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Abstract

Landslides are a phenomenon that has often been studied and analyzed
mainly due to their frequency and their dangerous potential. The word
landslide covers a broad category of ground movements that can be caused
both by nature and by human mistakes. The type of movements that are the
focus of this thesis are mud flows and debris flows, two of the fastest types of
ground movements, whose speed and amount material often lead to a change
in the topography of their bed. This modification of the bed upon which
the movement occurs has not only effects on possible future events but even
on the landslide itself. This change in topography can be seen as a form of
entrainment of material from the bed into the landslide. This phenomenon of
erosion can often increase the amount of overall material involved in the land-
slide and, therefore, a modification of the pathing and destructive potential
of the same flow.

A numerical study of this phenomenon has been performed in this thesis
with a Lattice-Boltzmann Method, a relatively recent method whose main
focal point is the numerical resolution of an appropriate Boltzmann equation
instead of the more classical approach that usually solves the Shallow-Water
equations.

The material taken into consideration for the flow in the experiments was
a Non-Newtonian fluid with a behavior that could be properly represented by
a Herschel-Bulkley model. A rheology that presents both a stress threshold
for plasticity and a shear-thinning behavior, both of which are phenomena
encountered when talking about debris and mud flows.

After an explanation of the mathematical model and a comparison with
a simple case with an analytical solution, the code was used to perform
simulations of a dam-break wave over an incline encountering an erodible
bed and entraining material from it. The experiments were performed with
varying parameters to study the influence of the size of the erodible layer
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and the inclination of the slope on the movement.
Lastly, after an analysis of the obtained results, some examples of further

studies are mentioned like the influence of space-time discretization.
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Chapter 1

Introduction

Natural disasters often happen near or in urbanized areas. Sometimes hu-
mans unknowingly built new settlements in a susceptible region or environ-
mental conditions changed and previously safe areas became at risk. How-
ever, there has often been a component of negligence in the assessment of
danger or an ineffective response to an event that led to an increase of losses.

One historical and notorious example of a combination of bad luck and
human response not being prompt enough to properly respond to the event
is the volcanic eruption of Mount Vesuvio in 79 AD that resulted in the de-
struction of Pompeii and Herculaneum. Settlements around volcanic areas,
like the ones near Mount Vesuvio, are common due to the rich soil surround-
ing them. However, the minor earthquakes preceding the eruption were not
recognized as warning signs and they were, therefore, largely ignored until it
was too late for most of the population.

Another, more recent, example of human decisions being important for a
disaster is the infamous Vajont tragedy of 1963. In the middle of the night of
9 October 1963, a catastrophic landslide suddenly collapsed into the reservoir
of the Vajont dam, thus producing a massive wave of water that flooded the
Piave Valley where almost 2000 people lost their lives. Warning signs during
the construction of the dam and the subsequent filling of the reservoir had
been studied but underestimated. The disaster promoted a large mass of
studies that highlighted the need for a more thorough geotechnical investi-
gation and analysis during dam design in order to monitor and understand
hazards linked to natural disasters[23].

Among the different types of natural disasters, one that has been the focus
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Figure 1.1: View of Longarone after the disaster. Figure from Reference [6].

of a large amount of research due to the frequency, range, and complexity
of the events are landslides. Landslides are movements of a mass of rock,
debris, or earth down a slope and they include various ranges of movements
like falls, topples, slides, spreads, and flows. Landslides can occur in different
type of slope gradients and environments which influence the movement of
the mass. The primary instigator is usually gravity but oftentimes some
triggering event, like an earthquake or heavy rainfall, is required for the
landslide to start.

Quality and type of the soil are major components in both the cause and
the development of a landslide. The material influences both the threshold in
intensity required to trigger ground movements and the paths of these events.
Therefore, land degradation due to resource exploitation like deforestation
can be part of the cause of a landslide. Climate change has also intensified
such triggering events via extreme weather (e.g.: frequency and magnitude
of heavy rainfall[29]) which can lead to an increase in the magnitude and
frequency of landslides.

Combining the type of material with the process of the landslide creates
a first classification of them, e.g.: rock fall, debris flow, and earth flow[47,16].
However, there are further sub-classifications (e.g.: rotational vs translational
spreads) and even combination of two or more type of movements and of soil.

Dikau[20] defined the word “Flow” as: “the continuous, irreversible de-
formation of a material that occurs in response to applied stress.” It is a
physical definition of the word that can be used to help narrowing down the
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types of movements in the flow category.
Another definition, more rooted in the context of geomorphology is the

one by Cruden and Varnes[16]: “A flow is a spatially continuous movement
in which surfaces of shear are short-lived, closely spaced, and usually not
preserved.”

Hungr et al.[31] further narrowed the definition of flows in the context of
landslides by defining them as movements of fluid material over a rigid bed.
This definition excludes some types of landslides that oftentimes are included
in the flow category, for example soil creeps, while still including others like
rock avalanches and debris floods.

As already mentioned, the classification of a landslide involves both the
type of movement and the material that is moving; some examples of flows
are: sand flows, peat flows, earth flows, mud flows, and debris flows. Some
of these can be multi-phase mixtures where a fluid component and a solid
one are interacting with each other. One of these mixture is the material in
mud flows where their solid component mostly made of sand, slit, or other
clay-sized particles[47] mixed with water. Another example are debris flows.
These are characterized by a wider span of sizes for the sediment and the
solid component often segregates during the flow, thus complicating further
the analysis of the event.

Both mud and debris flows typically occur when a sizeable mass of sed-
iment is triggered and saturated by water which propels the mixture down
slopes at considerable speeds. Notable examples of these flows happen in
mountainous areas due to rainfalls or in proximity to rivers and channels
due to floods. Oftentimes this ground movements can reach inhabited areas;
even with an aptly timed evacuation of the population, the damages caused
by this type of events on buildings, roads, railways or other industrial and
commercial structures can be severe.

These types of flows have complex interactions with the bed upon which
they move. It is easy to see how the inclination of its bed influences the evolu-
tion of a flow. However, mud and debris flows can also modify their sediment
concentration through erosion of the material of the bed, thus affecting prop-
erties of the flow as a whole, such as their time evolution, preferred paths,
and their run-out distance.

Therefore, studies of mud and debris flows over an erodible bed are of
great importance to define potential risks and to design appropriate counter-
measures.
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1.1 Objectives and Outline

The aim of the project is to study the effects of an erodible bed on the
propagation of mud and debris flows using a numerical model belonging to
a category called Lattice Boltzmann Method, considering a non-Newtonian
fluid that can be accurately described by a Herschel-Bulkley fluid.

In order to do so, Chapter 2 starts with a presentation of the concepts of
mud and debris flows. This is followed by a brief overview of some approaches
and steps found in literature useful for the development of the idea behind
the numerical method.

Further explanation on the mathematical model can be found in Chapter
3, specifically the definition of the rheological model is in Section 3.1 while
an explanation of the Lattice Boltzmann Method can be found in Section
3.2.

Chapter 4 explores a validation of the modifications to pre-existing code,
comparing an analytical solution against results of numerical simulations for
the in-plane Poiseuille flow.

The phenomenon taken into consideration is presented in Chapter 5, with
Sec. 5.1 explaining the set up for the numerical experiments and Sec.5.2
containing the analysis and results of the experiments.

To close the project, Chapter 6 presents a short summary of the research
together with ways to further study the subject and other ways to improve
upon the present work.
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Chapter 2

Theory and Literature of Mud
and Debris Flows

There is a first separation in the study of landslides. One side of this split is
focused on analyzing the likelihood of a landslide; the other branch studies
the evolution of the movements. Slope stability analysis provides informa-
tion to help identify the factors that can lead to a triggering event and its
likelihood. On the other hand, propagation models study if an area is going
to be impacted by a certain event. Together they can be used to evaluate
the hazard of a landslide. Subsequently, evaluating the potential damage
in each area leads to an appropriate risk assessment which can be used to
influence the entity of countermeasures to be used in order to mitigate and
reduce impacts of landslides.

Propagation models, focus of this study, start with the assumption that
the event has already begun and they mainly analyze run-out path and area
of interest of a landslide.

In Section 2.1, an explanation of the terms mud flows and debris flows
is presented. Section 2.2 points out some historical approaches and steps to
the study of mud and debris flows over an erodible bed. Section 2.3 explains
the idea behind the numerical modeling of debris flows.
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2.1 Debris Flows and Mud Flows

Analysing the run-out path and area of interest of a landslide is one of the
first and most important goals of any propagation model. Usually one of
the first steps in the study of landslides is an identification of the type of
movement.

Varnes[47] made one of the most widely used classification attempts for
landslides and it included a separation between mud flow and debris flow,
characterizing the latter as a type of movement containing a relatively high
percentage of coarse fragments.

Hungr et al.[31] introduced more parameters to further classify events in-
volving debris, for instance, peak discharge was suggested as the most reliable
criterion to distinguish between debris flows and debris floods whereas the
lack of an established channel was chosen as the defining trait for debris
avalanches.

Their definition for a debris flow was: “a very rapid to extremely rapid
flow of saturated non-plastic debris in a steep channel.” On the other hand,
the one for a mud flow was: “a very rapid to extremely rapid flow of satu-
rated plastic debris in a channel, involving significantly greater water content
relative to the source material.”

According to their classification, which utilised the categories of move-
ment defined by Cruden and Varnes[16], “very rapid” implies velocities higher
than 0.05 m/s. This lower threshold can, at first glance, seem to be too low
to justify the use of the term but one has to take into account that some geo-
logical movements happen on scales of centimeters per year, therefore leading
to the choice of “very rapid” for landslides with velocities on the upper end
of the vast range of different speeds. However, most debris flows often move
at much higher velocities (typically more than 1 m/s and even up to 20 m/s)
over much of their path, which fall in the “extremely rapid” interval in the
definition.

The word saturated in the definitions of both types of flows means that
between the sediments there is no empty space and they are filled with fluid.

With “non-plastic”, for debris flows, they are referring to a type of debris
that does not display cohesive behavior. The term is mainly used to highlight
the importance and percentage of larger debris over the fraction of sand and
finer sediments (100 µm). In fact, typical debris flows involve material much
larger than this, often including even boulders and large rocks.
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Mud flows, whose definition included plastic debris, mainly involve the
finer sediments without the largest parts of the solid components of debris
flows. Since the material in mud flows is more cohesive, for numerical model-
ing, one can choose to study these type of flows, without a significant loss of
accuracy, with a single-phase model where the material has a non-Newtonian
behavior.

A term often associated with mud flows and debris flows, when talking
about events occurring on a the flanks of a volcano, is the Indonesian word
“lahar”. In its original context the word referred to a hot volcanic mud flow
generated by an eruption through a lake. It later evolved to include mud
and debris flows on the flank of a volcano. Lahars are a category of mass
movements that can be of special interest due to some of their features, for
example their particle composition, contributing to high mobility and often
large peak discharges leading to a high risk and, historically, to large losses of
life[40]. Oftentimes, these phenomena are categorized into mud flows, debris
flows, or even debris avalanches (depending on their particle content and
slope topography) with the simple addition of the word volcanic beforehand.

Modeling debris flows requires further exploration of the concept. Takahashi[46]

proposed a classification of debris flows based on a series of parameters. The
first one is the coarse particle concentration by volume Φ. Its mathematical
definition is simply the ratio of granular phase volume over total volume:

Φ =
Vp

Vp + Vf

, (2.1)

where Vp represents the volume of the particles and Vf the volume of
the fluid. Subscripts p and f will be used throughout the thesis to show if a
quantity refers to the particles or the fluid. At one end of the spectrum, when
Φ is negligible, the flow can be described as water/slurry flow (depending on
the fluid component). On the other end, with high enough solid fraction, the
movement becomes quasi-static or even rigid.

