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Abstract

Condensed matter physics is a field of physics dealing with systems formed
by many elementary constituents that strongly interact among them. It aims at
describing the properties of matter, both at the macroscopic and at the microscopic
scale, by means of mathematical models that allows to predict the behavior of large
groups of atoms. The models developed are often useful in many different frames,
as this theory frequently overlaps with atomic physics, chemistry and biophysics.
The development of quantum mechanics allowed for the expansion of this discipline
into the quantum world, in particular for the study of exotic phases of matter,
whose existence is made possible by the counter-intuitive rules of quantum physics.
Supersolidity is certainly one of the most interesting and fascinating phases. This
state of matter is characterized by a broken translational symmetry, causing a
periodic modulation in the local density of particles as in crystals, but it also
exhibits a frictionless flow of particles, typical of superfluidity. The theoretical
prediction of supersolidity dates back to the 1950s. Nevertheless, its experimental
realization came after many decades, that is only in the second half of 2010s.
This result has been achieved thanks to the impressive progress in the control of
ultracold dipolar gases. At the moment, theoretical predictions and experimental
observations are mainly focused to mean field regimes: the possible presence of this
state of matter in a deeply quantum regime remains much less understood.
Moreover, chirality is a property present in many different fields of science and it
can play a prominent role in several areas of quantum physics, such as hadronic
physics and frustrated magnetic systems. It is related to the spontaneous breaking
of the time-reversal symmetry in the system under study. We are particularly
interested in the observation of chiral phases induced by the presence of geometrical
frustration in systems of interacting quantum particles.
In order to accurately consider the role of quantum fluctuations, we use the Density
Matrix Renormalization Group algorithm. The latter allows for the extraction of
the ground-state properties of one-dimensional systems and will result particularly
effective in studying the model that we want to analyze: the 1D frustrated extended
Bose-Hubbard model. The latter takes into account hopping processes between
nearest and next-nearest neighbor sites, along with both onsite and longer-range
interactions. In our analysis we unveil the presence of a novel quantum phase of
matter, namely the chiral lattice supersolid. This exotic quantum state features a
density-modulated structure together with the properties of superfluids. In addition,
time-reversal symmetry is spontaneously broken and finite currents are present
between sites, allowing us to identify this supersolid phase as chiral.
Thanks to the progress in the study and control of ultracold dipolar gases, nowadays



it is possible to create such supersolid states in experiments. The setups are based
on the use of magnetic atoms, characterized by a strong magnetic moment that
allows for the establishment of long-range interactions. These atoms are cooled
down to extremely low temperatures and confined in optical lattices by means of
counter-propagating laser beams. We provide a proposal for an experimental setup
that enables to reproduce the model under study and to realize the phases we
detected in our theoretical analysis.
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Chapter 1

Introduction

At the beginning of the 20th century, the basis of physics were shaken by a series
of theories and experiments that completely disrupted concepts established in the
previous centuries.
The biggest revolution occurred with the development of a theory destined to shape
the future of physics in a whole new way: we are referring to quantum mechanics.
This game-changing theory was the result of the effort of many scientists that tried
to understand the paradoxical aspects of some phenomena at the microscopic level,
such as the problem of black-body radiation studied by Max Planck (1901) and the
photoelectric effect explained by Albert Einstein (1905), next to the formulation of
new atomic models by Ernest Rutherford (1911), Niels Bohr (1913) and Arnold
Sommerfeld (1916).
These studies led to an entire new set of concepts, that were used to describe the
behaviour of particles and waves at the microscopic scale, which strongly differs
from their collective macroscopic properties. The main steps in this direction
were made by Louis de Broglie (1924), who highlighted the wave-particle duality,
Erwin Schrödinger (1926), whom a renowned equation was named after, Werner
Heisenberg with his formulation of the theory in terms of matrices (1925) and the
uncertainty principle (1927), and Paul Dirac, who introduced the new powerful
bra-ket notation (1930) and first tried to unite quantum mechanics with the theory
of relativity.
The first feature of this new theory that stands out is the fact that it contradicts
our everyday experience: particles can behave as waves and viceversa; the act
of measuring always influences the outcome of an experiment; it is impossible to
obtain full information about the state of a microscopic quantum system even with
a virtually perfect measurement setup. The most revolutionary consequence is the
loss of determinism and this forced the physicists to accept that everything in the
microscopic world has to be described in probabilistic terms, which is reflected in
the mathematical structure of quantum mechanics. All this gives rise to strange
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Introduction

concepts, such as the discreteness of the natural world, and to peculiar phenomena,
for instance the tunneling effect, that are inevitably difficult to accept and under-
stand.

A field of physics were some of the most interesting phenomena are made possible
by the rules of quantum mechanics is represented by condensed matter physics, in
particular in the context of many-body quantum systems. In his groundbreaking
article More is different (1972) [1] on the theory of broken symmetry, Philip
Anderson pointed out that:

“The behavior of large and complex aggregates of elementary particles, it
turns out, is not to be understood in terms of a simple extrapolation of the
properties of a few particles. Instead, at each level of complexity entirely
new properties appear, and the understanding of the new behaviors
requires research which I think is as fundamental in its nature as any
other”

The main takeaway of the paper, which has the declared purpose of opposing to
the reductionist point of view, is that the individual constituents of an aggregate
have a different collective behaviour with respect to how they would behave by
themselves. This is a key concept not only in many-body quantum physics, but
also in biology, chemistry, social sciences and so on.
Staying within our field of interested, one of the most exciting collective phenomena
is superconductivity, first discovered by Kamerlingh Onnes in 1911 and finally
explained at microscopic level in 1957 with the famous BCS theory by Bardeen,
Cooper and Schrieffer. Below a material-dependent transition temperature, certain
metals allow for the coupling of their conduction electrons mediated by phonons,
which are the quanta of vibration of the lattice of positive ions. These electrons
form the so-called Cooper pairs, which behave as bosons and create a current flow
with no electric resistance, so that it never decays in time. This intriguing state
of matter is characterized also by non-trivial magnetic properties, which can be
exploited for some interesting applications, such as levitating systems.
In the last decades of the past century, it has been realized that the superconducting
state is the electronic analogous of another striking phase of matter, discovered
decades before: the superfluid state [2]. While in a classical fluid particles move
randomly and are indistinguishable one from the other, in superfluids they form
a macroscopic wave of matter and move coherently, flowing with no friction and
exhibiting an unconventional rotating behaviour [3]. The discovery had been made
by J. Allen and A. Misener in 1937 studying liquid 4He [4] and simultaneously by
P. Kapitza, who coined the term “superfluid” [5]. The first theory of superfluidity
is due to L. Landau, who developed a phenomenological and semi-microscopic
theory for 4He at temperatures below 2.17 K [6, 7], for which he won the Nobel
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prize in 1962. In the same years, F. London [8] and L. Tizsa [9] realized that this
phenomenon has to be related to the accumulation of indistinguishable bosonic
particles in the same state such that they all move together coherently, which is
nothing but Bose-Einstein condensation (BEC), as later explained by O. Penrose
[10].
Across the last years of the 50s and the first years of the 60s, a new idea started to
emerge: is it possible to have such a superflow of particles in a system that still
keeps an ordered spatial arrangement of its constituents and is thus a solid?
The combination of these two features is what characterizes the supersolid phase
of matter and the question above will be the starting point of our work.

In addition to that, we will consider another phenomenon that can enrich
the physics of a quantum many-body system: we are talking about geometrical
frustration. This concept was defined by G. Toulouse for magnetic systems as a
consequence of topological constraints that prevent neighboring spins from adopt-
ing a configuration where every bond energy is minimized [11]. In particular, we
are interested in how this can induce the spontaneous breaking of time-reversal
symmetry, producing states characterized by chiral currents.

The thesis is organized as follows. In Chapter 2, we will introduce the concept
of supersolidity and we will revisit the history behind this exciting phase of matter,
focusing on the main developments in the field. In Chapter 3, we will describe Bose-
Hubbard models, with particular attention to the extended Bose-Hubbard model in
the one-dimensional case; after that, we will move to the discussion of geometrical
frustration. In Chapter 4 we will present the Density Matrix Renormalization
Group algorithm, which represents the most powerful method for simulating strongly
correlated systems in one dimension. In Chapter 5, we will consider the frustrated
version of the extended Bose-Hubbard model and we will finally introduce our case
of study, together with a proposal for the experimental realization of the system.
Then, in Chapter 6 we will display the main results obtained, mentioning also the
difficulties encountered and the consequent workarounds we implemented. In the
end, in Chapter 7 we will wrap things up by summing up the work, highlighting
the relevance of our results and proposing possible developments for extending our
studies.
Additional information on the code for simulations is delivered in the Appendix A.
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Chapter 2

Supersolidity

Supersolidity represents one of the most fascinating phases of matter, as it simulta-
neously combines the properties of both a solid and a superfluid.
The theoretical understanding of this phenomenon and the experimental observa-
tion of such a state has been an important goal within the scientific community.
The reason is that it would pave the way towards a deeper understanding of new
states of matter characterizing different physical systems. As an example, it has
recently been suggested that one of the components of neutron stars could exhibit
some rotational properties typical of supersolids [12]. In particular, some anomalies
observed in the rotation frequency of pulsars, which are highly magnetized and fast
rotating neutron stars, implies that one of the layers of the inner crust is weakly
coupled to the rigid rotation of the star. Here, quantized vortices can form as in a
superfluid, but still in presence of a density-modulated structure. This example
gives an idea of the extent to which the comprehension of this exotic quantum
phenomenon can be useful.
However, the supersolid phase is also one of the most elusive quantum states and
its actual existence has been questioned until recent years.
In this chapter, we go through the history of this long sought exotic phase from
its theoretical prediction to its successful experimental detection. In order to do
that, we mainly refer to the reviews by S. Balibar [13], [3] and M. Boninsegni and
N. Prokof’ev [14].

2.1 Definition and theoretical prediction

Let us start from the basics, that is by properly defining the notion of supersolidity.
In Chapter 1 we mentioned the superfluid state, which is characterized by the
presence of a persistent frictionless flow of particles. In three-dimensional systems,
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Figure 2.1: Illustration of a supersolid state. Credits to: ETH Zurich / Julian
Léonard.

superfludity appears together with Bose-Einstein condensation (BEC), first pre-
dicted by Bose [15] and Einstein [16] in 1924. This phenomenon consists in the
occupation of only one quantum single-particle state by a finite fraction n0 of all
N particles of the system. This can occur in a macroscopic sample, that is in the
thermodynamic limit. The particles that condense are indistinguishable one from
the other.
In a many particle system with translation invariance, for instance a fluid, the
quantum state where particles condense is the one of a free particle with momentum
ℏk = 0. We can now introduce the momentum distribution:

ñ (k) = 1
N

⟨Ψ† (k) Ψ (k)⟩ , (2.1)

where Ψ† (k) and Ψ (k) are the bosonic creation and annihilation operators, while
Ψ† (k) Ψ (k) is the number operator for particles of momentum ℏk. Thus, when
Bose-Einstein condensation occurs, we have ñ (k = 0) = n0. By applying a Fourier
transform to the momentum distribution, we obtain the following order parameter
in real space:

n (r, r′) = n (r − r′) = ⟨Ψ† (r) Ψ (r′)⟩ . (2.2)

It can be shown that n (r − r′) → n0 for |r − r′| → ∞. This means that, in the
thermodynamic limit, a state of a system where a particle is added at position
r has a quantum superposition with another state where an identical particle is
removed at position r′, with |r − r′| arbitrarily large. Therefore, particles form
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a macroscopic wave of matter and they are delocalized in space. The finiteness
of (2.2) signals the spontaneous breaking of a continuous U(1) symmetry, present
in the phase factor of single-particle quantum states. This corresponds to the
establishment of the so-called off-diagonal long-range order (ODLRO), which is
the trademark of superfluidity.
Thanks to this feature, a superfluid flows without friction and exhibits unconven-
tional rotating properties. In particular, if we put a superfluid in a slowly rotating
bucket, it stays completely at rest: there is no friction with the moving wall that
can set the system in motion. Instead, if a certain critical rotation speed is reached,
some rotation occurs within the superfluid in the form of quantized vortices.
Since later we will work with a one-dimensional system, it is important to highlight
that the well-known Mermin-Wagner theorem prevents the spontaneous breaking of
continuous symmetries at finite temperature in dimensions d ≤ 2 [17, 18]. Indeed,
in a 1D chain the order parameter (2.2) cannot be finite for |r − r′| → ∞ and no
superfluidity exists in the thermodynamic limit. However, a superfluid phase can
still be defined for finite-size systems and it is associated to a power-law decay
with distance of (2.2), much slower than the exponential decay typical of insulating
phases. This is the concept of superfluidity that we will use when dealing with 1D
models.

Let us now consider a solid with a crystalline structure. Here, the particles
forming the solid are arranged in a periodic structure. This state clearly breaks the
translational invariance and thus the system is rigid and resistant to shear. In this
case, it is said that the system exhibits diagonal long-range order (DLRO). Note
that, for a correct definition of a solid, the breaking of translational symmetry has
to occur spontaneously due to the interactions among its elementary constituents.
Moving to the case of a quantum solid, it is known that particles fluctuate around
their equilibrium position and some atoms may exchange places with neighboring
ones, with the possibility of creating a partial flow of atoms through the otherwise
rigid network. If this flow becomes superfluid, a fraction of particles moves without
friction and, in the case of rotation, some of the mass stays at rest as the remaining
part rotates. Therefore, a part of the system is delocalized and the remainder is
localized, corresponding to the coexistence of both DLRO and ODLRO: we thus
have a supersolid.
An illustration of this puzzling phase of matter is shown in Fig. 2.1.

