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Abstract

This thesis describes the main steps of a research experience (internship + thesis)
conducted at LINKS foundation (Torino, Italy), regarding the implementation of a
multimodal visual language model for musical encoding.
The goal of this activity was testing the powerful tools of AI generative modelling,
in order to better understand the potentials of machine learning in the art field.
From this perspective, the following pages will show how, in particular, a denoising
diffusion probabilistic model (DDPM) can be adopted to generate artistic images
from a 30 second musical input. The data preparation (collection, categorization,
normalization, etc.), as well as the research and the implementation of a suitable
model have been the fundamental passages around which all the project was devel-
oped.
Given the general and highly experimental nature of the task embraced in this chal-
lenge, the results obtained can be considered very promising. Objective evaluation
metrics have shown that the model implemented can be seen a valid starting point
from which to further investigate the AI creativity capabilities in a multimodal
context.
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“If, in fact, musicality rests on value relationships, these relationships form a
structure. Either the recognition of this structure makes the perception of its

constituents objects fade into the background [...], or else careful listening discovers
in one isolated object variations in values it can appreciate musically.” ([31])

Pierre Schaeffer (August 14, 1910 – August 19, 1995)
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Chapter 1

Introduction

One of the reasons why automatic analysis of image content in data is important
relates to the development of human-centric intelligent systems. For instance, in
recent years, significant progress has been made toward the analysis of emotion
in individual modalities ([20], [26], [19]). However, emotion recognition is a chal-
lenging task due to huge variability and subjectivity involved in the expression and
perception of human emotion. For this reason, some studies related to this topic
focus on human perception, specifically consisting of cross-modal works involving
audio and visual data. Based on neuroscientific studies around synaesthesia, Li
et al. ([7]) built a prototype cross-media retrieval system to establish a semantic
correspondence between music and images. Synaesthesia is also the main theme
around which Xing et al. ([41]) develop a cross-synaesthesia-aware model based on
music and image similarity in the emotion space. In [25], instead, authors propose
a method able to learn the non-linear relationship between music and image, and
to integrate heterogeneous ranking data from different modalities into a unified
space.
However, little attention has been paid to another human resource, that can be
identified with the name of “creativity”. In a context like automatic learning, the
powerful tools of multimodal applications in the field of audio and visual data,
whose literature is consistent (e.g., [40], [11], [10], [82], [29], [28], [57], [77], [79]),
represents a solid starting point for investigating the creativity potential of auto-
matic systems. Generative modelling is, then, a possible direction to take. In fact,
this approach, which has recently become very common, seems to provide the most
natural framework for conductiong this type of research due to its extreme flexibility
in adapting to different contexts. For instance, Hao et al. ([29]) developed a specific
network for visual-audio mutual generation, based on the common informations
shared by the two kinds of data. Chen et al. ([28]) extended this idea working on
two specific scenarios: instrument-oriented generation and pose-oriented generation.
Zhu et al. ([82]) take a different route by conditioning the generation process of
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music and images to dances, text and labels.

This thesis focuses on the application of a particular generative model, namely
a diffusion model (whose main literature includes [46], [69], [63], [55], [67], [73],
[72], [18], [58], [70]), in order to generate artistic images from music inputs. Music
and artistic images (like paintings, murals, logos, etc.) share not only semantic
relations, but also creative structures which have developed in history according
to social and cultural traditions. Exploring them through the lens of multimodal
generative learning models can lead to a deeper understanding, through appropriate
measurements, of those creative mechanisms governing the human mind under
specific circumstances. In order to achieve that, the use of a diffusion model
provides several advantages. In fact, these models generate high-resolution images
at a level beyond the reach of other generative models (as shown by Saharia et al
in [73]). Moreover, as shown by Nichol et al. ([58]), they are extremely prone to
conditioning, which can be very helpful in determine dependences between inputs
and outputs. Lastly, as highlighted by Rombach et al. ([72]), they are efficiently
scalable.
The model proposed here is based on an architecture named AudioToken: a novel
method utilizing latent diffusion models, trained for text-to-image-generation, to
generate images, conditioned on audio recordings ([80]). Using a pre-trained audio
encoding model ([64]), the chosen method encodes audio into a new token which can
be considered as an adaptation layer between the audio and text representations
([80]). Such a modelling paradigm, moreover, requires a small number of trainable
parameters, making the proposed approach appealing for lightweight optimization.
The dataset adopted addresses three key issues: a customized preparation of the
data (following the approach of Chen et al.[45]), a high cardinality and a refined
categorization. It contains 24216 artistic images (mainly taken from the WikiArt
dataset [89] and Pinterest [85]) and 24216 30 seconds music samples (taken from
YouTube [90]). Both images and audio files are organized into 18 labelled categories.
AudioToken adaptation to the music-image dataset involves the development of a
new training-validation framework, together with the introduction of a customized
objective metric, named GIILS (Generated Image-Image Label Similarity): a met-
ric that evaluates the semantic similarity among generated images obtained from
music inputs belonging to the same category. Results for other common evaluation
metrics (AIS, IIS and FID) are also provided in this context, as well as images
generation from music inputs taken outside the dataset.
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Chapter 2

State of the art

Deep generative modelling is nowadays very popular in the AI field. The term
“deep” in the AI context refers to the extensive use of neural networks architectures
in order to build machine learning models (also called “deep learning” models,
or DL models), as well explained by Zhang et al. ([81]). Not to mention the
most famous large language models (LLM) like ChatGPT, BERT, Claude, etc.,
there is a plethora of multimodal generative tools (as DALL-E, Midjourney, Sora,
etc.) capable of carrying out several task and ready to be further improved or
renewed. In fact, AI applications can vary from typical modalities considered in
machine learning, i.e., text analysis ([21], [52], [59]), image analysis ([50], [71]),
audio analysis ([64], [9], [74]), to problem in active learning ([38]), reinforcement
learning ([32]), graph analysis ([34]) and medical imaging ([17], [27]).

Figure 2.1: Various applications of deep generative modeling ([88]).
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2.1 The necessity of deep generative modeling
As stated in [86], today’s AI aim is to built intelligent entities, capable of acting
efficiently and safely in a variety of new situations. The possibility to have access to
proper hardwares (like the latest NVIDIA GPUs) by the biggest AI tech companies
(Open AI, Google, Amazon, etc.) in the last decade is making this dream come
true ([87]).
The reason why AI generative modelling is considered the most suitable sub-field
of AI for realizing the aforementioned dream can be explained with the following
example, taken from [88].
Let us consider a system that classifies objects into two classes: orange and blue.
Assuming two-dimensional data (Figure 2.2, left) a new datapoint has to to be
classified (a black cross in Figure 2.2). Decisions can be taken using two approaches:

1. a classifier could be formulated explicitly by modeling the conditional distri-
bution p(y|x) (Figure 2.2, middle);

2. a joint distribution p(x, y), that could be further decompose as p(x, y) =
p(y|x)p(x) (Figure 2.2, right), could be taken into cosideration.

Figure 2.2: An example of data (left) and two approaches to decision making:
(middle) a discriminative approach, (right) a generative approach ([88]).

After training a model using a discriminative approach, namely, the conditional
distribution p(y|x), a clear decision boundary is obtained. Given that black cross
is farther away from the orange region, the classifier assigns a higher probability to
the blue label. As a result, it is certain about the decision. On the other hand,
additionally fitting a distribution, p(x), implies that the black cross is not only
farther away from the decision boundary, but it is also distant from the region
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where blue datapoints lie. In other words, the black point is far away from the
region of high probability mass. As a result, the probability of the black cross,
p(x = black cross), is low, the joint distribution p(x = black cross, y = blue) will
be low as well and, thus, the decision is uncertain.
This simple example clearly indicates that building AI systems that make reliable
decisions and communicate with human beings, requires understanding the en-
vironment first. For this reason, this systems cannot simply learn how to make
decisions, but they should be able to quantify their beliefs about their surrounding
using the language of probability. In order to do that, estimating the distributions
over objects, p(x), is crucial and this is the fundamental task generative models try
to accomplish. From a generative perspective:

- p(x) can be used to asses whether a given object has been observed in the
past or not;

- p(x) can help to properly weight the decision;

- p(x) can be used to asess uncertainty about the environment;

- p(x) can be used to actively learn by interacting with the environment (e.g.
by asking for labeling objects with low p(x));

- p(x), eventually, can be used to generate new objects.

2.2 Deep generative models in literature
Deep generative models can be divided into 3 main groups (see Figure 2.3):

- autoregressive generative models (ARM);

- flow based models;

- latent variables models.

ARMs, flows, and prescribed models like VAEs are all likelihood-based models,
meaning that their optimization functions can be obtained by the so-called likelihood
function, defined as L(θ|x) = f(x; θ), where f(x; θ) is a statistical model, x
represents the observed data and θ represents the parameters of the model ([56]).
On the other hand, implicit models like GANs suffer from instability, so they can
not be trained directly using the likelihood function ([88]).
Next subsection describes briefly the mathematical structure of these models,
following the approach of [88].
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Figure 2.3: A diagram representing deep generative models.

2.2.1 Autoregressive models
Let us consider a high-dimensional random variable x ∈ XD, X = {0,1, ...,255} or
X = R, and D is the variable dimension. Thanks to the product rule, the joint
distribution p(x) can be expressed as:

p(x) = p(x1)
DÙ

d=2
p(xd|x<d)

where x<d = [x1, x2, ..., xd−1]T.
As shown, the product rule applied multiple times to the joint distribution provides
a principled manner of factorizing the joint distribution into many conditional
distributions. However, modelling all conditional distributions p(xd|x<d) separately
is simply infeasible. Doing that would lead to D separate models, and the complexity
of each model would grow due to varying conditions.
The first attempt to limit the complexity of a conditional model is to assume a
finite memory. For instance, it is possible to assume that each variable is dependent
on a maximum of two other variable, namely:

p(x) = p(x1)p(x2|x1)
DÙ

d=3
p(xd|xd−1, xd−2).

Then, a small neural network, e.g., a Multi-layered Perceptrons (MLP), can predict
the distribution of xd. If X = {0,1, ...255}, the MLP takes xd−1, xd−2 and outputs
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probability from the categorical distribution of xd, θd. The MLP could be of the
following form:

[xd−1, xd−2]→ Linear(2, M)→ ReLU→ Linear(M, 256)→ softmax→ θd

where M denotes the number of hidden units, e.g., M = 300. ReLU, standing
for Rectified Linear Unit, is an activation function, commonly used in artificial
neural networks. It is defined as ReLU(x) = max(0, x) ([81]). softmax is a
common output function adopted for multiclassification problems. It is defined
as softmax(zi) = eziqNc−1

c=0 ezc
, where Nc is the number of classes and zi is the logit

function (ln( p
1−p

)) associated to the ith class ([62]).
An example of this approach is depicted in Figure 2.4.

Figure 2.4: An example of applying a shared MLP depending on two last inputs.
Inputs are denoted by blue nodes, intermediate representations are denoted by
orange nodes, and output probabilities are denoted by green nodes. The probability
θd is not depending on xd ([88]).

The obvious drawback, in this case, is a limited memory. In many problems, e.g.,
image processing, learning long-range statistics is crucial to understand complex
patterns in data. A possible solution to this problem relies on applying a recurrent
neural network (RNN [12]). In other words, the conditional distributions can be
modeled as follows:

p(xd|x<d) = p (xd|RNN(xd−1, hd−1))

where hd = RNN(xd−1, hd−1), and hd is a hidden context acting as a memory that
allows learning long-range dependencies. An example of using an RNN is presented
in Figure 2.5.
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Figure 2.5: An example of applying an RNN depending on two last inputs.
Inputs are denoted by blue nodes, intermediate representations are denoted by
orange nodes, and output probabilities are denoted by green nodes. Compared
to the approach with a shared MLP, there is an additional dependency between
intermediate nodes hd ([88]).

This approach gives a single parametrization, thus, it is efficient and also
solves the problem of a finite memory. Unfortunately, RNNs suffer from other
issues, namely: they are sequential, hence, slow, if they are badly conditioned
and they suffer from exploding or vanishing gradients. In [14] authors notice that
convolutional neural networks (CNNs) could be used instead of RNNs to model
long-range dependencies. To be more precise, one-dimensional convolutional layers
(Conv1D) could be stacked together to process sequential data. To ensure proper
processing, moreover, the first Conv1D layers must be dependent on all the inputs
but the current one (type A), while the other Conv1D layers can depend only on
the current one (type B). Additionally, in order to increase the effective kernel size,
long-range dependencies can be learned using dilation.
Figure 2.6 presenst an example of a neural network consisting of 3 causal Conv1D
layers. The first causal Conv1D is of type A, while the next two layers are of type
B, with dilation 2 and 3.