Furthermore, even without overstepping these threshold values, debris
flows have different behaviors based on other characteristics. Takahashi pro-
posed three other dimensionless numbers to help identify types of debris
flows.

One is the well-known Reynolds number, which classifies whether a flow
is turbulent or laminar. It represents the ratio between inertial fluid forces
and viscous forces.
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Figure 2.1: Classification of debris flows according to Takahashi. Figure
adapted from Reference [36].

Re =
ρfufh

µ
, (2.2)

where ρf is the density of the fluid, uf its characteristic velocity, µ its
viscosity, and h is the length scale, which, in this context is typically the
height of the flow.

The ratio of inertial grain forces and viscous forces gives another param-
eter: the Bagnold number[9].

Ba =
ρpd

2
pλ(Φ)

1/2γ̇

µ
, (2.3)

ρp is the density of the particles, dp their diameter, γ̇ is the characteristic
shear rate of the flow, and λ(Φ) is a function of the solid fraction Φ called
linear grain concentration and is defined as:

λ(Φ) =
1

(Φ/Φmax)1/3 − 1
, (2.4)

where Φmax is the maximum possible concentration.
The Bagnold number describes the effects of the particles on the overall

rheology of the fluid.
The third dimensionless parameter is the ratio between the diameter of

the grain and the height of the flow, dp/h which governs the ratio between
inertial grain forces and inertial fluid forces. When a mixture is characterized
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by both low Reynolds number and low Bagnold number, the behavior of the
flow is defined by the viscosity of the fluid, independently of the particle
size. However, as speed increases (and therefore Re and Ba get progressively
higher), the ratio of particle size to height of the flow decides whether the
movement will be governed by the grains or it will have a turbulent behavior.
I.e.: if dp/h is high and the flow is dominated by the inertia and the collisional
behavior of the grains; on the other hand if dp/h is small the fluid will have
a turbulent behavior.

It is important to note that as a classification of the type of debris flow
based on dimensionless numbers, the former parameters do not allow to pre-
dict the effective danger of an event, which will always be correlated with
the total mass of the movement.

2.2 Examples of Different Approaches

There are different ways to analyze the development of a landslide and a
major distinction is to define whether the main approach is experimental,
empirical, or analytical. These approaches are not mutually exclusive and
using them in combination to gather data useful for each other is often the
most optimal and preferred choice.

Experimental models usually involve recreating a phenomenon in a con-
trolled space and it is often used to define physical parameters. Its main
advantages are the control of the initial conditions and the ability to monitor
variables during the development. However, it is rarely possible and very
expensive to do experiments with real-life dimensions.

On the other hand, an empirical model uses a collection of data from real
life events to gather information for future landslides[43]. Since data comes
from historical events, there is no scaling issue and, with enough variables,
one can identify the subset of events relevant to the case they want to study.
In contrast with experimental models, there is very little data about variables
during the event. Less recent events have not been monitored with the same
accuracy of today, therefore, sometimes there are missing parameters even
in initial or final conditions. Another main drawback of empirical models is
the dependence of the results on the sample and its size.
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Analytical models try to simplify the complex phenomena of landslides
into a more manageable problem. With proper models one can, in theory,
exactly solve a wide range of movements but most landslides are too complex
to be solved analytically, so the main strategy is to approximate solutions
with a numerical model. This approach has gained traction with the inven-
tion of computers that could manage more and more complex operation in a
reasonable time-frame. However, the issue of finding a model that can give
results with the correct balance between accuracy and a feasible implemen-
tation of the model still persists. Inside the analytical approach one of the
main distinctions among the type of models is the choice between a discrete
representation of the landslide and considering it as a continuum. Some land-
slides can be more accurately represented with a discrete approach. Others
benefit more by being studied as a continuous medium.

Usually one of the first steps in the study of flows is an analysis of the
moving material in order to understand which model can better describe
its behavior. To explore the rheological properties of mud flows, O’Brien
and Julien[41] designed a rotational viscometer for laboratory measurements.
Their results found a Non-Newtonian behavior that could be accurately de-
scribed with a Bingham model, especially at low rates of shear. Mud flows
and debris flows, however could also be described with other models. For ex-
ample Coussot et al.[14,15] performed experiments in laboratory whose results
could be better described by a Herschel-Bulkely model.

Experiments inside laboratories are useful in order to find key features of
landslides but some scholars criticize this approach because of the difficulties
of scaling appropriately phenomena that naturally occur on very large scales.
Iverson[33], reported results of experiments performed with quantities closer
to the ones of real-life events. These results were shown to argue the need
for experiments on debris and mud flows to be performed at the largest scale
possible in order to be more accurate.

Large scale experiments are obviously expensive but they can offer a
much wider amount of data than the records of natural events. Nonetheless,
empirical methods offer exact values of real-life events without any scaling
issue and the recorded landslides offer a large variety of different landslides.

For example, Hungr et al.[30] did a quantitative analysis of debris torrents
in order to properly design countermeasures to mitigate damages of future
events. Their approach was calibrated against debris torrents from British
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Columbia to predict properties of future flows in the area.
Another study where the empirical approach has a great focus is the one

by Cui et al.[17]. Their approach was a mixed one; empirical models were
used to inform a numerical simulation whose aim was to predict the values
of a real life event. They analyzed the debris flow in Huashiban gully in
Beichuan County, Sichuan Province, China on 24 Sep. 2008 and calculated
its area of effect using hydrological and inundation simulation methods.

Other studies are more focused on the analytical and numerical approach.
However, even after choosing an appropriate rheological model for the mate-
rial, there are numerous numerical models in literature for the evolution of
a flow. Choosing the appropriate one is crucial to balance accuracy and effi-
ciency. Simpler models described these flows as a single phase fluid exhibiting
a non-Newtonian behavior to incorporate the effect of particle interactions.

For example, Dent and Lang[18] developed a modified Bingham numer-
ical model for the simulation of snow avalanches. The model involves two
viscosities to employ based on a stress threshold. Other models (e.g. Hwang
et al.[32]) used a power-law rheology to describe fluids that do not present a
yield stress.

To better describe the interaction between the solid component and the
fluid one, Pudasaini[42] proposed a physically-based general quasi-three di-
mensional two-phase model. Aureli et al.[7] compared both numerical and
experimental results for a dam-break wave of clear water impacting a rigid
structure. They used three different models: a 2D depth-averaged model, a
3D Eulerian two-phase model, and a 3D Smoothed Particle Hydrodynamics
(SPH) model. Experiments and benchmark tests for dam-break flows over
mobile beds have been performed under the NSF-Pire project (Soares-Frazão
et al.[45]).

Greco et. al[24] later investigated the impact of a mud-flow on rigid obsta-
cles using both a single-phase model and a two-phase model. Comparing the
results of the two models, they found some differences when flows presented
phase separation. Di Cristo et al.[19] used a two-phase model to numerically
investigate the propagation of a dam-break wave over an erodible bed with
a rigid obstacle in the path of the flow.

Following Leonardi[36], this project will employ their method to simulate
flows over an erodible bed. This is a hybrid model that handles the two
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phases with different approaches before coupling their effects; however, for
the type of experiments presented here, the focus was only on the LBM part
of the algorithm.

2.3 Numerical Modeling of Debris Flows

As previously mentioned, one choice to properly model debris flows is to
separate the fluid component and the solid particles in their evolution while
still taking into account the relationship between the two components.

One of the problems of studying debris flows with a multi-phase approach
is that a typical debris flow contains a multitude of particles with sizes that
differ in several orders of magnitude. In some discrete methods, every particle
is represented by a Lagrangian point and, therefore, the complexity of the
algorithm scales with the total number of particles. At the current level of
computational capabilities is unthinkable to simulate every single grain.

However, the size of the grain is in direct correlation with its impact on the
overall flow. I.e. a grain of sand has a much smaller impact on the behavior
of the mixture than a boulder. Usually, in a debris flow, the quantity of small
grains is much higher than the number of larger grains.

Bagnold number is an indicator of this effect. A small particle will have a
small Bagnold number which translates into the dominance of viscous forces
over the inertial grain forces. On the other hand, large boulders, that have
a higher Bagnold number, generate collisions and movements that greatly
influence the whole flow.

Bagnold proposed two values as threshold for what can be defined as
small grains (Ba < 40) and big grains (Ba > 450). This definition obviously
leaves a grey area with a hybrid between a viscous regime and a grain-inertial
one.

This was the core idea behind the study by Leonardi[36]: separating the
larger particles from the fluid component and the finer grains and treating
the former with a discrete method and the latter with a continuum approach.

It is important to note that Bagnold only talked about mono-disperse
mixtures. However, applying the concept of a dimensionless number as a
threshold to define whether a grain is to be treated as part of the fluid or of
the discrete particles gives a conceptual justification for the the use of their
hybrid LBM-DEM (Lattice Boltzmann Method - Discrete Element Method).
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After making the distinction between particles that have to be treated as
discrete elements and those that are to be incorporated into the fluid part of
the flow, it is important to properly treat the smaller grains. These include
clay, sand, slit, and other microscopic particles that influence the behavior of
the flow. Their effect turns the fluid component into a viscous mixture but,
usually the fluid cannot be described as having a Newtonian behavior and
has to be treated as a non-Newtonian fluid. There are many varied choices
for the appropriate rheology to be used but, a general behavior that is to be
taken into account when making the choice, is that the type of dispersion
usually found in debris flows shows a shear-thinning behavior.

One of the main focuses of this project was on this choice of appropriate
rheological model and, to better see this impact, the numerical experiments
were made only on the fluid component of debris flows and, therefore, on
mud flows.
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Chapter 3

Mathematical Model

Most numerical methods used to study the types of movements categorized as
flows, rely on continuum mechanics and solutions of conservation equations:

∂ρ

∂t
+∇ · (ρv) = 0, (3.1a)

ρ
dv

dt
= ∇ · σ + ρb, (3.1b)

where ρ is the density of the flow, v its velocity, σ is the shear stress
tensor, and b the acceleration due to the resultant of the external body
forces.

As previously mentioned, the method used for this thesis was a Lattice
Boltzmann Method (LBM), which does not solve Equations 3.1 numerically
but they are still important as a reference for the goal of the mathematical
model.

3.1 Herschel-Bulkley Model

The definition of the relationship between stress and strain is a necessity to
obtain a closure for Eq.3.1. This relationship is called constitutive law and
different materials can be properly described by different models. In a mud
flow (and the fluid component of a debris flow), the mixture that is moving
cannot be completely described using a Newtonian model, and one of the
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more simple approaches to capture the shear-thinning behavior presented by
mud and debris flow is using a Herschel-Bulkely model.

Taking one step at a time, one of the easiest ways to introduce non-
Newtonian behavior is to use a Bingham plastic which introduces a yield
stress σ0 but still keeps a linear relationship between shear rate (tensor γ̇)
and shear stress (tensor σ) via the viscosity µ0.

γ̇ = 0, if fluid does not yield (σ < σ0),

σ =

(
µ0 +

σ0

γ̇

)
γ̇, if fluid yields (σ > σ0),

(3.2)

where γ̇ and σ are the magnitude of the shear rate tensor γ̇ and the stress
tensor σ:

γ̇ =

√
1

2
γ̇ij γ̇ij; σ =

√
1

2
σijσij (3.3)

However, to more properly catch the shear thinning properties of the fluid
component, one simple correction is the introduction of the Herschel-Bulkley
rheology. The mathematical relationship between the two tensors is similar
to the one of a Bingham plastic:

γ̇ = 0, if fluid does not yield (σ < σ0),

σ =

(
kγ̇n−1 + σ0

γ̇

)
γ̇, if fluid yields (σ > σ0),

(3.4)

where k is called consistency and n is called flow index. The latter is a
dimensionless constant that takes into account how the viscosity behaves as
the shear rate increases. If n > 1 the viscosity of the fluid grows as the shear
rate grows; on the other hand if n < 1 the viscosity decreases at higher shear
rates. The behavior of the former type of fluids is called shear-thickening,
the latter shear-thinning which, as previously mentioned, are the focus of
this project.

