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Summary
The main focus of this thesis is the description, and then the application, of a
method involving dimensionality reduction in order to analyse different families
of homologous proteins.

The dimensionality of the space in which the homologous proteins under
study live varies, depending on the specific protein family, in particular, it de-
pends on the number of possible different amino acid residues (q) and the length
of the protein sequences (L). In the course of this study we analyse families with
the same value of q (q=21) and varying L.

To simplify the analysis, the protein sequences are one hot encoded, that
is, each of the amino acid residues that constitute the protein is expressed as
a sequence of q numbers, all of which are zeros except for one 1 placed on a
different position along the q-length sequence depending on the type of starting
residue. The resulting vector is then only composed of zeros and ones and has
dimension qL.

The dataset we are working with is structured as a Multiple Sequence Align-
ment, which can be seen as a matrix containing homologous proteins, belonging
to a given protein family, in its rows. The matrix representing the MSA has
dimensions M × L, with M being the number of sequences in the family and
L the aforementioned length of those sequences. After the process of one hot
encoding, the MSA matrix has instead dimensions M × qL.

To perform the reduction of dimensionality mentioned in the beginning of the
paragraph we use Principal Component Analysis (PCA), this method allows us
to map the qL dimensional data contained in the MSA onto an Nc dimensional
space, identified by the first Nc principal components, while minimising the loss
of information due to the projection. The principal components are computed
from the dataset and the number of dimensions of the reduced space (Nc) can
be chosen to best fit our needs (eg. a graphical representation of the results).

The value of Nc can be modified by retaining a higher or lower number
of eigenvectors of the covariance matrix, which are shown to be the principal
components.

Together with PCA, the Expectation Propagation method is also used, with
the aim of estimating the probability distribution of a sequence that fits the
projection constraints imposed with the use of PCA. the application of the EP
method in this context is, in fact, to find the protein sequence corresponding to
a given projection in the Nc-dimensional space, effectively solving the inverse
problem with respect to the projection performed via PCA.

The utility of the combined use of both the PCA and Expectation Propa-
gation methods comes from the enhanced interpretability (eg. graphical inter-
pretability) of a lower dimensional space, which is also generally easier to work
in, while hopefully retaining the important biological information contained in
the original dataset. Another notable advantage of the use of PCA is the reduc-
tion of the noise of the problem. The advantage of the use of the Expectation
Propagation method is that, owing to its ability to estimate the probability of a
sequence associated to a specific projection, it provides a way through which we
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can better interpret, in the sense of biological interpretation, results obtained
in the reduced dimensional space.

To sum it up, by using PCA and EP to create a two-way mapping between
the full dimensional and the Nc-dimensional space, we are able to take ad-
vantage of the aforementioned positive features coming from the reduction of
dimensionality while still retaining a certain degree of biological interpretability
in the results.

The deciding factor in determining the effectiveness of the method is then
the quality of the mapping, this, together with the results of various analysis in
the reduced dimensional space, is reported in the thesis.

We now summarise some of the results considered in the study.
The analysis of the Potts energy landscape (used to model the fitness of the

sequences) in the Nc-dimensional space leads to a structure formed by wells
positioned in correspondence of the projections of the natural sequences and
curves with higher energy values in the space between the sequences.

The computation of the variation of the Hamming distance, following a dis-
placement on the reduced dimensional space, confirms the intuitive idea of an
approximately linear increasing relation between the two quantities. This kind
of relation applies, in particular, to relatively small displacements in the neigh-
borhood of a starting sequence, as, when the curve approaches the maximum
possible value (the length of the sequence) its behaviour changes.

Finally, results of statistical analysis performed on sets of sampled sequences
show how the method is actually able, despite the approximations, to retain the
biological information contained in the original dataset.
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Chapter 1

Introduction to Principal
Component Analysis (PCA)

In this chapter we give a general introduction to the Principal Component Anal-
ysis method (PCA), which will be at the core of our proposed analysis presented
in the next chapters. This method is first introduced as a way to treat datasets
of large dimensions, via the application of PCA. It is in fact possible to increase
the interpretability of the dataset, by reducing its dimensionality, while minimis-
ing the loss of information due to the transformation. Notice how, when talking
about the dimensions of the dataset, we mean the number of components of the
data itself and not, for example, the number of repeated experiments producing
that piece of data. [4]

The solution for this problem is to look for a new set of uncorrelated variables
obtained as linear functions of the original variables, the obtained directions will
be called principal components (giving the name to the method). To account
for the minimisation of the loss of information we equivalently impose that the
new variables preserve as much as possible the variability of the dataset.[6] The
first principal component for example can in fact be defined as the direction that
maximises the variance of the projected data, the second principal component is
associated with the second highest variance, and so on. The resulting variables
will constitute a new basis using which we can represent the dataset in a new,
lower dimensional, space.[7]

Variables that satisfy such conditions will be obtained as solutions to an
eigenvalue problem, as shown in the next paragraph. [1]

1.1 Computation of Principal Components
We now briefly show how the condition of uncorrelated variables maximising
the variance can be satisfied by solving an eigenvalue problem.

We start by more formally presenting the context of the approximation. The
starting dataset X is in the form of an M ×L matrix, where the M rows can be

7



interpreted as different realisations of an experiment, and the L elements of the
columns can be seen for example as different quantities observed in the course
of each experiment, the reduction of dimensionality operated by PCA applies
to the latter (L). The specific interpretation of M and L in our case study will
be presented in the following chapters.

The next step is the introduction of a transformation mapping each row
vector xi to a new vector ti of size p. Generally, when applying the PCA method,
p is chosen to be smaller or much smaller than L, a more in-depth discussion
about this can be found in the next section, about the general properties of
PCA.

