y1x2 + 4βxβx1y2βyβy2x1+

4β2
xβy1x2βy2x1 − 2βx1y2βx2y1βy1x2βy2x1 + β2

x1y2β2
y2x1) 1

2 + 2γxγy)) 1
2 ).

The equilibrium is locally asymptotically stable if all the eigenvalues have neg-
ative real part, which implies the following:

4βxβy + 2βx2y1βy1x2 + 2βx1y2βy2x1 + 2
1
β2

x1y2β2
y2x1 + βy1x2(4βxβx2y1βy + β2

x2y1βy1x2+

4β2
xβy2x1) + βx1y2(4βx2y1β2

y + 4βxβyβy2x1 − 2βx2y1βy1x2βy2x1)
2 1

2 < 4γxγy

Therefore, we have identified the condition necessary to achieve an asymptoti-
cally stable disease-free equilibrium for this specific case.

While our analysis is confined to the geographical network model using the
simpler SIS framework, it may be worthwhile to incorporate the SI model with
vital dynamics. This would allow us to account for the significant differences in
lifespan between vectors and hosts.

In Figure 5.2, we simulate a three-dimensional projection of the four-dimensional
state space for several tens of orbits. As expected, the orbits exhibit monotone
behavior, given that the Jacobian of the system is a Metzler matrix.

5.2 Simulation with parameters’ values taken from
literature

Once epidemiological models are constructed, the only way to determine their
potential usefulness in real-world scenarios is by researching and finding the most
accurate estimates for their parameters. This allows for the evaluation of whether
these models can reliably predict the dynamics of the epidemic they are designed
to simulate.

We start with a simulation of the network model to illustrate an ordinary disease
spread scenario.

We select some parameters based on findings from the literature on dengue
epidemic modeling. However, because we chose to model the dynamics of two
populations using an SIS framework, some parameters have no equivalents in the
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comprehensive set of articles we analyzed. Most articles model both host and
vector populations using an SI framework with vital dynamics.

In our framework, we do not need to search information on birth and death
rates, as we have assumed they are similar. Consequently, this dynamic, where
populations consist of individuals or hosts that do not change over time, is indeed
similar to those in an SI framework.

However, we must address other parameters that do not appear in SI models
and thus need to be assumed. For instance, we have to make an assumption about
the recovery rate of the vectors. In SI frameworks, this is not defined due to the
short lifespan of mosquitoes; it is reasonable to assume that mosquitoes, once they
contract the virus, will die while still infected.

The chosen values for the parameters of model 5.1 are in the following table,
where y is the abbreviation for year:
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Parameters Values Sources
βx1

9
8βy1 [13], with assumptions1

βx2
9
8βy2 [13]

βy1 9.97 × 10−4 weeks−1 From [14], rescaled2

βy2 2γx2 [15]
γx1 γx2 [14], with assumptions3

γx2 9.97 × 10−1 weeks−1 [14]
γy1 2γy2 From [15], doubled4

γy2 4.9 × 10−1 weeks−1 [15], with assumptions5

βy2x1 9.97 × 10−3 weeks−1 From [14], rescaled
βx2y1 9.97 × 10−4 weeks−1 From [14], rescaled
βy1x2 9.97 × 10−6 weeks−1 From [14], rescaled
βx1y2 9.97 × 10−5 weeks−1 From [14], rescaled

Table 5.1

In Figure 5.3, we represent the network model graph again with the parameter
choices reported in Table 5.1. Meanwhile, in Figure 5.4, we present the associated
time simulation. This choice of parameters leads to an equilibrium state where the
disease is highly endemic in the tropical area in both the vector and host popula-
tions, while it has reached zero or near-zero levels of contagion in the non-tropical
area. These results describe well enough the ordinary disease spread scenario that
the world is experiencing nowadays, where dengue is still not endemic and man-
ageable in temperate countries, while characterized by concerning levels of spread
in tropical countries. However, as previously stated, this state of the spread may
well change, primarily due to climate change.

1Most of the studies which lead to parameters’ estimation have been conducted for areas
where dengue is endemic: however we are assuming that the ratios between the contagion rates
βxi

and βyi
are the same both in the tropical area (i = 2) and in the non-tropical one (i = 1).