2.1.1 Supersolidity in 4He
O. Penrose and L. Onsager have been the first to predict the existence of supersolids
in their seminal paper in 1956 [19]. However, they concluded that no ODLRO can
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exist in a crystalline solid because crystallization or other causes determine particles
localization, which prevents the establishing of quantum coherence, peculiar of
superfluid matter. Nevertheless, they did not find any formal proof that completely
rules out the presence of OLDRO in ordered structures. Indeed, in the following
years, E. Gross showed how a superfluid described by a nonlinear classical field
equation may feature, at least in principle, a density wave modulation [20, 21].
This can be seen as the first theory of supersolidity, but Gross’s results were mostly
overlooked due to an incomplete understanding of the conditions needed for their
validity.
A few years later, in 1962, C. Yang proposed the existence of the supersolid phase
in 4He crystals [22] and his argument was then revisited by A. Leggett, who also
suggested an experimental setup for the measurement of the superfluid flow in solid
helium, exploiting the anomalous rotation that such a system should display [23].

Another well-known scenario was proposed by A. Andreev and I. Lifshitz [24]
and G. Chester [25]. In their picture, an high mobility is associated to vacancies or
interstitials, which are called “zero-point defects” since they can be present even in
the ground-state of a quantum system due to quantum fluctuations. These defects
can hop from site to site and form a BEC of vacancies and give rise to a superfluid
flow: in fact, a flow of vacancies in a certain direction corresponds to a flow of
particles in the opposite one. This scenario has later been proved to be the only
one possible in perfect continuous crystals [26].

Despite the formulation of these scenarios for the emergence of supersolidity, a
clear experimental observation was not achieved for many decades and the interest
around this fascinating phenomenon faded more and more.
However, things changed in 2004, when E. Kim and M. Chan claimed the observa-
tion of supersolid properties in solid 4He at temperatures below 250 mK [27, 28].
They used a torsional oscillator containing a cylindrical cell with an annular space
filled with a material, suspended from a torsion rod, see Fig. 2.2. At resonance, the
period of the oscillator is directly related to the rotational inertia of the material
through a known relation. If the annular space is filled with liquid helium, then the
superfluid transition is marked by a shift in the resonance period of the oscillator,
due to the decrease in the inertia: if the oscillation velocity does not exceed the
critical value, the superfluid stays at rest even if the walls oscillate. In their
experiment, Kim and Chan considered temperatures below the transition point
from liquid to solid for 4He and they observed a shift in the oscillator period, whose
magnitude indicated that only a very small fraction of the total mass was superfluid.
This was in agreement with the prediction by Leggett that we mentioned above.

This discovery by Kim and Chan created a renovated enthusiasm in the search for
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Figure 2.2: Schematics of the experimental setup in the torsional oscillator
experiment by Kim and Chan. Taken from [3].

supersolids, but the validity of their findings was questioned. First of all, concerning
the nature of supersolidity, some Monte-Carlo simulations seemingly proved that
the Andreev-Lifschitz-Chester scenario of spontaneous creation of vacancies was
not possible in solid helium, though these results were not universally accepted [29].
Instead, a fundamental role could be played by other defects, such as dislocation
cores and grain boundaries, where local stresses naturally give form to vacancies.
This was seemingly confirmed by experiments studying both a.c. [30, 31] and d.c.
[32, 33] mass flows, therefore associating the supersolid behavior observed by Kim
and Chan to the presence of disorder in the sample.
In addition to that, it was also observed that the properties of solid 4He were
influenced by the presence of 3He impurities, which causes an unexpected stiffening
of the solid as the mass flow increases [34, 35]. Indeed, the mobility of dislocations
should depend on temperature and 3He concentration, because these impurities
should pin dislocations locally below a certain temperature, thus making the solid
more rigid.

Following the doubts cast on the validity of their 2004 experiment, Chan’s group
carried it out again in 2012 with an improved setup that was completely free from
any bulk solid shear modulus stiffening effect [36]. This time, they did not observe
any shift in the resonance period of the oscillator, in opposition to their previous
controversial results.
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This was a strong blow to the excitement around supersolidity, as the material
where it was predicted decades before, namely solid 4He, was finally ruled out as a
possible host of this fascinating phenomenon.

2.2 Experimental observation
After the unsuccessful search for supersolids in solid 4He, the concept of supersolidity
has been generalized in order to include also other types of superfluids that break
the translational symmetry. In particular, the progress in the experimental control
of ultracold atomic systems in optical lattices opened a new path for the study of
exotic phases of matter in regimes that were not accessible before.
After reviewing the basics of this technique, we go through the most relevant
experiments with ultracold atoms that brought to the realization of supersolidity.

2.2.1 Ultracold atoms in optical lattices
Laser beams offer a very useful tool for the manipulation of atoms, which can be
cooled down to the desired temperature or trapped by counter-propagating beams
in different geometries. We are particularly interested in the creation of periodic
optical lattices, which provide an excellent platform for the simulation of quantum
many-body systems. For this purpose, we mainly refer to the reviews by D. Jaksch
and P. Zoller [37], C. Gross and I. Bloch [38].

The starting point for the realization of an optical lattice potential is to su-
perimpose two counter-propagating laser beams with E± (x, t) = E0e

±ikx along
the x-direction. Here, E0 is the field amplitude, k = 2π/λ is the wave number
with λ the wavelength. The same can be done in directions y and z, obtaining a
three-dimensional potential with:

V (x) = V0x cos2 (kx) + V0y cos2 (ky) + V0z cos2 (kz) , (2.3)

where V0j is the depth of the potential in direction j, which can be tuned by setting
the intensity of the corresponding pairs of laser beams. The laser setup can be
easily controlled to obtain many different lattice geometries.
The lattice can be loaded with ultracold gases and an additional slowly varying
potential VT (x), for instance created by a magnetic trap, is then used to confine
the particles in a certain region of space. It is desirable to have a small lattice
spacing so that particles can move through the lattice by tunneling from one site
to another. An external magnetic field can be exploited to tune the interactions
between atoms via Feshbach resonances [39], which enable one to change their
scattering length.

9



Supersolidity

Figure 2.3: Vertical section of a quantum gas microscope scanning 2D layers of an
optical lattice. Lower right: fluorescence image obtained. The white dots indicate
the underlying lattice and allow to faithfully reconstruct the single-site occupation,
even in dense areas. Taken from [40].

In this frame, a fundamental role is played by quantum gas microscopes. First
developed for bosonic Rubidium atoms [40, 41], this technology allows for single-site
resolved observation of individual atoms via a high resolution microscope objective.
The detection is based on the collection of fluorescence photons scattered during
in-trap laser cooling of particles. An illustration of a quantum gas microscope with
a single-site resolved image is shown in Fig. 2.3.
After its realization, this type of microscope was soon enriched with tools for precise
manipulation of atoms, enabling local control of individual particles.

The first strongly correlated lattice model to have been realized by using ultracold
atoms in optical lattices is the much celebrated Bose-Hubbard model [42], which
will be discussed in Chapter 3.
Nowadays, these platforms allow to simulate many different models, both in the
case of bosonic and fermionic atoms. In particular, we highlight the possibility to
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include long-range interactions in these setups by using ultracold dipolar gases,
formed by magnetic atoms: as we will explain in the following, this was key in the
experimental realization of supersolidity.

2.2.2 Cavities and spin-orbit coupling
A line of research is aimed at finding supersolids in systems where continuous
symmetries are broken, since this leads to an infinite number of degenerate ground-
states that can evolve from one to another without energy cost: these systems are
highly susceptible to fluctuations [43].

In an experiment carried out in 2016, the members of Quantum Optics group at
ETH Zurich considered a BEC of 87Rb atoms dispersively coupled to the modes of
two optical cavities [43] and illuminated by a 1D transverse pump lattice. With
this setup, schematically shown in Fig. 2.4(a), they were able to introduce a
continuous symmetry in the system as the product of the two discrete spatial ones
created by the cavities. In fact, by increasing the coupling to each cavity, a phase
transition to self-organized states occurs: the latter are characterized by atomic
ordering accompanied by intracavity light fields with parity symmetry. A suitable
combination of these two Z2 symmetries is used to achieve one U(1) continuous
symmetry, as the latter is the symmetry present in a superfluid.
The system is microscopically modeled by considering Raman processes between
transverse pump and cavity modes that coherently transfer atoms between the
motional ground-state and excited momentum states. This causes a split of their
energy levels into ℏω+ and ℏω−, determined by the angle between the cavities. The
picture can be described by the following Hamiltonian:

H/ℏ =
2Ø

i=1

è
−∆ia

†
iai + ω+c

†
i+ci+ + ω−c

†
i−ci−

+ λ√
N

1
a†

i + ai

2 1
c†

i+c0 + c†
i−c0 + h.c.

2D (2.4)

with N the atom number and i ∈ {1,2} indicating the two cavities. Atoms are
described by atomic creation and annihilation operators: c†

0 and c0 for the motional
ground-state, c†

i+ and ci+ for the high-energy states, c†
i− and ci− for the low-energy

ones. Photon fields are described in terms of photonic annihilation and creation
operators a†

i and ai, while ∆i = ωP − ωi represents the detuning between the
resonance frequency ωi of cavity i and the transverse pump laser frequency ωP .
By measuring the mean intracavity photon number n̄i = |αi|2 as a function of

the detunings, the authors observed the emergence of a self-organized phase for
each cavity, the both of them exhibiting phase coherence and thus constituting a
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Figure 2.4: Panel a: BEC (blue) trapped at the intersection of two optical
cavities crossing at an angle of 60° and exposed to a 1D optical lattice induced
by a transverse pump beam. The modes of the cavities are shaded in red and
yellow, while α1 and α2 are the coherent field amplitudes of the respective scattered
photons. Panel b: on the left, the two individual parity symmetries are combined
to a U(1) symmetry, resulting in a circular ground-state manifold in terms of the
parameters α1 and α2. On the right, the interference potential of the cavity fields
with the transverse pump field is d-periodic and moves continuously along the
x-axis when changing the angle in the (α1, α2) plane. Here, d = λP/ sin (60◦) where
λP is the wavelength of the transverse pump beam. Panel c: atomic momentum
states associated with coherent scattering processes between the transverse pump
and the two cavities, starting from the ground-state at zero momentum. Solid and
dashed lines correspond to creation and annihilation respectively of a cavity photon
with momentum ℏk. Taken from [43].

lattice supersolid, as shown in Fig. 2.5. In addition to that, also the existence of
an intermediate doubly self-organized phase related to both cavities was witnessed,
so that there is no direct transition between the two aforementioned phases, as can
be seen in Fig. 2.6.

At the same time, Wolfgang Ketterle’s group at Massachusetts Institute of
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Figure 2.5: Panels a, b: mean intracavity photon numbers as a function of
cavity-pump detunings for constant transverse pump lattice. Panels c, d: mean
intracavity photon numbers as a function of ∆1 for two fixed values of ∆2, as
signaled in the insets. Panels e, f, g: scale of gray absorption images of atomic
momentum distribution in the normal phase (e) and the two self-organized phases
(f, g). Taken from [43].

Technology studied a BEC of 23Na atoms with spin-orbit coupling [44]. The action
of this coupling is shown to be equivalent to a spin-flip process with momentum
transfer, see Fig. 2.7(a), and can be implemented for ultracold atoms by using
two-photon Raman transitions between the two spin states. Indeed, the system is
described by the following single-particle Hamiltonian:

H = p2

2m +
C

0 βe2iαx

βe−2iαx 0

D
, (2.5)

where the second term represents a spin-flip process with a momentum transfer of
2α, with β being the strength of the coupling.
If we have a BEC with equal populations in the two spin states, there is no spatial
interference because the states are orthogonal. The introduction of spin-orbit
coupling gives two momentum components to each spin component, forming a
stationary spatial interference pattern, as shown in Fig. 2.7(a), and this can be
observed via Bragg scattering [45], see Fig.2.7(b). Clearly, this phase spontaneously
breaks the continuous translational symmetry of the two condensates and it is
identified as a stripe supersolid phase.
If a longitudinal Zeeman term δ0σz is added to (2.5), a rich phase diagram can
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Figure 2.6: Panel a: mean intracavity photon numbers for the frequency ramp in
panel b along the cut indicated in the inset. Red line refers to cavity 1, yellow line
to cavity 2. Taken from [43].

be studied as a function of δ0 and β: a mean-field version of this is shown in Fig.
2.8. The stripe supersolid phase is present for low values of the detuning |δ0|,
while for increasing values a transition to a magnetized phase, with up or down
spins, occurs. As the strenght β increases, the stripe phase region becomes thinner
until only magnetized phases are possible. For even higher coupling strength, the
magnetization vanishes and a single minimum phase should be observed.

However, it is evident that in both these cases, the density modulation is
externally imposed through the underlying optical potentials and it does not
arise spontaneously due to interactions in the system. Therefore, the translational
symmetry is broken ”by hand” and not spontaneously: one of the main consequences
is that the modulation present in these phases is infinitely stiff. For this reason,
the actual supersolid character of these phases has been object of debate since the
publication of the respective articles.

2.2.3 Ultracold dipolar gases
The advancements in the understanding and controlling of systems of ultracold
dipolar atoms offered a new promising platform for the experimental realization
of supersolids. Indeed, in dipolar gases the emergence of this exotic phase of
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Figure 2.7: Panel a: starting from condensates in the two states at zero momentum,
spin-orbit coupling adds momentum components ±ℏkIR of the opposite spin state
to their spin components. A spatial density modulation of period 2π/kIR arises
due to matter-wave interference. Here, ℏkIR is the recoil momentum from a single
infrared photon. Panel b: average over seven shots of detection of the stripe phase
with angle-resolved light scattering. On the left, a BEC with spin-orbit coupling
exhibits both Bragg and Rayleigh scattering due to the density modulation. On
the right, a BEC with spin-orbit coupling only shows Rayleigh scattering, since no
periodic modulation is present. Taken from [44].

matter is just the result of interparticle interactions: thus, phonon modes of the
periodic modulation are allowed like in classical solids and this implies that the
aforementioned issue regarding stiffness is not present in such systems [46].

Before discussing the main experiments on this platform and the corresponding
results, let us briefly review the progress with dipolar gases up to now, referring to
a recent review by Recati and Stringari [47].
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Figure 2.8: Mean-field phase diagram of a spin-orbit coupled BEC as function of
detuning δ0 and spin-orbit coupling strength β. The area shaded in gray represents
the region of the parameter space explored in the experiment. Er is the 23Na recoil
energy in the setup. Taken from [44].