In the limit case of n = 1 the fluid becomes a Bingham plastic and the
consistency (whose dimension is dependent on the flow index) becomes a
viscosity.
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To see the differences between the models with more clarity Fig.3.1 shows
their definition (for the Herschel-Bulkley material n was chosen to be < 1 to
see the shear-thinning behavior).

Figure 3.1: Rheological model for a Herschel-Bulkley material compared with
Bingham plastic and Newtonian fluid.

3.2 LBM Theory

The major difference of the Lattice-Boltzmann Method (LBM) with most
other methods for traditional CFD is the use of an additional discretization
of the velocity space.

This project will employ the method on phenomena that have already
been studied numerically or experimentally to observe its validity on a more
ample array of problems.
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LBM is a recently developed tool for simulations of fluid dynamics and
it originated from Lattice Gas Cellular Automata (LGCA). It has quickly
gained popularity due to its efficiency on parallel architectures.

In theory, a fluid could be represented using each of its molecules but,
with the technology of our time, the number of particles in any relevant
amount of fluid is too high to be actually simulated.

LBM approaches this issue by creating a discretization of time, space,
and velocity.

This method is based on the kinetic theory of gases, famous model of
the thermodynamic behavior of gases whose whose mathematical definitions
hinge on the use of the probability distribution function f(x, t, ξ). In a typ-
ical system of gaseous particles with mass m, f(x, t, ξ)/m represents the
likelihood of finding a particle in position x at time t moving at velocity
ξ. From this distribution function, the reconstruction of some macroscopic
variables is straightforward. Density ρ and momentum ρuf become (respec-
tively):

ρ(x, t) =

∫
f(x, t, ξ)dξ, (3.5)

ρ(x, t)uf (x, t) =

∫
ξf(x, t, ξ)dξ. (3.6)

The time derivative of the distribution function can be written as:

df

dt
=

∂f

∂t
+

∂x

∂t
· ∇f +

∂f

∂ξ
· ∂ξ
∂t

=
∂f

∂t
+ ξ · ∇f + ξ̇ · ∂f

∂ξ
.

(3.7)

If there is no interaction between the particles one can write:

df

dt
=

∂f

∂t
+ ξ · ∇f + ξ̇ · ∂f

∂ξ
= 0. (3.8)

This is known as non-collisional Boltzmann equation or Liouville equa-
tion. The collisional Boltzmann equation can be simply written as:

df

dt
=

∂f

∂t
+ ξ · ∇f + ξ̇ · ∂f

∂ξ
= Ωcoll. (3.9)
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Boltzmann’s original collisional term, Ωcoll,B is too complex to be of any
practical use:

Ωcoll,B =

∫ ∫
B(ξR,Θ)[f(x, t, ξ′)f(x, t, ξ′1)−f(x, t, ξ)f(x, t, ξ1)]m

−1dΘdξ1,

(3.10)
where (ξ, ξ1) and (ξ′, ξ′1) are particle velocities before and after a collision

respectively, ξR := |ξ − ξ1| is the relative speed, B(ξR,Θ) is the differential
cross section of the collision, dΘ is the solid angle[35].

The simplification made by Bhatnagar, Gross, and Krook[12] is one of the
best known attempts to make the term more easily usable. The assumption
of their approximation was that the effect of the collisions is to force a non-
equilibrium distribution function towards thermodynamic equilibrium:

Ωcoll :=
f eq − f

τc
; (3.11)

τc is called relaxation time and it represents the rate at which the distri-
bution function is pushed towards the equilibrium. The other term, f eq is
the equilibrium function and it follows a Maxwellian distribution which, in
D dimensions can be written as:

f eq :=
ρf

(2πRT )D/2
e

−(ξ−uf )2

2RT , (3.12)

where R is the universal gas constant and T is the temperature.
Assuming, for now, an absence of body forces, the 3-dimensional Boltz-

mann equation with the BGK approximation, Eq.3.9 and Eq.3.11, can be
simplified into:

∂f

∂t
+ ξ · ∇f =

f eq − f

τc
. (3.13)

3.2.1 Lattice

The main idea behind a lattice is that at every time step, the particles located
in any position x0 are allowed to move only to a neighboring node xi, where
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Figure 3.2: Examples of lattices in one and two dimensions. Figure from
Reference [8].

the definition of the neighboring nodes determines the specific lattice took
in consideration (See Fig.3.2).

However, time is also being used as a discrete quantity, so the time step
∆t is fixed. Therefore, each of the allowed movements defines a possible
velocity:

ci :=
xi − x0

∆t
. (3.14)

One of the most crucial parts in obtaining the governing equations for the
LBM is finding an appropriate way to choose the lattice without affecting
the conservation laws.

To do so, the typical strategy is to firstly expand the equilibrium distri-
bution function f eq applying a Taylor expansion in terms of fluid velocity uf

up to the second order around 0[25].
Remembering the definition of f eq in Eq.3.12, the expansion reads:

f eq(uf , ρf ) ≃
ρf

(2πRT )d/2
e

−(ξ)2

2RT

[
1 +

ξ · uf

RT
+

(ξ · uf )
2

2(RT )2
−

u2
f

2RT

]
. (3.15)

It is easy to note that this expansion introduces a limit of applicability
due to the restriction of having “small” uf ; i.e. in a simulation, the range of
Mach numbers is limited by respecting the condition Ma = |uf |/

√
RT ≪ 1.
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In order to avoid affecting the conservation laws, the set of velocities
should be chosen in a way to exactly hold:

∫
ξkf eqdξ =

∑
i

wic
k
i f

eq(ci), 0 ≤ k ≤ 3, (3.16)

where the sets of wi and of ci define the weights and the points of the
numerical quadrature rule.

As with most CFD methods, one has to look for a compromise between
resolution of their method and feasibility. For this method, choosing an
appropriate lattice of neighbors is a key component in obtaining a worthy
balance between accuracy and complexity of the code. To make a compro-
mise, in this formulation of LBM, a cubic lattice with 19 neighbors is chosen
for the discretization of the velocity space. (Further explanations for the
choice of quadrature and of lattice will be given in Sec.3.2.5.)

The velocities can, therefore, be described as:

ci =
∆x

∆t
·



(0, 0, 0) for i = 0,

(±1, 0, 0) for i = 1, 2,

(0,±1, 0) for i = 3, 4,

(0, 0,±1) for i = 5, 6,

(±1,±1, 0) for i = 7...10,

(0,±1,±1) for i = 11...14,

(±1, 0,±1) for i = 15...18.

(3.17)

This lattice is called D3Q19 (3 dimensions in space, 19 vectors of velocity
as seen in Fig.3.3). With this notation, at every time t and for each point in
space x, one can define 19 functions describing the probability of finding a
particle moving in a certain direction: fi(x, t) := wif(x, t, ci).

For the D3Q19 lattice, the values of the weights are:

wi =


1/3 for i = 0,

1/18 for i = 1...6,

1/36 for i = 7...18.

(3.18)
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Figure 3.3: D3Q19 Lattice and its velocity vectors. Figure adapted from
Reference [28].
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In this section, to ease the notation, both spatial and time discretization
will be taken as unitary, (∆x = 1 and ∆t = 1), which will yield a unitary
lattice speed c = ∆x/∆t = 1.

It is noteworthy to remember that most algorithms for lattice methods
make use of unit discretization and change the results in post-processing,
scaling them appropriately.

After defining the lattice, some of the macroscopic variables have easy
reconstruction; density ρf and macroscopic velocity uf are, respectively:

ρf (x, t) =
∑
i

fi(x, t), (3.19a)

uf (x, t) =

(∑
i

cifi(x, t)

)
/ρf (x, t). (3.19b)

The density is, therefore, treated as a variable.
The pressure can be reconstructed via the density of the fluid:

pf (x, t) = c2sρf (x, t), (3.20)

where cs is the norm of the lattice speed of sound, defined (for the D3Q19
Lattice) as:

cs =
c√
3
=

1√
3
, (3.21)

where the last equivalence comes from the above-mentioned simplification
of choosing ∆x = 1 and ∆t = 1.

After the discretization, Eq.3.13 simply transforms into:

fi(x+ ci, t+ 1) = fi(x, t) + Ωcoll,i(x, t). (3.22)

For the collisional term, the BGK simplification 3.11 is used and appro-
priately labeled according to discretization:

Ωcoll,i(x, t) =
f eq
i − fi
τ

, (3.23)

where τ = τc/∆t is the dimensionless relaxation time.
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Putting together the components gives the Lattice Boltzmann equation
with the BGK simplification:

fi(x+ ci, t+ 1)− fi(x, t) =
f eq
i − fi
τ

, (3.24)

Remembering that the chosen scaling leads to a unitary lattice speed, the
discrete form of Eq.3.15 becomes:

f eq
i (uf , ρf ) = ρfwi

(
1 +

ci · uf

c2s
+

(ci · uf )
2

2c4s
− uf · uf

2c2s

)
= (3.25a)

ρfwi

(
1 + 3ci · uf +

9

2
(ci · uf )

2 − 3

2
uf · uf

)
, (3.25b)

Via the Chapman-Enskog expansion (see Sec.3.2.6), the viscosity can be
derived directly from the relaxation time[25]:

µ =
τ − 1/2

3
. (3.26)

In the context of LBM, the components of the shear rate tensor γ̇ can be
computed directly via the distribution function[48]:

γ̇αβ(x, t) =
3

2τ

∑
i

ci,αci,β(fi(x, t)− f eq
i (x, t)). (3.27)

One of the most used ways to add a term for an external volumetric force
F is the one proposed by Guo et al.[26], where an additional operator Ωforce,i

is added to the right-hand-side of Eq.3.22. This takes the form of:

Ωforce,i = wi

(
1− 1

2τ

)
[3(ci − uf ) + 9ci(ci · uf )] · F . (3.28)

The addition of this force influences the reconstruction of the macroscopic
velocity:

uf (x, t) =

(∑
i

cifi(x, t) +
F

2

)
/ρf (x, t). (3.29)
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3.2.2 Free-surface Resolution

Debris and mud flows are free-surface flows and, as such, the zone where the
flow meets air is of particular interest. In theory, one can develop a method
to simulate two fluid phases, the liquid and the gas of the air around it.
However, the motion of the gas is usually not a point of interest and it would
only make the code more complex.

One method that does not simulate the gaseous phase but still takes into
account its effects on the overall flow was developed by Körner et al.[34] and
it is called mass-tracking algorithm.

The algorithm introduces a variable λ in LBM representing the liquid
fraction of a node: 0 means gaseous, 1 liquid, and if 0 < λ < 1 then the node
is an interface node.

Then, the liquid mass of the node is simply mf = ρfλ and its time
evolution is defined by:

mf (x, t+ 1) = mf (x, t) +
∑
i

αi[fi′(x+ ci, t)− fi(x, t)], (3.30)

where i′ is the direction opposite to i. The parameter αi helps the con-
servation of mass and is a function of the liquid fraction of the neighbouring
node x+ ci:

αi =


0 if the neighbour is gas,

1 if the neighbour is liquid,
1
2
[λ(x+ ci, t)− λ(x, t)] if the neighbour is interface.

