
POLITECNICO DI TORINO
MASTER’s Degree in INGEGNERIA MATEMATICA

MASTER’s Degree Thesis

Prediction of atomic clocks behaviour for
UTC calculation: a statistical analysis

based on clock type.

Supervisors

Prof. ENRICO BIBBONA

Dr. GIANNA PANFILO

Candidate

ARIANNA ABIS

MARCH 2024

Summary

This thesis presents collaborative research conducted at the Bureau International
des Poids et Mesures (BIPM), specifically within its Time Department. The BIPM
serves as the international authority on metrology, facilitating global uniformity
in measurements and standards. In this framework, the Time Department is spe-
cialized in analyzing time differences data, sourced from atomic clocks distributed
across laboratories worldwide. These data are optimally combined to establish a
stable and precise time-scale, the Universal Coordinate Time (UTC) scale, used as
a global time reference.
The thesis commences with a comprehensive literature review addressing the current
methodologies and their evolution. Thereafter, the study focuses on the implemen-
tation and refinement of algorithms for predicting phase error terms. Notably, all
clocks contributing to UTC exhibit a deviation from the nominal frequency defining
the second, which results in a phase error, as the error in frequency integrates
over time. Accurately predicting and correcting the deterministic component of
the phase error terms for each clock is essential in maintaining the precision and
stability of the UTC time scale. While the current algorithm utilizes a quadratic
polynomial, the research explored alternative approaches tailored to specific types
of clocks. In fact, there are three main kinds of atomic clocks: cesium (commercial
clocks), hydrogen masers (very stable but not accurate) and rubidium fountains
(extremely stable and accurate, lose about 3 nanoseconds in one year).
In particular, linear models of the phase deviations were proposed for fountains and
cesium clocks, addressing the absence of drift which is instead accounted for in the
quadratic model. Moreover, a novel method for estimating the linear coefficient, em-
ploying the least squares technique instead of the conventional last-first technique,
was proposed and investigated. Experimental findings and statistical analysis,
detailed within the thesis, provide insights into the efficacy of these methodologies,
contributing to the optimization of global time standards.

ii

Table of Contents

List of Tables vi

List of Figures vii

Acronyms xiii

Introduction 1

1 Overview of UTC Calculation 3
1.1 Atomic Clocks behaviour . 4
1.2 EAL Calculation . 7

1.2.1 Estimate of EAL parameters 7
1.2.2 Inclusion of the drift . 11
1.2.3 Calculation of weights . 17

2 Stochastic Models for Clock Noise 19
2.1 Characterization of noise in frequency and time domains 19
2.2 Stochastic model for the atomic clock error 24

2.2.1 Clock affected by WFM and RWFM 28

3 Possible improvements: implementation and results. 31
3.1 Calculation of EAL with OLS method 31
3.2 Implementation of deterministic models 33

3.2.1 Linear model . 43
3.2.2 Least squares frequency model 62
3.2.3 Global effects on EAL time scale 77

3.3 Implementation of stochastic model 78

Conclusion 84

iv

A Calculations 85
A.1 Relationship between Allan Variance and Fourier Spectral Density. . 85
A.2 Distribution of

s t
0 Wsds. 85

B Matlab Code 86
B.1 Computation of pivoted table. 86
B.2 Computation of cleaned table. 88
B.3 Computation of freq table. 88
B.4 Computation of linear interpolation and plot. 89
B.5 Script for five years analysis. 91
B.6 Quadratic model for phase error, frequency computed using both

techniques: first - last point of time difference and linear ls interpo-
lation. 92

B.7 Linear model for phase error for fountains: frequency computed with
least - first point of time differences. 100

B.8 Computation of Allan Variance. 105
B.9 Script for computation of Allan Variance. 106
B.10 Weights extraction. 107
B.11 EAL analysis with linear model and least squares frequency model

only cesium (only masers). 110
B.12 Computation of residuals with addition of stochastic term. 114

Bibliography 117

v

List of Tables

2.1 Power law exponents for clock noises. 23

3.1 Slopes of broken lines related to type of noise in a log-log plot of
standard Allan deviation versu τ . 79

vi

List of Figures

1.1 Example of sine-wave with amplitude 1 and phase 0, and its shifted
versions with phase 0.25π and 0.5π. 6

2.1 Power law curves of Allan variance to distinguish noise type ([7]). . 24

3.1 Example of TTH2208 data . 34
3.2 Snapshot of the pivoted table for data in the period Jan 2018 - Dec

2022. On the rows there are the clock codes and on the columns the
sequence of MJD values. In each cell there is the reading difference
measurement for that clock in that date. 36

3.3 Drift and residual analysis for maser 1400004. 37
3.4 Drift and residual analysis for maser 1400702. 38
3.5 Drift and residual analysis for cesium 1350102. 38
3.6 Drift and residual analysis for cesium 1350179. 39
3.7 Drift and residual analysis for fountain 1930002. 39
3.8 Drift and residual analysis for fountain 1930003. 40
3.9 Drift and residual analysis for fountain 1930004. 40
3.10 Drift and residual analysis for fountain 1930005. 41
3.11 Drift and residual analysis for cesium 1351120. Presence of outliers. 42
3.12 Drift and residual analysis for maser 1400205. Presence of outliers. . 42
3.13 Drift subsequent estimations for clock 1403845. 43
3.14 Residuals from quadratic model for clock 1930002. 45
3.15 Residuals from linear model for clock 1930002. 45
3.16 Comparison of residuals from quadratic and linear models for clock

1930002. 45
3.17 Residuals from quadratic model for clock 1930003. 46
3.18 Residuals from linear model for clock 1930003. 46
3.19 Comparison of residuals from quadratic and linear models for clock

1930003. 46
3.20 Residuals from quadratic model for clock 1930004. 47
3.21 Residuals from linear model for clock 1930004. 47

vii

3.22 Comparison of residuals from quadratic and linear models for clock
1930004. 47

3.23 Residuals from quadratic model for clock 1930005. 48
3.24 Residuals from linear model for clock 1930005. 48
3.25 Comparison of residuals from quadratic and linear models for clock

1930005. 48
3.26 Residuals from quadratic model for clock 1934901. 49
3.27 Residuals from linear model for clock 1934901. 49
3.28 Comparison of residuals of quadratic and linear models for clock

1934901. 49
3.29 Residuals from quadratic model for December 2022, fountains. . . . 50
3.30 Residuals from linear model for December 2022, fountains. 50
3.31 Comparison of residuals over the same month for quadratic and

linear model, Dec 2022, fountains. 50
3.32 Residuals from quadratic model for October 2023, fountains. 51
3.33 Residuals from linear model for October 2023, fountains. 51
3.34 Comparison of residuals over the same month for quadratic and

linear model, Oct 2023, fountains. 51
3.35 Mean of residuals and standard deviation across fountains , shown

separately per month, from August 2022 to October 2023, for the
two cases: linear and quadratic. 52

3.36 Mean of residuals and standard deviation across fountains , shown
separately per month, from August 2022 to October 2023, for the
two cases: linear and quadratic, superimposed. 53

3.37 Boxplot of mean residuals for fountains, from August 2022 to October
2023, in the two cases: linear and quadratic. 54

3.38 Boxplot of standard deviation of residuals for fountains, from August
2022 to October 2023, in the two cases: linear and quadratic. 54

3.39 Boxplot of sd of residuals for fountains showing only the last day of
residuals every month, from August 2022 to October 2023, in the
two cases: linear and quadratic. 55

3.40 Histogram of mean residual for fountains, from August 2022 to
October 2023, in the two cases: linear and quadratic. 55

3.41 Weights from linear model vs. weights from quadratic model for
clock 1930003. 56

3.42 Weights from linear model vs. weights from quadratic model for
clock 1934901. 56

3.43 Drift estimation values over five years from Jan 2018 to Dec 2022,
for one cesium, one maser, and one fountain. 57

3.44 Residuals from quadratic model for clock 1351225. 58
3.45 Residuals from linear model for clock 1351225. 58

viii

3.46 Comparison of residuals from quadratic and linear models for clock
1351225. 58

3.47 Mean of residuals and standard deviation across cesium clocks, shown
separately per month, from January 2018 to December 2022, for the
two cases: linear and quadratic. 59

3.48 Boxplot of mean residuals for cesium clocks, from January 2018 to
December 2022, in the two cases: linear and quadratic. 59

3.49 Boxplot of standard deviation of residuals for cesium clocks, from
January 2018 to December 2022, in the two cases: linear and quadratic. 60

3.50 Boxplot of sd of residuals for cesium clocks showing only the last
day of residuals every month, from January 2018 to December 2022,
in the two cases: linear and quadratic. 60

3.51 Histogram of mean residual for cesium clocks, from January 2018 to
December 2022, in the two cases: linear and quadratic. 61

3.52 Weights from linear model vs. weights from quadratic model for
clock 1353472. 61

3.53 Weights from linear model vs. weights from quadratic model for
clock 1353530. 62

3.54 Residuals from standard frequency model for maser 1400702. 63
3.55 Residuals from ls frequency model for maser 1400702. 63
3.56 Comparison of residuals from standard and ls frequency models for

maser 1400702. 63
3.57 Residuals from standard frequency model for cesium 1350179. . . . 64
3.58 Residuals from ls frequency model for cesium 1350179. 64
3.59 Comparison of residuals from standard and ls frequency models for

cesium 1350179. 64
3.60 Residuals from standard frequency model for fountain 1930005. . . 65
3.61 Residuals from ls frequency model for cesium 1930005. 65
3.62 Comparison of residuals from standard and ls frequency models for

fountain 1930005. 65
3.63 Residuals from standard frequency model for December 2022, cesium. 66
3.64 Residuals from least square frequency model for December 2022,

cesium. 66
3.65 Comparison of residuals over the same month for the two frequency

models, cesium. 66
3.66 Residuals from standard frequency model for November 2022, masers. 67
3.67 Residuals from least square frequency model for November 2022,

masers. 67
3.68 Comparison of residuals over the same month for the two frequency

models, masers. 67
3.69 Residuals from standard frequency model for October 2023, fountains. 68

ix

3.70 Residuals from least square frequency model for October 2023, foun-
tains. 68

3.71 Comparison of residuals over the same month for the two frequency
models, fountains. 68

3.72 Mean of residuals and standard deviation across masers , shown
separately per month, from February 2018 to December 2022, for
the two cases: frequency standard and frequency ls. 69

3.73 Mean of residuals and standard deviation across cesium, shown
separately per month, from February 2018 to December 2022, for
the two cases: frequency standard and frequency ls. 70

3.74 Mean of residuals and standard deviation across fountains shown
separately per month, from August 2022 to October 2023, for the
two cases: frequency standard and frequency ls. 71

3.75 Boxplot of mean residuals for masers, from February 2018 to De-
cember 2022, in the two cases: frequency standard and frequency
ls. 71

3.76 Boxplot of sd of residuals for masers, from February 2018 to De-
cember 2022, in the two cases: frequency standard and frequency
ls. 72

3.77 Boxplot of sd of residuals in the 7th day of residuals for masers,
from February 2018 to December 2022, in the two cases: frequency
standard and frequency ls. 72

3.78 Boxplot of mean residuals for cesium, from February 2018 to De-
cember 2022, in the two cases: frequency standard and frequency
ls. 73

3.79 Boxplot of sd of residuals for cesium, from February 2018 to De-
cember 2022, in the two cases: frequency standard and frequency
ls. 73

3.80 Boxplot of sd of residuals in the 7th day of residuals for cesium,
from February 2018 to December 2022, in the two cases: frequency
standard and frequency ls. 74

3.81 Boxplot of mean residuals for fountains, from August 2022 to October
2023, in the two cases: frequency standard and frequency ls. 74

3.82 Boxplot of sd of residuals for fountains, from August 2022 to October
2023, in the two cases: frequency standard and frequency ls. 75

3.83 Boxplot of sd of residuals in the 7th day of residuals for fountains,
from August 2022 to October 2023, in the two cases: frequency
standard and frequency ls. 75

3.84 Histogram of mean residual for masers, from February 2018 to
December 2022, in the two cases: frequency standard and frequency ls. 76

x

3.85 Histogram of mean residual for cesium, from February 2018 to
December 2022, in the two cases: frequency standard and frequency ls. 76

3.86 Histogram of mean residual for fountains, from August 2022 to
October 2023, in the two cases: frequency standard and frequency ls. 77

3.87 Frequency stability of EAL-1930005 for the four different models. . 78
3.88 Allan deviation for cesium clock 1350332 80
3.89 Residuals over 5 years for cesium 1350332 using deterministic plus

stochastic prediction term. 81
3.90 Residuals over 5 years for cesium 1350332 using deterministic plus

stochastic prediction term. 81
3.91 Residuals over 5 years for cesium 1350332 using deterministic plus

stochastic prediction term. 82
3.92 Residuals over 5 years for cesium 1350332 using deterministic plus

stochastic prediction term. 82
3.93 Residuals over 5 years for cesium 1350332 using deterministic pre-

diction. 83

xi

Acronyms

MJD
Modified Julian Date

UTC
Universal Coordinate Time

TAI
International Atomic Time

EAL
Free Atomic Time Scale

PSFS
Primary Secondary Frequency Standard

TT
Terrestrial Time

WPM
White Phase Modulation

FPM
Flicker Phase Modulation

WFM
White Frequency Modulation

FFM
Flicker Frequency Modulation

xiii

RWFM
Random Walk Frequency Modulation

xiv

Introduction

The concept of time has been at the center of significant philosophical and scientific
discussions for centuries, with many prominent thinkers who asked themselves:
“What is time?”.
In his paper “Time and Frequency Characterization, Estimation and Prediction
of Precision Clocks and Oscillators”, published in 1987, David W. Allan gives an
answer to this question: “The fact is that time as we now generate it is dependent
upon defined origins, a defined resonance in the cesium atoms[...]. Hence, at a
significant level time - as man generates it by the best means available to him - is
an artifact.”([1]).
This thesis explores the theory of time measurements and time scales, after the
redefinition of the second in 1967, with the employment of atomic clocks and the
related work to account for their inaccuracy and lack of stability.
In particular it focuses on the effort to maintain a global reference time scale,
UTC time scale. This effort is coordinated at the Time Department of the Bureau
International des Poids et Mesures (BIPM), the international authority on time
metrology.

The first two chapters of this thesis will delve into the existing literature
concerning current modeling standards for atomic clocks.

The first chapter will provide a comprehensive overview of the topic, elucidating
the definition of time scales, and delineating the pivotal role of the BIPM within
the timing community. The current algorithm employed for predicting atomic
clocks errors will be thoroughly analyzed.

In the second chapter, the focus shifts to stochastic processes describing clocks
random noises, both in time and frequency domains. The initial part of this
chapter will explain the prevalent methodology for discerning clock errors — the
Allan variance — elucidating how it is obtained as an estimator for time-dependent
frequency instabilities. The latter part will center on stochastic calculus. First there
will be a review on fundamental results, then it will be presented a literature case
of modeling of atomic clock behavior via a generalized linear stochastic differential
equation.

Finally, the third chapter embarks on original research. Initially, I will propose a

1

Introduction

mathematical framework which could be underlying the definition of fundamental
metrological quantities. Subsequently, insights obtained from extensive historical
data will be presented, facilitating an evaluation of the current algorithm’s efficacy
while identifying potential areas for enhancement. Proposed algorithm modifica-
tions, their implementation, and ensuing results will be detailed through figures and
statistical analysis. In the end, a hybrid model integrating deterministic algorithms
with stochastic elements will be applied to the clocks.

2

Chapter 1

Overview of UTC
Calculation

This work started with a review and comprehensive analysis of the work carried
out at the Time Department of the Bureau International des Poids et Mesures,
in short BIPM. The BIPM is the International Organization, established by the
Metre Convention in 1875, which guarantees the maintenance of measurements
standards, through a coordinated effort with its Member States. To reach this
objective, the Time Department, among other fundamental tasks, calculates and
distributes every month the Universal Coordinate Time, in short UTC.
The 13th General Conference on Weights and Measures (CGPM) decided that the
second is the duration of 9 192 631 770 periods of the radiation corresponding to
the transition between two hyperfine levels of the ground state of caesium 133 atom.
From this definition began the adoption of a time scale built by accumulating
atomic seconds, which are calculated using atomic clocks. There are nowadays
almost 450 atomic clocks distributed worldwide, of different types: 45% are cesium
clocks, 45% are hydrogen masers, and there are 5 Rubidium fountains. There are
also other types of devices which will not be considered in this work. Some of the
devices are called Primary and Secondary Frequency Standards (PSFS), because
they reproduce the frequency defining the second with extremely high accuracy
and stability. In this work we will focus on the differences in terms of frequency
accuracy and stability for cesium clocks, h-Masers and Rubidium fountains.
Each laboratory k in the world, having one or more atomic clocks, also calculates
its approximated UTC value, indicated by UTC(k).
At the BIPM, clock readings comparisons provided by each laboratory contributing
to UTC time scale, and clock readings comparisons between different laboratories,
arrive through a system of time links, and are combined in an optimal way to
guarantee reliability, long-term frequency stability and high precision of the global

3

Overview of UTC Calculation

reference time scale. The frequency stability of a time scale represents its capacity
to maintain a fixed ratio between its unitary scale interval and its theoretical
counterpart. The frequency accuracy represents the aptitude of its unitary scale
interval to reproduce its theoretical counterpart.
Going in more details, the calculation of UTC is carried out in three steps:

• Computation of EAL (Free Atomic Time Scale): EAL is computed as a
weighted average of atomic clocks readings, with weights to optimize the long-
term frequency stability of the time scale, obtaining a level of performance
beyond what can be realized by any individual clock in the ensemble. For
EAL computation the BIPM tries to use as many clocks as possible, aiming
for it to be as reliable as possible.

• Computation of TAI (International Atomic Time): TAI is computed by steering
the frequency of EAL to maintain agreement with the definition of the second
SI (by comparison with PSFS). This ensures time scale accuracy.

• Computation of UTC: UTC is computed from TAI by insertion of leap seconds.
In fact the time scale computed with the current definition of the second can
progressively distance itself from the time scale derived from the rotation of
the Earth. When this distance exceeds 1 second, 1 second is added to UTC.
Nowadays there is an offset of 37 seconds between TAI and UTC, with the
last leap second added in 2017.

Another time scale which is worth mentioning is TT(BIPM). It is computed annually
at the BIPM and is considered the most stable reference in frequency, given that it
is obtained using only PSFS. This time scale is used, for instance, to evaluate the
performance of EAL.
Each month, the work of the BIPM is synthesized in the publication of the so called
Circular T, which contains for each laboratory k the differences UTC - UTC(k) at
5 days intervals over the past month (calculation in post-real time over one-month
data batches). This allows the laboratories to correct their UTC(k), in order to
maintain an offset from UTC whitin 100ns.

1.1 Atomic Clocks behaviour
The content of this section is based mainly on [2].
To be compliant with the definition of the second, an atomic clock is ideally a
noiseless, non-drifting oscillator. It provides as its output an electronic signal whose
instantaneous voltage value, in the ideal case, is:

V (t) = V0sin (2πν0t) (1.1)

where:

4

Overview of UTC Calculation

• V0 is the nominal amplitude of the signal.

• ν0 is the nominal frequency of the signal.

Nonetheless, no clock is ideal. There is thus the need to insert elements of noise in
the above equation:

V (t) = [V0 + ϵ(t)] sin (2πν0t + ϕ(t)) (1.2)

Two terms were inserted:

• ϵ(t) is a function for the amplitude random fluctuations.

• ϕ(t) is a function for the phase random fluctuations.

