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Abstract

Statistical shape analysis is a well-known branch of statistics that aims at inferring
on objects’ shape. The aim of this work is to implement already known methods,
with some slight modifications when needed, and use them to make some simula-
tions on synthetic and real datasets. This branch of statistics involves many other
topics in mathematics, such as linear algebra, Markov Chains, MCMC algorithms
and calculus.

At first, some examples are presented: many practical applications of statisti-
cal shape analysis come from the biological framework and are useful to justify the
need for such flexible methods that will be presented during the work. Secondly,
the problem of defining a correct mathematical framework for size-and-shape will
be assessed, by reporting and reviewing the available literature, with particular
care to Mardia’s work. Having set such a framework, it will be discussed how
to derive a stochastic model for size and shape, that will be then used to set up
a Bayesian framework to perform statistical analysis of size-and-shape configura-
tions.

The Bayesian inference is done by means of MCMC algorithms implemented in
Julia, using a latent variable approach to correctly isolate the size-and-shape infor-
mation from the rotational one, pointing out and solving any identification issue of
the parameters that might arise. This kind of approach has been already explored
in literature and allows for a flexible analysis of the problem. More specifically,
synthetic datasets will be generated in various configurations to assess the per-
formances of the model in both the two-dimensional and three-dimensional case.
The latter case will be treated with particular care, as some slight modifications
are proposed with respect to standard work: we model the rotation information
by means of Euler angles and explicitly derive the angles’ full conditionals, rather
than just using a metropolis step, already proposed in previous studies. This is
achieved by further developing some known relations, such as the distribution of
the rotations being Matrix Fisher, obtaining two Von-Mises angles and a third
angle that can be sampled by using specific accept-reject methods.

The performances of the model are then assessed by means of specific met-
rics, such as the Riemannian distance, allowing us to make comparisons between
estimates and real data. The work shows how the Bayesian approach can be im-
plemented with little assumptions, leading to remarkable results, with affordable
computational efforts, thanks to a proper code implementation.
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Chapter 1

Statistical shape analysis

Everything surrounding us has a shape. Since the early years of life, we are
able to recognize and distinguish objects that have different shapes.
Studying this concept has both theoretical and practical implications: the
former, is to define such an abstract concept in mathematical terms, the
latter is to use the knowledge of this concept to achieve useful results in
different branches.
Before starting with the practical examples, it is useful to introduce some
mathematical definitions.

1.1 Previous studies
The study of the statistical shape analysis is rooted in early 1970s. The first
work, as cited in [10], is the one of Mardia (1972) [9] that aimed at study
statistics of directional data.
The work was then improved by Mardia and Jupp and finally ended up in
a recent book named Directional statistics, published in 2000 [7]. Finally, a
new book called ”Statistical shape analysis” was published in 2016 by Mardia
and Dryden [10]. The latter will be one of the main reference point for this
thesis work.
These studies all comes from the necessity of dealing with data that retains
some directional information: vectors, planes, shapes and many others. In
this work, we will revise many of these topics and relate them with other
techniques (such as the Bayesian MCMC framework) that allows for a more
straightforward implementation of the study cases.
Recently another article by Dryden et al. has been published, in which the
authors explore the possibility of analyzing human movement data based on
the framework of the directional statistics/ statistical shape analysis. Today,
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1.2. THE DEFINITION OF SHAPE

these models have been used to study many interesting cases using linear
regression into the shape space, by including both continuous and factorial
covariates when needed.

1.2 The definition of shape
According to Kendall (1977) [8] ”shape is everything that remains once lo-
cation, scale and rotation effects are removed”. This means that shape is
independent from the reference system and from the scale, which sounds fa-
miliar with our everyday experience.
This definition is reasonably in accord with our practical experience: a tri-
angle is such independently on its size, location and rotation.
There are many ways to remove those information and they will be discussed
later.
In a similar way, one could point out that the scale size and shape informa-
tion is everything that remains when rotation and translation information
are removed. This is an important key point: these methods allow us to
choose at which level of detail we make the inference. If the shape infor-
mation alone is enough, one could remove the scale. Otherwise if for the
use case considered the shape information alone isn’t enough, one could also
retain scale.
We could repeat a similar process to choose which components to retain: one
might be interested in retaining reflection information, while others may not.
this will be particularly useful in a Bayesian framework: by choosing which
components to retain, we will let the model freely explore the posterior dis-
tribution in such a way that those components are retained.
Of course, to define a shape, we need some fixed reference points. This can
be done by introducing landmarks.

1.3 Landmarks
An important point when dealing with computational approaches to shape is
the choice of points that describe the object of the inference. The main idea
is that objects with the same shape should share some ”reference” points.
As an example, we might think of a human face: the eyes, mouth and nose
location can be used as reference points to asses the shape of the face (of
course, in a really simplified framework). This intuitive description of shape’s
points allow us to introduce the definition of what is called a ”landmark”

Definition 1.3.1. A landmark is a point of correspondence that matches
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1.4. EXAMPLES

between and within populations

Of course there might be many different types of landmarks, depending
on the application.
As a final remark, we might also introduce labeled landmarks. We can dis-
tinguish scientific landmark (also known as anatomical landmark when
dealing with biological applications), i.e. reference points assigned by an ex-
pert that corresponds between objects in some scientifically meaningful way,
mathematical landmarks, that are located by exploiting the geometrical
properties of the object and finally pseudo-landmarks. These latter points
are located around the previously mentioned landmarks and are usually ob-
tained by construction.
An example of pseudo landmark could be derived by considering the mid
points on the outline of an object, between either mathematical or scientific
landmarks.
A further improvement could be the assignment of a label to each landmark

Definition 1.3.2. A label is a name or a number associated with a land-
mark, and identifies which pairs of landmarks correspond when comparing
two objects. Such landmarks are called labeled landmarks.

In this way, the correspondence between points in similar objects is ex-
ploited in a much clearer way.

1.4 Examples
There are several well known examples,as reported in [10], that might explain
efficiently why a statistical shape analysis might be needed.

1.4.1 Mouse vertebrae
A first example of shape analysis is pretty straightforward: suppose that we
want to asses the effect of weight in reshaping the vertebrae of a mouse.
After dividing mice into 3 groups (Large, small and control), samples of the
vertebrae can be collected and then studied.
Free data is available in the R package shapes and consists of a total of 76
samples, each containing 60 landmarks points and belonging to one specific
group. In this pretty simple framework, it is then possible to compare differ-
ent shapes configuration according to some statistical methods that will be
discussed later.

7



1.4. EXAMPLES
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Figure 1.1: Vertebrae samples for control group

As the figure above shows, the samples are composed of 6 landmarks and
54 pseudo-landmarks.
In the following image we can also examine the configurations for the other
2 groups
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The first observation that comes at a glance is indeed the reflection ori-
entation: the vertebrae sure have similar shapes, but the control group is
reflected with respect to the other 2 configurations. When dealing with simi-
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1.4. EXAMPLES

lar datasets, it is always important to fully understand if reflection invariance
is needed or not.
The datasets also give a nice explanation of what the difference between
landmarks and pseudo landmark is.

50 100 150 200

50
10
0

15
0

20
0

Control Group

x

y

The red-circled points are the landmarks, whereas the other are pseudo
landmarks that allow to better outline the object’s profile.
The use of pseudo-landmarks is indeed recommended to better understand
the dataset, however it increases the dimension of the problem and, as a con-
sequence, heavily impacts the computational performances of the inference
process.

1.4.2 Image recognition
Image recognition is a well known task in the machine learning/ deep learn-
ing area of study. Right now, many advanced techniques are available to
recognize images of many kinds: starting from a simple multilayer percep-
tron, up to more complex models based on Convolutional Neural Networks
(CNNs). The main issue relative to those mdoels is indeed their accountabil-
ity: interpreting the output of a Neural network is everything but simple.
An alternative to these approach, when the dimension of the problem is not
too big, is using classical statistical methods. Statistical shape analysis could
be easily included in such methods and might allow for a lightweight infer-
ence. The clear disadvantage s that we need landmarks on images, which
are generally reported by hand (that is essentially a manual feature extrac-
tion). Here follows some examples take from the dataset digit3 from the
same library shapes already mentioned
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1.4.3 Electrophoretic gels
As mentioned in [10], another plausible application of shape analysis could
be the comparison of electrophoretic gels.
Those gels are the result of a technique for the identification of proteins, and
there might be many reasons for which an electrophoretic gel needs to be
compared to other by statistical means.

For instance, one might want to identify a particular strain of a certain
parasite/ bacteria, being able to sot which points are common and which
are not: some points will be present in the gel of every parasite, while some
variant points will be different from strain to strain. Even if less visible at a
glance, here we report a plot taken from the dataset gel
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As can be seen from this picture, shape is not always well-interpretable.
Taken out from their context, these points might mean nothing. This is a
further reason to seek for a mathematical model that is able to define and
compare shapes by statistical means: even when shapes are not visible at a
glance, we are still able to infere something about their structure. This is the
power of mathematical models: the ability of generalizing concrete concepts
by abstract means.

1.4.4 Other examples
There are plenty of other examples that might be discussed, and can be
found in [10], in many different area of application. Some examples are micro
fossils average shape estimation, cortical surface shape comparison between
schizophrenic and healthy patients, human movement data recognition.
All this topics might seem distant one from each other, but they all rely to
the same paradigm: the information is contained in the shape and size of the
object that we are considering.

It comes natural from the previous examples that performing a statistical
shape analysis is much more flexible than a simple geometric analysis of the
problem. If we think at the first example, the shape of mice vertebrae will
indeed be affected also by slightly individual differences. As a consequence,
two vertebrae will look different even if the weight is the same. How can we
than distinguish the random effect within the population from the random
effects between populations? The answer is pretty straightforward: perform-
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1.4. EXAMPLES

ing a statistical shape analysis of the problem will not only identify the effect
of weight, but it will also quantify how the covariates will influence the mean
configuration, in the exact usual way of a typical regression.
In the following, some pictures of other datasets from the shapes library are
reported
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Figure 1.2: Datasets gorm and gorf: male and female gorillas’ skulls (left
and right, respectively). Each configuration consists of 8 landmarks, having
29 males individual and 30 females individuals
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Figure 1.3: example of a steroid molecule from the dataset steroids. Each
molecule consists of 61 landmarks, representing the atoms of the molecule.
A total of 31 molecules is contained in the dataest

.
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Chapter 2

Preliminaries

2.1 Distributions background
In the following, we will use a Bayesian approach to perform shape and size
inference. Of course this would have never been possible without a solid
probability framework for the shape and size space. We will briefly discuss
the most important derivations that will later be useful in a MCMC setting,
recalling the used distributions and deriving their density when related to
the work.

2.1.1 Matrix normal distribution
Let X ∈ RK,p be a random matrix, i.e. a matrix whose entries are random
variables. We say that X follows a matrix normal distribution if its vector-
ization, which consists of a vector obtained by stacking all the columns of X,
follows a multivariate normal distribution. More precisely

Definition 2.1.1.

X ∼ NK,p(µ, Ip ⊗Σ)⇔ vec(X) ∼ NKp(vec(µ), Ip ⊗Σ)

The pdf for a normal random matrix is given by

f(X;µ, Ip⊗Σ) =
1√

(2π)kp det(Σ)p
exp

(
− 1

2

[
tr(X−µ)TΣ−1(X−µ)T

])
From a practical point of view, we will prefer using the vectorized form rather
than the matrix normal itself. The reason behind the choice of including such
a distribution in the background is pretty simple to understand: studying
the shape of an object means studying a configuration matix whose entries

14



2.1. DISTRIBUTIONS BACKGROUND

might be seen as random variables.
Nevertheless this distribution is used by Dryden et al. to model a noticeable
use of case scenario [4]

2.1.2 Matrix Fisher distribution
We will now focus on the Matrix Fisher distribution: it is a probability
distribution with support in O(p), the orthogonal group of matrices.
Matrix Fisher was first introduced in [5], and then reported also in [1] [7],
sometimes referred to as Matrix Langevin. The distribution is defined by the
density

f(X) = a(F) exp
{
trFXT

}
,X ∈ O(p), F ∈ Rn,p

where F is a parametric matrix and a is a normalization constant. This
distribution was firstly introduced by Downs [5] and is one of the first ex-
amples of non-uniform distributions on Stiefel-Manifolds (which are not pre-
sented here as they are far beyond the purpose of this work).
This family of distributions will be particularly used as they model the ran-
dom behaviour of some matrices that are involved when dealing with size-
and-shape configurations. This can be better seen in the following section,
where the SVD for a Matrix Normal variable is derived.

2.1.3 SVD decomposition of a Matrix Normal r.v.
An important key point is how to derive the probability distribution of each
component of the SVD decomposition [4]. This will be largely used during
the Bayesian inference in the next chapters, as SVD will be one of the most
effective ways for dealing with size-sand-shape.
The following theorem holds

Theorem 1. Let’s consider a configuration X ∈ RK,p and its SVD decom-
position X = U∆RT . Assume that R ∈ SO(p) The joint pdf of U and ∆
is given by

f(U ,∆;µ,Σ) =
D(∆)C(A)

(2π)
Kp
2 |Σ| p2

exp

{
− 1

2
tr

(
∆UTΣ−1U∆+ µTΣ−1µ

)}
and the conditional pdf of R is

f(R|A) = C(A)−1 exp
{
trRAT

}
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2.1. DISTRIBUTIONS BACKGROUND

with
A = µTΣ−1U∆

C(A) =

∫
SO(p)

exp {tr(RAT )}dR

D(∆) = 21−p det(∆)

p∏
i<j

(δ2i − δ2j )

Proof. The density f(U ,∆ : µ,Σ) can be derived by marginalization:

f(U ,∆;µ,Σ) = D(∆)

∫
SO(p)

f(U ,∆,R;µ,Σ)dR =

= D(∆)

∫
R∈SO(p)

1√
(2π)kpdet(Σ)p

×

× exp{−1

2
tr[(U∆RT )T − µΣ−1(U∆RT − µ)]}dR =

=
D(∆)√

(2π)kpdet(Σ)p
×

×
∫
R∈SO(p)

exp{−1

2
tr[(U∆RT − µ)TΣ−1(U∆RT − µ)]}dR =

=
D(∆)√

(2π)kpdet(Σ)p
×

×
∫
R∈SO(p)

exp{−1

2
tr[(R∆UTΣ−1U∆RT + µTΣ−1µ]}×

× exp{tr(µTΣ−1U∆RT )}dR

Now, by using the trace operator properties, we can write

tr(R∆UTΣ−1U∆RT ) = tr(RTR∆UTΣ−1U∆) = ∆UTΣ−1U∆

And by substituting this result into the previous relation we obtain

D(∆)√
(2π)kpdet(Σ)p

exp{−1

2
tr[(∆UTΣ−1U∆+ µTΣ−1µ}×

∫
R∈SO(p)

exp{tr(µTΣ−1U∆RT )}dR =

=
D(∆)√

(2π)kpdet(Σ)p
exp{−1

2
tr[(∆UTΣ−1U∆+ µTΣ−1µ)]}×
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×
∫
R∈SO(p)

exp{tr(RAT )}dR =

D(∆)C(A)√
(2π)kpdet(Σ)p

exp{−1

2
tr[(∆UTΣ−1U∆+ µTΣ−1µ)]}

As a consequence, it is also easy to obtain the conditional distribution of
R. Formally, one can write

f(R|U ,∆) =
f(U ,∆,R;µ,Σ)

f(U ,∆;µ,Σ)
=

1

C(A)
exp{tr(RAT )}

which means that R, conditioned to A, is Matrix Fisher distributed. Further
details concerning the normalization constants computation can be found in
[4].

2.2 MCMC algorithms
2.2.1 A brief introduction to MCMC algorithms
The key point of the work is the usage of so called MCMC algorithms. The
acronym MCMC stands for Markov Chain Monte Carlo, as this class of
algorithms is based on both Monte Carlo methods and Markov chains.
The general idea behind MCMC algorithms is to use Monte Carlo methods
to simulate a specifically designed Markov chain, in such a way that its
limit (stationary) distribution is coincident with the distribution we want to
sample from.
In the following, we will briefly recall the most important concepts that allow
these methods to work.

2.3 Markov Chains
To fully understand how a MCMC sampler works, we first recall the some
useful definitions.

Definition 2.3.1. Discrete time Markov chain
A discrete time Markov chain is a stochastic process {X1, . . . , XT} with the
Markov Property, i.e.

P{Xt+1 = x|Xt = xt, Xt−1 = xt−1, . . . , X1 = x1} = P{Xt+1 = x|Xt = xt}
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One interesting fact is that the dynamics of the system can be described
by algebraic means by defining a transition probability matrix P , i.e. a
matrix whose entries satisfy

pij = P{Xt+1 = j|Xt = i}

In this way, given a probability distribution πt over the states of the chain
at time time t, the probability distribution over the states at time t+ 1 can
be obtained by post multiplying by P

πtP = πt−1

It must be noticed that those probabilities depend, in general, also from time.
This won’t be the case for the applications we will consider, and therefore
we will only deal with stationary transition probabilities.
One natural question that one might arise is if there exists a distribution
such that the system becomes stationary. This is equal to ask if it exist a
so called stationary distribution for the system. The latter can be defined in
the following way

Definition 2.3.2. Stationary distribution
For a given (Discrete time) Markov chain, a stationary distribution π is a
probability distribution over the states of the chain that satisfies

πP = π (2.1)

This shouldn’t be confused with the limit distribution

Definition 2.3.3. For a given Markov chain, the limit distribution is ob-
tained by solving

lim
t→∞

πt (2.2)

The two distributions might resemble the same thing, but in general
they’re not. It is clear that, if it exists, a limit distribution is also stationary,
but the converse is not necessarily true.
As a matter of fact, this is true only under specific assumptions. In the
following we will consider only the case where the limit distribution exists.
Stationary distributions are of vital importance in many scenarios: from
Markov decision processes, to queue theory. For these reasons, they are well
studied and some noticeable properties are known. Above all, one might
recall the detailed balance.
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Definition 2.3.4. A distribution is detailed balance if for any couple of
reachable states of the chain the incoming probability fluxes are equal to the
outcoming probability fluxes. In mathematical terms it reads

∀i, j ∈ S P{i→ j}π(i) = P{j → i}π(j) (2.3)

Or in a matrix notation
Pjiπj = Pijπi

As a consequence, one might prove the following

Theorem 2. Any detailed balance distribution is stationary.

