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Summary

This study focuses on vehicle simulation-based charging planning for battery
electric bus (BEB) fleets. As urban transportation shifts towards sustainable
energy solutions, the adoption of BEBs is increasing. The driving range of BEBs
can not guarantee that they can complete the specified tasks without charging for a
whole day. Effective charging strategies are crucial to maximize vehicle utilization
and minimize energy costs. This Master’s Thesis introduces a four-step charging
optimization model that integrates traffic conditions, driving cycles, SOC of battery,
time-of-use tariffs and passenger numbers considerations. MATLAB-SUMO co-
simulation was used to create unique driving cycles for each bus line at predefined
times, capturing dynamic driver behavior, accounting for traffic flows and traffic
lights. Using a backward energy consumption model, cost tables were developed
that incorporate electric motor efficiency and braking energy recovery, reflecting
trip length, trip duration variability, and energy consumption. An optimization
algorithm was designed to minimize the number of BEBs and the overall electricity
cost, considering time-of-use (TOU) tariffs, effectively optimizing the charging plan.
The influence of passenger numbers on energy consumption was validated, with the
maximum SOC difference between validated and optimized values remaining below
3%, confirming the practicality of the optimized charging plan. This study provides
a feasible and efficient charging management solution for sustainable urban public
transportation.
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Chapter 1

Introduction

Air pollution caused by vehicles propelled by combustion engines is a pressing
environmental concern with significant implications for public health and the en-
vironment [1]. As shown in Figure 1.1, the combustion of fossil fuels in vehicle
engines releases a variety of pollutants, including sulfur dioxide (SO2), nitrogen
oxides (NOX), particulate matter (PM), carbon monoxide (CO), and volatile
organic compounds (V OCs), into the atmosphere [2]. These pollutants can have
detrimental effects on air quality, leading to respiratory illnesses, cardiovascular
diseases, and premature mortality among exposed populations [3][4].

Figure 1.1: Selected primary air pollutants and their sources, 2015 [2]
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Introduction

Emission mitigation has emerged as a critical focus of the 21st century, with
the adverse effects of continuously rising emissions becoming increasingly apparent
on both global and local levels [5]. Reducing the usage of fossil fuels is widely
recognized as a consensus measure to address this issue [6].

Public bus systems are a vital part of the multi-modal transportation network,
offering passengers an affordable and environmentally friendly way to travel. As
depicted in the Figure 1.2, between 2022 and 2050, passenger travel by bus in cities
around the world is expected to nearly double [7].

Figure 1.2: Global urban passenger travel demand for bus travel from 2019 to
2022 with a forecast through 2050, by region

Public bus systems are instrumental in alleviating traffic congestion and cutting
down on exhaust emissions, thereby contributing significantly to urban sustainabil-
ity and the reduction of the overall carbon footprint [8]. In 2022, diesel-powered
buses remained the most popular in the EU, accounting for 67.3% of all new
bus sales [9]. Traditional bus fleets, which predominantly rely on diesel engines,
face challenges related to low energy efficiency, emissions, and dependency on oil.
These issues not only impact the environment negatively but also lead to higher
operational costs and dependency on fossil fuels [10].

In recent times, Battery Electric Buses (BEBs) have emerged as a promising
alternative for traditional bus fleets, gaining increasing attention [11][12]. BEBs
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offer many advantages over their diesel counterparts. They boast superior energy
efficiency, emitting zero tailpipe emissions, enhancing reliability, and offering main-
tenance benefits [13]. Moreover, BEBs have the flexibility to utilize renewable
energy sources like wind, solar, and hydroelectric power, further solidifying their
appeal as an environmentally sustainable option for public transportation [11][14].

Compared to other types of vehicles, public buses primarily operate in urban
environments where their speed profiles are characterized by continuous accelera-
tions and brakings [15]. This unique operational pattern is due to frequent stops
for picking up and dropping off passengers at various points throughout the city.
The need to accelerate and brake very frequently makes the regenerative braking
capability of BEBs crucial. In BEBs, the energy during braking is captured and
converted back into usable electrical energy, thereby significantly improving overall
energy efficiency. This is in contrast to internal combustion engine buses (ICEBs),
where the energy during braking is simply wasted as heat, resulting in higher fuel
consumption and lower energy efficiency [13].

By employing the regenerative braking technology, BEBs can not only extend
their range but also reduce the wear and tear on braking systems, leading to lower
maintenance costs and longer service life [10][16]. This ability to recover and
reuse energy highlights the importance of BEBs in creating a more sustainable
and efficient urban transportation network. Furthermore, the reduction in tailpipe
emissions contributes to improved air quality in urban areas, providing a healthier
environment for residents [11][14].

Despite the considerable environmental advantages and energy efficiency of
BEBs, their market penetration remains relatively constrained across most regions.
In 2022, sales of new electrically-chargeable buses in the EU increased to reach
3,505 units, only accounting for 12.7% of the total EU bus market [9]. The primary
drivers behind this phenomenon are the elevated purchase costs of BEBs and their
limited driving range compared to alternative bus technologies.

The substantial cost of BEBs is primarily attributed to the expensive lithium-
ion battery technology, which accounts for nearly one-third of the total bus cost.
Despite notable reductions in lithium-ion battery costs over the past decade, it is
expected to remain relatively expensive for the foreseeable future [17].

Diesel buses boast a maximum driving range exceeding 300 km in urban condi-
tions [18]. In contrast, most electric buses currently available on the market offer a
maximum driving range ranging from 70 km to 200 km. This range is 25% to 65%
less than that of diesel buses, posing challenges for continuous operation without
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the need for recharging [11].

This driving range constraint of BEBs proves to be especially challenging. The
relatively long time required by battery recharging is a significant factor. In
comparison, refuelling diesel vehicles, the currently dominant technology in local
transportation, is much quicker [19]. For example, a Build Your Dreams (BYD)
BEB equipped with a 547 kWh battery pack would require over 20 hours to reach
full charge when utilizing a charging power of 20 kW .

The emerging technology of fast charging holds promising potential to alleviate
the aforementioned drawbacks associated with BEBs about recharging time. Fast-
charging stations with a charging power up to 350 kW have been available in the
market [20]. Fast-charging technology enables BEBs to take advantage of the dwell
time between trips to rapidly recharge its battery. This capability allows the BEBs
to sustain continuous on-route operations even with a relatively modest battery
capacity. But it may significantly increase electricity costs and thus lead to high
operating costs.

Although fast-charging technology indeed enables continuous BEBs operations,
it also presents a double-edged sword. On one hand, fast charging offers the advan-
tage of shorter recharging times, which is beneficial for meeting urgent charging
needs. On the other hand, it also poses risks such as deteriorating battery safety,
accelerating battery degradation, and necessitating advanced electric charging
equipment [21][22].

Given these obstacles, a critical daily operational concern for BEBs is devising
cost-effective schedules and coordinating charging activities. This entails consider-
ing various constraints, including physical, financial, institutional, and managerial
factors. Inadequate charging scheduling and management can exacerbate oper-
ational challenges, heighten range anxiety, raise charging and operating costs,
diminish the economic appeal of electric buses, and impose substantial strain on
the power grid [23][24]. There has been extensive research conducted on recharging
scheduling for BEBs [25][26][27].

The actual driving range of BEBs from a full charge can be influenced by a variety
of factors, including the state of charge (SOC) of battery, drivers’ driving behaviors,
traffic conditions, efficiency of Electric Motor (EM) and number of passengers on
the BEB. However, in the studies we mentioned above, the energy consumption
rate of bus batteries during electric bus operation is assumed as a constant, and
not considered the influence of SOC of battery, drivers’ driving behaviors, traffic
conditions, efficiency of Electric Motor (EM) and number of passengers on the BEB.
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The objective of this Master’s Thesis is to address and solve the identified
weaknesses of the existing framework. We have developed a four step working flow
to optimize the charging activity of BEB fleets, whose objective is to minimize
both the number of BEBs and the cost for charging them.

First, we build simulation-based driving cycles taking into account the influence
of traffic condition, drivers’ driving behaviors and time of day which is close to
actual bus operating conditions. Second, we construct cost tables that provide
a more precise energy consumption rate. These tables are based on a backward
vehicle simulator, which takes into account the efficiency of EM, SOC of battery,
brake energy recovery and number of passengers. Furthermore, we proposes an
optimization algorithm for planning of recharging for BEBs, in order to minimize
both the number of BEBs and the electricity costs of daily operation of BEB Fleets.
Finally, we validate the feasibility of our optimal charging plan for BEB fleets
based on variable passengers on them.

The findings and insights gained from this research contribute to the advancement
of the field and offer potential solutions to the existing limitations, thereby offering
promising avenues for further research and development.
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Chapter 2

State of Art

As stated in Chapter 1, this Master’s Thesis has developed a four-step methodology
to plan the charging activity of BEB fleets with the aim to minimize both the
number of BEBs and the total cost to charge them.

To better develop our methodology, we have explored deeply into the BEB charg-
ing scheduling problem. Additionally, we have thoroughly examined the energy
consumption patterns of BEBs and the vehicle models used for BEBs, ensuring a
comprehensive understanding of all relevant factors.

2.1 Charging Scheduling for BEB Fleets
Many authors have addressed the charging scheduling problem, focusing on mini-
mizing charging costs and managing the power load at charging stations. Under
dynamic electricity demands and fluctuating electricity prices, the operating elec-
tricity cost is highly dependent on the charging schedule. Additionally, electric
bus charging stations consume significant amounts of power, making it essential to
arrange charging schedules properly to minimize energy costs.

An optimization charging scheduling framework for BEBs in an urban pub-
lic transit network was proposed [25]. This framework features a mixed-integer
programming optimization model that considers both the configuration of the
transit bus network and the technical characteristics of fast charging systems. The
proposed optimization framework aims to minimize the total costs of operating
an electric bus recharging system and determines both planning decisions, such as
the location and capacity of charging stations, and operational decisions, such as
recharging schedules. However, it’s important to note that they utilize a constant
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value for unit travel cost and do not consider traffic conditions in their model.

Another comprehensive modeling framework was presented which was designed
to optimize charging scheduling and management for a fast-charging BEBs system
[26]. They have tackled the optimal charging scheduling problem for a fast-charging
battery electric bus system, taking into account electricity demand charges and
time of use (TOU) rate structure. A limitation of their study is that it assumes
a deterministic nature, where both the timetable and the energy consumption of
BEBs are predetermined parameters. Additionally, their study considers an electric
bus system with predefined fleet size, battery capacity, and bus line schedules,
which may not fully capture the dynamic nature of real-world transit operations.

Recently, a mixed-integer programming model with a linear structure for the
proposed charging scheduling problem was developed [27]. Their model incorpo-
rates various factors, including individual electricity charging and consumption
rate restrictions, charging window constraints, battery electricity level limits, TOU
charging tariffs, and site-specific electricity load capacities, ensuring a compre-
hensive approach to optimizing charging scheduling. The mixed linear integer
programming model proposed by them is both concise and versatile, making it
suitable as a foundational component in more intricate optimization problems
related to electric bus system development and management. But, it’s worth
highlighting that their study utilizes a constant value for unit travel cost and does
not account for traffic conditions too.

In the studies we just discussed, none have taken into account the variability of
energy consumption, which is influenced by several dynamic factors. These factors
include traffic conditions, which can significantly impact energy usage, as well as
other elements such as SOC of BEBs and driving behavior. By neglecting these
variables, the models may not accurately represent real-world scenarios, potentially
leading to suboptimal planning and increased operational costs.

2.2 Energy Consumption of BEBs
In literature, energy consumption of BEBs is determined through different possible
methods. We will discuss three approaches in the flowing section.

2.2.1 Energy Consumption per Unit of Distance or Time
This approach, while straightforward, involves using a single average energy de-
mand value for each type of bus across all routes. It’s commonly employed in
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studies focusing on scheduling problems for BEBs. For instance, in a case study in
Penghu, Taiwan, energy requirements for local bus lines are calculated based on
route distance and fixed specific energy demand values for different-sized e-buses
[28]. Similarly, a single average energy demand values was used, assuming them to
be proportional to total driving distance with no variations throughout the day
[25] [29]. Another example, a study on charging infrastructure requirements in
Stockholm, Sweden, the energy demand for the entire bus network was calculated
based on real trip schedules but assumed it to be proportional to trip distance [30].