From now on, we choose to disregard term ϵ(t) by assuming that amplitude
fluctuations are negligible around V0.
Generally speaking, if we take a wave signal: f(t) = sin(wt + ϕ0) = sin(2πft + ϕ0)
it is clear that the angular frequency w can be obtained as the derivative of the
sine argument with respect to time, while frequency f , as the derivative of the sine
argument divided by 2π. If we substitute a fixed ϕ0 with a variable ϕ(t), it follows
that we can define the instantaneous frequency ν(t) as:

ν(t) = ν0 + 1
2π

dϕ(t)
dt

(1.3)

The average value of ν(t) over a time interval τ beginning at tk provides a more
useful quantity directly related to an experimental result:

⟨ν(t)⟩tk,τ = nk

τ
(1.4)

where nk is the number of cycles of the signal during the time interval τ beginning
at tk.
The quantity ν(t) cannot be measured since infinite bandwidth measurement
equipment is not available.
An useful quantity in metrology is the dimensionless frequency deviation at time t:

y(t) = ν(t) − ν0

ν0
= 1

2πν0

dϕt

dt
(1.5)

We can rewrite 1.2 as:

V (t) = V0sin (2πν0(t + x(t))) (1.6)

where
x(t) = ϕt

2πν0
(1.7)

5

Overview of UTC Calculation

is called normalized phase deviation and has got the dimension of time. x(t) is
the instantaneous time error of a clock having an instantaneous frequency ν(t).
In simpler terms is the reading error of the non-precise clock with respect to a
perfect clock with frequency ν0 and time reading t. We can immediately see the
relationship between the normalized phase deviation and the normalized frequency
deviation at time t:

y(t) = dx(t)
dt

(1.8)

which is: the frequency deviation at time t is the derivative of the normalized phase
deviation at time t. The quantities x(t) and y(t) can indeed be measured against a
reference clock by an electronic counter and they are affected by the same noises
that affect clock signals.
There are two main aspects to be kept in mind for understanding clock measurements
in practice:

• There is always a measured clock and a reference clock, the measured clock
is both synchronized and compared to the reference clock. Therefore, the
measurement represents the relative difference between the two signals. Mea-
surement of a clock has no meaning unless it is compared to a reference.

• The error in a clock varies over time, so it is important that clock errors are
measured over a sufficiently long time period to thoroughly understand the
quality of a clock.

Figure 1.1: Example of sine-wave with amplitude 1 and phase 0, and its shifted
versions with phase 0.25π and 0.5π.

6

Overview of UTC Calculation

A clock deviates from the ideal for two categories of reasons: systematic devia-
tions and random deviations, depending on the type of clock and the considered
period. Everything systematic can be modeled (and thus corrected). For example
a clock can have a frequency offset y0 at time t0, a time offset x0 and a constant
frequency drift D. In this case we may write:

x(t) = x0 + y0t + 1
2Dt2 + ϵ(t) (1.9)

with ϵ(t) being a random deviation. Of course, the model in 1.9 does not apply in
all cases e.g. in some oscillators the drift is absent or not constant.

1.2 EAL Calculation
We will focus on the calculation of EAL, which is the first step in UTC calculation,
and the only step involving prediction of clocks behaviour.

1.2.1 Estimate of EAL parameters
The outline of the old algortihm is contained in [3]. Two hypothesis are made on
EAL:

• EAL is calculated separately for each interval of time. Two subsequent intervals
of time are denoted by Ik−1 = (tk−1, tk−1 + qk−1), Ik = (tk, tk + qk) where
tk−1 + qk−1 = tk. In practice, each of these intervals is one month long, and
the values tk are Modified Julian Dates (MJD), which are integer counters
of the days beginning at midnight on November 17, 1858. This implies that
approximately tk+1 = tk + T with T = 30 days.

• the readings of clocks and time scales are available at instants t of an ideal,
uniform time scale.

Despite the second hypothesis, EAL(t) for interval Ik is always computed at discrete
time instants tkj

= tk + j T
6 with j = 0, . . . ,6 (or tkj

= tk + j T
7 with j = 0, . . . ,7), so

that tk0 = tk and tk6 = tk + T = tk+1 We will use index i for clocks and we will
denote the reading of clock i at time t = tkj

for some j by hi(t) (in some cases
this is the value UTC(i)). Each month every clock gets assigned a weight (we will
explore the weighting system in further chapters), we denote the weight for clock i
during interval Ik as wi,k. Given that during interval Ik there are N active clocks,
for t ∈ Ik it was defined:

EAL(t) =
NØ

i=1
wi,khi(t) + ak + bk(t − tk) (1.10)

7

Overview of UTC Calculation

In this definition the averaged readings of clocks are corrected with a linear term,
under the assumption that no clock is affected by a drift (confront with section 1.1
). To be more precise we are actually defining a different EAL(t) depending on
the interval Ik we are on. In particular, if we consider two consequent intervals we
are defining a piece-wise function:EAL(t) = qN

i=1 wi,k−1hi(t) + ak−1 + bk−1(t − tk−1) t ∈ (tk−1, tk)
EAL(t) = qN

i=1 wi,khi(t) + ak + bk(t − tk) t ∈ (tk, tk + qk)
(1.11)

It should be noted that although we gave a theoretical definition of EAL(t), and
we require it to have desirable properties, its value is never accessible (it is the same
for TAI and UTC), for the same reason why it is impossible to measure absolute
time. What we can measure indeed are time differences between two clocks, or the
time of an event with reference to a particular clock. As stated in [1]:
“...every clock disagrees with every other clock essentially always, and no clock keeps
ideal or “true” time in an abstract sense except as we may choose to define it ”.
In fact the output of the calculation will not be the values of EAL calculated at
equally spaced times, but the values of difference between EAL, the optimal time
scale in the frequency-stability sense, and clock readings.

For a start, we want a timescale that is continuous, so we impose continuity at
the common date t = tk between two intervals.

NØ
i=1

wi,k−1hi(tk) + ak−1 + bk−1qk−1 =
NØ

i=1
wi,khi(tk) + ak (1.12)

Since we want a time scale that is also continuous in frequency (with continuous
derivative) we get the following equation:

NØ
i=1

wi,k−1
dhi(t)

dt

tk

+ bk−1 =
NØ

i=1
wi,k

dhi(t)
dt

tk

+ bk (1.13)

Nonetheless there is no way to compute analitically the derivative of the clock
reading function, so it is necessary to consider mean rates elaborated over the
intervals Ik−1, Ik. In fact we use a finite forward difference approximation of the
derivative. We have to pay attention here to the fact that in Ik−1, tk is the right
extreme of the interval, while in Ik it is the left extreme, so that the approximation
of the derivative changes between the left and right side of the equal sign. In
conclusion we get:

bk = bk−1 +
NØ

i=1
wi,k−1

hi(tk) − hi(tk−1)
qk−1

−
NØ

i=1
wi,k

hi(tk+1) − hi(tk)
qk

(1.14)

8

Overview of UTC Calculation

As already stated above, in the real world time readings alone are never accessible.
For this reason we introduce time readings differences in various forms, that will
be inserted in the equations. We denote

xi,j(t) = hj(t) − hi(t) (1.15)

which is the reading difference between clocks i and j at time t. These data are
actually available, for some i and j, thanks to the use of time links connecting
laboratories across the world.

During interval Ik we also want to define how much the reading of clock j
a time t ∈ Ik differs from the weighted average of the readings of all clocks:
zj,k(t) = qN

i=1 wi,khi(t) − hj(t).
This definition allows us to rewrite equation 1.10 in terms of the reading of clock i
(so that we get N equations with the same identical value) as:

EAL(t) = hi(t) + zi,k(t) + ak + bk(t − tk) t ∈ Ik; i ∈ {1, . . . , N} (1.16)

and time continuity condition becomes:

zi,k−1(tk) + ak−1 + bk−1qk−1 = zi,k(tk) + ak i ∈ {1, . . . , N} (1.17)

By again rewriting equation 1.14 in terms of clock readings differences we obtain:

bk =bk−1 + zi,k−1(tk) − zi,k−1(tk−1)
qk−1

− zi,k(tk+1) − zi,k(tk)
qk

+ (1.18)

+ hi(tk) − hi(tk−1)
qk−1

− hi(tk+1) − hi(tk)
qk

i ∈ {1, . . . , N} (1.19)

To simplify this formula in order to be able to work only with time differences,
the following is assumed: the (real) mean frequency of any clock is the same in
interval Ik−1 as during Ik. This assumption leads us to have N different estimations
bi,k for i = 1, . . . , N , each obtained for a given clock.

bi,k = bk−1 + zi,k−1(tk) − zi,k−1(tk−1)
qk−1

− zi,k(tk+1) − zi,k(tk)
qk

i ∈ {1, . . . , N}

(1.20)

At this point we can recover bk as a weighted average of bi,k during Ik, with the

9

Overview of UTC Calculation

hypothesis that the weights are the same considered in the computation of EAL.
Thus we obtain:

bk =
NØ

i=1
wi,kbi,k (1.21)

The weighted average emphasizes the role of clocks having the best long-term
frequency stability.
When computing the average, the last term in 1.20 cancels out, so that we only
need quantities belonging to Ik−1 in the computation of bk. In fact we know thatqk

i=1 wi,kzi,k(t) = 0
From the first definition of EAL 1.10 we can write the individual corrections of
clock i as:

zi,k(t) = EAL(t) − hi(t) − ak − bk(t − tk) (1.22)

By substituting equation above in equation 1.17:

ak = EAL(tk)−hi(tk)−ak−1 −bk−1qk−1 +ak−1 +bk−1qk−1 −
NØ

i=1
hi(tk)+hi(t) (1.23)

and doing the necessary simplifications, we obtain ak:

ak =
NØ

i=1
wi,k [EAL(tk) − hi(tk)] (1.24)

It is actually more convenient, how it is done in paper [4], to define a different
value for each clock: ai,k−1 = EAL(tk) − hi(tk). This makes sense since our ak is
simply the average of ai,k−1 for all clocks in the interval Ik. We use the suffix k − 1
to highlight the fact that the computation happens at the end of interval Ik−1.
Using again equation 1.22 and substituing it in equation 1.21 we obtain:

bk =
NØ

i=1
wi,k

C
[EAL(tk) − hi(tk)] − [EAL(tk−1) − hi(tk−1)]

qk−1

D
(1.25)

we can define:

bi,k−1 = [EAL(tk) − hi(tk)] − [EAL(tk−1) − hi(tk−1)]
qk−1

i ∈ {1, . . . , N} (1.26)

with the same reasoning as before.
And thus at any date t belonging to interval Ik we get the following calculation of
EAL:

EAL(t) =
NØ

i=1
wi,k [hi(t) + EAL(tk) − hi(tk) + bi,k−1(t − tk)] (1.27)

10

Overview of UTC Calculation

After defining

h′
i(t) = EAL(tk) − hi(tk) + bi,k−1(t − tk) i ∈ {1, . . . , N}

We obtain:
EAL(t) =

NØ
i=1

wi,k [hi(t) + h′
i(t)] (1.28)

We stress out once again how the terms ai,k−1 and bi,k−1 involve only quantities
available on the preceding interval Ik−1, so that they can be calculated the preceding
month, and this is what is done in practice at the BIPM. Parameters for the current
month are calculated the month before. That is also intuition on why the term
h′

i(t) is called in literature a prediction.

1.2.2 Inclusion of the drift
By citing [2]: “Frequency drifts are systematic variations that may be, for example,
due to the aging of the resonator material. These extremely slow changes are often
referred to as "long-term instabilities" and expressed in terms of parts in 10x of
frequency change per hour/day/month or year. Whenever possible, systematics
should be removed before statistical treatment.”
Since 2011 it is decided that the model for EAL should also contain a quadratic
term, taking into account that clocks, in particular H masers, are affected by a
systematic drift, which means that they do not only have a frequency offset with
respect to primary frequency standards, but their frequency increases (or decreases)
linearly with time ([4]). Luckily, this is very predictable. Similarly to what we have
done before, we define, for t in Ik:

EAL(t) =
NØ

i=1
wi,khi(t) + ak + bk(t − tk) + 1

2ck(t − tk)2 (1.29)

By imposing the following three conditions:

• no time steps (continuity of EAL)

• no frequency steps (continuity of the first derivative of EAL)

• no change in frequency drift (continuity of the second derivative of EAL)

we can derive the terms ak, bk, ck.
By imposing continuity of EAL in t = tk:

NØ
i=1

wi,k−1hi(tk) + ak−1 + bk−1qk−1 + 1
2ck−1q

2
k−1 =

NØ
i=1

wi,khi(tk) + ak (1.30)

11

Overview of UTC Calculation

We subtract hi(tk) to get the terms zi,k(tk) and zi,k−1(tk) as seen before:

zi,k−1(tk) + ak−1 + bk−1qk−1 + 1
2ck−1q

2
k−1 = zi,k(tk) + ak i ∈ {1, . . . , N} (1.31)

At this point we want to express the terms zi,k(t) using ak, bk, ck, by subtracting
hi(t) to both side of equation 1.29.

zi,k(t) = (EAL(t) − hi(t))−ak −bk(t−tk)− 1
2ck(t−tk)2 i ∈ {1, . . . , N} (1.32)

And defining xi(t) = EAL(t) − hi(t), ∀i ∈ {1, . . . , N} we obtain:

zi,k(t) = xi(t) − ak − bk(t − tk) − 1
2ck(t − tk)2 i ∈ {1, . . . , N} (1.33)

By using the substitution above for zi,k−1(tk):

ak = xi(tk) − zi,k(tk) = EAL(tk) − hi(tk) −
NØ

i=1
wi,khi(tk) + hi(tk) (1.34)

= EAL(tk) −
NØ

i=1
wi,khi(tk) (1.35)

=
NØ

i=1
wi,k [EAL(tk) − hi(tk)] i ∈ {1, . . . , N} (1.36)

Again we have re conducted ourselves to the definition of ak as qN
i=1 wi,kai,k−1

where ai,k−1 = [EAL(tk) − hi(tk)] as in [4] [5].
To derive coefficient bk, first we need to write EAL(t) in terms of clock differences:

EAL(t) = zi,k(t) + hi(t) + ak + bk(t − tk) + 1
2ck(t − tk)2 i ∈ {1, . . . , N} (1.37)

Now, by approximating the derivative using finite difference approximation, and
by imposing continuity, we get the following:

zi,k−1(tk) − zi,k−1(tk−1)
qk−1

+ hi(tk) − hi(tk−1)
qk−1

+ bk−1 + ck−1qk−1 = (1.38)

= zi,k(tk+1) − zi,k(tk)
qk−1

+ hi(tk+1) − hi(tk)
qk

+ bk i ∈ {1, . . . , N} (1.39)

12

Overview of UTC Calculation

As before we do the assumption that the real mean frequency does not change
for the clock, so that we can define, separately for each clock:

bi,k = zi,k−1(tk) − zi,k−1(tk−1)
qk−1

− zi,k(tk+1) − zi,k(tk)
qk−1

+ bk−1 + ck−1qk−1 (1.40)

∀i ∈ {1, . . . , N} (1.41)

Now bk = qN
i=1 wi,kbi,k.

By applying again substitution 1.33:

bi,k = xi(tk) − xi(tk−1)
qk−1

+ 1
2ck−1qk−1 − zi,k(tk+1) − zi,k(tk)

qk

(1.42)

from which:

bk =
NØ

i=1
wi,k

C
xi(tk) − xi(tk−1)

qk−1

D
+ 1

2ck−1qk−1 (1.43)

given that the last term in 1.42 cancels out in the computation of the mean, as
already proved.
While the term ak staid unchanged with respect to the old algorithm, the term bk

is modified with the additional term 1
2ck−1qk−1.

For what concerns ck, by starting from equation 1.37 and computing the second
derivative, the continuity equation states:

d2zi,k−1(t)
dt

tk

+ d2hi(t)
dt

tk

+ck−1 = d2zi,k(t)
dt

tk

+ d2hi(t)
dt

tk

+ck ∀i ∈ {1, . . . , N}

(1.44)
We decide to use again the finite difference approximation method, this time

with a second order approximation:

zi,k−1(tk−2) − 2zi,k−1(tk−1) + zi,k−1(tk)
q2

k−1
+ hi(tk−2) − 2hi(tk−1) + hi(tk)

q2
k−1

+ ck−1

(1.45)

= zi,k(tk−1) − 2zi,k(tk) + zi,k(tk+1)
q2

k

+ hi(tk−1) − 2hi(tk) + hi(tk+1)
q2

k

+ ck (1.46)

∀i ∈ {1, . . . , N} (1.47)

Supposing that the real mean frequency does not change for a single clock, the
two terms containing the second order finite differences for the clock readings both
cancel out, leaving us with:

13

Overview of UTC Calculation

ci,k =ck−1 + zi,k−1(tk−2) − 2zi,k−1(tk−1) + zi,k−1(tk)
qk−12 − (1.48)

− zi,k(tk−1) − 2zi,k(tk) + zi,k(tk+1)
qk

2 ∀i ∈ {1, . . . , N} (1.49)

And again defining ck as qN
i=1 wi,kci,k:

ck = ck−1 +
NØ

i=1
wi,k

zi,k−1(tk−2) − 2zi,k−1(tk−1) + zi,k−1(tk)
qk−12 (1.50)

Now substituting equation 1.33 and making all the necessary calculations, with
the additional assumption that all intervals have equal length (which subsists in
practice):

ck =
NØ

i=1
wi,k

C
xi(tk−2) − 2xi(tk−1) + xi(tk)

q2
k−1

D
(1.51)

So defining: ci,k−1 =
5

xi(tk−2)−2xi(tk−1)+xi(tk)
q2

k−1

6
we can also rewrite the definition of

bk as:

bk =
NØ

i=1
wi,k

C
xi(tk) − xi(tk−1)

qk−1
+ 1

2ci,k−1qk−1

D
(1.52)

In conclusion applying the three constraints:

• ak = qN
i=1 wi,kai,k−1 = qN

i=1 wi,k[EAL(tk) − hi(tk)]

• bk = qN
i=1 wi,k

è
bi,k−1 + 1

2ci,k−1qk−1
é

= qN
i=1 wi,k

è
xi(tk)−xi(tk−1)

qk−1
+ 1

2ci,k−1qk−1
é

• ck = qN
i=1 wi,kci,k−1 = qN

i=1 wi,k

5
xi(tk−2)−2xi(tk−1)+xi(tk)

q2
k−1

6
Actually, the calculation of term ck for interval Ik as predicted from theory, gave
poor results. It was decided therefore that the drift should not be computed with
respect to EAL, but with respect to another precise time scale, TT(BIPM).
By calling yT T,hi

(t) the difference at time t between the measurement of TT and the
measurement of clock hi, ci,k−1 is estimated by taking 3 intervals Ik−1, Ik−2, Ik−3,
and calculating for j = k − 3, k − 2, k − 1 and s = 0, . . . ,5:

yT T,hi
(tjs+1) − yT T,hi

(tjs)
tjs+1 − tjs

(1.53)

14

Overview of UTC Calculation

Afterwards it is done a least squares interpolation of first order degree.
Once that the terms ai,k−1, bi,k−1 and ci,k−1 are predicted for each clock, we can
define

h′
i(t) = ai,k−1+

5
bi,k−1 + 1

2ci,k−1(tk − tk−1)
6

(t−tk)+1
2ci,k−1(t−tk)2 t ∈ Ik, i ∈ {1, . . . , N}

(1.54)
which is the prediction term for each clock. EAL at time t in Ik as:

EAL(t) =
nØ

i=1
wi,k [hi(t) + h′

i(t)] (1.55)

Now, the BIPM is actually interested to report, for discrete values of t, the
quantities xi(t) = EAL(t) − hi(t) for i ∈ {1, . . . , N}. As pointed out before, it
receives as input values xi,j(t) = hi(t) − hj(t). From this last values it can derive
N − 1 linearly independent equations xi(t) − xj(t) = xi,j(t), so that one additional
equation is required to find xi(t) for i ∈ {1, . . . , N}. By subtracting qN

i=1 wi,khi(t)
to both sides of 1.55 we obtain the additional equation:

NØ
i=1

wi,kxi(t) =
NØ

i=1
wi,kh′

i(t) (1.56)

In the end the system to be solved is:xi(t) − xj(t) = xi,j(t)qN
i=1 wi,kxi(t) = qN

i=1 wi,kh′
i(t)

(1.57)

with solution:

xj(t) = EAL(t) − hj(t) =
NØ

i=1
wi,k [h′

i(t) − xi,j(t)] ∀j ∈ {1, . . . , N} (1.58)

It is then possible to compute the residuals:

rj(t) = xj(t) − h′
j(t) ∀j ∈ {1, . . . , N} (1.59)

We summarize here the procedure for the monthly computation of xi(t) at the
BIPM:

• Each month, the BIPM receives data, in the form of reading differences, of all
the clocks participating in the calculation of UTC. It takes the parameters
estimated the preceding month (ai,k−1, bi,k−1 and ci,k−1) and computes the
prediction term for the current month.