Proof. By definition of stationary distribution

π = πP (2.4)

Then, by the detailed balance, we have that

Pijπi = Pjiπj

Summing both sides on i∑
i

Pijπi =
∑
i

Pjiπj = πj

where the last equality comes from the fact that P is row-stochastic.
Finally we obtain

(πP )j = πj

which concludes the proof

2.4 MCMC algorithms
The theory behind Markov Chains can be used to simulate from a specific
distribution.
Suppose that we want to simulate a sample from a distribution with density
f(x). Suppose also that the last sample obtained, let’s say xb, conditioned to
all the simulated samples, depends only on its previous sample. In formulae

f(xb|xb−1, xb−2, . . . , x0) = f(xb|xb−1)

Which means asking that the samples’ chain has the Markov property.
Let now T (xb|xb−1) be the transition probability from xb−1 to xb. We aim at
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finding T in such a way that the stationary distribution of the Markov Chain
coincides with f .
By using the previous results, we ask for f to follow the detailed balance. In
formulae

T (xb−1|xb)f(xb) = T (xb|xb−1)f(xb−1)

Different choices of T will result in different algorithms. In the following
we will discuss the two main algorithms in MCMC simulation: the Gibbs
algorithm and the Metropolis-Hastings algorithm.

2.5 Gibbs sampler
The first well-known algorithm is indeed the Gibbs algorithm.
Suppose to want to simulate from a density f(x|θ), where x = (x1, . . . , xp)
and θ = (θ1, . . . , θm) is a vector of parameters.
The idea is to sample at each component xifrom its full conditional, that
is the distribution of xi conditioned to all others components. In a MCMC
setting this means:

Algorithm 1 Gibbs sampler
1: b = 0
2: while b<B do
3: b← b+ 1
4: for i < n do
5: xb

i ∼Xb
i |xb

1,x
b
2,x

b
i−1, . . . ,x

b−1
i+1 , . . . ,x

b−1
n

6: end for
7: xb ← (xb

1, . . . ,x
b
n)

8: end while
9: return X = (x1, . . . ,xB)

It is worth noting that for a given component i at iteration b we use all the
available information, i.e. we use the just sampled values for the components
1, . . . , i− 1.
Finally, one can obtain a sample from the joint distribution by putting all the
just computed samples together. In other words let xb

1, . . . , x
b
n be the samples

obtained by Gibbs sampling, then the multivariate sample (xb
1, . . . , x

b
n) comes

from the joint distribution we aim to simulate.
Without loss of generality, we will prove the next results in the 2-variable
case, as it allows for more straightforward computations.
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2.5.1 Detailed balance
As already mentioned, the Gibbs sampler fulfills the detailed balance con-
dition. This means that for any given state of the chain,considering a bidi-
mensional example, it holds true that

T (xb−1|xb)f(xb−1) = T (xb|xb−1)f(xb)

Proof. It is sufficient to observe that the transition

(xb−1
1 , xb−1

2 )→ (xb
1, x

b
2)

can be broken into

(xb−1
1 , xb−1

2 )→ (xb
1, x

b−1
2 )→ (xb

1, x
b
2)

to conclude that the transition probabilities decompose as follows

T (xb
1, x

b
2|xb−1

1 , xb−1
2 ) = T (xb

1, x
b−1
2 |xb−1

1 , xb−1
2 )T (xb

1, x
b
2|xb

1, x
b−1
2 )

Then let
T (xb

1, x
b−1
2 |xb−1

1 , xb−1
2 ) = f(xb

1|xb−1
2 )

that is the full conditional of x1. It is now trivial to verify the statement

T (xb
1, x

b−1
2 |xb−1

1 , xb−1
2 )f(xb−1

1 , xb−1
2 ) =

T (xb
1, x

b−1
2 |xb−1

1 , xb−1
2 )T (xb

1, x
b
2|xb

1, x
b−1
2 )f(xb−1

1 |xb−1
2 )f(xb−1

2 ) =

f(xb
1|xb−1

2 )f(xb−1
1 |xb−1

2 )f(xb−1
2 ) = f(xb

1, x
b−1
2 )T (xb−1

1 , xb−1
2 |xb

1, x
b−1
2 )

By similar arguments, one can prove that

T (xb
1, x

b−1
2 |xb

1, x
b−1
2 )f(xb

1, x
b−1
2 ) = f(xb

1, x
b
2)T (x

b
1, x

b−1
2 |xb

1, x
b
2)

The result can be generalized to higher dimension, let’s say n, by breaking
the transition into n transitions and then applying the above scheme.

2.6 Metropolis-Hastings algorithm
The Gibbs sampler represents the most straightforward way to sample from
a multivariate distribution, provided that we are able to sample from the full
conditionals. Unfortunately, this is not quite often the case.
Sometimes we are required to sample from a distribution knowing its kernel
(i.e. the pdf without the normalization constant), but we have no information
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on the normalization constant or it is simply to expensive to compute.
As a result, a Gibbs algorithm cannot be implemented.
One might argue that using accept-reject methods could solve the problem,
but as the dimension increases it becomes, in general, more and more difficult
to accept samples as the hyper volume outside the kernel increases as the
dimension of the problem increases.
To solve this kind of problems, another well-known algorithm is proposed:
the Metropolis-Hastings algorithm.
The idea is to propose a new sample from a known distribution (that must
share the same support of the target distribution) and find a way to either
accept or not this new sample. In this sense, Metropolis-Hastings algorithm
might be seen as an accept-reject method.
Here follows the sampling scheme

Algorithm 2 Metropolis-Hastings sampler
1: b = 0
2: while b<B do
3: b← b+ 1
4: x∗ ∼ q(x∗|xb−1)

5: α← min
{ f(x∗)q(xb−1|∗)

f(xb−1)q(x∗|xb−1)
, 1
}

6: u ∼ U(0, 1)
7: if u ≤ α then
8: xb ← x∗

9: else
10: xb ← xb−1

11: end if
12: end while
13: return X = (x1, . . . ,xB)

This sampling scheme is usually included within a Gibbs sampling scheme,
allowing to use the full conditionals whenever they’re known and using the
algorithm just for those variables that really need it.

2.6.1 Detailed balance
As for the Gibbs sampler, also the Metropolis-Hastings algorithm satisfies
the detailed balance.
The transition probability from (xb−1

1 , xb−1
2 )→ (xb

1, x
b−1
2 ) is then chose as

T (xb
1, x

b−1
2 |xb−1

1 , xb−1
2 ) = q(xb

1|xb−1
1 , xb−1

2 )α(xb
1, x

b−1
1 )
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with
α(xb

1, x
b−1
1 ) = min

{
f(xb

1|xb−1
2 )q(xb−1

1 |xb)

f(xb−1
1 |xb−1

2 )q(xb
1|xb−1)

, 1

}
known as acceptance ratio. Then, under these assumptions, it holds again
that

T (xb
1, x

b−1
2 |xb−1

1 , xb−1
2 )f(xb−1

1 , xb−1
2 ) = f(xb

1, x
b−1
2 )T (xb−1

1 , xb−1
2 |xb

1, x
b−1
2 )

T (xb
1, x

b−1
2 |xb

1, x
b−1
2 )f(xb

1, x
b−1
2 ) = f(xb

1, x
b
2)T (x

b
1, x

b−1
2 |xb

1, x
b
2)

Proof. We aim at proving that choosing the metropolis ration as stated,
will result in the fulfillment of the detailed balance. First of all, let’s write
the detailed balance by explicitly writing the transition probabilities, as a
function of α:
f(xb−1

1 , xb−1
2 )q(xb

1|xb−1
1 , xb−1

2 )α(xb
1, x

b−1
1 ) = f(xb

1, x
b−1
2 )q(xb−1

1 |xb
1, x

b−1
2 )α(xb−1

1 , xb
1)

Which can again be rewritten as
α(xb

1, x
b−1
1 )

α(xb−1
1 , xb

1)
=

f(xb
1, x

b−1
2 )q(xb−1

1 |xb
1, x

b−1
2 )α(xb−1

1 , xb
1)

f(xb−1
1 , xb−1

2 )q(xb
1|xb−1

1 , xb−1
2 )α(xb

1, x
b−1
1 )

By Bayes theorem the joint distribution cam be decomposed as following
α(xb

1, x
b−1
1 )

α(xb−1
1 , xb

1)
=

f(xb
1|xb−1

2 )f(xb−1
2 )q(xb−1

1 |xb
1, x

b−1
2 )α(xb−1

1 , xb
1)

f(xb−1
1 |xb−1

2 )f(xb−1
2 )q(xb

1|xb−1
1 , xb−1

2 )α(xb
1, x

b−1
1 )

Leading to this final expression.
α(xb

1, x
b−1
1 )

α(xb−1
1 , xb

1)
=

f(xb
1|xb−1

2 )q(xb−1
1 |xb

1, x
b−1
2 )α(xb−1

1 , xb
1)

f(xb−1
1 |xb−1

2 )q(xb
1|xb−1

1 , xb−1
2 )α(xb

1, x
b−1
1 )

Now it is sufficient to observe that for sure one between α(xb
1, x

b−1
1 ) and

α(xb−1
1 , xb

1) will be equal to one (there are only 2 options: accept the new
proposed sample or keep the last one), therefore the just written ratio will
always be constant.
More precisely, if α(xb−1

1 , xb
1) = then

α(xb
1, x

b−1
1 )

α(xb−1
1 , xb

1)
=

f(xb
1|xb−1

2 )q(xb−1
1 |xb

1, x
b−1
2 )α(xb−1

1 , xb
1)

f(xb−1
1 |xb−1

2 )q(xb
1|xb−1

1 , xb−1
2 )α(xb

1, x
b−1
1 )

If otherwise α(xb−1
1 , xb

1) = 1 we have
α(xb−1

1 , xb
1)

α(xb
1, x

b−1
1 )

=
f(xb−1

1 |xb−1
2 )q(xb

1|xb−1
1 , xb−1

2 )α(xb
1, x

b−1
1 )

f(xb
1|xb−1

2 )q(xb−1
1 |xb

1, x
b−1
2 )α(xb−1

1 , xb
1)

As a final consequence, this proves that under this choice of α the detailed
balance is satisfied.
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An important point when implementing Metropolis-Hastings algorithm
is the choice of the proposal distribution.
As matter of fact, it is preferred a symmetric choice of q() when it is possible.
The reason is pretty simple: if q() is symmetric, then

q(x∗, xb−1) = q(xb−1, x∗)

and under this assumption, the metropolis ratio simplifies as follows

α(xb
1, x

b−1
1 ) = min

{
f(xb

1|xb−1
2 )

f(xb−1
1 |xb−1

2 )
, 1

}

2.6.2 Link between Gibbs and Metropolis
Before moving on, it is important to notice that Gibbs and Metropolis share
some common points. As a matter of fact, the Metropolis algorithm is noth-
ing more then a generalization of the Gibbs sampler.
Let’s consider a Metropolis-Hastings sampler and choose the full conditional
density as proposal. Then the acceptance ratio becomes

α(xb
1, x

b−1
1 ) = min

{
f(xb

1|xb−1
2 )f(xb−1

1 |xb−1
2 )

f(xb−1
1 |xb−1

2 )f(xb
1|xb−1

1 )
, 1

}
= 1

In other words, the Gibbs sampler is a particular case of the Metropolis
Hastings one, where the acceptance ratio is always one.
This is particularly important because underlines the computational aspect
of choosing the Gibbs sampler whenever it is possible: having an acceptance
ratio equal to one means that each iteration will produce a new sample. On
the other hand, the Metropolis will generate a new sample in a proportion α
of the iterations made, but allows for a more flexible sampling scheme.
In both cases, we end up with a sample of B dependent samples, that might
be further analyzed to extract a iid subsample.
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Chapter 3

Shape and size modelling

3.1 Geometrical concept of shape
In order to make inference on the shape and size space, the latter must be
first defined. According to [10] the shape of an object is ”everything that
remains when translation, rotation and scale information is removed”. In
order to make proper shape inference, it is needed to first model each of
these information and then find a way of ”removing” them, leaving us with
a shape only configuration.
We will first discuss what translation is, moving then to translation and
finally to size-and-shape.

3.2 Rotations
Definition of rotation The concept of rotation is well defined using or-
thogonal matrices.
As a matter of fact, given a configuration X ⊆ RK,p of points in space, a ro-
tation can be obtained by pre or post multiplying the matrix X by a matrix
Γ ∈ SO(p), where SO(p) is the special orthogonal group of matrices in Rp.
In mathematical words, this means that Γ needs to satisfy

ΓΓT = Ip

det(Γ) = 1

the first condition is satisfied by all orthogonal matrices, while the second
condition is used to characterize the special orthogonal group.
While the definition of rotation is pretty straightforward, it is much less easy
to represent them in a convenient way. In the following, we present three
methods that might be used to properly represent matrices in some special
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cases, i.e. with p ∈ {2, 3}.

2D rotations Starting with the p = 2 scenario, let’s suppose that we want
to rotate a vector [X,Y]T of an angle θ ∈ [0, 2π), obtaining a new vector
[X,Y]T By means of simple trigonometric computations, one can easily re-
cover that [

X ′

Y ′

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
X
Y

]
= RX

The matrix R satisfies both the previous conditions, therefore is a rotation
matrix itself.
More precisely, R represents a planar rotation, meaning that the new con-
figuration lies on th same plane of the starting one. Rotations matrices has
many interesting properties, ranging from geometrical to numerical ones.
From a numerical point of view, rotations matrices do not propagate numer-
ical errors, as they are orthogonal matrices that do not alter the norm of
vectors.
As a consequence, using these matrices will be particularly useful even from
a practical implementation point of view.
This kind of representation of a rotation can be extended to the 3D case in
many ways such as using Euler angles( which decomposes a 3D rotation into
a sequence of 3 planar 2D rotations) axis angle representation and quater-
nions representation. We will focus on the first one as it will allow for a
straightforward derivation of the full conditional in the MCMC setting.

3.2.1 Euler angles
As discussed in [11], Euler angles can be defined in different ways. In the
following, we will use only the standard Euler angles definition. To define
those angles, we first need to define an important axis:

Definition 3.2.1. Node axis
Given an orthonormal basis {i, j, k} of a mobile reference system, and a
orthonormal basis {e1, e2, e3} for a fixed reference system, we define the node
axis as the versor

n =
k × e3
|k × e3|

Given the node axis, it is possible to define the three angles
Definition 3.2.2. Euler angles
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• θ1 : the angle to rotate i in the plane orthogonal to k, to obtain the
axis node n

• θ2 : the angle between e3 and k

• θ3 the angle to rotate n in the plane orthogonal to e3 counterclockwise,
in order to obtain e1

It is possible to prove that, given any fixed reference system {i, j,k} and
a reference system {e1, e2, e3},a unique value of the three euler angles exist.

Euler angles can then be used to decompose a generic rotation matrix
R ∈ SO(3) into a product of three matrices,i.e.

R = R3(θ3)R2(θ2)R1(θ1) =

cos(θ3) − sin(θ3) 0
sin(θ3) cos(θ3) 0

0 0 1

1 0 0
0 cos(θ2) − sin(θ2)
0 sin(θ2) cos(θ2)

cos(θ1) − sin(θ1) 0
sin(θ1) cos(θ1) 0

0 0 1


In other words, this means that every 3D rotation can be decomposed into

three planar rotations, and as we said this decomposition is unique, provided
that the angles satisfy some constraints, i.e. θ1 ∈ [0, 2π], θ2 ∈ [0, π), θ3 ∈
[0, 2π).
Using Euler angles is pretty simple and allow us to work with planar rotations
only. Of course, there are some drawbacks.
As a matter of fact, using Euler angles might be computationally expensive:
one could store just the angles and compute every time the matrices when
needed or, in a sort of opposite way, one could store the 3 matrices and the
angle. This choice depends both on the available resources and the context
of application. Indeed, this are irrelevant drawbacks when computations can
be executed, for instance, on a GPU.

3.3 Translation
The next important geometric concept that needs to be formalized is trans-
lation. The idea is to remove the location information by using a linear
transformation.
This can be done by multiplying the configuration space by the so called
Helmert sub-matrix H, defined in the following way
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Definition 3.3.1. Helmert submatrix
The Helmert submatrix H ∈ RK,p is such that its j − th row is equal to

(−hj, . . . ,−hj, jhj, 0, . . . , 0)

where −hj = −1/
√

j(j + 1) is repeated j times, followed by jhj, and then
followed by all zeros.

The reason behind this choice is pretty straightforward: any translation
of a given configuration X0 ∈ RK+1,p can be written as

X = X0 + 1vT (3.1)

where 1T is the column vector with all entries equal to one. Pre multiplying
by H will result in

HX = HX0 +H1vT = HX0 (3.2)
where the last equality follows from the fact that the rows of H sums to zero.
In this way we are removing translation information, but losing a degree of
freedom.

The configuration HX ∈ RK×p obtained by multiplying the landmark
configuration by the Helmert sub-matrix is often referred as helmertised con-
figuration or pre-form matrix.
Using the Helmertized matrix instead of just centering the data, allows to
look at the contrasts between landmarks, which is really useful when dealing
with shapes.

3.4 Scale
We need to introduce a geometrical framework to isolate the scale informa-
tion of a given set of landmarks X.
In the following we will briefly explore the possibility of using the SVD de-
composition to isolate the size-and-shape of and object, i.e. the confoguration
retaining both scale and shape information.