While simple to implement, this approach provides only a rough estimate of
energy demand and overlooks variations in traffic conditions and route characteris-
tics such as inclines and declines. Moreover, it fails to account for auxiliary power
consumption, which is drawn constantly, primarily for air conditioning or heating.
Consequently, energy demand due to auxiliary power depends more on trip duration
than trip distance. During peak hours, bus journeys may take considerably longer,
leading to substantially higher energy demand.

2.2.2 Energy Consumption by Using a Standard Driving
Cycle

In this approach, standard driving cycles sourced from literature are utilized. These
cycles are derived from traffic measurements conducted in various cities, with
examples including the Braunschweig, New York City, Orange County, or Paris
bus cycles. Each driving cycle exhibits unique characteristics, and an overview of
these can be found in [31].

Previous studies typically select a driving cycle resembling the conditions of
their study area. For instance, in a literature, several standard driving cycles were
examined and the one with a similar number of bus stops to their study city was
chosen [32]. However, potential differences in traffic conditions, particularly during
peak hours, are not considered. A step forward, in another literature, six different
driving cycles were used to conduct simulations, then the one that best matched
each bus line’s characteristics was selected [33]. A model of bus energy consumption
derived from a standard driving cycle was employed on a small network of seven
bus lines in another study [34].

Standard driving cycles encompass variations such as highway driving or con-
gested traffic. Yet, applying a standard driving cycle from one city to another
inevitably results in discrepancies, as traffic conditions vary between cities and
even within different bus routes within a city. Several driving cycles for heavy-duty
vehicles, including buses, were analyzed, concluding that these cycles can differ
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significantly from real-life conditions [31]. This is particularly true for bus services,
given their low average speed, frequent stops, and high deceleration/acceleration
before/after reaching a stop. A new driving cycle based on real operation data was
constructed, emphasizing the importance of reflecting actual driving characteristics
for credible test results [35]. However, creating an adapted driving cycle is complex
and requires numerous measurements, a process that needs to be repeated for each
bus route.

2.2.3 Energy Consumption from Detailed Measurements
of Driving Profiles

To obtain more accurate values for bus energy demand, measurement equipment
can be installed onboard buses to record energy consumption with high temporal
resolution. Simulation models can then be derived from these results. For instance,
a longitudinal dynamics model was developed in a case study for a loop line in
Aachen, Germany [36]. They derived route characteristics from waypoints defined
via an internet mapping service, such as stop duration and speed limit. The vehicle
model was validated with traction power measurement data from the operation of
serial hybrid buses in another city and applied to various bus lines in Germany.
Later, this model was used as a preprocessing step for energy demand calculations
in Muenster, Germany, and Aachen [37]. However, the authors once again did not
elaborate on how the actual speed profile used in the longitudinal dynamics model
was generated. The velocity profile of a bus line in Berlin was recorded using a
GPS sensor and created an energy demand model [38]. This model was validated
using data from installed equipment measuring speed, auxiliary power, and battery
state of charge on electric buses. The representativeness of laboratory testing
and installed onboard data collectors in BEBs was examined for a demonstration
project in Macao [39]. A large dataset of measurements from diesel buses was used
in Knoxville, USA, to evaluate energy demand and charging needs for city transit
electric buses [40]. They suggested significant cost savings on battery investment
could be achieved with flexible battery configurations and charging strategies based
on individual driving characteristics of bus routes.

However, approaches requiring field-test measurements have inherent scalability
limitations. While manageable for small bus networks, measuring the driving profile
of each bus route becomes impractical for larger networks. Additionally, detailed
measurements are typically carried out for only a few buses, leading to challenges in
considering all bus lines and variations in traffic conditions. Multiple measurements
would be needed for each bus line to account for traffic conditions fully.
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2.3 Vehicle Energy Consumption Models
Vehicle energy consumption models can be divided into two categories: Forward
approach also called “dynamic approach” or cause-effect method, and Backward
approach also called “quasi-static approach” or effect-cause method [41][42].

Figure 2.1: The imagined simulation model topology, with the forward scheme
showed top and the backward scheme showed bottom [41]

2.3.1 Forward model
In the forward scheme, a target speed is provided by a driving cycle and processed
through a driver model. The driver model controls the vehicle’s longitudinal inter-
faces—the accelerator and brake pedals—based on the difference between the target
speed and the actual vehicle speed. The energy carrier is injected into the prime
mover, and the resulting torque is transmitted forward through the powertrain to
the wheels, generating the traction needed for propulsion. Newton’s second law is
applied to determine the vehicle’s acceleration, which is then integrated to obtain
speed and position. This position is fed back into the driving cycle to determine
the new target speed, thus closing the computational loop. The flow of effort in the
powertrain is opposite to that in the backward method, hence the term "forward"
method. Given that this approach more closely mirrors real-world dynamics, a
more accurate term might be "causal" simulation. Figure 2.1 shows this method in
the upper part [41].

In a study, the authors developed an equation-based forward model capable of
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predicting the real-world energy consumption of electric city buses with remark-
able accuracy [43]. Using this model, they investigated the influence of several
significant unmeasured factors, including driving style, elevation profile, number of
stops, route type, and traffic conditions, on energy consumption. They found that
the synthesized best- and worst-case scenarios for these factors resulted in energy
consumption variations ranging from 0.19 kWh/km to 1.34 kWh/km, representing
a twofold variation from the nominal value. These off-nominal factors must be
considered when sizing components and planning range limits for BEBs.

In another study, the authors developed a forward model for a 52 V battery
electric vehicle [44]. Based on this model, they examined the impact of rolling
resistance on the energy consumption of vehicles, particularly compact electric
vehicles in urban scenarios. They found that the rolling resistance contribution
due to longitudinal slip increases the vehicle’s electric efficiency by 0.7 to 0.8
kWh/100km compared to a constant coefficient model.

Additionally, the authors proposed a method for selecting the optimal equiva-
lence factors for charging and discharging by applying a genetic algorithm to a P0
mild hybrid electric vehicle, which they modeled as a forward model in their study
[45]. Their method provides a systematic and deterministic approach to guarantee
an optimal solution, unlike the trial-and-error method. Compared to a technique
known as the shooting method, their approach always ensures an optimal solution,
even under heavy accessory load conditions, where the shooting method fails to
guarantee a charge-sustaining condition.

There is one thing that needs to be pointed out, even though the forward model
is more accurate than the backward approach, the forward approach requires more
computational effort to solve it’s differential equations [46].

2.3.2 Backward model
In the backward scheme, a target speed is provided by a driving cycle. The neces-
sary propulsion force is computed from Newton’s second law and it, together with
the vehicle speed, is propagated from the wheels, through the powertrain, to the
prime mover where the necessary input power for the propulsion effort is computed.
The approach is called backward because the data flows backwards through the
powertrain, but another descriptive name would be ‘inverse dynamic’ simulation.
The arrows in the lower part of Figure 2.1 depict the method [41].

A backward vehicle model of a fuel cell hybrid electric vehicle was developed
and validated in a study [47]. This model is noted for its speed and the reliability
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and consistency of its results, as it simulates all vehicle components over several
driving cycles. Using this backward vehicle model, the authors investigated the
optimal power split between the fuel cell and the battery, employing an ECMS
control method for fuel cell vehicles. They found that the model performs well for
low-load driving cycles such as WLTC, NEDC, JC08, and US06, with an error of
less than or approximately equal to 10%.

Another backward model named "VT-CPEM" was developed to compute the
instantaneous energy consumption of electric vehicles based on the instantaneous
power exerted [48]. This model uses vehicle speed and acceleration levels as input
variables. It complements existing backward vehicle simulators by modeling the
efficiency of instantaneous regenerative braking energy as a function of deceleration
levels. Additionally, due to its simple formulation, the model can be easily integrated
into microscopic traffic simulation software as well as vehicle and smartphone eco-
driving and eco-routing applications. The proposed model accurately estimates
energy consumption, with an average error of 5.9% relative to empirical data.
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Chapter 3

Methodology

The planning of recharging for BEB fleets, which is the primary focus of this
Master’s thesis. We attempt to determine the optimal number of BEBs required
and the charging events for each individual BEB within the fleets, with the objective
of minimizing the total cost of purchasing BEBs and the overall charging cost of the
BEB fleets during a standard operational day. However, there are still constraints
that must be taken into account during this process. For instance, the availability
of charging infrastructure, the limitations of SOC of BEBs, and the limitations
imposed by the existing energy grid. The detailed working flow is shown in Figure
3.1.

Figure 3.1: Architecture of Working Flow

The working flow presented in this Master’s Thesis can be subdivided into four
separate steps, which are Driving Cycle Construction, Cost Table Building,
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Optimization, and Validation. Each of these can be imagined as a block receiv-
ing input from the previous step and generating an output for the following one.

Each block is subdivided into three subsections: Input, Simulation or Opti-
mization, and Output. Once a section is completed, the transition to the next
can be made seamlessly. Detailed exploration of each block and its corresponding
subsections will be presented in the following sections.
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3.1 Vehicle Energy Consumption Model
Vehicle energy consumption model assumes a crucial position in the overall process
of constructing the cost table via energy consumption estimation via backward
model simulation.

3.1.1 Parameters of BEB
In this Master’s thesis, we will model a BYD BEB, as illustrated in Figure 3.2,
which services in Torino. BYD’s 40-foot eBus remains as the best-selling electric bus
model with over 700 vehicles already in service in Europe. The overall dimensions
are 12.2×2.55×3.3 meters, and the maximum passenger capacity is 90. The BEB
is driven by two wheel hub motors.

Figure 3.2: The BEB Utilized in Thesis (Serviced in Turin)

The detailed parameters of the BEB are detailed in Table 3.1.

3.1.2 Backward Vehicle Energy Consumption Model
As the battery acts as the primary and exclusive energy source in a BEB, it plays
a crucial role in providing the necessary power not only for the propulsion of the
vehicle but also for the operation of various accessories that are essential for its
overall functioning. Consequently, we can take advantage of a backward vehicle
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Parameter Symbol Value
Vehicle Curb Mass mcurb 12880 kg

Frontal Area Af 8.5 m2

Aero-Drag Coeff. Cd 0.79 [49]
Rolling Resistance Coeff. Cr 0.01

Passengers Capacity cpas 90
Passenger Mass mpa 68 kg

Tyre Data - 275/70 R22.5
Transmission Ratio i 22

Max. EM Power Pem−max 150*2 kW

Max. EM Torque Tem−max 550*2 Nm

Max. EM Speed nem−max 10000 rpm

Nominal Capacity of Battery Cbat 600 Ah

Nominal Voltage of Battery Vbat 537.6 V

Nominal Energy of Battery Ebat 322.56 kWh

Table 3.1: BEB Main Parameters

energy consumption model, which is graphically represented in Figure 3.3, in order
to accurately calculate and determine the total energy consumption of the vehicle,
thereby enabling us to gain a deeper understanding of its energy requirements.

Figure 3.3: Backward Vehicle Energy Consumption Model
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Mathematical Model of BEB

In the following section, the mathematical model employed to approximate the
BEB under study is presented.

Vehicle Dynamic

In this section, we will discuss two main topics. Firstly, we’ll dive into vehicle
longitudinal dynamic, focusing on calculating the traction power at the wheels.
Secondly, we’ll explore wheels dynamic, aimed at calculating the angular speed of
the wheels and the traction torque generated.

Vehicle Longitudinal Dynamic

As a starting point, the vehicle longitudinal dynamics serves as the theoretical
framework for estimating the tractive effort Ft(N) required to overcome resistance
forces and accelerate the vehicle. Specifically, the tractive effort refers to the
propulsive force transmitted to the ground through the wheels, driving the vehicle
forward, as seen in Equation 3.1:

Ft = Faero + Froll + Fhc + Facc (3.1)

The overall required tractive force (Ft) is considered positive when the battery has
to supply power to the motor, and negative when the motor operates as a generator.

The equivalent aerodynamic drag force, Faero, on a vehicle can be represented
as:

Faero = 1
2ρCdAf (Vx + Vwind)2 (3.2)

where ρ (kg/m3) is the mass density of air, Cd is the aerodynamic drag coefficient,
Af (m2) is the frontal area of the vehicle, which is the projected area of the vehicle
in the direction of travel, Vx (m/s) is the longitudinal vehicle velocity, Vwind (m/s)
is the wind velocity (positive for a headwind and negative for a tailwind).

