POLITECNICO DI TORINO

Master’s Degree in Computer Engineering
Artificial Intelligence and Data Analytics

Master’s Degree Thesis

Design and development of a general
purpose evolutionary algorithm fuzzer
and optimizer

Supervisors Candidate
Prof. Giovanni SQUILLERO

Marco SACCHET
Prof. Alberto TONDA

April 2024

Abstract

The aim of this thesis is to develop a comprehensive set of components for
an evolutionary tool intended to serve as a foundation for a fuzzer or optimizer,
providing all the necessary tools to generate and evolve solutions to a problem
presented by the user, by studying self-adaptation and developing a self-adaptive
evolutionary algorithm.

This algorithm differs from a non-self-adapting vanilla evolutionary algorithm
for the ability to allow individuals to die of old age, the existence of an elitist subset
of individuals with high fitness, the option to tweak the reward given to operators,
and the ability to behave differently according to the current state of the evolution.
The study also covered the auto-adaptation of the operator’s selection based on
previous results and sigma adaptation, following the works of Davis (1991) and De
Jong (1975).

The study on operator selection shows a clear advantage in using such a technique
with multi-armed bandits algorithm such as Successive Elimination [Slivkins (2019)].
This algorithm, using the reward history of each operator, performs an adaptive
exploration of the space of the possible operators. It greatly reduces the number of
calls to inefficient operators that fail to generate valid offspring.

The study on sigma adaptation focuses on how the algorithm is able to balance
the different phases of exploration and exploitation by managing mutation’s strength,
introducing a user-defined temperature, and the notion of proximity related to
a fitness function. The results show that implementing directly in the genetic
operators the concept of mutation’s strength, making them capable of acting
differently based on the current state of evolution, leads to more efficient executions
and more balance between exploration and exploitation phases.

Overall, this thesis showcases the process of designing, implementing, and
enhancing a self-adaptive evolutionary algorithm and the benefits of this algorithm
compared to a non-self-adaptive one.

Table of Contents

List of Tables

List of Figures

1 Introduction to Evolutionary Algorithm and Computation

1.1 Lexicon e
1.2 Advantages
1.3 Disadvantages L

2 Conceptual Description

2.1 Byron Evolutionary Tool
2.1.1 Population
2.1.2 Individual
2.1.3 Genome
2.1.4 Operators
2.1.5 Parents Selection L.
21.6 Plugin
2.2 Self Adapting Evolutionary Algorithm
2.2.1 Selection
2.2.2 Temperature
2.2.3 Operator Strength
2.3 Operator Selection,
2.3.1 Reward
232 Regret
233 Random
2.3.4 Successive Elimination Algorithm
3 Implementation
3.1 Adaptive Ea
3.1.1 Parameters oo
3.1.2 Algorithm

3.2 Estimator s 26

3.2.1 Parameters 26

322 Update. 27
323 Take 28
3.2.4 Sigma 29

3.3 Hyper-parameters Tuning 29
3.3.1 Population. 30
332 Rewards 32
3.3.3 Temperature 32

3.4 Comparison 35
341 Onemax e 35
3.4.2 Twomax 36
3.4.3 Knapsack 37

3.5 Conclusion 40
3.5.1 Future Works 40
Bibliography 41

v

List of Tables

3.1
3.2

3.3
3.4
3.5

Algorithms performances on Onemax problem 36
Performance of each operator on Onemax, with specified if it is a

"Mutation", an "Initializer" or a "Crossover" 36
Algorithms performances on Twomax problem 37
Algorithms performances on Knapsack problem 39
Performance of each operator on Knapsack, with specified if it is a

"Mutation", an "Initializer" or a "Crossover" 39

List of Figures

1.1 Block diagram of a generic evolutionary algorithm

2.1 Anexampleofuseof genes
2.2 A textual representation of the genes
2.3 A representation of the genome as a forest
2.4 A representation of the genome as a Linear Genetic Program
2.5 Individual’s genome represented as a forest
2.6 Individual’s genome represented as a Linear Genetic Program
2.7 Regret of random versus Successive Elimination Algorithm at in-
creasing time T
2.8 Regret of random versus Successive Elimination Algorithm at in-
creasing number of operators

3.1 Self Adapting Algorithm’s internals
3.2 Estimator’sinternals
3.3 Update function’s signature
3.4 Take function
3.5 Sigma function’s signatureo
3.6 Temperature decreasing in the exploitation phase
3.7 Performance according to Mu/Lambda variation
3.8 Performance according to Rewards variation
3.9 Variance of the number of generations for each rewards
3.10 Number of generation per different temperature
3.11 Onemax problem definition
3.12 Twomax problem definition
3.13 Knapsack problem definition o000

VI

Chapter 1

Introduction to Evolutionary

Algorithm and Computation

Not all those who wander are lost,
J. R. R. Tolkien

Since the beginning of its existence on Earth, humanity has looked to nature
as a source of inspiration. This habit, which has stuck with humanity throughout

its existence, has not vanished in the flow of time, and it’s rooted inside us still today.

Inspiration from nature encompasses every field of human knowledge, and computer
science is no exception. From the very beginning, the fathers of this discipline have
looked to the human brain and nature to direct their efforts in that emerging field.
So, it was just a matter of time before someone pointed its attention to the very

foundation of life: evolution.

When this word is pronounced, the first thing that comes to mind is a name:
the one of Charles Darwin. Although the indisputable impact that the work [1] of
this man has had on the current understanding of nature and biology, the theory
of evolution would not be the same without the work of Wallace [2], Weismann [3],
and Mendel [4] (the only one not sharing an otherwise undeniable common passion

for long and untamed beard).

Introduction to Evolutionary Algorithm and Computation

It is probably with these names in his mind that George E.P. Box proposed
the first evolutionary approach to an industrial problem [5]. Despite some sparse
publications at the end of the 1950s that lightly touched this topic, the 1960s are
commonly set as the start of studies on evolutionary computation, thanks to the

works of John Holland, Lawrence Fogelm, Ingo Rechenberg, and Hans-Paul Schwefel.

But what is evolutionary computation? A precise definition is yet to be found, as
the exact boundaries of its applications.In general, it is a branch of computer science
that studies evolutionary algorithms. They apply the same concept of natural
selection as an optimization process to optimize a candidate solution to a given
problem through recombination and mutations. These produce random variations:
some nefarious and others beneficial, according to an objective evaluation. Only
the beneficial ones are propagated. It is straightforward to see similarities between
evolutionary computation and natural selection, and these parallelisms continue

also in the used terminology.

1.1 Lexicon

Like natural selection, evolutionary algorithms work on a population of individuals,
bringing them to life, reproducing, and eventually dying. Here is a brief summary

of the lexicon used in this branch of computer science.