(3.31)

This changes the liquid fraction at every time-step and, therefore, whether
the node is liquid, gas, or interface. In theory, the parameter αi would guar-
antee an exact conservation of mass but the discretization and the evolution
of the nodes create small fluctuations of mass. To correct this issue, at
every time step, the opposite of the difference in total mass (with sign) is
distributed among all interface nodes.

LBM equations are then solved only for liquid and interface nodes. Ne-
glecting the gas nodes means that the distribution function in Eq.3.30 is not
defined for those nodes. Assuming that the boundary conditions between
fluid and gas is symmetrical for the velocity and fixed for the pressure, those
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distributions are computed assuming that the velocity of the gas is the same
as the one of the interface uint and that the node has a constant atmospheric
density ρatm.

fi′(x+ ci′ , t+ 1) = f eq
i (uint, ρatm) + f eq

i′ (uint, ρatm)− fi(x, t). (3.32)

3.2.3 Non-Newtonian Fluids

As already mentioned in Sec.3.1, in a Herschel-Bulkley model, the constitu-
tive equation can be written as:

γ̇ = 0, if fluid does not yield (σ < σ0),

σ =

(
kγ̇n−1 + σ0

γ̇

)
γ̇, if fluid yields (σ > σ0),

(3.33)

where k is the consistency, n is called flow index, and σ0 is the yield stress,
like in a Bingham fluid. γ̇ and σ are the magnitude of the shear rate tensor
γ̇ and the stress tensor σ respectively.

The relationship between stress and shear rate is greatly influenced by
the flow index n. For n > 1 the fluid is shear-thickening (viscosity increases
as the shear rate increases), while for n < 1 the fluid is shear-thinning. For
n = 1 the model reduces to a Bingham plastic.

Generally speaking, to recreate the behavior of a non-Newtonian fluid, the
viscosity has to be taken as a variable, therefore modifying Eq.3.26. Inverting
the equation gives the definition for the variable relaxation time in a setting
with a variable viscosity:

τ(x, t) = 3µ(x, t) +
1

2
. (3.34)

The viscosity µ(x, t) is defined, in a Herschel-Bulkley model, as:

µ(x, t) = kγ̇n−1 +
σ0

γ̇
. (3.35)

The constants k, n, and σ0 are material dependent and unchanging, while
γ̇ is the second invariant of the shear rate tensor, defined in Eq.3.3, via
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Eq.3.27 with the relaxation time τ treated as a time-space-dependent vari-
able.

It is noteworthy to consider that in Eq.3.35, the apparent viscosity di-
verges when γ̇(x, t) → 0 both for shear-thinning and shear-thickening fluids.
The relaxation time follows the behavior of the viscosity (Eq. 3.34) and
they create stability issues in LBM. One of the easiest solutions to tackle the
issue is to limit the relaxation time τ between two values τ ∈ [τmin, τmax].
Leonardi[36] empirically determined [0.501, 1.8] to be an appropriate interval.

This choice, results in a rheology model that approximates a Herschel-
Bulkley material with a minimum and maximum viscosity (µmin and µmax)
bounding the range where the behavior is properly non-Newtonian (depicted
in Fig.3.4 with generic parameters). With proper choices of time steps, the
results yielded by this model are not far from the ones obtained through
different types of approximations.

Of peculiar interest is the sub-case of a Bingham plastic, obtained when
the flow index is n = 1: in this case the model becomes triliniar and a proper
choice of time-step can even result in having µ0 > µmin, making the model
bilinear.

3.2.4 Boundaries

One of the easiest and most typical ways to implement the interaction of the
fluid with a solid wall in LBM is the bounce-back rule.

fi′(x, t+ 1) = fi(x, t), (3.36)

where x is a position near the wall, i is the direction pointing towards it
and i′ the opposite of i. If the wall is moving, there is a correction due to
the momentum transfer between the wall and the population of fluid:

fi′(x, t+ 1) = fi(x, t)− 6wiρfuw · ci, (3.37)

where uw is the velocity of the wall at the bounce-back location. This
location can simply be chosen as the half-way between fluid node and solid
node. However, Filippova and Hänel[21] and then modified by Mei et al.[39]

proposed a way to take into account the curvature of the wall and its actual
position.
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Figure 3.4: Graphical example of the approximation of the rheology model
used for numerical purposes.
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To apply Eq.3.37 to the interaction between fluid and solid objects, one
has to calculate the velocity at the bounce-back location uw at every time-
step. This location, xBB, ideally lies on the surface of the obstacle but can be
inside or outside of the it if one chooses the halfway point as the bounce-back
location. If up is the translational velocity of the solid object and ωp is its
rotational velocity, then:

uw = up + rBB × ωp, (3.38)

where rBB = xBB −xp is the vector connecting the bounce-back location
to the center of the object xp.

3.2.5 Quadrature and Derivation of D3Q19

The chosen quadrature in this project is the Gauss-Hermite quadrature, one
of the most common choices for LBM[27]. In one dimension this quadrature
is used to approximate integrals where a Gaussian function appears:∫ +∞

−∞
e−x2

f(x)dx ≃
n∑

i=1

wif(xi), (3.39)

where n is the number of sample points, xi are the roots of the n−th
Hermite polynomial Hn(x):

Hn(x) = (−1)nex
2 dn

dxn
e−x2

. (3.40)

The weights wi are defined as:

wi =
2n−1n!

√
π

n2[Hn−1(xi)]2
. (3.41)

The Gauss-Hermite quadrature allows to obtain an algebraic degree of
precision of 2n− 1 where n is the number of abscissas of the quadrature. In
other words, if f(x) in Eq.3.39 is a polynomial of degree d ≤ 2n − 1, then
Eq.3.39 becomes an equality.

The choice of quadrature must be made while keeping in mind that
Eq.3.16 (repeated below for the sake of clarity) must hold true:
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∫
ξkf eqdξ =

∑
i

wic
k
i f

eq(ci), 0 ≤ k ≤ 3. (3.42)

Considering firstly the problem in one dimension, then by calling the
left-hand-side of the equation I and recalling the definition of the expansion
of the equilibrium function (Eq.3.15), with a simple change of variable, the
integral I can be simplified into:

I =
ρ√
π

[(
1−

u2
f

2c2s

)
Im +

2uf√
2cs

Im+1 +
u2
f

c2s
Im+2

]
, (3.43)

where Im =
∫
ζmexp(−ζ2)dζ can be easily integrated with the third-

order Gauss-Hermite formula (since Im+2 contains a polynomial of degree
≤ 5), thus giving rise to:

I = ρ
3∑

i=1

wi

[(
1−

u2
f

c2s

)
cmi +

ufc
m+1
i

c2s
+

u2
fc

m+2
i

2c4s

]
, (3.44)

with points c1 = 0, c2,3 = ±c, where c = cs
√
3 and weights w1 = 2/3,

w2 = w3 = 1/6.

In D dimensions, a polynomial p(ζ) of degree n can be generally defined
as:

∑
n1+···+nD≤n

αn1,n2,···nD

D∏
j=1

ζ
nj

j , (3.45)

where αn1,n2,···nD
are the coefficients multiplying the terms of the polyno-

mial defined as products of each coordinate ζj elevated to a degree nj. The

summation is done on all the sets of exponents such that
∑D

j=1 nj ≤ n in
order to have n as the degree of the whole polynomial.

Therefore, an integral of type:

1
√
2π

D

∫
exp

(
− ζ2

2

)
p(ζ)dζ, (3.46)

can be separated to consider each term of the sum in Eq.3.45 one by
one. I.e.: let wa and ζa with a = 1, . . . , n be the weights and abscissas of a
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one-dimensional n-degree quadrature formula, then Eq.3.46 can be written
to consider a single generic term of the polynomial (dropping the constant)
without loss of generality:

1
√
2π

D

∫
exp

(
− ζ2

2

) D∏
j=1

ζ
nj

j dζ =
D∏
j=1

1√
2π

∫
exp

(
−

ζ2j
2

)
ζ
nj

j dζj =

=
D∏
j=1

( n∑
a=1

waζ
nj
a

)
=

n∑
k1=1

· · ·
n∑

kD=1

wk1 · · ·wkDζ
n1
k1

· · · ζnD
kD

,

(3.47)

where the quadrature comes into fruition between the two lines and it is
an equality since nj ≤ n ∀j.

With this method, one can accurately calculate the integrals of the type
in Eq.3.46 for all polynomials of degree n in D dimensions.

Choosing the third-order Gauss-Hermite quadrature leads to quadratures
with three points for the abscissas in each dimension and a degree-5 precision.
The cartesian product of the abscissas in the one-dimensional quadrature
formula generates a cubic lattice with 9 points in two dimensions and one
with 27 points in three dimensions called D2Q9 (2 dimensions in space and 9
velocity vectors) and D3Q27 (3 dimensions in space and 27 velocity vectors)
respectively.

Following the definition of the weights in Eq.3.47 and inserting the values
of the one-dimensional Gauss-Hermite quadrature results in the weights for
D3Q27 being divided in four different types of weights {w0, ws, wm, wl} =
{8/27, 2/27, 1/54, 1/216}. All of these weights are defined based on the
distance from the center of the cubic lattice: w0 is associated with the center
itself, ws with the 6 points of the lattice closest to the center (the center of
each face of the cubic lattice), wm with the 12 points in medium distance
from the center (the center of each edge of the cube), and wl are the 8 farthest
points from the center (vertexes of the cube).

However, due to symmetries some simplifications can be done to obtain a
lattice with less points starting from D3Q27 while still maintaining degree-5
precision[44] which leads to Eq.3.16 still holding true. In order to see this, it
is useful to write Eq.3.47 in three dimensions:
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1

(
√
2π)3

∫
exp

(
− ζ2

2

)
ζn1
x ζn2

y ζn3
z dζ =

n∑
k1=1

n∑
k2=1

n∑
k3=1

wk1k2k3ζ
n1
k1
ζn2
k2
ζn3
k3
, (3.48)

where the ζj are still the abscissas from the one-dimensional third-order
Gauss-Hermite quadrature and the weights wk1k2k3 are still dependant on
the distance from the center of the lattice (i.e. w1,1,1 = w0, w1,1,k = w1,k,1 =
wk,1,1 = ws, w1,j,k = wj,1,k = wj,k,1 = wm, wi,j,k = wl with i, j, k ∈ {2, 3})

To have a polynomial of degree 5 in Eq.3.48, since in three dimension
there are three different variables ζj, it must hold true that there is at least
one exponent nj̃ such that nj̃ < 2. Furthermore, all the nj, (j = 1, 2, 3) are
integers, so nj̃ is either 0 or 1.

If it is the latter, then the integral in Eq.3.48 is zero because the integrand
becomes anti-symmetric with respect to the plane defined by ζj̃ = 0.

The symmetries of the weights (namely that wk1,k2,2 = wk1,k2,3 ∀k1, k2)
make it easy to see that the sum is zero as well.

E.g.: if n3 = 1, then the sums in Eq.3.48 can be rewritten as:

n∑
k1=1

n∑
k2=1

[
wk1,k2,1ζ

n1
k1
ζn2
k2
ζ1 + wk1,k2,2ζ

n1
k1
ζn2
k2
(ζ2 + ζ3)

]
. (3.49)

Considering that ζ1 = 0 and that ζ2 = −ζ3, due to how the lattice was
created, each addend of the sum (i.e. each square bracket) is equal to 0.