• they solve system 1.57 and obtain the desired values.

15

Overview of UTC Calculation

• they compute the parameters ai,k, bi,k and ci,k for the following month.

To be more precise, given that there are L laboratories, and each laboratory
l contains Nl clocks, which we can denote as hl,j for j ∈ {1, . . . , Nl}, the data
arriving at the BIPM each month is :

• UTC(l) − hl,j ∀j ∈ {1, . . . , Nl}

• UTC(s) − UTC(v) ∀s, v ∈ 1, . . . , L

Let us make an example.
Suppose that there are 2 laboratories, laboratory A and laboratory B. Laboratory
A has got 2 clocks: clock 1 and clock 2. Laboratory B has got two clocks as well:
clock 3 and clock 4. Suppose the BIPM has got to publish the Circular T related
to time interval I2 = (t2, t3). For each t = t2 + k ∗ 5 with k = 0, . . . ,6, it receives
the following input vector:

b(t) =


UTC(A)(t) − h1(t)
UTC(A)(t) − h2(t)
UTC(B)(t) − h3(t)
UTC(B)(t) − h4(t)

UTC(B)(t) − UTC(A)(t)


and the objective is to obtain, for each t = t2 + k ∗ 5 with k = 0, . . . ,6, the vector:

x(t) =



EAL(t) − UTC(A)(t)
EAL(t) − UTC(B)(t)

EAL(t) − h1(t)
EAL(t) − h2(t)
EAL(t) − h3(t)
EAL(t) − h4(t)


To find x(t) this system is solved:


−1 0 1 0 0 0
−1 0 0 1 0 0
0 −1 0 0 1 0
0 −1 0 0 0 1
1 −1 0 0 0 0
0 0 w1,2 w2,2 w3,2 w4,2





EAL(t) − UTC(A)(t)
EAL(t) − UTC(B)(t)

EAL(t) − h1(t)
EAL(t) − h2(t)
EAL(t) − h3(t)
EAL(t) − h4(t)


=



UTC(A)(t) − h1(t)
UTC(A)(t) − h2(t)
UTC(B)(t) − h3(t)
UTC(B)(t) − h4(t)

UTC(B)(t) − UTC(A)(t)q4
i=1 wi,2

è
ai,1 +

è
bi,1 + 1

2ci,1(t2 − t1)
é

(t − t2) + 1
2ci,1(t − t2)2

é



with
ai,1 = EAL(t2) − hi(t2) ∀i ∈ {1, . . . ,4}

bi,1 = [EAL(t2) − hi(t2)] − [EAL(t1) − hi(t1)]
t2 − t1

∀i ∈ {1, . . . ,4}

16

Overview of UTC Calculation

calculated at the end of I1, and ci,1 calculated using frequency data from three
months preceding. In the chapter we did not mention laboratories and we simplified
the algorithm description giving only the definition of differences among clocks,
nonetheless it is straightforward to obtain reading differences among all clocks in
the ensemble from data above.

1.2.3 Calculation of weights
The main assumption behind the calculation of weights is that a good clock is a
stable/predictable clock.
For this reason clock weights are reciprocal of a statistical quantity which charac-
terizes their frequency stability.
For example H masers are characterized by a significant but very well predictable
drift, which means that they should still contribute to the time scale with a signifi-
cant weight without degrading the long term stability of EAL.
In order to avoid a small number of very stable clocks to dominate the scale, an
upper limit on weight was set. From 1st November 2022 the maximum weight is
set to wmax = 6

N
where N is the total number of clocks. In the current procedure

weights are computed in the following four-iteration process:

• Suppose we have initial relative weights that allow us to compute the values
EAL−hi, for all i ∈ {1, . . . , N} and for interval Ik, as outlined in the previous
section. In the following iterations, they are those obtained from the previous
iteration.

• For interval Ik the value ϵi,k = |bi,k − bi,k−1| is computed, where bi,k is the real
frequency on the interval and bi,k−1 is the predicted one from previous month.

• The square of ϵi,k is evaluated for each clock.

• One year of ϵi,k is considered, which means taking the values of ϵi,k for the
last computation interval Ik and those of the previous 11 months.

• A filter is used to give a predominant role to more recent measurements:

σi
2 =

qM
j=1

M+1−j
M

ϵi,j
2qM

j=1
M+1−j

M

(1.60)

where M = 12 since we are considering one year.

• The relative weight of clock i is computed as the normalized inverse of the
variance value σ2

i

wi,temp =
1

σi
2qn

i=1
1

σi
2

(1.61)

17

Overview of UTC Calculation

The new weight wi of clock i is equal to wi,temp except for two cases:

1. The weight is bigger than the upper limit wmax, in which case: wi,temp =
wmax.

2. It is decided to exclude the clock from the ensemble because the difference
between the real frequency and the predicted one is greater than a fixed
threshold for the interval of calculation.

18

Chapter 2

Stochastic Models for Clock
Noise

In the first chapter we talked about how the noise affecting atomic clocks (normalized
frequency deviation with respect to the nominal frequency and related phase
deviation) can be partially modeled, at least for what concerns its deterministic
part, and how this is done in practice at the BIPM.
In this chapter we will focus on recognizing the random noise components affecting
both frequency and phase deviations. This permits to model the clock noise as
a bi-dimensional stochastic process and to compute the fundamental statistical
quantities of this process. The study of clock noises is fundamental for estimation
of optimal parameters.

2.1 Characterization of noise in frequency and
time domains

The content of this section is mainly based on [2].
First thing to be said is that clocks can be affected by 5 types of different random
noises:

• WPM : white phase modulation i.e. white noise on the phase component.

• FPM : flicker phase modulation i.e. flicker noise on the phase component.

• WFM : white frequency modulation i.e. white noise on the frequency compo-
nent, inducing a random walk (or Brownian Motion) on the phase component.

• FFM : flicker frequency modulation i.e. flicker noise on the frequency compo-
nent.

19

Stochastic Models for Clock Noise

• RWFM : random walk frequency modulation i.e. random walk on the fre-
quency.

For example a cesium clock is typically affected by WFM and RWFM .

We already defined in 1.1 the frequency noise given by the difference between
the instantaneous frequency ν(t) (which cannot be measured) and the nominal
frequency ν0. We can call this quantity ∆ν(t). ∆ν(t) is a stochastic process and
we suppose, for the sake of simpler modeling, that it has got zero mean and that
it is stationary. The stationarity hypothesis will allow us to apply the Ergodic
Theorem and use indifferently infinite time averages and statistical averages.
Now we would like to characterize the frequency noise, both in the time domain
and in the frequency domain.
We have to be careful because we are now calling “ frequency” two different
things: the time-dependent instantaneous frequency of an oscillator, and the time-
indipendent Fourier frequency.
In the frequency domain it is common to use the spectral density, which is defined
as the Fourier transform of the autocorrelation function.
If this is the definition of the autocorrelation function:

R∆ν(τ) = ⟨∆ν(t)∆ν(t − τ)⟩ (2.1)

where ⟨...⟩ denotes an infinite time average, then the two-sided spectral density is:

ST S
∆ν (f) =

Ú +∞

−∞
R∆ν(τ)exp(−i2πfτ)dτ (2.2)

but it is more common to use the one sided spectral density:

S∆ν(f) = 2ST S
∆ν (f) 0 ≤ f ≤ +∞ (2.3)

It is clear that correlation functions and spectral densities carry exactly the same
information about the random process.
We actually prefer to work with the stochastic process of normalized frequency
noise

y(t) = ∆ν(t)
ν0

(2.4)

, for which it is now easy to define:

Sy(f) = 1
ν2

0
S∆ν(f) (2.5)

From spectral density measurements done in various laboratories, with different
types of oscillators, it appeared that experimental results could be modeled by
power law curves. For a given clock, the following rule was derived:

20

Stochastic Models for Clock Noise

Sy(f) =

q2

α=−2 hαfα 0 ≤ f ≤ fh

0 f > fh

(2.6)

where fh is an upper cutoff frequency which reflects real world limitations, such as
finite bandwidth of measurement instruments. It is the value of α which indicates
the type of noise affecting the clock in a particular frequency interval, as we can
see from Table 2.1. For example in the case of white frequency noise the spectral
density is constant, while in the case of random walk noise it varies as f−1.

Given that clocks are used for time keeping, it made sense to have also a
characterization of frequency instabilities in the time domain, or in other words, to
be able to give a measure of instability over an interval of length τ , as a function
of τ . For this reason we define the random variable Ȳ τ

k , which depends on the
underlying stochastic process y(t):

Ȳ τ
k = 1

τ

Ú tk+1

tk

y(t)dt = x(tk+1) − x(tk)
τ

(2.7)

The true variance of Ȳ τ
k , assuming that the process y(t) has got zero mean, is:

σ2(τ) = V AR
è
Ȳ τ

k

é
= E(Ȳ τ

k)2 = ⟨(ȳτ
k)2⟩ (2.8)

where ⟨...⟩ denote an infinite time average made over one sample of y(t) or, since
ergodicity is assumed, a spatial average obtained by taking an infinite number of
samples at a given instant tk.
We report now the derivation of the relationship between σ2(τ) and the Fourier
spectral density of the process y(t) as found in [2]:

σ2(τ) = ⟨
31

τ

Ú tk+1

tk

y(t)dt
42

⟩ (2.9)

which can be rewritten as a convolution:

σ2(τ) = ⟨
3Ú +∞

−∞
y(t)hI(tk − t)dt

42
⟩ (2.10)

where:

hI(t − tk) =


0 t < −τ
1
τ

−τ ≤ t ≤ 0
0 t > 0

(2.11)

The Fourier transform of hI(t) is given by:

HI(f) = −sin(πτf)
πτf

(2.12)

21

Stochastic Models for Clock Noise

from which we obtain, using isometric properties:

σ2(τ) =
Ú +∞

0
Sy(f)

A
sin(πτf)

πτf

B2

df (2.13)

To give an estimate of the real variance, the first intuition would be to use:

σ2
(1)(N, τ) = 1

N

NØ
i=1

ȳi − 1
N

NØ
j=1

ȳj

2

(2.14)

where N is the number of samples, ȳi for i = 1, . . . , N is a sample for the interval
[ti, ti + τ] and we assume there is no dead time between measurements. Nonetheless
this sample variance turns out to be biased for all finite N . In particular ([6]):

⟨σ2
(1)(N, τ)⟩ = σ2(τ) − σ2(Nτ) (2.15)

In the special case of white noise, if we consider 2.6 and table 2.1, equation 2.13
gives:

σ2(τ) = h0

2τ
(2.16)

which implies
⟨σ2

(1)(N, τ)⟩ =
3

1 − 1
N

4
σ2(τ) (2.17)

By looking at 2.17 we infere that, at least for the case of white noise:

σ2(N, τ) = 1
N − 1

NØ
i=1

ȳi − 1
N

NØ
j=1

ȳj

2

(2.18)

is an unbiased estimator of variance. Since the estimator is unbiased:

⟨σ2(N, τ)⟩ = V AR
è
Ȳ τ

k

é
(2.19)

From this sample variance comes the definition of the so called Allan Variance as
⟨σ2(N, τ)⟩ with N = 2. The Allan Variance is indeed defined as:

σ2
y(τ) = 1

2⟨
1
ȳτ

k+1 − ȳτ
k

22
⟩ = 1

2E
è
(Ȳ τ

k+1 − Ȳ τ
k)2

é
(2.20)

If we have M frequency values a possible estimator for the Allan Variance is:

σ̂2
y(τ) = 1

2(M − 1)

M−1Ø
k=1

(ȳk+1 − ȳk)2 (2.21)

22

Stochastic Models for Clock Noise

Typically it has been proved that M=100 is sufficient for the estimator to
converge, though of course the confidence of the estimate will typically improve as
the data length increases.
We call τ0 the minimal data spacing for the original stored dataset, for atomic clocks
contributing to UTC calculation τ0 = 432000, which is the number of seconds in 5
days.
It is very useful to compute σ̂2

y(τ) for τ = n ∗ τ0 for some n positive integer. This
is done by averaging n adjacent values of ȳτ0

k . Supposing that k = 1, . . . , M and
τ = n ∗ τ0:

σ̂2
y(τ) = 1

(M − 2n + 1)

M−2n+1Ø
k=1

(ȳτ
k+n − ȳτ

k)2 (2.22)

where
ȳτ

k = 1
n

k+n−1Ø
i=k

ȳτ0
i = xk+n − xk

τ
(2.23)

Alternately, one may write:

σ̂2
y(τ) = 1

2τ 2(M − 2n + 1)

M−2n+1Ø
i=1

(xi+2n − 2xi+n + xi)2 (2.24)

As it happened for the Fourier spectral density, the following proportionality
appears:

σ2
y(τ) ∼ τµ (2.25)

A relationship exists between α and µ:
µ = −α − 1 if 3 < α ≤ 1 and µ ∼ −2 if α ≥ 1.

Depending on the value of either of these constants one can distinguish the type
of random noise affecting the fractional frequency or the phase fluctuations of a
clock in a particular interval, as summarized in table 2.1 and plot 2.1.

Noise Type α µ

White Phase 2 -2
Flicker Phase 1 -2

White Frequency 0 -1
Flicker Frequency -1 0

Random Walk Frequency -2 +1

Table 2.1: Power law exponents for clock noises.

More generally there exists a relationship between Fourier Spectral Density and
Allan Variance, given by the following equation:

23

Stochastic Models for Clock Noise

Figure 2.1: Power law curves of Allan variance to distinguish noise type ([7]).

σ2
y(τ) =

Ú +∞

0
Sy(f)2sin4(πτf)

(πτf)2 df (2.26)

Proof of this in Appendix A.

Identifying the stochastic error on frequency/phase deviations is important to
give theoretical rationale behind the adoption of a particular frequency estimator.
For example the last - first method, which we derived from first order continuity
condition, by approximating the derivative with finite forward differences, is in fact
the optimum if the noise is pure white FM.

2.2 Stochastic model for the atomic clock error
Once the types of random noises affecting x(t) and y(t) are identified, by looking
either at the Spectral density in the frequency domain or at the Allan Variance in
the time domain, a stochastic differential equation can be written with stochastic
state variables corresponding to the normalized phase deviation and the normalized
frequency deviation.
In order to be able to solve a SDE the theory of Stochastic Calculus and Itô integral
is needed. The most important results, which will prove useful in the solution, are
reported in the following. They were taken from [8].
First of all a Wiener Process/Brownian Motion W = (Wt, t ∈ [0, +∞]) is defined
as a stochastic process with the following properties:

• W0 = 0.

24

Stochastic Models for Clock Noise

• The process increments are stationary and independent.

• Each Wt has a continuous sample path and Wt ∼ N(0, t), ∀t > 0. The
sample paths are not differentiable because of unbounded variation.

In alternative a Wiener Process can be defined as a Gaussian process with mean
µW (t) = 0 and covariance function E[WtWs] = cW (t, s) = min(s, t).
An important property of Brownian Motion is that it is a Martingale with respect
to the natural filtration Ft = σ(Ws, s ≤ t).
For this chapter it will prove useful to discuss the computation of stochastic integrals
with respect to Brownian sample paths.
Under certain conditions on function f it it possible to compute

s b
a f(t)dWt(w)

for every Brownian sample path Wt(w) as a Riemann-Stieltjes integral. It is not
possible, due to the unbounded variation of the Brownian motion, to compute
instead

s b
a Wt(w)dWt(w) as a Riemann-Stieltejs integral.

Anyway, by writing the Riemann-Steltjes sum considering partition τn : 0 =
t0 < t1 < · · · < tn−1 < tn = t and intermediate partition (yi) = ti−1, with
∆iW = Wti

− Wti−1 :

Sn =
nØ

i=1
Wti−1∆iW (2.27)

it is possible to demonstrate that it converges in the mean square sense to 1
2(W 2

t −t).
It is thus defined: Ú t

0
WsdWs = 1

2(W 2
t − t) (2.28)

which is a first important example of Itô integral.
The general Itô integral

s t
0 CsdWs, with C = (Ct, t ∈ [0, T]), is defined for integrand

process C which satisfies:

• C is adapted to Brownian motion on [0,T], i.e. Ct is a function of Bs, s ≤ t.

• The integral
s T

0 EC2
s ds is finite.

Three important properties of the Itô Stochastic integral
s t

0 CsdWs are:

• The Itô Stochastic integral is a martingale with respect to the natural Brownian
filtration.

• The Itô Stochastic integral has got expectation 0.

• It satisfies the isometry property:

E(
Ú t

0
CsdWs) =

Ú t

0
EC2

s ds, t ∈ [0, T] (2.29)

25

Stochastic Models for Clock Noise

To solve stochastic integrals we need some kind of tool, and this tool is Itô Lemma.
The Itô Lemma is the stochastic analogue of the classical chain rule of differentiation.
There are four different versions of it. They are all derived using a Taylor series
expansion argument which makes use of the fact that ∆iW on the interval [ti−1, ti]
satisfies E∆iW = 0 and E(∆iW)2 = ∆i. This heuristically means that (∆iW)2 is
of the order of ∆i and in terms of differentials (dWt)2 = dt.
We report hereby the four versions of Itô Lemma.

VERSION I: f(Wx)

Ú t

s
df(Wx) = f(Wt) − f(Ws) =

Ú t

s
f ′(Wx)dWx + 1

2

Ú t

s
f ′′(Wx)dx (2.30)

VERSION II: f(x, Wx)

f(t, Wt)−f(s, Ws) =
Ú t

s
[f1(x, Wx)+ 1

2f22(x, Wx)]dx+
Ú t

s
f2(x, Wx)dWx (2.31)

where we use the following notation:

fi(t, x) = ∂

∂xi

f(x1, x2)|x1=t,x2=x, i = 1,2, (2.32)

fi,j(t, x) = ∂

∂xi

∂

∂xj

f(x1, x2)x1=t,x2=x, i, j = 1,2 (2.33)

From now on we will consider X process defined as:

Xt = X0 +
Ú t

0
A(1)

s ds +
Ú t

0
A(2)

s dWs (2.34)

where A(1) and A(2) are adapted to Brownian Motion.

VERSION III: f(y, Xy)

f(t, Xt) − f(s, Xs) =
Ú t

s
[f1(y, Xy)dWy + A(1)

y f2(y, Xy)+
1
2[A(2)

y]2f22(y, Xy)]dy +
Ú t

s
A(2)

y f2(y, Xy)dWy

Finally, given two stochastic processes X(1) and X(2) with respect to the same
Brownian motion:

X
(i)
t = X

(i)
0 +

Ú t

0
A(1,i)

s ds +
Ú t

0
A(2,i)

s dWs, i = 1,2 (2.35)

26

Stochastic Models for Clock Noise

VERSION IV: f(y, X(1)
y , X(2)

y)

f(t, X
(1)
t , X

(2)
t) − f(s, X(1)

s , X(2)
s) =

Ú t

s
[f1(y, X(1)

y , X(1)
y)dy+ (2.36)

+
3Ø

i=2

Ú t

s
fi(y, X(1)

y , X(2)
y)X(i)

y (2.37)

+ 1
2

3Ø
i=2

3Ø
j=2

Ú t

s
fi,j(y, X(1)

y , X(2)
y)A(2,i)

y A(2,j)
y dy

(2.38)

Now we would like to discuss solutions of differential equations of the type:

dXt = a(t, Xt)dt + b(t, Xt)dWt, X0(w) = Y (w). (2.39)

where a(t, x) and b(t, x) are called coefficient functions and are deterministic
functions. The randomness of X = (Xt, t ∈ [0, t]) results, on the one hand, from
the initial condition, and on the other end, from the noise generated by Brownian
motion. Equation 2.39 can be rewritten as:

Xt = X0 +
Ú t

0
a(s, Xs)ds +

Ú t

0
b(s, Xs)dWs (2.40)

which is what is called a Itô stochastic differential equation. There are both strong
and weak solutions to differential equations.
A strong solution X = (Xt, t ≥ 0) satisfies:

• X is adapted to Brownian motion, i.e. at time t it is a function of Ws, s ≤ t.

• The integrals occurring in 2.40 are well defined as Riemann or Itô Stochastic
integrals, respectively.

• X is a function of the underlying Brownian sample path and of the coefficient
functions a(t, x) and b(t, x).