The term Population refers to a set of individuals in a certain instant of time. An
Individual is a single candidate solution for the given problem. Each individual
contains a Genome, the totality of genetic components that form the individual.
One genetic component is a Gene, namely the smallest element of the individual
that can be subject to modifications. The specific position of a gene inside the
genome is called Locus (plural: Loci). The different genes allowed to position in the
same locus are called Alleles. It is impossible to define an univocal implementation
of these terms in the algorithm because they are highly dependent on the nature of

the problem or on the type of algorithm used.

Introduction to Evolutionary Algorithm and Computation

Every individual in a population is evaluated according to the ability to solve
the given problem. The name of this score is Fitness, and it is computed by
a Fitness Function. The fitness function is problem-dependent and needs to
be defined alongside it. Going back to the natural world, fitness represents the
ability of an individual to survive in the environment. In the case of the evolu-
tionary algorithm, the environment is the space where the problem solution lives,

whereas the ability to survive is the distance between the individual and the solution.

Unlike the real world. where every individual follows his life cycle, in this kind of
algorithm evolution happens through steps called Generation. On each generation,
new Offspring are born and added to the population. Then, individuals less suited
to survive in the environment (i.e. those with the lowest fitness) are removed from

the population, and a new generation begins.

The reproduction of an individual is performed via Operators, special func-
tions that operate on the genome of one or more individuals. Reproduction can
happen in different ways: sexual and asexual.

In the first case, it’s called Recombination. Here the offspring is generated
from two or more individuals called Parents, from whom the offspring inherits a
subset of their characteristics. If this recombination happens through exchanging
genetic materials, it’s called Crossover [6].

If the reproduction is asexual, the process is called Replication. In this case,
an individual is copied. The term Mutation refers to the case when the offspring
copied from the parent undergoes genomics modification, resulting in a different

individual from the parent.

Encoding Solution
INITIALIZATION EVALUATION — > TERMINATION —

- - . v -
REPRODUCTION }1—{ SELECTION

Figure 1.1: Block diagram of a generic evolutionary algorithm

Introduction to Evolutionary Algorithm and Computation

1.2 Advantages

The basic idea behind the evolutionary algorithm is to develop a feasible solution to
a problem without knowing a priori the best way to reach it. With this formulation,
some parallelism to a random approach may arise. Nonetheless, over the past

decades, EAs have shown better performance than pure random.

Broadening the view, it can be seen that evolutionary algorithms present a plethora
of interesting features.

First of all, they provide an effective methodology for trying random modifica-
tions, without requiring previous ideas about the optimal solution. They present a
better robustness with respect to Hill Climb algorithms; the use of a population of
possible solutions, indeed, allows for the preservation of different types of solutions,
reducing the risk of taking a dead-end street with an only-initially promising
solution.

The possibility to implement different kinds of genetic operators, based on the
specific structure of the genome, permits modifications to happen on large or small
scale, with different probabilities. The existence of sexual reproduction, moreover,
led to an efficient exploration of the search space, combining different characteristics
from different solutions.

Finally, in more prosaic terms, evolutionary algorithms, once started, require no
human intervention and offer an easy trade-off between the quality of the result

and the computational load.

A non-comprehensive list of examples of use of evolutionary algorithms on practical

applications could be found in [7].

1.3 Disadvantages

As everything coming from a human mind, also evolutionary algorithms are not
perfect. There are some problems and difficulties embedded in the very structure

of these algorithms that can drastically reduce their performances.

Introduction to Evolutionary Algorithm and Computation

The fitness function has to be able to compute different fitness values for dif-
ferent solutions because small variations can induce large modifications in the
population. High consideration must be paid in deciding which information is
relevant and which can be discarded.

The problem of relevant and non-relevant information endure also with the
individual itself. The way an individual is represented indirectly encodes the
representation of the desired solution. So, if too much information is present inside
the individual, the optimal solution may be excluded even before the algorithm
starts searching for it. On the other side, if not enough information is present,
the search space could increase in size, slowing down the process. The type of
information stored inside the individual does not influence only the solution, but
also the means to reach it. The genetic operators will act based on the solution
structure.

If the problems presented until now are preventable or largely mitigateable
with an accurate and thoughtful design, the premature convergence [8] problem
is far more insidious and difficult to eradicate. In this case, the individuals of
a population tend to share a restricted set of alleles, losing a large part of their
genetic inheritance. This way all solutions tend to converge to a single point in the
search space, halting evolution. If this problem occurs and no measures are taken
to address it, the evolutionary algorithm will behave like an inefficient hill climber
algorithm. There are no standard solutions for this problem, and workarounds

need to be found on a per-case basis.

Chapter 2

Conceptual Description

There is a way out of every boz,
a solution to every puzzle;
it’s just a matter of finding it,

Captain Jean-Luc Picard

2.1 Byron Evolutionary Tool

The studies and development in this thesis were performed using Byron evolutionary
tool. Byron, currently under development, is designed to be a Python package with
all the needed tools to run an evolutionary algorithm. So it presents implementations

of the concepts introduced in the previous chapter 1.1.

2.1.1 Population

The class Population contains a list of individuals belonging to that population,
plus some general information regarding all of these. It presents the ability to order
itself based on the individual’s fitness and it exposes methods to retrieve general
information about the composition of individuals genome. It also performs some

end-of-the-line checks on the newly added individuals to avoid keeping invalid ones.

6

Conceptual Description

Thesis Development

This thesis led to the introduction of the concept of Age, that will be further
discussed in the next paragraph. The population class now presents methods to
manage the life-cycle of the individuals, including the possibility to die of old age.
It can, in fact, not only manage the aging on a per individual basis, but also find

the individuals above a certain age.

2.1.2 Individual

The class Individual is definitively more than just a genome’s container. Indeed,
this class contains an inner class to keep track of the individual’s age and another
for the individual’s parents. Both of those are deeply integrated into the overall
flow of execution.

The Age class keeps track of the age of the individual and also the moment of
its creation. The management of the age is demanded to the Population class, but
every individual is responsible to directly acting on its age.

The Lineage class is used to maintain information about the individual’s ances-
tors. This can be useful to track the evolution of a specific individual and to plot
the family tree of the population.

The individual presents the ability to execute several checks on itself to find
invalid components of the genome, to clone itself and to store its fitness. Moreover,
it presents the ability to produce different types of representations of its genome,

like as a forest or as a Linear Genetic Program (LGP).

2.1.3 Genome

The genome is encoded as a weakly-connected multigraph. This structure is par-
ticularly useful in representing a series of computer instructions (i.e. code). The
possibility to allow loops in the graph structure permits the implementation of

function calls, for-loops and also recursion.

To allow a proper definition of the genes available in an individual, Byron of-

fers a hierarchy of components. Those are parameter, macro and framework.