3.4.1 Singular values decomposition - SVD
As already mentioned, the SVD is one of the main ingredients to fully un-
derstand and isolate the size-and-shape information. An explicit discussion
of SVD can be found in [2], and in the following only the useful result will
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be reported. Given a matrix A ∈ Rm,n, the singular values decomposition of
A can be defined as

A = U∆RT

with
U ∈ O(m) ∆ ∈ Rm,n V ∈ O(n)

SVD decomposition is nothing but a generalized version of the eigenvector
problem. As a matter of fact, it holds true that

• U contains the orthonormal eigenvectors of AAT

• R contains the orthonormal eigenvectors of ATA

The matrix

∆ =



δ1 0 0 0 0 0 0
0 δ2 0 0 0 0 0
... ... . . . ... ... 0 0
0 0 0 δr 0 0 0
... ... ... ... . . . . . . 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


contains on its diagonal the singular values of the matrix A, i.e. the first r
diagonal terms, with r being the rank of matrix A. These values are related
to the previously cited eigenvector problems in the following way: first we
solve the eigenvector problem for ATA

AATvk = δ2kvk k = 1, . . . , r

And then we can retrieve the first r eigenvectors of AAT

uk =
Avk

δk
k =, 1 . . . , r

The remaining n−r eigenvectors ofATA, andm−r eigenvectors ofAAT can
be arbitrarily specified and constitutes a basis for the kernel of, respectively,
bmA and AT .
By this arguments, it is easy to verify that the SVD of a matrix is not
unique and might depend on both the choice of these last eigenvectors, and
permutations of the columns of ∆ and R.
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3.4.2 Geometrical interpretation of SVD
The key point in using the SVD to asses the size-and-shape of an object can
be easily understood by looking at its geometrical interpretation.
SVD essentially breaks the action of a given matrix A in three distinct pieces

• RT ∈ O(n) is an orthogonal matrix that contains only information
about the orientation of the set A.

• ∆ is a matrix that contains information about the scale: its entries,
which are the singular values of matrix A, define the ”stretches” that
are performed along each direction.

• U ∈ O(m) is a rotation matrix that map the stretched configuration
to the original orientation.

The idea is that any given set of vectors, under the action of A, can be
mapped to a reference configuration, stretched only on the principal direc-
tions of A and then rotated back to obtain a new set of vectors.
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RTe1

e2

v1 v2

(a) Rotation by RT

σ1e1

σ2e2

e1

e2

(b) Scaling by Σ

u1

u2

(c) Counter-rotation by
U

Figure 3.1: Geometric interpretation of SVD

It is worth noting that the SVD decomposition depends on the space po-
sition, in the sense that matrices A and A + c1T1 produces different maps
and have different singular values deocmposition.
As a consequence, SVD should be applied only after the Helmert sub-matrix
previously defined.
Back to the original problem, it follows as a natural consequence that given
a helmertised configuration XH =, HX, one can use SVD decomposition to
recover the shape and size information, given by the product U∆ and the
rotation information, given by the matrix R.

Observation 1. The SVD decomposition is usually defined using R ∈ O(n).
It is worth noting that it is possible to rewrite such decomposition in a way
that R ∈ SO(n). This can be achieved by changing the sign of a column of

31



3.5. MEASURING DISTANCES IN THE SHAPE SPACE

U and the respective column of R, whenever R has determinant equal to −1.
In this way reflection information is lost, and therefore the left-handed and
right-handed reference systems are considered the same.

Proof. Consider the starting decomposition A = U∆RT . Changing a col-
umn sign, e.g. the first, corresponds to post multiplying by a matrix

P =

−1 0 . . . 0
0 1 . . . 0
0 0 . . . 1


if det(R) = −1 then it holds by Binet theorem that

det(PR) = det(P ) det(R) = −1 det(R) = 1

and

UP∆(RP )T = UP∆P TRT = U∆PP TRT = U∆RT = A

which concludes the proof

3.5 Measuring distances in the shape space
We will now briefly discuss the main properties of the shape space. This
will be useful to better understand how one can compare the shape of two
different configurations, which will result particularly useful when in the next
chapters we will compare estimated configurations with real ones.
The main issue with size-and-shape is that it presents as a non euclidean
metric space structure [10], therefore some care must be taken when making
comparisons between shapes.

3.5.1 Size-and-shape space
As it will be the study case scenario for the majority of applications con-
sidered, we now state the formal definition of what the size-and-shape space
is

Definition 3.5.1. The size-and-shape of a configuration matrix X is all
the geometrical information about X that is invariant under location and
rotation, i.e. the set

[X]S = {XHΓ : Γ ∈ SO(p)}

with XH being the helmertised configuration previously defined
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3.5. MEASURING DISTANCES IN THE SHAPE SPACE

As a direct consequence, the size-and-shape space is defined as
Definition 3.5.2. The size-and-shape space is the space of all size-and-
shapes.

Size and shape is also known as form, especially in biological applications,
as it naturally encodes the everyday concept of ”form” itself. By allowing
Γ ∈ O(p), we refer to reflection size-and-shape space. This is particularly
important as we might or might not need reflection invariance, depending on
the application.

3.5.2 Shape space
By similar arguments the shape space can be defined from the the size-
and-shape one, by removing the scale information, leading to the following
definition

[X] = {ZΓ : Γ ∈ SO(p) } (3.3)
Where Z := HX

∥HX∥ is also known as pre-shape configuration of X.
The choice of working with one space rather than the other clearly depends
on the kind of application one is considering. In the following, we will often
interchange the use of one space with the other: it might be convenient
to make inference on Y and then, only in a second moment, compare the
difference between shapes.In this sense, the use of these spaces should be
seen as complementary, rather than mutually exclusive.

3.5.3 The partial procrustes distance
The first distance that can be defined between size-and-shape objects is the
so called partial procrustes distance.
The idea is pretty simple: being the size-and.shape the set of all pre-form
differ only by a rotation, one might define the distance between two size-and-
shape configurations by minimizing over rotations, i.e.

dp(X1,X2) = inf
{Γ∈SO(p)}

∥Z2 −Z1Γ1∥ (3.4)

with Zi =
HXi

∥HXi∥ Even though this definition is mathematically rigorous, it
is not operative. Therefore, this distance can be further exploited

dp(X1,X2) =
√
2

(
1−

m∑
i=1

λi

) 1
2

(3.5)

where λi i = 1, . . . ,m are the square roots of the eigenvalues ofZT
1 Z2Z

T
2 Z1,

ordered in a descending way.
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3.5. MEASURING DISTANCES IN THE SHAPE SPACE

3.5.4 The full procrustes distance
Another possible metric that can be used to measure distances between
shapes is the full procrustes distance. This distance is strictly related
to its partial version, with the only difference in minimization: here the min-
imization is not carried over just by rotations, but also by a factor β ∈ R+,
i.e.

dF (X1,X2) = inf
{Γ∈SO(p) , β∈R+}

∥Z2 − βZ1Γ1∥ (3.6)

And again this distance can be characterized in a more operative way

dF (X1,X2) =

(
1−

( m∑
i=1

λi

)2) 1
2

(3.7)

with λi i = 1, . . . ,m defined as in the partial procrustes distance.

3.5.5 Riemannian distance
A third, possibly mor euseful, distance that can be defined to measure dis-
tances between shapes is the Riemannian distance.
Following the explanations in [10], it emerges that the Riemannian distance
is nothing more than the closest great circle distance on the pre-shape sphere.
From a mathematical point of view, the distance is defined as

ρ(X1,X2) = arccos

( m∑
i=1

λi

)
(3.8)

with the eigenvalues λi defined as usual.
The Riemannian distance will be largely used in the following, as it allows
to accurate comparisons between shapes.

3.5.6 Comparing the distances
The three just described distances can be compared from both a geometrical
and an algebraic point of view.
First of all, it is useful to report the bounds for each of the distances

Distance Domain
dP [0,

√
2]

dF [0, 1]
ρ

[
0, π

2

]
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3.5. MEASURING DISTANCES IN THE SHAPE SPACE

As can be seen from the above table, the distances don’t differ much
in range. The real differences and correlations between these amthematical
objects can be retrievered by algebraic end geometric means.
From an algebraic point of view, it can be showed that

dF (X1,X2) = sin(ρ)

dP (X1,X2) = 2 sin(
ρ

2
)

while from a geometrical point of view, the three distances ρ, P, F are, re-
spectively, the smallest angle on the pre-shape sphere section between the two
pre shapes configurations, the chordal length and the ”point-line” distance
between the second configuration and the radius of the first one.
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Chapter 4

Bayesian size-and-shape
regression modelling

In the next chapter, we will move into the core of this work.
We aim to define a regressive type relation between the size-and-shape con-
figuration of a sample and some covariates.
In the first section of the chapter, we will briefly recall a stochastic model for
size-and-shape
In the second part of the chapter, we will setup the Bayesian framework by
defining the priors and deriving the posterior distributions for the parame-
ters, discussing possible identification issues. It is essential to underline all
of these topics have already been explored in literature in both the 2 and
3 dimensional cases, as discussed in [10] and [3], therefore we will be just
reviewing those contents for the majority of this work.
Nonetheless, a slightly different approach from the original work is here pro-
posed: the Euler angles’ full conditionals are derived for the p = 3 case,
avoiding the metropolis step that is cited in both the articles.

4.1 A stochastic model for size and shape
As already seen, statistical shape analysis may come of use in many cases.
The common points for each and every problem of interest is the structure
of the dataset.
When dealing with ”shapes” datasets,we are given a set of N configurations
in space, each of them containing K + 1 landmarks

Xi ∈ RK+1×p i ∈ {1, . . . , N}
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4.1. A STOCHASTIC MODEL FOR SIZE AND SHAPE

We generally assume the independence between observations

Xi ⊥⊥Xj i ̸= j

and we also assume that the components of the landmarks are independent
(but we assume no independence between landmarks)

Xi,l ⊥⊥Xi,k l ̸= k

The inference can now be done in different ways, as there are many possi-
ble assumptions of invariance for the model: one might ask for translation
invariance, rotation invariance, reflection invariance and scale invariance by
applying one or many of the transformations discussed in previous chapters.
In the following, we will assume translation invariance and reflection invari-
ance, meaning that we will only work with the size-and-shape configuration
of the object, assuming that information about reflection is lost. First of all,
we need to remove translation and this can be done by pre-multiplying by
the Helmertz submatrix of order K.
This will lead to a pre-form configuration

XH := HX ∈ RK,p

that could also be standardized if needed.
Once location information is removed, we can retrieve the SVD of XH

XH,i = Ui∆iV
T
i

In this way the matrix
Yi := Ui∆i

will retain shape-and-size information, while the matrix Vi will contain only
rotational information.
To be sure that the inference is based only on the size-and-shape information
Yi, we replace Vi with a new matrix Ri ∈ SO(p), i.e.

Xi = YiR
T
i

and then define a regressive relation between this new configuration and a
vector of covariates zi in the following way

XH,i ∼ Nk,p

( d∑
h=1

zihBh, Ip ⊗Σ

)
i = 1, . . . , N

where
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4.2. THE BAYESIAN FRAMEWORK

• zi ∈ RN,d is a vector of covariates for the i− th sample

• Bh ∈ RK,p h = 1, . . . , d are matrices of regressive coefficients

• Σ ∈ RK,K is a variance-covariance matrix

A crucial point is to observe that, in the following, we will never use the
real rotations Vi. Moreover, by assuming that both Vi and Ri are special
orthogonal matrices, we are retaining the reflection information.

4.2 The bayesian framework
After a stochastic model for size-and-shape is set up, the next step is to
derive a Bayesian model to estimate the parameters.
Working in a Bayesian setting, we assume that the parameters are random
variables themselves. Before observing data, we might have some beliefs
about these parameters, and therefore we exploit our prior knowledge by
defining the prior distributions on the parameters. These priors will then be
driven by empirical observation by applying the well-known Bayes update
rule. Before moving on, some notation must be clarified. Let

βl = [BT
1,l, . . . ,B

T
d,l]

T

be the vector obtained by stacking the l − ths columns of Bh h = 1, . . . , d

Zi = Ik ⊗ zT
i

a design matrix associated to the i− th covariate and

Xi,l

the l-th column of observation i.
We can then define the following priors

Xi,l|β,Σ ∼ NK(Ziβl,Σ), i = 1, . . . , N l = 1, . . . , p

βl ∼ Nkd(Ml,Vk)

Σ ∼ IW (ν,Ψ)

Keeping in mind all that has been pointed out up to now, we can move to
the derivation of the posterior distributions.
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4.2. THE BAYESIAN FRAMEWORK

4.2.1 Posterior distribution for B
Given the priors, it is easy to prove that the posterior full conditional distri-
bution for βl is given by

βl|β−l,Σ,R1, . . . ,RN ,Y1, . . . ,YN ∼ Nkd(M
∗
l ,V

∗
l )

where

M ∗
l = V ∗

l

( N∑
i=1

ZT
i Σ

−1Xi,l + V −
l 1Ml

)

V ∗
l

( N∑
i=1

ZT
i Σ

−1Zi + V −1
l

)−1

Proof. Let β−l be the set of all β but the l−th one. Then, by Bayes theorem,
one retrieve that

f(βl|β−l,Σ,R1, . . . ,RN ,Y1, . . . ,YN) = f(βl|β−l,Σ,R, . . . ,YN) ∝

∝ f(Xl|β−l,Σ,R1, . . . ,RN ,Y1, . . . ,YN)f(βl)

Which yields to

f(βl|β−l,Σ,R1, . . . ,RN ,Y1, . . . ,YN) ∝

∝ exp

{
− 1

2

(
Xl−µ

)T
Σ−1

(
Xl−µ

)}
exp

{
− 1

2

(
βl−Ml

)T
V −1

l

(
βl−Ml

)}
By independence, we can factorize the density of X as follows

f(Xl|β−l,Σ,R1, . . . ,RN ,Y1, . . . ,YN) =

=
∏
i

f(Xi,l|β−l,Σ,R1, . . . ,RN ,Y1, . . . ,YN) =

= exp

{
− 1

2

∑
i

(
Xi,l −Ziβl

)T
Σ−1

(
Xi,l −Ziβl

)}
Observing now that

exp

{
− 1

2

∑
i

(
Xi,l −Ziβl

)T
Σ−1

(
Xi,l −Ziβl

)}
=

∝ exp

{
− 1

2

∑
i

−(Ziβl)
TΣ−1Xi,l−XT

i,lΣ
−1(Ziβl) + (Ziβl)

TΣ−1(Ziβl)

}
=
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= exp

{
− 1

2

∑
i

−2βT
l Z

T
i Σ

−1Xi,l + βT
l Z

T
i Σ

−1Ziβl

}
We can recover the following kernel for the posterior distribution of βl

f(βl|β−l,Σ,R1, . . . ,RN ,Y1, . . . ,YN) ∝

∝ exp

{
−1

2

∑
i

−2βT
l (Z

T
i Σ

−1Xi,l+V −1
l Ml)+βT

l Z
T
i Σ

−1Ziβl+βT
l V

−1
l βl−2βT

l V
−1
l Ml

}

= exp

{
− 1

2

∑
i

−2βT
l Z

T
i Σ

−1Xi,l + βT
l (Z

T
i Σ

−1Zi + V −1
l )βl

}
which is exactly the kernel of a normal distribution with mean M ∗

l and
variance matrix V ∗

l defined as

M ∗
l = V ∗

l

( N∑
i=1

ZT
i Σ

−1Xi,l + V −1
l Ml

)

V ∗
l

( N∑
i=1

ZT
i Σ

−1Zi + V −1
l

)−1

4.2.2 Posterior for Sigma
Next, we compute the posterior distribution for Σ. The claim is that

Σ|β,R1, . . . ,Rn,Y1, . . . ,YN ∼ IW (ν∗,Ψ∗)

with

ν∗ = ν +Np, Ψ∗ = Ψ+
N∑
i=1

p∑
l=1

(Xi,l −Ziβl)(Xi,l −Ziβl)
T

The proof can be derived in similar ways to what was previously done with
βl.

Proof. By Bayes theorem, it is easy to verify that

f(Σ|B,R1, . . . ,Rn,Y1, . . . ,YN ) ∝ f(Σ)f(X1, . . . ,XN |Σ,B1, . . . ,Bd) =
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= det(Σ)−
(ν+K+1)

2 exp

(
− 1

2
tr
(
ΨΣ−1

))
×

× det(Σ)−
np
2

∏
i

∏
l

exp

(
− 1

2

(
Xi,l −Ziβl

)T
Σ−1

(
Xi,l −Ziβl

))
=

= det(Σ)−
ν+np+K+1

2 exp

(∑
i

∑
l

(Xi,l−Ziβl

)T
Σ−1

(
Xi,l−Ziβl

)
+tr(ΨΣ−1)

)
Where we used independence of the Xi and independence of the columns of
Bh.
By the trace operator properties we have that

tr(baT ) = aTb a, b ∈ Rn

And therefore it holds that

tr
((
Xi,l−Ziβl

)(
Xi,l−Ziβl

)T
Σ−1

)
= tr

(
Σ−1

(
Xi,l−Ziβl

)
(Xi,l−Ziβl

)T )
=

= (Xi,l −Ziβl

)T
Σ−1

(
Xi,l −Ziβl

)
This result finally leads to

f(Σ|B,R1, . . . ,Rn,Y1, . . . ,YN ) ∝

∝ det(Σ)−
ν+np+K+1

2 exp

(∑
i

∑
l

tr
((
Xi,l−Ziβl

)(
Xi,l−Ziβl

)T
Σ−1

)
+tr(ΨΣ−1)

)
=

= det(Σ)−
ν+np+K+1

2 exp

(
tr

([∑
i

∑
l

(
Xi,l−Ziβl

)(
Xi,l−Ziβl

)T
+Ψ

]
Σ−1

))
By letting

ν∗ := ν + np Ψ∗ :=
∑
i

∑
l

(
Xi,l −Ziβl

)(
Xi,l −Ziβl

)T
+Ψ

we recognize an Inverse Wishart kernel with parameter ν∗ and Ψ∗, proving
the thesis
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4.2.3 Posterior for R
Concerning the distribution of Ri we already mentioned that

f(Ri|β,R1, . . . ,Ri−1,Ri+1, . . . ,RN ,Y1, . . . ,YN) ∝ exp
(
tr(RiA

T
i )
)

and again, as mentioned before, we could decompose such matrix by using
Euler angles. In this way, we can derive the following posteriors for the angles
in the cases p = 2, 3.