2It is reasonable to assume that βy2x1 > βy1 because imported cases are more prevalent than
endemic ones in temperate areas like Europe.

3While in tropical areas one may expect to find vectors that transmit higher viral loads than
in non-tropical ones, we are assuming that the hosts’ recovery rate is the same in both areas.

4Nowadays, a population of Aedes aegypti (the mosquito with the highest dengue viral load)
can only survive for a few months in a temperate climate. Moreover, temperate areas are char-
acterized by smaller vector populations, resulting in a consequently smaller number of infected
vectors.

5In the extensive set of articles we reviewed to choose the parameter values, there is no vector
recovery rate since a SIS framework for the vector population has never been adopted. Hence,
we use the vector death rate value as a substitute.

52
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x1

y1

x2

y2

0.0
585

0.0
52

117

104

0.0052

0.52

0.00052

0.052

γx1 = 52
γy1 = 51.1
γx2 = 52

γy2 = 25.55

Figure 5.3: Network model’s graph with parameters’ values: each parameter is
measured in years −1; edges’ weights are contagion rates (β).
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Figure 5.4: Time simulation for parameters’ values reported in 5.1 and with
(x1(0), y1(0), x2(0), y2(0)) = (0.01,0.01,0.01,0.01).
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5.3 What-if scenario: Aedes aegypti is able to
survive in areas generally considered non-
tropical

Let us now consider a what-if scenario: as previously mentioned, climate change
is a major concern in dengue epidemiology due to the potential for Aedes aegypti
(which, along with Aedes albopictus, can transmit the virus to humans) to become
an endemic species in regions such as southern Europe. The stable presence of
Aedes aegypti in new areas is likely to lead to an increase in contagion, significantly
raising the risk of an outbreak.

We aim to investigate this scenario using the network model. If we imagine
that in a few years, a population of Aedes aegypti is present year-round in a non-
tropical area, this situation would result in a significantly lower recovery rate for
the non-tropical vector population γy1 and an increase in the contagion rate βy1 .
Specifically, let us consider the case where βy1 changes from 0.052 y−1 to 52 y−1

and γy2 changes from 51.1 y−1 to 25.55 y−1. We summarize these changes in
the following table, where we highlight the parameters which have changed with
respect to the ordinary scenario simulation:

Parameters Values Sources
βx1

9
8βy1 [13], with assumptions

βx2
9
8βy2 [13]

βy1
1
2βy2 Assumed

βy2 2γx2 [15]
γx1 γx2 [14], with assumptions
γx2 9.97 × 10−1 weeks−1 [14]
γy1 γy2 Assumed
γy2 4.9 × 10−1 weeks−1 [15], with assumptions
βy2x1 9.97 × 10−3 weeks−1 From [14], rescaled
βx2y1 9.97 × 10−4 weeks−1 From [14], rescaled
βy1x2 9.97 × 10−6 weeks−1 From [14], rescaled
βx1y2 9.97 × 10−5 weeks−1 From [14], rescaled

Table 5.2

In Figure 5.5, we present the time simulation corresponding to this choice of
parameters. We observe an equilibrium state where dengue is endemic in both the
tropical and the non-tropical areas, while still maintaining a greater percentage of
infected in both the host and vector populations in the tropical area.
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Figure 5.5: Time simulation for parameters’ values reported in 5.2 and with
(x1(0), y1(0), x2(0), y2(0)) = (0.01,0.01,0.01,0.01).
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5.4 What-if scenario: event that leads to increased
movement of people between areas

Let us now consider another what-if scenario: imagine an event leading to in-
creased movement of people between countries, particularly from tropical to tem-
perate regions (for instance, the Paris Summer Olympics 2024). This increase
in host movement may influence various contagion rates defined in the network
model, potentially raising the risk of an outbreak. Specifically, during a significant
international event in a non-tropical country, we might expect a large influx of
people from around the globe, including those from tropical regions where dengue
is prevalent. While this scenario could impact many parameters in the network
model, we focus on the case where only one parameter changes: βx2y1 , which in-
creases from 0.052 y−1 to 5.2 y−1.