Due to the long-range and anisotropic nature of the dipolar force, ultracold
dipolar gases behave quite differently with respect to usual superfluids with short-
range interactions. In fact, the presence of strong long-range interactions allows for
the breaking of translational symmetry, while still conserving quantum coherence,
as required for supersolidity [48, 49].
Thanks to the presence of Feshbach resonances [39] in magnetic dipolar atoms,
the scattering length can be tuned in order to obtain a suitable value of the ratio
between the dipole-dipole and the short-range interaction strengths, thus enabling
also the realization of supersolids.
A crucial role in the theory of supersolids in dipolar gases is played by first-order

beyond-mean-field corrections, known as Lee-Huang-Yang (LHY) corrections [51].
Indeed, they stabilize the system beyond the collapse due to instability predicted
by mean-field theories [52]. This allows for the formation of self-bound droplets in
dipolar gases [50, 53, 54], see Fig. 2.9, and also in binary mixtures of BEC gases
with attractive interactions [55, 56], which however do not present any feature of
supersolidity.
In 2019, three different experimental groups in Stuttgart, Pisa and Innsbruck
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Figure 2.9: Panel a: schematics of the experimental procedure from a stable
strongly dipolar BEC in a pancake-shaped trap to clustered droplets in a triangular
pattern by decreasing the scattering length. Panel b: single-shot in-situ images of
droplets, from 2 to 10 droplets. The color code indicates the number of atoms per
pixel of the image. Taken from [50].

successfully observed a supersolid phase in a cigar-shaped geometry in the form
of a coherent array of such quantum droplets, for a small range of values of the
scattering length that had been identified through numerical simulations [57]. Let
us briefly go through the respective setups and findings.

In Stuttgart, they theoretically studied the supersolid properties of a trapped
dipolar gas of 162Dy atoms in a 1D geometry, within the framework of the extended
Gross-Pitaevskii equation (eGPE) [58]. The choice of Dysprosium is due to the fact
that it is the magnetic atom with the strongest magnetic moment, which implies
the presence of a very strong dipolar interaction. Their simulations revealed the
existence of 3 different regimes for the ground-state, depending on the scattering
length as of atoms in the gas. In particular, a Bose-Einstein condensate for large
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Figure 2.10: Ground-state phase diagram of ratio in (b) as a function of scattering
length and atom number. The color code indicates the value of the ratio between
first minimum and center peak height of local density of the ground-state. Taken
from [58].

values of as, and two density-modulated phases: an array of isolated quantum
droplets for low values and, most interestingly, a chain of coherent droplets for a
narrow intermediate range of as. In Fig. 2.10, we report the phase diagram as a
function of the scattering length and the atom number. One can clearly identify a
phase boundary where density-modulated phases are energetically convenient, first
as coherent droplets then as isolated ones. In addition to that, for higher atom
numbers, the number of droplets increases and so does their overlap, enhancing the
supersolid character of the intermediate phase. For the experimental investigation
of this coherent phase, they considered a dipolar BEC with approximately 4.5 × 104

162Dy atoms at a temperature below 20 nK in a tubular trap and they varied the

Figure 2.11: Fourier transform of integrated interference pattern after 30 ms
time-of-flight for as = 92.5a0 (a) and as = 89a0 (b) for the ground-state with
4.5 × 104 atoms. Taken from [58].
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scattering length by means of a magnetic field gradient. The experiment confirmed
the existence of this transient supersolid phase, both with in-situ density modula-
tion and interference pattern of multiple matter waves after time-of-flight analysis.
In Fig. 2.11, we report an example of the Fourier transform of the integrated
interference pattern after time-of-flight, interpreted as the momentum distribution
of atoms, for different values of as. On the left panel, we see that side peaks appear
always at the same position with similar amplitudes in every realization, each
one drawn in gray, while on the right panel their position and amplitude change
randomly. Therefore, we can say that the left picture represents a coherent droplet
phase, as the side peaks corresponds to successive neighbors coherence, even up to
next-next-next nearest neighbors for the chosen atom number.

Figure 2.12: Panel (a): time evolution of atom number N (t) for different values
of the magnetic field B. In blue, B = 5.279 G and the system is in the stripe
regime. In red, B = 5.272 G and the system is in the incoherent regime. Shaded
areas correspond to atom loss predicted by simulations at the corresponding values
of the scattering length as. Panel (b): time evolution of the interference amplitude
A for B = 5.279 G, that is in the stripe regime. Initial growth for t < 10 ms fitted
to an exponential (dashed line). Taken from [46].

At the same time, scientists in Pisa studied experimentally a very similar system
and their results [46] turned out to be in agreement with the ones we have just
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discussed.
However, it is important to highlight that in both the experiments, the stripe
supersolid phase has a short lifetime due to three-body losses: this is shown in
Fig. 2.12. In the top panel, the time evolution of the atom number N (t) shows
an initial loss of particles on a timescale that is much shorter than the typical
lifetime of a BEC, both in the stripe and the incoherent phase. The loss rate then
decreases as the system reaches an incoherent or disorganized configuration. This
is compatible with the evolution of the interference amplitude A in the bottom
panel, which corresponds to the ratio between side peaks and center peak height
in the interference pattern. It is characterized by an initial exponential growth
during the formation of the density-modulated structure in the first 10 ms, it then
remains stable until t = 30 ms and it finally decreases for longer times.
Therefore, only metastable stripe supersolid phases were observed in these experi-
ments.

Figure 2.13: Panel (a): time evolution of amplitudes AΦ (red circles) and AM
(blue squares) after evaporation time of 300 ms and equilibration time of 100 ms.
Panels (b), (c): averaged absorption images of 25 realizations after 50 ms and 100
ms of holding time, respectively. The color map indicates the atomic density in
momentum space. Taken from [59].

In Innsbruck instead, scientists were able to create a long-lived and robust
supersolid [59]. They considered two different experimental setups, one with atoms
of 166Er and the other with 164Dy. In the first case, they successfully realized
a supersolid state, but with short lifetime similarly to the experiments we have
already discussed, which had been performed with 162Dy.
Interestingly, in the case of a BEC of 164Dy the coherent density-modulated phase
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was remarkably long-lived and a lifetime longer than 150 ms was observed, as shown
in Fig. 2.13. We can see that, after an equilibration time, both the amplitudes
of frequency side peaks for the in-situ density modulation (AΦ) and for the phase
coherence (AM) decay slowly and the supersolid character is conserved for a longer
time.
In 2021, the same group also successfully witnessed the formation of a supersolid

Figure 2.14: Experimental realization of seven droplet hexagon supersolid state.
Panel (a): exemplary in-situ image of the density profile with trapped atoms. Panel
(b): averaged image over 68 runs after time-of-flight expansion with atoms released
from the trap. Panels (c), (d): corresponding simulations to panels (a) and (b),
respectively. Taken from [60].

state in a 2D geometry [61, 60]. In Fig. 2.14 we show an example of a state formed
by an hexagon with a central droplet. The atoms are trapped as in panel (a)
and then released from the trap to verify the presence of phase coherence, which
is confirmed by the image averaged over many experimental trials in panel (b).
Here, we see a clear density modulation in the interference pattern combined with
a relevant degree of delocalization for particles, in agreement with the results of
simulations of a phase-coherent state undergoing expansion, shown in panel (d).

Before moving on, we want to highlight the fact that the works mentioned above
considered mean-field regimes and high particle densities, which allow to describe
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the systems under study by means of the famous (extended) Gross-Pitaevskii
equation. This means that a semiclassical approach is implemented and quantum
fluctuations are disregarded.
We will see that this path is not viable in our case, since quantum fluctuations
are key to the emergence of interesting physics in our model, and this will lead us
toward the use of computational techniques.
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Chapter 3

Bose-Hubbard models and
geometrical frustration

The much celebrated Bose-Hubbard model (BHM) and its variations represent
the best tools to describe the physics of systems of ultracold bosonic atoms in
discrete geometries. In this chapter we go through the main aspects of these models,
restricting our review to the quasi-1D case, both for simplicity and because this is
the most interesting frame for us.
In the second part instead, we introduce the concepts of geometrical frustration
and chirality, which are fundamental features of the physical system we want to
study.

3.1 Bose-Hubbard models

The Bose-Hubbard model has been first introduced by H. Gersch and G. Knollman
[62] in 1963 with the aim of describing the physics of granular superconductors,
where electrons couple forming the so-called Cooper pairs, which behave as bosonic
quasiparticles. The model really gained the attention of many only a couple of
decades later, thanks to the seminal paper by M. Fisher et al. [63], published in
1989. In fact, they noticed that the BHM was suitable for the description of the
insulator-superfluid transition observed both in fermionic and bosonic systems.
From that moment onward, this model attracted much interest and its full potential
was understood, resulting in a great amount of studies on different situations and
considering many variations of the basic model.

Let us start from the generic Hamiltonian of a weakly interacting gas of bosonic
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atoms in an optical lattice, written in the second quantization formalism [37]:

H =
Ú
d3xΨ† (x)

C
p2

2m + V0 (x) + VT (x)
D

Ψ (x)

+ 1
2

Ú
d3x

Ú
d3yΨ† (x) Ψ† (y) g (|x − y|) Ψ (x) Ψ (y) ,

(3.1)

where Ψ (x) are the bosonic field operators, which satisfy the bosonic commutation
rule

è
Ψ (x) ,Ψ† (y)

é
= δ3 (x − y). The field V0 (x) is the potential that creates the

optical lattice and has the form (2.3), while VT (x) is an external potential, which
is needed in order to confine the atoms in the desired region of space. In the first
term, we have a kinetic contribution with the momentum of a quantum particle
p = −iℏ∇. The function g (|x − y|) is the interaction strength between two atoms.
We assume that only s-wave scattering between atoms in contact occurs, therefore
obtaining g (|x − y|) = 4πas

m
δ3 (x − y) with as the s-wave scattering length and m

the mass of the atoms.
If we further assume that all the particles are in the lowest band of the optical
lattice, we can expand the bosonic field operator in terms of Wannier functions
w0 (x). Therefore, we have: Ψ (x) = q

i biw0 (x − xi), where bi is the annihilation
operator for a boson at position xi. By performing the calculations, one finds the
following model Hamiltonian:

H = −
Ø
i,j

Jijb
†
ibj + 1

2
Ø

i,j,k,l

Uijklb
†
ib

†
jbkbl , (3.2)

where we have position-dependent hopping coefficients

Jij = −
Ú
d3xw0 (x − xi)

C
p2

2m + V0 (x) + VT (x)
D
w0 (x − xj)

and interaction coefficients

Uijkl = g
Ú
d3xw0 (x − xi)w0 (x − xj)w0 (x − xk)w0 (x − xl) .

In most of the cases, in particular for reasonably deep lattices V0, the offsite
interaction can be neglected and only terms Uiiii are kept. The same goes for
hopping processes beyond nearest neighbor sites, so that one considers only terms
Ji,i+1.
We now consider a trapping potential VT (x) that confines the particles in a quasi-
1D cigar shaped geometry and we assume that the coefficients are independent of
position, that is Uiiii = U , Ji,i+1 = t ∀i. All this allows to reduce the model (3.2)
to the following well-known Hamiltonian:

H = − t
Ø

i

1
b†

ibi+1 + h.c.
2

+ U

2
Ø

i

ni (ni − 1) − µ
Ø

i

ni . (3.3)
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Here the index i runs over the sites of a 1D chain. The first term represents an
hopping process between nearest neighbors with amplitude given by the coefficient
t and h.c. stands for the hermitian conjugate of the product of operators b†

ibi+1.
This is a kinetic energy term, related to the delocalization of particles across the
chain.
In the second term, U is the onsite interaction experienced by two bosons positioned
at the same site and we have defined the number operator ni = b†

ibi. Finally, the
last term determines the number of particles through the chemical potential µ,
which is the energy penalty or bonus for adding a particle to the system, depending
on its sign.

Figure 3.1: Schematic ground-state phase diagram of the 1D Bose-Hubbard model
as a function of the chemical potential µ and the hopping amplitude t for fixed U .
ρ is the number of particles per site, while K is the Luttinger parameter. Mott
insulators (MI) at ρ = 1 and ρ = 2 are shown, outside the lobes the systems is in
the superfluid (SF) phase. Taken from [64].