7

Conceptual Description

sub = byron. framework.sequence(o epil

jump = 1. f al_referer

ranch, jump 10, 15 + 1 g c tio A 2 rations_rri.NU
_main

Figure 2.1: An example of use of genes

Conceptual Description

L # nl =» Frame{Frar uence#2)
[prologue main]

ble $18, %9 4 ; # nl.n3.n5 =% MacrofU

addiu $14, $20 & nl .n6 =» Macr

add $13, # nl.n3 = MacrofU
nl.n3. Macrc er#d)

blt $18, %16, nl5 # nl.n3. = Macro{User#3)

nie:

blt $

subu

addu

sub

nl4:

Jj n2@

nis:

: # nl9 = Frame(Frz uence#1)
[prologue sub]

n2e:

addiu

addiu $sp,%s
jr %31
[end-epilogue sub]

Figure 2.2: A textual representation of the genes

9

Conceptual Description

Parameter

This is the smallest element of the genome that can be subject to modifications.
Moreover, this component is the only having the ability to mutate itself without
additional infrastructure. Keeping the example of code, a parameter could be the
name of a variable, the plus sign in a sum, or else. There are different classes

related to this component:

o integer / float parameter: it contains a number within a given range, and can

mutate itself with the value range provided.

o choice parameter: it contains an element between a set of possible elements.

When it mutates, a new element from that set is selected.
o array parameter: it contains a fixed length array of symbols.

« local / global structural parameter: it represents a node in the genome (in

case of a local structural parameter, only the sibling ! nodes are considered)

Macro

A macro is, by definition [9], a fragment of text with variable elements. A macro
is more than a simple combination of parameters. It provides ways of encoding
parameter information and means to connect different parameters in a single
component with a specific syntactic through the insertion of fixed text. It can
iteratively check the validity of its components. A macro could represent a single

line of code, like a variable assignment, a conditional branch or else.

Frame

If parameters are single elements and macros are a way to syntactically group
parameters, a frame is the component used to semantically organize macros. It
can present a fixed sequence, an unordered group or a list of mutually exclusive

macros.

Lthe successor nodes of the node’s predecessor

10

Conceptual Description

/

o0 0000 60000000000 T0BOOEOE®

Figure 2.3: A representation of the genome as a forest

@ = toroiogue main]
® ocouniess
@i

® bresns

@ atdusis sz s

® o @ » [projogue sub] . B ¢ (prologue sul
® i @ odosao 515 @ aa0i25.20,35
@ ino ’ bit S 17, 25 @ sddiu2azz
@ sadu 516,425, 622 @ bot14,12, 023 @ sussi6 4100
@ avoiv 295,200 @ csizsoan @ aves1n, 5550
[REURERINT @ # lepiogue sub) @ +# (epilogue sul
@i

@ seaman o

@ e
@ a00i24.8,97

@® ¢ tepiogue mainl

Figure 2.4: A representation of the genome as a Linear Genetic Program

11

Conceptual Description

Moreover, it is the only component able to contain another instance of itself.
In other words, a frame can contain other frames. This causes that in the end
the entire genome of an individual could be stored inside a single frame. A frame
broads the context with respect to a macro. It could be an entire function, a

subroutine, an exit sequence and, ultimately, the entire computer program.

2.1.4 Operators

The complex structure of an individual’s genome heavily influences the complexity
of operators. Operators implement both recombination and mutation, with specific
implementations for Parameter, Frame and even a generic node in the graph.
Every time an operator is called, the goodness of its output is evaluated and
logged. This way Byron is able to keep track of the overall performance of the

operator. The monitored information are:

o Number of calls of the operator: how many time the operator was used by

Byron

o Aborts: number of completely failure of the operator, i.e. every time no valid

offspring were generated
o Offspring: how many valid offspring this operator created in total

e Failures: number of new individuals whose fitness was worse than the ones of

their parents

o Successes: how many new individuals have a better fitness than at least one

of their parents.

In Byron are implemented several genetic operators:

Single Parameter Mutation

It is the simplest operator possible: selects a parameter and makes it mutate.

Single Element Array Parameter

Given a parameter encoded as a list, it randomly selects an element of that list

and mutates it.

12

Conceptual Description

nl nl4

Figure 2.5: Individual’s genome represented as a forest

. # [prologue main] ...
‘ subu $8, $4, $19
@ ins
®ins
@i
:. # [prologue ¢
® subsa, 55,613

@ 2ds6. 518,

@ bvle 13,14, n10
@ # (epilogue <
/
@ ble26,9,n5
@ addiu14,10,53
@ vits 2207
@ ins

@ # lepilogue main] ..

Figure 2.6: Individual’s genome represented as a Linear Genetic Program

13

Conceptual Description

Add Macro to Bunch

It selects a Frame node with at least one free branch, it randomly selects a macro
from the pool of possible macros for that frame and add to the frame a new instance

of that macro.

Remove Macro to Bunch

It randomly selects a macro from the ones belonging to a frame and removes it.

Parameter Crossover

It selects a parameter encoded as a list from both the parents and merge these into

a new parameter.

Generic Node Crossover

It selects a node from both the parents and merges them in a new node.

2.1.5 Parents Selection

In 1.1 is introduced the concept of reproduction between individuals, but no
information about how these individuals are selected is provided.

There are multiple way to operate this decision. The most renowned are:

Ranking Selection

In this selection individuals are ranked according to their fitness. Then, a decreasing
along side the rank probability of being selected is assigned to each one of the
population members. The function that map the probability to the rank is not

standard, as it can be linear, exponential or else.

Fitness Proportional Selection

It is the simplest selection algorithm, in which the probability of an individual of
being selected is the relationship between its fitness and the total fitness of the

population.

14

Conceptual Description

Tournament Selection

Both of the previously discussed algorithms, require a complete knowledge of the
entire population. This is not always possible or computational negligible, so it is
necessary to find a different way. With this algorithm n individual are randomly
selected and compared. The metric used for the comparison may vary. This way it
is not required to know the entire population, but only the individuals drawn for

the tournament.

In Byron Tournament Selection is implemented, using the fitness of the individual

as metric.

2.1.6 Plugin

Byron is developed to be expandable according to the user’s needs. For this
purpose, Python’s decorators [10] are used to make it possible to integrate different

components, Operators for example, from the user side to the Byron core.

2.2 Self Adapting Evolutionary Algorithm

A self-adapting evolutionary algorithm is an algorithm able to modify internal
parameters to adapt its adaptation mechanisms to different problems. There are
several parameters inside an evolutionary algorithm that can (or that can better
not) be tweaked.