For weak solutions instead, the path behaviour is not essential and we are only
interested in the distribution of X. A strong or weak solution X of the Itô stochastic
integral is called a diffusion process. If the following conditions are satisfied:

• X0 : EX2
0 < ∞ and is independent of (Wt, t ≥ 0).

• For all t ∈ [0, T] and x, y ∈ R coefficients functions are continuous.

27

Stochastic Models for Clock Noise

• For all t ∈ [0, T] and x, y ∈ R coefficients functions satisfy a Lipschitz condition
with respect to the second variable:

|a(t, x) − a(t, y)| + |b(t, x) − b(t, y)| ≤ K|x − y| (2.41)

then the Itô Stochastic differential equation has a unique strong solution X.
In particular we will consider the case of the General Linear Stochastic differential
equation:

Xt = X0 +
Ú t

0
[a1(s) + a2(s)Xs]ds +

Ú t

0
[b1(s) + b2(s)Xs]dWs (2.42)

which respects the conditions of existence of an unique solution. The solution for
this SDE is:

Xt = Yt(X0 +
Ú t

0
[a2(s) − b1(s) ∗ b2(s)]Y (−1)

s ds +
Ú t

0
b2(s)Y (−1)

s dWs, t ∈ [0, T]
(2.43)

where Y is the solution of the homogeneous equation:

Xt = X0 +
Ú t

0
a2(s)Xsds +

Ú t

0
b2(s)XsdWs (2.44)

2.2.1 Clock affected by WFM and RWFM
The content of this section is based on [9]. The objective of paper [9] was to
compute the normalized phase and frequency deviation of an atomic clock as
stochastic solutions of a dynamical system. To highlight the stochastic nature
of these quantities x(t) was renamed as X1(t), which implies y(t) = Ẋ1(t). The
following two-state model was considered:

dX1(t) = (X2(t) + µ1) dt + σ1dW1(t)
dX2(t) = µ2dt + σ2dW2(t)

t ≥ 0
X1(0) = c1

X2(0) = c2
(2.45)

With the following notation:

• X2(t) is the random walk component of frequency deviation.

• W1 is the Wiener noise acting on the phase, which is driven by a Wiener noise
on the frequency. That is: a white frequency noise results in an integrated
white noise on the phase X1.

• W2 is the so called RWFM.

28

Stochastic Models for Clock Noise

• µ1, µ2 are the drifts (deterministic components) affecting respectively X1(t)
and X2(t).

• σ1, σ2 are the diffusion coefficients (related to Allian variance).

Equation 2.45 can be written in a matrix form:

dX(t) = (FX(t) + M)dt + QdW(t), t ≥ 0 (2.46)

with:

F =
A

0 1
0 0

B
, Q =

A
σ1 0
0 σ2

B
, M =

A
µ1
µ2

B
,

dX(t) =
A

dX1(t)
dX2(t)

B
, dW(t) =

A
dW1(t)
dW2(t)

B

Equation 2.46 is a linear SDE, hence it is possible to obtain its solution in a
closed form.

The solution is:X1(t) = X1(0) + X2(0)t + µ1t + µ2
t2

2 + σ1W1(t) + σ2
s t

0 W2(s)ds

X2(t) = X2(0) + µ2t + σ2W2(t)
(2.47)

Where we used
s t

0 dW (s) = W (t) which comes from the application of version I of
Ito’s lemma.

By using the fact that X1(0) = c1, X2(0) = c2 it is possible to rewrite 2.47 as:X1(t) = c1 + (c2 + µ1) t + µ2
t2

2 + σ1W1(t) + σ2
s t

0 W2(s)ds

X2(t) = c2 + µ2t + σ2W2(t)
(2.48)

Now we can notice that the evolution of the process X(t) =
C
X1(t)
X2(t)

D
is driven by a

stochastic innovation represented by the vector

Gt =
C
σ1W1(t) + σ2

s t
0 W2(s)ds

σ2W2(t)

D
(2.49)

By using that:

• W1(t) ∼ N(0, t) −→ E
è
(W1(t))2

é
= t

• W2(t) ∼ N(0, t) −→ E
è
(W2(t))2

é
= t

29

Stochastic Models for Clock Noise

•
s t

0 W (s)ds ∼ N(0, t3

3) (Calculations of this in A)

We get that:
E [Gt] = 0 (2.50)

Σt = E
è
GtGt

T
é

=
C
σ2

1t + σ2
2

t3

3 σ2
2

t2

2
σ2

2
t2

2 σ2
2t

D
(2.51)

In conclusion the process X(t) is Gaussian with mean vector and covariance matrix
given below:

E [X(t)] =
C
c1 + (c2 + µ1)t + µ2

t2

2
c2 + µ2t

D
(2.52)

ΓX(t) =
C
σ2

1t + σ2
2

t3

3 σ2
2

t2

2
σ2

2
t2

2 σ2
2t

D
(2.53)

For simulation purposes, in [9] the following structure was built:

• Fixed interval [0, T]

• Equally spaced partition 0 = t0 < t1 < · · · < tN = T

• τ = tk+1 − tk

so that 2.47 could be rewritten as:X1(tk+1) = X1(tk) + (X2(tk) + µ1)τ + µ2
τ2

2 + Jk,1

X2(tk+1) = X2(tk) + µ2τ + Jk,2
(2.54)

where:

Jk =
C
σ1(W1(tk+1) − W1(tk)) + σ2

s tk+1
tk

((W2(s) − W2(tk))ds
σ2(W2(tk+1) − W2(tk))

D
(2.55)

∼ N

A
0,

C
σ2

1τ + σ2
2

τ3

3 σ2
2

τ2

2
σ2

2
τ2

2 σ2
2τ

DB
(2.56)

The innovation of the process Jk, that is, the stochastic part that is added to
build the process at time tk+1, depends only on the increments of the Wiener process
in the interval (tk, tk+1). The increments of the Wiener process are independent
and identically distributed. The process Jk is a bivariate Gaussian random variable
such that:

E [Jk, Jm] = 0 ∀k /= m

These properties make it very easy to simulate Jk.

30

Chapter 3

Possible improvements:
implementation and results.

3.1 Calculation of EAL with OLS method
From the statistical point of view there were some doubts on the rationale behind
the definition of EAL as in 1.10. In particular it seems like this definition is in
fact an estimator for EAL, but not EAL itself. For this reason we tried to obtain
definition 1.10 as an optimal estimator for EAL given the following model:

hi(tkj) = EAL(tkj) − ai,k − bi,k(tkj − tk) − 1
2ci,k(tkj − tk)2 + ξi (3.1)

where:

• i = 1, . . . , N

• j = 1, . . . ,5

• ξi ∼ N (0, σi
2) i.i.d.

Practically each Ik is one month long, and every 5 days we get a measure of the
reading of each clock and we want to estimate EAL(t). We suppose that ai,k, bi,k

and ci,k stay unchanged in one month period. We want to give at the same time an
estimate of: EAL(tkj), ai,k, bi,k, ci,k. In order to do that we look for the parameters
that minimize the residual sum of squares RSS:

RSS =
NØ

i=1

5Ø
j=1

5
hi(tkj) − EAL(tkj) + ai,k + bi,k(tkj − tk) + 1

2ci,k(tkj − tk)2
62

(3.2)

31

Possible improvements: implementation and results.

We compute derivatives with respect to all the variables and equal them to zero:

∂RSS

∂EAL(tkj)
= −2

C
−NEAL(tkj) −

NØ
i=1

3
hi(tkj) + ai,k + bi,k(tkj − tk) + 1

2ci,k(tkj − tk)2
4D

(3.3)
Imposing

∂RSS

∂EAL(tkj)
= 0 (3.4)

leaves us with the following estimation of EAL(tkj):

ˆEAL(tkj) = 1
N

C
NØ

i=1

3
hi(tkj) + âi,k + b̂i,k(tkj − tk) + 1

2 ĉi,k(tkj − tk)2
4D

∀k, j (3.5)

which gives us intuition on why EAL was defined as in 1.10 in the first place.
For the other parameters we obtain:

âi,k =
q5

j=1

1
ˆEAL(tkj

) − hi(tkj
) − b̂i,k(tk,j − tk) − 1

2 ĉi,k(tkj
− tk)2

2
5 ∀i, k

(3.6)

b̂i,k =
q5

j=1(tk,j − tk)
1

ˆEAL(tkj
) − hi(tkj

) − âi,k − 1
2 ĉi,k(tkj

− tk)2
2

q5
j=1(tk,j − tk)2 ∀i, k

(3.7)

ĉi,k =
q5

j=1(tk,j − tk)2
1

ˆEAL(tkj
) − hi(tkj

) − âi,k − b̂i,k(tkj
− tk)

2
q5

j=1(tk,j − tk)3 ∀i, k (3.8)

After discussion with my supervisor Gianna Panfilo, it was decided that these esti-
mators are not compatible with the definition of a time scale. It is not admissible to
optimize the prediction on each interval, without assuring the continuity conditions
of the time scale. More generally, we do not want to make an estimate of the
scale which is as close as possible to the available data each month, but we want
instead to ensure consistency with the past. Further developments could include
the imposition of continuity conditions within the OLS framework. Another thing
to be noted is that, as far as it is known, there is no way to produce experimentally
something which can be defined as the reading of clock i by itself, so that this
model should be revised also to account for this aspect.

32

Possible improvements: implementation and results.

3.2 Implementation of deterministic models

At the BIPM I was asked to evaluate the performance of the current algorithm
using a large amount of past data, in order to obtain some insights on whether or
not it could be improved.
In particular, since the algorithm was designed to well predict the drift of H-Masers
clock and ageing of cesium clocks, there were some concerns that it could not be
optimal in the case of fountains.
I started working with a data format called TTHyymm where yy are two digits for
the year and mm are two digits for the month. Each of these tables would contain
one column of MJD values equally spaced by 5 days, one column with the clock
code, and one column with the reading difference between the clock and the ultra
precise TT time scale, for clock i this is what we called yhi,T T .
Clock codes instead are seven digit numbers that allow to recognize the clock type
and laboratory. In particular

• Cesium clock codes always start with 13.

• Maser clock codes always start with 14.

• Fountains clock codes always start with 19.

There are other types of clocks with different codes, but they were not considered
in this thesis work, because of poor quality.
Given that this data format is used to compute the drift, and each month we need
three months of data (the current and the two preceding) for the calculation, each
of the TTHyymm tables would contain not only the month indicated in the name
of the table, mm, but also the two months before it.
In figure 3.1 I show a snapshot of TTH2208 data.
As we can see the first value in the first column is 59729, which is MJD for 30
May 2022. Indeed, since the data is referred to August 2022, it should contain
measurements from August, July and June 2022.
Also, in order to have a continuous prediction, the first value of each month is
actually the last value from the month preceding. That is why first value for June
2022 is 30 May 2022. Taking two tables related to two subsequent months, there
are two months of overlapping MJDs, but even though dates are the same, reading
differences values can differ of few picoseconds, given that each month they are
adjourned.

33

Possible improvements: implementation and results.

Figure 3.1: Example of TTH2208 data

I decided to work with 5 years of data, from January 2018 to December 2022,
which means 60 batches of three months.
Using Matlab I merged all data in one table, and to overcome the problem of double
measurements taken in the same date, I decided to only keep latest measurements,
supposing that they are more precise then older ones.
I used Matlab to pivot the table in order to have on the rows the clock codes and on
the columns the sequence of five years MJDs. This allowed me to select a subset of
clocks with continuous measurements over the period 2018-2022 (by eliminating all
clocks that had at least one NaN value in their row). After selecting the ensemble
of “usable” clocks, I cleaned the table from all the remaining clocks.
All the code is found in B.1, B.2.
A snapshot of the cleaned table is found in figure 3.2.

In the end I selected 51 masers and 56 cesium coming from a total of different
24 laboratories:

• Masers

– NICT: 1402012
– ROA: 1401436
– OP: 1400810
– NIST: 1400004, 1400205, 1400207, 1400212, 1400222, 1412015
– PL: 1400814, 1404601
– SP: 1407201, 1407221, 1407223
– NPLI: 1405201

34

Possible improvements: implementation and results.

– USNO: 1400702, 1400705, 1400708, 1400711, 1400712, 1400713, 1400718,
1400720, 1400722, 1400723, 1400724, 1400725, 1400726, 1400728, 1400729,
1400730, 1400731, 1400732, 1400736, 1400737, 1400740

– NTSC: 1400296
– NRC: 1400306
– NIM: 1404832, 1404871, 1404878
– TL: 1403011
– BEV: 1403452
– PTB: 1400506, 1400509
– SU: 1403814, 1403845, 1403853
– MIKE: 1404113, 1404180
– NMIIJ: 1405012

• Cesium

– ONRJ: 1350102, 1351942
– USNO: 1350161
– VSL: 1350179
– NICT: 1350332, 1350343, 1350916, 1351225, 1351790, 1351887, 1351944,

1352010, 1352801, 1352903
– ROA: 1350718, 1361488, 1361490, 1351699, 1361488, 1361490
– OP: 1350909, 1352985
– NIST: 1351074, 1352935
– IT: 1351115, 1351373
– PL: 1351120, 1351660
– SP: 1351188, 1352166, 1362295
– NPL: 1353167
– NPLI: 1351324, 1353376
– USNO: 1351468
– SMD: 1351766, 1353564
– NTSC: 1352098, 1352142, 1352962, 1352965, 1352980, 1353089, 1353091,

1353102, 1354936, 1354937
– NRC: 1352150, 1352152
– ESA: 1352353

35

Possible improvements: implementation and results.

– NIM: 1352643, 1352769
– IMBH: 1352909
– TL: 1352910
– BEV: 1353009
– AUS: 1362269

• Fountains

– USNO: 1930002, 1930003, 1930004, 1930005 (only fountains available for
the period).

Figure 3.2: Snapshot of the pivoted table for data in the period Jan 2018 - Dec
2022. On the rows there are the clock codes and on the columns the sequence of
MJD values. In each cell there is the reading difference measurement for that clock
in that date.

First of all I looked at the frequency data, which I obtained making the first
order difference of each row, and dividing all values by 5, which is the standard
distance between two consecutive measurements.
By looking at the frequency data my aim was to recognize the drift which is
corrected for in the algorithm.
The estimation of the drift, as reported in 1.53, was calculated using Matlab

36

Possible improvements: implementation and results.

function polyfit, which performs linear regression.
The frequency data and the interpolation were then plotted, along with the residuals
and the qq-plot and histogram of residuals.
All the code is found in B.3 - B.5 .
Examples of interpolation for masers 1400004 and 1400702, cesium 1350102 and
1350179 and the four fountains are reported in figures 3.3, 3.4, 3.5, 3.6, 3.7, 3.8,
3.9, 3.10.

Figure 3.3: Drift and residual analysis for maser 1400004.

37

Possible improvements: implementation and results.

Figure 3.4: Drift and residual analysis for maser 1400702.

Figure 3.5: Drift and residual analysis for cesium 1350102.

38

Possible improvements: implementation and results.

Figure 3.6: Drift and residual analysis for cesium 1350179.

Figure 3.7: Drift and residual analysis for fountain 1930002.

39

Possible improvements: implementation and results.

Figure 3.8: Drift and residual analysis for fountain 1930003.

Figure 3.9: Drift and residual analysis for fountain 1930004.

40

Possible improvements: implementation and results.

Figure 3.10: Drift and residual analysis for fountain 1930005.

From the plots above it seems that residuals are substantially normally dis-
tributed, but this was not the case for many other clocks.
The Jarque-Bera test for normality was also conducted to verify normality of
residuals and the results were the following: for maser clocks the null hypothesis
was accepted in the 10% of cases, for cesium in the 54% of cases, and was never
accepted for the four fountains.
These results alone advocate that a simple linear regression model fails to capture
some characteristics of the residuals behaviour.
Nonetheless, it is true that many masers and cesium show in some dates out of
range measurements, that are probably influencing the statistics. I present below
some examples of masers and cesium with critical behaviour (out of range frequency
values) in some points (3.11, 3.12).

41

Possible improvements: implementation and results.

Figure 3.11: Drift and residual analysis for cesium 1351120. Presence of outliers.

Figure 3.12: Drift and residual analysis for maser 1400205. Presence of outliers.

42

Possible improvements: implementation and results.

Most importantly, what was noted is that fountains do not seem to exhibit any
drift at all. This suggested that applying to fountains a quadratic model could lead
to poorer results than a simpler linear model.

On another note, plotting the drift estimation values, for each of the three months
data batches form January 2018 until December 2022, as specified in 1.53, we
obtained some insight on why estimation of the drift obtained assuming that it is
constant is not well performing. In fact it seems that the drift is not constant for
many clocks, especially masers. In figure 3.13 an example.

Figure 3.13: Drift subsequent estimations for clock 1403845.

3.2.1 Linear model
Linear model for fountains

In chapter 1 we outlined how the quality of EAL time scale, and consequently of
UTC, depends on how well we are able to predict the phase error term for each
clock h′

i(t), using the following model for t ∈ Ik:

h′
i(t) = ai,k−1+bi,k−1(t−tk)+1/2∗ci,k−1∗(tk−tk−1)(t−tk)+1/2∗ci,k−1(t−tk)2 (3.9)

where:
ai,k−1 = EAL(tk) − hi(tk) (3.10)

bi,k−1 = (EAL(tk) − hi(tk)) − (EAL(tk−1) − hi(tk−1))
tk − tk−1

(3.11)

43

Possible improvements: implementation and results.

and ci,k−1 is the drift estimated with the least square technique using frequency
data of the past three months of the clock with respect to TT .
In order to estimate the parameters ai,k and bi,k for each clock and time interval,
we need time differences datasets of clocks with respect to EAL. I used a series
of datasets from the BIPM with general name EALH_corrmmy. Each of these
datasets contains, for every MJD and every clock code of month mm and year yy,
the time difference value between EAL and the clock reading for that date.
Again I gathered 5 years of data from 2018 to 2022, and I applied the model
separately for each subgroup of clocks.
I started by computing the drift ci,1 using the first available three months of data
from table TTH1801, then I used the last month of EALH_corr1801 to compute
ai,1 and bi,1. I used these parameters to compute the residuals on the next month
in TTH1802. I iterated the algorithm until the final prediction and computation of
residuals for December 2022. In the end, for a total of 59 months I computed the
5/6/7 (it depends on the length of the month) points of residuals corresponding to
equally spaced dates by 5 days.

By looking at 5 years frequency data, from 2018 to 2022, for different types of
clocks, we supposed that, given the extreme precision of rubidium fountains, the
following model could be better:

h′
i(t) = EAL(tk) − hi(tk) + (EAL(tk) − hi(tk)) − (EAL(tk−1) − hi(tk−1))

tk − tk−1
(t − tk)

(3.12)
In fact fountains frequency plots show nearly no drift, and a simpler model has
got the advantage of eliminating the error related to the estimation of the drift,
especially when there is no physical evidence of its presence.
The MATLAB code for the two models is found in B.6 and B.7.
Visual comparison of the residuals for model 3.9 and model 3.12 is shown in figures
3.16, 3.19, 3.22, 3.25.

44

Possible improvements: implementation and results.

Figure 3.14: Residuals from quadratic model for clock 1930002.

Figure 3.15: Residuals from linear model for clock 1930002.

Figure 3.16: Comparison of residuals from quadratic and linear models for clock
1930002.

45

Possible improvements: implementation and results.

Figure 3.17: Residuals from quadratic model for clock 1930003.

Figure 3.18: Residuals from linear model for clock 1930003.

Figure 3.19: Comparison of residuals from quadratic and linear models for clock
1930003.

46

Possible improvements: implementation and results.

Figure 3.20: Residuals from quadratic model for clock 1930004.

Figure 3.21: Residuals from linear model for clock 1930004.

Figure 3.22: Comparison of residuals from quadratic and linear models for clock
1930004.

47

Possible improvements: implementation and results.

Figure 3.23: Residuals from quadratic model for clock 1930005.

Figure 3.24: Residuals from linear model for clock 1930005.

Figure 3.25: Comparison of residuals from quadratic and linear models for clock
1930005.

I was also asked to analyze the results on a recently added fountain: 1934901
from NTSC. In fact this fountain was performing surprisingly bad compared to
usual fountains standards. For this fountain I had to work on a shorter period,
which was the longest period available from its inclusion in the ensemble. In
particular I used data from August 2022 until October 2023.
Below I show the two-case plots for fountain 1934901 (3.28).