Atmospheric conditions affect air density ρ and hence can significantly affect
aerodynamic drag. The commonly used standard set of conditions to which all
aerodynamic test data are referred to are a temperature of 15◦C and a barometric
pressure of 101.32 kPa [50]. The corresponding mass density of air ρ is taken as
1.225 kg/m3.

The rolling resistance force (Froll) arises primarily from the interaction between
the vehicle’s tires and the road surface, represented as:

Froll = Crmg ∗ cos(α) (3.3)
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where Cr is rolling Resistance coefficient, m is the total mass of the vehicle, com-
prising both the curb mass of the vehicle and the mass of passengers onboard. g
(m/s2) is the acceleration due to gravity, the corresponding value is taken as 9.8
m/s2. α is the angle of inclination of the road on which the vehicle is traveling.
The angle α is defined to be positive when the vehicle is uphill and is defined to be
negative when the vehicle is downhill.

The hill climbing force (Fhc) denotes the gravitational force component that
acts on a vehicle when ascending a inclination angle α, defined as:

Fhc = mg ∗ sin(α) (3.4)

In accordance with Newton’s second law of motion, the force Facc required to
achieve linear acceleration in a vehicle is expressed by:

Facc = m ∗ a (3.5)

where a (m/s2)is the linear acceleration of the vehicle.

Wheels Dynamic

The traction force exerted by the vehicle is directly produced by the torque applied
to the wheels, which can be calculated by:

Twheel = Ft ∗ rwheel (3.6)

where rwheel (m) is the effective radius of the wheels. The torque applied to the
wheels (Twheel (Nm)) is considered negative when the vehicle is braking.

The angular speed of the wheels ( ωwheel (rad/s)) can be calculated by:

ωwheel = Vx

rwheel

(3.7)

Transmission System

In our vehicle model, the wheels are not directly connected to the motor shaft.
Instead, the transmission system, a single ratio gear system, is used to convert the
torque generated by the motor into the torque required at the wheels. The output
shaft of the transmission system is connected to the wheels, so the output angular
speed of transmission system equals to the angular speed of wheels. The input
angular speed of transmission system, ωt,in (rad/s), can be determined using:

ωt,in = ωwheel ∗ i (3.8)
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The output torque of transmission system equals to the torque of wheels. The
input torque of transmission system is calculated by:

Tt,in = Twheel

i
∗ η

−sign(Twheel)
t (3.9)

where ηt is the efficiency of the single ratio gear system, which is taken as 0.98 [49].

Electric Machine

The shaft of the EM is linked to the input shaft of the transmission system.
Consequently, we can derive the angular speed and torque of the electric motor
from: ωEM = ωt,in

TEM = Tt,in

(3.10)

So, the mechanical power of EM can be calculated by:

PEM,M = TEM ∗ ωEM (3.11)

The mechanical power (PEM,M ) can be positive or negative. If PEM,M > 0, the EM
works as electric motor, converting electrical energy into mechanical energy which
is provided to the wheels. If PEM,M < 0, the EM works as generator, converting
mechanical energy which is provided by the wheels into electrical energy. This
process can be represented by:

PEM,E =


PEM,M

ηEM
for PEM,M > 0

PEM,M ∗ ηEM for PEM,M < 0
(3.12)

where ηEM is the efficiency of EM.

To enhance the precision of modeling the motor’s behavior, in the model proposed
by this Master’s Thesis, we implement a lookup table mechanism to access the
efficiency data of EM, shown in Figure 3.4.

In this Master’s thesis, it was assumed that the torque-speed relationship in
generator mode mirrors that in motor mode, as shown in Figure 3.4, provided that
the braking torque remains below or equal to the maximum generator torque. This
assumption, already established in the literature, ensures consistency in modeling
[51]. However, if the braking torque exceeds this limit, the surplus power is dissi-
pated as heat due to mechanical braking.

Additionally, the regenerative braking system does not apply any braking force
at low vehicle speeds, as the available torque is insufficient [51]. To simulate this
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Figure 3.4: Efficiency Map of EM

operation, the vehicle model integrates a speed-dependent regeneration factor,
denoted as freg. This factor indicates the proportion of available regenerative
braking power that can practically be recovered based on the vehicle’s speed (Vx).
It’s worth noting that there exists a threshold speed (v1) that must be surpassed
for the electrical machine to initiate energy regeneration [52]. Moreover, the
EM achieves its maximum regeneration capability for speeds exceeding another
threshold (v2). For speeds between v1 and v2, it’s assumed that the percentage of
recoverable braking power increases linearly with the vehicle’s speed until reaching
the maximum regeneration capability. In this project, the two speed thresholds
were set as v1 = 10 km/h and v2 = 30 km/h, shown in Figure 3.5.

Considering the aforementioned details, Equation 3.12 can be re-formulated as
follows:

PEM,E =


PEM,M

ηEM
for PEM,M > 0

PEM,M ∗ ηEM ∗ freg for PEM,M < 0
(3.13)

Battery

Since the work of this thesis is focused on BEB, the only energy source is the battery,
unlike hybrid vehicles, no engine is present. Through inverter, the electric power
(PEM,E) required at EM level is converted into electrical power (Pbatt) required at
battery level.

Pbatt =


PEM,E

ηInv
+ Paux for PEM,E > 0

PEM,E ∗ ηInv + Paux for PEM,E < 0
(3.14)
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Figure 3.5: Speed-dependent regeneration factor

where η(inv) is the efficiency of the inverter, which is taken as 95%, and Paux is
the power consumed by auxiliary, which is taken as 10 kW .

The battery open-circuit voltage (VOC(V )) and its internal resistance (Req(Ω))
are depending on the instantaneous values of SOC and scaled with the number of
cells in parallel and series.

VOC = VOC(SOC) (3.15)

Req = Req(SOC) (3.16)

The battery open-circuit voltage and its internal resistance used in this thesis
are shown separately in Figures 3.6 (a) and (b).

Figure 3.6: Battery Property: (a) Open-Circuit Voltage (b) Internal Resistance
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The current drawn from the battery and the SOC are computed as follows [53]:

Ibatt =
VOC −

ñ
V 2

OC − 4 ∗ ReqPbatt

2 ∗ Req

(3.17)

SOC(t + 1) = SOC(t) − Ibatt

Cbatt

tstep

3600 (3.18)
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3.2 Related Software
It is clear from Figure 3.1, two distinct software applications were utilized: MAT-
LAB and SUMO [54][55]. The majority of the work was conducted in the MATLAB
environment. Only the first block involved SUMO, the remaining three blocks were
all executed using MATLAB.

MATLAB is a programming and numeric computing platform used by millions
of engineers and scientists to analyze data, develop algorithms, and create models
[54]. MATLAB combines a desktop environment tuned for iterative analysis and
design processes with a programming language that expresses matrix and array
mathematics directly. It includes the Live Editor for creating scripts that combine
code, output, and formatted text in an executable notebook.

SUMO, an open-source traffic simulation software designed for analyzing trans-
portation systems and simulating traffic scenarios [55]. SUMO was employed
specifically for simulating the BEB dynamics considering the traffic light and traffic
flows in the first block.

In the first block, MATLAB served as the primary platform for executing
the co-simulation, seamlessly integrating with SUMO through the utilization of
TraCI4Matlab [56]. TraCI4Matlab is a specialized implementation of the TraCI
protocol tailored to the MATLAB environment, facilitating smooth communication
between the two software tools. This integration enables seamless interaction, with
SUMO acting as the server fulfilling MATLAB’s requests as the client. A literature
proposed a route planning method for electric vehicles and the authors conducted
the route testing via Matlab–SUMO co-simulation instead of real-life on-road tests.
Their results show that the robustness offered by the energetic estimation has been
improved compared with a standard planning method, which uses the same cost
function to select the stations but only considers nominal electric vehicle range
[53].

Co-simulation was chosen to construct the driving cycle because it offers a more
accurate simulation of BEB dynamics during operation on a fixed bus route. Ve-
locity and acceleration profiles were obtained from MATLAB-SUMO co-simulation,
operating with a time step of 1 second. The decision to employ SUMO for driving
cycle construction was driven by its powerful capabilities and fast computation
speed. As a traffic simulator, SUMO is well-suited for simulating the impact of
traffic conditions and vehicle flows, making it a suitable choice for this project.
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3.3 Driving Cycle Construction

To construct driving cycles, we have to understand the operational pattern of BEBs
throughout the day. Figure 3.7 illustrates the spatial operations of BEBs.

Initially, all BEBs commence their first trip from the depot, denoted as "depot →
terminal". Subsequently, they carry out their daily tasks, represented by "terminal →
terminal". If charging is required during their dwell time at terminal, BEBs pro-
ceed to the terminal charger station, depicted as "terminal → terminal charger".
Once charging is completed, they return to the same terminal, indicated by
"terminal charger → terminal". Finally, upon completing all tasks, BEBs re-
turn to the depot, represented by "terminal → depot". This schematic provides an
overview of the operational sequence followed by BEBs throughout the day.

Figure 3.7: Illustrative example of a spatial operation of BEBs

BEB operations have been categorized into five distinct types. In general, the
terminal charger stations are built inside the terminal stop or very close to it.
Because of this, in this Master’s thesis, we will not construct the driving cycle
of "terminal → terminal charger" and "terminal charger → terminal". Notably,
the operation "terminal → terminal" is unique in that it involves passengers
being transported on the BEB, whereas the trips of "depot → terminal" and
"terminal → depot" do not involve the presence of passengers on the BEB.
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3.3.1 Road Network
The road network in this Master’s thesis is the urban region of Torino. As shown
in Figure 3.8, the network is represented in SUMO framework, and sourced from
OpenStreetMap (OSM) website, an online cartographic service constantly updated
and constructed by volunteer contributors, accessible under an open-content license
[57].

Figure 3.8: Road Network of Torino: (a) OpenStreetMap (b) SUMO Framework

A SUMO network file describes the traffic-related part of a map, the roads and
intersections the simulated vehicles run along or across. At a coarse scale, a SUMO
network is a directed graph. Nodes, named "junctions" in SUMO-context, represent
intersections, and "edges" roads or streets. Note that edges are unidirectional.
Specifically, the SUMO network contains the following information [55]:

• Every street (edge) as a collection of lanes, including the position, shape and
speed limit of every lane,

• Traffic light logics referenced by junctions,

• Junctions, including their right of way regulation,

• Connections between lanes at junctions (nodes).

3.3.2 Bus Route
In this Master’s thesis, the attention was focused on bus lines 12 and 58. The bus
routes and stops shown in Figure 3.9, were obtained from the website of GTT,
Turin’s public transportation company [58].

These two lines consist of three terminals: "VITTORIO EMANUELE II CAP",
"ALLASON CAP" and "BERTOLA CAP", with "ALLASON CAP" serving as a
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Figure 3.9: Bus Lines of Torino: (a) Bus Line 12 (b) Bus Line 58

common terminal. For simplicity, we will denote "VITTORIO EMANUELE II
CAP" as TA, "ALLASON CAP" as TB, and "BERTOLA CAP" as TC . Each bus
line can be segmented into two sections according to the trip direction. The specific
trip lengths and stops are provided in Table 3.2.

Bus Line Trip Direction Trip Length (km) Trip Stops

Bus Line 12 TA → TB 8.2 24
TB → TA 8.2 25

Bus Line 58 TB → TC 9.6 29
TC → TB 9.4 28

Table 3.2: Trip Lengths and Stops of Bus Lines

In the following section, For bus line 12, we refer to "TA → TB" as "Line 12
Southward" and "TB → TA" as "Line 12 Northward". For bus line 58, we refer to
"TB → TC" as "Line 58 Northward" and "TC → TB" as "Line 58 Southward".

As previously discussed, it is essential to note that the edges in the SUMO
framework have a direct correlation with the actual roads that exist in reality. By
carefully referencing the real bus route, we are able to gather the unique edge IDs in
SUMO, which is a crucial step in enabling us to construct the bus route in MATLAB.

In the MATLAB environment, routes are typically expressed as ordered arrays
of cells, where each individual cell is used to indicate the corresponding edge ID, as
illustrated in Figure 3.10. This figure provides a visual representation of how the
bus route is constructed using the edge IDs, and it serves as a valuable resource for
understanding the underlying concepts.