Figure 2.6: An example of applying causal convolutions. The kernel size is 2, but
by applying dialtion in higher layers, a much larger input could be processed (red
edges), thus, a larger memory is utilized. The first layers must be of type A to
ensure proper processing ([88]).
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There is a drawback of applying autoregressive model parametrized by causal
convolutions. In fact, sampling new objects requires D full forward passes. That is
a big waste, but it is also the price for all the positive effects following from the
convolutional-based parametrization of the ARM.

2.2.2 Flow-based models
The main advantages of ARMs is that they can learn long range statistics and, as
a consequence, powerful density estimators. However, their drawback is that they
are parametrized in an autoregressive manner, hence, sampling is rather a slow
process. To alleviate this uncomfortable situation it is possible to come up with a
different approach to directly model the data distribution p(x).
Let us consider a random variable z ∈ R, with π(z) = N(z|0,1) (i.e., z is normally
distributed with 0 mean and variance equal to 1) and a linear transformation, e.g.,
x = a · z + b, with a, b ∈ R. Remembering the change of variables formula, the
distribution of x can be calculated as:

p(x) = π
1
z = f−1(x)

2 -----∂f−1(x)
∂x

----- (2.1)

where f is an invertible function (a bijection, i.e., a function that maps one point to
another, distinctive point, and it is always possible to invert it, in order to obtain
the original point).
It is easy to verify that x still follows a normal distribution and, in particular,-----∂f−1(x)

∂x

----- is responsible to normalize the distribution π(z) after applying the trans-

formation f . In other words,
-----∂f−1(x)

∂x

----- counteracts as a possible change of volume

caused by f .
This example indicates that it is possible to calculate a new distribution of a
continuous random variable by applying a known bijective transformation f to
a random variable x, with a known distribution z ∼ p(z). x and z can also be
multiple variables, e.g., x, z ∈ RD, for some D. In this case, it holds-----∂f−1(x)

∂x

----- = |detJf−1(x)|

where Jf−1 is the jacobian matrix of f , defined as follows:

Jf−1 =


∂f−1

1
∂x1

· · · ∂f−1
1

∂xD... . . . ...
∂f−1

D

∂x1
· · · ∂f−1

D

∂xD

 .
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The inverse function theorem yields

|Jf−1(x)| = |Jf (x)|−1

that allows rewriting 2.1 as:

p(x) = π
1
z = f−1(x)

2
|Jf (x)|−1.

To get some insight into the role of the Jacobian-determinant, it is possible to look
at Figure 2.7. Here, there are three cases of invertible transformations that play
around with a uniform distribution defined over a square.

Figure 2.7: Three examples of invertible transformations: (top) a volume pre-
serving bijection, (middle) a bijection that shrinks the original area, (bottom) a
bijection that enlarges the original area ([88]).

A natural question is whether it is possible to utilize the idea of the change of
variable to model a complex and high-dimensional distribution over images, audio
or other data sources. Let us consider a sequence of invertible transformations,
fk : RD → RD. Starting with a known distribution, π(z0) = N(z0|0, I), the
invertible transformations are used to obtain a flexible distribution (using the
notation of a Jacobian for the ith transformation):

p(x) = π
1
z0 = f−1(x)

2 KÙ
i=1
|Jfi

(zi−1)|−1.
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Let π(z0) be N (z0|0, I). Then, the logarithm of p(x) is the following:

ln p(x) = ln N
1
z0 = f−1(x)|0, I

2
−

KØ
i=1

ln |Jfi
(zi−1)|.

The first part, ln N (z0 = f−1(x)|0, I), corresponds to the Mean Squared Error
(MSE) loss between 0 and f−1(x). The second part, qK

i=1 ln |Jfi
(zi−1)|, ensures

that the distribution is properly normalized and can be considered as a kind of
regularizer for the invertible transformations {fi}. Models consisting of invertible
transformations (usually neural networks) with tractable Jacobian-determinants
are referred to as normalizing flows or flow-based-models.
A very important class among these kind of models is the REALNVP (Real-valued
Non-Volume Preserving flows [22]). The main features of a REALNVP model are
the followings:

- coupling layers: the idea behind this transformation is considering an
input to the layer divided into two parts: x = [xa, xb]. Then, the invertible
transformation is defined as

ya = xa

yb = exp (s(xa))⊙ xb + t(xa)

where s(·) and t(·) are arbitrary neural networks called, respectively, scaling
and transition, whose Jacobian-determinant logarithm is easy to calculate;

- permutation layer: it is an effective transformation that could be combined
with a coupling layer. Since permutation preserves volumes, i.e., its Jacobian-
determinant is equal to 1, it can be adopted each time after the coupling layer.
For instance, it is possible to reverse the order of the variables, as shown in
Figure 2.8.

Figure 2.8: A combination of a coupling layer and a permutation layer that
transforms [xa, xb] to [za, zb]. A describes a forward pass through the block. B
describes an inverse pass through the block ([88]).
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- dequantization: flow based models assume that x is a vector of real-
valued random variables. However, in practice, many objects are discrete.
For instance, images are typically represented as integers taking values in
{0,1, ...,255}D. Theis et al. ([24]) outline that adding a uniform noise,
u ∈ [−0.5, 0.5]D, to the original data, y ∈ {0,1, ...,255}D, allows applying
density estimation to x = y + u. This procedure is known as uniform dequan-
tization. An example of uniform dequantization applied to two binary random
variables is depicted in Figure 2.9:

Figure 2.9: A schematic representation of the uniform dequantization for two
binary random variables: (left) the probability mass is assigned to points, (right)
after the uniform dequantization, the probability mass is assigned to square areas.
Colors correspond to probability values ([88]).

2.2.3 Latent variable models
The idea behind latent variable models is to assume a lower-dimensional latent
space and the following generative process:

z ∼ p(z)
x ∼ p(x|z).

In other words, the latent variables correspond to hidden factors in data, and the
conditional distribution p(x|z) could be treated as a generator.

Variational Auto-Encoders

The approach underlying the utilization of latent variable models relies on the
presence of certain crucial factors within the data that can be exploited to enhance
the learning of p(x) (and, consequently, generate more precise objects).
Namely, given an high-dimensional object of interest, x ∈ XD (e.g., for images,
X ∈ {0,1, ...,255}) it is possible to introduce some low-dimensional latent variables,
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z ∈ ZM (e.g. Z = R), called “hidden factors”. ZM can be seen as a low-dimensional
manifold (i.e., a topological space that locally resembles Euclidean space near each
point, as stated in [2]). Then, the generative process could be expressed as follows:

- z is sampled from z ∼ p(z);
- then, x is sampled from the conditional distribution x ∼ p(x|z).

Therefore, the mathematical idea behind latent variables model is that, once
introduced the latent variable z, the joint distribution is factorized as follows:
p(x, z) = p(x|z)p(z). This naturally expresses the genereative process described
above. However, only x is trainable. Therefore, according to probabilistic inference,
summing out (or marginalizing out) the unknown z is necessary. As a result, the
(marginal) likelihood function is the following:

p(x) =
Ú

p(x|z)p(z) dz.

A natural question is how to calculate this integral. In general, it is a difficult task.
The simplest approach would be to use the Monte Carlo approximation ([8]):

p(x) =
Ú

p(x|z)p(z) dz

= Ez∼p(z)[p(x|z)]

≈
1
K

KØ
k=1

p(x|zk)

where, in the last line, samples from the prior over latents are used (zk ∼ p(z)).
Such approach is relatively easy; however, if z is multidimensional, the curse of
dimensionality trap arises. This curse, generally, refers to issues that arise when the
number of datapoints is small (in a suitably defined sense) relative to the intrinsic
dimension of the data ([56]).
A possible approach, here, is using a specific approximated inference calledvariational
inference ([5]). Let us consider a family of variational distributions parametrized by
Φ, {qΦ(z)}Φ. For instance, Gaussian distributions with means and variances given
by µ and σ2, respectively, can be taken into consideration. The form of these dis-
tributions is well known and, assuming that they assign non-zero probability mass
to all z ∈ ZM , the logarithm of the marginal distribution could be approximated
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as follows:

ln p(x) = ln
Ú

p(x|z)p(z) dz

= ln
Ú qΦ(z)

qΦ(z)p(x|z)p(z) dz

= lnEz∼qΦ(z)

C
p(x|z)p(z)

qΦ(z)

D

≥ Ez∼qΦ(z) ln
C

p(x|z)p(z)
qΦ(z)

D
= Ez∼qΦ(z) [ln p(x|z) + ln p(z)− ln qΦ(z)]
= Ez∼qΦ(z) [ln p(x|z)]− Ez∼qΦ(z) [ln qΦ(z)− ln p(z)] .

In the fourth line of the above equation Jensen’s inequality holds. This famous
inequality is generally stated in the following form: if X is a random variable and
φ is a convex function, then φ(E[X]) ≤ E[φ(x)].
Considering an amortized variational posterior, namely, qΦ(z|x) instead of qΦ(z)
for each x, leads to:

ln p(x) ≥ Ez∼qΦ(z) [ln p(x|z)]− Ez∼qΦ(z) [ln qΦ(z|x)− ln p(z)] .

Amortization could be extremely useful, because the training of a model, in this
case, returns parameters of a distribution for given inputs.
This results is an auto-encoder like model, with a stochastic encoder qΦ(z|x), and a
stochastic decoder, p(x|z). The lower-bound of the log-likelihood function is called
Evidence Lower Bound (ELBO). The first part of the ELBO, Ez∼qΦ(z) [ln p(x|z)], is
referred to as the (negative) reconstruction error, because x is encoded to z and
then decoded back. The second part of the ELBO, Ez∼qΦ(z) [ln qΦ(z|x)− ln p(z)],
could be seen as a regularizer and it coincides with the Kullback-Leibler divergence
(DKL) between the variational posterior and the prior (DKL (qΦ(z|x)||p(z))). In
this case, this divergence can be seen as a gap between the ELBO and the true
log-likelihood.
Encoders and decoders are typically modeled using neural networks, with careful
consideration given to ensuring that their distributions are appropriate for the
specific problem at hand. For instance, if data are images, a possible distribution
for x|z is the categorical distribution (considered to be the generalization of the
Bernoulli distribution for a categorical random variable, as stated in [8]). The
choice of a distribution for the latent variables depends on the way latent factors
are expressed in data. For convenience, typically z is taken as a vector of continuous
random variables, z ∈ RM . Then, Gaussians, for both the variational posterior and
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the prior, can be adopted:

qΦ(z|x) = N
1
z|µΦ(x), diag

è
σ2

Φ(x)
é2

p(z) = N(z|0, I)

where µΦ(x) and σ2
Φ(x) are outputs of a neural network, while diag [σ2

Φ(x)] is a
square matrix having σ2

Φ(x) on every entry of the main diagonal and zeros elsewhere.
In order to avoid the integral represented by the expected value, a Monte Carlo
strategy can be adopted. In this way, z can be sampled from qΦ(z|x), plugged into
the ELBO, and gradients can be computed with respect to the parameters of a
neural network Φ. The reason why samples are taken from qΦ(z|x) instead of p(z)
is that the variational posterior assigns typically more probability mass in a smaller
region than the prior. Practically, even when following this strategy, the variance
of the gradient may still be quite large. A possible solution to that is the idea of
reparameterizing the variational posterior with the so called reparameterization
trick ([3]). The idea is that a random variable can be expressed as a composition
of primitive transformations (e.g., arithmetic operations, logarithms, etc.) of
an indipendent random variable with a simple distribution. For instance, for a
Gaussian random variable z with mean µ and variance σ2 and an independent
random variable ϵ ∼ N(ϵ|0,1), it holds:

z = µ + σ · ϵ.

Now, sampling ϵ from the standard Gaussian, and applying the above transforma-
tion, lead to a sample from N(z|µ, σ2).