4.2.4 Euler angles full conditional - case p = 2
Previous works implemented the simulation from a matrix fisher by using a
metropolis step. Here we propose a different approach, trying to derive a full
conditional of the Euler angles.
In the 2D case, planar rotations can be represented by means of a single
angle θ

Ri =

[
cos θi − sin θi
sin θi cos θi

]
and in this way, it is easy to characterize the above mentioned kernel

exp(tr(RiA
T ) = tr

([
cos θi − sin θi
sin θi cos θi

] [
a11 a21
a12 a22

])
=

= cos θia11 − sin θia12 + sin θia21 + cos θia22 =

= cos θi(a11 + a22) + sin θi(a21 − a12)

Remark that

a cos(x) + b sin(x) =
√
a2 + b2

(
a√

a2 + b2
cos(x) +

b√
a2 + b2

sin(x)

)
=

= ρ cos(γ) cos(x) + sin(γ) sin(x) = ρ cos(γ − x) = ρ cos(x− γ)

And therefore by letting

ρ :=
√

(a11 + a22)2 + (a21 − a12)2

γ := arctan 2

(
a21 − a12

ρ
,
a11 + a22

ρ

)
we finally obtain

cos θi(a11 + a22) + sin θi(a21 − a12) = ρ cos(θi − γ)

that is the kernel of a Von-mises with parameters ρ and γ
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4.2.5 Euler angles full conditional - case p = 3
The derivation in the p = 3 case is quite similar: assume an Euler angles
decomposition for Ri, using the ZXZ convention. This results in

Ri = Ri3(θ3)Ri2(θ2)Ri1(θ1), θ1, θ3 ∈ [0, 2π), θ2 ∈ [0, π)

with

Ri1 =

cos(θ1) − sin(θ1) 0
sin(θ1) − cos(θ1) 0

0 0 1



Ri2 =

1 0 0
0 cos(θ2) − sin(θ2)
0 sin(θ2) cos(θ2)



Ri3 =

cos(θ3) − sin(θ3) 0
sin(θ3) cos(θ3) 0

0 0 1


Following the procedures in [5] we obtain that the invariant volume (Haar)

measure of dR over SO(3) can be exploited as a function of the measures of
volume of the three angles::

dR =
1

8π2
sin(θ2)dθ1dθ2dθ3

Last, we can rewrite the density of Ri as

exp(tr(RiA
T
i )) = exp(tr(Ri3Ri2Ri1A

T
i ))

Observe now that the trace operator is invariant under cyclic permutation
(provided that matrices are still compatible) in order to obtain

exp(tr(Ri3Ri2Ri1A
T
i )) = exp(tr(Ri1A

T
i Ri3Ri2)) = exp(tr(Ri2Ri1A

T
i Ri3))

Letting
L := Ri2Ri1A

T
i

H := AT
i Ri3Ri2

D := Ri1A
T
i Ri3
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We obtain

exp(tr(Ri3L)) = exp(tr(Ri1H)) = exp(tr(Ri2D))

to simplify the notation we set

ci := cos θi si := sin θi i ∈ 1, 2, 3

It is now possible to explicitly compute the product

tr

(
Ri1 =

c1 −s1 0
s1 c1 0
0 0 1

h11 h12 h13

h21 h22 h23

h31 h32 h33

)
=

= c1h11 − s1h21 + s1h12 − c1h22 + h33 = (h11 + h22)c1 + (h12 − h21)s1 + h33 =

where we set, in similar way to the p = 2 case, the following parameters

= ρ1 cos(θ1 − γ1) + h33

ρ1 :=
√
(h11 + h22)2 + (h12 − h21)2

γ1 := arccos

(
h11 + h22

ρ1

)
By similar arguments we can also derive

tr(Ri3L) = ρ3 cos(θ3 − γ3) + l33

ρ3 :=
√

(l11 + l22)2 + (l12 − l21)2

γ3 := arccos

(
l11 + l22

ρ3

)
While for θ2

tr

(
Ri2 =

1 0 0
0 c2 −s2
0 s2 c2

d11 d12 d13
d21 d22 d23
d31 d32 d33

)
=

= (d22 + d33)c2 + (d23 − d32)s2 + d11 = ρ2 cos(θ2 − γ2) + d11

And again we set the parameters

ρ2 :=
√

(d22 + d33)2 + (d23 − l32)2

γ2 := arccos

(
d22 + d33

ρ2

)
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The following step is to use the decomposition result for dRi to properly find
a kernel of the full conditionals

f(Ri| . . . )dRi =
1

8π2
f(θi1, θi2, θi3| . . . ) sin(θi2)dθi1dθi2dθi3 = i = 1, . . . , N

Finally, to find the full conditional of a specific angle, we just need to
isolate the appropriate kernel:

f(θi1| . . . ) ∝ exp(tr(Ri1Hi)) sin(θi2) ∝ exp (ρi1 cos(θi1 − γi1))

f(θi2| . . . ) ∝ exp(tr(Ri2Di)) sin(θi2) ∝ exp (ρi2 cos(θi2 − γi2)) sin(θi2)

f(θi3| . . . ) ∝ exp (tr(Ri3Li)) sin(θi3) ∝ exp (ρi3 cos(θi3 − γi3))i = 1, . . . , N

We can finally conclude that the first and the third distributions are Von-
Mises.
The second one, instead, is not a known distribution and therefore must be
simulated using other techniques, such as accept-reject sampling.

4.3 Sampling the second angle
We just derived a kernel for the distribution of θ2 and the full conditionals
for θ1 and θ3. While the latter may be sampled directly from a Von-Mises
distribution, the first requires a different approach.
To sample from the distribution of θ2 we can use an accept-reject methods,
that we already cited when discussing the Metropolis-Hastings algorithm.
In order to better explain what these methods are, it useful to recall the
following

Theorem 3. Let f(x) be a pdf for a random variable X with finite support.
Consider a second random variable U ∼ U(0, 1). Then

(X,U) ∼ U(A)

where
A = {(x, y) : 0 < u < f(x)}

This comes really useful when we want to obtain one or more samples
from f(x) but we are not directly able to do it. Here we just need to be
able to simulate from a uniform distribution in order to retrieve samples of
X. Unfortunately, this might not be necessarily simpler than the original
problem.
From a practical point of view, this can be implemented by simulating a
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point from a ”box” [a, b] × [0,m] and then retaining only the samples (x, y)
that satisfy y ≤ f(x).
These kind of approach can be generalized to kernels, as stated in the fol-
lowing theorem

Theorem 4. Let X ∼ f(x) and Y ∼ G.
Suppose ∃M ≥ 1 s.t. f(x) ≤Mg(x).
Then, to obtain a sample from X it is sufficient to sample from U |Y = y ∼
U(0,Mg(y)) until 0 < u < f(y).

This result comes really useful in our scenario, as one can observe that

f(θ2|θ1, θ3,Y ,µ) ≤ exp{ρ cos(θ2 − γ2)}

which is nothing more but the kernel of a Von-Mises distribution.
This means that, at each iteration, it will be sufficient to generate a sample
from a Von-mises and accept it if and only if it satisfies the above theorem.
This is very handy as it allows to write one single function that is able to
sample from both the Von-mises and the new distribution, with little changes
in the code.

4.4 Identification of the model
One important fact that has been pointed out by [3] is that the model itself,
as is written, suffers of some identification issues: this means that there exist
multiple set of the parameters that induces the same likelihood in the model.
As a consequence, it is not possible to distinguish one set from the other.
To be more precise, remember that we aim at modeling the size-and-shape
by using a linear model

Xi|zi ∼ N
( d∑

h=1

zihBh, Ip ⊗Σ

)
And we already proved that

f(Y |Σ,µ,R) ∝ exp{−1

2
tr
[
∆UTΣ−1U∆+ µTΣ−1µ

]
}

Let’s focus on the trace: one could define an alternative configuration for
parameter µ by using an orthogonal matrix Λ, obtaining the same value of
the trace operator, i.e.

tr
(
(µΛ)TΣ−1µΛ

)
= tr

(
ΛTµTΣ−1µΛ

)
= tr

(
ΛΛTµTΣ−1µ

)
= tr

(
µTΣ−1µ

)
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Where the last equality can be derived by using the fact that the trace is
invariant by cyclic permutations (provided the the matrices are compatibles).
As a consequence, it is easy to verify that

f(Y |Σ,µ,R) = f(Y |Σ,µΛ,R)

This means that, in order to make any inference, the model parameters needs
to be identified. As reported in [4], one possible choice is to define a matrix
Λ s.t.

Bid := B0Λ

[Bid]ij = 0 j > i

[Bid]ii ≥ 0 i, j = 1 . . . , p

The choice of defining Λ using B0 is purely arbitrary and migh therefore be
changed. Once Λ is defined, each and every Bh h = 2, . . . , d can be iden-
tified by post-multiplying by Λ. The same identification must be performed
also for the rotation matrices: we know that

Y RT =
d∑

h=1

ZhBh + ϵ ϵ ∼ NK,p

(
0K,p, Ip ⊗Σ

)
Therefore

Y =
d∑

h=1

ZhBhR+ ϵR

But
BhR = BhΛΛTRT = BhΛ(ΛTR)T

for any choiche of Λ ∈ SO(p). Therefore, once the Bh are identified, the
corresponding rotation matrix can be retrieved by pre-multiplying by ΛT .
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Chapter 5

Simulations and experiments

In the first section of this chapter we test the performances of the model by
first generating some synthetic datasets and then observing the results.
In the second section, a real dataset application is also proposed.

5.1 p = 2 - only intercept
The first, most simple model that can be discussed is the intercept only
model. We generate a sample dataset with d = 1 covariates,i.e. the inter-
cept, sampling each of the regressive coefficients from a normal distribution
with parameters µ = 5 and σ2 = 1.
We also simulate the matrix Σ from a InverseWishart distribution of param-
eters ν = K + 1 and Ψ = 5IK .
The reasons behind these choices are quite simple: in a real setting we will
of course work with centered and standardized datasets, therefore we will
always work with standardized coordinates and covariances, that result in
a much more stable sampling. Choosing these parameters allow to test the
performances of the sampler in a coherent, yet not trivial setting, showing
off both the performances and robustness limits of the sampler.
For each combination of N ∈ {20, 50}, K ∈ {5, 10} we generate 100 datasets
and perform MCMC approximation using 3000 iterations, of which 1000 are
discarded as burn-in. We then compute:

• The mean length for the 95% credible intervals of each parameter

• The fraction of times that the true value of a certain parameter’s com-
ponent falls into the corresponding 95% credible interval

• The fraction of times that the overall components of a single parameter
falls into the corresponding credible interval
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5.1. P = 2 - ONLY INTERCEPT

• The Riemmanian distance between the estimated configuration and the
real one

In the following, we briefly report the just mentioned quantities.

5.1.1 N = 20, K = 10

B0,ij j = 1 j = 2
i = 1 0.94 -
i = 2 0.95 0.93
i = 3 0.9 0.97
i = 4 0.97 0.97
i = 5 0.97 0.92
i = 6 0.96 0.95
i = 7 0.96 0.94
i = 8 0.95 0.94
i = 9 0.93 0.96
i = 10 0.96 0.93

Table 5.1: Fraction of times that true value of B0,ij fell into the 95% CI

Σij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10
i = 1 0.93 0.93 0.97 0.92 0.97 0.96 0.95 0.94 0.89 0.96
i = 2 0.93 0.89 0.94 0.92 0.94 0.91 0.93 0.97 0.91 0.9
i = 3 0.97 0.94 0.94 0.93 0.95 0.93 0.96 0.94 0.93 0.92
i = 4 0.92 0.92 0.93 0.91 0.93 0.92 0.92 0.97 0.92 0.92
i = 5 0.97 0.94 0.95 0.93 0.95 0.95 0.91 0.92 0.92 0.95
i = 6 0.96 0.91 0.93 0.92 0.95 0.94 0.93 0.94 0.93 0.94
i = 7 0.95 0.93 0.96 0.92 0.91 0.93 0.95 0.93 0.94 0.94
i = 8 0.94 0.97 0.97 0.92 0.94 0.93 0.95 0.95 0.96 0.94
i = 9 0.89 0.91 0.93 0.92 0.92 0.93 0.94 0.95 0.94 0.93
i = 10 0.96 0.9 0.92 0.92 0.95 0.94 0.94 0.96 0.93 0.96

Table 5.2: Fraction of times that true value of Σij fell into the 95% CI
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5.1. P = 2 - ONLY INTERCEPT

Parameter Global percentage mean CI length
B 94.7% 1.81
Σ 93.54% 4.13

Table 5.3: Total percentage of times that each parameter fell into the 95%
CI

5.1.2 N = 50, K = 10

B0,ij j = 1 j = 2
i = 1 0.89 -
i = 2 0.94 0.95
i = 3 0.91 0.95
i = 4 0.95 0.97
i = 5 0.92 0.96
i = 6 0.93 0.97
i = 7 0.92 0.94
i = 8 0.91 0.95
i = 9 0.93 0.95
i = 10 0.96 0.95

Table 5.4: Fraction of times that true value of B0,ij fell into the 95% CI

Σij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10
i = 1 0.94 0.96 0.97 0.94 0.92 0.94 0.95 0.92 0.99 0.92
i = 2 0.96 0.95 0.93 0.93 0.95 0.95 0.92 0.96 0.94 0.93
i = 3 0.97 0.93 0.92 0.93 0.94 0.93 0.9 0.95 0.93 0.94
i = 4 0.94 0.93 0.94 0.95 0.95 0.96 0.92 0.95 0.91 0.93
i = 5 0.92 0.95 0.94 0.95 0.92 0.94 0.94 0.92 0.91 0.90
i = 6 0.94 0.95 0.93 0.96 0.94 0.94 0.96 0.93 0.96 0.95
i = 7 0.95 0.92 0.9 0.92 0.94 0.96 0.93 0.91 0.92 0.89
i = 8 0.92 0.96 0.95 0.95 0.92 0.93 0.91 0.95 0.97 0.92
i = 9 0.99 0.94 0.93 0.91 0.91 0.96 0.92 0.97 0.94 0.93
i = 10 0.92 0.93 0.94 0.93 0.9 0.95 0.89 0.92 0.93 0.94

Table 5.5: Fraction of times that true value of Σij fell into the 95% CI
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Parameter Global percentage mean CI length
B 93.95% 1.48
Σ 93.62% 2.42

Table 5.6: Total percentage of times that each parameter fell into the 95%
CI

5.1.3 N = 20, K = 5

B0,ij j = 1 j = 2
i = 1 0.95 -
i = 2 0.92 0.91
i = 3 0.96 0.91
i = 4 0.94 0.91
i = 5 0.92 0.94

Table 5.7: Fraction of times that true value of B0,ij fell into the 95% CI

Σij j = 1 j = 2 j = 3 j = 4 j = 5
i = 1 0.97 0.93 0.97 0.93 0.88
i = 2 0.93 0.93 0.98 0.93 0.87
i = 3 0.97 0.98 0.95 0.94 0.96
i = 4 0.93 0.93 0.94 0.88 0.91
i = 5 0.88 0.87 0.96 0.91 0.91

Table 5.8: Fraction of times that true value of Σij fell into the 95% CI

Parameter Global percentage mean CI length
B 92.89% 1.73
Σ 92.96% 2.03

Table 5.9: Total percentage of times that each parameter fell into the 95%
CI
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5.2. P = 2 - NORMAL COVARIATE

5.1.4 N = 50, K = 5

B0,ij j = 1 j = 2
i = 1 0.96 -
i = 2 0.95 0.94
i = 3 0.97 0.92
i = 4 0.94 0.94
i = 5 0.91 0.90

Table 5.10: Fraction of times that true value of B0,ij fell into the 95% CI

Σij j = 1 j = 2 j = 3 j = 4 j = 5
i = 1 0.95 0.98 0.96 0.92 0.94
i = 2 0.98 0.99 0.95 0.94 0.95
i = 3 0.96 0.95 0.98 0.97 0.95
i = 4 0.92 0.94 0.97 0.93 0.97
i = 5 0.94 0.95 0.95 0.97 0.93

Table 5.11: Fraction of times that true value of Σij fell into the 95% CI

Parameter Global percentage mean CI length
B 93.67% 1.01
Σ 95.36% 1.32

Table 5.12: Total percentage of times that each parameter fell into the 95%
CI

Configuration Riemmanian distance ρ
N= 20, K = 10 0.056
N = 50, K = 10 0.044
N= 20, K = 5 0.039
N = 50, K = 5 0.017

Table 5.13: Comparing Riemmanian distances

5.2 p = 2 - normal covariate
In the following, we report the results for the normal covariate case.
We suppose that each zi ∼ N (0, 1), as standardization will always be per-
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5.2. P = 2 - NORMAL COVARIATE

formed (the same approach will be used for the p = 3 case).