The ground-state phase diagram at zero temperature (T = 0) of the 1D BHM
has been studied extensively both analytically and numerically [65, 66]. The phase
diagram in the (t, µ) plane for fixed U is schematically shown in Fig. 3.1 [64].
As mentioned before, the parameter µ fixes the number of particles in the system
and we see that an higher value of the chemical potential corresponds to higher
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particle density, here indicated as ρ. The phase diagram presents two distinct
phases: a Mott insulator (MI) and a superfluid (SF). Let us analyze the picture
starting from the most simple limit, that is t = 0. In this case, the occupation of
each site is determined by the condition that the onsite energy is minimized, where
the latter can be written as:

ε (ρ) = −µρ+ U

2 ρ (ρ− 1) (3.4)

with ρ ≥ 1. For any value of µ such that ρ− 1 < µ/U < ρ, each site is occupied by
ρ bosons. If instead we introduce a nonzero hopping amplitude t > 0, then the ad-
dition or removal of a particle brings a gain in kinetic energy, due to the additional
particle or hole hopping from site to site. However, if t is not large enough, it is not
possible to overcome the potential energy coming from the repulsive interaction
between bosons on the same site: this is the case in the MI regions of Fig. 3.1.
Therefore, for each integer value of the density ρ there exists a region where the
number of particles per site is exactly ρ and each of them is confined in its site:
thus, we have a Mott insulator. This phase is incompressible, since ∂ρ/∂µ = 0 and
has an energy gap for the addition of a particle or a hole given by the distance
in µ-direction from the upper or lower phase boundary, respectively. In such a
phase, particles are localized and there is no phase coherence, as signaled by the
exponential decay with distance of the expectation value ⟨b†

ibj⟩.
These MI regions exhibit a characteristic lobe-like shape, which can be easily under-
stood in terms of an energy balance. Indeed, for a fixed value of t, by approaching
a phase boundary from within a lobe, the energy gap for the addition of particles
or holes decreases. At the transition point, the kinetic energy gained through the
hopping of extra particles or holes equals the energy penalty caused by the repulsive
onsite interaction. At that point, the system undergoes a transition to a superfluid
phase, where particles are delocalized and the average occupation of sites becomes
non-integer. This SF phase is characterized by finite compressibility ∂ρ/∂µ /= 0
and it is gapless with respect to particle/hole excitations.
As mentioned in Chapter 2, since we are working in the one-dimensional case,
the continuous U(1) symmetry cannot be spontaneously broken and superfluidity
is possible only for finite-size system. This is due to the power-law decay with
distance of ⟨b†

ibj⟩, which would still go to zero in the thermodynamic limit where
|i− j| → ∞.
The region of superfluidity extends around each lobe up to t = 0 at integer µ/U ,
because in that condition there is no difference in occupying sites with ρ or ρ− 1
particles, which means that the energy gap is zero.
The width of the lobes, namely the position of the tips in the t-direction, can be
shown to approximately scale as 1/ρ for increasing ρ, thus displaying a hyperbolic
behavior.
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In the following, we will work in the microcanonical ensemble, that is at fixed
number of particles in the system. In particular, we will consider µ = 0 and omit
the corresponding term from the equations. Therefore, we want to analyze how
the system behaves when the density ρ is fixed to an integer value, say for instance
ρ = 1, and the hopping amplitude t is varied for a fixed value of U > 0. This would
be equivalent to approaching the tip of the lobe at fixed µ by increasing t. As in
the previous case, at the tip, the gain in kinetic energy induced by the hopping of
particles will be equal to the potential energy given by the onsite repulsion between
bosons and a transition to a SF occurs. Nevertheless, in this case the average
occupation of sites does not change, but particles are free to hop along the chain.
Since we have a transition between a gapped and a gapless phase, it is interesting
to consider the behavior of the charge gap, which is defined as:

∆EC = EGS (N − 1, L) + EGS (N + 1, L) − 2EGS (N,L) , (3.5)

where EGS (N,L) is the ground-state energy of the system with N particles and
L sites. This is nothing but the algebraic sum between the energy difference
in adding a particle, that is EGS (N + 1, L) − EGS (N,L), and a hole, namely
EGS (N − 1, L) − EGS (N,L), to the chain.
In this frame, the model can be shown to belong to the universality class of the XY
model, therefore the phase transition is of the Berezinskii-Kosterlitz-Thouless type
[67, 68]. This kind of transition is characterized by a slow closing of the charge
gap, in particular [64]:

∆EC ∼ exp

A
const.√
tC − t

B
(3.6)

with tC the critical value of the hopping amplitude, at which the transition occurs.
It is important to highlight the nature of this transition, because it implies that also
the order parameters used to identify these two phases change smoothly and thus
the width of the transition is quite large. We will see that something analogous is
observed in our results (see Chapter 6).

A more accurate version of the ground-state phase diagram of the 1D BHM
has been obtained in the following years thanks to the development of efficient
simulation methods. An example of the phase-diagram produced with DMRG
calculations [69] is shown in Fig. 3.2.

3.1.1 1D extended Bose-Hubbard model
We focus now on a variation of the BHM that includes also beyond-onsite inter-
actions, namely the extended Bose-Hubbard model (EBHM). For this part of the
work, we follow as a guide the article “Phase diagram of the extended Bose Hubbard
model” by Davide Rossini and Rosario Fazio [70].
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Figure 3.2: Schematic ground-state phase diagram of the 1D Bose-Hubbard model
as a function of the chemical potential µ/U and the hopping amplitude t/U . ρ is
the number of particles per site. Gray regions indicate Mott insulating (MI) phases,
in white is the superfluid (SF) phase. Transition lines obtained with finite-size
DMRG calculations. Taken from [69].

The EBHM has caught much attention in the last decades [71]. First of all,
despite being the simplest model to include beyond-onsite interactions, it exhibits
very interesting physics, as evidenced by the rich ground-state phase diagram in
Fig. 3.3. On top of that, it is quite intuitive to extend the model to consider
even longer-range interactions, e.g. dipolar interactions. Finally, the experimental
platforms discussed in Chapter 2 are available for quantum simulation of this
model and the level of complexity and controllability of these setups nowadays is
extremely high.

The model Hamiltonian of the EBHM for a one-dimensional system is written
as:

H = − t
Ø

i

1
b†

ibi+1 + h.c.
2

+ U

2
Ø

i

ni (ni − 1) + V
Ø

i

nini+1 . (3.7)

With respect to Equation (3.3), here we have neglected the chemical potential term
and we have an additional one containing a density-density interaction between
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Figure 3.3: Ground-state phase diagram of the 1D EBHM in the (V, U) plane for
fixed t = 1 at unit filling n̄ = 1. Phase boundaries obtained with finite-size DMRG
calculations. The dashed blue line is an interpolation of the continuous blue curve
and the red dots. Taken from [70].

nearest neighbors: the coefficient V is the value of the repulsion or attraction
between two bosons located in adjacent sites of the chain.
In their paper, Rossini and Fazio considered the case of unit filling n̄ = 1, where the
number of particles is equal to the number of sites in the chain, and they set the
energy scale by fixing t = 1. As mentioned above, the ground-state phase diagram
in this configuration, shown in Fig. 3.3, exhibits a rich variety of quantum phases.
First of all, we recognize the Mott insulating and the superfluid phases that we
already encountered and characterized in the simpler case of the BHM.
In addition to that, we find two more phases that arise due to presence of nearest
neighbor interaction. In fact, there is a quantum phase transition (QPT) from the
MI to an Haldane insulator (HI), which is a symmetry protected topological (SPT)
phase characterized by an hidden order of the fluctuations of the local density [72].
Nevertheless, this phase does not break the translational symmetry of the lattice.
Exactly at the transition point, the charge gap EC (3.5) closes.
The second additional phase is a charge density wave, which can be observed for
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large values of the nearest neighbor repulsion V . This is reasonable because a
sufficiently high value of such an interaction dominates over the kinetic energy and
the onsite repulsion, freezing the system in a pattern of alternated occupied and
empty sites. This gives the chain a density profile ... − 2 − 0 − 2 − 0 − ..., since
unit filling is considered. Notice that the charge gap is not able to capture the
transition between the HI and the CDW, as it always stays finite across the phase
boundary. Instead, the transition is reflected by the closing of another energy gap,
the so-called neutral gap:

En = E1 (N,L) − EGS (N,L) , (3.8)

where E1 (N,L) is the energy of the first excited state of the system with N particles
and L sites, so that the neutral gap is just the energy difference between the two
lowest lying states in the energy spectrum.

In Chapter 5 we will extend this model by taking into account additional terms
and we will see how this determines the emergence of even richer physics.

3.2 Geometrical frustration and chirality

Figure 3.4: Example of geometrical frustration in the case of spins-1/2 with
antiferromagnetic interaction on a triangular plaquette. The black question mark
represents the degeneracy of the ground-state in the degree of freedom of the third
spin, when the two red ones are already fixed to be antiparallel.

Geometrical frustration is a phenomenon related to the incompatibility between
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the properties of an interacting system and the geometrical disposition of its con-
stituents, making it impossible to satisfy some physical constraint. In condensed
matter physics, in particular in discrete systems, the phenomenon arises due to the
interplay between conflicting interatomic forces on the lattice, that drive the system
towards different configurations. In certain cases, this can lead to non-trivial and
very exciting physics [73].

Frustration has been first considered for magnetic systems, starting from 1950
with the work by Wannier [74], while the term has been actually introduced only a
couple of decades later by Toulouse [11]. Indeed, systems of spins provide probably
the simplest example for the illustration of geometrical frustration and they exhibit
a variety of exotic emergent phenomena, such as spin ice, spin glasses and spin
liquid phases [73].
In general, spins with nearest neighbor couplings are described by a simple Hamil-
tonian:

H = J
Ø
⟨i,j⟩

Si · Sj , (3.9)

with J < 0 in the case of ferromagnetic interaction and J > 0 for antiferromagnetic
interaction. Here, Si is the spin operator for a spin in position i and ⟨i, j⟩ denotes
the sum over nearest neighbor pairs.

Now, let us consider three antiferromagnetic spins-1/2 positioned on a plaquette
of a triangular lattice, as shown in Fig. 3.4. Since antiferromagnetic interaction
favors antiparallel spins, in the ground-state each spin would like to be antiparallel
to its two neighbors. However, it is immediately evident that this is not possible
with such a geometry. In fact, if we suppose that we have fixed the two red spins
in Fig. 3.4, the third one is simultaneously pushed towards opposite directions by
them and this leads to the emergence of a degeneracy in the configuration of the
ground-state.
This degeneracy can be much higher if one considers spins with more degrees of
freedom, for instance Heisenberg vector spins, and other complex lattices, such as
the kagome or the pyrochlore ones [73].

Focusing on the one-dimensional case, frustrated magnets have been subjected
to intensive theoretical and experimental research, leading to the discovery of novel
quantum states, such as topological insulators and superconductors [75], quantum
spin liquids [76] and valence bond solids [77, 78]. The most interesting phenomenon
to us is the emergence of chiral phases [79].
Chirality is a property present in many branches of science and it is related to the
breaking of a left-right symmetry that causes a system or a phenomenon not to be
identical to its mirror image. One of the most renowned example is provided by
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chemistry, where some molecules are not superposable to their mirror image: the
two mirror images of a chiral molecule are called enantiomers.

In the case of spin-1/2 frustrated chains, chirality arises as the consequence of
the breaking of a Z2 symmetry, more precisely the time-reversal symmetry. In
particular, this is signaled by a non-vanishing and uniform value of the vector
chirality, defined as:

kz
i = ⟨(Si × Si+1)z⟩ . (3.10)

Within physics, chirality plays a major role in condensed matter theory as chiral
properties are often present in edge theories [80].
Furthermore, it is an important element in high energy physics, in particular in
the standard model of particles. For instance, the studies on neutrinos observed
that all neutrinos are left-handed, while antineutrinos are right-handed [81].
Another fact is represented by charged weak interactions among fermions: only
left-handed ones interact among them, while right-handed fermions are excluded
from interaction among them and with left-handed ones [82]. This parity violation
has been first confirmed in the famous Wu experiment in the 1950s [83].
There have been also efforts to develop consistent chiral lattice gauge theories [84].
From a more applicative point of view, chirality can also provide interesting opportu-
nities in quantum information theory, for instance allowing to design non-reciprocal
circuits in the context of chiral quantum spintronics [85].
All of this makes the discovery and realization of chiral phases and the study of
their properties a very important task.
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Simulation methods

Many interesting models for bosons, both in the continuum and in lattices, are
not exactly solvable and, in general, it may be extremely difficult to extract any
information by means of analytical tools [86]. This is particularly true in the case
of low-dimensional systems at relatively low densities, where quantum fluctuations
play a fundamental role in determining the physics that emerges. As we have seen
in Chapter 3, in the case of the (e)BHM fluctuations are encoded in the hopping
term, whose presence allows for the observation of non-trivial physics.
A possible approach is to focus on the low-energy properties of the models, adopting
some assumptions that simplify the calculations. However, in many cases the most
exciting physics is observed in deeply quantum regimes, where analytical approaches
fail to deliver reliable results.
Therefore, one needs to resort to computational techniques, as some of them turned
out to be very powerful in simulating strongly correlated systems.
Focusing on our case of interest, that is bosons in a one-dimensional lattice, there
are some methods available, such as the Quantum Monte Carlo (QMC) algorithm
[87] and the stochastic series expansion (SSE) algorithm [88], but the most renowned
and powerful ones are represented by exact diagonalization and Density Matrix
Renormalization Group (DMRG).

Indeed, exact diagonalization is the most straightforward approach and we could
call it the “brute force” technique. It consists in writing the Hamiltonian of a finite
system in a suitable basis and diagonalizing it: the eigenvalues and eigenvectors
obtained allows to compute any physical observable. For instance, if we choose the
site basis {|i⟩}, a basis state for a lattice with L sites is written as:

|m⟩ = |i1⟩ ⊗ |i2⟩ ⊗ ...⊗ |iL⟩ . (4.1)

From this, one can readily compute the Hamiltonian matrix. However, we immedi-
ately notice that this method is strongly limited by the number of states p in the
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chosen basis: the size of the Hilbert space increases exponentially with the number
of basis vectors. In the case of the site basis, the dimension of the matrix that has
to be diagonalized is pL × pL. This may be acceptable in the case of hard-core
bosons where p = 2, since a site can be either empty |0⟩ or occupied by a single
boson |1⟩, but it becomes unfeasible in the case of soft-core bosons where p has to
be quite large, and should in principle be infinite.
This limitation is overcome by the famous DMRG algorithm, that we present
extensively in the following section, since we exploit it for simulating the model
under study, which will be introduced later in Chapter 5.

4.1 Density Matrix Renormalization Group

The Density Matrix Renormalization Group algorithm has been first proposed in
1992 by Steven White [89, 90] for the identification of the ground-state and first
excited states of strongly correlated quantum systems in one dimension. Here we
review the main aspects of this algorithm and the extensions developed since its
invention, referring mainly to the reviews by De Chiara et al. [91], Schöllwock [92]
and Orús [93].

In the initial formulation by White, DMRG was inspired by Wilson’s Numerical
Renormalization Group (NRG), which is the simplest way to perform real-space
renormalization of Hamiltonians. This method had been developed by Wilson
in the 1970s in attempts to solve the so-called Kondo problem [94, 95], dealing
with a non-monotonic behavior of resistivity in metals with a small amount of
magnetic impurities. The starting point consists in a small part of a quantum
system, in particular we consider a block B of size L in a m-dimensional Hilbert
space, and a Hamiltonian that describes the interaction between two such blocks.
The composite 2-block system, now represented in dimension m2 is projected onto
the subspace spanned by the m lowest lying energy eigenstates: this returns a new
truncated representation in dimension m and all operators are also projected onto
this new basis. Then, the system size is increased and the procedure is repeated
iteratively, until one reaches the full size of the system. However, this procedure
fails for strongly correlated systems, because the decimation of the Hilbert space is
based on the assumption that the ground-state of the full system is composed of
low-lying states of smaller subsystems: this is true only is selected cases.