2.2.1 Selection

The first parameter to consider is how the offspring () are combined with the

pre-existing population (x). Two main groups of strategies exist:

o Comma strategies: (u, \)

o Plus strategies: (u+ \)
15

Conceptual Description

Comma

In these strategies, the previous population is discarded before the offspring are
evaluated. This leads to different advantages, for example, discarding all parents
could help in escaping a local optima [11]. Nonetheless, for the same principle, an
optimum solution may be discarded (although not forgotten) during the process,

preventing more exploration in that direction.

Plus

Here instead, the already present population and the offspring are merged and then
the worst individuals are discarded. This way optimum solutions are preserved
until better optima are found. On the other side, the prolonged presence of a local
optima solution could cause a delay in the process of escaping that optima in order

to find a better one.

Recombination and Elitism

If the best individuals are preserved no matter what their age or the population
size, it is usually called elitism. In case recombination operators are used, it is used
the formalism (u/p [+/,] A), where p represents the number of individuals used in

the recombination operations.

Thesis Development

The algorithm developed in this thesis is by default a (u/p + \) without elitism,
but by tweaking the maximum lifespan of an individual and the elitism parameter,
the user could easily transition to a (u/p, \) or (u, A) selection.

Despite in some cases [12] varying p and A could produce better results, usually, it

is not the case, so in the developed algorithm, those are treated as fixed parameters.

2.2.2 Temperature

This term is normally used in Selective Annealing [13], but it perfectly fits also in

this context. Temperature is a parameter used to balance two different phases of

16

Conceptual Description

the search process: Exploration and Exploitation. There is no rigorous definition
of these terms, but an intuition can be given.

Exploration is usually referred to as the first phase of the search, in which
individuals are scattered in the solution space, exploring undiscovered regions.

In the Exploitation phase, instead, the individuals are located near a known

good solution, trying to slightly improve it.

Thesis Development

In the algorithm developed, the temperature is a trigger for the exploitation phase
to start. It is used to determine, in the case of a fitness target, the proximity of the
actual population to the target. If this proximity is confirmed, the temperature
is used to tweak the strength of the genetic operators (more on that in the next

paragraph).

2.2.3 Operator Strength

The strength of an operator is defined as the impact that a replication has with
respect to the input individual. A higher strength push towards exploration, while

a lower ones push towards exploitation.

Thesis Development

The impact of the mutation differs based on the type of the target:

Array Parameter

For the Array Parameter, namely the parameter coded as a list, the strength of
the mutation determines how many elements of the list are subjected to mutation.

Acting on every element will result in the birth of an individual with a parameter
with no direct correlation to the parent one, frustrating the idea of the algorithm.
To avoid this the scale parameter was introduced. Its goal is to determine, given
the strength of the operator, an upper limit of how many list elements will be

changed.
17

Conceptual Description

Add / Remove Macro to Buch

These operators do not have an intrinsic concept of strength, because removal
and addition are boolean concepts: they are done or not, and there is nothing in
between. So, the strength was applied not on the action per se, but on the subject
of the action. More specifically, the exploration phase corresponds to adding to the
bunch a macro uniformly selected between the set of all possible macros available
in the node; while the exploitation phase sees a reduction of the diversity, with
a constantly decreasing quantity of macros available for the choice, reducing the
number to only the most frequent ones. Conversely, the higher the lower the

strength, the less frequent will be the removed macro.

2.3 Operator Selection

In an evolutionary algorithm, several genetic operators are present. How to select
the most appropriate one, or how to not select the ones that perform poorly, is a
non-trivial question. First of all, it is needed to define what "poorly" means and,

more importantly, how to evaluate an operator.

2.3.1 Reward

The evaluation of operators in Byron heavily relies on the performance tracking
seen in 2.1.4. The idea is to reward operators able to produce individuals better
than their parents, but also operators able to simply produce a valid individual
(although in the latter, the reward would be smaller).

On the other side, no penalties are provided for generating individuals worse
than their parents or for failure in the creation of the offspring. The logic behind
this is that, especially for very complex problems, generating valid individuals

could not be an easy task, so even good and useful operators could fail it.

2.3.2 Regret

Having defined a reward r for the desired behaviour of the operators, it is possible

to define p(o,) as the mean reward of o,, where o, € O, with O being the set of

18

Conceptual Description

available operators. Furthermore is possible to define p* = maz(p(o,) V0, € O)
as the best mean reward.
Supposing to randomly select T' times an operator from O and running it, it is

possible to compute
T
R(T) = p*-T =) op
t=1

This quantity is known as Regret at time 7. This compares the cumulative reward

obtained by the algorithm against the reward obtained by using an optimal strategy.

2.3.3 Random

Now that it is defined a way to evaluate an operator, there is the need to decide
how to select the most appropriate one. By default, Byron implements a random
selection, where every operator is drawn with IID (Independent and Identically
Distributed) probability. This method, however, does not consider any information
about the operator’s performance. The regret obtained by this selection method

has been estimated to be
R(T) < O(KT) (2.1)

where K is the number of operators.

Since better results could be achieved using the information logged by Byron

itself, in this thesis a new selection algorithm was developed.

2.3.4 Successive Elimination Algorithm

Indeed, even if the "goodness" of an operator is defined, what is not defined is a
way to compare two different operators. To solve this problem a few more steps

are required. Firstly, the Confidence Radius is defined as

2logT

n(0p)

ri(0p) =

where n.(0,), in the context of this thesis, is the number of times an operator has

been selected.

19

Conceptual Description

Then, it is possible to define respectively Upper and Lower Confidence Bound at

times t:

UCBy(0,) = p(op) + 1¢(0p)
LCBy(0p) = u(0p) — 1ri(0p)

while [LC By (0,); UC By (0,)] is called Confidence Interval. It represents the interval
where it is assumed that the mean reward of an operator will fall. Now, having
defined what rewards are expected by the operators, it is possible to evaluate if an

operator performs better than another.

Having all the necessary information leads then to the definition of the algo-

rithm:

Algorithm 1 Successive Elimination

All operators are active
for each round ¢: do
try all active operator
deactivate all operator oy, so that do, : UCB,(0],) < LCBy(op)
if ¢ / £ has ratio == 0 then
retry all operators
end if
end for

with regret?:
R(T) < O(/KTlogT) (2.2)

Comparing 2.1 versus 2.2, it is seen in Fig 2.8 that the latter presents a much
smaller regret.

This algorithm allows to reduce how many times a not appropriate operator is
selected, hence reducing the waste of computational time used to create a non-valid

individual that will be discarded immediately after its creation.

2Computation omitted in 2.1 and in 2.2 can be found, together with a more exhaustive
explanation of Algorithm 1, in [14] and [15].