On the other hand, in the case where nj̃ = 0 the integrand becomes a two-
dimensional function and the quadrature is exact if and only if the weights
reduce to those of the D2Q9 lattice. The conditions required for that to be
true lead to this set of equations:

w0 + 2ws = 4/9 (3.50)

ws + 2wm = 1/9 (3.51)

wm + 2wl = 1/36. (3.52)

The solution clearly leaves a free parameter and it can be written as:
w0

ws

wm

wl

 =
1

72


8(2 + t)
4(2− t)

2t
1− t

 , (3.53)
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with t ∈ [0, 1].
At t = 0 and t = 1 some of the weights reduce to zero, thus obtaining

special lattices D3Q15 and D3Q19 respectively. Choosing t = 2/3 brings the
original weights of the D3Q27 lattice, the ones obtained via multiplication of
the weights of the one-dimensional third-order Gauss-Hermite quadrature.

It is noteworthy to say that, while D3Q15 and D3Q19 maintain degree-5
precision, the choice of number of points still has effects on the approximation
of other type of functions and, therefore on the overall accuracy.

3.2.6 Chapman-Enskog Expansion

One of the most common ways to show the link between the Lattice Boltz-
mann model and the Navier-Stokes equations is the Chapman-Enskog ex-
pansion, a multi-scale approach derived by Chapman[13] and Enskog.

Before delving into the expansion itself, some properties of the D3Q19
lattice are presented to help with the mathematical aspects.

Lattice vector ci Weight wi

(0, 0, 0) 1/3
(±1, 0, 0); (0,±1, 0); (0, 0,±1) 1/18

(±1,±1, 0); (0,±1,±1); (±1, 0,±1) 1/36

Table 3.1: Table of the lattice vectors and their associated weights for the
D3Q19 lattice.

As a reminder, Table 3.1 shows the lattice vector and their associated
weights, after choosing the scaling in such a way that c = 1 and, therefore,
c2s = 1/3. It is useful to note that there is one vector associated with weight
1/3, six vectors with weight 1/18, and twelve vectors with 1/36.

In this lattice every component ciα of the lattice vectors belongs to the
set {−1, 0, 1}. It is easy to see that c3iα = ciα holds true for every component
α of every vector ci.

The subsequent properties are going to be useful and are of straightfor-
ward calculation:
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∑
i

wiciα =
∑
i

wiciαciβciγ =
∑
i

wiciαciβciγciθciσ = 0; (3.54a)∑
i

wiciαciβ = c2sδαβ; (3.54b)∑
i

wiciαciβciγciθ = c4s∆αβγθ, (3.54c)

∀α, β, γ, θ, σ and where ∆αβγθ = δαβδγθ + δαγδβθ + δαθδβγ, with δij being
the Kronecker delta.

Remembering the definition of the discrete equilibrium function in Eq.3.25,
and using the aforementioned properties in Eq.3.54, it is again straightfor-
ward to find the moments of f eq

i :

∑
i

f eq
i = ρf ,

∑
i

cif
eq
i = ρfuf ,

(3.55a)∑
i

ciαciβf
eq
i = ρfufαufβ + pfδαβ, (3.55b)∑

i

wiciαciβciγf
eq
i = ρfc

2
s(ufαδβγ + ufβδαγ + ufγδαβ), (3.55c)

where ufα is the α-component of vector uf .

The first step of the Chapman-Enskog expansion is to introduce the fol-
lowing multi-scale expansions:

fi = f
(0)
i + ϵf

(1)
i + ϵ2f

(2)
i , (3.56a)

∂t = ϵ∂t0 + ϵ2∂t1 , ∂α = ϵ∂0α, (3.56b)

where ϵ is a small number proportional to the Knudsen number Kn, (a-
dimensional number that represents the ratio between a typical dimension of
the lattice over the dimension of the system), ∂t and ∂α are short notations
of ∂/∂t and ∂/∂xα respectively.

Reintroducing the time step ∆t in the lattice Boltzmann equation with
the BGK simplification (Eq.3.24) and using a second-order Taylor expansion
yields:
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Difi +
∆t

2
D2

i fi = − 1

τ∆t
(fi − f eq

i ) +O(∆t2), (3.57)

where Di = ∂t +
∑

α ciα∂α.
Putting together Eq.3.57 and Eq.3.56 yields a long expression depending

on the expansion coefficient ϵ. Equating the coefficients of each order of ϵ
gives three equations:

ϵ0 : f
(0)
i = f

(eq)
i , (3.58)

ϵ1 :D
(0)
i f

(0)
i = − 1

τ∆t
f
(1)
i , (3.59)

ϵ2 : ∂t1f
(0)
i + (1− 1

2τ
)D

(0)
i f

(1)
i = − 1

τ∆t
f
(2)
i , (3.60)

where D
(0)
i = ∂t0 +

∑
α ciα∂0α and Eq.3.59 has been used to simplify

Eq.3.60.
Using Eq.3.19 together with Eq.3.58 and the properties in Eq.3.55 yields:

∑
i

f
(k)
i =

∑
i

ciαf
(k)
i = 0, ∀α, for k > 0. (3.61)

Taking the sum over index i, in Eq.3.59 yields:

∂t0ρf +
∑
α

∂0α(ρfufα) = ∂t0ρf +∇0 · (ρfuf ) = 0. (3.62)

Multiplying Eq.3.59 by ci gives:

∂t0(ρfuf ) +∇0 ·Π(0) = 0, (3.63)

where Π
(0)
αβ :=

∑
i ciαciβf

(0)
i . Using Eq.3.58 and, due to properties Eq.3.55,

one can write Π
(0)
αβ = ρufαufβ + pfδαβ.

Following the same procedure for Eq.3.60, firstly, taking summation over
i yields a term for the conservation of mass:

∂t1ρf = 0. (3.64)

Similarly to the other case, multiplying Eq.3.60 by ci gives a term for the
momentum equation:

41



∂t1(ρfuf ) +

(
1− 1

2τ

)
∇0 ·Π(1) = 0. (3.65)

This time however, the tensor defined by Π
(1)
αβ :=

∑
i ciαciβf

(1)
i does not

have an immediate connection to a macroscopic quantity. To properly con-
tinue, one has to look into the multiplication of Eq.3.59 by ciαciβ and taking
the summation over i. This leads to:

∂t0Π
(0)
αβ + c2sρf

∑
γ

∂0γ(ufαδβγ + ufβδαγ + ufγδαβ) = − 1

τ∆t
Π

(1)
αβ . (3.66)

It is easy to see that tensor Π(1) comes into play in the last term. Using
this, after some algebra and neglecting terms that are O(Ma3) (Ma is the
Mach number, which is already required to be small), yields:

Π
(1)
αβ = −τc2sρf∆t(∂0αufβ + ∂0βufα). (3.67)

Coupling Eq.3.62 with Eq.3.64 while at the same time pairing Eq.3.63
with Eq.3.65 (with the inclusion of Eq.3.67 as the new definition of Π

(1)
αβ)

yields the hydrodynamic equations:

∂tρf +∇ · (ρfuf ) = 0, (3.68a)

∂t(ρfuf ) +∇ · (ρfufuf ) = −∇pf +∇ ·
[
ρfµ

(
∇uf +∇uT

f

)]
, (3.68b)

where, ν is the kinematic viscosity given by:

ν = c2s

(
τ − 1

2

)
∆t. (3.69)

If the density variation is neglected, a fair assumption in small Mach
number regimes, Equations 3.68 can be simplified into the incompressible
Navier-Stokes equations:

∇ · uf = 0, (3.70a)

∂uf

∂t
+ uf∇ · uf = − 1

ρf
∇pf + ν∇2uf . (3.70b)
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In order to add the effects of an external volumetric F to the Lattice-
Boltzmann method, Guo et al.[26] used the framework of the Chapman-
Enskog expansion to obtain Eq.3.28 and Eq.3.29. The constants in the def-
initions of the forcing term and in the reconstruction of the macroscopic
velocity are defined in a way to obtain, by following similar algebra as the
one presented above, the Navier-Stokes equations with a body force:

∂tρf +∇ · (ρfuf ) = 0, (3.71a)

∂t(ρfuf ) +∇ · (ρfufuf ) = −∇pf +∇ ·
[
ρfν

(
∇uf +∇uT

f

)]
+ F , (3.71b)

To generalize the method even more, there is an ad hoc extension of LBM
originally proposed by Aharonov and Rothman[1], whose idea hinged on a
local treatment of the relaxation time τ . This extension allows the method
to be expanded to generalized Newtonian fluids[22,38]. These are materials
whose behavior can be modeled with:

σ = µ(γ̇)γ̇. (3.72)

In other words, these fluids follow rheological laws where the relationship
between shear stress and shear rate is modulated by a function µ depending
only on the invariants of the shear rate tensor. This function µ can be read
as an effective viscosity. It is easy to see that the Herschel-Bulkley model
is part of this category of fluids. When the fluid yields, the model can be
written as σ = µ(γ̇)γ̇ with the effective viscosity:

µ(γ̇) = kγ̇n−1 +
σ0

γ̇
. (3.73)

Since the shear rate tensor is a local quantity, the effective viscosity in-
herits the same dependencies. Therefore, µ can be written as µ(x, t) (like
in Eq.3.35); in this way the local nature of this function becomes explicit.
Using the inverse of Eq.3.69, the relaxation time τ is treated locally as well
and can be written as τ(x, t) to highlight this nature.
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Chapter 4

Benchmarking

The numerical simulations were performed using HYBIRD, a numerical code
developed by Leonardi[36] that combines a Lattice-Boltzmann Method solver
with a Discrete Element Method solver in order to simulate the dynamics of
fluid and particles, respectively. As already mentioned, the method was used
only for the LBM part to focus on mud flows and on the fluid component of
debris flows. HYBIRD is optimized to run in parallel for a small number of
processors sharing memory.

The aim of this section is to validate the use of the HYBIRD code[37]

with a constitutive model that was not already present in the original code:
a Herschel-Bulkley fluid. Following Leonardi[36], the chosen benchmark is
the solution of the in-plane Poiseuille flow.

Figure 4.1 shows the geometry of the flow, where a reference system has
been chosen in a way that results to having only one non-trivial velocity
component: ux. The fluid flows between two plates both orthogonal to the y
direction. The distance between the two plates is H and the dimensions of
the plates are large enough to make edge effects negligible. The flow is steady
and self-similar in the x direction; the shear rate tensor can be reduced to
γ̇xy =

∂ux

∂y
, while the stress tensor becomes σxy.

The only driving force is a body force ρffx in the x direction. Using this
force is equivalent to imposing a pressure gradient ∂p

∂x
= ρffx.

To make use of the flow’s symmetry, the origin of the y axis is chosen to
be halfway between the plates.

A no-slip boundary condition is imposed at the plates, which translates
to ux(y = ±H/2) = 0.
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(a) (b)

Figure 4.1: Velocity profile of a Poiseuille flow. (a) Fluid with Newtonian
rheology. (b) Fluid with plastic rheology. Figures from Reference [36].

The Navier-Stokes equations are simplified into:

∂σxy

∂y
= −ρffx, (4.1)

whose solution depends on the chosen rheology.
Figure 4.1(a) shows the velocity profile for a Newtonian fluid, while figure

4.1(b) is the one for a plastic rheology. Qualitatively speaking, the velocity
profile of the in-plane Poiseuille flow of a material behaving like a Bingham
plastic and one following the Herschel-Bulkley model are quite similar; the
main difference, after normalizing with the maximum speed is in the steepness
of the curve connecting to the plug region.

4.1 Analytical Solution

In the case of a Newtonian fluid, defined by σxy = µγ̇xy, the solution of Eq.4.1
is rather straightforward. Considering the no-slip condition at the wall and
that due to the symmetry of the problem σxy(y = 0) = 0, the solution can
be written as:

ux(y) =
ρffx
2µ

(
H2

4
− y2

)
, y ∈ [−H

2
,
H

2
]. (4.2)
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Therefore, the expression for the stress is simply σxy(y) = −ρffxy, which
assumes negative values for positive y and vice-versa.