Parameters Values Sources
βx1

9
8βy1 [13], with assumptions

βx2
9
8βy2 [13]

βy1 9.97 × 10−4 weeks−1 From [14], rescaled
βy2 2γx2 [15]
γx1 γx2 [14], with assumptions
γx2 9.97 × 10−1 weeks−1 [14]
γy1 2γy2 From [14], rescaled
γy2 4.9 × 10−1 weeks−1 [15], with assumptions
βy2x1 9.97 × 10−3 weeks−1 From [14], rescaled
βx2y1 9.97 × 10−2 weeks−1 From [14], rescaled
βy1x2 9.97 × 10−6 weeks−1 From [14], rescaled
βx1y2 9.97 × 10−5 weeks−1 From [14], rescaled

Table 5.3

In 5.6, we simulate this scenario and observe an increase in the percentage of
infections among both vectors and hosts in the non-tropical area, compared to
the ordinary scenario. This simulation illustrates a plausible situation due to the
extensive spread of international travel. Although the infection spread among hosts
in the non-tropical area remains low, the results suggest that competent health
authorities should consider implementing control or precautionary measures.
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Network model and simulations

Figure 5.6: Time simulation for parameters’ values reported in 5.3 and with
(x1(0), y1(0), x2(0), y2(0)) = (0.01,0.01,0.01,0.01).
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(a) State Space Trajectories with
(βx1 , βx2 , βy1 , βy2 , γx1 , γx2 , γy1 , γy2 , βy2x1 , βx2y1 , βy1x2 , βx1y2) =
(0.5, 0.5, 0.5, 0.5, 0.4, 0.4, 0.5, 0.5, 0.01, 0.5, 0.3, 0.3) for the two
nodes model 5.1

(b) State Space Trajectories with
(βx1 , βx2 , βy1 , βy2 , γx1 , γx2 , γy1 , γy2 , βy2x1 , βx2y1 , βy1x2 , βx1y2) =
(0.5,0.5, 0.5,0.5, 0.7,0.7, 0.5,0.5, 0.01, 0.1,0.1,0.1) for the two
nodes model 5.1

Figure 5.2
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Chapter 6

Conclusions

This thesis explored the interesting transmission dynamics of dengue fever using
various mathematical epidemiological models. By focusing on both human hosts
and mosquito vectors, we examined several frameworks categorizable as compart-
mental models and a complex network model that accounts for geographical and
environmental variations.

The basic compartmental SIS model highlighted the interdependent spread of
dengue between host and vector populations. We demonstrated that the disease-
free equilibrium is achievable under specific conditions where the basic reproduc-
tion number is less than one. Extending this model by incorporating birth and
death rates for mosquitoes provided a more realistic representation of dengue dy-
namics and allowed for the evaluation of vector control measures.

The inclusion of vector control terms showed how targeted interventions, such as
mosquito reduction strategies, can significantly impact the disease dynamics. The
modified model demonstrated that effective vector control can shift the epidemic
threshold, reducing the likelihood of outbreaks even in high-risk areas.

The network model, which differentiates between tropical and non-tropical re-
gions, provided insights into the impact of environmental factors and human mo-
bility on disease spread. Simulations showed how climate change could enable
Aedes mosquitoes to spread the disease in previously inhospitable regions, posing
new public health challenges. This model also emphasized the role of international
travel in spreading dengue, highlighting the need for coordinated global surveil-
lance and intervention efforts.

Overall, this thesis contributes to the field of epidemiology by showing the utility
of mathematical models in understanding and controlling dengue fever. The results
suggest the need for integrated vector management, robust health policies, and
international cooperation to mitigate the spread of dengue. Future research could
enhance these models by integrating vital dynamics into the network framework,
expanding the geographical network to include multiple nodes representing the
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world’s dengue hotspots linked to specific temperate regions, and incorporating
more intricate epidemiological dynamics of dengue. This could involve accounting
for varying states of immunity, such as partial or total immunity due to dengue
antibody-dependent enhancement mechanism.
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