20

Conceptual Description

Regret
—— Successive Elimination
Random
104 4
Y 10° 4
™
=
o
o
o
]
€ 1p2 o
101 4
T T T T
107 101 102 103
Time t

Figure 2.7: Regret of random versus Successive Elimination Algorithm at increas-

ing time T

Regret
105 4
104 i
[1¥]
=
g —— Successive Elimination
T 10° 5 Random
g
102 4
101 4
T T T T T T
0 20 40 60 80 100

Number of operators

Figure 2.8: Regret of random versus Successive Elimination Algorithm at increas-
ing number of operators

21

Chapter 3

Implementation

Will clean air smell any sweeter?
Will sunny days be any brighter?
Will starry nights hold any more wonder?,

Don Rosa

In chapter 2 were exposed the theory and the main ideas behind self adapting
evolutionary algorithm and operators’ selection, together with some conceptual
description of the implementations. In this chapter, instead, will be provided the

actual implementation of the above-mentioned concepts.

Differently from the conceptual description, the implementation is not a single
algorithm managing everything. Instead, the implementation has led to a set of

distinct functions working together synergistically.

3.1 Adaptive Ea

This function was written with the idea of being a highly customisable user-
accessible evolutionary algorithm. As the user’s entrance point it demands most of
the adaptations and optimizations to the Estimator class (3.2), which is not designed
to be directly accessed by users. Nonetheless this function directly manages the
selection methods (2.2.1). Given the aim to be as customisable as possible, it

exposes several parameters:

22

Implementation

adaptive_ea(
top_frame: type
evaluator: Eve

mu: int = 1@,
lambda : int =
max_generation: int
max_fitness: Fitne

top_n: int = @,
lifespan: int = ,

operators: list[Callable] =
end_conditions: list[Callable]
rewards: list[fTloat] [@.7, @.3]
temperature:

entropy:
population_extra_parameters:

Figure 3.1: Self Adapting Algorithm’s internals

3.1.1 Parameters

o top_frame: this is individual’s top frame. It contains all the others frames,
macros and parameters of the genome. It is used to create the initial individu-

als.

o evaluator: it’s the Byron wrapper for the user defined fitness function. The
use of the evaluator allows an easy way not only to parallelise the evaluation
of multiple individuals, but also a way to implement external fitness functions,

such as script written in other languages, like Bash, Go or C.

o mu: the size of the population. At the end of every generation the population

will be reduced of a number of individuals to equals this value.

o lambda_: the size of the generated offspring. At each generation a number of

individuals equals to this value will be generated and added to the population.

e max_generation: maximum number of generations after which the algorithm

23

Implementation

stops, whether the fitness target was reached or not.

max_ fitness: the fitness target that needs to be reached. If no target is
provided, the algorithm will continue to run until the max generation limit is

reached.

top_ n: this value, if set, enable elitism in the algorithm. It defines the
maximum number of elite individuals, also known as champions population,
allowed to exist. These individuals do not age and are guaranteed to survive
as long as they belong to the elite. If top_n == mu, lifespan parameter is

useless.

lifespan: it represent the maximum age (i.e. the maximum number of genera-
tions) an individual not belonging to the elite could remains in the population
before it dies. If top_n == mu every individual in the population will be part

of the elite, hence it will not age, making this parameter useless.

operators: a list of user-defined genetic operators that will be used instead of

the Byron standard ones.

end_conditions: list of functions that will be checked at each generation to
stop the evolution. Functions in this list have to return a boolean in order to
be checked by the algorithm. By default max fitness (if a target is provided)

and max_ generation are the only checked conditions.

reward: list of rewards for the genetic operators. If no specific values are
provided bu the user, the ones selected through an hyper-parameter tuning

are used.
temperature: the temperature value to balance exploration and exploitation.

entropy: A flag to use population entropy parameter to promote diversity in

population. Currently not used.

population extra parameters: additional parameters that are added to the

population.

24

Implementation

3.1.2 Algorithm
Initialisation

The stopping conditions and the population are created. The estimator is initialised
with the user defined parameters and the genetic operators specific for initialisation

are selected.

After the selection, the first generation of individuals is generated. Given the
absence of previous data and the uniqueness of the initialisation, the operator
selection is purely random. After the first batch of individuals is born, they are

evaluated and the population is sorted accordingly.

Evolution

Now, until a stopping condition is reached, the evolution proceeds. Firstly the
mutation strength is retrieved from the estimator. This strength will be used for
every individual of the generation.

Then, the estimator is called to select a genetic operator. From the operator
the needed number of parents is obtained, each of them is then selected through a
tournament. After, the operator is called with the individuals selected as arguments

and, if supported, the strength parameter.

When the number of offspring reaches the value of A, the individuals creation
is stopped. At this point if a lifespan was given, the individuals in the population
age and those that exceed the lifespan threshold are removed. Then the offspring
are added to the population, which is evaluated and sorted again. After that all
the individuals with the lowest fitness that exceed the population dimension (u),

are removed and the estimator is updated.

Termination

When a stopping condition is matched, the evolution stops. The algorithm returns

the last evaluated population and print some statistics about the used operators.

25

Implementation

3.2 Estimator

This class is the core of the adaptation process. It manages both the sigma

adaptation (2.2.2) and the Successive Elimination algorithm (2.3.4).

3.2.1 Parameters

Estim I:
_population: Po
_time: int
_horizon: int
_operators: di
_rewards: 11
_probabilitie
_near: Fit
_best: Fiti
_temperatu
_max_t: T
_exploit: boc

operator: Callable
ucB: f

LCB:

__init__(self, operator: Callable, UCB: float, LCB:
self.operator = operator

self.UCB = UCB

self.LCB = LCB

Figure 3.2: Estimator’s internals

Internally it stores several information:

_ population: a reference to the population of the evolutionary algorithm

_ time: an internal parameter to keep track of the execution’s generations

__horizon: to compute the confidence radius, the maximum number of genera-

tions

_operators: a dictionary with all the possible operators available

26

Implementation

_rewards: a list of the defined rewards for the operators

__probabilities: a list of tuple (operator, probability of being select) for the

selection of the operator in a given time. !

_temperature: the parameter used to balance exploration and exploitation

max t: the maximum temperature set by the user

_near: the fitness threshold below which the exploitation phase begin

_best: the best achieved fitness during the execution

It also contains the class I, which provides a compact way of maintaining information
about operators’ performances.

To interact with the Estimator there are different functions available. The idea
behind these functions is to have the most minimal signature [16] possible, so
that after the creation of the Estimator, no other parameters are required for the
system to work. This allows this component to be interoperable to every algorithm

developed for Byron and not only to 3.1

3.2.2 Update

This function manages the update of internal components and the way time is
computed in the class. It is not called by an external agent, but instead is called

by the Sigma (2.2.2) function, in order to keep track of the passing generations.

update(self):

Figure 3.3: Update function’s signature

Leurrently the probability of being selected is equal for all the valid operators. The probability

information is preserved for future improvements

27

Implementation

Every time this function is executed, it computes the confidence interval for
every operator. It then apply the successive elimination algorithm, ruling out from

the valid operator set the ones that do not meet the requirements.