Although a limitation exists in the current road framework, specifically with
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Figure 3.10: Bus Route Representation in MATLAB

regards to the road network’s inability to incorporate altitude information, which is
a critical factor in determining road slope. But in the case of this Master’s Thesis
it is not significant, because the focus is a small urban area that has little elevation
changes along the road network used by the BEBs. Besides, it is also important
to recognize that temperature data, although provided by the user, is greatly
simplified, with a single temperature value applied uniformly throughout the entire
map, a simplification that has been commonly employed in previous studies, but
nonetheless warrants further refinement for more precise results [59][60].

3.3.3 Bus Schedule
In this Master’s thesis, the bus schedule plays a crucial role as a critical constraint
that significantly impacts our optimization objective. Specifically, we define the
bus schedule in accordance with the information gleaned from the GTT website
[58]. The bus schedule essentially outlines the precise timing and frequency of bus
departures and arrivals at specific stops situated along a designated route.

Bus Line Trip Direction First Trip Time Last Trip Time Number of Trips

Bus Line 12 TA → TB 5:00 21:12 61
TB → TA 4:50 21:00 62

Bus Line 58 TB → TC 4:50 21:05 74
TC → TB 5:00 21:00 73

Table 3.3: Bus Schedule

In table 3.3, we define the first trip time, the last trip time and the number of
trips of each bus line. The detailed schedules are shown in Table A.1 to Table A.4,
in Appendix A.
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3.3.4 Passenger Car Traffic Flow
Vehicle flow, also known as traffic flow, refers to the rate at which vehicles travel
through a specific section of roadway over a given period of time [61]. It is typically
expressed as the number of vehicles passing a particular point per unit time, often
measured in vehicles per hour.

As previously stated, the vehicle flow on the road significantly impacts various
aspects of bus operations, including dwell time at stops, dynamic behavior, and
energy consumption. In this Master’s thesis, we incorporate vehicle flow into the
construction of the driving cycle to accurately capture its influence on these factors.
By accounting for vehicle flow during the development of the driving cycle, we
aim to provide a more accurate bus operations that considers real-world traffic
conditions and their implications on bus performance and efficiency.

In the SUMO environment, it is feasible to define repeated vehicle flows, which
share the same parameters as individual vehicle or trip definitions except for the
departure time [55]. The vehicle flow we create is illustrated in Figure 3.11.

Figure 3.11: Passenger Car Traffic Flows
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Traffic flow exhibits temporal variations throughout the day due to changing
travel demands and external factors such as weather and road conditions. This
phenomenon has been extensively studied in transportation research. For instance,
in a literature, the work on nonlinear effects in car-following dynamics, both high-
light the temporal dynamics of traffic flow and its implications for transportation
system management and planning [62].

To accurately represent the varying vehicle flow throughout the day, it’s essential
to assign distinct values to each vehicle flow defined in the SUMO environment. In
this Master’s thesis, we utilize seven distinct values, which is illustrated in Table
3.4, to establish different vehicle flows. This approach ensures that the simulated
traffic patterns align with the temporal dynamics observed in real-world traffic
conditions.

Time of One Day Passenger Car Traffic Flow (vehicles/hour)
0:00-5:00 30
5:00-7:00 50
7:00-9:00 100
9:00-16:00 70
16:00-19:00 90
19:00-21:00 70
21:00-24:00 40

Table 3.4: Passenger Car Traffic Flow of One Day

3.3.5 Driving Cycles Building
In the preceding sections, we have delineated and examined the details of the
road network, as well as the bus lines, encompassing its designated route and
corresponding stops, in addition to the bus schedule, which outlines the precise
timings of departures and frequency, and finally, the vehicle flow, which represents
the movement and circulation of vehicles throughout the road network.

Starting from the network previously described, it is possible to build routes for
the "terminal → terminal" operation, as presented in Algorithm 1.

The construction of driving cycle for buses has the goal to obtain their speed
and acceleration profiles from SUMO simulation, input necessary for the Cost Table
Building phase.
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Algorithm 1 Algorithm to Build Driving Cycle
1: Connect to SUMO Environment
2: Load Road Network ▷ Including vehicle flows
3: Load bus route
4: Load bus schedule for "Line 12 Sud"
5: Load bus schedule for "Line 12 Nord"
6: Load bus schedule for "Line 58 Sud"
7: Load bus schedule for "Line 58 Nord"
8: Create variables to save driving cycle
9: define bus id i, j, k, n for each bus line

10: while True do
11: Perform a simulation step in the SUMO server
12: Returns the current simulation time
13: if non-arrived vehicles is Zero then
14: Break
15: end if
16: if Current time is in bus schedule for "Line 12 Sud" then
17: Busi: Departure from TA, Trip: TA → TB

18: i = i + 1
19: end if
20: if Current time is in bus schedule for "Line 12 Nord" then
21: Busj: Departure from TB, Trip: TB → TA

22: j = j + 1
23: end if
24: if Current time is in bus schedule for "Line 58 Sud" then
25: Busk: Departure from TC , Trip: TC → TB

26: k = k + 1
27: end if
28: if Current time is in bus schedule for "Line 58 Nord" then
29: Busn: Departure from TB, Trip: TB → TC

30: n = n + 1
31: end if
32: Save the driving cycle data of all buses ▷ Including time, velocity,

acceleration and position
33: end while
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3.4 Cost Table Building
The second step followed in the methodology is the definition of a cost table present-
ing the energy required to perform a travel on any line considered at any time slot.
It is however important to point out that the SOC itself heavily influences such
requirements, at least at battery level, since it is a variable affecting the internal
resistance of the battery and therefore the overall efficiency of the bus. For instance,
a BEB with a 90% SOC will exhibit a different variation in SOC changes compared
to another BEB with a 60% SOC when performing the same trip. Therefore, it
is imperative that we take into account the influence of SOC on energy consumption.

In our study, we have constrained the working range of SOC of BEBs to between
20% and 95%. For computational reasons, this interval was discretized into 15
equispaced levels of starting SOC. As every BEB trip yields an overall battery
depletion, the lowest SOC for which energy requirements are computed is 25%, as
no bus with SOC as low as 20% can actually begin a mission.

The number of passengers on BEBs also has a significant impact on the overall
energy consumption. However, it is not practical to incorporate all the possible
scenarios and situations into our cost table, as there are numerous variables at play.
Therefore, in order to build our cost table, we have opted to utilize fixed passenger
numbers. The influence of these passengers will be further validated and confirmed
in Section 3.6, which is dedicated to the validation process. In the context of this
particular study, we have chosen to utilize 70% of the total passenger capacity of
the BEB to construct the cost table.

In our cost table, we have incorporated six distinct parameters of content for
each individual trip:

• The first parameter pertains to the start time of the trip, denoted by the time
of day measured in minutes, which is directly derived from the bus schedule,
thereby ensuring that the timing of each trip is accurately captured.

• The second parameter involves the length of the route, calculated in kilometers,
which is integrated from the driving cycle that we have built from SUMO
simulation, thereby providing a precise measurement of the distance traversed
during each trip.

• The third parameter comprises the energy consumption, expressed in kilowatt-
hours, which is simulated from the BEB model that we have constructed,
taking into account the various factors that influence energy consumption.
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• The fourth parameter entails the specific consumption, measured in kilowatt-
hours per kilometer, which is calculated by dividing the energy consumption by
the length of the route, thereby providing a indicator of the energy efficiency
of each trip, and enabling the identification of opportunities for improvement.

• The fifth parameter corresponds to the trip duration, quantified in minutes,
which is directly derived from the driving cycle, thereby providing a detailed
understanding of the time taken to complete each trip.

• The sixth and final parameter involves the end time of the trip, denoted
by the time of day measured in minutes, which is calculated by adding the
trip duration to the start time of the trip, thereby providing a complete and
accurate picture of each trip.

We construct our cost table by utilizing the script outlined in Algorithm 2,
which provides a detailed and step-by-step guide for building this table.

Algorithm 2 Algorithm to Build Cost Table
1: Load BEB parameters
2: Load driving cycle
3: Load bus schedule
4: Initial SOC table
5: Set numbers of passengers
6: for i = 1: number of trips do
7: for j = 1: number of Initial SOC do
8: SOC = SOCTable(j)
9: for k = 1: time steps of driving cycle do

10: SOC(k+1) = BEBModel(SOC(k),DrivingCycle.Velocity,
DrivingCycle.Acceleration, BEB Parameters, Passengers)

11: end for
12: end for
13: CostTable(i,1,j): Start Time of Trip
14: CostTable(i,2,j): Length of Trip
15: CostTable(i,3,j): Energy Consumption of Trip
16: CostTable(i,4,j): Specific Consumption of Trip
17: CostTable(i,5,j): Duration of Trip
18: CostTable(i,6,j): End Time of Trip
19: end for
20: Save cost table
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3.5 Optimization
The primary objective of this Master’s Thesis is to effectively plan the charging
activity for BEB fleets with the aim of minimizing two crucial aspects: the total
number of BEBs, and the overall cost incurred to recharge all the BEBs within a
single day.

To achieve this goal, we will initially organize our objective into a objective
function. Subsequently, we will define the constraints that govern our objective
function, ensuring that all necessary parameters are taken into account. Finally, we
will design and develop an optimization algorithm capable of solving our complex
objective function.

Now, let us explore each section in greater detail, providing a thorough exami-
nation of the methodologies and techniques employed to achieve our objectives.

3.5.1 Objective Function
The proposed planning of recharging for BEB fleets problem is to minimize the total
number of BEBs and charging cost by determining whether a particular BEB from
the fleet should be charged or not at a specific time interval during an operational
day. This decision-making process necessitates the simultaneous consideration of
multiple crucial factors, including the bus schedule, TOU tariffs, the occupation
status of charging stations, the limitations imposed by the SOC of the BEBs, and
the energy consumption. In order to facilitate a more in-depth discussion of this
multifaceted problem, the notation employed in the objective function is outlined
in Table 3.5, providing a reference point for further analysis and exploration.

Notation Explanation
N The number of BEBs

pBEB,n The price to purchase BEB n
qe,BEB,n The amount of electricity charged into BEB n

pe,t The electricity price of a charging time t
α Weight factor accounting for BEB price

Table 3.5: Notations used in Objective Function

Following the above notation, a mathematical objective function for the proposed
charging scheduling problem is formulated.

obj = min
NØ

n=1
(pBEB,n ∗ α + (qe,BEB,n ∗ pe,t) ∗ (1 − α)) (3.19)
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3.5.2 Constraints

To address the objective function, we will identify and emphasize the essential
features of the proposed problem, then explain and elaborate on the key factors
and constraints that have been considered and integrated into the optimization
process.

BEBs Configuration

All BEBs considered in the simulation are assumed to be of a single model, therefore
their parameters are the same.

Bus Operation Rules

First, all the BEBs initiate their daily operational routine by departing from the
designated depot, and subsequently, upon completion of all their assigned tasks,
they return to the very same depot, marking the end of their daily cycle.

Second, it is a fundamental characteristic of all BEBs, that they are exclusively
designed to operate on a predetermined and fixed bus route, which means that if a
particular BEB is assigned to operate on bus line number 12 on a given day, it is
not feasible for it to operate on a different bus line, such as bus line number 58,
on that same day, and this rigid assignment of bus lines applies universally to all
BEBs in the fleet.

Third, it is imperative that the bus schedule is strictly adhered to and imple-
mented with precision, which means that at each and every designated time slot, as
outlined in the bus schedule, there must be exactly one BEB, that is assigned to per-
form the task, ensuring that the transportation service runs smoothly and efficiently.

Fourth, it is crucial to acknowledge that the battery serves as the sole energy
source that powers the BEB. Consequently, the driving range of the BEB is
inherently limited by the capacity of its battery. As a result, it may not be feasible
for the BEB to accomplish its daily tasks without the necessity of recharging its
battery. In order to effectively address this issue, it is imperative that we implement
a strategy of recharging the BEB during periods of inactivity, specifically when
it is waiting for its next task at the terminal, thereby ensuring that the BEB is
always adequately powered to perform its duties.
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SOC Operational Range

The operational range of the SOC of all BEBs is specifically defined as being
within a certain limited scope, namely from a minimum of 20% to a maximum of
95%. In other words, it is crucial to emphasize that the SOC of each and every
individual BEB cannot, under any circumstances, fall below the predetermined
threshold of 20% at any point throughout the entire day, and similarly, the SOC
of each BEB cannot be charged to a level that exceeds the maximum capacity of 95%.