Figure 2.10: An example of reparameterizing a Gaussian distribution: ϵ, dis-
tributed according to the standard Gaussian, is scaled by σ and shifted by µ ([88]).
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Generative Adversarial Networks

When issues with dimensionality become particularly restrictive for the generative
tasks, another option, in addition to the previously mentioned variational inference,
is to abandon the likelihood-based approach. This is done in favour of a so-called
adversarial loss, on which generative adversarial networks rely.
In order to understand this kind of optimization framework, it is possible to
introduce a function called discriminator, which takes an object x and returns
the probability whether it is real (i.e., coming from the empirical distribution),
Dα : X → [0,1]. Then, another function, called generator, that takes noise and
turns it into an object x, i.e., Gβ : Z → X , can be introduced. All x’s coming from
the empirical distribution pdata(x) are called real and all x’s generated by Gβ(z)
are called fake. The objective function can be constructed as follows:

- there are two sources of data: x ∼ pθ(x) =
s

Gβ(z)p(z) dz and x ∼ pdata(x);

- the discriminator solves a classification task by assigning 0 to all fake datapoints
and 1 to all real datapoints;

- since the discriminator can be seen as a classifier, the binary cross-entropy
loss function (as described in [56]) can be adopted, in the following form:

l(α, β) = Ex∼preal
[ln Dα(x)] + Ez∼p(z) [ln (1−Dα (Gβ(z)))]

where the left part corresponds to the real data source, and the right part
contains the fake data source;

- l(α, β) is maximized with respect to α (i.e., the discriminator);

- the generator tries to fool the discriminator, thus, it tries to minimize l(α, β)
with respect to β (i.e., the generator).

Eventually, the optimization problem is:

min
β

max
α

Ex∼preal
[ln Dα(x)] + Ez∼p(z) [ln (1−Dα (Gβ(z)))] .

As always, the generator and the discriminator are parametrized using deep neural
networks learnable using the adversarial loss (i.e., optimizing the min-max problem).
The resulting class of models is called Generative Adversarial Networks (GANs
[13]). Figure 2.11 shows the idea of GANs. The generator part constitutes an
implicit distribution, i.e., a distribution from an unknown family of distributions.
Its analytical form is also unknow; nevertheless, it is possible to sample from it.
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Figure 2.11: A schematic representation of GANs ([88]).

2.3 Mathematical foundations of diffusion models

Diffusion models are a class of state-of-the-art generative models that generate
diverse high resolution images. They are extensively utilized by OpenAI, Nvidia
and Google managed to train large-scale models. Examples architectures that are
based on diffusion models are GLIDE, DALLE-2, Imagen and the full open-source
stable diffusion. Next subsections, following the approach of [69], describe the
mathematical concepts as well as the main typologies of diffusion models, starting
from the DDPM as initialized by Sohl et al. ([18]) and then proposed by Ho et al.
([46]), up to the score-based generative ones (described in [39]).

2.3.1 Diffusion process

The basic idea behind diffusion models is rather simple. They take the input image
x0 and then add Gaussian noise to it through a series of T steps. This process is
called forward diffusion process, but this is unrelated to the forward pass (i.e., the
forward propagation, that refers to the calculation and the storage of intermediate
variables, including outputs, for a neural network in order from the input layer
to the output layer, as stated in [81]). Afterwards, a neural network is trained to
recover the original data by reversing the noising process. By being able to model
the reverse process, it is possible to generate new data. This is the so-called reverse
diffusion process.
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Figure 2.12: An high level conceptual overview of the entire image space.

2.3.2 Forward diffusion

Diffusion models can be seen as latent variable models, given that they always
refer to a hidden continuous feature space. In practice, they are formulated using a
Markov chain of T steps. A Markov chain is a stochastic process {Xn, n = 0,1, ...T}
such that the conditional distribution of any future state Xn+1, given the past
states X0, X1, ..., Xn−1 and the present state Xn, is independent of the past states
and depends only on the present state ([4]). Importantly, there is no need to use a
specific type of neural network, unlike with flow-based models.
Given a data-point x0, sampled from the real data distribution q(x) (x0 ∼ q(x)),
one can define a forward diffusion process by adding noise. Specifically, at each step
of the Markov chain a Gaussian noise with variance βt is added to xt−1, producing
a new latent variable xt with distribution q(xt|xt−1). This diffusion process can be
formulated as follows:

q(xt|xt−1) = N(xt; µt =
ñ

1− βtxt−1, Σt = βtI)

with βt ∈ (0,1), t = 1, ..., T .
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Figure 2.13: Forward diffusion process ([46]).

Thus, it is possible to go in a closed form from the input data x0 to xT in a
tractable way. Mathematically, this is the posterior probability and it is defined as:

q(x1:T |x0) =
TÙ

t=1
q(xt|xt−1).

In order to sample xt, insted of applying q t times, it is possible to use the
already mentioned reparameterization trick. Being αt = 1− βt, ᾱt = rt

s=0 αs and
ϵ0, ..., ϵt−1 ∼ N(0, I), it holds:

xt =
ñ

1− βtxt−1 +
ñ

βtϵt−1

= √αtαt−1xt−2 +
ñ

1− αtαt−1ϵt−2

=
√

ᾱtx0 +
√

1− ᾱtϵ0

where the passage from the first to the second line leverages the fact that the sum
of two independent Gaussian random variables remains a Gaussian with mean
being the sum of the two means, and variance being the sum of the two variances
(a detailed proof is given by [70]). Interpreting

√
1− αtϵt−1 as a sample from the

Gaussian N(0, (1 − αt)I), and √αt − αtαt−1ϵt−2 as a sample from the Gaussian
N(0, (αt − αtαt−1)I), their sum can be considered as a random variable sampled
from the Gaussian N(0, (1− αt + αt − αtαt−1)I) = N(0, (1− αtαt−1)I). A sample
from this distribution can then be represented, using the reparameterization trick,
as
√

1− βtxt−1.
Thus, to produce a sample xt the following distribution can be adopted:

xt ∼ q(xt|x0) = N(xt;
√

ᾱtx0, (1− ᾱt)I).

Since βt is an hyperparameter, αt and ᾱt can be precomputed for all timesteps.
This means that it is possible to sample noise at any timestep t and get xt in one
go. Hence, the latent variable xt can be sampled at any arbitrary timestep. This
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provides also the target in order to calculate the tractable objective loss Lt.
The variance parameter βt can be fixed to a costant or chosen as a schedule over
the T timesteps. In fact, one can define a variance schedule, which can be linear,
quadratic, cosine, etc. In [46], authors utilizes a linear schedule increasing from
β1 = 10−4 to βT = 0.02. In [58], authors show that employing a cosine schedule
works even better.

2.3.3 Reverse diffusion
As T →∞, the latent xT is nearly an isotropic Gaussian distribution. This means
that its probability density is equal in every direction. For a Gaussian distribution
this can be achieved with a σ2I covariance matrix. Therefore, learning the reverse
distribution q(xt−1|xt), gives the possibility to sample xt from N(0, I), run the
reverse process and obtain a sample from q(x0) (generating a novel data point from
the original data distribution). Practically, q(xt−1|xt) in unknown because it is
intractable, since statistical estimates of q(xt−1|xt) require computations involving
the data distribution. Therefore, q(xt−1|xt) is approximated with a parametrized
model pθ (e.g., a neural network). Since q(xt−1|xt) is also Gaussian, for small enough
βt, pθ can be chosen to be Gaussian. Its mean and variance can be parametrized
as:

pθ(xt−1|xt) = N(xt−1; µθ(xt, t), Σθ(xt, t)).

Figure 2.14: Reverse diffusion process ([46])

Applying the reverse formula for all timesteps leads from xT to the data distri-
bution:

pθ(x0:T ) = pθ(xT )
TÙ

t=1
pθ(xt−1|xt).

By additionally conditioning the model on the timestep t, it learns to predict the
Gaussian parameters (the mean µθ(xt, t) and the covariance matrix Σθ(xt, t)) for
each timestep.
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2.3.4 Training a diffusion model
Given that the combination of q and p is very similar to a variational autoencoder
(VAE), a DDPM can be trained by optimizing the negative log-likelihood of the
training data. Remembering the formula 2.2.3, it holds:

ln p(x) ≥Eq(x1|x0)[ln pθ(x0|x1)]−DKL(q(xT |x0)||p(xT ))−
TØ

t=2
Eq(xt|x0)[DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))]

= L0 − LT −
TØ

t=2
Lt−1.

In [46], authors show that the first term can be learned separately and that the
second term has no trainable parameters. Then, maximizing the likelihood boils
down to learning the denoising steps Lt, t = 1, ..., T − 1.
Even though q(xt−1|xt) is intractable, [46] illustrates that by additionally condition-
ing on x0 makes it tractable. Intuitively, a painter (the generative model) needs a
reference image (x0) to slowly draw (reverse diffusion step q(xt−1|xt, x0)) an image.
In other words, xt can be sampled at noise level t, conditioned on x0.
It is possible to prove ([70]) that:

q(xt−1|xt, x0) = N(xt−1; åµ(xt, x0), åβtI)

where

åµ(xt, x0) =
√

ᾱt−1βt

1− ᾱt

x0 +
√

αt(1− ᾱt−1)
1− ᾱt

xt

åβt = 1− ᾱt−1

1− ᾱt

βt.

Notice that αt and ᾱt depend only on βt, so they can be precomputed. This little
trick provides a fully tractable ELBO.
Using the expression of x0 obtained with the reparameterization trick and substi-
tuting it in the equation of åµ(xt, x0) leads to:

åµt(xt) = 1
√

αt

A
xt −

βt√
1− ᾱt

ϵ

B
, ϵ ∼ N(0, I).

Therefore, a neural network ϵθ(xt, t) can be used to approximate ϵ and, consequently,
the mean:

åµθ(xt, t) = 1
√

αt

A
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)
B

.
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Thus, the loss function (the denoising term in the ELBO) can be expressed as:

Lt = Ex0,t,ϵ

C
1

2∥Σθ(xt, t)∥2
2
∥åµt − µθ(xt, t)∥2

2

D

= Ex0,t,ϵ

C
β2

t

2αt(1− ᾱt)∥Σθ∥2
2
∥ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2

2

D
.

This effectively shows that instead of predicting the mean of the distribution,
the model predicts the noise ϵ at each timestep t. The authors of [46] make a
few simplifications to the actual loss term as they ignore a weighting term. The
simplified version outperforms the full objective:

Lsimple
t = Ex0,t,ϵ

è
∥ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2

2

é
.

According to [46], optimizing the above objective works better than optimizing the
original ELBO. Additionally, in [46] authors keep the variance fixed and have the
network learn only the mean. This approach is improved by [58], where authors
let the network learn the covariance matrix (Σ) as well (by modifying Lsimple

t ),
achieving better results.

Algorithm 1 Training algorithm of a DDPM ([46]).
1: repeat
2: x0 ∼ q(x0)
3: t ∼ Uniform({1, ..., T})
4: ϵ ∼ N(0, I)
5: ▷ Take gradient descent step on
6: ∇θ∥ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2

2
7: until converged

Algorithm 2 Sampling algorithm of a DDPM ([46]).
1: xT ∼ N(0, I)
2: for t = T, ...,1 do
3: if t > 1 then
4: z ∼ N(0, I)
5: else
6: z = 0
7: end if
8: xt−1 = 1√

αt

1
xt − 1−αt√

1−ᾱt
ϵθ(xt, t)

2
+ σtz

9: end for
10: return x0
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2.3.5 Architecture

In order to have model’s input and output of similar size, authors of [46] employ
a U-Net. A U-Net is a symmetrical architecture with input and output of the
same spatial size, that uses skip connections between encoder and decoder blocks
of corresponding features dimension. Usually, the input image is first downsampled
and then upsampled until reaching its initial size. In the original implementation of
DDPMs, the U-Net consists of Wide Residual Network (WRN), group normalization
and self-attention blocks. The diffusion timestep t is specified by adding a sinusoidal
position embedding into each residual block.
Next subsections describe more in details the main features of a U-Net, starting
from one of the architecture on which U-Net is based.

Figure 2.15: The U-Net architecture([17]).

Fully convolutional networks

A fully convolutional network (FCN) is one of the first architectures without fully
connected layers ([16]). Apart from the fact that it can be trained end-to-end, for
individual pixel prediction, it can process arbitrary-sized inputs. It is a general
architecture that effectively uses transposed convolutions ([81]) as a trainable
upsampling method.
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Figure 2.16: The FCN architecture ([16]).

U-Net can be considered an extension of FCN. In particular, the main idea is
to make FCN maintain the high-level features in the early layer of the decoder.
To this end, in a U-Net architecture long skip-connections ([43]) are introduced,
in order to localize the segmentations. In this manner, high-resolution features
(but semantically low) from the encoder path are combined and reused with the
upsampled output.