Computing every time the confidence interval, finding the max value of the lower
bound, has a fundamental advantage against keeping the max from the previous
iteration. That is, if at a given time the best operators start to fail for some
reasons, the overall LCB margin will decrease. Thanks to this, other operators
previously discarded could be considered valid again. The ratio behind this choice
is that if too many failure start to appear suddenly, the active operators may be
not suited anymore to the current structure of the genome, while operators that
did not performed well in the past could now have a positive impact. In order to
minimize the creation of invalid individuals, the first operators to be re-activated
will be the ones that have the most probabilities to produce a valid individual: i.e.

from the most recent deactivate ones to the less ones.
Being the function that manages time, it is also the one that, every quarter

of execution, re-enables the discarded operators for a test run, in order to check if

they could now behave better than when they were discarded.

3.2.3 Take

take(self) -> Callable:
return self._operators|

rrandom.weighted_choice([p[@] for p in self._probabilities], [p[1l] for p in self._probabilities])
].operator

Figure 3.4: Take function

This is a quite simply but at the same time fundamental function. In fact
through this function, the algorithm could retrieve the operator to create the
next individual of the population. The set from where the operator is drawn is
managed by 3.2.2 and here it is simply performed a choice based on the probability
of each operator. The use of this structure allows a high re-usability, because no

assumption is made about the probabilities distribution or how it is computed.

28

Implementation

3.2.4 Sigma

self, use_entropy) -> float:

Figure 3.5: Sigma function’s signature

The function sigma is the one designated to balance exploration and exploita-
tion. To achieve so, it measure the distance between the actual fitness found in
the population and the _near value computed at the initialization of this class.
Optionally, this function could also performs a check on the Shannon’s entropy [17]
of the population. This allows a fine check about the diversity in the population
and the ability to tweak the temperature according to the actual population. 2 The
default state of the function is exploration. When the above mentioned conditions
are satisfied, the function enter in the exploitation phase. In this phase it allows
the Update function to tweak the temperature, slowly reducing it at every iteration,
until it reach a lower limit. When this limit is reached, the temperature stops to
decrease and remains partially still, with minor variations to improve the solution’
search. This function is used to obtain the strength of the mutation for a genetic
operator, and so it returns this value based on the actual temperature if the function

is in the exploitation phase, and 1 instead.

3.3 Hyper-parameters Tuning

Due to the high customizability, a large number of parameters are needed in order
to manage all the available options. Given that the user could not know all the
best values for the parameters, it is needed that the default ones provided with the

functions are a good trade-off between performance and versatility.

2 Actually the entropy computation for the population is still under development, so an extra
parameter in the function’ signature was added to temporarily disable this check while preserving
the functionality for development purpose

29

Implementation

1.0~

0.8 1

0.6 -

Temperature

0.4

0.2

T
0 10 20 30 40 50
Generations

Figure 3.6: Temperature decreasing in the exploitation phase

3.3.1 Population

The first and maybe most difficult parameter (or better, in this case, parameters)

to find is the population and offspring size.

Methodology

It is not trivial to define how to measure the difference in performance regarding
the population size. In fact many possible metrics heavily rely on the population
itself. Number of individuals or generations are not reliable metrics in this case, so
it is decided to focus on the time needed for the algorithm to find the solution.

Experiments where executed on a Onemax * benchmark test several times and

3Tt is the most simple and popular example of evolutionary algorithm usage: the genome of

30

Implementation

average accordingly.

As Shown in Figure 3.7, the results could be very different between themselves
w.r.t. the variation of the values. Also it has to be noted that several studies as,
for example, [18], showed that a large population can be unhelpful and that, in

general, population size could be extremely problem dependant.

Result

With these elements in mind, it was considered a good trade-off selecting a small
dimension for the population and the offspring, so that to ease the computational
load. It was also decided to keep A > pu in order to keep available by default
Comma strategies (2.2.1).

time [5]

T
20 40 60 80 100

Figure 3.7: Performance according to Mu/Lambda variation

every individual it is a string of ’0’s and ’1’s randomly distributed. The fitness function is the
number of ’1’s present in the genome

31

Implementation

3.3.2 Rewards

The operator rewards are fundamental parameters for the operator selection phase.

Methodology

Having a fixed population and offspring dimension, the parameter choose as a
metric is the number of generation needed to reach the desired fitness. This value
was preferred because directly measuring single operator’ stats would results in a
partial view of the overall situation, while the number of generation is a cumulative
metrics of all the previous values.

The rewards considered are
« Reward for an individual better than parents (success)
¢ Reward for a valid individual

The most important is the "Success" one, while "valid" can vary much more.
With this in mind firstly the same benchmark as in 3.3.1 was run. Then, the
variance between the number of generations was analyzed to find the most stable
reward for success (Fig 3.9). Found this value, using Figure 3.8, a good value for

the "valid" reward was selected.

Result

Again as for the population, it was not selected the best value overall but a good

enough one, in order to keep the versatility of the parameters.

3.3.3 Temperature

The temperature manages the balance between exploration and exploitation

Methodology

Since this parameter does not only influences who the exploitation phase is con-
ducted, but also when this phase begin, it is not that useful looking at metrics like
the operators statistics. Since temperature will change how the solution space is

explored, reducing the exploration and restring its scope, the lesser the value, the

32

Implementation

140 - — success: 0.0
= surcess: 0.1
— success: 0.2
—— success: 0.3
—— success: 0.4
— success: 0.5
120 1 —— success: 06
“ —— success: 0.7
= success: 0.8
R=l —— success: 0.9
=
(1]
[
L5
< 100 ~
[T
[s]
[T
=]
—
L8]
o
E 80+
=
[=
60

0.0 0.2 0.4 0.6 0.8
valid

Figure 3.8: Performance according to Rewards variation

300 ~

250 ~

¥

[=]

(=]
I

var(# generations)
(=
w
[=]
1

100 +

T
0.0 0.2 0.4 0.6 0.8
SUCCess

Figure 3.9: Variance of the number of generations for each rewards

33

Implementation

smaller will be the pace of the exploration. So an obvious metric to be analyzed
could be the time needed for the algorithm to complete. Nonetheless, timing the
algorithm requires external resources, while there is another metric that perfectly
serves for the goal: the number of generations. Indeed, if the exploitation start
sooner, more generations will be needed to explore the same area of space that can

be explored in the exploration phase.