Additionally, it is worth noting that the SOC of all BEBs is always at its
maximum capacity of 95% when they initially depart from the depot, thereby
ensuring that they are ready for operation. Furthermore, it is absolutely essential
to highlight that after a full night of charging, the SOC of all BEBs must necessarily
return to its maximum capacity of 95%, thereby guaranteeing that they are fully
charged and ready for operation on the following day.

Charging Stations

There exist two categories of charging stations, specifically the terminal charg-
ing station and the depot charging station, each with its unique characteristics
and purposes. As the name explicitly suggests, the terminal charging station is
strategically constructed in close proximity to the terminal of the bus line, thereby
facilitating efficient charging operations. On the other hand, the depot charging
stations are situated inside the bus depot, catering to the specific needs of the BEBs.

In the context of the terminal charging station, their primary function is to
recharge the BEBs subsequent to the completion of one trip, when the bus comes
to a halt at the terminal and awaits its next assignment. It is essential to note
that the process of charging one BEB is a time-consuming endeavor, rendering it
impractical to utilize slow chargers for this purpose. Consequently, all terminal
charging stations are equipped with fast chargers, which are capable of delivering
a significantly higher power output. In the scope of this Master’s thesis, we have
defined the power output of the fast charger to be 160 kW .

With regard to the depot charging station, their primary objective is to recharge
the BEBs subsequent to the completion of their daily tasks, upon their return to
the depot. It is crucial to acknowledge that the power output of the charger has a
profound impact on the lifespan of the battery, and the simultaneous charging of
multiple BEBs can exert a significant influence on the power grid. Therefore, all
depot charger power outputs are deliberately limited to 90 kW , thereby ensuring a
more controlled and sustainable charging process.
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Electricity Load Capacity

The electricity load capacity of charging stations assumes a crucial role in de-
termining optimal charging schedules, as extensively discussed in various studies
[63][64][65]. When considering the spatial constraints of a charging station, it
becomes apparent that the maximum number of electric buses that can be charged
simultaneously is strictly limited by the total parking space available, which in
turn has a direct impact on the overall capacity of the station [66]. Furthermore,
from the perspective of the local power grid, the maximum charging power of all
chargers is inherently restricted by the capability of electricity distribution systems,
which can only handle a certain amount of power before becoming overwhelmed
[63][64][65]. In today’s scenario, it is still necessary to undertake costly and time-
consuming upgrades to the charging power systems in order to support substantial
electricity demand, which can be a significant burden on resources [67]. When
a cluster of electric buses is charged simultaneously at a charging station, it can
trigger a charging power surge in the local power grid, leading to a multitude
of negative consequences, including transformer overload, voltage quality deteri-
oration, and wire damage, all of which can have far-reaching and devastating effects.

Therefore, it is essential to exercise control over the total charging load of a
charging station, ensuring that it remains within a predetermined bound to prevent
any adverse effects on the power grid. In reality, the electricity load capacity has a
profound influence on the charging schedule of the electric bus fleet, which tends to
disperse the intensive charging from the off-peak periods to on-peak periods that
have a higher electricity rate, thereby optimizing the overall charging process and
minimizing its impact on the power grid.

In this Master’s Thesis, we control the electricity load capacity by constraining
the number of charger. The detailed number of chargers utilized is shown in Table
3.6.

Position Number of chargers Power
TA 1 160 kW

TB 2 160 kW

TC 1 160 kW

Depot 4 90 kW

Table 3.6: Details of Chargers

36



Methodology

Charging Duration

Many studies have shown that fast charging can accelerate battery aging, leading
to significant capacity and power fade while posing an unacceptable safety hazard
during operation [68]. Therefore, to reduce the times needed to charge BEBs, the
duration of fast charging should not be too short. On the other hand, Battery
Electric Buses (BEBs) must complete their assigned tasks, so the duration of fast
charging should not be excessively long either. In this thesis, we set the fast charge
duration to 20 minutes.

For slow charging at depot charge stations, the charge duration is determined
by the time needed to charge the BEBs to their maximum State of Charge (SOC).

Energy Consumption

Energy consumption is an extremely crucial factor that significantly influences the
precision and reliability of estimating the SOC of one BEB. As we have previously
discussed in the preceding section, we have successfully constructed the cost table
that contains the detailed information regarding the energy consumption of each
and every trip, as well as that of each bus line. This approach is the main novelty
with respect to methods present in literature, which have traditionally relied on
using a fixed energy consumption value that lacks accuracy and flexibility.

In order to effectively extract the energy consumption value from our cost table,
we have developed a specialized MATLAB function. The input parameters of this
function comprise the time of the bus schedule, the SOC of the battery of the BEB,
and the cost table response specifically tailored to the bus line in question. The
output of this function is econ (kWh), the energy consumption of the exact trip of
the BEB at the exact time and with the exact SOC, thereby providing a highly
accurate and reliable estimation of the energy consumption.

Trip Time Duration

The time duration of a trip, which is another important aspect of this research,
is a state-of-the-art concept that has been explored in this thesis. In contrast
to other studies, which have relied on the constant trip time [25][26][27]. Our
approach recognizes the limitations of this method and its lack of accuracy. And,
our study takes into account the significant impact of traffic conditions and vehi-
cle flows on trip time duration, which are essential factors that cannot be overlooked.

The methodology employed to determine trip duration is analogous to the
approach used to extract energy consumption.
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Electricity TOU tariffs

The significance of TOU tariffs has been extensively acknowledged as a crucial
factor to be taken into account in the charging scheduling decisions of the BEB
fleets, as highlighted in various studies [67]. The TOU tariffs are specifically de-
signed to encourage users to consume electricity during the off-peak periods by
setting a higher electricity rate during the on-peak periods, rather than using a
single uniform electricity rate throughout the day.

When TOU tariffs are implemented, the charging price during on-peak periods
can be significantly higher, than that of off-peak periods [69]. This means that
the electricity cost of BEBs is highly dependent on their charging profiles. It is
a well-established fact that the TOU tariffs can have a profound impact on the
charging activity pattern of the BEB fleet, influencing the way they operate and
recharge [27]. As a result, frequent charging during on-peak periods would be
largely avoided, since it would substantially increase the electric bus charging cost,
thereby compromising the economic viability and attractiveness of electric buses as
a sustainable transportation option.

In this Master’s Thesis, the details of TOU tariffs are shown in Table 3.7.

Time of Day Electricity Price (€/kWh)
0:00 - 8:00 0.25
8:00 - 19:00 0.3
19:00 - 24:00 0.25

Table 3.7: TOU Tariffs of Electricity

3.5.3 Optimization Algorithm
Up to this point, we have prepared all the necessary inputs required to solve the
objective function. Therefore, in the subsequent step, our primary focus will shift
to the design and development of the optimization algorithm.

The algorithm, shown in Algorithm 3, is designed to optimize the recharging
plan for fleets of BEBs. The goal is to minimize the objective function, which is
related to the cost of BEBs and electricity recharged to battery.

Step-by-Step Explanation
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Algorithm 3 Algorithm to Planning of Recharging BEB Fleets
1: Load cost tables
2: Load constraints
3: Define start time for fast charging (fchgtime)
4: Define Variables to save data
5: Set optimal value of objective function to inf
6: for t == time of day (in minute) do
7: busmin12 = Function to determine the min number of BEBs to perform

task of bus line 12 without charging
8: busmin58 = Function to determine the min number of BEBs to perform

task of bus line 58 without charging
9: end for

10: busnum12 = busmin12
11: busnum58 = busmin58
12: for i = 1:numel(fchgtime) do
13: start fast charging time == fchgtime(i)
14: for t == time of day (in minute) do
15: Defined function to perform bus schedule of line 12
16: Defined function to charge BEBs of bus line 12 (fast charging)
17: Defined function to perform bus schedule of line 58
18: Defined function to charge BEBs of bus line 58 (fast charging)
19: BEBs return to terminal after finishing fast charging
20: BEBs return to depot after all tasks
21: Defined function to perform depot charging
22: Calculate electricity charged to each BEB
23: Calculate the value of objective function
24: if Calculated value < Optimal value then
25: Optimal value = Calculated value
26: Optimal plan = BEB fleet daily activity
27: end if
28: end for
29: if Bus line 12 is not feasible then
30: busnum12 = busnum12 + 1
31: end if
32: if Bus line 58 is not feasible then
33: busnum58 = busnum58 + 1
34: end if
35: end for
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• Load Cost Tables and Constraints: The algorithm starts by loading cost tables
and constraints, which are related to the cost of electricity, bus schedules, and
charging station capacities.

• Define Start Time for Fast Charging: The algorithm defines the start time for
fast charging, which is stored in an array fchgtime.

• Define Variables to Save Data: The algorithm defines variables to save data,
which will be used to store the results of the optimization process.

• Set Optimal Value of Objective Function to Infinity: The algorithm initializes
the optimal value of the objective function to infinity, which will be updated
as the algorithm iterates.

• Determine the minimum number of BEBs to perform task of bus line 12 and
bus line 58 without charging.

• Set initial number of BEBs for bus fleet of line 12 and line 58 to these two
minimum value.

• Main Loop. The algorithm iterates over each possible start time for fast
charging (fchgtime(i)). For each iteration:

– Set Start Fast Charging Time: The algorithm sets the start time for fast
charging to fchgtime(i).

– Perform Bus Schedule for Line 12 and 58: The algorithm defines functions
to perform bus schedules for lines 12 and 58.

– Perform fast charging for BEBs of bus line 12 and bus line 58.
– BEB Returns to Terminal and Depot: The algorithm simulates the BEBs

returning to the terminal after finishing fast charging and then returning
to the depot after completing all tasks.

– Perform Depot Charging: The algorithm defines a function to perform
depot charging.

– Calculate Electricity Charged to Each BEB: The algorithm calculates the
amount of electricity charged to each BEB.

– Calculate Objective Function Value: The algorithm calculates the value
of the objective function.

– Update Optimal Value and Plan: If the calculated value is less than the
current optimal value, the algorithm updates the optimal value and saves
the corresponding BEB fleet daily activity plan.

– If not feasible of bus line 12, the number of BEBs of bus line 12 plus one,
then restart the main loop.
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– If not feasible of bus line 58, the number of BEBs pg bus line 58 plus one,
then restart the main loop.

• Termination. The algorithm terminates after iterating over all possible start
times for fast charging.

In summary, this algorithm is designed to optimize the recharging plan for a
fleet of BEBs by iteratively evaluating different start times for fast charging and
selecting the plan that minimizes the objective function.
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3.6 Validation
This is the final section of our methodology, where we validate the results which
come from the optimization algorithm, specifically designed to yield the optimal
charging plan for our BEB fleets. It is important to repeat a crucial aspect that
was previously mentioned, namely, the assumption of a fixed number of passengers
during the construction of our cost table. However, in real-world scenarios, this
assumption is unrealistic, and thus, in this section, we must carefully examine the
impact of the number of passengers on our overall strategy.

To effectively incorporate the number of passengers into our calculations, we
must dynamically adjust the number of passengers on each BEB.

In the preceding section, we successfully obtained the optimal result of the
objective function, which encompasses the minimum cost of the total cost of BEBs
and the total cost to charge the BEBs, as well as the daily activity of each BEB.
In other words, we have determined the precise number of BEBs required to fulfill
the bus schedule of each bus line and the specific tasks and charging activities
performed by each BEB. Building upon this foundation, we can now modify the
number of passengers on each BEB and conduct a detailed vehicle simulation for
each trip undertaken by the BEB, thereby ensuring a more accurate and realistic
representation of our optimal result.

3.6.1 Number of Passengers on BEBs
It is acknowledged that the number of passengers on a BEB exhibits a complex
dependence on multiple factors, including not only the time of day but also the
specific stop along the bus line, and accurately determining the exact number of
passengers on a BEB at any given time is a challenging task. In lectures, many
efforts have been made to predict passenger flow [70][71]. The authors find that
the passenger flow changes in a day in a bimodal pattern, with obvious morning
and evening peak in [72]. The morning peak on weekdays is about 7:00-9:00, and
the evening peak is 17:00-19:00.