Encoder and decoder structure

A U-shaped architecture consists of a specific encoder-decoder scheme: the encoder
reduces the spatial dimensions in every layer while increasing the channels and, on
the other hand, the decoder increases the spatial dimensions while reducing the
channels.
Specifically, the encoder path consists of the repeated application of two 3 × 3
convolutions, each one followed by a ReLU and batch normalization ([42]). Then
a 2× 2 max pooling ([81]) operation is applied to reduce the spatial dimensions.
Again, at each downsampling step, the number of feature channels is doubled, while
cutting in half the spatial dimensions. In the decoder path every step consists
of an upsampling of the feature map followed by a 2 × 2 transpose convolution,
which halves the number of feature channels. There is also a concatenation with
the corresponding feature map from the contracting path, and usually a 3 × 3
convolution (each followed by a ReLU). At the final layer, a 1× 1 convolution is
used to map the channels to the desired number of classes.
If not specified, a U-Net architecture processes areas (e.g., two dimensional images).
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Conversely, A 3D U-Net, is capable of processing volumes1.

Figure 2.17: A 3D U-Net encoder-decoder structure (source: https://
theaisummer.com/unet-architectures/).

Skip connections

Skip connections are introduced to solve a plethora of tasks (such as semantic
segmentation, optical flow estimation, etc.). One of the most important task they
are asked to solve is alleviating the problem of vanishing gradient, arising during
backpropagation. Briefly, this issue is related to the fact that while computing
all the necessary derivatives of the gradient, the backpropagation algorithm can
come up with very small numbers, causing the arrest of the model performance
improvement. The reason for this is very simple: often all these derivatives are
smaller than one and so, for every layer that the algorithm navigates backward in
the network, the gradient of the network gets smaller and smaller.
By using a skip connection, an alternative path for the gradient is provided (with
backpropagation). It is experimentally validated that this additional paths are
often beneficial for the model convergence. Skip connections in deep architectures,
as the name suggests, skip some layers in the neural network and feed the output
of one layer as the input to the next layers (instead of only the next one).
In general, there are two fundamental ways that one could use skip connections
through different non-sequential layers:

1. addition, as in residual architectures, or ResNet ([81]);

2. concatenation, as in densely connected architectures, or DenseNet ([81]).

1See: https://theaisummer.com/unet-architectures/.
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In the first case, the core idea is to backpropagate through the identity function,
by just using a vector addition. Then, the gradient is simply multiplied by one and
its value is maintained in the earlier layers. This is the main idea behind residual
networks.

Figure 2.18: An example of skip connections via addition ([15]).

Moreover, additive connections are used in two kinds of setups:

- short skip connections, that are used along with consecutive convolutional
layers that do not change the input dimension (see ResNet);

- long skip connections, that usually exist in symmetrical encoder-decoder
architectures, where the spatial dimensionality is reduced in the encoder part
and, gradually, increased in the decoder part via transpose convolutional
layers2.

Even though there is no theoretical justification, symmetrical long skip connections
work incredibly effectively in dense prediction tasks.

2machinecurve.com/index.php/2019/09/29/understanding-transposed-convolutions.
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Figure 2.19: An exampe of a symmetrical encoder-decoder architecture provided
with long skip connections ([43]).

In the case of concatenated skip connections, the aim is to use features concate-
nation so as to ensure maximum information flow between layers in the network.
This is achieved by connecting via concatenation all layers directly with each other,
as opposed to ResNets. Practically, this leads to a concatenation of the features
channel dimensions.

Figure 2.20: An example of skip connections via concatenation ([33]).
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Batch normalization and group normalization

Batch normalization (BN) normalizes the mean and standard deviation for each
individual feature channel/map.

Figure 2.21: Image by MC.AI. It shows how batch normalization brings the
values in a compact range.

Specifically, features are demanded to follow a Gaussian distribution with zero
mean and unit variance. Mathematically, this can be expressed as

BN(x) = γ

A
x− µ(x)

σ(x)

B
+ β

µc(x) = 1
NHW

NØ
n=1

HØ
h=1

WØ
w=1

xnchw

σc(x) =

öõõô 1
NHW

NØ
n=1

HØ
h=1

WØ
w=1

(xnchw − µc(x))2

where:

- N is the batch size;

- H, W , C refer, respectively, to the height, the width and the feature channel
dimensions;

- µc(x) is the mean of the batch for a specific feature channel;

- σc(x) is the standard deviation of the batch for a specific feature channel.
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Figure 2.22: An illustration of batch normalization ([42]).

Notably, the spatial dimensions, as well as the image batch, are averaged. In this
way, features live in a compact Gaussian-like space, which is usually beneficial. In
fact, γ and β correspond to the trainable parameters that result in the linear/affine
transformation (introduced with the BN equation above), which is different for all
channels. Specifically, γ and β are vectors with the channel dimensionality. The
index c denotes the per-channel mean.
BN accelerates the training of deep neural networks, introducing some sort of regu-
larization, and reduces the dependence of gradients on the scale of the parameters.
However, it can lead to inaccurate estimation of batch statistics with a small batch
size or, in general, when the batch size varies.

Group normalization (GN) divides the channels into groups and computes the
first-order statistics within each group. As a result, GN’s computation is indepen-
dent of batch sizes, and its accuracy is more stable than BN in a wide range of
batch sizes.
Mathematically:

µi = 1
m

Ø
k∈Si

xk

σi =
öõõô 1

m

Ø
k∈Si

(xk − µi)2 + ϵ

Si = {k|kN = iN , ⌊ kC

C/G
⌋ = ⌊ iC

C/G
⌋}.

Note that m is the number of channels inside a group, while the hyperparameter
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G is the number of groups. C/G is the number of channels per group, thus, GN
computes µ and σ along the (H, W ) axes and along a group of C/G channels.

Figure 2.23: An illustration of group normalization. Here, the feature maps are
divided into two groups, but the choice is completely arbitrary ([42]).

Attention

The attention mechanism emerges naturally from problems that deal with time-
varying data, or sequences. Sequence to sequence (Seq2seq) learning process works
pretty much like in Figure 2.24.

Figure 2.24: Seq2seq learning process representation ([44]).

The elements of the sequence (x1, x2,...,xn in the above figure) are usually called
tokens, while the encoder and decoder are nothing more than stacked RNN layers.
The encoder processes the input and produces one compact representation, called z,
from all the input timesteps (see Figure 2.25). It can be regarded as a compressed
format of the input.
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Figure 2.25: Seq2seq encoder representation ([44]).

On the other hand, the decoder receives the context vector z and generates the
output sequence (see Figure 2.26). The most common application of Seq2seq is
language translation. For instance, the input sequence can be the representation
of a sentence in English and the output can be the representation of the same
sentence in French.

Figure 2.26: Seq2seq decoder representation ([44]).

The attention mechansim addresses two well known limitation of RNN layers in
the Seq2seq learning process: early information loss and vanishing gradient. The
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core idea is that the context vector z should have access to all parts of the input
sequence instead of just the last one.
Having said so, a first way to classify attention mechanism can be the following:

- implicit attention, realized by all those deep neural networks systems that
tend to ignore parts of the input and focus on others. For instance, when
working on human pose estimation, the network will be more sensitive to the
pixels of the human body. In fact, it is known that many activation units
show a preference for human body parts and poses ([23]);

- explicit attention, realized by asking the network to weight its sensitivity to
the input, based on memory from previous inputs.

Another distinction to make is between hard and soft attention:

- soft attention means that the function identifying the attention mechanism
varies smoothly over its domain and, as a result, it is differentiable;

- hard attention means that the function identifying the attention mechanism
is discrete and so it has many abrupt changes over its domain. Since hard
attention is non-differentiable, it can be trained using Reinforcement Learning3

(RL) techniques, instead of the usual gradient descent approach. Once all
the sequence tokens are available, it is possible to relax the definition of hard
attention, applying a smooth differentiable function to it, to be trained end to
end with the usual backpropagation algorithm.

For an RNN encoder-decoder structure, attention mechanism can be placed like
shown in Figure 2.27.

3https://theaisummer.com/Policy-Gradients/.
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Figure 2.27: Seq2seq with attention mechanism representation ([44]).

In this case,
αij = exp (eij)qTx

k=1 exp (eik)
is the softmax function, computed for all the Tx token of the input x. Given the
previous state of the decoder, namely yi−1, and an hidden state h = h1, h2, ..., hn,
the attention mechanism can be identified with

eij = attentionnet(yi−1, hj) ∈ R.

Finally, attention mechanism can be also divided into global or local:

- global attention is the result of the attention function computation over the
entire input sequence;

- local attention, instead, considers only a subset of the input units (tokens),
due to computational reasons. It can also be merely seen as hard attention
since it requires taking a hard decision first, in order to exclude some input
units.
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An attention mechanism referred to the same sequence and not to an input-output
sequence association is called self-attention. In this case, the mechanism looks for
scores between the elements of a single sequence, as depicted in Figure 2.28.

Figure 2.28: An example of a self-attention mechanism, modeled through an
undirected weighted graph ([44]).

The self-attention can be computed in any trainable way. The end goal is to
create a meaningful representation of the sequence before transforming it.

Positional embeddings

Position embeddings (PE) are trainable mathematical representations that capture
the position of each token in the input sequence of a Seq2seq structure. For instance,
when dealing with highly-structured data, as images, it is required to incorporate
some strong sense of position (order) inside a multi-head self-attention (MHSA)
block, whose mechanism, in principle, encodes no positional information ([49]).
In order to do so, it is possible to define a map for the input token, introducing
three simple objects:

1. queries (stored in the tensor Q), indexed with i and representing the token
or a position in the sequence;

2. keys (stored in the tensor K), indexed with j and representing the features
or characteristics of each token in the sequence;

3. values (stored in the tensor V ), also indexed with j and representing the
content or the information associated with each token in the sequence.
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If the attention weight is defined as

eij = xiW
Q(xjW

K)T
√

d

where W Q and W Q are, respectively, the linear transformation weight matrices of
the input embeddings into queries and keys vectors of dimension d, PE are able to
inject some positional information in this way:

eij =
xiW

Q(xjW
K)T + xiW

Q(pK
ij )T

√
d

.

Notice that the added term represents the distance of the query element from a
particular sequence position.
It is often the case that additional positional information is added to the query
representation (Q) in the MHSA block. There are two main approaches here, i.e.,
absolute PE or relative PE:

- in the absolute PE setup, every input token at position i is associated with
a trainable embedding vector that indicates the row of a trainable matrix
R, with shape [tokens, dim] and initialized in N(0,1). It slightly alters the
representation based on the position, resulting in the following attention
function:

attention = softmax
A

1√
dim

(QKT + QR)
B

;

- relative positions represent the distance (number of tokens) between tokens.
Information is, again, incorporated inside the MHSA block. The tricky part is
that, for n tokens, there are 2n− 1 possible differences and so, now, R has a
shape of [2 · tokens− 1, dim].
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2.3.6 Guided diffusion
A crucial aspect of image generation is conditioning the sampling process to
manipulate the generated samples. In a context of diffusion models, this is also
referred to as guided diffusion. Mathematically, guidance refers to conditioning a
prior data distribution p(x) with a condition y, i.e., the class label or an image/text
embedding, resulting in p(x|y).
To turn a diffusion model pθ into a conditional diffusion model, conditioning
information y can be added at each diffusion step:

pθ(x0:T |y) = pθ(xT )
TÙ

t=1
pθ(xt−1|xt, y).

In general, guided diffusion processes aim to learn ∇ ln pθ(xt|y). So, using the
Bayes rule, it is possible to write:

∇xt ln pθ(xt|y) = ∇xt ln
A

pθ(y|xt)pθ(xt)
pθ(y)

B
= ∇xt ln pθ(xt) +∇xt ln pθ(y|xt)

where in the second line pθ(y) is removed since the gradient operator, in this case,
refers only to xt.
Finally, adding a guidance scalar term s leads to:

∇ ln pθ(xt|y) = ∇ ln pθ(xt) + s∇ ln pθ(y|xt).

The following two families of methods aim at injecting label information.

Classifier guidance

Authors of [18] show that a classifier fϕ(y|xt, t) can be trained on the noisy image xt

to predict its class y. This is done in order to guide the diffusion toward the target
class y during the training. In this way, it is possible to build a class-conditional
diffusion model with mean µθ(xt|y) and variance Σθ(xt|y). Since pθ ∼ N(µθ, Σθ),
using the guidance formulation previousely introduced, the mean is perturbed by
the gradients of ln fϕ(y|xt), resulting in:

µ̂t(xt|y) = µθ(xt|y) + sΣθ(xt|y)∇xt ln fϕ(y|xt, t).