500 ~
400
v
=
e
L
o
& 300
=
Q
o
[T
(=]
#
200 ~
100 -
T T T T T
0.5 0.6 0.7 0.8 0.9
temperature

Figure 3.10: Number of generation per different temperature

Result

As shown in Figure 3.10, there is a huge gap of performances between 0.65 and
0.75, where a later starting of the exploitation phase lead to a more then halving
number of generations. Since some problems could benefit of a earlier start of this

last phase, the chosen parameter was again not the best found overall, but a good

34

Implementation

enough one.

3.4 Comparison

The already present vanilla evolutionary algorithm in Byron is little more than
a demonstrator of Byron capabilities or, in other words, a basic evolutionary
algorithm without self adaptation. Nonetheless could be interesting to show the
difference in performance between a standard non self-adapting algorithm and the
one developed in this thesis.

The test suite consists in:

3.4.1 Onemax
NUM BITS = 500

@byron.fitn function

== '1"'" -for b in genotype)

F.array parameter('81', MUM BITS + 1))

Figure 3.11: Onemax problem definition

It is the most simple and popular example of evolutionary algorithm usage: the
genome of every individual it is a string of '0’s and '1’s randomly distributed. The
fitness function is the number of "1’s that are present in the genome. In this case
the string length is equal to 500. Only one type of macro and frame are used, this
is both for simplicity but also to create an ad hoc environment where not every

operator is useful.

It is clearly visible from Table 3.1 that the self-adapting algorithm outperform
35

Implementation

Algorithm perfomance
Algorithm Individuals Generations
vanilla ea 63659 2834
adaptive ea 31423 833

Table 3.1: Algorithms performances on Onemax problem

Algorithm perfomance

Algorithm operator calls | abort | success / valid
random__individual (init) 10 10 /
add__macro__to__bunch (mut) 6988 | 6988 /
remove__macro_ from_ bunch (mut) 7084 | 7084 /
single element_ array parameter__mutation (mut) 7210 0 364 / 3244

vanilla_ ea single_ parameter _mutation (mut) 7003 0 7 / 6996
array__parameter_uniform__crossover__choosy (xover) | 7080 0 1297 / 1243
leaf crossover__unfussy (xover) 7203 | 3727 480 / 486
node__crossover__choosy (xover) 7015 | 7015 /
node_crossover_unfussy (xover) 7097 | 7097 /
random __individual (init) 10 10 /
add__macro__to__bunch (mut) 179 179 /
remove__macro_ from__bunch (mut) 164 164 /
single_element_ array_parameter__mutation (mut) 5196 0 76 / 4670

adaptive__ea single_parameter _mutation (mut) 4350 0 4 / 4346
array_parameter_uniform_ crossover_choosy (xover) | 5637 0 894 / 758
leaf crossover unfussy (xover) 789 | 431 81 /85
node_crossover_choosy (xover) 179 | 179 /
node_crossover unfussy (xover) 166 | 166 /

Table 3.2: Performance of each operator on Onemax, with specified if it is a
"Mutation", an "Initializer" or a "Crossover'

the vanilla one as per number of generations and also per number of individuals.
Moreover, in Table 3.2 is shown the operator selection algorithm cutting off the

operators that are not suited for this problem

3.4.2 Twomax

This problem is a slight modification of the previous. Here, instead of measuring

the fitness on the number of ’1’s, the fitness is computed based on the maximum

36

Implementation

number of ’0’ or "1’ in the genome. in this way, an algorithm that promote diversity
is favored with respect to one that does not, since more individuals with a different

genome could have similar results.

NUM BITS = 500

sum(b-==-'1"' for-b in genotype), sum{b-== '@' for b in genotype))

F.macro(’ : 1.f.array parameter('@1', MNUM BITS
1. f.sequence)

Figure 3.12: Twomax problem definition

Algorithm perfomance
Algorithm Individuals Generations
vanilla__ea 111451 5000
adaptive ea 26290 707

Table 3.3: Algorithms performances on Twomax problem

The difference in performance here is more than evident. The vanilla algorithm
was not able to find the desired solution and run out of computational time reaching
a max fitness of 495. The table with the operators performances is omitted because

it simply shows the same behaviour shown in Table 3.2

3.4.3 Knapsack

Knapsack problem is a well known [19] problem in combinatorial optimization
where, given a set of item with a defined weight and value, the goal is to obtain
the maximum value without exceeding a maximum weight. This example is worth
showing for two reasons.

The first one is the non trivial fitness function. Far from affirming that the
function itself is complex, the non triviality can be found in the process of deciding

how to compute the fitness, while enforcing the weight’s limit. Above all, this is an

37

Implementation

-b-in-g
ib]
5 [l tl]

VEIGHTS[ib]

WEIGHT - fitness[1])

+

f.macrof
f.macrof

parameter(
narameter
par

—+

M M

=+ =h
= -
=]
—~+

, macro3],

Figure 3.13: Knapsack problem definition

38

Implementation

example of how the user intervention and reasoning is needed in the definition of

the problem.

The second and most obvious reason is to show how, changing the genome
composition, it changes also the operators that can be used, as can be clearly seen
comparing Table 3.2 and Table 3.5.

Algorithm perfomance
Algorithm Max Value Generations
vanilla ea 94 500
adaptive ea 107 387

Table 3.4: Algorithms performances on Knapsack problem

Algorithm perfomance

Algorithm operator calls | abort | success / valid
random__individual (init) 10 10 /
add_macro_to_bunch (mut) 1222 0 5 /1217
remove__macro__from__bunch (mut) 1269 0 45 /1224
single_element_ array_parameter__mutation (mut) 1252 | 1252 /

vanilla_ ea single_parameter mutation (mut) 1249 0 23 / 1226
array_ parameter_uniform_ crossover__choosy (xover) | 1286 | 1286 /
leaf crossover unfussy (xover) 1241 | 972 13 /12
node__crossover__choosy (xover) 1230 | 1230 /
node_ crossover__unfussy (xover) 1251 | 1251 /
random__individual (init) 10 10 /
add__macro_to_bunch (mut) 2791 0 421 / 2370
remove_macro_ from_bunch (mut) 2845 0 50 / 2795
single_element_ array__parameter__mutation (mut) 235 235 /

adaptive__ea single parameter mutation (mut) 2865 0 346 / 2519
array__parameter__uniform_ crossover__choosy (xover) | 237 237 /
leaf crossover unfussy (xover) 565 | 429 45 / 70
node_ crossover__choosy (xover) 233 | 233 /
node_crossover_unfussy (xover) 229 | 229 /

Table 3.5: Performance of each operator on Knapsack, with specified if it is a
"Mutation", an "Initializer" or a "Crossover"

39

Implementation

3.5 Conclusion

In this thesis is shown the process and the methodology behind the development of
a self-adapting evolutionary algorithm and how it presents several advantages in
performance against non self-adapting ones.
Despite a more complex structure and the need to check more parameters during the
execution, this algorithm has proven to be able to outperform the non self-adapting
one both in the solutions found and in the computational load produced.