4.1.1 Non-Newtonian Case: Herschel-Bulkley

A Herschel-Bulkley fluid presents a yield stress σ0; when the stress is lower
than this threshold, the fluid moves as if it was a rigid body.

In a Poiseuille flow, this results in a region of width H0 < H where the
fluid moves as a plug flow (with the same velocity and direction of motion).
It is worth mentioning that the plug width has to be strictly smaller than
the width of the channel; otherwise, if H0 = H, there would be no flow due
to the no-slip condition at the walls.

Due to the symmetry of the problem, the plug is located in the middle of
the channel and σ(±H0/2) = σ0.

The driving force acting on the plug is FD = ρffxH0 which must be in
equilibrium with the viscous force at the boundary of the plug, FR = 2σ0.
This can be seen as integrating Eq.4.1 between−H0/2 andH0/2 with σxy(y =
H0/2) = −σ0 and σxy(y = −H0/2) = +σ0 as a mirror to the Newtonian case
and due to the symmetry of the problem.

Therefore, the plug height H0 can be written as:

H0 =
2σ0

ρffx
. (4.3)

To ease up the notation let h := H/2 and h0 := H0/2.
Due to the symmetry of the problem, the solution will be looked only for

positive y and, as stated above, the stress at the border of the plug is such
that

|σxy(y = h0)| = σ0, (4.4)

which, together with the condition that ux(y = h) = 0 and with the
constitutive law, will be used to solve equation 4.1 for y ∈ [h0, h].

As already mentioned, the Poiseuille flow between two plates, with the
chosen reference system, makes it so that γ̇xy = ∂ux

∂y
and, therefore, that

γ̇ =
∣∣∂ux

∂y

∣∣.
For y ∈ [h0, h], the constitutive law becomes:
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σxy =

(
kγ̇n−1 +

σ0

γ̇

)
∂ux

∂y
. (4.5)

Since every parameter inside
(
kγ̇n−1 + σ0

γ̇

)
is positive, the whole paren-

thesis is a positive quantity. Therefore, sign(σxy) = sign(∂ux/∂y).
Due to the symmetry of the problem and the reference system, it is natural

to assume that both signs are negative in the considered domain [h0, h],
mirroring the behavior of a Newtonian fluid. Thus, the boundary condition
becomes: σxy(y = h0) = −σ0.

Therefore, integrating Eq.4.1 once and using this condition leads to:

σxy(y) = −ρffx(y − h0)− σ0, for y ∈ [h0, h] (4.6)

Let vx := −ux. Then:

∂vx
∂y

= −∂ux

∂y
=⇒ γ̇ =

∂vx
∂y

for y ∈ [h0, h] (4.7)

Eq.4.5 can then be written as:

(
kγ̇n−1 +

σ0

γ̇

)
∂vx
∂y

= −σxy for y ∈ [h0, h] (4.8)

Using Eq.4.7 and Eq.4.6, this equation becomes:

k

(
∂vx
∂y

)n

+ σ0 = −σxy = ρffx(y − h0) + σ0 for y ∈ [h0, h] (4.9)

=⇒
(
∂vx
∂y

)n

=
ρffx
k

(y − h0) for y ∈ [h0, h] (4.10)

=⇒ ∂vx
∂y

=

[
ρffx
k

(y − h0)

] 1
n

for y ∈ [h0, h]. (4.11)

To improve readability, let:

N :=
n+ 1

n
(4.12)
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Then with a simple integration and remembering that vx(y = h) =
−ux(y = h) = 0, the solution of 4.11 is:

vx(y) =

(
ρffx
k

) 1
n 1

N

[
(y − h0)

N − (h− h0)
N
]

for y ∈ [h0, h] (4.13)

=⇒ ux(y) =

(
ρffx
k

) 1
n 1

N

[
(h− h0)

N − (y − h0)
N
]

for y ∈ [h0, h]. (4.14)

Therefore, the speed of the plug is:

ux(y) = ux(y = h0) =

(
ρffx
k

) 1
n 1

N
(h− h0)

N for y ∈ [0, h0) (4.15)

It is noteworthy to check that for n = 1, equations 4.14 and 4.15 turn
into:

ux(y) =


ρffx
k

1
2
(h− h0)

2 for y ∈ [0, h0),

ρffx
k

1
2

[
(h− h0)

2 − (y − h0)
2
]

for y ∈ [h0, h],

(4.16)

which is the solution for the Bingham plastic with the consistency k
assuming the role of the plastic viscosity µ0.

Furthermore, choosing σ0 = 0 results in H0 = 0 from Eq.4.3 and h0 = 0,
which reduces Eq.4.16 to:

ρffx
k

1

2

[
h2 − y2

]
for y ∈ [0, h], (4.17)

perfectly recovering Eq.4.2.

4.2 Numerical Simulations

In order to perform further numerical simulations, some sections were mod-
ified or added to the code to allow the use of a Herschel-Bulkley rheology.
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After those modifications, the first simulations were done with n = 1 and
σ0 = 0 to check that the code would find a solution in agreement with a
Newtonian fluid. Then σ0 was left as a non-trivial parameter to obtain a
Bingham plastic and the results were identical to the ones obtained using
directly a Bingham rheology.

The validation of the HYBIRD code for Newtonian and Bingham fluids
was done by Leonardi[36].

One issue of LBM is that the apparent viscosity µ = σxy/γ̇ is treated as
a variable in the code so, since in a Herschel-Bulkley model it diverges for
γ̇ −→ 0, it can create instabilities.

The viscosity is dependent on the relaxation time τ via Eq.3.26, therefore,
as already mentioned in Sec.3.2.3, choosing a limiting range for τ creates a
limit on the apparent viscosity as well.

To limit this effect, the relaxation time has been limited within a stable
range. Leonardi[36] empirically defined this interval with τmin = 0.501 and
τmax = 1.8.

The focus of this study was on shear-thinning fluids, therefore the chosen
flow index was n = 0.33 < 1. For the sake of simplicity, both the forcing
term and the reference viscosity were chosen as unitary. This choice, together
with the time and space discretization, led to a range of acceptable dynamic
viscosities defined by:

µ ∈ 80

3

[
τmin −

1

2
, τmax −

1

2

]
. (4.18)

For example, with τmin = 0.501 and τmax = 1.8 the viscosity was allowed
to move in the range [0.026; Pa s 34.6 Pa s ] .

After choosing appropriate values for the other parameters of a Herschel-
Bulkley rheology in a Poiseuille flow (σ0 = 0.5 Pa, k = 0.2 Pa sn in this case),
numerical experiments were performed with varying τmax. Figure 4.2 shows
a comparison between an analytical solution of 4.1 (equations 4.14 and 4.15)
and the numerical solutions.

Qualitatively, disregarding the handling of the wall and its effects on the
nearest fluid cells, the differences can be seen only in Fig.4.2(b). This figure
shows that for lower values of τmax there are small hardships in the handling
of the region where the fluid moves like a plug; this is in accordance with the
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(a)

(b)

Figure 4.2: Comparison between analytical and numerical solutions of a
Herschel-Bulkley fluid for an in-plane Poiseuille flow. Parameter τ is the
maximum relaxation time used in LBM. (b) is a zoom on the plug region to
highlight the maximum velocity.
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approximation done for the rheology because lower values of τmax mean that
the regions with low shear are approximated more roughly.

(a) (b)

Figure 4.3: (a) Maximum numerical velocity umax over analytical maximum
uHB. (b) Root mean square error.

Fig.4.3 shows these differences more accurately with the help of two pa-
rameters: ratio of maximum numerical speed umax to maximum analytical
speed uHB (from Eq.4.15) and root mean square error.

The ratio between the speeds should be as close to one as possible and in
Fig.4.3(a) the differences are less than 1% for every choice of τmax.

The size of the region of plug flow depends on the physical parameters
chosen. In these tests the goal was to obtain H0/H = 0.5. The slight over-
estimation of the plug size in Fig.4.4(a) is in agreement with the difficulties
in the simulation of regions with γ̇ −→ 0.

To better understand where these errors are coming from, other sim-
ulations another velocity profile is shown in Fig.4.4(b). In this numerical
simulation, the yield stress σ0 was chosen to be much higher than ρffxh, in
order to create a plug region with width larger than the dimensions of the
channel. In theory, this choice would bring a static result with γ̇ = 0. The
effective viscosity in such a case would be infinity but, as already mentioned,
the code has a maximum value of effective viscosity µmax to avoid stability
issues.
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(a) (b)

Figure 4.4: (a) Numerical plug size (parameters chosen to obtain a theoretical
plug size H0/H = 0.5). (b) Results of simulation with high yield stress value.

In this last numerical simulation, this limit translated into a velocity
profile coinciding with the one for a Newtonian fluid with µ = µmax = 26.6
Pa s. This result was expected due to the way the numerical rheology model
was written (see Fig.3.4). It is noteworthy to mention that the maximum
velocity in this numerical simulation was around orders of magnitude smaller
than the maximum velocity of a simulation where the plug region was half
the width of the channel.

This numerical limitation had the largest impact on the values of the
previous error analysis. The influence of maximum relaxation time τmax

on this effect is evident from Eq.4.18 but it is not the only one. Further
discussions on the choice of maximum relaxation time can be found in the
work by Leonardi[36].
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Chapter 5

Case Study

Numerical experiments were performed for the phenomenon of a dam-break
wave over an erodible basement. Following Bates and Ancey[10], the dam-
break is assumed to happen at time t = 0 when an avalanche, made-up of
Herschel-Bulkley material, is suddenly released and able to move down a
slope with inclination θ. At first the material moves over a solid bottom;
however in position xst the flow encounters an erodible layer made up of the
same material of the wave. The erodible layer is lbed long and δh deep. The
viscoplastic flow from the dam-break spreads over the stationary material and
entrains part of it. The front position of the wave is xf (t) and the surface
height is h(x, t), where x is the coordinate along the slope. Choosing the
z-axis to be perpendicular to the slope and opting to study the movement
only in 2 dimensions, the velocity of the fluid can be written as uf = (u,w).

There are various studies applying different methods to analyze the move-
ment of a viscoplastic dam-break wave. Bates and Ancey[10] follow a process
based in lubrication theory to obtain an evolution equation for flow depth
h(x, t). They then extend this equation to erodible beds. Some highlights
from their work are hereby presented.

Remembering the constitutive model for a Herschel-Bulkley fluid (Eq.3.4),
there are some configurations of parameters where the material does not
move. On the other hand, when the flow does move, there is a surface
z = Y (x, t) where the shear stress equals the yield stress.

For z higher than Y the flow moves like a plug, while for z ≤ Y the fluid
is sheared and the component of the velocity parallel to x follows[3,10]:
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Figure 5.1: Configuration of the flow: Dam-break wave of viscoplastic ma-
terial moving on a fixed bed before encountering an erodible layer. Figure
from Reference [10].

u(x, z, t) =
n

n+ 1
A

(
1− S

∂h

∂x

)1/n[
Y 1+1/n − (Y − z)1+1/n

]
, (5.1)

where An = ρg sin θ/k and S = cot θ are both constants dependent on
physical parameters.

For z > Y the velocity is equal to the one at z = Y .
With some assumptions to utilize the framework of the shallow-water

equations (SWE), the velocity is then integrated to obtain the depth-averaged
velocity u. This quantity can be used in the first SWE, which in this case
reads:

∂h

∂t
+

∂(uh)

∂x
= 0. (5.2)

This equation can be extended to erodible bottoms and, with appropriate
substitutions, it becomes:

∂h

∂t
+A

∂

∂x

[
n(Y − b)1+1/n

(1 + n)(1 + 2n)

(
1− S

∂h

∂x

)1/n(
n(h− Y ) + (n+ 1)(h− b)

)]
= 0,

(5.3)
where z = b = b(x) ≤ 0 defines a rigid base under the entrainable layer.
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5.1 Numerical Experiments on Dam-Break

Bates and Ancey[10] used Matlab to solve Eq.5.3 numerically and compared
the results with their physical experiments.