This idea can be expanded using CLIP embeddings ([59]) to guide the diffusion.
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Algorithm 3 Classifier guided diffusion sampling ([51]).
1: Input: class label y, gradient scale s
2: xT ← sample from N(0, I)
3: for all t from T to 1 do
4: µ, Σ← µθ(xt), Σθ(xt)
5: xt−1 ← sample from N(µ + sΣ∇xt ln pϕ(y|xt), Σ)
6: end for
7: return x0

Classifier-free guidance

Using the same formulation as before it is possible to define a classifier-free guided
diffusion model as:

∇ ln pθ(xt|y) = s∇ ln pθ(y|xt) + (1− s)∇ ln pθ(xt).

Instead of training a second classifier, in [67] authors train a conditional diffusion
model, ϵθ(xt|y), together with an unconditional model ϵθ(xt|0), using the exact
same neural network. During training, they randomly set the class y to 0, so that
the model can be exposed to both the conditional and unconditional setup:

ϵ̂θ(xt|y) = sϵθ(xt|y) + (1− s)ϵθ(xt|0).

There are two main advantages of this approach:

1. it uses only a single model to guide the diffusion;

2. it simplifies guidance when conditioning on y that is difficult to predict with
a classifier (such as text embeddings).

2.3.7 Scaled diffusion models
The problem with diffusion models is that they require a lot of computations in
order to scale U-Nets into high-resolution images. For this reason, two methods for
scaling up diffusion models are usually adopted:

1. cascade diffusion models;

2. latent diffusion models.
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Cascade diffusion models

A cascade diffusion model consists of many sequential diffusion models that generate
images of increasing resolution. This is done via upsampling the image generated by
each model with the addition of higher resolution details. To generate an image, it
is possible to sample sequentially from each diffusion model. Data augmentation is
crucially in this context because it alleviates compounding error from the previous
cascaded models.

Figure 2.29: Cascade diffusion model pipeline ([55]).

Latent diffusion models

Instead of applying the diffusion process directly on a high-dimensional input, it is
possible to project the input into a smaller latent space and apply the diffusion there
(stable diffusion). In [72] authors propose to use an encoder network to encode the
input into a latent representation, i.e., zt = g(xt). Afterward, a standard diffusion
model (U-Net) is applied to generate new data, which are upsampled by a decoder
network.
If the loss for a typical diffusion model (DM) is formulated as

LDM = Ex,t,ϵ

è
∥ϵ− ϵθ(xt, t)∥2

é

then, given an encoder ε and a latent representation z, the loss for a latent diffusion
model (LDM) is:

LLDM = Eε(x),t,ϵ
è
∥ϵ− ϵθ(zt, t)∥2

é
.

38



State of the art

Figure 2.30: Latent diffusion models representation ([72]).

2.3.8 Score-based generative models
Score based models tackle generative learning using score matching and Langevin
dynamics. Score matching refers to the process of modeling the gradient of the
ln probability density function, also known as the score function ([6]). Langevin
dynamics is an iterative process that allows to draw samples from a distribution
using only its score function.
In this case, it holds:

xt = xt−1 + δ

2∇x ln p(xt−1) +
√

δϵ

where ϵ ∼ N(0, I) and δ is the step size.
Given a probability density p(x) and a score function ∇x ln p(x), it is possible to
train a neural network sθ to estimate ∇x ln p(x) without estimating p(x) first. The
training objective can be formulated as follows:

Ep(x)
è
∥∇x ln p(x)− sθ(x)∥2

2

é
=
Ú

p(x)∥∇x ln p(x)− sθ(x)∥2
2 dx.

Then, by using Langevin dynamics, sampling directly from p(x) is possible (as
[70] shows) thanks to the approximated score function sθ(x). Noticee that guided
diffusion models use the formulation of score-based models as they learn directly
∇x ln p(x).

Noise Conditional Score Networks (NCSN)

Perturbing data points with noise and training score-based models on the noisy
data can improve the accuracy of the estimated score functions in low-density
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regions, where few data points are available. As a matter of fact, multiple scales of
gaussian noise perturbations can be used. Thus, adding noise is the key to make
both DDPMs and score-based models work.

Figure 2.31: Score-based generative modeling with score matching + Langevin
dynamics representation ([39]).

Mathematically, a data distribution p(x) is perturbed with a Gaussian noise
N(0, σ2

i I), i = 1,2, ..., L, in order to obtain a noise perturbed distribution:

pσi
(x) =

Ú
p(y)N(x; y, σ2

i I) dy.

Then, a network sθ(x, i), known as Noise Conditional Score-Based Network (NCSN),
is trained to estimate the score function ∇x ln pσi

(x). The training objective is a
weighted sum of Fisher divergences for all noise scales:

LØ
i=1

λ(i)Epσi (x)
è
∥∇x ln pσi

(x)− sθ(x, i)∥2
2

é
where λ(i) is a weighting factor.
In information geometry, the Fisher information metric is a particular Riemannian
metric which can be defined on a smooth statistical manifold, i.e., a smooth manifold
whose points are probability measures defined on a common probability space. It
can be used to calculate the informational difference between measurements.

Score-based generative models through SDE

In [61] authors propose to perturbate data using a continuum of distributions that
evolve over time according to a diffusion process. This process is modelled by a
prescribed stochastic differential equation (SDE) that does not depend on the data
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and has no trainable parameters. As always, by reversing the process it is possible
to generate new samples.

Figure 2.32: Score-based generative modelling through stochastic differential
equations ([61]).

The diffusion process {x(t)}t∈[0,T ] can be defined as an SDE in the following
form:

dx = f(x, t)dt + g(t)dw

where:

- w is the Wiener process (described in [4]);

- f(·, t) is a vector valued function known as drift coefficient of x(t);

- g(·) is a scalar function known as diffusion coefficient of x(t).

After perturbing the original data distribution for a sufficiently long time, the
perturbed distribution becomes close to a tractable noise distribution. To generate
new samples, it is necessary to reverse the diffusion process. The SDE is chosen so
that it has a corresponding reverse SDE ([1]) in closed form:

dx =
è
f(x, t)− g(t)2∇x ln pt(x)

é
dt + g(t)dw.

To compute the reverse SDE, it is necessary to estimate the score function
∇x ln pt(x). This is done using a score-based model sθ(x, t) and Langevin dy-
namics.
The training objective is a continuous combination of Fisher divergencies

Et∈U(O,T )Ept(x)
è
λ(t)∥∇x ln pt(x)− sθ(x, t)∥2

2

é
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where U(0, T ) denotes a uniform distribution over the time interval and λ(t) is a
positive weighting function. Once obtained the score function, it is possible to solve
the reverse SDE in order to sample x(0) from the original data distribution p0(x).

Figure 2.33: Overview of score-based generative modelling through SDEs ([61]).

2.4 Multimodalities involving music
The field of generative art includes various works that investigate models’ potential
on music data.
In [9], [40], [41], [57] and [19] authors focuse on the possibility of establishing
different kinds of correlations between audio and visual data. In particular, authors
of [40] introduce the problem of learning affective correspondences between audio
(music) and visual data (images). For this task, a music clip and an image are
considered similar (having true correspondence) if they have similar emotion content.
In order to estimate this crossmodal, emotion-centric similarity, authors propose
a deep neural network architecture that learns to project the data from the two
modalities into a common representation space. Then, the network performs a
binary classification task in order to predict the affective correspondence (true
or false). The proposed approach achieves 61.67% accuracy for the affective
correspondence prediction task on a customized database, containing more than
3500 music clips and 85000 images with three emotion classes (positive, neutral
and negative).
In [25], [11] and [10], instead, authors explore the topic of cross matching between
music and image. In particular, authors of [25] aim to understand whether and
how music and images can be automatically matched by machines. They costruct
a benchmark dataset composed of more than 45000 music-image pairs and recruit
human labelers to annotate whether these pairs are well-matched or not. Results
show that labelers generally agree with each other on the matching degree of
music-image pairs. Secondly, a suitable semantic representation of music and image
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for this cross-modal matching task is investigated: authors adopt lyrics as a middle-
media to connect music and image, and design a set of lyrics-based attributes for
image representation. In the end, they propose a cross-modal ranking analysis
(CMRA) to learn the semantic similarity between music and image, outperforming
state-of-the art cross modal methods in the music-image matching task.
Works like [66], [82], [29], [28] and [77] delve very deeply into the generative part of
visual and musical data. Indeed, in [77] authors propose an audio-video generation
framework that enhances engaging viewing and listening experiences simultaneously,
towards high quality realistic videos. To generate joint audio-video pairs, a novel
Multi-Modal Diffusion (i.e., MM-Diffusion) model is leveraged, together with two-
coupled denoising autoencoders. Extensive experiments show very promising results
in unconditional audio-video and zero-shot conditional tasks (e.g., video-to-audio).
Zero-shot learning (ZSL) is a problem setup in deep learning where, at test time, a
learner observes samples from classes which were not observed during training, and
needs to predict the class that they belong to. In this respect, another significant
work dealing with zero-shot classification of music and images is the one done by
Wu et al. ([74]).
Even if not totally focused on the use of music data, the research conducted by
Yariv et al. in [80] propose a framework for audio-to-image generation: given
an audio sample containing an arbitrary sound, authors aim to generate a high
quality image representing the acoustic scene. Specifically, inspired by Gal et
al. ([65]), they propose to learn a dedicated audio-token that can map the audio
representation into an embedding vector. Such a vector is then forwarded into the
network as a continuous representation, reflecting a new word embedding. In this
way, authors can investigate the feasibility of directly encoding any audio signal into
a dedicated representation that produces an additional token for a text-conditioned
image generation.
Finally, among many articles inspired by the work on Contrastive Language-Image
Pre-training (CLIP [60]), that paves the way for an entire new category of AI
multimodal approaches, it is worth mentioning the one carried out by Guzhov
et al. ([53]), for its contribution to the improvement of sounds classification. In
particular, here, authors present an extension of the CLIP model that handles
audio in addition to text and images: a model that incorporates the ESResNeXt
audio-model ([54]) into the CLIP framework using the AudioSet dataset4. This
dataset is a large-scale collection of human labeled 10-second sound clips drawn
from YouTube videos. Such a combination enables the proposed model to perform
both unimodal and bimodal classification as well as querying, while keeping CLIP’s
ability to generalize to unseen datasets in a zero-shot inference fashion.

4https://research.google.com/audioset/dataset/index.html.
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Chapter 3

Dataset

The following sections describe the sources and the construction phases of the
music-image dataset used for the artistic image generation task from music inputs.

3.1 Data sources
Sources of music and artistic images are 4 existing datasets (i.e., WikiArt [89], A
Refined WikiArt Dataset [35], Best Artworks of All Time [36], and Classical Asian
Art [84]) and 2 websites (Pinterest [85] and YouTube [90]).

3.1.1 Datasets
WikiArt

WikiArt website ([89]) contains one of the richest collection of figurative art
available online. The website is structured to provide an extensive and accessible
platform for exploring art across various periods, styles, and artists. Thanks to
a comprehensive collection of artworks, ranging from classical to contemporary,
it includes a large variety of paintings, sculptures, and other forms of visual art.
Artworks are categorized according to:

- periods and movements (such as Renaissance, Baroque, Romanticism, Impres-
sionism, Modernism, etc.);

- styles and genres (such as portrait, landscape, still life, abstract, surrealism,
etc.).

Moreover, each artist featured on WikiArt has a dedicated page showcasing their
biography, notable works, and contributions to the art world. Artist pages often
include images of their artworks, a brief overview of their career, and links to
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related articles or external resources for further exploration. The website offers
robust search functionality, allowing users to search for artworks, artists, or specific
keywords. This makes it easier to find particular artworks or explore themes across
different artists and periods. Users can also filter search results by criteria such as
medium (e.g., oil on canvas, watercolor), size, location, and more, to refine their
exploration based on specific preferences. Images on WikiArt are available in JPEG
or PNG format.

A Refined WikiArt Dataset

This source of artistic images adopted is a refined dataset ([35]), containing images
from WikiArt website. It is organized into 29 unbalanced categories, each one iden-
tified with a label expressing an art figurative genre, from Abstract_Expressionism
to Ukiyo_e. Overall, there are 25000 images in JPEG format, requiring a storage
capacity of 8 GB. Authors provide 2 csv files containing, respectively, the lists of
training and validation images and a text file containing the list of the dataset
classes.