5.2.1 N = 20, K = 10

B0,ij j = 1 j = 2
i = 1 0.95 -
i = 2 0.93 0.95
i = 3 0.94 0.93
i = 4 0.93 0.92
i = 5 0.95 0.90
i = 6 0.93 0.93
i = 7 0.94 0.94
i = 8 0.94 0.98
i = 9 0.94 0.93
i = 10 0.96 0.93

Table 5.14: Fraction of times that true value of B1,ij fell into the 95% CI

B1,ij j = 1 j = 2
i = 1 0.93 0.95
i = 2 0.97 0.94
i = 3 0.94 0.97
i = 4 0.93 0.94
i = 5 0.89 0.97
i = 6 0.96 0.95
i = 7 0.94 0.95
i = 8 0.94 0.97
i = 9 0.92 0.98
i = 10 0.94 0.97

Table 5.15: Fraction of times that true value of B1,ij fell into the 95% CI
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5.2. P = 2 - NORMAL COVARIATE

Σij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10
i = 1 0.91 0.86 0.92 0.93 0.91 0.89 0.9 0.91 0.94 0.93
i = 2 0.86 0.93 0.89 0.88 0.88 0.89 0.92 0.93 0.91 0.9
i = 3 0.92 0.89 0.96 0.88 0.93 0.95 0.91 0.94 0.95 0.92
i = 4 0.93 0.88 0.88 0.94 0.91 0.89 0.92 0.91 0.94 0.96
i = 5 0.91 0.88 0.93 0.91 0.89 0.88 0.93 0.91 0.92 0.98
i = 6 0.89 0.89 0.95 0.89 0.88 0.92 0.93 0.9 0.92 0.92
i = 7 0.9 0.92 0.91 0.92 0.93 0.93 0.93 0.88 0.93 0.92
i = 8 0.91 0.93 0.94 0.91 0.91 0.9 0.88 0.94 0.94 0.94
i = 9 0.94 0.91 0.95 0.94 0.92 0.92 0.93 0.94 0.96 0.94
i = 10 0.93 0.9 0.92 0.96 0.98 0.92 0.92 0.94 0.94 0.94

Table 5.16: Fraction of times that true value of Σij fell into the 95% CI

Parameter Global percentage mean CI length
B 94.28% 2.18
Σ 91.80% 3.22

Table 5.17: Total percentage of times that each parameter fell into the 95%
CI

5.2.2 N = 50, K = 10

B0,ij j = 1 j = 2
i = 1 0.92 -
i = 2 0.95 0.97
i = 3 0.95 0.95
i = 4 0.96 0.94
i = 5 0.93 0.94
i = 6 0.97 0.95
i = 7 0.97 0.94
i = 8 0.94 0.99
i = 9 0.95 0.94
i = 10 0.93 0.96

Table 5.18: Fraction of times that true value of B0,ij fell into the 95% CI
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5.2. P = 2 - NORMAL COVARIATE

B1,ij j = 1 j = 2
i = 1 0.94 0.94
i = 2 0.95 0.94
i = 3 0.96 0.98
i = 4 0.96 0.95
i = 5 0.96 0.93
i = 6 0.93 0.92
i = 7 0.94 0.95
i = 8 0.95 0.95
i = 9 0.93 0.92
i = 10 0.95 0.96

Table 5.19: Fraction of times that true value of B1,ij fell into the 95% CI

Σij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10
i = 1 0.92 0.93 0.92 0.96 0.92 0.95 0.93 0.92 0.97 0.97
i = 2 0.93 0.95 0.95 0.96 0.94 0.9 0.93 0.95 0.97 0.97
i = 3 0.92 0.95 0.95 0.9 0.92 0.9 0.95 0.94 0.95 0.93
i = 4 0.96 0.96 0.9 0.92 0.94 0.91 0.94 0.92 0.98 0.96
i = 5 0.92 0.94 0.92 0.94 0.92 0.94 0.96 0.95 0.94 0.93
i = 6 0.95 0.9 0.9 0.91 0.94 0.96 0.98 0.97 0.93 0.91
i = 7 0.93 0.93 0.95 0.94 0.96 0.98 0.96 0.97 0.97 0.91
i = 8 0.92 0.95 0.94 0.92 0.95 0.97 0.97 0.97 0.95 0.97
i = 9 0.97 0.97 0.95 0.98 0.94 0.93 0.97 0.95 0.96 0.96
i = 10 0.97 0.97 0.93 0.96 0.93 0.91 0.91 0.97 0.96 0.95

Table 5.20: Fraction of times that true value of Σij fell into the 95% CI

Parameter Global percentage mean CI length
B 94.76% 0.875
Σ 94.30% 0.733

Table 5.21: Total percentage of times that each parameter fell into the 95%
CI
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5.2.3 N = 20, K = 5

B0,ij j = 1 j = 2
i = 1 0.95 -
i = 2 0.94 0.85
i = 3 0.89 0.96
i = 4 0.95 0.88
i = 5 0.92 0.87

Table 5.22: Fraction of times that true value of B0,ij fell into the 95% CI

B1,ij j = 1 j = 2
i = 1 0.95 0.87
i = 2 0.95 0.95
i = 3 0.90 0.89
i = 4 0.92 0.87
i = 5 0.89 0.90

Table 5.23: Fraction of times that true value of B1,ij fell into the 95% CI

Σij j = 1 j = 2 j = 3 j = 4 j = 5
i = 1 0.99 0.94 0.97 0.94 0.95
i = 2 0.94 0.88 0.95 0.90 0.92
i = 3 0.97 0.95 0.94 0.93 0.95
i = 4 0.94 0.90 0.93 0.94 0.95
i = 5 0.95 0.92 0.95 0.95 0.97

Table 5.24: Fraction of times that true value of Σij fell into the 95% CI

Parameter Global percentage mean CI length
B 91.05% 2.91
Σ 94.08% 9.94

Table 5.25: Total percentage of times that each parameter fell into the 95%
CI
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5.2.4 N = 50, K = 5

B0,ij j = 1 j = 2
i = 1 0.92 -
i = 2 0.96 0.96
i = 3 0.95 0.96
i = 4 0.95 0.93
i = 5 0.93 0.93

Table 5.26: Fraction of times that true value of B0,ij fell into the 95% CI

B1,ij j = 1 j = 2
i = 1 0.92 0.95
i = 2 0.94 0.94
i = 3 0.95 0.96
i = 4 0.93 0.96
i = 5 0.90 0.95

Table 5.27: Fraction of times that true value of B1,ij fell into the 95% CI

Σij j = 1 j = 2 j = 3 j = 4 j = 5
i = 1 0.95 0.94 0.97 0.98 0.96
i = 2 0.94 0.94 0.93 0.94 0.9
i = 3 0.97 0.93 0.92 0.94 0.9
i = 4 0.98 0.94 0.94 0.92 0.91
i = 5 0.96 0.9 0.9 0.91 0.92

Table 5.28: Fraction of times that true value of Σij fell into the 95% CI

Parameter Global percentage mean CI length
B 94.16% 1.94
Σ 93.56% 5.72

Table 5.29: Total percentage of times that each parameter fell into the 95%
CI
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Configuration Riemmanian distance ρ
N= 20, K = 10 0.073
N = 50, K = 10 0.047
N= 20, K = 5 0.16
N = 50, K = 5 0.054

Table 5.30: Comparing Riemmanian distances

5.3 p = 3 - Only intercept
5.3.1 N = 20, K = 10

B2,ij j = 1 j = 2 j = 3
i = 1 0.95 - -
i = 2 0.96 0.93 -
i = 3 0.96 0.97 0.96
i = 4 0.94 0.97 0.94
i = 5 0.9 0.96 0.99
i = 6 0.94 0.97 0.94
i = 7 0.92 0.98 0.94
i = 8 0.95 0.96 0.97
i = 9 0.89 0.97 0.95
i = 10 0.93 0.94 0.93

Table 5.31: Fraction of times that true value of Bij fell into the 95% CI

Σij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10
i = 1 0.97 0.95 0.96 0.92 0.94 0.94 0.96 0.95 0.96 0.97
i = 2 0.95 0.96 0.93 0.94 0.94 0.92 0.98 0.96 0.97 0.92
i = 3 0.96 0.93 0.92 0.95 0.94 0.95 0.95 0.97 0.94 0.95
i = 4 0.92 0.94 0.95 0.95 0.95 0.92 0.92 0.96 0.98 0.96
i = 5 0.94 0.94 0.94 0.95 0.95 0.96 0.93 0.94 0.98 0.95
i = 6 0.94 0.92 0.95 0.92 0.96 0.96 0.96 0.94 0.97 0.98
i = 7 0.96 0.98 0.95 0.92 0.93 0.96 0.96 0.97 0.91 0.94
i = 8 0.95 0.96 0.97 0.96 0.94 0.94 0.97 0.93 0.97 0.95
i = 9 0.96 0.97 0.94 0.98 0.98 0.97 0.91 0.97 0.95 0.97
i = 10 0.97 0.92 0.95 0.96 0.95 0.98 0.94 0.95 0.97 0.94

Table 5.32: Fraction of times that true value of Σij fell into the 95% CI
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Parameter Global percentage mean CI length
B 94.85% 1.90
Σ 95.03% 1.50

Table 5.33: Total percentage of times that each parameter fell into the 95%
CI

5.3.2 N = 50, K = 10

B0,ij j = 1 j = 2 j = 3
i = 1 0.93 - -
i = 2 0.93 0.89 -
i = 3 0.94 0.86 0.96
i = 4 0.97 0.98 0.97
i = 5 0.94 0.97 0.94
i = 6 0.97 0.98 0.94
i = 7 0.91 0.96 0.97
i = 8 0.91 0.96 0.95
i = 9 0.95 0.95 0.96
i = 10 0.95 0.95 0.97

Table 5.34: Fraction of times that true value of Bij fell into the 95% CI

Σij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10
i = 1 0.93 0.96 0.97 0.98 0.98 0.95 0.94 0.95 0.96 0.97
i = 2 0.96 0.93 0.97 0.98 0.97 0.96 0.94 0.95 0.95 0.98
i = 3 0.97 0.97 0.94 0.95 0.96 0.94 0.88 0.97 0.93 0.97
i = 4 0.98 0.98 0.95 0.98 0.96 0.97 0.94 0.93 0.96 0.98
i = 5 0.98 0.97 0.96 0.96 0.94 0.96 0.94 0.96 0.98 0.96
i = 6 0.95 0.96 0.94 0.97 0.96 0.98 0.95 0.95 0.94 0.96
i = 7 0.94 0.94 0.88 0.94 0.94 0.95 1.0 0.97 0.93 0.95
i = 8 0.95 0.95 0.97 0.93 0.96 0.95 0.97 0.93 0.92 0.96
i = 9 0.96 0.95 0.93 0.96 0.98 0.94 0.93 0.92 0.95 0.96
i = 10 0.97 0.98 0.97 0.98 0.96 0.96 0.95 0.96 0.96 0.95

Table 5.35: Fraction of times that true value of Σij fell into the 95% CI
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Parameter Global percentage mean CI length
B 94.67% 1.07
Σ 95.51% 0.56

Table 5.36: Total percentage of times that each parameter fell into the 95%
CI

5.3.3 N=20, K = 5

B0,ij j = 1 j = 2 j = 3
i = 1 0.92 - -
i = 2 0.89 0.96 -
i = 3 0.96 0.97 0.98
i = 4 0.96 0.96 0.92
i = 5 0.95 0.97 0.88

Table 5.37: Fraction of times that true value of B0,ij fell into the 95% CI

Σij j = 1 j = 2 j = 3 j = 4 j = 5
i = 1 0.93 0.94 0.86 0.91 0.91
i = 2 0.94 0.97 0.95 0.92 0.91
i = 3 0.86 0.95 0.97 0.93 0.89
i = 4 0.91 0.92 0.93 0.94 0.94
i = 5 0.91 0.91 0.89 0.94 0.94

Table 5.38: Fraction of times that true value of Σij fell into the 95% CI

Parameter Global percentage mean CI length
B 95.14% 0.95
Σ 92.28% 0.83

Table 5.39: Total percentage of times that each parameter fell into the 95%
CI
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5.3.4 N=20, K = 5

B1,ij j = 1 j = 2 j = 4
i = 1 0.91 - -
i = 2 0.94 0.92 -
i = 3 0.92 0.94 0.99
i = 4 0.97 0.90 0.90
i = 5 0.91 0.93 0.91

Table 5.40: Fraction of times that true value of B0,ij fell into the 95% CI

Σij j = 1 j = 2 j = 3 j = 4 j = 5
i = 1 0.94 0.96 0.9 0.93 0.92
i = 2 0.96 0.95 0.95 0.95 0.93
i = 3 0.9 0.95 0.94 0.93 0.93
i = 4 0.93 0.95 0.93 0.91 0.89
i = 5 0.92 0.93 0.93 0.89 0.9

Table 5.41: Fraction of times that true value of Σij fell into the 95% CI

Parameter Global percentage mean CI length
B 92.83% 0.69
Σ 92.88% 0.58

Table 5.42: Total percentage of times that each parameter fell into the 95%
CI

Configuration Riemmanian distance ρ
N= 20, K = 10 0.052
N = 50, K = 10 0.028
N= 20, K = 5 0.034
N = 50, K = 5 0.026

Table 5.43: Comparing Riemmanian distances - p = 3
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5.4 p = 3 - normal covariate
5.4.1 N = 20, K = 10

B0,ij j = 1 j = 2 j = 3
i = 1 0.96 - -
i = 2 0.98 0.94 -
i = 3 0.95 0.97 0.94
i = 4 0.96 0.98 0.97
i = 5 0.93 0.95 0.98
i = 6 0.97 1.0 0.97
i = 7 0.95 0.96 0.96
i = 8 0.95 0.98 0.91
i = 9 0.95 0.93 0.95
i = 10 0.96 0.96 0.98

Table 5.44: Fraction of times that true value of B0,ij fell into the 95% CI

B1,ij j = 1 j = 2 j = 3
i = 1 0.95 0.97 0.96
i = 2 0.95 0.99 0.92
i = 3 0.94 0.96 0.97
i = 4 0.94 0.92 0.94
i = 5 0.95 0.97 0.94
i = 6 0.95 0.99 0.96
i = 7 0.96 0.97 0.96
i = 8 0.96 0.99 0.98
i = 9 0.98 0.94 1.0
i = 10 0.92 0.98 1.0

Table 5.45: Fraction of times that true value of B1,ij fell into the 95% CI
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Σij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10
i = 1 0.98 0.89 0.93 0.93 0.96 0.95 0.92 0.93 0.92 0.93
i = 2 0.89 0.96 0.91 0.89 0.92 0.95 0.91 0.91 0.91 0.92
i = 3 0.93 0.91 0.96 0.94 0.96 0.97 0.92 0.97 0.93 0.98
i = 4 0.93 0.89 0.94 0.97 0.91 0.92 0.92 0.95 0.9 0.98
i = 5 0.96 0.92 0.96 0.91 0.92 0.95 0.93 0.94 0.93 0.95
i = 6 0.95 0.95 0.97 0.92 0.95 0.97 0.93 0.96 0.91 0.96
i = 7 0.92 0.91 0.92 0.92 0.93 0.93 0.94 0.95 0.88 0.94
i = 8 0.93 0.91 0.97 0.95 0.94 0.96 0.95 0.96 0.9 0.97
i = 9 0.92 0.91 0.93 0.9 0.93 0.91 0.88 0.9 0.93 0.9
i = 10 0.93 0.92 0.98 0.98 0.95 0.96 0.94 0.97 0.9 0.96

Table 5.46: Fraction of times that true value of Σij fell into the 95% CI

Parameter Global percentage mean CI length
B 92.83% 1.87
Σ 93.41% 1.46

Table 5.47: Total percentage of times that each parameter fell into the 95%
CI

5.4.2 N = 50, K = 10

B0,ij j = 1 j = 2 j = 3
i = 1 0.97 - -
i = 2 0.92 0.92 -
i = 3 0.92 0.92 1.0
i = 4 0.93 0.91 0.89
i = 5 0.93 0.90 0.86
i = 6 0.96 0.94 0.99
i = 7 0.97 0.91 0.87
i = 8 0.88 0.90 0.97
i = 9 0.90 0.96 0.95
i = 10 0.92 0.95 0.98

Table 5.48: Fraction of times that true value of B0,ij fell into the 95% CI
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5.4. P = 3 - NORMAL COVARIATE

B1,ij j = 1 j = 2 j = 3
i = 1 0.89 0.98 0.99
i = 2 0.94 0.95 0.99
i = 3 0.92 0.96 0.80
i = 4 0.90 0.92 0.94
i = 5 0.90 0.93 0.99
i = 6 0.90 0.96 0.94
i = 7 0.91 0.94 0.99
i = 8 0.93 0.93 0.91
i = 9 0.97 0.96 0.99
i = 10 0.95 0.93 1.0

Table 5.49: Fraction of times that true value of B1,ij fell into the 95% CI

Σij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10
i = 1 0.95 0.95 0.98 0.96 0.94 0.94 0.95 0.94 0.91 0.92
i = 2 0.95 0.94 0.95 0.97 0.93 0.96 0.95 0.94 0.94 0.94
i = 3 0.98 0.95 0.95 0.98 0.94 0.95 0.98 0.94 0.92 0.95
i = 4 0.96 0.97 0.98 0.94 0.96 0.97 0.94 0.95 0.98 0.96
i = 5 0.94 0.93 0.94 0.96 0.95 0.93 0.95 0.94 0.9 0.94
i = 6 0.94 0.96 0.95 0.97 0.93 0.96 0.94 0.95 0.96 0.97
i = 7 0.95 0.95 0.98 0.94 0.95 0.94 0.93 0.96 0.91 0.93
i = 8 0.94 0.94 0.94 0.95 0.94 0.95 0.96 0.95 0.92 0.95
i = 9 0.91 0.94 0.92 0.98 0.9 0.96 0.91 0.92 0.96 0.96
i = 10 0.92 0.94 0.95 0.96 0.94 0.97 0.93 0.95 0.96 0.96

Table 5.50: Fraction of times that true value of Σij fell into the 95% CI

Parameter Global percentage mean CI length
B 93.39% 3.33
Σ 94.67% 4.91

Table 5.51: Total percentage of times that each parameter fell into the 95%
CI
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5.4.3 N = 20, K = 5

B0,ij j = 1 j = 2 j = 4
i = 1 0.96 - -
i = 2 0.90 0.91 -
i = 3 0.91 0.94 0.95
i = 4 0.93 0.95 0.95
i = 5 0.94 0.97 0.96