White was able to go beyond this limitation by embedding the block in an envi-
ronment that mimics the thermodynamic limit of the system before the decimation
takes place; unfortunately, this implies a slowdown of the algorithm.
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4.1.1 Infinite DMRG
Let us start with the description of the infinite version of the algorithm, called
iDMRG. Starting from an initial unit cell, this method considers chains of in-
creasing length, at each iteration discarding a sufficient number of states to keep
the size of the Hilbert space under control. There are two key assumptions: a
reduced state space that describes well the relevant physics of the system exists
and we can devise a procedure to identify it, which is the crucial point of the theory.

Let us write a generic system Hamiltonian as:

H =
Ø

i

Ø
q

[J (q)Si (q)Ti+1 (q) +B (q)Vi (q)] , (4.2)

where J (q) and B (q) are coupling constants and {Si (q)}q, {Ti (q)}q and {Vi (q)}q

are sets of operator acting on site i, while the index q runs over the elements of the
sets. In the following, we are going to use the notation B (L,mL) to denote a block
of L sites described with mL states.
We start with a block with a single site B (1, p), where p is the number of possible
states for a site, and we add another site to the right, creating the so-called left
enlarged block, whose Hamiltonian is:

HE = HB +HS +HBS (4.3)

with HB the local Hamiltonian of the block, HS the local Hamiltonian of the site and
HBS the interaction term between the two. We can now build the corresponding
right enlarged block analogously with Hamiltonian HE′ and consider also the
interaction between the two enlarged blocks: we thus obtain a superblock that
describes the whole system. Its Hamiltonian is written as:

HsupB = HE +HE′ +HSS′ , (4.4)

where HSS′ is the interaction term between the two free sites that connect the
enlarged blocks. The ground-state is now obtained by diagonalizing HsupB:

|ψGS⟩ = Ψaαβb |aαβb⟩ , (4.5)

with Latin letters denoting blocks and Greek ones free sites. Notice that it is
possible to extract the ground-state of the superblock without finding the full
spectrum: this can be achieved by exploiting efficient numerical diagonalization
methods, such as the Lanczos algorithm [96, 97].
The reduced density matrix ρL of the left enlarged block is obtained as the trace
over the degrees of freedom of the right enlarged block:

ρL = TrR |ψGS⟩ ⟨ψGS| = ΨaαβbΨ∗
a′α′βb |aα⟩ ⟨a′α′| . (4.6)
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The renormalization step of the algorithm is made at this stage, by truncating
the Hilbert space of the enlarged block in order to represent it in a basis with at
most D elements, with the threshold D called bond dimension (BD) and fixed a
priori. Therefore, the Hilbert space takes dimension mL+1 = min (mLp,D) and it is
composed by the first mL+1 eigenstates of the reduced density matrix ρL, which are
associated to the largest eigenvalues. In more mathematical terms, the truncated
change of basis is performed by introducing a transfer matrix OL→L+1 of dimension
mLp × mL+1: the columns of this matrix corresponds to the mL+1 eigenstates
that we want to keep. We get a truncated enlarged block B (L+ 1,mL+1) with
Hamiltonian:

H ′
B = O†

L→L+1 HE OL→L+1 , (4.7)

while the local operators are transformed as:

S ′
L+1 (q) = O†

L→L+1 SL+1 (q) OL→L+1 (4.8)

and similarly for T ′
L+1 (q) and V ′

L+1 (q). This procedure can be repeated iteratively,
increasing the size of the system by 2 sites at each step and making it closer and
closer to the ideal thermodynamic limit, until some convergence criterion for the
observables is fulfilled. As the system gets bigger, the number of states used to
describe it does not change and thus the computational complexity of the problem
is fixed a priori by the values of D and p.
At each iteration we introduce a truncation error that corresponds to the sum of
the discarded eigenvalues of ρL:

ϵtr =
Ø
i>D

λi . (4.9)

Therefore, one needs to find a good trade-off between computational time and
precision, identifying a suitable value for the bond dimension D, that must be
small enough to make the calculation feasible but also large enough to capture the
relevant physics of the system under study.
A schematic visualization of a single iDMRG step is presented in Fig. 4.1(a).

4.1.2 Finite-size DMRG
In many cases, iDMRG is not able to produce sufficiently accurate results. The
finite-size version of the algorithm can be useful to reach better precision in the
simulation of systems in complex configurations, for instance close to a first-order
transition.
In this method, the infinite algorithm works as explained above, but it is stopped
at a predetermined length of the system Lmax and once this value is reached, the
following DMRG steps are slightly modified. In particular, at this point the system
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Figure 4.1: Schematic representation of DMRG. Left, panel a: one iteration of
the iDMRG algorithm. Right, panel b: one full finite-size DMRG sweep. Taken
from [91].

is formed by two blocks B (Lmax/2 − 1) and two adjacent free sites, see the first row
of Fig. 4.1(b). Now only the left block is enlarged, while the right one gets shrunk
so that the size of the superblock is kept fixed at Lmax. Therefore, now the system
is formed by B (Lmax/2) and B (Lmax/2 − 2) with two free sites in the middle. The
reduced basis transformations are performed only for the growing block, since the
right block can be recovered from memory if one appropriately saves the transfer
matrices, the block Hamiltonians and the local operators obtained in the previous
steps.
This procedure is repeated until the right block is simply B (1, p), that is a single
site: at this point, the role of the two blocks is exchanged and the right block
starts to be grown, until the left boundary of the chain is reached. There, the left
block is enlarged again at expenses of the right one, till the initial configuration is
recovered: one full DMRG sweep has been completed, as shown in Fig. 4.1(b).
After each sweep, the approximation of the ground-state improves and the algorithm
stops when the convergence criterion is fulfilled.

As is evident from Fig. 4.1, this algorithm describes systems with open boundary
conditions (OBC). Periodic boundary conditions (PBC) can still be implemented,
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but in general DMRG favors OBC.

Let us mention the fact that a variation of this algorithm called t-DMRG has
been developed for considering time-evolving systems. Starting from the output of
a finite-size DMRG run, the time evolution of the ground-state is performed by
exploiting a Suzuki-Trotter decomposition [98, 99] of the time evolution operator
U = e−iH1t, where H1 is the Hamiltonian determining the dynamics of the system.
However, the error introduced by this procedure is usually quite relevant and it
increases with time, so the reliability of the algorithm is limited to quite short time
intervals [100].

Area law for the entanglement entropy

Let us consider more deeply the quality of the approximate results provided by
DMRG and explain why this algorithm works so well for one-dimensional systems.
Since we are truncating the reduced density matrix, the amount of information that
is lost is quantified by Equation (4.9). Therefore, it is important to understand
how quickly the eigenvalues of the matrix decrease. This has been computed for
some exactly solved systems both in 1D and 2D [101, 102, 103], showing that
one-dimensional gapped systems exhibit an exponentially fast decay of the eigen-
values, while in 2D stripes of size L×W with L ≫ W the rate of decay is inversely
proportional to W , so it gets slower as the two-dimensional character of the system
is increased. Thus, it is clear why 1D systems are much preferable with respect to
2D ones for DMRG analysis.

For a generic system though, we don’t know how the eigenvalue spectrum
behaves. However, the entanglement entropy (von Neumann entanglement) comes
in handy, as it is given by the non-vanishing part of the spectrum of the reduced
density matrix ρA for a bipartitioning A|B of the system under study:

SA|B = −TrρAlog2ρA = −
Ø

i

λilog2λi . (4.10)

Indeed, we can extract the scaling of this quantity thanks to the so-called area
laws [104]. If partition A has size LD with D the spatial dimension, the area laws
predict that, while thermal entropy is extensive, entanglement entropy of gapped
ground-states of short-ranged Hamiltonians is proportional to the ”surface” of the
partition:

SA|B ∼ LD−1 . (4.11)

Therefore, for D = 1 we have S ∼ const, whereas S ∼ L in the two-dimensional
case. Note that this is valid sufficiently far from critical points, where instead
things are much more complex.
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This can be intuitively connected to DMRG, where we deal with two D-dimensional
state spaces for the partitions A and B: the maximal entanglement occurs when all
eigenvalues of ρA are identical and in particular equal to D−1, yielding SA|B = log2D.
Then, one needs a state of dimension 2S and more to describe the entanglement
properly. Thus, for gapped systems in one dimension increasing the system size
does not lead to a strong increase in the value of the bond dimension D since
S ∼ const, while in two dimensions D grows as 2L because S ∼ L and DMRG fails
even for relatively small systems.
In addition to that, note that in most cases, far enough from phase transitions, the
eigenvalue spectrum is not flat but it usually decays exponentially: therefore, the
worst case scenario depicted above does not occur in many occasions.

4.1.3 Tensor Networks

A few years after the algorithm was originally developed by White, thanks to the
works by Vidal, Cirac and Verstraete among others [105, 106, 107, 108, 109], it
was realized that the relevant corner of the Hilbert space can be parametrized
efficiently by means of tensor networks (TN), which allows for a beautiful and
intuitive formalization of DMRG and also other similar methods. As entailed by
their name, tensor network methods represent quantum states in terms of networks
of interconnected tensors, which capture the relevant entanglement properties of the
system under study, providing a graphical language for condensed matter physics.
In particular, two types of networks are used: Matrix Product States (MPS) for
1D systems and Projected Entangled Product States (PEPS) for 2D systems [93],
see Fig. 4.2. Since here we are interested in the one-dimensional case, the focus of
our discussion is on MPS methods.

Figure 4.2: Examples of tensor network diagrams. Panel (a): MPS for 4 sites
with OBC. Panel (b): PEPS for a 3 × 3 lattice with OBC. Taken from [93].
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In general, a tensor is a multidimensional array of complex numbers and its
rank is given by the number of indices. In the following, we will make use of index
contraction, which is the sum over all the possible values of the repeated indices
of a set of tensors. Indeed, a tensor network is a set of tensors with some of their
indices contracted according to a certain pattern. A simple example is given by
the scalar product of two vectors:

C =
DØ

α=1
AαBα , (4.12)

where C is just a complex number, that is a rank-0 tensor. In the diagrammatic
representation of Fig. 4.2, blue circles are tensors, whereas the black lines sticking
out from them correspond to the indices and we talk about ”legs” of a tensor.
Note that connected legs indicate index contraction, while free legs represent open
indices. As we will see in the following, this graphical notation makes calculations
much easier to handle.
It is important to highlight that the order in which the contraction is performed
heavily influences the computational cost of the operation: finding the optimal
order is key for the development of an efficient implementation of TN methods.

Let us see how an arbitrary quantum state can be translated into a Matrix
Product State by means of a singular value decomposition (SVD). Note that in
many cases this can be achieved with the simpler QR decomposition, which is
numerically cheaper.
MPS are tensor networks that correspond to a 1D array of tensors, as can be seen
in Fig. 4.2(a), and this is the reason why they are suitable for the description of
one-dimensional systems. We consider a quantum many-body system of L sites,
each of these having degrees of freedom described by p states. The corresponding
wavefunction can be written as:

|ψ⟩ =
Ø

i1,i2,...,iL

Ci1i2...iL
|i1⟩ ⊗ |i2⟩ ⊗ · · · ⊗ |iL⟩ (4.13)

for the local basis |ir⟩, r = 1, ..., L. Here, Ci1i2...iL
are pL complex numbers and they

are the coefficients of a tensor C with L indices ir = 1, ..., p for each site r. The
total number of coefficients is O

1
pL
2
, thus the amount of parameters describing

the wavefunction in (4.13) scales exponentially with the size of the system. We
want to decompose the large tensor C with a TN made by tensors of smaller rank,
looking for a representation of the wavefunction in terms of a polynomial number
of parameters.
The first step consists in reshaping the state vector with pL components into a
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matrix Ψ of dimension p× pL−1 and then perform an SVD of this new matrix:

Ci1...iL
= Ψi1,(i2...iL) =

r1Ø
a1

Ui1,a1Sa1,a1V
†

a1,(i2...iL) =
r1Ø
a1

Ui1,a1Ca1i2...iL
, (4.14)

where Ca1i2...iL
is obtained by carrying out the product between S and V † and

reshaping it into a vector. Here and in the following, the i’s are the site indices and
the a’s are the bond indices. The key condition for the reduction of the complexity
of the problem is on the rank: r1 ≤ p. The matrix U is now decomposed into p
row vectors Ai1 with Ai1

a1 = Ui1,a1 , while instead Ca1i2...iL
is reshaped into a matrix

Ψ(a1i2),(i3...iL) of dimension r1p× pL−2. This returns:

Ci1...iL
=

r1Ø
a1

Ai1
a1Ψ(a1i2),(i3...iL) . (4.15)

The procedure is repeated iteratively for the matrix Ψ(a1i2),(i3...iL) under the condition
r2 ≤ r1p ≤ p2 and so on. In the end, one gets:

Ci1...iL
=

Ø
a1,...,aL−1

Ai1
a1A

i2
a1,a2 · · · AiL−1

aL−2,aL−1
AiL

aL−1
= Ai1Ai2 · · · AiL−1AiL , (4.16)

which allows us to write the quantum state in the form of a left-canonical MPS:

|ψ⟩ =
Ø

i1,...,iL

Ai1Ai2 · · · AiL−1AiL |i1⟩ ⊗ |i2⟩ ⊗ · · · ⊗ |iL⟩ . (4.17)

By recalling the properties of SVD, it can be shown that the matrices A are
left-normalized, that is: Ø

ir

Air†Air = I , (4.18)

where I represents the identity matrix.
Since in DMRG we have a bipartitioning of the system in two blocks A and B, it is
useful to introduce the following states:

|al⟩A =
Ø

i1,...,il

1
Ai1Ai2 · · · Ail

2
1,al

|i1⟩ ⊗ · · · ⊗ |il⟩ , (4.19)

|al⟩B =
Ø

il+1,...,iL

1
Ail+1Ail+2 · · · AiL

2
al,1

|il+1⟩ ⊗ · · · ⊗ |iL⟩ , (4.20)

such that the MPS can be written as:

|ψ⟩ =
Ø
al

|al⟩A |al⟩B . (4.21)
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Due to the left-normality of A matrices, the states {|al⟩A} form an orthonormal
set:

A⟨a′
l|al⟩A = δa′

l
,al

, (4.22)

while in general this is not true for the states {|al⟩B}.