Best Artworks of All Time

This dataset ([36]) contains a collection of artworks from the 50 most influential
figurative artists of all time. Data are organized into unbalanced folders according
to artists’ names, from Albrecht_Durer to William_Turner, for a total of 16800
images in JPEG format. This dataset requires a storage capacity of 2 GB and is
equipped with a csv file, providing general informations for each artist, and a folder
containing resized data.

Classical Asian Art

This last dataset contains 138 public images, in JPEG format, mainly related to
Asian traditional art, and taken from Artvee1.

3.1.2 Websites
Pinterest

Pinterest ([85]) is a visual discovery and bookmarking platform that allows users
to find, save, and share ideas and inspiration across a wide range of interests and
topics. The site is structured to provide an engaging and user-friendly experience,
encouraging users to explore and curate contents. Pinterest offers robust search

1https://artvee.com/.
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functionality, allowing users to search for specific topics, keywords, or hashtags.
Search results can be filtered by:

- pins, i.e, images or videos that users save to their account;

- boards, i.e., collections of pins organized by themes or topics;

- people, i.e., users of the platform.

Images on Pinterest are available in JPEG or PNG format.

YouTube

YouTube ([90]) is a video-sharing platform where users can upload, view, and
interact with videos. The site is structured to provide an engaging and user-
friendly experience, encouraging users to explore, create, and connect through video
material. YouTube offers a powerful search functionality, allowing users to search
for specific videos, channels, or keywords. Search results can be filtered by upload
date, view count, rating, and more to help users find exactly what they are looking
for. The vast number of music-related videos available on YouTube makes it one of
the largest platforms for easily sharing music content among users.

3.2 Data preprocessing
The fact that WikiArt ([89]) and Best Artworks of All Time ([36]) classify art-
works according to specific artistic and historical criteria partially reflects in the
categorization choices for the music-image dataset.

3.2.1 Images
The image collection is organized according to the following semantic criteria:

- selected images of visual art from the early Renaissance to Classicism are split
into symbolic and secular ;

- selected images of visual art from Romanticism to the 20th century are split
into figure and open view;

- selected images of visual art from the 20th century are additionally split into
experimental and traditional;

- selected images of visual art related to the traditional folklore of a specific
territory are considered folk;
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- selected images of visual art semantically related with music from 20th and
21st centuries are split into instrumental, electronic and heavy metal.

The entire dataset of images consists of 24216 units, all transformed in JPEG
format, distributed among 18 balanced (in terms of numerosity) classes. The
training set has 19366 units, while the validation and test set have, respectively,
2425 units.
Figure 3.1 shows the 18 music-inspired labels representing each class of the image
dataset.

Figure 3.1: Graphic representation of music-inspired labels for the image dataset.
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3.2.2 Music
Music data is obtained extracting audio files from YouTube videos and requires a
storage capability of around 170 GB. This outcome is due to two main reasons:

- it is fundamental to obtain a music dataset as various as possible, in order to
let the model learn several kinds of music;

- as already mentioned, following the same approach of Chen et al. ([45]), to
obtain 30 seconds of audio samples in mp3 format, additional storage space is
required beyond what is needed to store the entire pieces of music.

Selection and categorization of music is based on semantic criteria described by
the following image-music association rules:

- images of symbolic visual art from early Renaissance to Classicism =⇒ religious
music from early Renaissance to Classicism;

- images of secular visual art from early Renaissance to Classicism =⇒ secular
music from early Renaissance to Classicism;

- images of visual art figures from Romanticism to the 20th century =⇒ mainly
instrumental and chamber music from Romanticism to the 20th century;

- images of visual art depicting open views from Romanticism to the 20th century
=⇒ orchestral and opera music from Romanticism to the 20th century;

- images of experimental visual art of the 20th century =⇒ experimental music
of the 20th century;

- images of traditional visual art of the 20th century =⇒ traditional music
(academic, reactionary, tonal, etc.) of the 20th century;

- images of traditional folk visual art from the past times to the present day
=⇒ traditional folk music from the past time to the present day;

- images of visual art inspired by 20th and 21st centuries musical genres =⇒
music from the main 20th and 21st centuries musical genres (rock, jazz, pop,
country, rap, electronic, etc.).

The music dataset contains 24216 30 seconds music samples, all transformed in
wav format, and divided into the same 18 categories as the images. Every audio file
name is standardized to a common encoding (Unicode). The training set consists
of 19366 units, while the validation and test set have, respectively, 2425 units.
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LABEL MUSICAL
GENRES

MAIN FEATURES
OF THE CHOSEN

MUSIC

DESCRITPION OF THE
CHOSEN ART IMAGES

WIKI-ART
CATEGORIES

INVOLVED

CLASS
DIMENSION

Renaissance
symbolism

Pre-Renaissance (380)
Flemish (362)

Renaissance (508)

Symbolic
Religious A collection of paintings from pre-

Renaissance, Flemish and Renais-
sance art movements, expressing
symbolic concepts (religion, alle-
gories, mythology, etc.).

Proto Renaissance
Early Renaissance
High Renaissance

Flemish school
Religious painting

Allegorical painting
Symbolic painting

14th century
15th century
16th century

1250

Renaissance
secular subject

Pre-Renaissance (177)
Flemish (372)

Renaissance (701)
Secular A collection of realistic paintings

from pre-Renaissance, Flemish and
Renaissance art movements (por-
traits, battles, everyday life, etc.).

Early Renaissance
High Renaissance
Late Renaissance

Flemish school
Portrait

Genre painting
Battle painting

14th century
15th century
16th century

1250

Baroque Classical
symbolism

Baroque (694)
Classic (556)

Symbolic
Religious A collection of paintings from

Baroque and Classical art move-
ments, expressing symbolic con-
cepts (religion, allegories, mythol-
ogy, etc.).

Baroque
Rococo
Flemish

Neoclassicism
Religious painting

Allegorical painting
Symbolic painting

17th century
18th century

1250

Baroque Classical
secular subject

Baroque (854)
Classic (405) Secular A collection of realistic paintings

from Baroque and Classical art
movements (portraits, battles, ev-
eryday life, etc.).

Baroque
Rococo
Flemish

Neoclassicism
Portrait

Genre painting
Battle painting

17th century
18th century

1259

Romanticism
figure

Romantic (667)
Late Romantic (876)

Chamber
Instrumental A collection of paintings from Ro-

manticism and late-Romanticism art
movements, depicting both living
and inanimate subjects (portraits,
battles scenes, celebrations, still
lives, animals, etc.).

Romanticism
Portrait

Genre painting
Battle painting

Still life
Animal painting

Symbolic painting
19th century

1543
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Romanticism
open view

Romantic (479)
Late Romantic (771)

Orchestral
Opera A collection of paintings from Ro-

manticism and late-Romanticism
art movements, depicting open
views (landscapes, woods, mountain
ranges, marinas, cities, wide spaces,
etc.).

Romanticism
Landscape

Marina
CityscapeImpressionism

Impressionism
Expressionism
19th century

1250

20th century
traditional figure

Traditional 19th – 20th c. (582)
Ballet 19th-20th c. (300)
Traditional 20th c. (584)

Chamber
Instrumental

Theatre
Orchestral

A collection of paintings from the
late 19th and 20th centuries, pri-
marily realistic, depicting both liv-
ing and inanimate subjects (por-
traits, battles scenes, celebrations,
still lives, animals, etc.).

Portrait
Genre painting
Battle painting

Still life
Animal painting
Impressionism
Expressionism

Landscape
Marina

Cityscape
19th century
20th century

1466

20th century
traditional open view

Traditional 19th – 20th c. (680)
Traditional 20th c. (664)

Orchestral
Opera A collection of paintings from the

late 19th and 20th centuries, primar-
ily realistic, depicting open views
(territories, woods, mountain ranges,
marinas, cities, wide spaces, etc.).

Impressionism
Expressionism

Landscape
Marina

Cityscape
19th century
20th century

1344

20th century
experimental figure

Experimental 19th – 20th c. (380)
Experimental early 20th c. (992)

Chamber
Instrumental
Avant-garde

A collection of paintings from the
late 19th and 20th centuries, pri-
marily unrealistic, depicting both
living and inanimate subjects (por-
traits, battles scenes, celebrations,
still lives, animals, etc.).

Portrait
Genre painting

Still life
Animal painting
Impressionism
Expressionism

Surrealism
19th century
20th century

1372

20th century
experimental open view

Experimental 19th – 20th c. (545)
Experimental early 20th c. (712)

Orchestral
Opera

Avant-garde
A collection of paintings from the
late 19th and 20th centuries, primar-
ily unrealistic, depicting open views
(territories, woods, mountain ranges,
marinas, cities, wide spaces, etc.).

Impressionism
Expressionism

Landscape
Marina

Cityscape
Surrealism
Tonalism

Post-Impressionism
19th century
20th century

1257
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20th century
abstractionism Experimental 20th c. (1494)

Orchestral
Opera

Chamber
Avant-garde

A collection of abstract paintings
from the end of 19th and 20th cen-
turies.

Cubism
Avant-garde

Dada
Abstract art

Metaphysical art
Conceptual art

Minimalism
Bauhaus

20th century

1494

European traditional
folklore

North-Centre Europe folk (388)
Est-Europe folk (499)

Mediterranean Europe folk (363)

Vocal
Instrumental

Ritualistic
Religious

A collection of European folkloristic
art pictures.

Naive art
Arte povera

Pop art
Caricature

Folk art
Realism

Regionalism
Neo-Pop art

Contemporary
Sketch and study

20th century
21st century

1250

Asian traditional
folklore

Middle East, South Asia folk (519)
Cina, Japan, South-East Asia folk (819)

Vocal
Instrumental

Ritualistic
Religious

A collection of folkloristic art pic-
ture, realised by Asian artists
throughout history.

Bangladeshis
Bengalis
Chinese
Emiratis
Indians

Indonesians
Iranians

Japaneses
Outsider art

Native art
Sketch and study

Folk art

1338

American traditional
folklore

North America folk (373)
Central, South America folk (1061)

Vocal
Instrumental

Ritualistic
Religious

A collection of American folkloristic
art pictures.

Argentineans
Brazilians
Chileans

Colombians
Cubans

Dominicans
Ecuadorians
Guatemalans

Indigenous North Americans
Mexicans
Peruvians

Puerto Ricans
Venezuelans

Folk art

1434
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African traditional
folklore

African folk (625)
Afro music (627)

Vocal
Instrumental

Ritualistic
Religious

Worldwide

A collection of African and afro-
cultural folkloristic art pictures.

Algerians
Angolans

Cameroonians
Egyptians
Ethiopians

Ancient Egypt
Kenyans
Libyans

Moroccan
Namibians
Nigerians

South Africans
Outsider art

Native art
Sketch and study

Folk art

1252

Modern instrumental
music

Jazz (281)
Rock (371)

Western songwriters (231)
Country (115)

Latin American (260)

Worldwide
Instrumental

Popular
A collection of historical and con-
temporary art pictures, aimed at
summarizing the main concepts ex-
pressed by instrumental musical gen-
res primarily developed in western
countries (jazz, rock, country, etc.).

Pop art
Contemporary

Sketch and study
1258

Electronic
music

Electronic (538)
Dance (344)

Pop (516)
Rap, Hip-hop (204)

Worldwide
Informatic
Ambient
Digital
Popular

A collection of historical and con-
temporary art pictures, aimed at
summarizing the main concepts ex-
pressed by musical genres like elec-
tronic, dance, pop, rap and hip hop.

Illustration
Digital art
Street art

Graffiti
Pop art

1602

Heavy
metal Heavy metal (1347) Instrumental

Worldwide A collection of historical and con-
temporary art pictures, aimed at
summarizing the main concepts ex-
pressed by heavy metal music.

Fantasy art
Poster 1347

Table 3.1: Informations about the customized image-music dataset. Images and music samples are assigned to
various subcategories. Numbers between brackets correspond to the numerosity of each subcategory.
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Methodology

The architecture ([80]) used to generate artistic images from music inputs, as well
as its adaptation to the music-image dataset previousely described, are provided in
the following sections.

4.1 Description of the model
The model proposed by Yariv et al. ([80]) and adopted to generate artistic images
from music inputs relies on an audio-to-image generation method that leverages a
pre-trained text-to-image diffusion model ([72]), together with a pre-trained audio
encoder ([64]). In particular, the learning process of the pre-trained diffusion is
conducted on a latent representation of an encoder-decoder architecture, because
Rombach et al. ([72]) show that this strategy can produce higher quality results
than an approach based on raw inputs.
Given a data distribution p(x), a reverse Markov process of length T , a timestamp
t ∈ [0,1], a denoising function ϵθ : Rd → Rd that learns predicting a clean version
of the perturbed xt from the training distribution S = {x1, ..., xm}, latent diffusion
operates on top of a representation given by an encoder f , yielding the following
loss function:

LLDM ≜ Ex∼S,t∼U(0,1),ϵ∼N(0,I)
è
∥ϵ− ϵθ(f(xt), t)∥2

2

é
.