48

Possible improvements: implementation and results.

Figure 3.26: Residuals from quadratic model for clock 1934901.

Figure 3.27: Residuals from linear model for clock 1934901.

Figure 3.28: Comparison of residuals of quadratic and linear models for clock
1934901.

It can be seen that there for all the fountains there is a decrease in residual
values, at least for what concerns extreme points (maximum and minimum values
of residuals).
I also did a different type of plot where, instead of showing the residuals of a clock
for each month, I showed the behaviour of all fountains over each of the month. I
report in figure 3.31, 3.34 this kind of plot for December 2022 (4 fountains) and for

49

Possible improvements: implementation and results.

October 2023 (5 fountains), respectively.

Figure 3.29: Residuals from quadratic model for December 2022,
fountains.

Figure 3.30: Residuals from linear model for December 2022,
fountains.

Figure 3.31: Comparison of residuals over the same month for quadratic and
linear model, Dec 2022, fountains.

50

Possible improvements: implementation and results.

Figure 3.32: Residuals from quadratic model for October 2023,
fountains.

Figure 3.33: Residuals from linear model for October 2023,
fountains.

Figure 3.34: Comparison of residuals over the same month for quadratic and
linear model, Oct 2023, fountains.

Even with these plots it is quite clear that the linear model constitutes an
improvement.

In order to gain more insights on whether the linear model is actually better

51

Possible improvements: implementation and results.

than the quadratic one, I decided to look at the overall behaviour of fountains,
over each month, in the two cases. I did that by averaging the residuals across all
fountains for each data point, and then showing averages and standard deviation
of data separately per month, as it can be seen in figures 3.35 and 3.36 . I used
the period going from August 2022 to October 2023, in order to include in the
comparison also fountain 1934901.

Figure 3.35: Mean of residuals and standard deviation across fountains , shown
separately per month, from August 2022 to October 2023, for the two cases: linear
and quadratic.

52

Possible improvements: implementation and results.

Figure 3.36: Mean of residuals and standard deviation across fountains , shown
separately per month, from August 2022 to October 2023, for the two cases: linear
and quadratic, superimposed.

From these plots it is clearer that there is an overall improvement of residuals
with the linear model.
Then I did some intuitive visualization such as boxplots and histograms in order to
better understand the global advantage of a linear model for clocks of type fountain.
In particular for the boxplots:

• Figure 3.37 is a boxplot of mean residuals values.

• Figure 3.38 is a boxplot of the standard deviation values computed for every
data point across fountains.

• Figure 3.39 is a boxplot of the standard deviation values computed every 7th
data point of each month across fountains (in fact over one month residuals
tend to grow, and the 7th day of residuals is normally the furthest from the
initial value, which makes it more interesting for analyzing the effect of the
linear model on standard deviation).

These plots seem to confirm that with the linear model not only the residuals of
fountains are closer to zero, but they are less disperse around zero. In particular

53

Possible improvements: implementation and results.

there is one nanosecond reduction in the median value of standard deviations at
the 7th point of residuals, which is very promising.

Figure 3.37: Boxplot of mean residuals for fountains, from August 2022 to October
2023, in the two cases: linear and quadratic.

Figure 3.38: Boxplot of standard deviation of residuals for fountains, from August
2022 to October 2023, in the two cases: linear and quadratic.

54

Possible improvements: implementation and results.

Figure 3.39: Boxplot of sd of residuals for fountains showing only the last day of
residuals every month, from August 2022 to October 2023, in the two cases: linear
and quadratic.

Figure 3.40: Histogram of mean residual for fountains, from August 2022 to
October 2023, in the two cases: linear and quadratic.

To obtain further evidence in favor of the linear model, my supervisor Gianna
Panfilo calculated EAL (using internal programs from the BIPM) by applying the
linear model instead of the quadratic one. As we can see in figures 3.41 and 3.42,
were the comparisons of the weights attributed to fountains are reported, the linear
model describes better the behaviour of the Rubidium fountains.

55

Possible improvements: implementation and results.

Figure 3.41: Weights from linear model vs. weights from quadratic model for
clock 1930003.

Figure 3.42: Weights from linear model vs. weights from quadratic model for
clock 1934901.

Clocks 1920002, 1930004 and 1930005 keep the maximum weight in both cases,
while both clock 1934901 and 1930003 obtain greater weights if the linear model is
applied to correct their phase error term.
Another useful visualization, which goes in favor of the linear model for fountains,
is the actual plot of the drift estimations for one fountain, one maser and one

56

Possible improvements: implementation and results.

cesium, in figure 3.43. We can see how the fountain drift estimations are extremely
close to zero.

Figure 3.43: Drift estimation values over five years from Jan 2018 to Dec 2022,
for one cesium, one maser, and one fountain.

Linear model for cesium clocks

Image 3.43 suggested the possibility that also for cesium clocks a linear model
could be better suited, in fact drift values, although they oscillate a lot, seem to
oscillate around 0.
According to the following plots, which reproduce the same analysis done for
fountains, there seems indeed to be a little improvement in the use of a linear
model for cesium clocks, especially in terms of standard deviation.

57

Possible improvements: implementation and results.

Figure 3.44: Residuals from quadratic model for clock 1351225.

Figure 3.45: Residuals from linear model for clock 1351225.

Figure 3.46: Comparison of residuals from quadratic and linear models for clock
1351225.

58

Possible improvements: implementation and results.

Figure 3.47: Mean of residuals and standard deviation across cesium clocks,
shown separately per month, from January 2018 to December 2022, for the two
cases: linear and quadratic.

Figure 3.48: Boxplot of mean residuals for cesium clocks, from January 2018 to
December 2022, in the two cases: linear and quadratic.

59

Possible improvements: implementation and results.

Figure 3.49: Boxplot of standard deviation of residuals for cesium clocks, from
January 2018 to December 2022, in the two cases: linear and quadratic.

Figure 3.50: Boxplot of sd of residuals for cesium clocks showing only the last
day of residuals every month, from January 2018 to December 2022, in the two
cases: linear and quadratic.

60

Possible improvements: implementation and results.

Figure 3.51: Histogram of mean residual for cesium clocks, from January 2018 to
December 2022, in the two cases: linear and quadratic.

Applying a linear model to cesium clocks probably is more effective in predicting
cesium clocks deviation from the ideal. This was confirmed by looking at the
weights of all cesium across one year, which were obtained as described in the
previous paragraph, from December 2022 to December 2023. The effect on the
weights over this year is reported in figures 3.52, 3.53.

Figure 3.52: Weights from linear model vs. weights from quadratic model for
clock 1353472.

61

Possible improvements: implementation and results.

Figure 3.53: Weights from linear model vs. weights from quadratic model for
clock 1353530.

3.2.2 Least squares frequency model

Another thing the BIPM wanted to investigate was the possibility of modifying
the estimate of the frequency term to be used during interval Ik.
Now the model for this term is:

bi,k−1 = [EAL(tk) − hi(tk)] − [EAL(tk−1) − hi(tk−1)]
tk − tk−1

(3.13)

The problem with this model is that it can oversee any time jumps of clocks
happening in the middle of the interval and adjusting before the interval ends.
Such frequency jumps are checked manually at the BIPM, and clocks who have
them are given weight 0 and thus excluded from the calculation of UTC for the
month in question.
It seemed more reasonable to compute the frequency with a least squares model.
The results of applying a linear least squares technique against the standard algo-
rithm are shown for one cesium, one maser and one fountain in figures 3.59, 3.56,
3.16 .

The code for computation of residuals on the least frequency case is found in
B.6.

62

Possible improvements: implementation and results.

Figure 3.54: Residuals from standard frequency model for maser
1400702.

Figure 3.55: Residuals from ls frequency model for maser
1400702.

Figure 3.56: Comparison of residuals from standard and ls frequency models for
maser 1400702.

63

Possible improvements: implementation and results.

Figure 3.57: Residuals from standard frequency model for cesium
1350179.

Figure 3.58: Residuals from ls frequency model for cesium
1350179.

Figure 3.59: Comparison of residuals from standard and ls frequency models for
cesium 1350179.

64

Possible improvements: implementation and results.

Figure 3.60: Residuals from standard frequency model for foun-
tain 1930005.

Figure 3.61: Residuals from ls frequency model for cesium
1930005.

Figure 3.62: Comparison of residuals from standard and ls frequency models for
fountain 1930005.

Like was done for the linear model there is also a plot of the residual behaviour
considering two selected months. In this case December 2022 for cesium (3.65),
November 2022 for masers (3.68) and October 2023 (3.71) for fountains.

65

Possible improvements: implementation and results.

Figure 3.63: Residuals from standard frequency model for De-
cember 2022, cesium.

Figure 3.64: Residuals from least square frequency model for
December 2022, cesium.

Figure 3.65: Comparison of residuals over the same month for the two frequency
models, cesium.

66

Possible improvements: implementation and results.

Figure 3.66: Residuals from standard frequency model for Novem-
ber 2022, masers.

Figure 3.67: Residuals from least square frequency model for
November 2022, masers.

Figure 3.68: Comparison of residuals over the same month for the two frequency
models, masers.

67

Possible improvements: implementation and results.

Figure 3.69: Residuals from standard frequency model for Octo-
ber 2023, fountains.

Figure 3.70: Residuals from least square frequency model for
October 2023, fountains.

Figure 3.71: Comparison of residuals over the same month for the two frequency
models, fountains.

Again, as I did for the linear model, I looked at the overall behaviour of clocks
in the two cases. In the figures below I consider mean of residuals across all cesium,
masers and fountains. In plot 3.73, 3.72, 3.74 there is a visualization of this mean
values separately per month, while the boxplots 3.78, 3.75, 3.81, 3.79, 3.76, 3.82,

68

Possible improvements: implementation and results.

3.80, 3.77, 3.83, and the histograms 3.85, 3.84, 3.86 plots take into account the
overall sequence of mean/sd residual values in 5 years. For the masers, every time
one of them had residuals higher than 100 ns or lower than -100 ns, it was excluded
from the computation of the mean in that month. In fact masers with residuals
out of the range [−100,100] ns clearly had some contingent problems and are not
representative of masers behaviour.
The same was done for cesium clocks with residuals higher than 250 ns or lower
than -250 ns.

Figure 3.72: Mean of residuals and standard deviation across masers , shown
separately per month, from February 2018 to December 2022, for the two cases:
frequency standard and frequency ls.

69

Possible improvements: implementation and results.

Figure 3.73: Mean of residuals and standard deviation across cesium, shown
separately per month, from February 2018 to December 2022, for the two cases:
frequency standard and frequency ls.

70

Possible improvements: implementation and results.

Figure 3.74: Mean of residuals and standard deviation across fountains shown
separately per month, from August 2022 to October 2023, for the two cases:
frequency standard and frequency ls.

Figure 3.75: Boxplot of mean residuals for masers, from February 2018 to
December 2022, in the two cases: frequency standard and frequency ls.

71

Possible improvements: implementation and results.

Figure 3.76: Boxplot of sd of residuals for masers, from February 2018 to December
2022, in the two cases: frequency standard and frequency ls.

Figure 3.77: Boxplot of sd of residuals in the 7th day of residuals for masers,
from February 2018 to December 2022, in the two cases: frequency standard and
frequency ls.

72

Possible improvements: implementation and results.

Figure 3.78: Boxplot of mean residuals for cesium, from February 2018 to
December 2022, in the two cases: frequency standard and frequency ls.

Figure 3.79: Boxplot of sd of residuals for cesium, from February 2018 to December
2022, in the two cases: frequency standard and frequency ls.

73

Possible improvements: implementation and results.

Figure 3.80: Boxplot of sd of residuals in the 7th day of residuals for cesium,
from February 2018 to December 2022, in the two cases: frequency standard and
frequency ls.

Figure 3.81: Boxplot of mean residuals for fountains, from August 2022 to October
2023, in the two cases: frequency standard and frequency ls.

74

Possible improvements: implementation and results.

Figure 3.82: Boxplot of sd of residuals for fountains, from August 2022 to October
2023, in the two cases: frequency standard and frequency ls.

Figure 3.83: Boxplot of sd of residuals in the 7th day of residuals for fountains,
from August 2022 to October 2023, in the two cases: frequency standard and
frequency ls.

75

Possible improvements: implementation and results.

Figure 3.84: Histogram of mean residual for masers, from February 2018 to
December 2022, in the two cases: frequency standard and frequency ls.

Figure 3.85: Histogram of mean residual for cesium, from February 2018 to
December 2022, in the two cases: frequency standard and frequency ls.

76

Possible improvements: implementation and results.

Figure 3.86: Histogram of mean residual for fountains, from August 2022 to
October 2023, in the two cases: frequency standard and frequency ls.

There does not seem to be any particular improvement, for none of the clock
types.
Nonetheless it has to be said that the selected clocks ensemble has been chosen to
satisfy desirable properties (continuous measurements over 5 years) and this might
have influenced the results.

3.2.3 Global effects on EAL time scale
In the previous sections of this chapter, we talked about the possibility of optimally
predicting atomic clocks deviations from ideal, specifically for each type of clock.
We were able to determine with confidence that a linear model is indeed better at
modeling fountains than the quadratic one.
For what concerns other models, in particular: linear model for cesium clocks,
least squares frequency model for cesium and masers, there were still some doubts
related to the choice of the clocks that we used for testing.
To try to better understand if these models could be an improvement we decided
to look at how they would affect the frequency stability of the time scale if they
were regularly implemented from 1st November 2021, the date in which the current
maximum weight was adopted.
We always implement the linear model for fountains, while we vary the modeling
of the other types of clocks. We did not make a frequency stability comparison
of EAL between the original model and only the linear model for fountains, given
that it is extremely hard to see any change on the global time scale by changing
the prediction of only 5 clocks over 420.
To look at the frequency stability of the time scale we use EAL − 1930005, in fact
given that 1930005 is an extremely precise clock, looking at EAL − 1930005 is

77

Possible improvements: implementation and results.

practically like looking at EAL itself. Frequency stability is computed by doing first
order differences of phase error data and computing the Allan Deviation, which
measures, for a given time interval τ , the average change in frequency. Details
on the computation of Allan Deviation are found in the following chapter. The
resulting plot is in figure 3.87.

Figure 3.87: Frequency stability of EAL-1930005 for the four different models.

We conclude that there does not seem to be any improvement on the frequency
stability of the scale from any of the models mentioned above. Motivation on that
would need further investigation.

3.3 Implementation of stochastic model
I wanted to check the impact of adding to the deterministic model 1.54 the stochastic
component 2.55, which could be easily simulated in Matlab as a bivariate Gaussian
random variable.
While I knew τ = 432000 s (points equally spaced by 5 days) I had to recover the
values of the diffusion coefficients σ1 and σ2.
To do so, I used the relationship with Allan variance which was derived in paper
[10], obtained by writing the Allan variance 2.20 in terms of X1(t):

σ2
y(τ) = 1

2τ 2 E
è
((X1(tk+2) − X1(tk+1)) − (X1(tk+1) − X1(tk)))2

é
(3.14)

and making the necessary substitutions. By defining

78

Possible improvements: implementation and results.

• σW F
y (τ) standard Allan deviation value for τ interval where white noise on

frequency is dominant.

• σRW F
y (τ) standard Allan deviation value for τ interval where random walk on

frequency is dominant.

The relationship is the following:

σ1 = σW F
y (τ) ∗

√
τ (3.15)

σ2 =
σW F

y (τ)
√

3
√

τ
(3.16)

First all I computed Allan deviation plot for cesium 1350332 (3.88), using function
allan_variance.m in B using formula 2.24. What is done in practice is to plot
the standard Allan deviation versus τ in a log-log plot, with τ varying typically
between 5 and 640 days. With this plot the slopes of the broken lines reveal the
underlying type of noise with the following schema:

Noise Type Slope
White Phase -1
Flicker Phase -1

White Frequency −1
2

Flicker Frequency 0
Random Walk Frequency 1

2
Drift 1

Table 3.1: Slopes of broken lines related to type of noise in a log-log plot of
standard Allan deviation versu τ .

Before computing the Allan deviation, frequency values are multiplied by 1014

which is a famous constant in metrology for ns/day. We can see how the cesium
clock is mostly affected by white frequency noise (varying as τ−1/2) and random
walk frequency noise (varying as τ 1/2).

79

Possible improvements: implementation and results.

Figure 3.88: Allan deviation for cesium clock 1350332

I found values σW F
y (τ) and σRW F

y (τ) for τ = 1 day for cesium 1350332 by looking
at figure 3.88. and doing a projection of the broken lines at τ = 1 day (since the
minimal data spacing is 5 days, this value cannot be computed directly). The
choice of τ = 1 day is motivated by the fact that, to limit the propagation of
numerical errors, the simulations are carried out with parameters in ns per day,
and using τ = 1 day permits some simplification.
For example in the case of clock 1350332, the calculation for σ1 is the following:
for τ = 432000 (5 days) we know the Allan deviation value, so that we can write√

h0√
2τ

= 8.82 ∗ 10−15, from which it is possible to obtain h0 = 6.72 ∗ 10−23. Having
found h0, σW F

y (1 day) =
√

h0√
2∗86400 = 1.972 ∗ 10−14. Finally, using the fact that

numerically ns
day

= 10−14:

σ1 = 1.972 ∗ ns

day
∗
ñ

day = 1.972 ns√
day

Once σ1 and σ2 were obtained, I computed the residuals for 5 years from Jan-
uary 2018 to December 2022, using four simulations of 2.55 that I added to the
deterministic part of the prediction term. Their plot is in figures 3.89 - 3.92. They
can be compared to the standard, deterministic only, model in figure 3.93.

The code for the prediction with stochastic error term is found in B.12.

80

Possible improvements: implementation and results.

Figure 3.89: Residuals over 5 years for cesium 1350332 using deterministic plus
stochastic prediction term.

Figure 3.90: Residuals over 5 years for cesium 1350332 using deterministic plus
stochastic prediction term.

81

Possible improvements: implementation and results.

Figure 3.91: Residuals over 5 years for cesium 1350332 using deterministic plus
stochastic prediction term.

Figure 3.92: Residuals over 5 years for cesium 1350332 using deterministic plus
stochastic prediction term.

82

Possible improvements: implementation and results.

Figure 3.93: Residuals over 5 years for cesium 1350332 using deterministic
prediction.

We can notice how, with the addition of the stochastic term, residuals are
slightly better distributed around zero.

83

Conclusions

In summary, this thesis work has pieced together various aspects of time scale
models, starting from the first implemented algorithm, to the current one and
possible future enhancements.
The presented findings in the thesis help to conclude that the linear model should be
the preferred choice for clocks of type fountain, and this conclusion was supported
by physicists actively engaged in their construction.
Conversely, the investigation into the least squares frequency model did not yield
any significant result, but we believe that it should be further explored, particularly
in addressing cases with out-of-range phase error points within intervals, before
concluding that it does not constitute an improvement.

Furthermore, this study underscores the importance of revising algorithms to
account for non-constant drift, potentially through the adoption of a three-state
stochastic model wherein drift varies linearly with time. Such models are already
theorized in literature ([10]).

Lastly, from a comprehensive literature review it emerged the possibility of a
global revision of the algorithm to ensure coherence within a statistical framework,
possibly initiating with ordinary least squares (OLS) minimization supplemented
by additional constraints to ensure the continuity of the time scale.

84

Appendix A

Calculations

A.1 Relationship between Allan Variance and
Fourier Spectral Density.

⟨σ2(N, τ)⟩ = N

N − 1
1
σ2(τ) − σ2(Nτ)

2
(A.1)

bu using 2.13:

⟨σ2(N, τ)⟩ = N

N − 1

Ú +∞

0
Sy(f)

A
sin(πτf)

πτf

B2 C
1 −

A
sin(Nπτf)

Nπτf

BD
(A.2)

making N = 2 gives directly

σ2
y(τ) =

Ú +∞

0
Sy(f)2sin4(πτf)

(πτf)2 df (A.3)

A.2 Distribution of s t
0 Wsds.