After the first SVD in (4.14), the whole procedure can be performed also in the
opposite direction by reshaping V † in column vectors and carrying out the product
between U and S, finally obtaining a right-canonical MPS:

|ψ⟩ =
Ø

i1,...,iL

Bi1Bi2 · · ·BiL−1BiL |i1⟩ ⊗ |i2⟩ ⊗ · · · ⊗ |iL⟩ , (4.23)

with right-normalized B matrices:Ø
ir

BirBir† = I . (4.24)

The MPS can be written again as in (4.21) by replacing A matrices with B matrices
in (4.19) and (4.20), so that this time the states {|al⟩B} form an orthonormal set,
whereas in general {|al⟩A} do not.

It is extremely convenient to mix the decomposition from the two sides in order
to obtain an MPS in the so-called mixed canonical form. Let us assume that we
have the following decomposition from the left up to a certain site l:

Ci1...iL
=
Ø
al

1
Ai1 · · · Ail

2
al

Sal,al
V †

al,(il+1...iL) . (4.25)

We can now reshape V †
al,(il+1...iL) as Ψ(alil+1...iL−1),iL

and decompose from the right
until we reach site il+2. In the last step, we are left with U(alil+1),al+1Sal+1,al+1 and
we reshape it into Bil+1

alal+1
, so that:

V †
al,(il+1...iL) =

Ø
al+1,...,aL−1

Bil+1
al,al+1

· · ·BiL
aL−1

(4.26)

with right-normalized B matrices. Therefore, we obtain:

Ci1...iL
= Ai1 · · · Ail S Bil+1 · · ·BiL , (4.27)

containing the singular values on the bond (l, l + 1).
Now, if we denote λal

= Sal,al
and we introduce the states:

|al⟩A =
Ø

i1,...,il

1
Ai1Ai2 · · · Ail

2
1,al

|i1⟩ ⊗ · · · ⊗ |il⟩ , (4.28)
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|al⟩B =
Ø

il+1,...,iL

1
Bil+1Bil+2 · · ·BiL

2
al,1

|il+1⟩ ⊗ · · · ⊗ |iL⟩ , (4.29)

we can finally write:
|ψ⟩ =

Ø
al

λal
|al⟩A |al⟩B . (4.30)

Equation (4.30) is exactly the Schmidt decomposition of the quantum state, be-
cause both the states belonging to A and B, that we call Schimdt vectors, form
orthonormal sets.

In order to connect this more directly to DMRG, let us perform a change of
basis from the Schmidt basis back to the local one for a system of L sites [105,
106]. We start with a Schimdt decomposition between site 1 and the other L− 1
sites and consider a bond dimension D:

|ψ⟩ =
min(p,D)Ø

a1=1
λa1 |a1⟩A |a1⟩B , (4.31)

where λ[1]
a1 are the Schimdt coefficients, while |a1⟩A and |a1⟩B are the left and right

Schimdt vectors, respectively. We can now rewrite the left vector in terms of the
local basis |i1⟩, so that:

|ψ⟩ =
pØ

i1=1

min(p,D)Ø
a1=1

Γi1
a1λa1 |i1⟩ ⊗ |a1⟩B , (4.32)

where Γi1
a1 comes from the change of basis |a1⟩A = q

i1 Γi1
a1 |i1⟩. The procedure can

be repeated for the second site from the left, leading to:

|ψ⟩ =
pØ

i1,i2=1

min(p,D)Ø
a1=1

min(p2,D)Ø
a2=1

1
Γi1

a1λa1Γi2
a1a2λa2

2
|i1⟩ ⊗ |i2⟩ ⊗ |a2⟩B . (4.33)

By iterating this for the entire chain, we end up with:

|ψ⟩ =
Ø
{i}

Ø
{a}

1
Γi1

a1λa1Γi2
a1a2λa2 · · · λaL−1ΓiL

aL−1

2
|i1⟩ ⊗ |i2⟩ ⊗ · · · ⊗ |iL⟩ , (4.34)

where we see a new clean decomposition for the coefficients of the tensor C:

Ci1i2...iL
= Γi1

a1λa1Γi2
a1a2λa2 · · · λaL−1ΓiL

aL−1
. (4.35)

This canonical form can be obtained also for an infinite MPS [107] and it will be
formed by as much tensors Γ and vectors λ as the number of sites in the unit cell of
the state. An example of both finite and infinite MPS in canonical form is shown
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Figure 4.3: Examples of MPS in canonical form. Panel (a): finite MPS with 4
sites. Panel (b): fnfinite MPS with single-site unit cell. Taken from [93].

Figure 4.4: Examples of calculation of the expectation value of a single-site
observable for an MPS in canonical form. Panel (a): finite MPS with 5 sites and
operator acting on site 3. Panel (b): infinite MPS with single-site unit cell. Taken
from [93].

in Fig. 4.3. The canonical form of MPS has some convenient properties that
justify its use. First of all, it simplifies the calculation of expectation values of local
operators, as can be seen in Fig. 4.4. Indeed, quantum mechanical operators, for
instance the model Hamiltionan, can be written in the formalism of Matrix Product
Operators (MPO) [92] and the diagrammatic representation can be exploited again:
only the tensors and the eigenvalues related to the site on which the operator
acts are relevant, while all the others are wiped out thanks to the normalization
condition intrinsic to the canonical form.
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In addition to that, this form provides a recipe for the decimation step in numerical
simulations: we just keep the largest D Schimdt coefficients at every bond and this
is optimal for finite systems as long as truncation is local, such that it implies only
a modification of the tensors involved in the truncated index.
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Chapter 5

Frustrated extended
Bose-Hubbard model

Previous studies on the frustrated Bose-Hubbard model highlighted the presence of
a chiral superfluid phase, both at half filling [110, 111] and at unit filling [112]. On
top of that, theoretical works on the extended Bose-Hubbard model found proof of
the existence of supersolidity at non-commensurate filling [113, 71].
We aim at detecting a novel chiral supersolid phase in the phase diagram of the
frustrated extended Bose-Hubbard model (FEBHM) at commensurate filling, thus
showing that frustration is a new physical mechanism that allows to obtain super-
solidity and even a new kind of supersolid.
Here, we start from some preliminary results that serve as the basis for the project,
then we introduce the model under study and we propose an experimental setup
for its realization. Finally, we highlight the main difficulties we met in our compu-
tational analysis.

Let us start by considering an XXZ chain of spins-1/2 with both nearest and
next-nearest neighbor interaction, denoted as J1 and J2 respectively, which is
described by the following Hamiltonian:

H =
2Ø

n=1

Ø
i

Jn

1
Sx

i S
x
i+n + Sy

i S
y
i+n + ∆Sz

i S
z
i+n

2
, (5.1)

where we have introduced the components of the spin operator Si at a site i and
∆ encodes the anisotropy along the z-component. It has been shown that such a
model exhibits frustration as long as the interaction between next-nearest neighbors
is antiferromagnetic, that is J2 > 0, independently of the nature of the nearest
neighbor interaction J1 [76]. In particular, in the case of J1 < 0 and J2 > 0 [79],
the ground-state phase diagram displays a region where the system has a gapless
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phase with chiral vector order and this is true also for the case ∆ = 0, when the
model reduces to the triangular spin-1/2 XY model. Notice that the latter can be
seen as a triangular lattice with plaquettes as in Fig. 3.4, with nearest neighbor
couplings on diagonal links and next-nearest neighbor coupling on the horizontal
one. Therefore, it is evident that frustration is introduced in the model whenever
only one or all three links are antiferromagnetic.
Interestingly, we can exploit the mapping Sx

j = 1
2

1
b†

j + bj

2
, Sy

j = 1
2i

1
b†

j − bj

2
for

∆ = 0, in order to rewrite (5.1) into a frustrated Bose-Hubbard model at density
1/2 in the strong coupling limit, whose Hamiltonian is written as:

H = −
Ø

i

è
t2
1
b†

ibi+2 + h.c.
2

+ t1
1
b†

ibi+1 + h.c.
2é

+ U

2
Ø

i

ni (ni − 1) , (5.2)

where b†
i and bi are the bosonic creation and annihilation operators, whereas

ni = b†
ibi is the number operator. The coefficients t1 and t2 are the amplitudes of

nearest and next-nearest neighbor hopping respectively, while U is the interaction
between bosons sharing the same site. The system can be seen as a triangular
ladder with nearest neighbor processes on diagonal links and next-nearest neighbor
processes on horizontal ones, see Fig. 5.1(c).
Indeed, the model (5.2) has been shown to exhibit a chiral superfluid phase when
frustration is introduced by a suitable choice of the signs of t1 and t2 [111], which
act analogously as the coefficients J1 and J2 of the spin model. In the reference, for
reasons of experimental feasibility that will be discussed later, they chose t2 > 0
and staggered nearest neighbor hopping, with t1 being alternatively positive and
negative, leading to:

H = −
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1
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+ t1 (−1)i
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ni (ni − 1) . (5.3)

We are interested in the effect of longer-range interaction on such a model, therefore
we want to study a richer Hamiltonian:

H = −
Ø

i

è
t2
1
b†

ibi+2 + h.c.
2

+ t1 (−1)i
1
b†

ibi+1 + h.c.
2é

+ U

2
Ø

i

ni (ni − 1) + V
Ø

r

1
r3

Ø
i

nini+r ,
(5.4)

where the last term has the aim of encoding dipolar interactions, which are known
to decay with distance as r−3 between two particles at sites i and j with r = |i− j|.
In order to include this type of interaction in experiments, the use of atoms with
a strong magnetic moment is required. We have verified that the inclusion of
interactions beyond next-nearest neighbors does not influence the results, therefore
in the simulations we truncate the term at r = 2.
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We want to study the system at unit filling n̄ = # bosons
# sites

= 1 and we set the energy
scale in Equation (5.4) by fixing t1 = 1, so that all energy quantities are expressed
in units of t1.
The element that introduces geometric frustration is the staggering in the next-
nearest neighbor hopping term. Notice that this Hamiltionan is invariant under
gauge transformations that conserves the π-flux in a loop around a triangular
plaquette of the lattice: for the Hamiltonian (5.4), if t2 > 0, a particle completing a
loop encounters two positive hopping amplitudes and a negative one on a diagonal
link, which is equivalent to gaining a phase factor π. But this choice is not unique
and, after checking the equivalence of the results, for simplicity in performing our
simulations we actually remove the staggering on the sign of the nearest neighbor
hopping amplitude and we always take negative next-nearest neighbor hopping
amplitude t2 < 0.
In [111], an experimental setup for the realization of such a model by using Cesium

atoms is discussed. We want to propose a similar implementation, where Cesium is
instead replaced by Dysprosium: atoms of this type are characterized by a strong
magnetic moment and exhibit long-range dipolar interactions [47]. The idea is to
take a two-component Bose gas trapped in a 1D state-dependent optical lattice
with L sites, as shown in Fig. 5.1. The two atomic species, which are two different
energy states of Dysprosium atoms, denoted as |l⟩ (lower energy state) and |h⟩
(higher energy state), are disposed to form a state-dependent optical lattice at
the anti-magic wavelength λ. This can be seen as two superimposed sublattices
displaced by a length λ/4, so that the minima of a sublattice correspond to the
maxima of the other one. The intra-species hopping amplitudes are the same for
the two sublattices, tl = th = t2, and they can be seen as the amplitude of next-
nearest neighbor hopping in the full lattice. On the other hand, the intra-species
interactions Ull and Uhh and the inter-species one Ulh may be different. Adjacent
sites belonging to different sublattices are connected by Raman-assisted tunneling
processes (green arrows in Fig. 5.1), encoded as teffe

iθj with i the imaginary unit
and j the lattice site index. Thus, the full system is described by the following
Hamiltonian:

H = −
Ø

j
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Ø
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1
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Ø
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(5.5)

As we explained before, we truncate the extent of the dipolar interaction at
next-nearest neighbor sites. We now perform a specific choice of parameters

48



Frustrated extended Bose-Hubbard model

e
n
e
rg
y

sites

(a)

(b)

(c)

Figure 5.1: Schematics of the experimental setup to realize Equation (5.4). Top
panel: state-dependent optical lattice at the anti-magic wavelength λ, with Raman-
assisted tunneling (green arrows) between nearest neighbor sites separated by
energy difference ωlh. Middle panel: shifted sublattices with effective spacing λ/4
described by Equation (5.5), all interactions and hopping processes are displayed.
Bottom panel: specific choice of parameters that yields model (5.4) on a triangular
lattice.
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that allows us to obtain our model (5.4), as shown in Fig. 5.1(c). In particular,
we take intra-species interactions to be equal Ull = Uhh = U and we set the
inter-species one Ulh = V . Then, we fix teff = t1 with θ = π, while we had
already assumed tl = th = t2. This finally yields a triangular lattice with nearest
neighbor processes, including staggered hopping, along diagonal links and next-
nearest neighbor processes, with correctly reduced density-density interaction, along
horizontal ones.