They studied the entrainment of an erodible layer by a dam-break wave
where both the erodible bed and the fluid from the reservoir could be ac-
curately modeled with a Herschel-Bulkley rheology. As already stated, this
model represents a material with both a yield stress and a shear-thinning
behavior. Both of which are characteristics of mud and debris flows.

Fig.5.2(a) shows snapshots of the flow depths for one of their numerical
simulations, while Fig.5.2 shows one of the physical experiments.

This study attempted to follow the referenced experiments with an anal-
ysis through a Lattice-Boltzmann Method. The approach for the numerical
experiments performed using the HYBIRD code[37] is through the use of
Eq.3.24 and the goal of this studies is to analyze the type of flow presented
above and the effects of the erodible layer on the movement of the material.
Therefore the numerical experiments were simulated with varying parame-
ters to study the influence of the geometry of the erodible layer on the overall
movement of the fluid.

The viscoplastic material does not change throughout the experiments
and is chosen following Bates and Ancey[10]. Therefore, the material was
modeled using a Herschel-Bulkley rheology with density ρ = 997.45 kg m−3,
flow index n = 0.33 (which will often be called shear-thinning index since it
is lower than 1), yield stress σ0 = 58 Pa, and consistency k = 35 Pa sn.

The space-time discretization, was kept constant throughout all of the
simulations. As a result, the values of minimum and maximum viscosities
remained unchanged in all the numerical experiments as well: [µmin, µmax] ≃
[0.15 Pa sn, 150 Pa sn].

All the simulations begin as the fluid starts moving, therefore, the initial
velocity of both the reservoir and the erodible bottom is zero. The dam break
is conceptually simulated as an instantaneous removal of a wall that was (for
t < 0) perpendicular to the surface of the material inside the reservoir and
that was holding the viscoplastic fluid at rest (see Fig.5.3).

The sudden disappearance of this dam allows the fluid to move, starting
from a rectangular trapezoidal shape as in Fig.5.3(a).

For convenience, the experiments were performed with the x−axis parallel
with the slope and the z−axis perpendicular to it. To be consistent with
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(a)

(b)

Figure 5.2: (a) Flow depth of a numerical simulation with a Herschel-Bulkley
fluid. (b) Top and side view of physical experiment. Figures adapted from
reference [10].
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this choice, the external gravity was always transformed according with the
inclination θ.

The bottom of the erodible layer was chosen as the zero for the z−axis,
and the start of the x−axis was taken as the minimum point in that direction
(point B in Fig.5.3). Therefore, the coordinates of each particle of the fluid
were always non-negative.

Fig.5.3(b) shows the results of this transformation of the reference system
with generic slope inclination θ and bed height δh.

(a) (b)

Figure 5.3: (a) Shape of the initial reservoir. (b) Shape of the reservoir after
rotation and translation for the numerical experiments.

The physical parameters in the simulations, mainly the inclinations of the
slope θ and the amount of fluid taken into account, are chosen in order to
allow such movement to begin. In the experiments performed by Bates and
Ancey[10], the amount of fluid in the reservoir was kept constant as M = 3 kg
translating to a volume per unit width of V0 ≃ 0.03 m2. The last parameter
was the one of interest for the numerical experiments, since all simulations
assumed a periodicity condition along the y−axis.

The inclinations had to be chosen in a way that, without the dam-break
wave, the erodible layer would have stayed still, which is influenced by its
height.
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For these reasons the inclinations chosen were always such that θ ∈
{12◦, 16◦, 20◦, 24◦} and the heights of the erodible layer were δh ∈ { 0 cm, 3
cm, 6 cm, 9 cm }.

The other parameters being varied in the simulations were the aforemen-
tioned length of the erodible bed lbed and its starting point xst.

Table 5.1 lists the different parameters in each simulation. The primary
goal of the simulations was to identify if the influence of the erodible bottom
on the overall flow of the viscoplastic material for the different slope an-
gles was significative. Subsequently, the focus shifted on the effects of some
parameters of the step: its position xst, its length lbed, and its depth δh.

Run Identifier θ [◦] xst [cm] lbed [cm] δh, [mm]
A 12 70 - 0
B 12 70 30 6
C 16 70 - 0
D 16 70 30 3
E 16 70 30 6
F 16 70 30 9
G 16 90 - 0
H 16 90 30 6
I 20 90 - 0
J 20 90 10 6
K 20 90 20 6
L 20 90 30 6
M 24 90 - 0
N 24 90 30 6

Table 5.1: List of the different numerical simulations.

5.2 Results

To understand the overall motion of the flow, Fig.5.4 shows snapshots of the
fluid at different time-steps. Fig.5.4(a) shows the starting condition, while
in the other subfigures the material is shown before, during, and after it
encounters the erodible layer.
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(a) (b)

(c) (d)

Figure 5.4: Snapshots of the simulated flow for Run H at times: (a) t = 0 s,
(b) t = 6 s, (c) t = 30 s, (d) t = 60 s. Data visualized with ParaView[2].

The first step in analyzing the results of the simulations is to observe
whether the erodible bed has any influence at all on the overall movement
of the fluid. Fig. 5.5 shows the front position of the flow xf for simulations
with an erodible bed against the front position of the flow for simulations
without entrainment xf,0, thus the function shown can be viewed as xf (xf,0).

The graph was made for different inclination of the slopes and the sep-
aration between Fig. 5.5(a) and Fig. 5.5(b) is due to the differing starting
points of the entrainable bed for the simulations. The dotted line represents
the bisector of the quadrant. If the entrainable bed had not had any effect
whatsoever on the movement of the fluid, every function xf (xf,0) would per-
fectly coincide with the bisector, regardless of the inclination of the slope. A
perfect match between the behavior of the flow on a completely rigid bottom
and the one with the entrainable bed is obviously unrealistic. However, a
more plausible option was that the flow could have resembled the one for
Newtonian fluids[11], where the effect was predominantly local around the
transition between the solid and erodible beds with the differences being
slowly lost after the entrainable layer had ended.

In these simulations, instead, after the erodible bed ended, the difference
between the front position of flows with erodible beds and the one without
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(a)

(b)

Figure 5.5: Influence of the erodible bed on the simulations. Front positions
xf have been plotted against xf,0, the front position of the flow without
entrainment. (a) Simulations with bed starting at 70 cm (Run B vs Run A,
Run E vs Run C). (b) Simulations with bed starting at 90 cm (Run H vs
Run G, Run L vs Run I, Run N vs Run M).
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entrainment stayed close to 5 cm even after the layer of stationary material
had ended. Of particular note is the fact that this difference of front position
between the simulations with or without erodible layer was around the same
value regardless of slope inclination.

Figure 5.6: Front position over time with varying bed height θ = 16◦ (Runs:
C D E F).

On the other hand, the geometric properties of the erodible layer had
noticeable influence on the movement of the fluid; Fig. 5.6 and Fig. 5.7 show
the influence of height and length, respectively, of the erodible bed on the
flow.

Increasing either size of the bed has a direct correlation with an increase
on the front position of the flow with a nearly linear effect, for example the
front position of the flow was 4 cm, 7 cm, and 10 cm ahead of the one without
entrainment for bed height of 3 mm, 6 mm, and 9 mm respectively.

Comparing the results of the simulations with the physical experiments
done by Bates and Ancey[10] is not an easy task, since, like in the referenced
article, there is a systematic shift in the front position of the surge in the
beginning part of the movement (see Fig.5.8). In the same article and in
one by Andreini et al.[5] this phenomenon is thought to be due to increased
resistance due to the side walls, poor performance of the theory during the
initial inertial phase, when the actual dam-break happens and the material
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Figure 5.7: Front position over time with varying bed length, θ = 20◦ (Runs:
I J K L).

is released, and due to difficulties in properly modeling the tip region of the
wave, where experiments show that the material is completely sheared.

This systematic shift does not prevent the numerical experiments from
being useful since the second phase of the evolution is captured with greater
accuracy. That was one of the reasons why, in the experiments, the erodible
layer started after the wave had effectively transitioned into a viscous regime,
where the viscous forces were greater than the inertial ones.

The shape of the dam-break wave is qualitatively well reproduced by the
simulations (see. Fig.5.9), even if some details are difficult to identify with
the visualisation of the simple surface height.

One of these details that is easy to miss from Fig.5.9(a) is the kink point
K (in Fig.5.10(a)), an indentation in the tip of the flow. The physical exper-
iments by Bates and Ancey[10] allowed the researchers to use a fluid stained
with blue methylene, or seeded with rhodamine-tagged particles, showing
that the kink point K corresponds to a transition between fluid coming from
the dam-break and the material from the mobilised bed (see Fig.5.10(b)).

Even without the possibility of staining the fluid, looking at velocity fields
allows to properly capture the entrainment of the dam-break wave over an
erodible bed. Point K is easier to spot in Fig.5.11 because the nature of the
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Figure 5.8: Experimental and numerical values of xf (t). The inlet shows the
comparison when the observed data is shifted by 25 cm. Figure adapted from
Reference [10].

kink implies that it is the point where the velocities parallel to the z-axis,
w(x, z, t), begin to be positive, meaning that the material in the step is being
raised from the bed and taken into the flow.

Fig.5.11 also helps to show the qualitative development of the flow. It
shows snapshots of the velocities after the material has reached the transition
from solid bed to the entrainable layer. The chosen experiment was the one
called Run H, where the slope was θ = 16◦, the step started at xst = 90
cm, the entrainable layer was lbed = 30 cm long and its depth was δh = 6
mm. In the images, velocities were made dimensionless by scaling them with
U = (ρg sin θHn+1/k)1/n [10,4], with constant height chosen as H = 0.03 m
and lengths scaled with L = 1 m.

In Fig.5.11 the color-mapping is kept constant (albeit divided between
the two directions of velocities) to properly showcase the deceleration of
the material throughout its movement down the slope. This decrease of
the overall speed of the movement can be qualitatively observed on the left
column which displays the dimensionless velocities along the direction of the
slope, u(x, z, t)/U .

The right column, portraying the velocities along the direction perpen-
dicular to the slope w/U , shows the aforementioned point K that precedes a
region of material with an upward motion but it also helps in understanding
how this region is created; just above and after the step, there is a region
with downwards motion where the bed is moved by the weight of the surge.
In turn, this region compressed by the dam-break wave moves the rest of the
material in the bed downstream and slightly upwards.
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(a)

(b)

Figure 5.9: (a) Surface height at different time-steps for Run L. (b) Surface
height for an experiment with same parameters. Figure (b) adapted from
Reference [10].
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(a)

(b)

Figure 5.10: Shape of the surge after it encountered the erodible bed. Figures
adapted from Reference [10].
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Figure 5.11: Snapshots of dimensionless velocities near the step for Run H.
Downstream velocities on the left column; velocities perpendicular to the
slope on the right column.

66



Fig.5.12 shows snapshots of dimensionless velocities for different exper-
iments (Run B, Run H, Run L, and Run N), after the surge has entered
into contact with the entrainable bed along with the reference velocity with
which the velocity fields have been scaled. The snapshots have been taken
when the surge was around halfway through the steps and qualitatively, the
dimensionless velocities had similar ranges. The main difference can be seen
in the first graph (Run B), where the position of the step was xst = 70 cm,
earlier than the others, underlining the influence of the parameter on the
flow.