From version II of Itô’s Lemma with f(t, Wt) = tWt, and s = 0, we get:

tWt =
Ú t

0
Wsds +

Ú t

0
sdWsÚ t

0
Wsds = tWt −

Ú t

0
sdWs =

Ú t

0
(t − s)dWs

Given that the Itô stochastic integral has expectation 0 and we can compute its
variance as

E
5Ú t

0
(t − s)dWs

62
=
Ú t

0
E
è
(t − s)2

é
ds =

Ú t

0
(t − s)2ds = t3

3

85

Appendix B

Matlab Code

B.1 Computation of pivoted table.

1 function pivotedTable = pivot_table (fileName)
2 %INPUT: a text file , in particular a file in the format TTHyyaa of

4 columns where the first column is MJD , the second is the
clock code , the third is the value of difference between the
clock reading and TT. The fourth column is a column of only
ones that gets eliminated in the execution of the function .

3 % OUTPUT : the pivoted table in which every line corresponds to a
clock index and all the columns contain measurements of the
reading difference betweeen that clock and TT for different
times. When the measurement for a given clock is not available
on a specific date we visualize a NaN value.

4

5 fid = fopen(fileName , ’r’); %fid is a fileID
6

7 % Read the data using textscan
8 data_cell = textscan (fid , ’%f%f%f%f’, ’Delimiter ’, ’’); %reads

data from an open text file
9 %into a cell array , the fact is that I get a nested cell array

10 %and this might be complicated when using cell2table . I choose
declare

11 %every values as a double because it makes everything easier for
the

12 % calculation .
13

14 % Close the file
15 fclose (fid);
16

17 sz = size(data_cell {1 ,1} ,1) ; %Line count
18 out=cell(sz ,size(data_cell ,2)); %I want a single cell array

and not a nested cell array

86

Matlab Code

19 for k = 1: size(data_cell ,2)
20 t1 = data_cell (k); % accessing a subarray of a cell array which

in our case is 1x1 cell array that contains a 8101 x 1 cell
array

21 t2 = [t1 {:}];
22 if isnumeric (t2) % Takes care of floats
23 out (:,k) = num2cell (t2);
24 else
25 out (:,k) = t2;
26 end
27 end
28

29

30 % Convert the numeric data to a table
31 data = cell2table (out , ’VariableNames ’, {’MJD ’, ’ClockCode ’, ’

ReadingDifference ’, ’Var4 ’});
32 data (:, end) = []; %I am leaving out the last column since it is

made of only ones
33 [~, uniqueIdx , ~] = unique (data (:, {’MJD ’, ’ClockCode ’}), ’rows ’,

’last ’); %to delete rows that share
34 %same clock code and date. In particular I want to keep only the

last
35 % occurrence of a measurement for a specific clock in a specific

date
36 data = data(uniqueIdx , :);
37 data = sortrows (data , ’MJD ’); %to order the rows based on the date
38

39

40 unique_clocks = unique (data. ClockCode);
41 unique_dates = unique (data.MJD);
42

43 length (unique_clocks) %412 clocks
44 length (unique_dates) %20 dates
45

46

47

48 varTypes = repmat ({’double ’}, 1, length (unique_dates)+1);
49 varNames = [’ClockCode ’, transpose (string (unique_dates))];
50

51

52 % Initialize a new table to store the pivoted data
53 pivotedTable = table(’Size ’, [length (unique_clocks), length (

unique_dates) + 1], ’VariableNames ’, varNames , ’VariableTypes ’
, varTypes);

54

55

56 % Populate the pivoted table
57 for i = 1: length (unique_clocks)
58 current_clock = unique_clocks (i);

87

Matlab Code

59

60 for k = 1: length (unique_dates)
61 current_date = unique_dates (k);
62

63 % Select rows corresponding to the current clock code
64 filtered_rows = data(data. ClockCode == current_clock &

data.MJD == current_date , :);
65

66 % Assign values to the pivoted table
67 pivotedTable {i, 1} = current_clock ; % First column is the

code of the clock
68

69 if isempty (filtered_rows)
70 pivotedTable {i, k+1} = NaN; % k+1 because the first

column is for clock code
71 else
72 pivotedTable {i, k+1} = filtered_rows . ReadingDifference

;
73 end
74 end
75 end
76 end

B.2 Computation of cleaned table.

1 function [clean_data , good_clocks] = NaN_removal (pivoted_table)
2 %INPUT: a table
3 % OUTPUT : the same table where every row that contains NaN values

is deleted .
4

5 rows_with_nan = any(isnan(pivoted_table {: ,:}) , 2);
6 clean_data = pivoted_table (~ rows_with_nan , :);
7 good_clocks = clean_data . ClockCode ;
8 end

B.3 Computation of freq table.

1 function frequencies_table = freq(data)
2 %INPUT: a table of data which should contain

88

Matlab Code

3 %in each row a clock index and in all the columns the measurements
for that clock over a number of years. This can be achieved

through the use of the function : ’pivot_table ’ on a text file
of clock data. We suppose that the clock index is always in the

first column . The data must be cleaned so that there are no
NaN values and this can be achieved through the use of function
: ’NaN_removal ’

4 % OUTPUT : a table which contains for every clock the frequencies
data over the time period (N measurements -> N-1 data)

5

6 % Extract numeric values from the table
7 numeric_data = table2array (data (:, 2: end));
8 variables = data. Properties . VariableNames ;
9 dates = variables (2: end);

10 numeric_dates = str2double (dates);
11

12

13 % Calculate differences along the columns (dimension 2)
14 differences = diff(numeric_data , 1, 2);
15 %
16 mjd_differences = diff(numeric_dates ,1 ,2);
17

18 ratios = zeros(size(data ,1) ,size(differences ,2));
19 for i=1: size(data ,1)
20 ratios (i ,:) = differences (i ,:) ./ mjd_differences ;
21 end
22

23 varNames1 = compose (’freq_diff %d’, 1: size(ratios ,2));
24 frequencies_table = array2table (ratios , ’VariableNames ’,

varNames1);
25 frequencies_table . CodeClock = data. ClockCode ;
26 code_column_index = find(strcmp (frequencies_table . Properties .

VariableNames , ’CodeClock ’));
27

28 % Rearrange the columns
29 new_order = [code_column_index , 1: code_column_index -1,

code_column_index +1: size(frequencies_table , 2)];
30 frequencies_table = frequencies_table (:, new_order);
31

32

33 end

B.4 Computation of linear interpolation and plot.

1 function [coeff ,resid] = lq1_interp (freq_table)

89

Matlab Code

2 %INPUT: a matlab table containing the frequencies values for each
clock or for a preselected ensemble of clocks over a given
period of time (a list of 5 days spaced MJDs)

3 % OUTPUT : the results of the first order polynomial interpolation
with least squares technique . In particular :

4 %coeff: output of the polyfit function
5 %resid: residual table which contains for every clock and

every
6 % measurement y_i the residual vector (y_i - y_interp_i)_i and
7 %also the mean of residuals for the clock and the std
8

9 resid = zeros(size(freq_table ,1) ,size(freq_table ,2) +2);
10 count = 0;
11 for i=1: size(freq_table ,1)
12 x = 1:(size(freq_table ,2) -1);
13 y = freq_table {i ,2: end };
14 coeff = polyfit (x,y ,1);
15 x_interp = linspace (1, max(x), 100); % calcolo la retta

interpolante su 100 punti
16 y_interp = polyval (coeff , x_interp);
17 resid(i ,1) = freq_table {i ,1};
18 resid(i ,2: end -2) = y - polyval (coeff , x);
19 resid(i,end -1) = round(mean(resid(i ,2: end -2)));
20 resid(i,end) = std(resid(i ,2: end -2));
21 figure ;
22 subplot (2, 2, 1);
23 plot(x, y);
24 title(sprintf (’Frequency Plot for Clock %d’, freq_table {i ,1}))

;
25 hold on;
26 plot(x_interp , y_interp , ’r-’, ’DisplayName ’, ’Interpolation ’)

;
27 xlabel (’N.of Observation ’);
28 ylabel (’Difference values ’);
29 legend (’show ’);
30 hold off;
31 subplot (2, 2, 2);
32 plot(x, resid(i ,2: end -2) , ’o’);
33 title(’Residuals ’);
34 hold on;
35 plot ([min(x), max(x)], [0, 0], ’r--’, ’LineWidth ’, 2);
36 hold off;
37 subplot (2, 2, 3);
38 histogram (resid(i ,2: end -2));
39 title(’Histogram of residuals ’);
40 subplot (2, 2, 4);
41 qqplot (resid(i ,2: end -2));
42 title(’QQ plot of residuals ’)
43 destinationFolder = ’/Users/ ariannaabis / Desktop / Tesi_Matlab /’;

90

Matlab Code

44 filename = fullfile (destinationFolder , sprintf (’% d_18_22 .fig ’,
freq_table {i ,1}));

45 saveas (gcf , filename);
46 [h_jb , p_jb] = jbtest (resid(i ,2: end -2));
47 message = sprintf (’Jarque -Bera test p-value for clock %s: %s’,

freq_table {i,1}, num2str (p_jb));
48 disp(message);
49 if h_jb == 0
50 count = count +1;
51 disp(’The null hypothesis (normality) is not rejected .’);
52 else
53 disp(’The null hypothesis (normality) is rejected .’);
54 end
55

56

57 end
58 varNames = [’ClockCode ’, compose (’res%d’, 1: size(freq_table ,2) -1),

’mean ’, ’std ’];
59 resid = array2table (resid , ’VariableNames ’, varNames);
60

61 disp(sprintf (’The normality test was accepted in the %d%% of cases
’, (count/size(freq_table ,1))*100));

62 end

B.5 Script for five years analysis.

1 %The purpose of this script is to test all the code process and
functions on all the data coming from the txt file ’
clock_tt_total ’, which stores information for all the clocks
over five years from 2018 to 2022 (whihc implies it stores data

from november 2017 to december 2022 , given that the data in
THHYYMM actually stores measurements for the 5 days spaced
intervals of MM and the two months preceding).

2

3 %tic
4 pivoted_18_22 = pivot_table (’clock_tt_total ’);% function pivot

reads a text file , it transforms it into a table and it inverts
is so that in each row we have a clock and in the columns the

measurements for 5 years at 5 days intervals
5 clean_18_22 = NaN_removal (pivoted_18_22); % function NaN_removal

gets rid of all the clocks that have NaN values in any date
6 writetable (clean_18_22 , ’clean_18_22 .xlsx ’); %we save the readings

data for the clocks with all the measurements
7 good_clocks_18_22 = clean_18_22 . ClockCode ; %list of selected

clocks

91

Matlab Code

8 writematrix (good_clocks_18_22 , ’good_clocks_18_22 .txt ’);
9 % Extract clock codes based on starting digits

10 masers_18_22 = good_clocks_18_22 (floor(good_clocks_18_22 / 100000)
== 14);

11 fountains_18_22 = good_clocks_18_22 (floor(good_clocks_18_22 /
100000) == 19);

12 cesium_18_22 = good_clocks_18_22 (floor(good_clocks_18_22 / 100000)
== 13);

13

14 % Compute frequency values
15 freq_18_22_masers = freq(clean_18_22 (ismember (clean_18_22 .

ClockCode , masers_18_22), :));
16 freq_18_22_fountains = freq(clean_18_22 (ismember (clean_18_22 .

ClockCode , fountains_18_22), :));
17 freq_18_22_cesium = freq(clean_18_22 (ismember (clean_18_22 .

ClockCode , cesium_18_22), :));
18 %toc
19 [coeff_fountains_18_22 , resid_fountains_18_22] = lq1_interp (

freq_18_22_fountains);
20 [coeff_cesium_18_22 , resid_cesium_18_22] = lq1_interp (

freq_18_22_cesium);
21 [coeff_masers_18_22 , resid_masers_18_22] = lq1_interp (

freq_18_22_masers);
22 end

B.6 Quadratic model for phase error, frequency
computed using both techniques: first - last
point of time difference and linear ls inter-
polation.

1 %In questo script :
2 %1. scelgo un sottoinsieme di orologi
3 %2. per ogni orologio :
4 % estrapolo tutti i batch di 3 mesi a partire da Nov2017 per ogni

batch stimo il drift , mi sposto sul mese successivo (ultimo
mese del batch successivo), calcolo frequenza come ultimo -
primo /30 sul mese precedente e poi con i minimi quadrati sul
mese precedente calcolo prevision come = ultimo punto mese
scorso + frequenza *t + 1/2* drift*t^2

5

6 close all;
7

8 % Open the file ’clock_tt_total ’

92

Matlab Code

9 fid_tt = fopen(’clock_tt_total ’, ’r’);
10 fid_eal = fopen(’clock_eal_total ’,’r’);
11

12 % Read the data using textscan
13 data_cell_tt = textscan (fid_tt , ’%f%f%f%f’, ’Delimiter ’, ’’);
14 data_cell_eal = textscan (fid_eal , ’%f%f%f%f%f’, ’Delimiter ’, ’’);
15 %reads data from an open text file into a cell array ,
16 %in fact I get as an output a nested cell array
17 %and this might be complicated when using cell2table
18

19 % Close the file
20 fclose (fid_tt);
21 fclose (fid_eal);
22

23 %I want to transform my nested cell array in a single cell array
24

25 sz = size(data_cell_tt {1 ,1} ,1) ; %Line count
26 out=cell(sz ,size(data_cell_tt ,2)); %I want a single cell

array
27 for k = 1: size(data_cell_tt ,2)
28 t1 = data_cell_tt (k); % accessing a subarray of a cell array

which in our case is 1x1 cell array that contains another cell
array

29 t2 = [t1 {:}];
30 if isnumeric (t2) % Takes care of floats
31 out (:,k) = num2cell (t2);
32 else
33 out (:,k) = t2;
34 end
35 end
36

37 sz = size(data_cell_eal {1 ,1} ,1) ; %Line count
38 out1=cell(sz ,size(data_cell_eal ,2)); %I want a single cell

array
39 for k = 1: size(data_cell_eal ,2)
40 t1 = data_cell_eal (k); % accessing a subarray of a cell array

which in our case is 1x1 cell array that contains another cell
array

41 t2 = [t1 {:}];
42 if isnumeric (t2) % Takes care of floats
43 out1 (:,k) = num2cell (t2);
44 else
45 out1 (:,k) = t2;
46 end
47 end
48

49

50 % Convert the numeric data to a table

93

Matlab Code

51 data_tt = cell2table (out , ’VariableNames ’, {’MJD ’, ’ClockCode ’, ’
ReadingDifference ’, ’Var4 ’});

52 data_tt (:, end) = [];
53

54 data_eal = cell2table (out1 , ’VariableNames ’, {’MJD ’, ’ClockCode ’,
’Var4 ’, ’Var5 ’, ’ReadingDifference ’});

55 data_eal = removevars (data_eal , {’Var4 ’, ’Var5 ’});
56

57 % fountains = [1930002 , 1930003 , 1930004 , 1930005];
58 % masers =[1400702 , 1400222 , 1400296 , 1403853];
59 % cesium =[1350102 , 1350161 , 1350179 , 1350332];
60 selected_clocks = masers_18_22 ; % replace with your actual clock

codes
61 filtered_data_tt = data_tt (ismember (data_tt .ClockCode ,

selected_clocks), :);
62 filtered_data_eal = data_eal (ismember (data_eal .ClockCode ,

selected_clocks), :);
63

64 unique_clocks = unique (filtered_data_tt . ClockCode);
65 % Find the indices of selected_clocks in unique_clocks
66 [~, indices] = ismember (selected_clocks , unique_clocks);
67

68 % Order unique_clocks based on the indices
69 unique_clocks = unique_clocks (indices);
70 clock_tables_tt = cell(size(unique_clocks));
71 clock_tables_eal = cell(size(unique_clocks));
72 subset_tables_tt = cell(size(unique_clocks ,1) ,60); %every clock ->

60 subtables
73 subset_tables_eal = cell(size(unique_clocks ,1) ,60);
74

75 for i = 1: numel(unique_clocks)
76 current_clock = unique_clocks (i);
77 clock_tables_tt {i} = filtered_data_tt (filtered_data_tt .

ClockCode == current_clock , :);
78 clock_tables_eal {i} = filtered_data_eal (filtered_data_eal .

ClockCode == current_clock , :);
79 %disp(current_clock);
80 end
81

82 % Assuming clock_tables is the cell array containing tables for
each clock

83

84 %I want , for each clock in a selected ensemble , to get as many
subtables as there are three months butches of data (each batch

overlaps on the preceding for two months .)
85 for i = 1: numel(clock_tables_tt)
86 current_table_tt = clock_tables_tt {i};
87 current_table_eal = clock_tables_eal {i};
88 index = 1;

94

Matlab Code

89 initial_MJD = current_table_tt .MJD(index);
90

91 k = 1; % Reset k for each clock
92

93 while index <= height (current_table_tt)
94 % Process the subset of the table
95 subset_tables_tt {i, k}(index ,:) = current_table_tt (index ,

:);
96 subset_tables_eal {i, k}(index ,:) = current_table_eal (index

, :);
97 nonZeroRows_tt = any(table2array (subset_tables_tt {i,k}),

2);
98 nonZeroRows_eal = any(table2array (subset_tables_eal {i,k}),

2);
99 subset_tables_tt {i,k} = subset_tables_tt {i,k}(

nonZeroRows_tt , :);
100 subset_tables_eal {i,k} = subset_tables_eal {i,k}(

nonZeroRows_eal , :);
101 index = index + 1;
102 %disp(index);
103

104 if index <= height (current_table_tt) && current_table_tt .
MJD(index) >= initial_MJD

105 initial_MJD = current_table_tt .MJD(index);
106 %disp(k);
107 else
108 if k < 60
109 k = k+1;
110 initial_MJD = current_table_tt .MJD(index);
111 %disp(k);
112 %disp(initial_MJD);
113 else
114 break;
115 end
116 end
117 end
118 end
119

120 % FREQUENZA ULTIMO - PRIMO
121

122 resid =cell(length (selected_clocks) ,59);
123 for i = 1: length (selected_clocks)
124 disp(selected_clocks (i));
125 previous_month = subset_tables_eal {i ,1}(ismember (

subset_tables_eal {i ,1}. MJD ,[58114:5:58149]) ,:).
ReadingDifference ;

126 t0_prev = 58114;
127 %disp(previous_month);
128 %disp(length (previous_month));

95

Matlab Code

129 for k=1:59
130 freq_curr = diff(subset_tables_tt {i,k}. ReadingDifference)

/5; %I compute frequencies for the ’current ’ three months
131 x_curr = subset_tables_tt {i,k}. MJD (2) :5: subset_tables_tt {i

,k}. MJD(end); %I make it as if my first frequency data is
computed in the second MJD of the first of three months

132 y_curr = movmean (transpose (freq_curr) ,3); % making freq a
row vector and computing moving average

133 coeff = polyfit (x_curr ,y_curr ,1); % finding y_0 and d such
that y(t) = y_0 + d*t, coeff (1) = d, coeff (2) = y_o

134 d = coeff (1);
135 x_new = x_curr (end):5: subset_tables_tt {i,k+1}. MJD(end); %

MJD for next month
136 new_month_values = subset_tables_eal {i,k+1}(

subset_tables_eal {i,k+1}. MJD >= x_curr (end), :).
ReadingDifference ;

137 %disp(new_month_values);
138 x0 = new_month_values (1);
139 %get measured again and we want 0 residual in the first

point we impose it like last point of last month
140 y0 = (x0 - previous_month (1))/((length (previous_month)*5)

-5);
141 x = zeros (1, length (new_month_values));
142 x(1)=x0;
143 for j=2: length (new_month_values)
144 x(j) = x0 + y0 .*(x_new(j)-x_curr (end)) + (1/2) .*d.*((x_new

(j)-x_curr (end)).^2) +(1/2) .*d.*(x_new (1) -t0_prev).*(x_new(j)-
x_curr (end));

145 end
146 resid{i,k} = x - new_month_values ’;
147 % ensamble of length (new_month_values) values
148 previous_month = new_month_values ;
149 t0_prev = x_new (1);
150 end
151 end
152

153 %SALVO LA TABELLA
154

155 myTable = cell2table (resid);
156

157 % % Specifica il nome del file Excel
158 destinationFolder = ’/Users/ ariannaabis / Desktop ’;
159 excelFileName = fullfile (destinationFolder ,’

resid_masers_18_22_eal .xlsx ’);
160 %
161 % % Scrivi la tabella nel file Excel
162 writetable (myTable , excelFileName);
163