Table 5.52: Fraction of times that true value of B0,ij fell into the 95% CI

B1,ij j = 1 j = 2 j = 4
i = 1 0.96 0.93 0.92
i = 2 0.90 0.95 0.96
i = 3 0.96 0.94 0.93
i = 4 0.91 0.95 0.91
i = 5 0.93 0.94 0.96

Table 5.53: Fraction of times that true value of B1,ij fell into the 95% CI

Σij j = 1 j = 2 j = 3 j = 4 j = 5
i = 1 0.95 0.90 0.94 0.95 0.95
i = 2 0.90 0.97 0.96 0.97 0.95
i = 3 0.94 0.96 0.94 0.96 0.93
i = 4 0.95 0.97 0.96 0.92 0.97
i = 5 0.95 0.95 0.93 0.97 0.99

Table 5.54: Fraction of times that true value of Σij fell into the 95% CI

Parameter Global percentage mean CI length
B 93.78% 1.87
Σ 94.92% 1.91

Table 5.55: Total percentage of times that each parameter fell into the 95%
CI
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5.4.4 N = 50, K = 5

B0,ij j = 1 j = 2 j = 4
i = 1 0.90 - -
i = 2 0.94 0.93 -
i = 3 0.88 0.95 0.98
i = 4 0.92 0.96 0.98
i = 5 0.93 0.95 0.93

Table 5.56: Fraction of times that true value of B0,ij fell into the 95% CI

B1,ij j = 1 j = 2 j = 4
i = 1 0.94 0.96 0.95
i = 2 0.97 0.94 0.91
i = 3 0.96 0.94 0.94
i = 4 0.91 0.95 0.92
i = 5 0.95 0.95 0.95

Table 5.57: Fraction of times that true value of B1,ij fell into the 95% CI

Σij j = 1 j = 2 j = 3 j = 4 j = 5
i = 1 0.95 0.95 0.91 0.91 0.95
i = 2 0.95 0.97 0.95 0.97 0.97
i = 3 0.91 0.95 0.92 0.92 0.95
i = 4 0.91 0.97 0.92 0.94 0.95
i = 5 0.95 0.97 0.95 0.95 0.94

Table 5.58: Fraction of times that true value of Σij fell into the 95% CI

Parameter Global percentage mean CI length
B 94.03% 1.22
Σ 94.32% 1.53

Table 5.59: Total percentage of times that each parameter fell into the 95%
CI
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5.5. A REAL DATASET - RATS

Configuration Riemmanian distance ρ
N= 20, K = 10 0.077
N = 50, K = 10 0.12
N= 20, K = 5 0.077
N = 50, K = 5 0.098

Table 5.60: Comparing Riemmanian distances - p = 3

As the tables suggest, the sampler is definitely able to retrieve the correct
estimates of parameters.
However, it must be noted that the global level of approximate credible
intervals tends to be lower than the nominal one, meaning that further in-
vestigation might be needed, for instance by generating more datasets and/
or increasing the number of iterations of the sampler.
Secondly, notice that the global percentage might be misleading if not prop-
erly interpreted: taking a global percentage when computing the approxi-
mate credible intervals result in a ”pooling” effect. As a matter of fact, there
are some parameters whose approximated CI percentage is even below 90%,
meaning that, the sampler struggles more in finding the correct estimates.
As a final consideration, it must be noted that there seems to be no explicit
relations between the less precisely estimated parameters and the geometric
properties of the studied configurations, meaning again that further investi-
gation might be needed to assess more precise results.

5.5 A real dataset - rats
We finally propose a real case application: the rats dataset from the package
shapes of R.
The dataset is available at https://cran.r-project.org/web/packages/shapes/index.html
and consists of 18 rats’ skulls data from X rays, observed at 8 different
times, for a total of N = 144 observation. Each observation consists of 8
2-dimensional landmarks.
The time instants are measured in days and are

ti ∈ {7, 14, 21, 30, 40, 60, 90, 150}

As observed in [4], due to uneven spacing in time instants it might be useful
to take the logarithm of ti.
We study the regressive relation between the size-and-shape configuration Yi

and
zi = ln(ti) i = 1, . . . , N
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5.5. A REAL DATASET - RATS

In order to perform a stable analysis, we first apply the helmert sub-matrix of
order K = 8 and then divide each entry of each observation by the standard
deviation of the overall dataset’s entries. Finally, SVD is performed and Yi

is retrieved for each observation.
We run the MCMC algorithm for 30000 iterations, discarding the first 10000
as burn-in and applying a thin of 10.
This procedures generates 2000 samples that are used to make inference.
Graphically, the result is shown in the next figure
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Figure 5.1: rats dataset: the real shape is given by the colored points, with
time ranging from 7 days (red) to 150 days (green). Black dots are the linear
approximation

The 95% credible intervals for the B parameters are here reported
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B0,ij j = 1 j = 2

i = 1 [0.623,0.647] -

i = 2 [0.779,0.810] [-0.506,-0.469]

i = 3 [0.394,0.443] [-1.119,-1.087]

i = 4 [-0.382, -0.296] [-2.06, -2.020]

i = 5 [-1.987,-1.906] [-1.761,-1.687]

i = 6 [-1.318, -1.277] [-0.628,-0.578]

i = 7 [-0.749, -0.719] [0.438, 0.470]

Table 5.61: 95% CI for B0,ij

B1,ij j = 1 j = 2

i = 1 [ 0.025,0.049] [-0.107,-0.064]

i = 2 [0.030,0.066] [-0.202,-0.147]

i = 3 [-0.179,-0.109] [-0.183, -0.143]

i = 4 [-0.320, -0.195] [-0.240, -0.198]

i = 5 [-0.464,-0.347] [-0.322,-0.202]

i = 6 [-0.248, -0.197] [-0.121,-0.040]

i = 7 [-0.057, -0.022] [0.120, 0.169]

Table 5.62: 95% CI for B1,ij

It is worth noting that both positive and negative values of the regressive
coefficients for the time covariate are present.
This means that landmarks’ coordinates tend to move in more than a single
direction, resulting in a shape whose landmarks not only become more far
apart, but also change their relative positions.
Finally, observe that none of those intervals include the 0 element, meaning
that, with a credibility of 95%, every landmark is affected by time variation,
none of them excluded.
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Chapter 6

Conclusions

In this document we showed how a size-and-shape model can be derived
starting from simple geometrical considerations and how MCMC algorithms
perfectly fit the Bayesian framework that is proposed.
We further explored the possibility of implementing such algorithms by means
of Gibbs sampling, instead of the already proposed Metropolis approach.
The results shown in the previous section reveals that the sampler is able
to capture the size-and-shape information, retrieving the correct parameters
in an acceptable percentage of trials. Results also show that, even with few
observations, some statistical significant relationships can be exploited.
This is one of the many advantages of using a specifically designed model,
instead of a generic model-free approach. Moreover, the number of param-
eters is exiguous if compared to standard CNN’s used in modern machine
learning algorithms in image processing.
Conversely, this kind of approach presents some drawbacks: first of all, the
model presented during this work is nothing but a standard linear regression,
which means that a generalization might be needed to tackle more complex
problems (such as binomial or Poisson models, that naturally fit into the
GLM framework).
Secondly, it must be remarked that from computational point of view this
models work well on standardized dataset but struggles on non-standardized
datasets. This is due to the fact that rotations are quite sensible to small
changes, when dealing with great distances: a small variation of an angle
might produce a big arc length difference if the radius is big enough. As a
consequence, the MCMC sampler produces highly correlated chains, which
result in a great number of iterations to produce a small number of samples.
Last, using Euler angles parametrizations and Gram-Schmidt-like procedures
for identification is totally fine when p = 2 or p = 3, but might become to-
tally inappropriate when p grows due to the instability of these methods.
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For these reasons, other parametrizations might seeked and explored, as well
as different techniques to handle orthogonal matrices (such as Householder
reflections or Givens Matrices when dealing with sparse systems).
Even with some limitations, these models might be of great importance when
dealing with specific areas of study, such as biology, where model account-
ability might be an issue of great importance: the possibility of explicitly
interpreting the parameters allow an expert to justify and clarify any choice
that might be taken as a consequence of the model’s results. This is another
keypoint when dealing with the model-based approach: the relation between
covariates and parameters is easily retrieved and can be explained to experts
of those areas of study.
For these reasons, this kind of approach might be further investigated by
proposing both a new theoretical framework (such as the already mentioned
GLM) and a new implementation, allowing for instance the matrix R to be
a general orthogonal matrix, insetad of a special one, letting the MCMC
sampler to freely decide which kind of matrix to use.
In this way, not only the latent variable approach will be further exploited to
ensure only size-and-shape inference, but also new types of models (such as
the reflection shape one) might be investigated, allowing for a further study
of specific phenomena.
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Appendix A

Code implementation

A.1 The Julia environment
The MCMC algorithm was implemented in Julia 1.8.5. Julia is a compiled
language that allows the user to take advantage of both a quick and easy
implementation of the code and the code optimization due to compiler.
It is a valid alternative to many known languages, such as Python, as it al-
lows the user to build custom types that will run just as fast as the built in
ones.
Moreover, de-vectorized code will run as fast as the vectorized one. There
are however some disadvantages, such as the absence of a real object oriented
framework, that might make the coding a bit less straightforward.
The code was implemented trying to follow the main guidelines given from
Julia developers, that are essentially well-known precautions of program-
ming: declare types of the variables, avoid different types interaction as they
require every time a conversion ad make use of functions to execute the more
expensive tasks.
Having all these information in mind, here we present and comment the code
in every of its function.

A.2 Main functions
The mcmc file contains each and every function that was used during the
applications.
In the following, we will very briefly present the main functions that allow
the sampler tho work.
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A.2. MAIN FUNCTIONS

A.2.1 mcmc setup
Input:

• I_max::Int64 max number of iterations

• burn_in::Int64 burn-in size

• thin::Int64 thin size

• d::Int64 number of covariates

• K::Int64 number of landmarks

• p::Int64 number of coordinates

• N::Int64 number of observations

• M_prior::Array{Float64} Array containing prior mean for B

• V_prior::Array{Float64} Array containing prior variance for B

Output:

• B::Array{Float64}

• M::Array{Float64}

• V::Array{Float64}

• Sigma_est::Array{Float64}

• theta::Array{Float64}

• R::Array{Float64}

• X::Array{Float64}

1 function mcmc_setup(I_max::Int64,burn_in::Int64,thin::Int64,d::Int64,K::
Int64,p::Int64,N::Int64,M_prior::Array{Float64},V_prior::Array{
Float64})

2 #----Parameters initialization-----#
3 # - Regressive coefficients - #
4 n_samples = size([i for i = burn_in+1:thin:I_max])[1]
5 B = zeros(n_samples,d,K,p);
6 B[1,1,:,:] = ones(K,p)
7
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A.2. MAIN FUNCTIONS

8 #Priors for B
9 #M = zeros(p,K*d);

10 M = M_prior
11 V = zeros(p,K*d,K*d);
12 for l = 1:p
13 V[l,:,:] = V_prior;
14 end
15
16 #Variance matrix
17 Sigma_est = zeros(n_samples,K,K)
18 Sigma_est[1,:,:] = I(K)
19
20
21 # - Angles and rotations - #
22 R = zeros(n_samples,N,p,p);
23 #Angles
24 theta = zeros(n_samples,N,3)
25 #Initialization
26 theta[1,:,1] = ones(N);
27 theta[1,:,2] = ones(N);
28 theta[1,:,3] = ones(N);
29
30 #Initialization of R
31 if p == 3
32 for s = 1:N
33 #R[1,s,:,:] = Rotation(theta[1,s,1], theta[1,s,2], theta[1,s,3]);
34 R[1,s,:,:] = Matrix(I(3))
35 end
36 elseif p == 2
37 for s = 1:N
38 #R[1,s,:,:] = [cos(theta) sin(theta); -sin(theta) cos(theta)];
39 R[1,s,:,:] = Matrix(I(2))
40 end
41 end
42
43 #Tensor containing sampled configurations
44 X = zeros(I_max,N,K,p)
45 X[1,:,:,:] = ones(N,K,p)
46 return B,M,V,Sigma_est,theta,R,X
47 end
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A.2.2 mcmc
Function used to obtain samples from the posterior distributions.

Input

• I_max::Int64 Maximum number of iterations of the sampler

• burn_in::Int64 Number of samples to discard (before thin)

• thin::Int64 Number of sample to discard between to consecutive saved
samples

• d::Int64 Number of covariates

• K::Int64 Number of landmarks

• p::Int64 Number of coordinates

• N::Int64 Number of observations

• z::Array{Float64} Matrix of covariates

• Z::Array{Float64} Design matrix

• Y::Array{Float64} True shape configurations

• nu::Int64 Prior parameter of Σ

• Psi::Array{Float64} Prior parameter of Σ

• M_prior::Array{Float64} Prior parameter of B

• V_prior::Array{Float64} Prior parameter of B

• original::Int64 = 0 Flag: set = 1 to use original data instead of
simulated

• samples::Array{Float64}=zeros(N,K,p) Array containing the sam-
ples from the dataset (used only if original = 1)

• B_true::Union{Array{Float64},Nothing} = nothing True regres-
sive coefficients

• Sigma_true::Union{Array{Float64},Nothing} = nothing True
Covariance matrix
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• theta_true::Union{Array,Nothing} = nothing True vector of an-
gles

• theta_sim::Union{Array,Nothing} = nothing Vector of flags: each
entry set = 1 will induce the samplign of teh corresponding angle

• beta_sim::Int64 = 0 Flag to simulate B

• Sigma_sim::Int64 = 0 Flag to simulate Σ

Output:

• B::Array{Float64} Array containing the regressive coefficients’ sam-
ples

• Sigma_est::Array{Float64} Array containing the covariance ma-
trix samples

• theta::Array{Float64} Array containing angles samples

• R::Array{Float64} Array containing rotation samples

• X::Array{Float64} Array containing estimated configuration during
sampling

1 function mcmc(I_max::Int64, burn_in::Int64, thin::Int64, d::Int64,K::Int64,
p::Int64,N::Int64,z::Array{Float64},Z::Array{Float64},Y::Array{
Float64},nu::Int64,Psi::Array{Float64},M_prior::Array{Float64},
V_prior::Array{Float64}, original::Int64 = 0,samples::Array{Float64
}=zeros(N,K,p), B_true::Union{Array{Float64},Nothing} = nothing,
Sigma_true::Union{Array{Float64},Nothing} = nothing, theta_true::
Union{Array,Nothing} = nothing, theta_sim::Union{Array,Nothing}
= nothing, beta_sim::Int64 = 0, Sigma_sim::Int64 = 0)

2 B,M,V,Sigma_est,theta,R,X = mcmc_setup(I_max,burn_in,thin,d,K,p,N,
M_prior,V_prior);

3
4 X_last = X[1,:,:,:]
5 R_last = R[1,:,:,:]
6 B_last = B[1,:,:,:]
7 Sigma_last = Sigma_est[1,:,:]
8 theta_last = theta[1,:,:]
9 k = 1

10 for i = 2:I_max
11 if original == 0
12 X_last = sample_update!(X_last,R_last,Y)
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13 elseif original == 1
14 X_last = samples
15
16 end
17
18 if beta_sim == 1
19 B_last=mcmc_B!(N,p,K,d,Sigma_last,Z,V,M,X_last);
20 else
21 B_last = B_true
22 end
23
24 if Sigma_sim == 1
25 Sigma_last=mcmc_Sigma!(N,K,p,nu_prior,Psi_prior,X_last,

Z,B_last);
26 else
27 Sigma_last= Sigma_true
28 end
29
30 if original == 0 && isnothing(theta_true)
31 theta_last, R_last = mcmc_theta!(N,B_last,z,Sigma_last,

theta_last);
32 elseif !isnothing(theta_true)
33 theta_last, R_last = mcmc_theta!(N,B_last,z,Sigma_last,

theta_last, theta_true, theta_sim)
34 end
35
36 if i%1000 == 0
37 print(”Iteration counter: ”,i, '\n')
38 end
39
40 if i > burn_in
41 if (i-burn_in)%thin == 0
42 X[k,:,:,:] = X_last
43 theta[k,:,:] = theta_last
44 R[k,:,:,:] = R_last
45 B[k,:,:,:] = B_last
46 Sigma_est[k,:,:] = Sigma_last
47 k +=1
48 end
49 end
50 end
51
52 return B, Sigma_est, theta, R, X
53 end
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A.2.3 mcmc_theta
Function to obtain samples from the posterior distribution of θis.