To show how the step influences local velocities, a new variable has been
introduced, ⟨u⟩, called volume-averaged velocity:

⟨u⟩ = 1

S

∫ xst+lbed

xst

∫ h

0

u(x, z, t)dzdx, (5.4)

where S represents the area of the observation window.
In this work a similar variable, called ⟨û⟩ is taken into account by simply

averaging the dimensionless velocities in the observation window. Fig.5.13
shows the results of the comparison between entrainable bed against solid
bed for numerical simulations at various slopes. The observation window
starts slightly before the beginning of the step (which is located at xst = 70
cm for the left column of the figure and at xst = 90 cm for the right column)
and is lbed = 30 cm long.

The time steps in which the velocities are sampled are uniformly dis-
tributed between the entrance of the dam-break wave in the observation
window and the exit of the front position xf .

The dashed lines represent a confidence interval corresponding to ±σ,
with σ2 the data variance.

From the graphs it is evident how, at the start of the considered time
frame, the average velocity is lower for the flow with the erodible bed; a fact
that can be easily explained considering the presence of stationary material
of the entrainable bed further downstream from the tip of the surge.

However, the material seem to obtain comparable averaged velocities be-
tween entrainable and non-entrainable beds as the time progressed. This is
in agreement with the results shown in Fig.5.11, which suggest that most of
the material from the bed is put into motion by the arrival of the surge.
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Figure 5.12: Snapshots of dimensionless velocities near the step for Run
B, Run H, Run L, and Run N. Downstream velocities on the left column;
velocities perpendicular to the slope on the right column.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.13: Variation in the dimensionless volume-averaged velocity ⟨û⟩ over
time, for eroding (blue) and non-eroding (red) flows. (a) Slope θ = 12◦ (Run
A and Run B). (b) θ = 16◦ (Run G and Run H). (c) θ = 16◦ (Run C and
Run E). (d) θ = 20◦ (Run I and Run L). (f) θ = 24◦ (Run M and Run N).
See Table 5.1 for other parameters.
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As already mentioned, the flow tends to slow down as the simulation
progresses, hence why ⟨û⟩ is slowly diminishing for the simulations with solid
bed (in red for Fig.5.13), due to how the variable is created. On the other
hand, while this trend is still present for simulations with erodible beds (in
blue), it is also worth noting that there is the counter-balancing effect of the
aforementioned presence of stationary material being put into motion that
tends to increase the variable ⟨û⟩.

Interestingly, the two simulations where the trade-off immediately falls
on the side of the diminishing velocity are Run E and Run N (Fig.5.13(c)
and Fig.5.13(f) respectively). This two graphs show a negative derivative
even for the simulations with entrainable bed, in contrast with the others,
where there is a first phase in which ⟨û⟩ increases. This difference can be
attributed to the starting position of the step xst (70 cm for Fig.5.13(c) and
90 cm for Fig.5.13(f)) being early enough for the respective slopes (16◦ and
24◦) that the flow was still fast enough for the deceleration of the already
moving material to outweigh the stationary material being put into motion.
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Chapter 6

Conclusions and Outlook

This thesis presented the study of basal entrainment in viscoplastic flows
through numerical experiments using a Lattice Boltzmann Method.

The viscoplastic behavior was modeled by representing the fluid with a
Herschel-Bulkley model which introduced both a yield stress and the shear-
thinning phenomenon present in the fluid component of most debris flows
and in mud flows.

The influence of the erodible bed over the movement of the viscoplastic
fluid was the focus of the experiments. The analysis of this influence was
performed by simulating the sudden release of a reservoir of material onto
a downward slope. The viscoplastic material moved over a solid bed until
it reached position xst where the bed transitioned into a layer of stationary
fluid (see Fig.5.1) made of the same material as the one from the surge.

Length, depth, and position of the step were the main parameters changed,
along with the inclination of the slope, to study how the erodible layer influ-
enced the movement.

While analyzing the results, as previously mentioned, the numerical ex-
periments performed poorly on the earliest time periods, just after the release
of the surge, compared with physical experiments. The systematic error had
been already observed in literature and was thought to be due to various
factors such as the influence of the walls or hardships in properly modeling
the tip of the flow or the initial inertial phase. The issue of numerical simu-
lations overestimating the velocity in the initial time periods was among the
reasons for placing the entrainable layer after some buffer of solid bed.

Since the focus of the analysis was on the influence of the entrainable layer,
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Figure 6.1: Visualization of the formation of the kink point xk. Figure
adapted from Reference [10].

the issue of an overestimation of the velocity in the initial time periods was
circumvented by studying the simulations with the entrainable layer against
simulations where the bed remained solid throughout the whole slope.

For example, Fig.5.5 represents the position of the tip of the wave xf (t) as
a function of xf,0(t), its position without the entrainable layer, which shows
that the layer of entrainable material has a non-trivial impact on the final
position reached by the material.

Furthermore, Fig.5.6 and 5.7 show the impact of the dimensions of the
step over the flow with the intuitive result of positive correlation between
final position of the surge (xf ) and size of the entrainable layer.

Another phenomenon highlighted by the experiments is the presence of
a kink point, an indentation in the tip of the flow when the fluid reaches
the entrainable layer. As previously stated, this kink point is the result of
the material from the surge arriving to the stationary layer of the erodible
bed and compressing it under the weight of the wave while, at the same
time, transmitting momentum along the direction parallel to the slope. The
squeezed material from the bed is, as a result, uplifted in front of the actual
fluid from the dam-break wave, further displacing the final point of moving
material xf .

Further studies on the topic can be done in various ways. One simple
way to improve on the numerical experiments is to explore the influence
of the parameters for the physical and temporal discretization (which have
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an immediate effect on the discretization of the velocity). As an example,
another numerical simulation was performed with a finer dicretization in both
time and space. The values of these parameters ∆x and ∆t was modulated
in order to maintain a comparable range of simulated viscosities as explained
in Sec.3.2.3. In this simulation the range was [µmin, µmax] ≃ [0.167 Pa sn, 167
Pa sn].

The simulation had all the other parameters equivalent to the ones from
Run H (θ = 16◦, xst = 90 cm, lbed = 30 cm, δh = 6 mm), therefore this
simulation was identified with the name Run H2. From Fig.6.2 it is easy to
observe the effects of a finer discretization on the visualization of the results.
This figure is comparable with Fig.5.11 because they both show snapshots
of the two components of the velocity in different time-steps of the same
simulation while maintaining a constant color-mapping. Fig.6.2 better cap-
tures the shape of the surge and the kink point; however, a better clarity
of the visualization was not worth the significant increase in computational
time and led to choosing a coarser discretization for the rest of the numeri-
cal experiments. This balancing between clarity and computational time is
heavily influenced by the machine used for the simulations and, therefore,
susceptible to change in further experiments.

However, this does not preclude the importance of a more systematic
study on the influence of the choice of discretization on the numerical sim-
ulations, especially with a focus on the effect of the maximum viscosity on
the overall movement of the fluid.

Another possibility for further studies stems naturally by deviating from
the more phenomenological choice at the basis of this study: focusing on
mud flows and the fluid part of debris flows.

This is easily allowed by the code used in the numerical simulations; as
already mentioned, HYBIRD was developed by Leonardi[36] and it is defined
as an hybrid method. The main idea behind the algorithm was to separate
the fluid and the solid components of a debris flow in order to study them
with two different methods: LBM (Lattice-Boltzmann Method) for the fluid
together with the smaller particles and DEM (Discrete Element Method)
for the larger grains. The focus of this thesis was on the part that was
modelled via LBM, however HYBIRD is capable of handling both parts of
the numerical experiments and this feature of the code can be a major focal
point of further studies and applications by simulating the larger elements of
a debris flow using the DEM part of the code.
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Figure 6.2: Snapshots of dimension-less velocities near the step for Run H2.
Downstream velocities on the left column; velocities perpendicular to the
slope on the right column.
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Notation

Before listing the variables used in this thesis, it is useful to mention some
points that can help in the readability of the notation.

First and foremost, some of the symbols are used in different contexts
and most of the time their meaning is specified inside the chapter or section
where they are used.

In the cases where vector notation is used, bold symbols denote the multi-
dimensional quantity while plain text is the magnitude of the same quantity
(e.g: a generic vector v has its magnitude represented by v). For tensors,
the plain symbol represents the second invariant.

Components of a generic multidimensional quantity are denoted by a
subscript (e.g: vα represents the α component of vector v and σα,β is the
(α, β) component of tensor σ).

Some common subscripts are (·)x, (·)y, and (·)z, which represents the
components of the quantity (·) along Cartesian axis x, y, and z respectively.

Other subscripts that are used frequently in the thesis are (·)f , (·)p, and
(·)i. The first two refer to fluid and particle respectively (e.g: ρf is the density
of the fluid while ρp is the density of the particle). Subscript i is largely used
especially in Chapter 3 and represents direction i in the lattice. Occasionally,
subscript i′ is used to refer to the direction opposite to i.

The following list of variables contains the most commonly used ones
with a minimal description of what each one represents and its dimension
expressed in terms of mass [M ], length [L], and time [T ]. [−] represents
a non-dimensional number. Flow index n is the only variable used in the
definition of the dimensions as exponent in the consistency (which can be
measured in Pa sn).

The variables are in alphabetical order with Latin symbols preceding
Greek ones.
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Symbol Description Dimensions
b Acceleration due to external body forces [L][T ]−2

c Lattice speed [L][T ]−1

ci Lattice velocities [L][T ]−1

cs Lattice speed of sound [L][T ]−1

Ba Bagnold number [−]
D Number of dimensions [−]
dp Diameter of particles [L]
f Probability distribution function [M ][T ]3[L]−6

f eq Equilibrium distribution function [M ][T ]3[L]−6

fi Discrete distribution function along i [M ][L]−3

f eq
i Discrete equilibrium distribution function [M ][L]−3

g Gravitational acceleration [L][T ]−2

H, h Height [L]
k Consistency [M ][L]−1[T ]n−2

Kn Knudsen number [−]
lbed Length of erodible bed [L]
M , m Mass [M ]
Ma Mach number [−]
n Flow index [−]
U reference velocity magnitude [L][T ]−1

u x component of velocity vector [L][T ]−1

uf Fluid velocity [L][T ]−1

⟨û⟩ Discrete volume-averaged velocity [L][T ]−1

Re Reynolds number [−]
t Time [T ]
V Volume [L]3

v Velocity [L][T ]−1

w z component of velocity vector [L][T ]−1

wi Lattice weights [−]
x Cartesian coordinate [L]
x Position [L]
xf Front position of flow [L]
xst Starting point of erodible bed [L]
y Cartesian coordinate [L]
Y Yield surface height [L]
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Symbol Description Dimensions
z Cartesian coordinate [L]
γ̇ Shear rate tensor [T ]−1

δh Height of erodible bed [T ]
∆t Time-step [T ]
∆x Lattice spacing [L]
ζ Generic coordinate in 1D [−]
ζ Generic coordinate [−]
θ Slope inclination [−]
µ Viscosity [M ][L]−1[T ]−1

µ0 Plastic viscosity [M ][L]−1[T ]−1

ξ Velocity of particles for distribution [L][T ]−1

ρ Density [M ][L]−3

σ Shear stress tensor [M ][L]−1[T ]−2

σ0 Yield stress [M ][L]−1[T ]−2

τ Non-dimensional relaxation time [−]
τc Relaxation time [T ]
Φ Volume fraction [−]
Ωcoll Collisional operator [M ][T ]2[L]−6

Ωcoll,i Discrete collisional operator [M ][L]−3

Ωforce,i Discrete force operator [M ][L]−3

ω Rotational velocity [T ]−1
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