164 %PLOT PER OROLOGIO

96

Matlab Code

165 for i=1: length (selected_clocks)
166 LegendEntries = cell (1 ,59);
167 figure ;
168 for k=1:59
169 LegendEntries {k} = sprintf (’Batch %d’, k);
170 plot(resid{i,k}) % option to only see the first six

residuals for easier visualization
171 hold on;
172 end
173 legend (LegendEntries);
174 title(sprintf (’Residuals for Clock %d’, selected_clocks (i)));
175 xlabel (’Data Point ’);
176 ylabel (’Residuals ’);
177 hold off;
178

179 % % Salva automaticamente il plot
180 % destinationFolder = ’/Users/ ariannaabis / Desktop / Tesi_Matlab /

selected_fountains_2 / resid_per_clock / freq_standard ’;
181 % filename = fullfile (destinationFolder , sprintf (’%

d_resid_phase .fig ’, selected_clocks (i)));
182 % saveas (gcf , filename);
183 end
184

185 %PLOT PER MESE
186 figure ;
187 for k=1:59
188 LegendEntries = cell (1, length (selected_clocks));
189 figure ;
190 for i=1: length (selected_clocks)
191 LegendEntries {i} = sprintf (’Clock %d’, selected_clocks (i))

;
192 plot(resid{i,k}) % option to only see the first six

residuals for easier visualization
193 hold on;
194 end
195 legend (LegendEntries);
196 title(sprintf (’Residuals for Batch %d’, k));
197 xlabel (’Data Point ’);
198 ylabel (’Residuals ’);
199 hold off;
200

201 % % Salva automaticamente il plot
202 % destinationFolder = ’/Users/ ariannaabis / Desktop / Tesi_Matlab /

selected_fountains_2 / resid_per_month / freq_standard ’;
203 % filename = fullfile (destinationFolder , sprintf (’ batch_ %

d_fountains .fig ’, k));
204 % saveas (gcf , filename);
205 end
206

97

Matlab Code

207 %FREQ LS
208

209 resid =cell(length (selected_clocks) ,59);
210 %for i = 1: length (selected_clocks)
211 i=2;
212 previous_month = subset_tables_tt {i ,1}(ismember (

subset_tables_tt {i ,1}. MJD ,[58114:5:58149]) ,:).MJD;
213 t0_prev = 58114;
214 for k=1:59
215 freq_curr = diff(subset_tables_tt {i,k}. ReadingDifference)

/5; %I compute frequencies for the ’current ’ three months
216 x_curr = subset_tables_tt {i,k}. MJD (2) :5: subset_tables_tt {i

,k}. MJD(end); %I make it as if my first frequency data is
computed in the second MJD of the first of three months

217 y_curr = movmean (transpose (freq_curr) ,3); % making freq a
row vector

218 coeff = polyfit (x_curr ,y_curr ,1); % finding y_0 and d such
that y(t) = y_0 + d*t, coeff (1) = d, coeff (2) = y_o

219 d = coeff (1);
220 x_new = x_curr (end):5: subset_tables_eal {i,k+1}. MJD(end); %

MJD for next month
221 new_month_values = subset_tables_eal {i,k+1}(

subset_tables_eal {i,k+1}. MJD >= x_curr (end), :).
ReadingDifference ;

222 x0 = new_month_values (1);
223 x_preceding_month = fliplr (x_curr (end):-5: previous_month

(1));
224 values_preceding_month = subset_tables_eal {i,k}(ismember (

subset_tables_eal {i,k}.MJD , x_preceding_month) ,:).
ReadingDifference ;

225 coeff1 = polyfit (x_preceding_month , values_preceding_month
’,1);

226 y0 = coeff1 (1);
227 x = zeros (1, length (new_month_values));
228 x(1) = x0;
229 for j=2: length (new_month_values)
230 x(j) = x0 + y0 .*(x_new(j)-x_curr (end)) + (1/2) .*d.*((x_new

(j)-x_curr (end)).^2) +(1/2) .*d.*(x_new (1) -t0_prev).*(x_new(j)-
x_curr (end));

231 end
232 resid{i,k} = x - new_month_values ’;
233 % ensamble of length (new_month_values) values
234 previous_month = x_new;
235 t0_prev = x_new (1);
236 end
237 %end
238

239 myTable = cell2table (resid);
240

98

Matlab Code

241 % Specifica il nome del file Excel
242 destinationFolder = ’/Users/ ariannaabis / Desktop ’;
243 excelFileName = fullfile (destinationFolder ,’

resid_masers_18_22_eal_ls .xlsx ’);
244

245 % Scrivi la tabella nel file Excel
246 writetable (myTable , excelFileName);
247

248 %PLOT PER CLOCK
249

250 for i=1: length (selected_clocks)
251 LegendEntries = cell (1 ,59);
252 figure ;
253 for k=1:59
254 LegendEntries {k} = sprintf (’Batch %d’, k);
255 plot(resid{i,k}) % option to only see the first six

residuals for easier visualization
256 hold on;
257 end
258 legend (LegendEntries);
259 title(sprintf (’Residuals for Clock %d and ls estimation of

freq ’, selected_clocks (i)));
260 xlabel (’Data Point ’);
261 ylabel (’Residuals ’);
262 hold off;
263 % destinationFolder = ’/Users/ ariannaabis / Desktop / Tesi_Matlab /

selected_fountains_2 / resid_per_clock /freq_ls ’;
264 % filename = fullfile (destinationFolder , sprintf (’%

d_resid_phase_ls .fig ’, selected_clocks (i)));
265 % saveas (gcf , filename);
266 end
267

268 %PLOT PER MONTH
269

270 figure ;
271 for k=1:59
272 LegendEntries = cell (1, length (selected_clocks));
273 figure ;
274 for i=1: length (selected_clocks)
275 LegendEntries {i} = sprintf (’Clock %d’, selected_clocks (i))

;
276 plot(resid{i,k})
277 hold on;
278 end
279 legend (LegendEntries);
280 title(sprintf (’Residuals for Batch %d’, k));
281 xlabel (’Data Point ’);
282 ylabel (’Residuals ’);
283 hold off;

99

Matlab Code

284

285 % Salva automaticamente il plot
286 % destinationFolder = ’/Users/ ariannaabis / Desktop / Tesi_Matlab /

selected_fountains_2 / resid_per_month /freq_ls ’;
287 % filename = fullfile (destinationFolder , sprintf (’ batch_ %

d_fountains_ls .fig ’, k));
288 % saveas (gcf , filename);
289 end

B.7 Linear model for phase error for fountains:
frequency computed with least - first point
of time differences.

1 close all;
2

3 % Open the file ’clock_tt_total ’
4 fid_tt = fopen(’clock_tt_total ’, ’r’);
5 fid_eal = fopen(’clock_eal_total ’,’r’);
6

7 % Read the data using textscan
8 data_cell_tt = textscan (fid_tt , ’%f%f%f%f’, ’Delimiter ’, ’’);
9 data_cell_eal = textscan (fid_eal , ’%f%f%f%f%f’, ’Delimiter ’, ’’);

10 %reads data from an open text file into a cell array ,
11 %in fact I get as an output a nested cell array
12 %and this might be complicated when using cell2table
13

14 % Close the file
15 fclose (fid_tt);
16 fclose (fid_eal);
17

18 %I want to transform my nested cell array in a single cell array
19

20 sz = size(data_cell_tt {1 ,1} ,1) ; %Line count
21 out=cell(sz ,size(data_cell_tt ,2)); %I want a single cell

array
22 for k = 1: size(data_cell_tt ,2)
23 t1 = data_cell_tt (k); % accessing a subarray of a cell array

which in our case is 1x1 cell array that contains another cell
array

24 t2 = [t1 {:}];
25 if isnumeric (t2) % Takes care of floats
26 out (:,k) = num2cell (t2);
27 else
28 out (:,k) = t2;

100

Matlab Code

29 end
30 end
31

32 sz = size(data_cell_eal {1 ,1} ,1) ; %Line count
33 out1=cell(sz ,size(data_cell_eal ,2)); %I want a single cell

array
34 for k = 1: size(data_cell_eal ,2)
35 t1 = data_cell_eal (k); % accessing a subarray of a cell array

which in our case is 1x1 cell array that contains another cell
array

36 t2 = [t1 {:}];
37 if isnumeric (t2) % Takes care of floats
38 out1 (:,k) = num2cell (t2);
39 else
40 out1 (:,k) = t2;
41 end
42 end
43

44

45 % Convert the numeric data to a table
46 data_tt = cell2table (out , ’VariableNames ’, {’MJD ’, ’ClockCode ’, ’

ReadingDifference ’, ’Var4 ’});
47 data_tt (:, end) = [];
48

49 data_eal = cell2table (out1 , ’VariableNames ’, {’MJD ’, ’ClockCode ’,
’Var4 ’, ’Var5 ’, ’ReadingDifference ’});

50 data_eal = removevars (data_eal , {’Var4 ’, ’Var5 ’});
51

52 % fountains = [1930002 , 1930003 , 1930004 , 1930005];
53 % masers =[1400702 , 1400222 , 1400296 , 1403853];
54 % cesium =[1350102 , 1350161 , 1350179 , 1350332];
55 selected_clocks = fountains_18_22 ; % replace with your actual

clock codes
56 filtered_data_tt = data_tt (ismember (data_tt .ClockCode ,

selected_clocks), :);
57 filtered_data_eal = data_eal (ismember (data_eal .ClockCode ,

selected_clocks), :);
58

59 unique_clocks = unique (filtered_data_tt . ClockCode);
60 % Find the indices of selected_clocks in unique_clocks
61 [~, indices] = ismember (selected_clocks , unique_clocks);
62

63 % Order unique_clocks based on the indices
64 unique_clocks = unique_clocks (indices);
65 clock_tables_tt = cell(size(unique_clocks));
66 clock_tables_eal = cell(size(unique_clocks));
67 subset_tables_tt = cell(size(unique_clocks ,1) ,60); %every clock ->

60 subtables
68 subset_tables_eal = cell(size(unique_clocks ,1) ,60);

101

Matlab Code

69

70 for i = 1: numel(unique_clocks)
71 current_clock = unique_clocks (i);
72 clock_tables_tt {i} = filtered_data_tt (filtered_data_tt .

ClockCode == current_clock , :);
73 clock_tables_eal {i} = filtered_data_eal (filtered_data_eal .

ClockCode == current_clock , :);
74 %disp(current_clock);
75 end
76

77 % Assuming clock_tables is the cell array containing tables for
each clock

78

79 %I want , for each clock in a selected ensemble , to get as many
subtables as there are three months butches of data (each batch

overlaps on the
80 preceding for two months .)
81 for i = 1: numel(clock_tables_tt)
82 current_table_tt = clock_tables_tt {i};
83 current_table_eal = clock_tables_eal {i};
84 index = 1;
85 initial_MJD = current_table_tt .MJD(index);
86

87 k = 1; % Reset k for each clock
88

89 while index <= height (current_table_tt)
90 % Process the subset of the table
91 subset_tables_tt {i, k}(index ,:) = current_table_tt (index ,

:);
92 subset_tables_eal {i, k}(index ,:) = current_table_eal (index

, :);
93 nonZeroRows_tt = any(table2array (subset_tables_tt {i,k}),

2);
94 nonZeroRows_eal = any(table2array (subset_tables_eal {i,k}),

2);
95 subset_tables_tt {i,k} = subset_tables_tt {i,k}(

nonZeroRows_tt , :);
96 subset_tables_eal {i,k} = subset_tables_eal {i,k}(

nonZeroRows_eal , :);
97 index = index + 1;
98 %disp(index);
99

100 if index <= height (current_table_tt) && current_table_tt .
MJD(index) >= initial_MJD

101 initial_MJD = current_table_tt .MJD(index);
102 %disp(k);
103 else
104 if k < 60
105 k = k+1;

102

Matlab Code

106 initial_MJD = current_table_tt .MJD(index);
107 %disp(k);
108 %disp(initial_MJD);
109 else
110 break;
111 end
112 end
113 end
114 end
115

116 % FREQUENZA ULTIMO - PRIMO
117

118 resid =cell(length (selected_clocks) ,59);
119 for i = 1: length (selected_clocks)
120 %i=1;
121 previous_month = subset_tables_eal {i ,1}(ismember (

subset_tables_eal {i ,1}. MJD ,[58114:5:58149]) ,:).
ReadingDifference ;

122 for k=1:59
123 % past_month = fliplr (subset_tables {i,k}. MJD(end): -5:(

subset_tables {i,k}. MJD(end) -30));
124 current_month = subset_tables_eal {i,k}. MJD(end):5:

subset_tables_eal {i,k+1}. MJD(end);
125 x0 = subset_tables_eal {i,k+1}(subset_tables_eal {i,k+1}. MJD

== current_month (1) , :). ReadingDifference ;
126 %y = ((subset_tables {i,k}(subset_tables {i,k}. MJD ==

past_month (end), :). ReadingDifference) - (subset_tables {i,k}(
subset_tables {i,k}. MJD == past_month (1) , :). ReadingDifference))
/30;

127 y = (previous_month (end)-previous_month (1))/((length (
previous_month)*5) -5);

128 x_current_month = subset_tables_eal {i,k+1}(ismember (
subset_tables_eal {i,k+1}. MJD , current_month) ,:).
ReadingDifference ;

129 x_predicted = zeros (1, length (x_current_month));
130 for t=1: length (x_current_month)
131 x_predicted (t) = x0 + y*(current_month (t)-

current_month (1));
132

133 end
134 resid{i,k} = x_predicted - x_current_month ’;
135 previous_month = x_current_month ;
136 end
137 end
138

139 myTable = cell2table (resid);
140

141 % Specifica il nome del file Excel
142 destinationFolder = ’/Users/ ariannaabis / Desktop ’;

103

Matlab Code

143 excelFileName = fullfile (destinationFolder ,’
resid_fountains_18_22_eal_lin .xlsx ’);

144

145 % Scrivi la tabella nel file Excel
146 writetable (myTable , excelFileName);
147

148

149 for i=1: length (selected_clocks)
150 LegendEntries = cell (1 ,59);
151 figure ;
152 for k=1:59
153 LegendEntries {k} = sprintf (’Batch %d’, k);
154 plot(resid{i,k}) % option to only see the first six

residuals for easier visualization
155 hold on;
156 end
157 legend (LegendEntries);
158 title(sprintf (’Residuals for Clock %d for the linear model ’,

selected_clocks (i)));
159 xlabel (’Data Point ’);
160 ylabel (’Residuals ’);
161 hold off;
162

163 % Salva automaticamente il plot
164

165 destinationFolder = ’/Users/ ariannaabis / Desktop / Tesi_Matlab /
selected_fountains_2 / resid_per_clock / lin_mod ’;

166 filename = fullfile (destinationFolder , sprintf (’%
d_resid_phase_lin .fig ’, selected_clocks (i)));

167 saveas (gcf , filename);
168 end
169

170 figure ;
171 for k=1:59
172 LegendEntries = cell (1, length (selected_clocks));
173 figure ;
174 for i=1: length (selected_clocks)
175 LegendEntries {i} = sprintf (’Clock %d’, selected_clocks (i))

;
176 plot(resid{i,k}) % option to only see the first six

residuals for easier visualization
177 hold on;
178 end
179 legend (LegendEntries);
180 title(sprintf (’Residuals for Batch %d’, k));
181 xlabel (’Data Point ’);
182 ylabel (’Residuals ’);
183 hold off;
184

104

Matlab Code

185 % Salva automaticamente il plot
186 destinationFolder = ’/Users/ ariannaabis / Desktop / Tesi_Matlab /

selected_fountains_2 / resid_per_month / lin_mod ’;
187 filename = fullfile (destinationFolder , sprintf (’batch_ %

d_fountains_lin .fig ’, k));
188 saveas (gcf , filename);
189 end

B.8 Computation of Allan Variance.

1 function z1 = olavarf01 (dataTTf ,n,tau0)
2 % dataTTf : frequency data recordings MxN where I guess N number of

clocks
3 %tau0: minimal data spacing (I guess tau0 = 5)
4 %n: moltiplicative factor for enlarging the sample time
5 M = size(dataTTf ,1); % number of frequency point
6 x = nan(M+1, size(dataTTf ,2)); % preallocate , x contains a value for

each recording
7 tau = tau0*ones(M ,1);
8 for j = 1: size(dataTTf ,2)
9 x(1,j) = 0;

10 x(2:M+1,j) = cumsum (dataTTf (:,j).* tau);
11 % prendi la j-esima colonna di dataTTf , moltiplica ogni

elemento per tau
12 %e poi fai la comulativa ->ottieni ultimo
13 end
14

15 tau = n*tau0; % stiamo cambiando il sampling time da tau0 a tau=m*
tau0

16 tot = M+1 -2*n;
17 z1 = zeros (1, size(dataTTf ,2));
18 if (tot < 1)
19 z1 = nan;
20 else
21 for i=1: tot
22 zt = x(i+2*n ,:) - 2*x(i+n ,:) + x(i ,:);
23 disp(size(zt));
24 z1 = zt .^2/(2* tau ^2* tot) +z1;
25 disp(z1);
26 end
27 end %

105

Matlab Code

B.9 Script for computation of Allan Variance.

1 close all;
2

3

4 %First I create an input matrix to give to function olavarf .m
5 %I want to compute Allan variance for a subset of clocks
6

7 % Extract relevant columns
8 clockCodes = freq_18_22_cesium . CodeClock ;
9 scalingFactor = 10^ -14;

10 diffColumns = freq_18_22_cesium (:, 2: end);
11 scaled_diff = varfun (@(x) x * scalingFactor , diffColumns);
12 % Initialize a matrix
13 freq_matrix = NaN(size(diffColumns , 2), numel(clockCodes));
14

15 % Populate the matrix
16 for i = 1: numel(clockCodes)
17 currentClockCode = clockCodes (i);
18 rowsForCurrentClock = (clockCodes == currentClockCode);
19 freq_matrix (:, i) = table2array (scaled_diff (

rowsForCurrentClock , :)) ’;
20 end
21

22 tau0 = 432000; % numero di secondi in 5 giorni -> è la distanza
base

23

24 avar = zeros(size(freq_matrix ,2) ,8); %for every selected clock we
have a matrix which contains m allan variance computation for
each clock

25

26

27 for j=1: size(freq_matrix ,2) %for each clock
28 for i=1:8 % number of points in which I want to compute Allan

Variance
29 n=(2^(i -1)); %a.v su intervallo di cinque giorni , a.v su

intervallo di 10 giorni , a.v. su intervallo di 20 giorni , etc.
fino ad allan variance su intervallo di

30 avar(j,i) = sqrt(allan_var (freq_matrix (:,j),n ,432000));
31 assex(i) = n*tau0;
32 end
33

34 end
35

36

37 for j=1: size(freq_matrix ,2)
38 figure ;
39 y = avar(j ,:);

106

Matlab Code

40 loglog (assex , y);
41 grid on;
42 title(sprintf (’Allan Variance plot for Clock %d’, clockCodes (j)));
43 xlabel (’log (\ tau)’);
44 ylabel (’log (\ sigma ^2 (\ tau))’);
45 end

B.10 Weights extraction.