Computational aspects

As we stated before, we have the goal of detecting a chiral supersolid phase, emerging
from a combination of geometric frustration and beyond-onsite interactions. As
mentioned in Chapter 2, up to now the studies on supersolidity have been mainly
limited to mean-field regimes, where the effect of quantum fluctuations is negligible.
For this reason, observing a supersolid phase in a deeply quantum regime would be
quite innovative, therefore that is the setting that we want to consider. However,
this means taking into account quantum fluctuations, represented in the model
Hamiltonian by the hopping terms, but this cannot be achieved through analytical
approaches.
We must then resort to quasi-exact simulation methods: we use DMRG to study
the model (5.4), exploiting both the finite and the infinite version of this algorithm.
In particular, we make use of a free-access Python package called TeNPy [114],
which is based on the formulation of DMRG in terms of MPS.
In addition to the deeply quantum regime, another element of complexity is
introduced by frustration. Indeed, when the amplitude of next-nearest neighbor
hopping is large, the system is frustrated and chiral phases might emerge. In
such a condition, the quantum entanglement between particles becomes very large
and this implies that a bigger portion of the Hilbert space must be considered
in order to correctly capture the physics of the ground-state. Therefore, we need
to introduce an higher cut-off in the truncation step of DMRG, keeping a large
amount of singular values of the reduced density matrix, as its eigenvalue spectrum
does not decay fast.
More precisely, for building the phase diagrams that are going to be shown in
Chapter 6, we use iDMRG with unit cell of length 6 and we consider a ramp for
the bond dimension (BD) starting from BD = 300 and increasing by 100 every
20 sweeps up to BD = 800, with a maximum number of sweeps equal to 250.
This gradual increase in the bond dimension allows to initially suppress quantum
superpositions between different states, due to the limited size of the Hilbert space
considered, and to later reduce the truncation error by taking into account a large
number of eigenvalues of the reduced density matrix. More information about the
computational procedure is given at the beginning of the following chapter.
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An example of an input script is shown in Appendix A and all the details of the
simulations can be found there.
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Chapter 6

Results

We are interested in building the phase diagram of the model (5.4) in the two
following cases:

• fixed onsite interaction U ;

• fixed next-nearest neighbor hopping amplitude t2.

In this chapter, we explore this two situations and we take a detailed look at the
different phases detected and their properties.
Before moving on, let us remark that all the results are obtained for unit filling,
that is n̄ = 1, and with t1 = 1, so that all energy quantities are expressed in units
of t1.

6.1 Ground-state phase diagrams
Before we show the actual results, some technicalities of the simulations must be
addressed. First of all, we started working with the finite version of DMRG and an
even number of sites, but this is problematic in the case of phases with a density
wave profile, because of the degeneracy between the structures 2 − 0 − 2 − 0 − ...
and 0 − 2 − 0 − 2 − ....
As a matter of fact, since we consider open boundary conditions (OBC) the ground-
state will have an higher occupation on the two extremal sites and a defect will
form in the middle of the chain, as can be seen in Fig. 6.1. Note that this is not a
computational artifact but a physical consequence of using OBC: it is convenient
that both extremal sites are occupied, since they account for density-density in-
teraction only from one neighbor, and this is possible with even sites only if the
periodicity is inverted at some point along the chain.
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Figure 6.1: Example of the density profile ⟨ni⟩ of a CDW-like phase for a finite
chain with 100 sites. Both extremal sites are occupied and the difference in
occupation between two neighbors reduces until the periodicity is inverted with
the defect in the middle of the chain.

Figure 6.2: Example of the density profile ⟨ni⟩ of a CDW-like phase for a finite
chain with 101 sites. In this case, no defect is present thanks to the choice of an
odd number of sites.

Therefore, we moved to an odd number of sites L, which allows to avoid this
problem, and we considered a number of particles N = L + 1: this is aimed at
lifting the intrinsic degeneracy present at exactly commensurate fillings, where
either even or odd sites could be occupied. An example of the density profile in
the case of a CDW is shown in Fig. 6.2 .
However, the use of finite size DMRG implies the necessity of a scaling analysis
to extract reliable results, by considering systems of different sizes. For this
reason, we finally chose to exploit iDMRG whenever is possible, in particular for
building the phase diagrams, since this method approximates well the system in
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the thermodynamic limit by construction.
Nonetheless, the infinite version of the algorithm cannot be used for the calculation
of the so-called charge gap and, for that purpose, we were forced to go back to
finite-size DMRG. Later on, we will illustrate how to correctly set up the simulations
in such a case, as some expedients are required in order to avoid the problems
mentioned above.

6.1.1 Phase diagram at fixed on-site interaction

Figure 6.3: Phase diagram of the 1D FEBHM at U = 6 in the V − t2 plane. From
the bottom, the blue region corresponds to a Mott insulator (MI), the violet one
to an Haldane insulator (HI) and the red one to a charge density wave (CDW). At
the top, the green color signals a chiral superfluid (CSF) and the orange color a
chiral supersolid (CSS).

The phase diagram at fixed onsite interaction U = 6 is shown in Fig. 6.3, where
the nearest-neighbor interaction V varies on the x-axis, while on the y-axis we
consider the absolute value of the next-nearest neighbor tunneling t2.
For low values of both the parameters the system is a Mott insulator (MI), charac-
terized by the absence of phase coherence, that is it exhibits an exponential decay
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with distance of the so-called superfluid correlator:

g1 (|i− j|) = ⟨b†
ibj⟩ , (6.1)

and a finite value of the parity operator:

P (j) = eiπ
q

k<j
δnk , (6.2)

where we have introduced δnk = nk − n̄. When V is increased, for values of |t2|
close to zero, there is a small region where the system behaves as an Haldane
insulator (HI), which is a simmetry protected topological (SPT) phase with hidden
order, signaled by a finite value of the z-string operator at long distances:

Oz (|i− j|) = δnie
iπ
q

i<k<j
δnkδnj . (6.3)

By further increasing V or by considering higher values for |t2|, we encounter a
charge density wave (CDW), that is an insulating phase characterized by a periodic
modulation in the density profile. This is signaled by a finite value of the local
order parameter:

δN = 1
L

Ø
i

(−1)i δni , (6.4)

which implies the presence of a peak, located at k = π for unit filling, in the
structure factor:

S (k) = 1
L

Ø
r

⟨n0nr⟩e−ikr , (6.5)

namely the Fourier transform of the density-density correlator ⟨ninj⟩.
However, these three phases are not particularly interesting: as a matter of fact,
they can be observed in the phase diagram of a simple one-dimensional EBHM
at unit filling for such an high value of the onsite interaction U , as shown in Fig. 3.3.

More exciting physics emerges when the next-nearest neighbor hopping amplitude
becomes comparable and even larger with respect to the nearest neighbor one:
indeed, in this case the system is really frustrated and chiral order is observed. In
the case of bosons, we define the following chiral correlator:

k2 (|i− j|) = ⟨kikj⟩ (6.6)

with
kj = − i

2
1
b†

jbj+1 − b†
j+1bj

2
,

which is nothing but a current operator. Indeed, kj contains the difference between
hopping from site j+ 1 to j and from site j to j+ 1. Thus, this equals to measuring
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the preference of particles for moving left or right. When the time-reversal symmetry
is broken and currents are present, the expectation value (6.6) will be finite even
for very long distances |i− j|.
Going back to our phase diagram, for low values of V , more precisely when the
onsite interaction dominates over the repulsion between neighboring particles, we
find a chiral superfluid (CSF). This phase is characterized by a power-law decay of
the superfluid correlator g1 (|i− j|) (6.1), together with a finite value of the chiral
correlator k2 (|i− j|) (6.6), signaling the presence of finite currents between nearest
neighbor sites. In addition, we also find a double-peaked profile of the momentum
distribution defined as the Fourier transform of g1, namely:

N (k) = 1
L

Ø
r

g1 (r) e−ikr , (6.7)

see Fig. 6.5(c) as an example, which implies the spontaneous breaking of the
time-reversal simmetry as we will explain in the following.
Finally, when V is increased and it dominates over U , it is convenient for the system
to acquire a density wave profile, but still keeping phase coherence along the chain.
This means that we have the combination of diagonal long-range order (DLRO), in
the form of a periodic modulation of the density profile, and off-diagonal long-range
order (ODLRO), signaling the presence of a partial frictionless flow of particles,
typical of superfluids: this is exactly the condition for identifying a supersolid. On
top of that, this phase exhibits also the features of a chiral phase, with a non-zero
value of the chiral correlator at long distances and two pronounced peaks in the
momentum distribution, as can be seen again in Fig. 6.5(c). We thus recognize
this phase as a chiral supersolid (CSS) with lattice periodicity, which constitutes
the most relevant result of this project.
We will further elaborate on these chiral phases in the next section of this chapter.

Let us mention the fact that one could expect to observe a thin region with a
chiral Mott insulating phase between the MI and the CSF, as is the case in [112].
However, by analyzing our results we are not able to determine whether there
really is a different phase in between the two we identified or we just witness an
extremely slow transition. Since we are inclined to believe the second option is
correct, we decide to exclude this possible additional phase from our analysis.

6.1.2 Phase diagram at fixed next-nearest neighbor hopping
amplitude

In the case of fixed next-nearest neighbor hopping amplitude |t2| = 1.3 , we vary V
along the x-axis, while U is scanned along the y-axis. For our choice of values, due
to the moderately high absolute value of t2 needed to see the effect of frustration
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Figure 6.4: Phase diagram of the 1D FEBHM at |t2| = 1.3 in the V − U plane.
The color code and the acronyms are the same as Fig. 6.3.

and the emergence of chirality, no Haldane insulating phase appears.
Similarly to the previous case, for low values of U , when the repulsion between
neighbors dominates over the onsite interaction, we find a chiral supersolid. In
the opposite situation, namely for predominant onsite interaction, the system is
instead in a chiral superfluid phase. Finally, by increasing U the system becomes
frozen in a MI phase for low values of V or in a CDW phase when the repulsion
between neighbors is strong enough.

6.2 Characterization of the chiral phases
In this section, we want to focus on the two most interesting states of matter we
found in the phase diagrams of our model, namely the chiral superfluid and the
chiral supersolid, considering the main features that characterize them. In Fig. 6.5
we show some relevant quantities for two exemplary CSF and CSS.
Let us start from Fig. 6.5(a), where the density profile ⟨ni⟩ is reported for a segment
of length 200 sites of an infinite MPS. We see that, while in the superfluid the
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Figure 6.5: Examples of the chiral superfluid (CSF, blue) and the chiral supersolid
(CSS, orange) phases taken for U = 6, |t2| = 1.6 and V = {3.0, 4.5}. Two upper
panels: a) local density and b) superfluid correlator for the two phases computed
over a segment of length 200 sites of an infinite MPS. Two bottom panels: c)
momentum distribution (6.7) and d) structure factor (6.5).

occupation of each site averages 1, the supersolid exhibits a periodic modulation
that gives it an almost perfect ...−2−0−2−0− ... repeated profile. This structure
has the same periodicity as the lattice, for this reason we talk about a lattice
supersolid.
In Fig. 6.5(b), we display the behaviour of the superfluid correlator (6.1) for the two
phases, again for a segment of 200 sites. In both cases, the decay is extremely slow
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and it allows us to claim the presence of ODLRO along the chain. Nevertheless, we
notice strong modulations, especially in the CSS, signaling lower coherence between
nearest neighbor sites and very high coherence between next-nearest neighbor ones.

In the lower panels instead, we move our analysis to the momentum space.
In particular, we have the momentum distribution (6.7) in Fig. 6.5(c) and the
structure factor (6.5) in Fig. 6.5(d). The latter exhibits a peak at k = π in the
case of the supersolid, confirming the spontaneous breaking of the translational
symmetry that implies the presence of DLRO in the system, while no peak is
observed for the superfluid, except for the one at k = 0, which does not signal any
periodicity.
The momentum distribution instead is extremely interesting: in both the phases,
two peaks at k /= 0 are present. More precisely, these peaks are exactly at
k = {π/2 , 3π/2} in the CSS and quite close to these values in the CSF. Due to
this feature, we can say that these two phases are actually chiral. Indeed, in a
simple superfluid (or supersolid) one would observe only a peak at zero momentum,
implying the presence of a single minima in the dispersion relation of the model at
k = 0. Therefore in that case, the time-reversal symmetry is not broken. Instead in
our situation, two symmetric peaks in N (k) corresponds to two symmetric minima
in the dispersion relation, signaling the spontaneous breaking of the time-reversal
symmetry and, as consequence, the presence of finite currents between sites.

6.3 Order parameters along cuts of phase
diagrams

Figure 6.6: Vertical cut at V = 3.7 in the phase diagram of Fig. 6.3.
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Figure 6.7: Order parameters for different values of |t2| and fixed U = 6, V = 3.7.
Top: superfluid correlator, momentum distribution around π/2, parity. Bottom:
chiral correlator, structure factor at π, string. Superfluid correlator, chiral correlator,
parity and string are computed at a distance of 200 sites.

In order to give a more detailed picture, we study now a vertical cut in both
the phase diagrams shown before by looking at all the significant correlators and
order parameters.

First of all, let us consider the phase diagram at fixed onsite interaction U = 6
(Fig. 6.3): we set V = 3.7, see Fig. 6.6, and vary the values of the next-nearest
neighbor hopping amplitude |t2| ∈ [0.0, 2.0], as shown in Fig. 6.7.
Starting from low values of t2, the system is a Mott insulator. Indeed, the super-
fluid correlator g1 (|i− j|) (6.1) decays exponentially and is identically zero at long
distance and the same can be said for the chiral correlator k2 (|i− j|) (6.6). In
this phase, no symmetry is broken: as a consequence, no peak can be seen both
in the momentum distribution N (k) (6.7) and in the structure factor S (k) (6.5).
Instead, we notice a finite values for the parity operator P (6.2), while the string
Oz (6.3) is clearly zero here, so everything is consistent with a MI.
Around |t2| = 0.52, the system undergoes a sharp transition to a charge density
wave, again characterized by exponentially decaying superfluid and chiral correla-
tors. However, in this case we can see a peak at π in the structure factor, whereas
the situation of parity and string operators is reversed with respect to the previous
case, being P vanishing and Oz finite.
Finally, we observe a very slow transition from a charge density wave to a chiral
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supersolid. Here g1 (|i− j|) decays with a power-law, being finite even at long
distance, and k2 (|i− j|) exhibits higher values, in agreement with the presence of
peaks at π/2 and 3π/2 in the momentum distribution. The periodic modulation of
the CDW is kept, as signaled by the structure factor, while both parity and string
are zero.

Figure 6.8: Vertical cut at V = 3.0 in the phase diagram of Fig. 6.4.