Input

• N::Int64 NUmber of configurations

• B::Array{Float64} Value of B

• z::Array{Float64} vector of covariates

• Sigma::Array{Float64} Value of Σ

• theta_last::Array{Float64} last sample of θ

• theta_true::Union{Array{Float64},Nothing}=nothing vector
containing the true values of angles

• theta_sim::Union{Array{Int64},Nothing}=nothing vector of flags
to choose which angles to simulate

Output:

• theta::Array{Float64} array containing the sampled angles

• R::Array{Float64} Array containing the corresponding rotation ma-
trices

1 function mcmc_theta!(N::Int64,B::Array{Float64},z::Array{Float64},
Sigma::Array{Float64},theta_last::Array{Float64}, theta_true::Union
{Array{Float64},Nothing}=nothing, theta_sim::Union{Array{Int64},
Nothing}=nothing)

2 d = size(B)[1]
3 K = size(B)[2]
4 p = size(B)[3]
5 theta = zeros(N,3)
6 R = zeros(N,p,p)
7 I_Sigma = inv(Sigma[:,:])
8 for s = 1:N
9

10 m = zeros(K,p)
11 for h = 1:d
12 m += z[s,h]*B[h,:,:]
13 end
14
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15 A = m'*I_Sigma*Y[s,:,:]
16
17 theta1 = theta_last[s,1]
18
19 if p == 2
20 theta2 = 0
21 theta3 = 0
22 elseif p == 3
23 theta2 = theta_last[s,2]
24 theta3 = theta_last[s,3]
25 end
26
27 #Rotation matrices
28
29 if p == 3
30 R1 = [
31 cos(theta1) -sin(theta1) 0;
32 sin(theta1) cos(theta1) 0;
33 0 0 1
34 ]
35
36 R2 = [
37 1 0 0;
38 0 cos(theta2) -sin(theta2);
39 0 sin(theta2) cos(theta2)
40
41 ]
42
43 R3 = [
44 cos(theta3) -sin(theta3) 0;
45 sin(theta3) cos(theta3) 0;
46 0 0 1
47 ]
48
49 H = A'*R3*R2
50
51 if isnothing(theta_true)
52 #Sample theta_1
53 theta[s,1] = sample(H,1)
54 #Sample theta_2
55 theta[s,2] = sample(D,2)
56 #Sample theta_3
57 theta[s,3] = sample(L,1)
58 #Build R
59 R[s,:,:] = Rotation(theta[s,1], theta[s,2], theta[s,3])
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60 else
61 if theta_sim[1] == 0
62 #Check that angle lies in [0,2pi]
63 if(theta_true[s,1]<0)
64 theta_true[s,1] += 2pi
65 end
66 theta[s,1] = theta_true[s,1]
67 else
68 theta[s,1] = sample(H,1)
69 end
70
71 if theta_sim[2] == 0
72 #Check that angle lies [0,pi]
73 if(theta_true[s,2]<0)
74 theta_true[s,2] += pi
75 end
76 theta[s,2] = theta_true[s,2]
77 else
78 R1 = RX(theta[s,1])
79 D = R1*A'*R3
80 theta[s,2] = sample(D,2)
81 end
82
83 if theta_sim[3] == 0
84 #Check that angle lies in [0,2pi]
85 if(theta_true[s,3]<0)
86 theta_true[s,3] += 2pi
87 end
88 theta[s,3] = theta_true[s,3]
89 else
90 R2 = RZ(theta[s,2])
91 L = R2*R1*A'
92 theta[s,3] = sample(L,1)
93 end
94 R[s,:,:] = Rotation(theta[s,1], theta[s,2], theta[s,3])
95 end
96 end
97 if p == 2
98 if theta_sim[1] == 0
99 #while(theta_true[s,1]<0)

100 # theta_true[s,1] += 2pi
101 #end
102 theta[s,1] = theta_true[s,1]
103 theta[s,2] = 0
104 theta[s,3] = 0
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105 R[s,:,:] = [cos(theta[s,1]) -sin(theta[s,1]); sin(theta[s,1]) cos
(theta[s,1]) ]

106 else
107 a = A[1,1]+A[2,2]
108 b = A[2,1]-A[1,2]
109 rho = sqrt(a^2+b^2)
110 gamma = atan(b,a)
111 while(gamma < 0)
112 gamma += 2pi
113 end
114 #println(rho)
115 #gamma = 2pi - gamma
116 theta[s,1] = rand(VonMises(gamma,rho))
117 while(theta[s,1]<0)
118 theta[s,1] += 2*pi
119 end
120 R[s,:,:] = [cos(theta[s,1]) -sin(theta[s,1]); sin(theta[s,1]) cos

(theta[s,1]) ]
121 end
122 end
123 end
124 return theta, R
125 end

A.2.4 mcmc_B
Function to obtain samples of B, conditioned to everything else

Input

• N::Int64 Number of configurations

• p::Int64 Number of coordinates

• K::Int64

• d::Int64 Number of landmarks

• Sigma::Array{Float64} Given value of Σ

• Z::Array{Float64} Desing matrix

• V::Array{Float64} Prior covariance matrix for B

• M::Array{Float64} Prior mean vector for B
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• X::Array{Float64} Array containing the simulated rotation-shapes
configuration

Output:
• B::Array{Float64} Array containing samples of regressive coeffi-

cients

1 function mcmc_B!(N::Int64,p::Int64,K::Int64,d::Int64,Sigma::Array{
Float64},Z::Array{Float64},V::Array{Float64},M::Array{Float64},X::
Array{Float64})

2 B = zeros(d,K,p)
3 M_s = zeros(p,K*d,1);
4 V_s = zeros(p,K*d,K*d);
5 I_Sigma = inv(Sigma)
6 for l = 1:p
7 V_acc = zeros(K*d,K*d)
8 M_acc = zeros(K*d,1)
9 for s = 1:N

10 V_acc += Z[s,:,:]'*I_Sigma*Z[s,:,:]
11 M_acc += Z[s,:,:]'*I_Sigma*X[s,:,l]
12 #V_s[l,:,:] = V_s[l,:,:] + Z[s,:,:]'*I_Sigma*Z[s,:,:]
13 #M_s[l,:] = M_s[l,:] + Z[s,:,:]'*I_Sigma*X[s,:,l]
14 end
15 V_s[l,:,:] += V_acc
16 M_s[l,:] += M_acc
17 V_s[l,:,:] = V_s[l,:,:] +inv(V[l,:,:])
18 M_s[l,:] = M_s[l,:] +inv(V[l,:,:])*M[l,:]
19
20 V_s[l,:,:] = inv(V_s[l,:,:]);
21 V_s[l,:,:] = Hermitian(V_s[l,:,:])
22 M_s[l,:] = V_s[l,:,:]*M_s[l,:];
23
24 #Campiono dalla full-conditional di beta_l
25 B[:,:,l] = rand(MvNormal(
26 M_s[l, :], V_s[l, :, :]
27 ))
28 end
29 return B
30 end

A.2.5 mcmc_Sigma
Function to obtain samples from the posterior distribution of Σ, given all
the other parameters.
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Input

• N::Int64 Number of configurations

• K::Int64 Number of landmarks

• p::Int64 Number of coordinates

• nu::Int64 Prior parameter for Σ

• Psi::Array{Float64} Prior parameter for Σ

• X::Array{Float64} Array containing the simulated rotation-shapes
configurations

• Z::Array{Float64} Design matrix

• B::Array{Float64} Given value of B

Output:

• Sigma::Array{Float64} Array containing samples of covariance ma-
trix

1 function mcmc_Sigma!(N::Int64,K::Int64,p::Int64,nu::Int64,Psi::Array{
Float64},X::Array{Float64},Z::Array{Float64},B::Array{Float64})

2 #Ricavo i parametri necessari per campionare dalla full
conditional di Sigma

3 nu_s = nu+N*p;
4
5 Psi_s = zeros(K,K);
6 for s = 1:N
7 for l = 1:p
8 Psi_s = Psi_s + (X[s,:,l]-Z[s,:,:]*vec(B[:,:,l]))*(X[s,:,l]-Z[s

,:,:]*vec(B[:,:,l]))'
9 end

10 end
11 Psi_s = Psi_s + Psi
12
13 #Campiono dalla full di Sigma
14 Sigma = rand(
15 InverseWishart(nu_s, Psi_s)
16 )
17 return Sigma
18 end
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A.2.6 sample_update
This function computes the actual estimate of Y RT for each configuration of
landmarks in the dataset. The function is implemented by taking advantage
of a vectorized form that allows for a significant time gain if compared to a
standard for loop.

Input

• X::Array{Float64} Array containing estimates of X

• R::Array{Float64} Array containing samples of R

• Y::Array{Float64} Array containing samples of Y

Output:

• X::Array{Float64} Array containing updated configurations using
the rotations given

1 function sample_update!(X::Array{Float64},R::Array{Float64},Y::Array{
Float64})

2 N,K,p = size(Y)
3 Y_v = [Y[i,:,:] for i in 1:N]
4 R_v = [R[i,:,:]' for i in 1:N]
5 X = permutedims(reshape(reduce(hcat, Y_v.*R_v),K,p,N),(3,1,2))
6 return X
7 end

A.2.7 make_dataset
Function that builds a synthetic dataset with the given parameters, while
simultaneously computing the size-and-shape decomposition.

Input:

• N::Int64 Number of configurations

• d::Int64 Number of covariates

• K::Int64 Number of landmarks

• p::Int64 Number of coordinates
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• z::ArrayFloat64 Array of covariates

• B::ArrayFloat64 Array of regressive coefficients

• VarCov::ArrayFloat64 Covariance matrix

Output:

• samples::Array{Float64} Dataset’s samples

• Y::Array{Float64} Array of size-and-shape configurations

• R_true::Array{Float64} Array of true rotations

• theta_true::Array{Float64} Array of true angles

1 function makedataset(N::Int64,d::Int64,K::Int64,p::Int64,z::Array{Float64},
B::Array{Float64},VarCov::Array{Float64})

2 samples = zeros(N,K,p);
3 Y = zeros(N,K,p)
4 R_true = zeros(N,p,p)
5 #Tensore degli angoli
6 theta_true = zeros(N,3)
7 #Sample N elements from a multivariate normal distribution
8 for i = 1:N
9 mu = zeros(K,p)

10 for h = 1:d
11 mu += z[i,h]*B[h,:,:]
12 end
13 #display(mu[1,1])
14 samples[i,:,:] = reshape(
15 rand(
16 MvNormal(vec(mu), VarCov)
17 ),
18 K,p)
19 #display(samples[i,1,1])
20 end
21
22 #Remove rotation
23 for i = 1:N
24 global P = zeros(p,p)
25 F = svd(samples[i,:,:])
26 U = F.U
27 V = F.V
28 #Ensure that V lies in SO(p)
29 if(det(F.Vt) < 0)
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30 if p == 3
31 V[:,2] = -V[:,2]
32 U[:,2] = -U[:,2]
33 elseif p == 2
34 V[:,2] = -V[:,2]
35 U[:,2] = -U[:,2]
36 end
37 elseif (det(F.Vt) > 0)
38 P = I(p)
39 elseif (det(F.Vt == 0))
40 print(”Matrix is singular!”)
41 break
42 end
43 Y[i,:,:] = U*Diagonal(F.S)
44 R_true[i,:,:] = V
45 theta_true[i,:] = angles(R_true[i,:,:])
46 end
47 return samples, Y, R_true, theta_true
48 end

A.3 Identification functions
A.3.1 identify
Function that computes the identified version of the regressive coefficients.

Input :

• B::Array{Float64} Array containing the samples of regressive coef-
ficients

1 function identify(B::Array{Float64})
2 dims = size(B)
3 I_max = dims[1]
4 d = dims[2]
5 K = dims[3]
6 p = dims[4]
7 B_identified = zeros(I_max,d,K,p)
8 for i = 1:I_max
9 #function that computes the matrix needed to identify

10 V = get_V(B[i,1,:,:])
11 for h=1:d
12 B_identified[i,h,:,:] = B[i,h,:,:]*V
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13 end
14 end
15 return B_identified
16 end

A.3.2 identify_t
Function that, given an array of angles, ensures that the angles are within
the range [0, 2π]

Input:

• theta::Array{Float64} vector of angles

Output

• theta::Array{Float64} vector of identified angles

1 function identify_t!(theta::Array{Float64})
2
3 while theta[1] <0
4 theta[1] += 2pi
5 end
6 while theta[2] <0
7 theta[2] += pi
8 end
9 while theta[3] <0

10 theta[3] += 2pi
11 end
12
13 while theta[1] > 2pi
14 theta[1] %= 2pi
15 end
16 while theta[2] > pi
17 theta[2] %= pi
18 end
19 while theta[3] > 2pi
20 theta[3] %= 2pi
21 end
22
23 return theta
24 end
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A.3.3 identify_angles
Extension of the previous function to a generic array with multiple dimen-
sions

Input:

• theta::Array{Float64} Array of angles

Output

• theta::Array{Float64} Array of identified angles

1 function identify_angles(theta::Array{Float64})
2 N = size(theta)[1]
3 for i = 1:N
4 theta[i,:] = identify_t!(theta[i,:])
5 end
6 return theta
7 end

Function that computes the matrix needed to perform identification of both
the regressive coefficients and the rotations matrices. It is essentially a Gram-
Schmidt orthogonalization.

A.3.4 get_V
Input:

• B::Array{Float64} Array containing samples of regressive coeffi-
cients

output

• V::Array{Float64} Matrix used to perform identification

1 function get_V(B::Array{Float64})
2 p = size(B)[2]
3 A = B'
4 V = zeros(p,p);
5 V[:,1] = A[:,1]/norm(A[:,1])
6 V[:,2] = A[:,2] - (A[:,2]'*V[:,1])*V[:,1]
7 V[:,2] = V[:,2]/norm(V[:,2])
8 if p == 3
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9 V[:,3] = A[:,3] - ((A[:,3]'*V[:,1])*V[:,1]) - ((A[:,3]'*V[:,2])*V[:,2])
10 V[:,3] = V[:,3]/norm(V[:,3])
11 #Last column is chosen to ensure that the matrix lies in SO(3)
12 if (det(V) < 0)
13 V[:,3] = -V[:,3]
14 end
15 elseif p == 2
16 if(det(V) < 0)
17 V[:,2] = -V[:,2]
18 end
19 end
20 return V
21 end

A.3.5 identify_R_angles
Function used to identify rotations paragraphInput:

• B::Array{Float64} Array containing the samples of regressive coef-
ficients

• R::Array{Float64} Array containing the samples of R

Output

• R_new::Array{Float64} Array of identified rotations

• R_new::Array{Float64} Array of corresponding identified angles

1 function identify_R_angles(B::Array{Float64},R::Array{Float64})
2 R_new = copy(R)
3 dim = size(R)
4 N = dim[1]
5 S = dim[2]
6 K = size(B)[3]
7 p = dim[3]
8 thetas = zeros((N,S,3))
9 for i = 1:N

10 G = get_V(reshape(B[i,1,:,:],K,p))
11 for s = 1:S
12 R_new[i,s,:,:] = G'*R[i,s,:,:]
13 #R_new[i,s,:,:] = R[i,s,:,:]*G
14 thetas[i,s,:] = identify_t!(angles(copy(R_new[i,s,:,:])))
15 end
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16 end
17 return R_new, thetas
18 end
19
20 function identify_R_angles_true(B_true::Array{Float64},R_true::Array{

Float64})
21 dim = size(R_true)
22 S = dim[1]
23 K = dim[2]
24 p = dim[3]
25
26 R_true_new = copy(R_true)
27 thetas = zeros((S,3))
28 G = get_V(B_true[1,1,:,:])
29 for s = 1:S
30 R_true_new[s,:,:] = G'*R_true[s,:,:]
31 thetas[s,:] = identify_t!(angles(R_true_new[s,:,:]))
32 end
33 return R_true_new, thetas
34 end

A.3.6 identify_param
Function that identifies all the parameters of the Markov Chain (regressive
coefficients, angles, rotations)

Input:

• Y::Array{Float64}

• B::Array{Float64}

• B_true::Array{Float64}

• Sigma::Array{Float64}

• Sigma_true::Array{Float64}

• R::Array{Float64}

• R_true::Array{Float64}
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1 function identify_params(Y::Array{Float64},B::Array{Float64}, B_true::
Array{Float64}, Sigma::Array{Float64},Sigma_true::Array{Float64},
R::Array{Float64},R_true::Array{Float64})

2
3 I_max,K,p = size(B)[[1,3,4]]
4 N = size(Y)[1]
5 B_id = identify(B)
6 B_true_id = identify(B_true)
7 R_id, theta_id = identify_R_angles(B,R)
8 R_true_id,theta_true_id = identify_R_angles_true(B_true,R_true)
9

10 X_id = zeros(I_max,N,K,p)
11 for i = 2:I_max
12 X_id[i,:,:,:] = sample_update!(X_id[i,:,:,:],R_id[i-1,:,:,:],Y)
13 #=for s =1:N
14 X_id[i,s,:,:] = X_id[i,s,:,:]
15 end
16 =#
17 end
18
19
20 samples_id = zeros(N,K,p)
21 samples_id = sample_update!(samples_id,R_true_id,Y)
22 #=for s = 1:N
23 samples_id[s,:,:] = samples_id[s,:,:]
24 end
25 =#
26 return samples_id, X_id, B_id, B_true_id, R_id, R_true_id,

theta_id, theta_true_id
27 end

A.4 Misc functions
A.4.1 Helm
Input:

• k::Int64 order of Helmert sub-matrix

Output

• H::Array{Float64} Helmert sub-matrix of order k
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1 function Helm(k)
2 H = zeros(k-1,k);
3 for j = 1:k-1
4 dj = 1/sqrt(j*(j+1))
5 H[j,1:j] = -dj*ones(1,j);
6 H[j,j+1] = j*dj
7 end
8 return H
9 end

A.4.2 Rotation
Function that returns the 3D rotation matrix associated to three Euler angles
(ZXZ convention).

Input:

• theta1::Float64 First Euler angle

• theta2::Float64 Second Euler angle

• theta3::FLoat64 Third Euler angle

Output:

• R::Array{Float64} Rotation matrix corresponding to the three Eu-
ler angles

1 function Rotation(theta1,theta2,theta3)
2 #Funzione che prende in input i 3 angoli di Eulero con convenzione

ZXZ e restituisce la corrispondente matrice di rotazione in R3
3 R1 = [
4 cos(theta1) -sin(theta1) 0;
5 sin(theta1) cos(theta1) 0;
6 0 0 1
7 ]
8
9 R2 = [

10 1 0 0;
11 0 cos(theta2) -sin(theta2);
12 0 sin(theta2) cos(theta2)
13
14 ]
15
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16 R3 = [
17 cos(theta3) -sin(theta3) 0;
18 sin(theta3) cos(theta3) 0;
19 0 0 1
20 ]
21
22 return R3*R2*R1
23 end

A.4.3 RZ and RX
Functions that computes, respectively, the rotation matrix on the Z and X
axis

Input:

• theta::Float64

Output:

• R::Array{Float64}: Rotation matrix corresponding to the given an-
gle

1 function RZ(theta1::Float64)
2 R = [
3 cos(theta1) -sin(theta1) 0;
4 sin(theta1) cos(theta1) 0;
5 0 0 1
6 ]
7 return R
8 end
9

10 function RX(theta2::Float64)
11 R2 = [
12 1 0 0;
13 0 cos(theta2) -sin(theta2);
14 0 sin(theta2) cos(theta2)
15
16 ]
17 return R
18 end
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A.4.4 angles
Function that decomposes a generic rotation matrix into its Euler angles

Input:
• R::Array{Float64} Rotation matrix to decompose

Output:
• [theta1,theta2,theta3]::Array{Float64}: vector containing the three

Euler angles. If p = 2, the last 2 angles are automatically set to zero.