The output of the diffusion can later be forwarded through the decoder to obtain
the raw result (e.g., audio, image, text).
An important component of modern generative models is conditioning. This allows
the generative process to be conditioned on a given input, i.e., modeling p(x|y),
where y is a data entry. Usually, the conditioning component is done by an injection
of a condition representation from an encoder τ to the attention mechanism of ϵθ.
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Conditioning the diffusion process yields the following loss function:

LCLDM ≜ E(x,y)∼S,t∼U(0,1),ϵ∼N(0,I)
è
∥ϵ− ϵθ(f(xt), t, τ(y))∥2

2

é
.

The input to the method is a pair (i, a), where i represents an artistic image and
a represents its corresponding music sample. The final purpose is to create a
generative process that is audio-conditioned, i.e., p(i|a). In order to do so, given
that a text-conditioned generative model is being used, the audio signal a has to
be associated with a text conditioning.
Figure 4.1 shows the entire architecture adopted to fulfill the aforementioned task.

Figure 4.1: Architecture overview: a 30 seconds music sample is forwarded
through a pre-trained audio encoder and then through a projection network. A pre-
trained text encoder extracts tokens from vector representations of the tokenized
prompt and the audio. Finally, the generative model is fed with the concatenated
representations of these tokens.

The process begins with a transformer model that encodes the initial prompt
“An art image of” into a representation etext ∈ R4×da , where da is the embedding
dimension of the text input. Afterward, etext is concatenated to an extra latent
representation of the audio signal, denoted as eaudio ∈ Rda .
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4.1.1 Audio encoding

To obtain eaudio, an Embedder, composed of a pre-trained audio encoding network
([64]) and a small projection network, is adopted. This results in:

eaudio = Embedder(a).

The pre-trained audio encoder is based on an iterative audio pre-training framework
to learn Bidirectional Encoder representation from Audio Transformer (BEATs),
where an acoustic tokenizer and an audio Self Supervised Learning (SSL) model
are optimized by iteration ([64]).
The Embedder leverages a pre-trained audio classification network ϕ to represent
the audio. The discriminative network’s last layer is typically used for classification,
and thus it tends to diminish important audio informations which are irrelevant to
the discriminative task. Thus, a concatenation of earlier layers and the last hidden
layer (specifically selecting the 4th, 8th, and 12th layers out of a total of 12) is
taken. This results in a temporal embedding of the audio ϕ(a) ∈ Rd̂×na , where na

is the temporal audio dimension, and d̂ is the new dimension obtained from the
concatenation of the layers.
Then, to learn a projection into the textual embedding space, ϕ(a) is forwarded in
two linear layers, W1 ∈ Rd̂×d̂ and W2 ∈ Rd̂×daudio , with a GELU non-linear function
σ between them:

ēaudio = W2σ(W1ϕ(a)).

Standing for Gaussian Error Linear Unit, the GELU function is an activation
function defined as: GELU(x) = xΦ(x), where Φ(x) is the standard Gaussian
cumulative distribution function.
Finally, an attentive pooling layer is applied to a sequence of 248, reducing the
temporal dimension of the audio signal, i.e.,

eaudio = Atten-Pooling(ēaudio).
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Figure 4.2: Schematic representation of the projection network inside the Embed-
der.

4.1.2 Optimization

During the optimization process (i.e., the training phase), the loss adopted is an
additional one that complements LLDM, which involves encoding the label of the
image, denoted by l ∈ Rnl×da , where nl represents the label’s length. The label is
encoded using the generative model’s textual encoder, and then the spatial dimen-
sion is reduced using average pooling, i.e., l̂ = Avg-Pooling(l). The classification
loss is defined as follows:

LCL =
1− ⟨eaudio, l̂⟩

∥eaudio∥∥l̂∥

2

.

Intuitively, this term ensures that the audio embedding remains close to the
image’s concept, facilitating faster and stabler convergence. Finally, an l1 norm
regularization term is added to the encoded audio token, in order to let it be more
evenly distributed.
The overall loss that is optimized is given by

L = LLDM + λl1∥eaudio∥1
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where λl1 is a regularization term for the l1 norm.
The overall loss that is optimized with classification loss is given by

L = LLDM + λl1∥eaudio∥1 + λCLLCL

where λCL is a regularization term for the classification loss.

4.1.3 Evaluation functions
Evaluation functions in a context of artistic images generation from music inputs is
an opened problem ([50]). Standard measures like FID (Fréchet Inception Distance)
or AIC (Audio-Image Content) can be helpful to compare different performances
and establish baselines. However, in an experimental context, they can reduce
the possibility of exploring models’ potential. For the method proposed here, the
following objective evaluation functions are considered:

- Audio-Image Similarity (AIS), that ideally measures the similarity between
the semantic input audio and generated image features. As Yariv et al. ([80])
do for AudioToken, Wav2CLIP model ([74]) is employed. The Wav2CLIP
model enables to measure the similarity between representations of an audio
and image pair. This allows to quantify to which extent the generated image
describes the audio. Leveraging the Wav2CLIP embedding representations
for audio and images, the similarity between two embedded vectors, namely u
and v, can be expressed as:

cos (θ) = ⟨u, v⟩
∥u∥∥v∥

where θ is the angle between the two vectors. This measure is also known as
cosine similarity. The AIS measure is, then, obtained as the mean percentage
of the distances between similarities computed with generated images and
their respective audio inputs, and mean similarities computed with the same
generated images and all audios in the test set. Formally:

AIS =


1− cos−1

qG
i=1

 sim(ig ,ai)−
qT

j /=i,j=1

1
sim(ig,aj )

T

2
G

 · 2
π

+ 1

2

 · 100

where G and T are, respectively, the number of generated images and the
number of audio file in the test set, sim(ig, ai) is the similarity computed
between the generated image ig and its corresponding music input ai, and
sim(ig, aj) is the similarity computed between the generated image ig and a
generic music input inside the test set;
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- Image-Image Similarity (IIS), that measures the semantic similarity be-
tween the generated image and the ground truth one (i.e., the one associated
with the music input adopted to generate the image). Again, the same
reference-based method used to compute the AIS metric is employed. The
only difference is that, in this case, music inputs and all audios in the test set
are replaced, respectively, with the ground truth images and all images in the
test set. Formally:

IIS =


1− cos−1

qG
i=1

 sim(ig ,i)−
qT

j /=i,j=1

1
sim(ig,j)

T

2
G

 · 2
π

+ 1

2

 · 100

where T , now, is the number of images in the test set, i is the ground truth
image relative to the generated image ig, and j is a generic image inside the
test set;

- Fréchet Inception Distance (FID), that compares the distribution of the
generated images against the original ones using an internal representation
obtained from a pre-trained model (in this case, [47]). It is a standard score,
introduced for the first time by Heusel et al. ([30]) that, essentially, measures
the quality of the generated images. For any two probability distributions, µ
and ν over Rn, having finite mean and variance, their Fréchet distance is:

dF (µ, ν) :=
A

inf
γ∈Γ(µ,ν)

Ú
Rn×Rn

∥x− y∥2dγ(x, y)
B 1

2

where Γ(µ, ν) is the set of all measures on Rn×Rn with marginal distributions
µ and ν, respectively, on the first and second factors (in other words, the FID
measure is the 2-Wasserstein distance on Rn);

- Generated Image-Image Label Similarity (GIILS), that relies on the
same similarity measure used to compute AIS and IIS but, this time, applied
to the generated images obtained from music inputs belonging to the same
category. The internal mean, thus, is computed with respect to the generated
images space. Formally:

GIILS =


1− cos−1

q(igL
, jgL

)

 sim(igL
, jgL

)−
q

jg /=igL

1
sim(igL

, jg)
G

2
#(igL

, jgL
)

 · 2
π

+ 1

2

 · 100

where (igL
, jgL

) is a pair of generated images from music inputs having the
same label L, and jg is a generic generated image.
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4.2 Adaptation of the model
In a context of artistic image generation from music input, leveraging the Au-
dioToken architecture implies mainly working on the type of data the model needs
to receive. In fact, in the case of the method described by Yariv et al. ([80]),
a single datum is a 10 seconds video, taken from the VGG-Sound dataset (i.e,
an audio-visual correspondent dataset consisting of short clips of audio sounds
extracted from YouTube videos, as described in [45]), while, in the case of the
image-music dataset, a single datum can be an image or an audio file.
Authors of [80] extract a random frame from the VGG-Sound video by selecting
among those with the highest CLIP score ([60]) relative to the VGG-Sound label
of the video. Then, the aforemontioned frame is coupled with the audio file of
the video, in order to obtain the image-audio pair to be processed by the model.
Instead, an image-audio pair from the image-music dataset is created as follows:
for each audio file of the dataset, its corresponding image is sampled from those
belonging to the same category of the audio file. Thus, the resulting image-audio
pair is ready to be processed following the same pipeline as AudioToken.
Moreover, Yariv et al. ([80]) do not need to learn a new token for each individual
class of audio or type scene, because the generative model is also conditioned by the
trasformation of an initial prompt. In the case of the audio-image music dataset,
the prompt is changed from “a photo of” to “an art image of”.
Altough the AudioToken code does not include a proper validation phase, the
model adopted for the image-music dataset does have one.
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Chapter 5

Experiments and results

Results of 2 out of a series of experiments are provided in the next section. The
dataset adopted is the customized music-image dataset described in Chapter 3,
which consists of 24216 samples for each type of file, grouped into 18 labeled
categories. As far as the generative part is concerned, ImageBind’s unified latent
([75]), together with CompVis/stable-diffusion-v1-4 ([72]) are adopted, resulting in
a 8853507 parameters model.

5.1 Experiments

5.1.1 Music-image conditional model 1

For this experiment only the prjoection network is optimized, i.e., the pre-trained
audio encoder network and the pre-trained text-to-image generative network remain
frozen. The model is trained on a Nvidia A100 for 25 epochs, with an initial learning
rate of 8e− 5, a training batch size equal to 8, a validation batch size equal to 1
and a cosine learning rate schedule. This last condition means that the learning
rate parameter of the model is forced to change during the training phase according
to a periodic function, defined as:

ηt = ηmin + 1
2 (ηmax − ηmin)

3
1 + cos

3
t

T
π
44

where t is a time step, ηmin is the initial learning rate, ηmax is the finale learning
rate, and T is the total number of training steps.
Figure 5.1 shows the training and validation losses graph.
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Figure 5.1: Train (blue) and validation (purple) losses performance for the first
experiment.

The validation loss trend is irregular and does not decrease steadily. On the
other hand, although faint, the training loss shows a decreasing profile.
Results of the objective evaluation functions are computed after generating 335
images from music inputs sampled inside the test set. The weights adopted to run
this inference are those learned at epoch 21 because, as shown by Figure 5.1, in
that circumstance losses are at their lowest values. Table 5.1 contains the AIS, IIS
and FID values, obtained for the aforementioned generated images.

METHOD METRIC
AIS ↑ IIS ↑ FID ↓

Music-image conditional model 1 50.15 49.62 179.16

Table 5.1: AIS, IIS and FID values obtained from 335 images generated during
the first experiment, with respect to the distribution of the test samples (for AIS
and IIS scores) and the distribution of the ground truth images (for the FID score).

Table 5.2 shows ordered results of the GIILS measure computations over 10
generated images, sampled among those obtained with a specific input category.
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MUSIC INPUTS LABEL GIILS ↑
Renaissance symbolism 58.70

Baroque Classical symbolism 57.91
Electronic music 56.12

Renaissance secular subject 54.77
20th century abstractionism 54.38

Romanticism open view 54.29
Heavy metal 53.90

African traditional folklore 53.75
20th century experimental open view 53.49
20th century traditional open view 53.41
20th century experimental figure 53.31

Asian traditional folklore 52.92
Romanticism figure 52.44

American traditional folklore 52.35
European traditional folklore 52.21
Modern instrumental music 51.87

Baroque Classical secular subject 51.56
20th century traditional figure 51.31

Table 5.2: Ordered mean percentage values of similarities computed between
all images generated from 10 music inputs belonging to the same category, with
respect to the distribution of the 335 generated images, during the first experiment.