In the context of this Master’s thesis, we propose a model where the number
of passengers on a BEB is solely dependent on the time of day. To illustrate this
concept more clearly, let us consider a specific example. Suppose a BEB is scheduled
to perform a trip at 9:00 am, in this particular scenario, we will maintain a constant
number of passengers throughout the entire duration of that trip. However, if the
same BEB is scheduled to perform another trip at 11:00 am, we will intentionally
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alter the number of passengers on the BEB.

In order to simulate the changes in passenger numbers, we will employ a random
value that falls within a predetermined range, shown in table 3.8.

Time of day Passengers(% of Capacity)
before 6:00 10% - 30%
6:00 - 7:00 30% - 60%
7:00 - 9:00 70% - 100%
9:00 - 16:00 40% - 80%
16:00 - 20:00 70% - 100%
20:00 - 21:00 50% - 80%
after 21:00 30% - 60%

Table 3.8: Passengers on BEB Depend on Time of Day

We can utilize this information to determine the number of passengers that were
on the BEB during a specific trip. This can be accomplished by examining the
starting and ending terminal of the trip, which we have previously recorded as part
of our optimal charging plan.

Figure 3.12 and Figure 3.13 represent the number of passengers on each BEB at
specific trip that BEB operate.

The x-axis represents the time of day, ranging from early morning to late evening.
The y-axis indicates the number of passengers, with values ranging from 0 to 90.
Each subplot displays the passengers at different time for a specific BEB.

Both figures show significant variation in passenger numbers throughout the day,
reflecting the dynamic nature of public transportation demand. Peaks in passenger
counts can be observed during morning and evening rush hours in both figures,
which is typical for urban bus lines.

Each bus exhibits unique patterns of passenger count variations, influenced
by factors such as route segments, time of day, and specific stops. Comparing
individual buses across both figures reveals that some buses might have higher
peak loads than others, indicating different levels of demand on different routes
and time.
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Figure 3.12: Number of Passengers on BEBs for Bus Line 12

Figure 3.13: Number of Passengers on BEBs for Bus Line 58

3.6.2 Validate the Charging Plan
If the BEB is in the process of performing its assigned tasks according to the
predetermined bus schedule, we can estimate the number of passengers on board
by referencing a random value found in Table 3.8, which depends on the time of
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the trip. In any scenario where the BEB was not engaged in any of bus schedules,
we can assume that there were zero passengers on board. The step-by-step script
used to validate this process is outlined in detail in Algorithm 4, which provides a
guide for implementation.

Algorithm 4 Algorithm to Validate Optimal Recharging Plan
1: Load optimal recharging plan ▷ Include all the activity performed by BEB
2: Load cost tables
3: Load driving cycles
4: Load BEB parameters
5: for i = 1 : number of BEBs do
6: Get the data stored in optimal recharging plan of BEB(i)
7: Set initial SOC of BEB(i) to 95% ▷ Every BEB start trip from depot with

maximum SOC
8: for j = 1: number of activity of BEB(i) do
9: if BEB is discharging then

10: if BEB perform task in bus schedule then
11: Decide the number of passengers according to table 3.8
12: else
13: The number of passengers is zero
14: end if
15: Select the driving cycle we have constructed in Section 3.3
16: for k = 1: time steps of driving cycle do
17: SOC(k+1) = BEBModel(SOC(k),DrivingCycle.Velocity,

DrivingCycle.Acceleration, BEB Parameters, Passengers)
18: end for
19: else
20: if day time charging then
21: Perform day time charging
22: else
23: Perform night charging
24: end if
25: end if
26: Save the data of one activity
27: end for
28: Save the data of all activity
29: end for
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Results

In this chapter, we are going to provide a comprehensive overview of the outcome
that we have achieved throughout our entire project. In accordance with the
step-by-step process of our work, initially, we will conduct a thorough examination
and in-depth analysis of the driving cycle data that we obtained from our SUMO
simulation, which was discussed in detail in Section 3.3. Subsequently, we will
explore the cost table that we constructed in Section 3.4, which serves as a crucial
component of our project. Following that, we will present the optimal charging
plan that we derived from our sophisticated optimization algorithm, which was
elaborated upon in Section 3.5. Lastly, we will display the validation results, which
will provide conclusive evidence of the effectiveness of our approach.
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4.1 Driving Cycle Analysis
In this particular section of our analysis, we will provide an in-depth examination
of the driving cycle associated to the trip that is explicitly included in the bus
schedule. It is essential to note that, within the scope of our project, we are dealing
with two distinct bus lines, each of which has been further subdivided into two
distinct parts, namely, South → North and North → South. As a result, for each
individual trip, we have successfully constructed a unique driving cycle. In total,
we have built 456 driving cycles, with each one corresponding precisely to one
specific bus schedule.

Moving forward, we will start a thorough discussion of the significant influence
exerted by traffic conditions on the driving cycle. Subsequently, we will undertake a
comparison of the driving cycle between different bus lines. Finally, we will conduct
a comparison between a driving cycle obtained in our work and the Manhattan Bus
Cycle, which is a widely recognized chassis dynamometer test specifically designed
for urban buses.

4.1.1 Influence of Traffic Conditions to Driving Cycle
Firstly, we constructed driving cycles with traffic flow and, conversely, without
vehicle flow. This enables us to compare the driving cycle of the same bus schedule
time within the same bus line. Secondly, within the driving cycle built with traffic
flow, we can undertake a comparative analysis of the driving cycle of different bus
schedule times within the same bus line.

Comparison of driving cycle built with and without traffic flow

The Figure 4.1 illustrates a line graph that provides the velocity of a bus operating
with and without the presence of traffic flow. The graphical representation is
plotted against time, with the x-axis denoting the trip time in minutes and the
y-axis denoting the velocity in kilometers per hour. The black line on the graph
corresponds to the velocity of the bus when operating with traffic flow, whereas
the red line represents the velocity of the bus when operating without traffic flow.

A closer examination of the graph reveals that the most notable distinction
between the two driving cycles is the significant difference in trip time. The trip
time of the driving cycle constructed with vehicle flow is appreciably longer than
that of the driving cycle without vehicle flow. This disparity is evident not only in
the overall trip time but also in the velocity at every instant, with the exception
of the initial few minutes of the trip. The velocity profiles of the two driving
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Figure 4.1: Driving Cycle Built with and without Traffic Flow

cycles exhibit a marked difference, indicating that the presence of traffic flow has a
significant impact on the driving cycle of buses operating in urban cities.

It is worth noting that the incorporation of traffic flow into the driving cycle
results in a more realistic representation of the actual operating conditions of buses
in urban environments. Therefore, in the subsequent sections of this study, all
results and findings will be based on the driving cycles constructed with traffic flow,
which provides a more accurate and reliable representation of the actual operating
conditions of buses in urban cities.

Comparison of driving cycle of different bus schedule time

As depicted in Figure 4.2, we have undertaken a comparison of the driving cycles
corresponding to four distinct bus schedule times, specifically 5:00, 6:03, 7:07, and
8:12. A thorough examination of the graph reveals that the trip time of each of
these four driving cycles exhibits notable differences.

One of the primary reasons underlying these discrepancies is the fact that we
employed different vehicle flow during these time ranges as we have presented in
Section 3.3. However, it is also worth noting that even when we utilized the same
vehicle flow in constructing the driving cycles of the blue line and green line, the
trip time still exhibited significant variations.
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Figure 4.2: Driving Cycle of Bus Line 12 (North → South) at Different Time

Another crucial factor contributing to these differences is the traffic light con-
ditions. Specifically, buses scheduled to operate at different times of the day will
inevitably encounter distinct traffic light conditions and vehicle flow conditions,
thereby resulting in unique driving cycles for each specific bus trip. Consequently,
within the scope of this project, we have constructed specific driving cycles for each
scheduled bus trip.

4.1.2 Comparison of Driving Cycle Between Different Bus
Line

As depicted in Figure 4.3, the disparities are not limited to the trip time alone, but
also encompass the behavior of the bus during the trip. This is attributable to the
fact that the length of the bus route, the traffic light conditions, and the vehicle
flow conditions are all unique to each bus line. Consequently, it is imperative to
construct driving cycles that are tailored to each specific bus line and bus schedule,
as we have successfully accomplished in this project.

The differences in the driving cycles of the two bus lines are a direct result of
the varying operating conditions that each bus line encounters. The bus route
length, for instance, has a significant impact on the trip time, with longer routes
inevitably resulting in longer trip times. Furthermore, the traffic light conditions
along the route also play a crucial role in shaping the driving cycle, as buses are
forced to decelerate and accelerate in response to the changing traffic light signals.
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Figure 4.3: Driving Cycle of Different Bus Line

Additionally, the vehicle flow conditions, which are influenced by factors such as
time of day, road network, and traffic volume, also contribute to the distinct driving
cycles of each bus line.

In light of these differences, it is essential to adopt an approach to driving cycle
construction, one that takes into account the unique characteristics of each bus line
and bus schedule. By doing so, we can ensure that the driving cycles accurately
reflect the real-world operating conditions of each bus line, thereby facilitating
more effective and efficient bus operations
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4.2 Cost Table Analysis
As we have previously explained in considerable details, our cost table encompasses
six distinct parameters for each individual trip, thereby providing a comprehensive
and detailed analysis of the various parameters that influence the operation of our
BEB fleet. Moreover, we have taken the crucial step of incorporating the initial
SOC of each trip into our calculations, thereby acknowledging the significant impact
that SOC has on the overall performance of our BEB fleet. Consequently, our cost
table assumes a three-dimensional structure, with the additional dimension of SOC
providing a more accurate understanding of the complex interplay between the
various factors that influence the operation of our BEB fleet.

In the subsequent sections of this report, we will engage in a discussion of
the length of the trip, the specific consumption, and the trip duration, that
influence the operation of our BEB fleet. Specifically, in the section dedicated
to the specific consumption, we will dive into the influence of SOC on specific
consumption, examining the ways in which variations in SOC impact energy
consumption and efficiency, and exploring the implications of these findings for the
following optimization part.

4.2.1 Consistency in Length of Route Calculated

Figure 4.4: Length Calculated of Bus Line 12 (North → South)

As depicted in Figure 4.4, we undertook a calculation of the length of the
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route for bus line 12, traversing from Nord to Sud, for each of the scheduled trips.
Although the calculated values exhibit a degree of fluctuation, it is noteworthy that
the error margin between these values and the actual values remains remarkably
low, falling within a narrow range of 0.5%.

The results unequivocally demonstrate that our methodology for generating
driving cycles via SUMO simulation is reliable, reproducible, and capable of
producing outcomes that closely align with real-world data. By leveraging the
strengths of SUMO simulation, we have been able to create a robust and dependable
framework for generating driving cycles that accurately capture the complexities of
real-world bus operations.

4.2.2 Stochasticity of Trip Duration
In the real-world transit operation of BEBs, the actual travel times are inherently
characterized by fluctuations around the scheduled travel times, primarily due to
the interference from multiple stochastic factors, including, but not limited to, road
vehicle flow states, traffic light states, queuing status at intersections, and passenger
flows at stations. These factors, which are inherently unpredictable and subject to
variations, contribute to the variability in travel times, making it challenging to
establish fixed travel times.

Figure 4.5: Trip Duration of Bus Line 12 (North → South)

In Figure 4.5, the trip duration exhibits notable differences from one another,
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despite the fact that they perform the same bus route. This phenomenon can be
attributed to the fact that, in the process of building the driving cycle, we have
taken into account the vehicle flow and simulated the traffic light states in the
SUMO environment, thereby incorporating the complexities and uncertainties of
real-world traffic conditions.

Consequently, the driving cycle obtained by our method can be considered a
more accurate and reliable representation of actual bus operation tooling, enabling
the estimation of energy consumption that is more precise and reflective of real-
world conditions. By acknowledging and incorporating the stochastic nature of bus
operations, our approach provides a more deep understanding of the underlying
factors that influence energy consumption, ultimately facilitating the development
of more effective and efficient recharging plan of the BEB fleets.