1 clear all;
2

3 folderPath_orig = ’/Users/ ariannaabis / Desktop / Tesi_Matlab /
Dati_confronto / Originali /’;

4 folderPath_cesls = ’/Users/ ariannaabis / Desktop / Tesi_Matlab /
Dati_confronto /cs_ls/’;

5 folderPath_masls = ’/Users/ ariannaabis / Desktop / Tesi_Matlab /
Dati_confronto / mas_ls /’;

6 fileName = ’P2303 ’;
7 filePath_orig = fullfile (folderPath_orig , fileName);
8 filePath_cesls = fullfile (folderPath_cesls , fileName);
9 filePath_masls = fullfile (folderPath_masls , fileName);

10 pesi_orig = readtable (filePath_orig ,’FileType ’,’text ’);
11 pesi_cesls = readtable (filePath_cesls ,’FileType ’,’text ’);
12 pesi_masls = readtable (filePath_masls ,’FileType ’,’text ’);
13 lastRowIndex = size(pesi_orig , 1);
14 % pesi_orig = pesi_orig (1:(lastRowIndex - 1), :);
15 % pesi_cesls = pesi_cesls (1:(lastRowIndex - 1), :);
16 % pesi_allls = pesi_allls (1:(lastRowIndex - 1), :);
17

18 % Estrai la colonna Var1 come cell array di stringhe
19 stringsToSplit_orig = pesi_orig .Var1;
20 stringsToSplit_cesls = pesi_cesls .Var1;
21 stringsToSplit_masls = pesi_masls .Var1;
22

23 % Inizializza celle vuote per ogni colonna
24 numColumns = 15;
25 splitColumns_orig = cell(length (stringsToSplit_orig), numColumns);
26 splitColumns_cesls = cell(length (stringsToSplit_cesls), numColumns

);
27 splitColumns_masls = cell(length (stringsToSplit_masls), numColumns

);
28

29

30 % Itera su ogni riga e assegna i valori alle colonne
31 for i = 1: length (stringsToSplit_orig)

107

Matlab Code

32 % Dividi la stringa in un array di stringhe
33 splitValues_orig = strsplit (stringsToSplit_orig {i}, ’ ’);
34 splitValues_cesls = strsplit (stringsToSplit_cesls {i}, ’ ’);
35 splitValues_masls = strsplit (stringsToSplit_masls {i}, ’ ’);
36

37 % Assegna i valori alle colonne
38 for j = 1: min(length (splitValues_orig), numColumns)
39 splitColumns_orig {i, j} = splitValues_orig {j};
40 splitColumns_cesls {i, j} = splitValues_cesls {j};
41 splitColumns_masls {i, j} = splitValues_masls {j};
42 end
43 end
44

45 % Crea la tabella finale
46 columnNames = cell (1, numColumns);
47 for j = 1: numColumns
48 columnNames {j} = [’SplitColumn ’ num2str (j)];
49 end
50 pesi_orig = cell2table (splitColumns_orig , ’VariableNames ’,

columnNames);
51 pesi_cesls = cell2table (splitColumns_cesls , ’VariableNames ’,

columnNames);
52 pesi_masls = cell2table (splitColumns_masls , ’VariableNames ’,

columnNames);
53

54

55 for j = 1: numColumns
56 % Estrai i valori dalla colonna corrente
57 currentColumn_orig = pesi_orig .(columnNames {j});
58 currentColumn_cesls = pesi_cesls .(columnNames {j});
59 currentColumn_masls = pesi_masls .(columnNames {j});
60

61 % Converti i valori in double
62 numericValues_orig = str2double (currentColumn_orig);
63 numericValues_cesls = str2double (currentColumn_cesls);
64 numericValues_masls = str2double (currentColumn_masls);
65

66

67 % Sostituisci la colonna corrente con i valori numerici
68 pesi_orig .(columnNames {j}) = numericValues_orig ;
69 pesi_cesls .(columnNames {j}) = numericValues_cesls ;
70 pesi_masls .(columnNames {j}) = numericValues_masls ;
71 end
72

73 pesi_orig = pesi_orig (pesi_orig . SplitColumn1 == 60034 , :); %2303:
60034 %2207: 59789

74 pesi_orig (:, 1) = [];
75 pesi_cesls = pesi_cesls (pesi_cesls . SplitColumn1 == 60034 ,:);
76 pesi_cesls (:, 1) = [];

108

Matlab Code

77 pesi_masls = pesi_masls (pesi_masls . SplitColumn1 == 60034 ,:);
78 pesi_masls (:, 1) = [];
79 % Numero di colonne per gruppo
80 columnsPerGroup = 2;
81

82 % Inizializzazione della nuova tabella
83 PesiOrig = table ();
84 PesiCesLs = table ();
85 PesiMasLs = table ();
86

87 % Iterazione attraverso ogni gruppo di colonne
88 for j=1: size(pesi_orig ,1)
89 for i = 1: columnsPerGroup :size(pesi_orig , 2)
90 % Estrazione delle colonne correnti
91 currentValues_orig = pesi_orig (j, i:i+ columnsPerGroup -1);
92 currentValues_orig . Properties . VariableNames = [" ClockCode ", "

Weight "];
93 currentValues_cesls = pesi_cesls (j, i:i+ columnsPerGroup -1);
94 currentValues_cesls . Properties . VariableNames = [" ClockCode ", "

Weight "];
95 currentValues_masls = pesi_masls (j, i:i+ columnsPerGroup -1);
96 currentValues_masls . Properties . VariableNames = [" ClockCode ", "

Weight "];
97

98

99 % Unione delle colonne correnti in una nuova riga
100 newRow_orig = (currentValues_orig);
101 newRow_cesls = (currentValues_cesls);
102 newRow_masls = (currentValues_masls);
103

104 % Aggiunta della nuova riga alla nuova tabella
105 PesiOrig = [PesiOrig ; newRow_orig];
106 PesiCesLs = [PesiCesLs ; newRow_cesls];
107 PesiMasLs = [PesiMasLs ; newRow_masls];
108

109

110 end
111 end
112

113 PesiOrig . Weight = PesiOrig . Weight ./ 100;
114 PesiCesLs . Weight = PesiCesLs . Weight ./ 100;
115 PesiMasLs . Weight = PesiMasLs . Weight ./ 100;
116

117

118

119 lastRowIndex = size(PesiOrig , 1);
120

121 % Specify the rows to delete
122 % rowsToDelete = lastRowIndex - 3: lastRowIndex ;

109

Matlab Code

123 rowsToDelete = lastRowIndex - 5: lastRowIndex ; %2303
124

125

126 % Delete the specified rows
127 PesiOrig (rowsToDelete , :) = [];
128 PesiCesLs (rowsToDelete , :) = [];
129 PesiMasLs (rowsToDelete , :) = [];

B.11 EAL analysis with linear model and least
squares frequency model only cesium (only
masers).

1 close all;
2 clear all;
3 clc;
4

5 % Specifica il percorso della cartella contenente i file di testo
6 folderPath = ’/Users/ ariannaabis / Desktop / Tesi_Matlab / EALtimescale /

EAL_H_ori /’;
7

8 % Ottieni la lista di file nella cartella
9 files = dir(fullfile (folderPath , ’*. out ’));

10

11 % Itera attraverso i file
12 for i = 1: length (files)
13 % Costruisci il percorso completo del file corrente
14 currentFile = fullfile (folderPath , files(i).name);
15

16 fid = fopen(currentFile , ’r’);
17 data_cell = textscan (fid , ’%f%f%f’, ’Delimiter ’, ’’); %

Sostituisci con il tuo formato
18 fclose (fid);
19

20 sz = size(data_cell {1 ,1} ,1) ;
21 out = cell(sz ,size(data_cell ,2));
22 for k = 1: size(data_cell ,2)
23 t1 = data_cell (k); % accessing a subarray of a cell array which

in our case is 1x1 cell array that contains another cell array
24 t2 = [t1 {:}];
25 if isnumeric (t2) % Takes care of floats
26 out (:,k) = num2cell (t2);
27 else
28 out (:,k) = t2;
29 end

110

Matlab Code

30 end
31 data = cell2table (out , ’VariableNames ’, {’MJD ’, ’ClockCode ’, ’

ReadingDifference ’});
32 [~, uniqueIdx , ~] = unique (data (:, {’MJD ’, ’ClockCode ’}), ’

rows ’, ’last ’);
33 data = data(uniqueIdx , :);
34 data =
35 % Plotta i dati
36 figure (i)
37 plot(data.MJD , data. ReadingDifference);
38

39 % Aggiungi etichette agli assi e titolo
40 xlabel (’MJD ’);
41 ylabel (’ReadingDifference ns’);
42 title(sprintf (’EAL -%s Ori ’, strrep (files(i).name , ’.out ’, ’’))

);
43 ax = gca;
44 indicesToShow = 1:20: numel(data.MJD);
45 ax.XTick = data.MJD(indicesToShow);
46 xtickangle (90);
47 ax. XTickLabel = cellstr (num2str (ax.XTick (:) , ’%d’));
48

49 % % Salva la figura nella cartella
50 %
51 figureFileName = [’eal_ ’ strrep (files(i).name , ’.out ’, ’’) ’

_ori.fig ’];
52 saveas (gcf , fullfile (folderPath , figureFileName));
53

54

55 % Chiudi la figura corrente per passare alla successiva
56 %close(gcf);
57 % Assegna un nome univoco alla tabella basato sul nome del

file
58 tableName = [’eal_ori_ ’ strrep (files(i).name , ’.out ’, ’’)];
59

60 % Assegna la tabella a una variabile con il nome univoco
61 eval ([tableName ’ = data;’]);
62

63 % Ora la tabella è memorizzata in una variabile con un nome
univoco

64 end
65

66

67 % Specifica il percorso della cartella contenente i file di testo
68 folderPath = ’/Users/ ariannaabis / Desktop / Tesi_Matlab / EALtimescale /

EAL_H_lin_mas_ls /’;
69

70 % Ottieni la lista di file nella cartella
71 files = dir(fullfile (folderPath , ’*. out ’));

111

Matlab Code

72

73 % Itera attraverso i file
74 for i = 1: length (files)
75 % Costruisci il percorso completo del file corrente
76 currentFile = fullfile (folderPath , files(i).name);
77

78 fid = fopen(currentFile , ’r’);
79 data_cell = textscan (fid , ’%f%f%f’, ’Delimiter ’, ’’); %

Sostituisci con il tuo formato
80 fclose (fid);
81

82 sz = size(data_cell {1 ,1} ,1) ; %Line count
83 out=cell(sz ,size(data_cell ,2)); %I want a single cell

array and not a nested cell array
84 for k = 1: size(data_cell ,2)
85 t1 = data_cell (k); % accessing a subarray of a cell array which

in our case is 1x1 cell array that contains a 8101 x 1 cell
array

86 t2 = [t1 {:}];
87 if isnumeric (t2) % Takes care of floats
88 out (:,k) = num2cell (t2);
89 else
90 out (:,k) = t2;
91 end
92 end
93 data = cell2table (out , ’VariableNames ’, {’MJD ’, ’ClockCode ’, ’

ReadingDifference ’});
94 [~, uniqueIdx , ~] = unique (data (:, {’MJD ’, ’ClockCode ’}), ’

rows ’, ’last ’);
95 data = data(uniqueIdx , :);
96 % Plotta i dati
97 figure (i+5)
98 plot(data.MJD , data. ReadingDifference);
99

100 % Aggiungi etichette agli assi e titolo
101 xlabel (’MJD ’);
102 ylabel (’ReadingDifference ns’);
103 title(sprintf (’EAL -%s New ’, strrep (files(i).name , ’.out ’, ’’))

);
104 ax = gca;
105 indicesToShow = 1:20: numel(data.MJD);
106 ax.XTick = data.MJD(indicesToShow);
107 xtickangle (90);
108 ax. XTickLabel = cellstr (num2str (ax.XTick (:) , ’%d’));
109

110 % Aggiungere una griglia per chiarezza
111 %grid on;
112

113

112

Matlab Code

114 % % Salva la figura nella cartella
115 figureFileName = [’eal_ ’ strrep (files(i).name , ’.out ’, ’’) ’

_new.fig ’];
116 saveas (gcf , fullfile (folderPath , figureFileName));
117 %
118 % % Chiudi la figura corrente per passare alla successiva
119 % %close(gcf);
120 %
121 % % Assegna un nome univoco alla tabella basato sul nome del

file
122 tableName = [’eal_new_ ’ strrep (files(i).name , ’.out ’, ’’)];
123 %
124 % % Assegna la tabella a una variabile con il nome univoco
125 eval ([tableName ’ = data;’]);
126

127

128 % Ora la tabella è memorizzata in una variabile con un nome
univoco

129 end
130

131 % Creare un elenco di tutti i tipi dologi distinti
132 codes = [1930002 , 1930003 , 1930004 , 1930005 , 1934901];
133

134 % Iterare attraverso i tipi di orologi
135 for i = 1: length (codes)
136 % Ottenere le tabelle corrispondenti sia per ori che per new
137 oriTable = eval ([’eal_ori_ ’ num2str (codes(i))]);
138 newTable = eval ([’eal_new_ ’ num2str (codes(i))]);
139

140 % Calcolare la differenza tra le colonne ReadingDifference
141 diffValues = newTable . ReadingDifference - oriTable .

ReadingDifference ;
142

143 % Plottare la differenza
144 figure (i+10);
145 plot(oriTable .MJD , diffValues);
146

147 % Aggiungi etichette agli assi e titolo
148 xlabel (’MJD ’);
149 ylabel (’ReadingDifference ns’);
150 title(sprintf (’(EALnew - %d) - (EALold - %d)’, codes(i), codes

(i)));
151 ax = gca;
152 indicesToShow = 1:20: numel(oriTable .MJD);
153 ax.XTick = oriTable .MJD(indicesToShow);
154 xtickangle (90);
155 ax. XTickLabel = cellstr (num2str (ax.XTick (:) , ’%d’));
156

157 % Aggiungere una griglia per chiarezza

113

Matlab Code

158 grid on;
159

160 % % Salva la figura nella cartella (modifica il percorso
secondo necessit à)

161 figureFileName = sprintf (’eal_difference_plot_ %d.fig ’, codes(
i));

162 saveas (gcf , figureFileName);
163

164 freq_values_orig = diff(oriTable . ReadingDifference)./5;
165 freq_values_new = diff(newTable . ReadingDifference)./5;
166 figure (i+15)
167 x_axis = oriTable .MJD (2: end);
168 plot(x_axis , freq_values_orig)
169 hold on ;
170 plot(x_axis , freq_values_new)
171 hold off;
172

173 % Aggiungi etichette agli assi e titolo
174 xlabel (’MJD ’);
175 ylabel (’Frequency ns’);
176 title(sprintf (’freq orig - freq new for clock %d’, codes(i)));
177 ax = gca;
178 indicesToShow = 1:20: numel(oriTable .MJD);
179 ax.XTick = oriTable .MJD(indicesToShow);
180 xtickangle (90);
181 ax. XTickLabel = cellstr (num2str (ax.XTick (:) , ’%d’));
182 legend (’Orig ’, ’New ’);
183

184 % Aggiungere una griglia per chiarezza
185 grid on;
186

187 % % Salva la figura nella cartella (modifica il percorso
secondo necessit à)

188 figureFileName = sprintf (’comparison_freq_ %d.fig ’, codes(i));
189 saveas (gcf , figureFileName);
190 end

B.12 Computation of residuals with addition of
stochastic term.

1 resid =cell(length (selected_clocks) ,59);
2 drift_est = table(length (selected_clocks), 59);
3 for i = 1: length (selected_clocks)
4 % disp(selected_clocks (i));

114

Matlab Code

5 previous_month = subset_tables_eal {i ,1}(ismember (
subset_tables_eal {i ,1}. MJD ,[58114:5:58149]) ,:).
ReadingDifference ;

6 t0_prev = 58114;
7 %disp(previous_month);
8 %disp(length (previous_month));
9 for k=1:59

10 freq_curr = diff(subset_tables_tt {i,k}. ReadingDifference)
/5; %I compute frequencies for the ’current ’ three months

11 x_curr = subset_tables_tt {i,k}. MJD (2) :5: subset_tables_tt {i
,k}. MJD(end); %I make it as if my first frequency data is
computed in the second MJD of the first of three months

12 y_curr = movmean (transpose (freq_curr) ,3); % making freq a
row vector and computing moving average

13 coeff = polyfit (x_curr ,y_curr ,1); % finding y_0 and d such
that y(t) = y_0 + d*t, coeff (1) = d, coeff (2) = y_o

14 d = coeff (1);
15 drift_est {i,k} = d;
16 x_new = x_curr (end):5: subset_tables_tt {i,k+1}. MJD(end); %

MJD for next month
17 new_month_values = subset_tables_eal {i,k+1}(

subset_tables_eal {i,k+1}. MJD >= x_curr (end), :).
ReadingDifference ;

18 x0 = new_month_values (1);
19 y0 = (x0 - previous_month (1))/((length (previous_month)*5)

-5);
20 x = zeros (1, length (new_month_values));
21 x(1)=x0;
22 for j=2: length (new_month_values)
23 if selected_clocks (i) == 1350332
24 sigma1 = 1.972;
25 sigma2 = 0.05;
26 tau = 5;
27 covariance_matrix = [sigma1 ^2 * tau + sigma2 ^2 * (tau ^3

/ 3), sigma2 ^2 * (tau ^2 / 2); ...
28 sigma2 ^2 * (tau ^2 / 2), sigma2 ^2 * tau];
29 num_samples = 1;
30 stochastic_contribution = mvnrnd ([0, 0],

covariance_matrix , num_samples);
31 else
32 stochastic_contribution = [0;0];
33

34 end
35 x(j) = x0 + y0 .*(x_new(j)-x_curr (end)) + (1/2) .*d.*((x_new

(j)-x_curr (end)).^2) +(1/2) .*d.*(x_new (1) -t0_prev).*(x_new(j)-
x_curr (end)) + stochastic_contribution (1 ,1);

36 end
37 resid{i,k} = x - new_month_values ’;
38 % ensamble of length (new_month_values) values

115

Matlab Code

39 previous_month = new_month_values ;
40 t0_prev = x_new (1);
41 end
42 end

116

Bibliography

[1] D. W. Allan. «Time and Frequency (Time-Domain) characterization, estima-
tion and prediction of precision clocks and oscillators.» In: IEEE Transactions
on Ultrasonics, Ferroelectrics, and Frequency Control 34.6 (1987) (cit. on
pp. 1, 8).

[2] J. Rutman. «Characterization of Phase and Frequency Instabilities in Precision
Frequency Sources: 15 years of progress». In: Proceedings of the IEEE 66.9
(1978) (cit. on pp. 4, 11, 19, 21).

[3] BIPM. «Annual report of the BIPM time section». In: (1988) (cit. on p. 7).
[4] G. Panfilo, A. Harmegnies, and L. Tisserand. «A new prediction algorithm

for the generation of International Atomic Time». In: Metrologia 49 (2011)
(cit. on pp. 10–12).

[5] G. Panfilo and F. Arias. «The Coordinated Universal Time (UTC)». In:
Metrologia 56 (2018) (cit. on p. 12).

[6] D.W. Allan. «Statistics of atomic frequency standards». In: Special Issue on
Frequency Stability, Proc. IEEE (1966) (cit. on p. 22).

[7] Antoine Baudiquez. «Metrology and Statistics: From clocks to millisecond
pulsars». PhD Thesis. Université Bourgogne Franche - Compté, 2022 (cit. on
p. 24).

[8] Thomas Mikosch. Elementary Stochastic Calculus with Finance in view. World
Scientific, 1998 (cit. on p. 24).

[9] L. Galleani, L. Sacerdote, P. Tavella, and C. Zucca. «A mathematical model
for the atomic clock error». In: Metrologia 40 (2003) (cit. on pp. 28, 30).

[10] C. Zucca and P. Tavella. «The Clock Model and Its Relationship with the Allan
and Related Variances». In: IEEE Transactions on Ultrasonics, Ferroelectrics,
and Frequency Control 52.2 (2005) (cit. on pp. 78, 84).

117

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Overview of UTC Calculation
	Atomic Clocks behaviour
	EAL Calculation
	Estimate of EAL parameters
	Inclusion of the drift
	Calculation of weights

	Stochastic Models for Clock Noise
	Characterization of noise in frequency and time domains
	Stochastic model for the atomic clock error
	Clock affected by WFM and RWFM

	Possible improvements: implementation and results.
	Calculation of EAL with OLS method
	Implementation of deterministic models
	Linear model
	Least squares frequency model
	Global effects on EAL time scale

	Implementation of stochastic model

	Conclusion
	Calculations
	Relationship between Allan Variance and Fourier Spectral Density.
	Distribution of 0t Ws ds.

	Matlab Code
	Computation of pivoted table.
	Computation of cleaned table.
	Computation of freq table.
	Computation of linear interpolation and plot.
	Script for five years analysis.
	Quadratic model for phase error, frequency computed using both techniques: first - last point of time difference and linear ls interpolation.
	Linear model for phase error for fountains: frequency computed with least - first point of time differences.
	Computation of Allan Variance.
	Script for computation of Allan Variance.
	Weights extraction.
	EAL analysis with linear model and least squares frequency model only cesium (only masers).
	Computation of residuals with addition of stochastic term.

	Bibliography