As Table 5.2 shows, GIILS measures are significantly higher than AIS and IIS
values for almost every label. This indicates that the model is able to recognize
the input music context and adapt to it during the inference phase.
Next figures are selected in order to visualize the semantic relation among outputs
generated from music inputs having the same label (i.e., the GIILS measure) and
between these outputs and their input label. Some of these figures (as figures 5.6,
5.10, 5.11, and 5.13), can be considered definitely similar to the their label content.
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Figure 5.2: 4 images generated from music inputs with label 20th century
traditional figure, during the first experiment.

Figure 5.3: 4 images generated from music inputs with label 20th century
experimental figure, during the first experiment.

63



Experiments and results

Figure 5.4: 4 images generated from music inputs with label 20th century
traditional open view, during the first experiment.

Figure 5.5: 4 images generated from music inputs with label 20th century
experimental open view, during the first experiment.
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Figure 5.6: 4 images generated from music inputs with label Romanticism open
view, during the first experiment.

Figure 5.7: 4 images generated from music inputs with label Romanticism figure,
during the first experiment.
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Figure 5.8: 4 images generated from music inputs with label Electronic music,
during the first experiment.

Figure 5.9: 4 images generated from music inputs with label Heavy metal, during
the first experiment.
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Figure 5.10: 4 images generated from music inputs with label Renaissance secular
subject, during the first experiment.

Figure 5.11: 4 images generated from music inputs with label Baroque Classical
secular subject, during the first experiment.
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Figure 5.12: 4 images generated from music inputs with label African traditional
folklore, during the first experiment.

Figure 5.13: 4 images generated from music inputs with label Asian traditional
folklore, during the first experiment.
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Figure 5.14: 4 images generated from music inputs with label American traditional
folklore, during the first experiment.

5.1.2 Music-image conditional model 2

In the second experiment, the optimization phase involves the projection network,
as well as the pre-trained audio encoder network and the pre-trained text-to-image
generative network. The model is trained on a Nvidia A100 for 50 epochs, with an
initial learning rate of 1e− 5, a training batch size equal to 8, a validation batch
size equal to 8, and a cosine learning rate schedule.
Figure 5.15 shows the training and validation losses graph.

Figure 5.15: Train (blue) and validation (purple) losses performance for the
second experiment.
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Not taking into account the first 8 epochs, the validation loss graph decreases
irregularly at least until epoch 36, where it reaches its minimum. On the other
hand, the training loss, apart from the first 10 epochs, decreases irregularly until
epoch 41.
Results of the objective evaluation functions are computed after generating 335
images from music inputs sampled inside the test set. The weights adopted to run
this inference are those learned at epoch 36 because, as shown by Figure 5.15, in
that circumstance the validation loss is at its lowest value and the training loss is
almost at its lowest value. Table 5.3 contains the AIS, IIS and FID values for the
aforementioned generated images.

METHOD METRIC
AIS ↑ IIS ↑ FID ↓

Music-image conditional model 2 49.91 50.03 191.73

Table 5.3: AIS, IIS and FID values obtained from 335 images generated during
the second experiment, with respect to the distribution of the test samples (for AIS
and IIS scores) and the distribution of the ground truth images (for the FID score).

Table 5.4 shows ordered results of the GIILS measure computations over 10
generated images, sampled among those obtained with a specific input category.
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MUSIC INPUTS LABEL GIILS ↑
Renaissance symbolism 58.28

Baroque Classical symbolism 57.16
Renaissance secular subject 54.85

Electronic music 53.83
Heavy metal 53.80

Romanticism figure 53.72
20th century abstractionism 53.48

20th century experimental open view 53.32
20th century experimental figure 53.12

American traditional folklore 52.86
African traditional folklore 52.75

European traditional folklore 52.00
Romanticism open view 51.97

20th century traditional figure 51.76
Asian traditional folklore 51.44

Modern instrumental music 51.35
Baroque Classical secular subject 51.29

20th century traditional open view 50.96

Table 5.4: Ordered mean percentage values of similarities computed between all
images generated from 10 music inputs belonging to the same category, with respect
to the distribution of the 335 generated images, during the second experiment.

Also in this case, as Table 5.2 shows, GIILS measures are significantly higher
than AIS and IIS values for almost every label. Again, the model is able to recognize
the input music context and adapt to it during the inference phase. Anyway, by
comparing the objective metrics results of the second experiment to those obtained
in the first one, it is possible to notice that there are no significant changes in
the values, except for the fact that the measurements in Table 5.4 are all lower
than the corresponding ones (i.e., those with the same rank) in Table 5.2. Given
the definition of the GIILS metric, this indicates a higher tendency to diversify
outputs generated from the same context inputs by the model with the second
hyperparameter configuration compared to the first one.
Next qualitative results, such as figures 5.17, 5.19, 5.22, 5.24, 5.28, 5.31, and 5.32,
obtained from the second experiment, decisively validate what has just been stated.
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Figure 5.16: 4 images generated from music inputs with label 20th century
abstractionism, during the second experiment.

Figure 5.17: 4 images generated from music inputs with label 20th century
experimental figure, during the second experiment.
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Figure 5.18: 4 images generated from music inputs with label 20th century
traditional open view, during the second experiment.

Figure 5.19: 4 images generated from music inputs with label 20th century
experimental open view, during the second experiment.
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Figure 5.20: 4 images generated from music inputs with label Romanticism open
view, during the second experiment.

Figure 5.21: 4 images generated from music inputs with label Romanticism figure,
during the second experiment.
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Figure 5.22: 4 images generated from music inputs with label Electronic music,
during the second experiment.

Figure 5.23: 4 images generated from music inputs with label Heavy metal, during
the second experiment.
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Figure 5.24: 4 images generated from music inputs with label Renaissance secular
subject, during the second experiment.

Figure 5.25: 4 images generated from music inputs with label Baroque Classical
secular subject, during the second experiment.
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Figure 5.26: 4 images generated from music inputs with label African traditional
folklore, during the second experiment.

Figure 5.27: 4 images generated from music inputs with label Asian traditional
folklore, during the second experiment.
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Figure 5.28: 4 images generated from music inputs with label American traditional
folklore, during the second experiment.

Figure 5.29: 4 images generated from music inputs with label 20th century
traditional figure, during the second experiment.
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Figure 5.30: 4 images generated from music inputs with label Baroque Classical
symbolism, during the second experiment.

Figure 5.31: 4 images generated from music inputs with label European traditional
folklore, during the second experiment.
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Figure 5.32: 4 images generated from music inputs with label Modern instrumental
music, during the second experiment.

Figure 5.33: 4 images generated from music inputs with label Renaissance
symbolism, during the second experiment.
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Chapter 6

Conclusions

This thesis introduces a method for leveraging text-conditioned generative models
based on music conditioning. The developed method produces artistic images that
are historically and semantically related to the music inputs used to generate them,
thanks to a structured categorization of a customized dataset. The benefits of
the proposed methodology are evaluated through a comprehensive framework that
takes into account objective metrics, following a typical semantic knowledge extrac-
tion approach. The model proposed is only a first step toward music-conditioned
images generation and the introduction of new evaluation frameworks. From this
perspective, the research project described in this thesis shows many interesting
aspects that warrant further investigations.
First of all, given the complexity of the model, it is crucial to define a proper
validation setup, capable of efficiently handling hyperparameters changes during
the model training phase. Moreover, even though dealing with pre-trained models
provides clear advantages during the testing phase of the experiments, it can nega-
tively affects attempts to reduce losses, especially when the trainable architectures
are significantly smaller than the pre-trained ones. Unfortunately, traditional
machine learning models rely on some well known validation techniques (e.g.,cross-
validation, bootstrap, etc.) that, when dealing with large datasets (as in the case of
generative modeling), can not be adopted due to computational constraints. That
is why a more realistic approach to validate the training results in a generative
modeling framework could start from the application of dimensionality reduction
methodologies (e.g., feature selection, random search, Bayesian optimization, etc.).

AI tools investigating creativity can be very useful to our community for a pletora
of reasons (research, entertainment, education, etc.). Nevertheless, due to the depth
and diversity of the semantic content related to a piece of art, especially when
dealing with multimodal generative learning, structuring a priori the connections
between inputs and outputs that a model needs to understand is fundamental.
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From this point of view, music-image association rules introduced in this work
represent only one of many possible strategies, with respect to a specific purpose,
that can be adopted to establish basic relations among data. Then, evaluation
metrics (both subjective and objective) for the generated outputs could be selected
according to the aforementioned connections. A very important work that sheds
light on this issue is that of Theis et al. ([24]), concerning the significant inde-
pendence of three of the most commonly used criteria (i.e, average log-likelihood,
Parzen window estimates, and visual fidelity of samples) to evaluate and interpret
results of generative models. Benny et al. ([50]), moreover, show that it is also
possible to introduce new metrics for evaluating generative model performance in
the class-conditional image generation setting. In this respect, the GILLS metric
defined in Chapter 4 could be considered a valid starting point for introducing a
creativity measure in a generative model framework like the one depicted in this
thesis. Specifically, the similarity among generated images from inputs having the
same label could serve as a penalization factor for the model’s ability to diversify
outputs for a specific task, with respect to predefined thresholds.
Finally, considering that open problems such as those involving AI and creativity
require numerous interdisciplinary studies, it is essential that collaboration and
sharing become the guiding principles for the entire community working in this
field.
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Appendix

Below are some images generated with the music-image multimodal generative
model, using music inputs taken out of the dataset. A brief description of the
input is provided for every image shown. Additionally, except in the case of the
2 experiments depicted in Chapter 5, the training hyperparameter configuration
adopted to achieve that specific inference is also provided.

Preliminary model 1

The model is trained on a Nvidia GeForce RTX 3060 for 8 epochs, with an initial
learning rate of 8e − 5, a training batch size equal to 1, gradient accumulation
step of 4, a validation batch size equal to 1, and a constant learning rate schedule.
Weights used for the generation are taken at epoch 8.

Figure 1: An electronic music sample. The music is essentially experimental,
obtained with a mixture of pre-sampled traditional and concrete sounds.
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Figure 2: Sound of horses passing through a wood.

Figure 3: A melancholic piano improvisation recording.
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Figure 4: A melodic fragment of a suite for piano and alto saxophone, named
Suite hellenique and composed by Pedro Iturrlade (Falces, July 13 1929 – Madrid,
November 1 2020).

Preliminary model 2

The model is trained on a Nvidia GeForce RTX 3060 for 13 epochs, with an initial
learning rate of 8e− 5, a training batch size equal to 1, gradient accumulation step
of 4, a validation batch size equal to 1, and a cosine learning rate schedule. An l2
norm regularization term equal to 0.01 for the encoded audio is added to the loss
function, that becomes:

L = LLDM + λl1∥eaudio∥1 + λl2∥eaudio∥2 + λCLLCL.

Weights used for the generation are taken at epoch 13.
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Figure 5: An electronic music sample. Sounds are not traditional, but they are
obtained with a digital synthesizer.

Figure 6: Another electronic music sample. The music is a combination of concrete
(recorded voices) and digital sounds.
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Figure 7: A fragment of a digital symphony.

Figure 8: A digital noise/industrial music sample.
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Music-image conditional model 1

Figure 9: 4 images generated from a 90’s dance music sample.

Figure 10: 4 images generated from an experimental music fragment, realized
with an electric piano, a classical guitar and a bass guitar.
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Figure 11: 4 images generated from a fragment of a nostalgic piano improvisation
in jazz style.

Figure 12: 4 images generated from a two violins canon sample. The music style
is mainly classical, and the imitation is realized in unison.
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Figure 13: 4 images generated from a melodic fragment of a tonal composition
for flute and harp.

Music-image conditional model 2

Figure 14: 4 images generated from an experimental electronic piece of music
titled The Witchfinder, composed by a duo called Amorphous Androgynous.
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Figure 15: 4 images generated from a recording of birds chirping in the early
morning.

Figure 16: 4 images generated from a fragment of a dynamic piano improvisation
in G-flat major.
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Figure 17: 4 images generated from a fragment of a piano prelude, influenced
primarily by the early piano pieces from Mikrokosmos, a work composed by Béla
Bartók (Nagyszentmiklós, March 25, 1881 – New York, September 26, 1945).

Figure 18: 4 images generated from an elaborately manipulated (i.e., distorting
sounds) improvisation for electric piano and alto saxophone.
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Figure 19: 4 images generated from a fragment of The Caterpillar Song, featured
in the famous Disney movie Alice in Wonderland.
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