4.2.3 Specific Consumption
The specific consumption is a very important factor in our optimization problem,
as it plays a crucial role in determining the optimal recharging plan for our BEB
fleets. It directly influences the accuracy of estimating the SOC of our BEBs,
and any inaccuracies in specific consumption calculations can have far-reaching
consequences for the overall efficiency and effectiveness of our recharging strategies.
As we have previously explained, the operation of our buses is influenced by several
stochastic factors, including road traffic flow states, traffic light states, queuing
status at intersections, and passenger flows at stations. Consequently, the specific
consumption of our BEBs is influenced by these factors, resulting in fluctuations
and variations that can significantly impact our estimates of energy consumption
and efficiency.

The specific consumption in the cost table that we have built in this Master’s
Thesis depends on time of day and SOC of BEB, as shown in Figure 4.6. To
batter understand the dependence between specific consumption and time of day,
and the dependence between specific consumption and SOC, we will analyse them
separately in the following section.

As illustrated in Figure 4.7, the specific consumption of our BEBs exhibits
notable differences even when performing the same bus route and with same initial
SOC. This is attributed to the fact that the specific consumption is calculated
based on the simulation of our BEBs, whose input is the driving cycle that we
have constructed in the SUMO environment. As we have previously discussed, the
driving cycle itself is subject to variations, not only in terms of trip duration but
also in terms of the instant behavior of our BEBs, which is influenced by a complex
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Figure 4.6: Specific Consumption Depends on Time of Day and SOC (Bus line
12 North → South)

array of factors.

Figure 4.7: Specific Consumption of Bus Line 12 (North → South)

However, in reality, the situation is even more complex, as the initial SOC of
our BEBs is unlikely to be identical. To address this question, we have simulated
various scenarios with different initial SOC values, and as shown in Figure 4.8,
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the specific consumption is observed to increase as the initial SOC of our BEBs
decreases.

This finding emphasizes the importance of avoiding the use of fixed values for
specific consumption, as this can lead to inaccurate estimates and suboptimal
recharging strategies. In this project, we have taken a more precise approach,
constructing cost tables that take into account the influence of SOC on specific con-
sumption, thereby providing a more accurate and reliable framework for optimizing
our BEB fleets recharging plans.

Figure 4.8: Specific Consumption Influenced by SOC of BEB
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4.3 Optimal Charging Plan
Based on the cost tables and taking into consideration the additional constraints,
the optimal charging plan for BEB fleet was obtained utilizing the algorithm
described in Section 3.5. It is essential to highlight that our primary objective is
to simultaneously minimize the number of BEBs in the fleet and the total cost of
electricity charged to the BEBs for a single day. Moving forward, we will present
the results we obtained and conduct an in-depth analysis of the influence exerted
by TOU tariffs on our optimization model. Furthermore, we will also compare and
contrast the distinct behavioral patterns exhibited by these two bus lines, thereby
providing a comprehensive understanding of the optimal charging strategies for our
BEB fleets.

4.3.1 Influence of TOU Tariffs
To conduct a thorough examination of the influence exerted by TOU tariffs, we
present a comparison of the optimal charging plans for bus line 12 and bus line 58,
as depicted in Figures 4.9 and 4.11, which incorporates the impact of TOU tariffs,
and Figures 4.10 and 4.12, which neglects the influence of TOU tariffs, thereby
providing a comprehensive analysis of the distinct effects of TOU tariffs on the
charging patterns of our BEB fleet.

Figure 4.9: Optimal Charging Plan of Bus Line 12 (Consider TOU Tariffs)

In Figure 4.9 to 4.12, each row represents a specific BEB. The columns represent
time, ranging from 4:00 AM to 4:00 AM the next day. The different colors represent
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Figure 4.10: Optimal Charging Plan of Bus Line 12 (Not Consider TOU Tariffs)

Figure 4.11: Optical Charging Plan of Bus Line 58 (Consider TOU Tariffs)

different states of the BEB’s operation:

• Gray: At depot (Not in service and not in charging)

• Yellow: At the terminal (Not in service)

• Red: In travel (Service or Depot to Terminal or Terminal to Depot)
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Figure 4.12: Optical Charging Plan of Bus Line 58 (Not Consider TOU Tariffs)

• Green: Charging (Day Time)

• Dark Green: Charging (Night Time)

For bus line 12, both in Figure 4.9 and Figure 4.10, the number of BEBs in the
fleet remains consistently at 6. This constancy indicates that the total number
of BEBs in the fleet is unaffected by the TOU tariffs. Despite any variations or
changes in the TOU tariffs, the fleet size of 6 BEBs is maintained throughout the
scenarios depicted in these figures.

A closer inspection of Figure 4.9 reveals that a total of 12 charging instances
occur during the daytime period, whereas a striking contrast is observed in Figure
4.10, which exhibits a significantly higher frequency of 21 charging instances occur-
ring during the same daytime period. This difference in charging patterns can be
attributed to the consideration of TOU tariffs in the former figure.

In the absence of TOU tariff considerations, as shown in Figure 4.10, the BEBs
can be charged during the daytime period if a terminal charging station is available
and the BEB is in an idle state at the terminal. However, when TOU tariffs are
taken into account, as shown in Figure 4.9, the charging activity is deferred to
later periods, resulting in a longer charging duration during the nighttime period,
as evident from the graphs. This contrast in charging patterns emphasise the
pronounced influence of TOU tariffs on the optimal charging plans for our BEB
fleets. The same story happens in bus line 58, which derives from Figure 4.11 and

58



Results

Figure 4.12.

While the number of BEBs in the fleet for bus line 12 remains constant at 6,
as depicted in Figures 4.9 and 4.10, and the number of BEBs in the fleet for bus
line 58 remains constant at 7, showing in 4.11 and Figure 4.12, but the charging
activities are quite different. Therefore it is crucial to explore how the SOC of each
individual BEB varies throughout the day. The variation in SOC of bus line 12
and bus line 58 are presented in Figures 4.13 and 4.14 and Figures 4.15 and 4.16,
separately.

Figure 4.13: Variations of SOC of BEBs of Bus Line 12 (Consider TOU Tariffs)

These figures illustrate the SOC profiles of BEBs over a 24-hour period. The
SOC, measured as a percentage, is plotted on the y-axis, which ranges from 20%
to 100%. The x-axis represents the time of day, spanning from 4:00 AM to 4:00
AM the following day. This time frame captures a full daily cycle, providing a
comprehensive view of the SOC dynamics.

It is evident that the SOC of the BEBs remains at a relatively low level in Figure
4.13 and 4.15 compared to Figure 4.14 and 4.16. Specifically, the minimum SOC
value in Figure 4.13 and 4.15 hovers around 20%, whereas in Figure 4.14 and 4.16,
the minimum SOC value is consistently above 50%. This significant difference in
SOC levels between the two figures highlights the impact of TOU tariffs on the
charging strategies of the BEBs.
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Figure 4.14: Variations of SOC of BEBs of Bus Line 12 (Not Consider TOU
Tariffs)

Figure 4.15: Variations of SOC of BEBs of Bus Line 58 (Consider TOU Tariffs)

In Figure 4.13 and 4.15, the lower SOC levels suggest that the BEBs are op-
erating under a TOU tariff structure that possibly incentivizes charging during
off-peak hours when electricity rates are lower. This can lead to more aggressive
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Figure 4.16: Variations of SOC of BEBs of Bus Line 58 (Not Consider TOU
Tariffs)

discharge patterns during the day to maximize the utilization of cheaper electricity
acquired during off-peak periods. As a result, BEBs might reach lower SOC levels
before being recharged, reflecting a strategy aimed at reducing overall costs for
charging the BEBs. The minimum SOC dropping to around 20% indicates that
the fleet is pushing the limits of battery usage, ensuring that the energy stored
during cheaper periods is maximally utilized.

On the other hand, Figure 4.14 and 4.16 show SOC levels that remain signifi-
cantly higher, with the minimum SOC staying above 50%. The higher minimum
SOC suggests that the BEBs are recharged more frequently. This strategy could
also be reflective of a need to ensure that the BEBs always have sufficient charge
to meet demands without risking a low battery.

The TOU tariffs directly influence these charging strategies by dictating the
cost-effectiveness of charging at different times. The SOC differences illustrated
in Figures 4.13 and 4.14 and Figures 4.15 and 4.16 highlight how TOU tariffs
shape the charging and operational strategies of BEB fleets. Understanding these
dynamics is crucial for optimizing energy costs, ensuring operational efficiency, and
maintaining battery health over time. These insights can guide future decisions on
tariff structures and charging policies to achieve a balance between cost savings
and operational reliability.
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4.3.2 Comparison of Results Between Different Bus Lines
In this project, we focus on optimizing the charging plan for two bus lines. The
comparison of the input information and the resulting optimized charging plan is
presented in Table 4.1. This table provides a overview of the key parameters used
in the optimization process and the outcomes achieved through the implementation
of the optimized charging strategy.

Bus Lines Bus Line 12 Bus Line 58
INPUTS

Numbers of Trips 123 147
Length of Trip 8.2 km 9.5 km (average)

Numbers of Charger (Terminal) 1 / Terminal 1 / Terminal
Power of Charger (Terminal) 160 kW 160 kW

Numbers of Charger (Depot) 2 2
Power of Charger (Depot) 90 kW 90 kW

RESULTS
Numbers of BEBs 6 7

Numbers of charging (day time) 12 times 16 times

Table 4.1: Comparison Between Bus Line 12 and Bus Line 58

We can discern from the data presented in Table 4.1 that the number of BEBs
allocated to bus line 58 is one more than that assigned to bus line 12. And a
difference exists when we examine the frequency of charging activities between the
two bus lines, with bus line 58 exhibiting 4 more charging instances than bus line
12. This notable difference can be attributed to two primary factors.

Firstly, bus line 58 operates 24 more trips than bus line 12, which contributes to
the increased demand for BEBs and for charging. Secondly, the average trip length
of bus line 58 is 1.3 kilometers longer than that of bus line 12, so it demands more
energy, which further exacerbates the need for more frequent charging.

Upon closer inspection, we observe that the average number of trips per BEB is
20.5 for bus line 12, whereas bus line 58 averages 21 trips per BEB. This difference
in trip frequencies translates to a higher utilization rate of BEBs on bus line 58,
explaining the bus line’s increased reliance on electric buses and, by extension,
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more frequent charging activities.

The detailed charging plan and variations in the SOC for the BEB fleet operating
on bus line 58 are illustrated in Figure 4.11 and Figure 4.15. These figures provide
a comprehensive view of how the charging strategy is implemented and its impact
on the SOC levels of the BEBs over a 24-hour period.

Upon examining Figure 4.9, it becomes evident that the charging plan closely
resembles that depicted in Figure 4.11. This similarity arises from the fact that
both plans take into account the TOU tariffs, which significantly influence the
scheduling of charging sessions. Due to the higher electricity prices during daytime
hours, the charging plan strategically minimizes the number of charging sessions
during these periods. This approach ensures that the bulk of the charging occurs
during off-peak hours when electricity rates are lower, thereby reducing operational
costs.

The SOC variations shown in Figure 4.13 align closely with those observed in
Figure 4.15. In both figures, the SOC of the BEBs remains at a relatively lower
level compared to the SOC levels in Figures 4.14 and 4.15. This lower SOC is a
direct consequence of the optimized charging strategy aimed at minimizing charging
costs.
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4.4 Validation - Influence of Number of Passen-
gers

The results we present in Section 4.3 are based on a constant number of passengers
on the BEBs, as mentioned in Section 3.4. However, it is well understood that
maintaining a fixed number of passengers on board throughout a day’s operation is
unrealistic [72]. The passenger count on BEBs fluctuates due to various factors
such as time of day, route, and demand patterns.

To address this variability, we must consider the influence of changing passenger
numbers. As discussed in Section 3.6, we will use various passenger numbers, shown
in Figures 3.12 and 3.13. This approach allows us to model more realistic scenarios
where passenger numbers vary, thereby impacting the energy consumption and
charging requirements of the BEBs.

In light of this, we proceed to validate the SOC of battery for both bus line 12
and bus line 58. By doing so, we aim to assess the robustness and effectiveness of
the charging strategy under varying passenger loads. This validation will help us
understand how well the charging plan adapts to real-world conditions and ensure
that the BEBs can maintain efficient operation without interruptions.

4.4.1 Validated SOC of Battery
In Section 3.6.1, we have presented the number of passengers on BEBs used for the
validation process in this section. Under the optimal charging plan, the validated
SOC of battery for bus line 12 and bus line 58 are illustrated in Figure 4.17 and
Figure 4.18, represented by the dashed lines.