It is also shown the modularity of the Byron Evolutionary Tool and its versatility

in tackling different types of problems.

3.5.1 Future Works

Connecting to the work conducted in this thesis, additional steps can be taken to
increase the capabilities of this tool.

Since the core parts of the tool are already completed and working, the problem of
tomorrow will be expand its function integrating new algorithms, operators and

ways to promote diversity, while perfecting what is already present.

40

Bibliography

Charles Darwin. On the Origin of Species by Means of Natural Selection, or
the Preservation of Favoured Races in the Struggle for Life. London: Murray,
1859 (cit. on p. 1).

Alfred Russel Wallace Charles Darwin. «On the Origin of Species by Means
of Natural Selection, or the Preservation of Favoured Races in the Struggle
for Life». In: Journal of the Proceedings of the Linnean Society of London
(1858) (cit. on p. 1).

August Weismann and Margaret R Thomson. The evolution theory. Vol. 2. E.
Arnold, 1904 (cit. on p. 1).

Franz Weiling. «Historical study: Johann Gregor Mendel 1822-1884». In:
American journal of medical genetics 40.1 (1991), pp. 1-25 (cit. on p. 1).

George EP Box. «Evolutionary operation: A method for increasing industrial
productivity». In: Journal of the Royal Statistical Society: Series C (Applied
Statistics) 6.2 (1957), pp. 81-101 (cit. on p. 2).

Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998,
p. 8 (cit. on p. 3).
Ernesto Sanchez, Giovanni Squillero, and Alberto Tonda. Industrial applica-

tions of evolutionary algorithms. Springer, 2012 (cit. on p. 4).

Kenneth Alan De Jong. Analysis of the behavior of a class of genetic adaptive
systems. Tech. rep. 1975, pp. 48-52 (cit. on p. 5).

Cad Polito. Byron Macro Description. 2024. URL: https://github.com/cad-
polito-it/byron/blob/bd92cc2ee07459d2cd3e53457ca2598af4db0169/
byron/framework/macro.py#L64 (cit. on p. 10).

41

https://github.com/cad-polito-it/byron/blob/bd92cc2ee07459d2cd3e53457ca2598af4db0169/byron/framework/macro.py#L64
https://github.com/cad-polito-it/byron/blob/bd92cc2ee07459d2cd3e53457ca2598af4db0169/byron/framework/macro.py#L64
https://github.com/cad-polito-it/byron/blob/bd92cc2ee07459d2cd3e53457ca2598af4db0169/byron/framework/macro.py#L64

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[16]

[17]

[18]

[19]

Python Software Foundation. Decorator. 2024. URL: https://docs.python.
org/3/glossary.html#term-decorator (cit. on p. 15).

Agoston E Eiben and James E Smith. Introduction to evolutionary computing.
Springer, 2015, p. 89 (cit. on p. 16).

Radka Polakova, Josef Tvrdik, and Petr Bujok. «Differential evolution with
adaptive mechanism of population size according to current population diver-

sity». In: Swarm and Evolutionary Computation 50 (2019) (cit. on p. 16).

Emile Aarts and Jan Korst. Simulated annealing and Boltzmann machines:

a stochastic approach to combinatorial optimization and neural computing.
John Wiley & Sons, Inc., 1989 (cit. on p. 16).

Aleksandrs Slivkins et al. «Introduction to multi-armed bandits». In: Foun-
dations and Trends® in Machine Learning 12.1-2 (2019), pp. 15-16, 19-25
(cit. on p. 20).

Eyal Even-Dar, Shie Mannor, and Yishay Mansour. « PAC bounds for multi-
armed bandit and Markov decision processes». In: Computational Learning
Theory: 15th Annual Conference on Computational Learning Theory, COLT
2002 Sydney, Australia, July 8-10, 2002 Proceedings 15. Springer. 2002,
pp. 255-270 (cit. on p. 20).

Jiwon Seo Brett Cannon et al. Signature Object. 2023. URL: https://peps.
python.org/pep-0362/#signature-object (cit. on p. 27).

Claude Elwood Shannon. «A mathematical theory of communication». In:
The Bell system technical journal 27.3 (1948), pp. 379-423 (cit. on p. 29).

Tianshi Chen, Ke Tang, Guoliang Chen, and Xin Yao. «A large population
size can be unhelpful in evolutionary algorithms». In: Theoretical Computer
Science 436 (2012), pp. 54-70 (cit. on p. 31).

George B Mathews. «On the partition of numbersy. In: Proceedings of the
London Mathematical Society 1.1 (1896), pp. 486490 (cit. on p. 37).

42

https://docs.python.org/3/glossary.html#term-decorator
https://docs.python.org/3/glossary.html#term-decorator
https://peps.python.org/pep-0362/#signature-object
https://peps.python.org/pep-0362/#signature-object

Acknowledgements

And to you,
if you have stuck with Harry
until the very end,

J. Rowling

Reader, a heartfelt thanks if you have read until here. Forgive me, but the rest

of these lines will not be written in English.

Qualsiasi lista di ringraziamenti includerebbe forse la meta delle persone da
ringraziare; e mostrerei, per piu della meta di loro, meno della meta dell’affetto
che meritano.

Per cui, chiunque tu sia, se in questi anni ci siamo incontrati, conosciuti, apprezzati
e siamo infine diventati amici: grazie. Grazie perche se sono riuscito ad arrivare

alla fine di questo percorso, ¢ anche merito tuo.
Grazie alla mia famiglia, che mi ha sostenuto, incorraggiato e, non secondari-
amente, cresciuto fino ad oggi. Sarebbe inutile nonche impossibile entrare nel

dettaglio di quanto hanno fatto, e quindi non lo faro; mi limitero ad un abbraccio

letterario, perche ogni tanto un punto vale piu di mille parole.

E grazie a te, Valentina, per Tutto.

43

	List of Tables
	List of Figures
	Introduction to Evolutionary Algorithm and Computation
	Lexicon
	Advantages
	Disadvantages

	Conceptual Description
	Byron Evolutionary Tool
	Population
	Individual
	Genome
	Operators
	Parents Selection
	Plugin

	Self Adapting Evolutionary Algorithm
	Selection
	Temperature
	Operator Strength

	Operator Selection
	Reward
	Regret
	Random
	Successive Elimination Algorithm

	Implementation
	Adaptive Ea
	Parameters
	Algorithm

	Estimator
	Parameters
	Update
	Take
	Sigma

	Hyper-parameters Tuning
	Population
	Rewards
	Temperature

	Comparison
	Onemax
	Twomax
	Knapsack

	Conclusion
	Future Works

	Bibliography