1 function angles(R::Array{Float64})
2 p = size(R)[2]
3 if p == 3
4 theta2 = acos(R[3,3])
5 if theta2 == 0
6 theta1 = 0
7 theta3 = 2pi
8 else
9 #theta3 = atan(R[1,3]/sin(theta2),R[2,3]/sin(theta2))

10 #theta1 = atan(R[3,1]/sin(theta2), -R[3,2]/sin(theta2))
11 theta3 = atan(R[1,3]/sin(theta2),-R[2,3]/sin(theta2))
12 theta1 = atan(R[3,1]/sin(theta2), R[3,2]/sin(theta2))
13 end
14 elseif p == 2
15 theta1 = atan(R[2,1],R[1,1])
16 theta2 = 0
17 theta3 = 0
18 end
19
20 return [theta1,theta2,theta3]
21 end

A.4.5 sample
Function used to sample angles from the corresponding distribution.

Input:
• B::Array{Float64} Matrix of weights that builds the distributions

• type::Int Flag: if 1, the function samples from a Von-Mises, if 2 the
function samples from a Von-Mises-like distribution, using accept-reject
sampling.
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Output:

• y::Float64 sample from the desired distribution

1 function sample(B::Array{Float64},type::Int)
2 flag = 0
3 i = 0
4
5 if type == 1
6 a = B[1,1]+B[2,2]
7 b = B[1,2]-B[2,1]
8 elseif type == 2
9 a = B[2,2]+B[3,3]

10 b = B[2,3]-B[3,2]
11 else
12 return NaN
13 end
14
15 #Compute rho, sin(gamma) e cos(gamma)
16 rho = sqrt(a^2 + b^2)
17 cgamma = a/rho
18 sgamma = b/rho
19
20
21 #Using arctan2 to ensure that angle is in the right domain, when

sampling from a Von-Mises
22 if type == 1
23 gamma = atan(sgamma,cgamma)
24 if(gamma <0)
25 gamma += 2pi
26 end
27 else
28 #If sampling from a simil-Von mises is [o ,), which is fine with

arccos
29 gamma = acos(cgamma)
30 end
31
32
33 while flag == 0
34 #If rho = 0 the the distribution is degenerate and uniform in [o,

2]
35 if rho == 0
36 y = rand(Uniform(0,2pi))
37 else
38 #Sampling from a VonMises, caring that Julia samples from

[-, ]
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39 y = rand(VonMises(gamma,rho))
40 end
41 #Sampling a uniform on (0,1)
42 u = rand(Uniform(0,1))
43
44 if type == 2
45 #Ensure that sample lies in [o ,)
46 if (y<0)
47 y+=pi
48 end
49 y = y%pi
50 end
51
52
53 #If type = 2 use VonMises as a Kernel and do accept-reject,

where the ratio is equak to sin(y)
54 if( (u <= sin(y)) && (type == 2))
55 return y
56 #Se type = 1 simply use the VonMises sample, ensuring that it

lies in [o, 2]
57 elseif type == 1
58 if(y < 0)
59 y += 2*pi
60 end
61 return y
62 i = i+1
63 end
64
65 end
66 end

A.4.6 a_mises
Input:

• rho::Float64: concentration parameter

• gamma::Float64: mean of the distribution

• x::Float64: point in which we want to compute the density

Output:

• f::Float64 value of pdf in x
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1 function a_mises(rho::Float64,gamma::Float64,x::Float64)
2 return exp(rho*cos(x-gamma))/(2pi*besseli(0,x))*sin(x)
3 end

A.4.7 decomp_dataset
Function that decomposes each observation of a given dataset into size-and-
shape and rotation

Input:

• samples::ArrayFloat64 original dataset

• N::Int64 Number of observations

• d::Int64 Number of covariates

• K::Int64 Number of landmarks

• p::Int64 Number of coordinates

Output:

• Y::Array{Float64} size-and-shape arrays

• R_true::Array{Float64} Array containing the true rotations ma-
trix

• theta_true::Array{Float64} Array containing the true angles

1 function decomp_dataset(samples::Array{Float64},N::Int64,d::Int64,K::
Int64,p::Int64)

2 #size-and-shape tensor
3 Y = zeros(N,K,p)
4 #True rotations tensor
5 R_true = zeros(N,p,p)
6 #Angles tensor
7 theta_true = zeros(N,3)
8
9 #Removing rotation

10 for i in 1:N
11 global P = zeros(p,p)
12 F = svd(samples[i,:,:])
13 U = F.U
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14 V = F.V
15 #If V is not in SO(3) change the sign of one column of V and the

respective column of U
16 if(det(F.Vt) < 0)
17 V[:,2] = -V[:,2]
18 U[:,2] = -U[:,2]
19 end
20 Y[i,:,:] = U*Diagonal(F.S)
21 R_true[i,:,:] = V
22 theta_true[i,:] = angles(R_true[i,:,:])
23 end
24 return Y, R_true, theta_true
25 end

A.5 Visualization functions
A.5.1 plot_mcmc
Function tha plots the MCMC chains of the selected paramters

Input:

• B::Array{Float64}: Array containing the samples of the regressive
coefficients

• Sigma::Array{Float64}: Array containing the samples of Covari-
ance matrix

• B_true::Array{Float64} Array containing the true values of the
regressive coefficients

• Sigma_true::Array{Float64} Array containing the true values of
Sigma

• R::Array{Float64} Array containing the samples of rotation matri-
ces

• R_true::Array{Float64} Array containing the samples of true ro-
tation matrices

• theta::Array{Float64} Array containing the samples of angles

• theta_true::Array{Float64} Array containing the samples of true
angles
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• plot_flag::Array{Int64} Array containing flags: 1 to plot the cor-
responding parameter, 0 otherwise. Order is [B,Sigma,R,Theta].

• dir::String=”Plots/” Directory where to store the plots: by default,
it is ”Plots/”.

1 function plot_mcmc(B::Array{Float64},Sigma::Array{Float64},B_true::
Array{Float64},Sigma_true::Array{Float64},R::Array{Float64},
R_true::Array{Float64},theta::Array{Float64},theta_true::Array{
Float64},plot_flag::Array{Int64},dir::String=”Plots/”)

2 if isdir(dir) == false
3 mkdir(dir)
4 else
5 rm(dir,recursive=true)
6 mkdir(dir)
7 end
8 I = size(B)[1]
9 d = size(B)[2]

10 K = size(B)[3]
11 p = size(B)[4]
12
13 B_flag = plot_flag[1]
14 Sigma_flag = plot_flag[2]
15 R_flag = plot_flag[3]
16 theta_flag = plot_flag[4]
17 if B_flag == 1 || Sigma_flag == 1
18 print(”Plotting B and Sigma...”)
19 end
20 p_B = Array{Plots.Plot{Plots.GRBackend},1}()
21 p_S = Array{Plots.Plot{Plots.GRBackend},1}()
22
23
24 if B_flag == 1
25 if isdir(dir*”Beta/”) == false
26 mkdir(dir*”Beta/”)
27 end
28 lab = reshape(repeat([”sample”;”true”],K*p),1,2*K*p)
29 name_B = reshape([”B”*”_”*string(h)*”_”*string(i)*”_”*

string(j) for h = 1:d for i =1:K for j = 1:p],1,d*K*p)
30 for h = 1:d
31 for i = 1:K
32 for j = 1:p
33 m = minimum( [minimum(B[:,h,i,j]) B_true[1,h,i,

j] ])-1
34 M = maximum( [maximum(B[:,h,i,j]) B_true[1,h,i

,j] ])+1
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35 p1 = hline!(plot(B[:,h,i,j], size = (1920,1080),
legend = true,xlims=(0,I), ylims = (m,M)),[
B_true[1,h,i,j]])

36 push!(p_B, p1)
37 end
38 end
39 p_B_plot = plot(p_B[(h-1)*K*p+1:h*K*p]..., layout = (

K,p), title = reshape(name_B[(h-1)*K*p+1:h*K*p],1,
K*p), labels = lab)

40 savefig(p_B_plot,dir*”Beta/Beta_”*string(h)*”.png”)
41 end
42 end
43
44 if Sigma_flag == 1
45 for i = 1:K
46 for j = 1:K
47 m = minimum(Sigma[:,i,j])-1
48 M = maximum(Sigma[:,i,j])+1
49 p2 = hline!(plot(Sigma[:,i,j], size = (1920,1080), legend =

true,xlims = (0,I)),[Sigma_true[i,j]])
50 push!(p_S, p2)
51 end
52 end
53 name_S = reshape([”S”*”_”*string(i)*”_”*string(j) for i =1:K for

j = 1:K],1,K*K)
54 lab = reshape(repeat([”sample”;”true”],K*K),1,2*K*K)
55 p_S = plot(p_S..., layout = K*K, title = name_S, labels = lab)
56 savefig(p_S,dir*”Sigma.png”)
57 end
58
59 if B_flag == 1 || Sigma_flag == 1
60 print(”Done! \n”)
61 end
62
63 if theta_flag == 1
64 print(”Plotting angles...”)
65 plot_angles(theta,theta_true,dir)
66 print(”Done! \n”)
67 end
68
69 if R_flag == 1
70 print(”Plotting R...”)
71 plot_R(R,R_true,dir)
72 print(”Done!”)
73 end
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74
75 end

A.5.2 plot_R
Function that plots the rotations entries

Input:

• R::Array{Float64} Array containing the samples of rotation matri-
ces

• R_true::Array{Float64} Array containing the samples of true ro-
tation matrices

• dir::String=”Plots/” Master directory: a folder ”R/” will be created
inside the specified directory.

1 function plot_R(R::Array{Float64},R_true::Array{Float64},dir::String=”
Plots/”)

2
3 I = size(R)[1]
4 N = size(R)[2]
5 p = size(R)[3]
6 if isdir(dir*”R/”) == false
7 mkdir(dir*”R/”)
8 end
9

10 p_R = Array{Plots.Plot{Plots.GRBackend},1}()
11 for s =1:N
12 for i = 1:p
13 for j = 1:p
14 m = minimum(R[:,s,i,j])-1
15 M = maximum(R[:,s,i,j])+1
16 p1 = hline!(plot(R[:,s,i,j], size = (1920,1080),legend = true,

xlims = (0,I), ylims = (m,M)),[R_true[s,i,j]])
17 push!(p_R, p1)
18 end
19 end
20 end
21
22 N_p = N*p*p
23 lab = reshape(repeat([”sample”;”true”],N_p),1,2*N_p)
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24 name_R = reshape([”R”*”_”*string(s)*”_”*string(i)*”_”*string(j)
for s =1:N for i =1:p for j = 1:p],1,N_p)

25 for k = 0:N-1
26 p_S = p_R[p*p*k+1:p*p*k+p*p]
27 title_S = reshape(name_R[p*p*k+1:p*p*k+p*p],1,p*p)
28 labels_S = reshape(lab[2*p*p*k+1: 2*p*p+2*p*p*k],1,2*p*p)
29 p_S1 = plot(p_S..., layout = p*p, title = title_S, labels =

labels_S)
30 savefig(p_S1,dir*”R/R_”*string(k+1)*”.png”)
31 print(”Plot ”*string(k+1)*” finished! \n”)
32 end
33
34 end

A.5.3 plot_angles
Function that plots the angles’ chains.

Input:

• theta::Array{Float64} Array containing the angles’ samples

• theta_true::Array{Float64} Array containing true angles’ samples

• dir::String = ”Plots/” Master directory: a folder ”theta/” will be
created inside the specified directory.

1 function plot_angles(theta::Array{Float64},theta_true::Array{Float64},dir
::String = ”Plots/”)

2
3 I = size(theta)[1]
4 N = size(theta)[2]
5 p = size(theta)[3]
6 if isdir(dir*”Theta/”) == false
7 mkdir(dir*”Theta/”)
8 end
9 p_R = Array{Plots.Plot{Plots.GRBackend},1}()

10 for s =1:N
11 for i = 1:p
12 if i != 2
13 p1 = hline!(plot(theta[:,s,i], size = (1920,1080),legend =

true,ylims=(0,2pi),xlims=(0,I)),[theta_true[s,i]])
14 else
15 p1 = hline!(plot(theta[:,s,i], size = (1920,1080),legend =

true,ylims=(0,pi), xlims = (0,I)),[theta_true[s,i]])
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16 end
17 push!(p_R, p1)
18 end
19 end
20
21 N_p = N*p
22 lab = reshape(repeat([”sample”;”true”],N_p),1,2*N_p)
23 name_R = reshape([”theta”*”_”*string(s)*”_”*string(i) for s =1:N

for i =1:3],1,N_p)
24 for k = 0:N-1
25 p_S = p_R[3k+1:3k+3]
26 title_S = reshape(name_R[3k+1:3k+3],1,p)
27 labels_S = reshape(lab[6k+1: 6+6k],1,2*p)
28 p_S1 = plot(p_S..., layout = 3, title = title_S, labels = labels_S)
29 savefig(p_S1,dir*”Theta/theta_”*string(k+1)*”.png”)
30 println(”Plot”*string(k+1)*” finished!”)
31 end
32
33 end

A.6 Main scripts
Script used to make simple tests over sinthetic datasets

A.6.1 test

1 include(”mcmc.jl”)
2 Random.seed!(0)
3
4 N = 20; #Number of consfigurations
5 K = 10; #Number of landmarks
6 d = 1; #Number of covariates
7 p = 2; # Number of coordinates
8
9 #Only iontercept

10 if d ==1
11 z = repeat([1.0],N) #Matri x of covariates
12 end
13
14 #One covariate
15 if d == 2
16 z = repeat([1.0 0.0],N) #Matrix of covariates
17 for i = 1:N

103



A.6. MAIN SCRIPTS

18 mu = 1
19 sigma = 1
20 z[i,2] = log(T[i])^2
21 end
22 end
23
24 #Two covariates
25 if d==3
26 z = repeat([1.0 0.0 0.0],N)
27 for i =1:N
28 z[i,2] = rand(Normal(5,1))
29 z[i,3] = rand(Normal(2,1))
30 end
31 end
32
33 #Covariates standardization
34 for h =2:d
35 m[h-1] = mean(z[:,h])
36 v[h-1] = std(z[:,h])
37 z[:,h] .-= m[h-1]
38 z[:,h] /= v[h-1]
39 end
40
41
42 #Desing matrix
43 Z = zeros(N,K,(K)*d)
44 for i =1:N
45 Z[i,:,:] = kron(I(K),z[i,:]')
46 end
47
48 #Variance-Covariance matrix
49 nu = K+1
50 Sigma_true = rand(InverseWishart(nu,Psi))
51 k = 1
52 VarCov = 1.0*kron(I(p),Sigma_true)
53
54
55 #Real regressive coefficients
56 mu1 = rand(Normal(5,1),K*p)
57 mu2 = rand(Normal(0,1),K*p)
58 mu3 = rand(Normal(0,1),K*p)
59
60 B_true = zeros(d,K,p)
61 B_true[1,:,:] = reshape(mu1,(1,K,p))
62
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63 if d==2
64 B_true[2,:,1] = mu2
65 end
66
67 if d == 3
68 B_true[3,:,:] = mu3
69 end
70
71 #Build dataset
72 samples, Y, R_true, theta_true = makedataset(N,d,K,p,z,B_true,VarCov)

;
73
74 #MCMC parameters
75 I_max = 30000
76 burn_in = 20000
77 thin = 10
78 original = 0 #Set = 1 to use original samples instead of simulated one
79
80
81 #---- PRIORS PARAMETERS ---#
82 #Sigma
83 nu_prior = K+1;
84 Psi_prior = 1.0*Matrix(1.0*I(K));
85 #Beta
86 M_prior = zeros(p,K*d);
87 #M_prior = reshape(mu,p,d*K)
88 V_prior = 10.0^6*Matrix(I(K*d))
89
90
91
92 #MCMC
93 theta_sim = [1 0 0] #When p = 2 --> [1 0 0]
94 beta_sim = 1
95 Sigma_sim = 1
96
97 plot_flag = [1 1 1 1] #Flags to choose what to plot, order is [B,Sigma,R,

Theta]
98
99 B, Sigma_est, theta, R, X = mcmc(I_max, burn_in, thin, d,K,p,N,z,Z,Y,

nu_prior,Psi_prior,M_prior,V_prior, original, samples,B_true,
Sigma_true, theta_true,theta_sim,beta_sim,Sigma_sim);

100 B_true_tensor = permutedims(reshape(B_true,d,K,p,1),(4,1,2,3))
101 #Identify params
102 samples_id,X_id, B_id, B_true_id, R_id, R_true_id, theta_id,

theta_true_id =identify_params(Y,B, B_true_tensor, Sigma_est,
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Sigma_true, R, R_true)
103
104 plot_mcmc(B_id,Sigma_est,B_true_id,Sigma_true,R_id,R_true_id,

theta_id,theta_true_id,plot_flag)
105
106 Y_est = zeros(I_max,N,K,p)
107 for i =1:size(X,1)
108 for s =1:N
109 Y_est[i,s,:,:] = X[i,s,:,:]*R[i,s,:,:]
110 end
111 end
112 Y_m = reshape(mean(Y_est,dims=[1,2]),K,p)
113 Y_m_true = reshape(mean(Y,dims=1),K,p)
114 rho = Riemann_distance(Y_m,Y_m_true)
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