These figures reveal differences of the SOC in the validation results and in the
optimization results. This discrepancy highlights the impact of the fluctuating
number of passengers on BEBs on the energy consumption.

During the optimization process, a constant number of passengers was assumed,
simplifying the model but potentially reducing its accuracy. However, the validation
results, which incorporate variations in the number of passengers throughout the
day, demonstrate a more realistic scenario. The SOC variations in the validation
results are more dynamic and responsive to changes in passenger load, suggesting
that the actual energy consumption of the BEBs differ from the optimized predic-
tions.
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Figure 4.17: Validation for Bus Line 12

Figure 4.18: Validation for Bus Line 58

To gain deeper insights, Figures 4.19 and 4.20 illustrate the difference between
validated SOC across various passengers and optimized SOC for fixed passengers.
Specifically, for bus line 12, the maximum SOC difference is under 2%, whereas
for bus line 58, it remains below 3%. These figures highlight the efficiency and
reliability of the optimization process in maintaining SOC levels close to validated
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SOC across different bus lines.

Figure 4.19: Difference Between Validated SOC and Optimization SOC (Bus
Line 12)

Figure 4.20: Difference Between Validated SOC and Optimization SOC (Bus
Line 58)

Despite these differences, the optimization charging plan demonstrates that the
overall strategy can still be effectively applied in a practical context. This feasi-
bility is crucial because it shows that our approach can adapt to actual operating
conditions, ensuring that BEBs maintain adequate SOC levels throughout their
service periods.

To develop a more accurate and practical charging plan, it is essential to account
for the variation in passenger numbers. Passenger load directly influences the
energy consumption of BEBs, heavier loads leading to higher energy use. By
incorporating these variations into the charging plan, we can better align the
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theoretical model with real-world conditions, leading to more reliable and efficient
energy management for the BEBs.
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Chapter 5

Conclusion

This Master’s Thesis proposes a four-step vehicle simulation-based planning method
for recharging BEB fleets. The method accounts for factors such as traffic condi-
tions, driving cycle, SOC of the battery, TOU tariffs, and the number of passengers.
The goal is to provide an optimal charging plan that minimizes both the number
of BEBs required and the overall cost of electricity for charging the BEBs.

In the first step, a unique driving cycle for each bus line at every predefined
scheduled time instance was constructed using MATLAB-SUMO co-simulation.
These driving cycles capture the dynamic behavior of drivers and account for traffic
flows and traffic lights. The driving cycles vary not only for different scheduled
times on the same bus line but also across different bus lines.

In the second step, cost tables were created using a backward energy consump-
tion model, with driving cycles as input. Our BEB model incorporates the efficiency
of the EM and the recovery of braking energy, resulting in more accurate energy
consumption estimates. The cost table illustrates the consistency of trip length,
the stochasticity of trip duration, and the dependence of energy consumption on
the time of day and the SOC of the battery.

In the third step, an optimization algorithm was developed which aimed at
simultaneously minimizing both the number of BEBs and the overall cost of elec-
tricity for charging them. This algorithm provided the optimal charging plan, both
with and without considering TOU tariffs. The decision to charge BEB by fast
charger is significantly influenced by the TOU tariffs.

In the final step, the impact of passenger numbers on BEBs to energy consump-
tion was validated, demonstrating a discernible influence. Despite this, under same
charging plan, the maximum difference in SOC between validated and optimized
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values remains below 3% for both bus lines. Although differences exist between
optimized and validated SOC figures, the optimal charging plan derived from our
method proves practical for real-world implementation. This observation strength-
ens the rationale that our approach to developing BEB fleet charging strategies is
both sensible and viable.

69



Appendix A

Detailed Bus Schedules

The detailed bus schedules are shown in Table A.1 - A.4.

Trip ID Trip Time Trip ID Trip Time Trip ID Trip Time Trip ID Trip Time
1 5:00 17 9:04 33 13:36 49 17:54
2 5:21 18 9:21 34 13:53 50 18:09
3 5:42 19 9:38 35 14:10 51 18:24
4 6:03 20 9:55 36 14:27 52 18:39
5 6:19 21 10:12 37 14:44 53 18:54
6 6:35 22 10:29 38 15:01 54 19:09
7 6:51 23 10:46 39 15:18 55 19:24
8 7:07 24 11:03 40 15:35 56 19:39
9 7:20 25 11:20 41 15:52 57 19:54
10 7:33 26 11:37 42 16:09 58 20:09
11 7:46 27 11:54 43 16:24 59 20:30
12 7:59 28 12:11 44 16:39 60 20:51
13 8:12 29 12:28 45 16:54 61 21:12
14 8:25 30 12:45 46 17:09 - -
15 8:35 31 13:02 47 17:24 - -
16 8:51 32 13:19 48 17:39 - -

Table A.1: Bus Schedule for "Line 12 Southward"
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Trip ID Trip Time Trip ID Trip Time Trip ID Trip Time Trip ID Trip Time
1 4:50 17 9:54 33 13:22 49 17:40
2 5:11 18 9:07 34 13:39 50 17:55
3 5:32 19 9:24 35 13:56 51 18:10
4 5:53 20 9:41 36 14:13 52 18:25
5 6:09 21 9:58 37 14:30 53 18:40
6 6:25 22 10:15 38 14:47 54 18:55
7 6:57 23 10:32 39 15:04 55 19:10
8 7:10 24 10:49 40 15:21 56 19:25
9 7:20 25 11:06 41 15:38 57 19:40
10 7:23 26 11:23 42 15:55 58 19:55
11 7:36 27 11:40 43 16:10 59 20:10
12 7:49 28 11:57 44 16:25 60 20:31
13 8:02 29 12:14 45 16:40 61 20:52
14 8:15 30 12:31 46 16:55 62 21:00
15 8:28 31 12:48 47 17:10 - -
16 8:41 32 13:05 48 17:25 - -

Table A.2: Bus Schedule for "Line 12 Northward"

Trip ID Trip Time Trip ID Trip Time Trip ID Trip Time Trip ID Trip Time
1 5:00 20 8:50 39 13:30 58 17:48
2 5:18 21 9:00 40 13:45 59 18:00
3 5:36 22 9:15 41 14:00 60 18:12
4 5:54 23 9:30 42 14:15 61 18:24
5 6:08 24 9:45 43 14:30 62 18:36
6 6:22 25 10:00 44 14:45 63 18:48
7 6:36 26 10:15 45 15:00 64 19:00
8 6:50 27 10:30 46 15:15 65 19:12
9 7:00 28 10:45 47 15:30 66 19:24
10 7:10 29 11:00 48 15:45 67 19:36
11 7:20 30 11:15 49 16:00 68 19:48
12 7:30 31 11:30 50 16:12 69 20:00
13 7:40 32 11:45 51 16:24 70 20:15
14 7:50 33 12:00 52 16:36 71 20:30
15 8:00 34 12:15 53 16:48 72 20:45
16 8:10 35 12:30 54 17:00 73 21:00
17 8:20 36 12:45 55 17:12 - -
18 8:30 37 13:00 56 17:24 - -
19 8:40 38 13:15 57 17:36 - -

Table A.3: Bus Schedule for "Line 58 Southward"
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Trip ID Trip Time Trip ID Trip Time Trip ID Trip Time Trip ID Trip Time
1 4:50 20 8:48 39 13:23 58 17:41
2 5:08 21 8:58 40 13:38 59 17:53
3 5:26 22 9:08 41 13:53 60 18:05
4 5:44 23 9:23 42 14:08 61 18:17
5 6:02 24 9:38 43 14:23 62 18:29
6 6:16 25 9:53 44 14:38 63 18:41
7 6:30 26 10:08 45 14:53 64 18:53
8 6:44 27 10:23 46 15:08 65 19:05
9 6:58 28 10:38 47 15:23 66 19:17
10 7:08 29 10:53 48 15:38 67 19:29
11 7:18 30 11:08 49 15:53 68 19:41
12 7:28 31 11:23 50 16:05 69 19:53
13 7:38 32 11:38 51 16:17 70 20:05
14 7:48 33 11:53 52 16:29 71 20:20
15 7:58 34 12:08 53 16:41 72 20:35
16 8:08 35 12:23 54 16:53 73 20:50
17 8:18 36 12:38 55 17:05 74 21:05
18 8:28 37 12:53 56 17:17 - -
19 8:38 38 13:08 57 17:29 - -

Table A.4: Bus Schedule for "Line 58 Northward"
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Detailed Cost Table

One detailed cost table of bus line 12 North → South with initial SOC 95% is
shown in Table B.1.

Tstart Ltrip (km) Econ (kWh) Ec (kWh/km) Tdura (min) Tend

5:00 8.2 13.04 1.59 23 5:23
5:21 8.2 12.41 1.51 23 5:44
5:42 8.2 12.83 1.56 22 6:04
6:03 8.2 12.93 1.57 26 6:29
6:19 8.2 12.86 1.57 25 6:44
6:35 8.2 12.12 1.48 22 6:57
6:51 8.2 13.16 1.60 27 7:18
7:07 8.2 13.53 1.65 28 7:35
7:20 8.2 13.66 1.66 29 7:49
7:33 8.2 12.83 1.56 27 8:00
7:46 8.2 13.67 1.66 31 8:17
7:59 8.2 12.64 1.54 24 8:23
8:12 8.2 12.74 1.55 25 8:37
8:25 8.2 14.22 1.73 37 9:02
8:38 8.2 13.82 1.69 31 9:09
8:51 8.2 13.36 1.63 32 9:23
9:04 8.2 12.88 1.57 28 9:32
9:21 8.2 12.88 1.57 25 9:46
9:38 8.2 12.85 1.57 27 10:05
9:55 8.2 12.20 1.49 21 10:16
10:12 8.2 12.13 1.48 24 10:36
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Tstart Ltrip (km) Econ (kWh) Ec (kWh/km) Tdura (min) Tend

10:29 8.2 12.09 1.47 22 10:51
10:46 8.2 12.73 1.55 24 11:10
11:03 8.2 13.27 1.62 29 11:32
11:20 8.2 12.79 1.56 24 11:44
11:37 8.2 13.18 1.60 25 12:02
11:54 8.2 12.59 1.53 22 12:16
12:11 8.2 12.56 1.52 21 12:32
12:28 8.2 13.25 1.61 29 12:57
12:45 8.2 13.52 1.64 28 13:13
13:02 8.2 12.62 1.54 27 13:29
13:19 8.2 12.61 1.54 23 13:42
13:36 8.2 12.09 1.47 22 13:58
13:53 8.2 11.71 1.43 22 14:15
14:10 8.2 12.57 1.53 26 14:36
14:27 8.2 12.91 1.57 27 14:54
14:44 8.2 12.57 1.53 26 15:10
15:01 8.2 12.93 1.57 28 15:29
15:18 8.2 13.56 1.65 31 15:49
15:35 8.2 13.20 1.61 28 16:03
15:52 8.2 12.95 1.58 25 16:17
16:09 8.2 12.53 1.53 24 16:33
16:24 8.2 12.97 1.58 27 16:51
16:39 8.2 12.43 1.51 25 17:04
16:54 8.2 13.14 1.60 29 17:23
17:09 8.2 12.95 1.58 26 17:35
17:24 8.2 12.09 1.47 22 17:46
17:39 8.2 12.43 1.51 26 18:05
17:54 8.2 13.15 1.60 29 18:23
18:09 8.2 12.16 1.48 22 18:31
18:24 8.2 12.90 1.57 28 18:52
18:39 8.2 13.79 1.68 30 19:09
18:54 8.2 12.33 1.50 23 19:17
19:09 8.2 12.37 1.51 23 19:32
19:24 8.2 12.54 1.53 24 19:48
19:39 8.2 12.97 1.58 27 20:06
19:54 8.2 12.57 1.53 28 20:22
20:09 8.2 12.17 1.48 22 20:31
20:30 8.2 11.78 1.43 22 20:52
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Tstart Ltrip (km) Econ (kWh) Ec (kWh/km) Tdura (min) Tend

20:51 8.2 12.36 1.51 23 21:14
21:12 8.2 11.88 1.45 21 21:33

Table B.1: Cost Table of Bus Line 12 (North → South) with Initial SOC of 95%
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