Figure 6.9: Order parameters for different values of U and fixed |t2| = 1.3,
V = 3.0. Top: superfluid correlator, momentum distribution around π/2, parity.
Bottom: chiral correlator, structure factor at π, string. Superfluid correlator, chiral
correlator, parity and string are computed at a distance of 200 sites.
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We perform the same analysis in the case of the second phase diagram, where
we have fixed the next-nearest neighbor hopping |t2| = 1.3 (Fig. 6.4). In this case,
we consider a vertical cut for V = 3.0, see Fig. 6.8, and we look at the quantities
of interest for onsite interaction U ∈ [2, 10].
Starting from low values of U , we find a CSS with all its characteristic features,
until a sharp phase transition to a CSF occurs at U = 5. Here we have high values
of superfluid and chiral correlators at long distance, with two symmetric peaks
in the momentum distribution. The expectation value of both parity and string
operators are identically zero and no peak is observed in the structure factor.
Finally, the systems undergoes a very slow transition to a MI, characterized by
an exponential decay of both g1 (|i− j|) and k2 (|i− j|), while no peak is present
in the momentum distribution and in the structure factor. Instead we notice an
arising value of the parity, while the string stays at zero.

6.4 Charge gap

As mentioned before, iDMRG cannot be exploited when one wants to compute
the charge gap (3.5), that was defined in Chapter 3. This quantity is related to
an energy penalty that may be paid when a particle is added to or removed from
the system. However, with the infinite version of the algorithm, we just define the
unit cell and we lack full control over the exact number of particles in the chain.
Therefore, we need to use finite-size DMRG and perform 3 different simulations
for each fixed configuration of the parameters: one by giving as input an initial
state at exact unit filling and two initializing the system away from unit filling by
removing and adding a particle, respectively.
This requires for some technicalities in the simulations, in particular in the regions
of the phase diagrams where we find phases with a periodic modulation, namely
CDW and CSS. First of all, we choose an even number of sites and this forces us to
remove the central defect mentioned in Section 6.1. In order to do that and avoid
the consequent emergence of a double degeneracy in the ground-state, we fix the
number of particles at the boundaries of the finite chain by means of high absolute
values of the chemical potential at those two sites. More precisely, it is sufficient
to modify the model (5.4) by adding a local term either at first or last site that
disfavors the occupation of that site; in our case, we insert the term 100n0, acting
on the first site since we label sites starting from 0.
Furthermore, the finite version of DMRG might produce results affected by finite-
size effects and this can be avoided only by simulating very large systems. However,
this would be extremely costly from the computational point of view; it is then
convenient to perform a scaling towards the thermodynamic limit by running
simulations for systems of different sizes and extracting the actual results from a
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fitting of the output data.

Moving on to the expected results, in insulating phases (MI, HI, CDW in our
case) the charge gap must be finite and they are said to be “gapped phases”. The
reason is that, since these states are insulators, particles are fixed and the additional
hole or particle either breaks the configuration, triggering a phase transition, or all
the other particles have to be redistributed in order to keep the previous structure.
For instance, in the case of a Mott insulator at unit filling, an added particle will
move on top of the singly occupied sites.
On the other hand, in superfluids and supersolids the charge gap is expected to be
zero and these phases are defined as “gapless”. In this case, an additional particle
does not change the state of the system and instead just blends together with the
pre-existing sea of coherently moving particles. This is what we should observe in
our CSF and CSS phases.

Figure 6.10: Value of the charge gap (3.5) for |t2| ∈ [0.0, 2.0] at fixed U =
6 and V = 3.7. Results obtained via scaling of data for different sizes L =
{80, 100, 120, 140, 160} with a 4-th order polynomial, see Fig. 6.11.

In order to confirm the nature of the phases we detected, we consider the charge
gap along the same vertical cut as in Fig. 6.6, 6.7, that is for fixed U = 6 and
V = 3.7. The results are shown in Fig. 6.10 and are obtained from a scaling of
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the data from simulations of chains of length L = {80, 100, 120, 140, 160}. More
precisely, we fitted the data as a function of 1/L to a polynomial function of the
4-th order, f (x) = a x4 + b x3 + c x2 + d x + e, for all values of t2 in the selected
interval. The value of the function at L → ∞, namely the parameter e, is then
taken as the value of the charge gap in the thermodynamic limit. Examples of
these fits for the three phases present along the considered cut are displayed in Fig.
6.11.

Figure 6.11: Examples of scaling analysis for the charge gap in the different
phases. The solid lines represent the fitting functions, while the dots are the values
of the gap at sizes L = {80, 100, 120, 140, 160}. Panel (a): Mott insulator at
|t2| = 0.1. Panel (b): charge density wave at |t2| = 0.9. Panel (c): chiral supersolid
at |t2| = 1.5.

The results are in agreement with our expectations, as the charge gap is finite
in the regions of MI and CDW, while it is zero for the CSS. Nevertheless, a couple
of remarks are needed.
First of all, in the region of the Mott insulator the gap is quite small, especially for
low values of |t2|, see for instance Fig. 6.11(a). Actually, this is coherent with the
fact that, for these points, the superfluid correlator g1 decays exponentially but
still quite slowly for a MI, due to the vicinity to a critical point and the limited
accuracy of the simulations in such a situation. Therefore, the value of the charge
gap is expected to be modest.
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In the second place, we have a first-order transition between the MI and the CDW,
which is quite abrupt, and the charge gap increases rapidly right after the transition
value, located at |t2| ∼ 0.52. Instead, at the transition from charge density wave
to chiral supersolid we observe a smooth decay towards zero of the value of the
gap, which reflects the slow change of the order parameters in this case, as we have
seen in Fig. 6.7. Notice that a similar behavior can be observed in the transition
between the Mott insulator and the chiral superfluid: this leads use to recognize
these transitions as being of the Berezinskii-Kosterlitz-Thouless type [67, 68].
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Chapter 7

Outlook and conclusion

In this work, we first reviewed the theory behind supersolidity, which is an exotic
phase of matter characterized by the coexistence of the properties of superfluids,
featuring a frictionless flow of particles, and of solids, where a periodic modulation
in the local density profile is observed.
Despite being theoretically predicted in 1950s, the existence of such quantum
state has been elusive for many decades. After some unsuccessful attempts, the
experimental realization of supersolidity was achieved unambiguously in quasi-1D
geometries only in 2019, thanks to the developments in the experimental control of
ultracold dipolar gases in optical lattices. These systems are formed by atoms with
a strong magnetic moment, that causes the appearance of a long-range repulsive
interaction, whose presence is fundamental for the emergence of supersolidity.
These experimental observations were obtained in regimes where quantum fluctua-
tions are negligible, so that systems can be correctly described through mean-field
approximations. Since we were interested in the study of systems in a deeply
quantum regime, we needed to resort to numerical simulations. In particular, we
exploited the Density Matrix Renormalization Group (DMRG) algorithm, which
is the most powerful method for the identification of the ground-state phases of
strongly correlated systems. Thus, we reviewed the basics of the algorithm and its
useful reformulation in terms of Matrix Product States (MPS).

After that, we moved to the derivation of the well-known Bose-Hubbard model
(BHM) in one dimension, which takes into account hopping processes between
nearest neighbor lattice sites and onsite interactions between bosons. This model
can be expanded by considering the interaction between nearest neighbor sites,
thus obtaining the extended Bose-Hubbard model (EBHM).
Then, we studied a further enriched version of the EBHM by introducing geometri-
cal frustration into the picture, through the addition of hopping processes between
next-nearest neighbor sites. On top of that, we included also dipolar interactions
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Outlook and conclusion

between particles. We were interested in studying the system at commensurate
fillings and we chose to fix the average filling to 1.
The main goal of our work was to demonstrate that geometrical frustration can
be used as a new physical mechanism to obtain supersolidity in a deeply quantum
regime at integer filling. More precisely, we aimed at detecting a novel chiral lattice
supersolid phase. In our case, chirality consists in a spontaneous breaking of the
time-reversal symmetry, which in turn causes the presence of finite net current
between sites.

Our simulations performed with the infinite version of DMRG allowed us to
build a rich phase diagram for the FEBHM under study. The results highlighted
the existence of three different insulating phases when frustration does not play
an important role: in particular, a Mott insulator, an Haldane insulator and a
charge density wave. Instead, when frustration is relevant, two phases with broken
time-reversal symmetry were observed: an already known chiral superfluid and a
novel chiral lattice supersolid.
The latter constitutes the main achievement of our project, as it marks the discovery
of a new exotic phase of matter, while also confirming that frustration is a useful tool
to induce supersolidity. Moreover, these results are relevant because we witnessed
the existence of a supersolid phase at unit filling, without the need of moving away
from commensurate fillings, and in a regime that takes into account the role of
quantum fluctuations.
It is important to highlight that this is not limited to theoretical studies, as we
also proposed an experimental setup based on the use of Dysprosium atoms, that
allows for the actual observation of the novel supersolid that we detected. In this
setup, hopping amplitudes and interaction coefficients can be suitably tuned in
order to explore the ground-states phase diagram.
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Appendix A

Example script for iDMRG
with TeNPy

1 import numpy as np
2

3 import tenpy
4 from tenpy . a lgor i thms import dmrg
5 from tenpy . models . hubbard import BoseHubbardChain
6 from tenpy . networks . mps import MPS
7 from tenpy . networks . terms import TermList
8

9 import yaml
10

11 import h5py
12 from tenpy . t o o l s import hdf5_io
13

14 from tenpy . models . hubbard import BoseHubbardModel
15 c l a s s BoseHubbardChain_nnn_int ( BoseHubbardModel ) :
16

17 d e f a u l t _ l a t t i c e = " Chain "
18 f o r c e _ d e f a u l t _ l a t t i c e = True
19

20 de f in i t_terms ( s e l f , model_params ) :
21 # 0) Read and s e t parameters .
22 t1 = model_params . get ( ’ t1 ’ , 1 . )
23 t2 = model_params . get ( ’ t2 ’ , 1 . )
24 U = model_params . get ( ’U ’ , 0 . )
25 V1 = model_params . get ( ’V1 ’ , 0 . )
26 V2 = model_params . get ( ’V2 ’ , 0 . )
27 mu = model_params . get ( ’mu ’ , 0)
28 f o r u in range ( l en ( s e l f . l a t . u n i t _ c e l l ) ) :
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29 s e l f . add_onsite(−mu − U / 2 . , u , ’N ’ )
30 s e l f . add_onsite (U / 2 . , u , ’NN’ )
31 f o r u1 , u2 , dx in s e l f . l a t . p a i r s [ ’ nearest_ne ighbors ’ ] :
32 s e l f . add_coupling(−t1 , u1 , ’Bd ’ , u2 , ’B ’ , dx , plus_hc=

True )
33 s e l f . add_coupling (V1 , u1 , ’N ’ , u2 , ’N ’ , dx )
34 f o r u1 , u2 , dx in s e l f . l a t . p a i r s [ ’ next_nearest_neighbors ’ ] :
35 s e l f . add_coupling(−t2 , u1 , ’Bd ’ , u2 , ’B ’ , dx , plus_hc=

True )
36 s e l f . add_coupling (V2 , u1 , ’N ’ , u2 , ’N ’ , dx )
37

38 from tenpy . t o o l s . params import asConf ig
39 from tenpy . networks . mps import b u i l d _ i n i t i a l _ s t a t e
40

41 L = 6
42 va lue s = np . l i n s p a c e ( 2 . 0 , 5 . 0 , 7 )
43 pr in t ( va lue s )
44 t v a l = [ −0.9 , −1.1 ]
45 pr in t ( t v a l )
46

47 f o r t2 in t v a l :
48 f o r V in va lue s :
49 model_params = {
50 ’ t1 ’ : 1 . , ’ t2 ’ : t2 , ’U ’ : 6 . , ’V1 ’ : V , ’V2 ’ : V/8 . , ’

mu ’ : 0 . ,
51 ’L ’ : L ,
52 ’bc_MPS ’ : ’ i n f i n i t e ’ ,
53 ’n_max ’ : 4 ,
54 ’ conserve ’ : ’ bes t ’ ,
55 ’ f i l l i n g ’ : 1 . 0
56 }
57

58 M = BoseHubbardChain_nnn_int ( model_params )
59

60 i f V < 4 . 0 :
61 p_state = [ 1 ] ∗M. l a t . N_sites
62 e l s e :
63 p_state = [ 2 , 0 ] ∗ (M. l a t . N_sites //2)
64

65 p s i = MPS. from_product_state (M. l a t . mps_sites ( ) , p_state , bc=M
. l a t .bc_MPS)

66

67 dmrg_params = {
68 ’ mixer ’ : True ,
69 ’ mixer_params ’ : {
70 ’ amplitude ’ : 1 . e −6,
71 ’ decay ’ : 1 . 5 ,
72 ’ d i s a b l e _ a f t e r ’ : 5
73 } ,
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74 ’max_E_err ’ : 1 . e −9,
75 ’max_S_err ’ : 1 . e −5,
76 ’ max_sweeps ’ : 250 ,
77 ’ min_sweeps ’ : 120 ,
78 ’ N_sweeps_check ’ : 10 ,
79 ’ c h i _ l i s t ’ : {
80 0 : 300 ,
81 20 : 400 ,
82 40 : 500 ,
83 60 : 600 ,
84 80 : 700 ,
85 100 : 800
86 } ,
87 ’ trunc_params ’ : {
88 ’ svd_min ’ : 1 . e−12
89 } ,
90 ’ verbose ’ : True
91 }
92

93 eng = dmrg . TwoSiteDMRGEngine( ps i , M, dmrg_params )
94 E, p s i = eng . run ( )
95

96 data = {
97 ’ energy ’ : E,
98 ’ p s i ’ : ps i ,
99 ’ model_params ’ : model_params ,

100 ’ dmrg_params ’ : dmrg_params
101 }
102

103 t2 = model_params [ ’ t2 ’ ]
104 with h5py . F i l e ( " int_U_6_t2_" + f ’ { t2 : . 2 f } ’ + "_V_" + f ’ {V: . 2 f

} ’ +" . h5 " , ’w ’ ) as f :
105 hdf5_io . save_to_hdf5 ( f , data )
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