Said transformation can be expressed in terms of a set of vectors wj of
length L, with j = 1, . . . , p. The relation between the vectors wj and the
principal components is the following:

tij = xi · wj i = 1, . . . ,M , j = 1, . . . , p

Our aim is to find the set of wj such that the variance of the dataset along
the principal directions is maximised. [2] We also impose that w must be an
unit vector.

We can write the first vector w1, which will then identify the first principal
component, satisfying the aforementioned conditions as:

w1 = arg max
||w||=1

M∑
i=1

(ti1)
2 = arg max

||w||=1

M∑
i=1

(xi · w1)
2

By reintroducing the matrix X representing the dataset

w1 = arg max
||w||=1

||Xw1||2 = arg max
||w||=1

(wT
1 XTXw1) =

= argmax(
wT

1 XTXw1

wT
1 w1

) (1.1)

The term in parenthesis in the last step of the equation is called Rayleigh
quotient, and is maximised if w1 is the first eigenvector of XTX. [8]

We note how the product XTX can be interpreted as the empirical covariance
matrix, for the application of the PCA method to our case of study we will in
fact use the covariance matrix computed from the dataset.

It can similarly be shown that the remaining principal components are ob-
tained by choosing wj equal to the j-th eigenvector of XTX (of the empirical
covariance matrix).

The obtained results can be summarised as:

T = XO

where O is the matrix whose columns are the eigenvectors of XTX. O is
then a L× p matrix.
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1.2 General properties
Notably, the results of the application of the PCA method only depend on
the dataset itself, in the sense that there is no prior distributional assumptions
made about the variables we are looking for. Coherently with this approach, the
Principal Component Analysis method can be said to be a descriptive method
instead of an inferential one, in this sense PCA can be applied to very different
kinds of problems and different types of data, being able to give clearer insight
on the information encoded in the dataset.

An important note has to be made regarding the choice of the number of prin-
cipal components which will be taken into consideration. In terms of graphical
interpretability of the results the obvious choice is to take the first two principal
components (again, as "first two" we mean the two directions associated with
the highest variance), by doing so it is possible to visualise the projections of the
elements of the dataset on a plane. [3] This kind of visualisation can be particu-
larly meaningful in this setting, owing to the choice of principal components as
directions that maximise variance, in fact, eventual clusters of data projections
will be maximally spread out, facilitating their recognition. Instead, if we choose
two random directions and visualise the projections of the dataset on that plane,
the cluster may substantially overlay, making them indistinguishable.

As said at the start of paragraph 1.1, the number of columns of the matrix
O (p), which corresponds to the number of retained eigenvectors of the covari-
ance matrix, is usually chosen to be smaller than L. In this case, the projection
onto the p-dimensional space is an approximation of the original dataset. In
the choice of the number of retained components we can also take into consid-
eration a measure of the quality of this reduced dimensional approximation. A
possible measure is the variability associated with the set of retained principal
components, that is the fraction of variance which is explained by the chosen set.
Explicitly writing the form of the fraction of explained variance for component
i:

EVi =
λi∑M
i=1 λi

Given this kind of measure, one can choose to pick a set of principal compo-
nents such that the quality of the approximation is over a certain threshold or,
if the number of components is limited by the need for a graphical visualisation
the explained variance can provide an estimation of the quality of the results.

Graphs for the explained variance regarding our subject of study will be
presented in the next chapters.
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Chapter 2

Biological introduction

In this section, we will present an introduction to the main biological aspects
that will be treated in this study, in particular sec. 2.1 briefly describes the
structure of proteins and their relevance in biological processes, section 2.2 re-
gards an introduction to Multiple Sequence Alignments (MSA) and finally, in
2.3 we will discuss the derivation of the Potts model form which will be used
throughout this study to assess the fitness of a given sequence.

2.1 Proteins
Proteins are one of the most fundamental building blocks for the biological
processes of any living being. Their function widely varies, including acting as
catalysts in a large number of processes (enzymatic function), giving structure
to cells (cytoskeleton), and transporting molecules, among others. [15] [16]

In agreement with this huge range of functions, we find many different kinds
of proteins, differing from each other in structure and composition. The infor-
mation necessary to "build" each of those proteins is coded in the genes. Despite
all of these differences, all proteins can be said to share a general structure. Ev-
ery protein is in fact a sequence of amino acids [9] [10], organic compounds
containing amino(−NH2) and carboxylic acid (−COOH) groups in addition
to which we also find a side chain that differentiates the hundreds of different
known amino acids. Among those, 22 are "proteinogenic", that is, they con-
stitute the proteins found in every living being, we also specify that only 21
of those amino acids are found in eukaryotes (20 are normally contained in the
genetic code, the other one is obtained via a special translation mechanism).

In the structure of the proteins, amino acids are bound together by a pep-
tide bond, that is a covalent bond linking the carbon of the carboxylic acid of
one amino acid and the nitrogen of the amino group of the other. Multiple
amino acids linked together create a polypeptide, which effectively constitutes
the backbone of the protein, with the side chain specific to each amino acid
positioned on the side of this backbone, as shown in figure 2.1
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Figure 2.1: Illustration of the primary structure of the protein, image taken
from https://en.wikipedia.org/wiki/Protein

Different amino acids can also be classified according to their properties,
taking into consideration factors such as hydrophobicity/hydrophilicity, charge,
and size. Those properties influence and determine important characteristics
such as protein structure and protein-protein interaction. [11] [12]

In particular, we can expand on the concept of protein structure. Probably
the most important aspect that needs to be noted about this is the link between
the structure and the function of a protein, the possibility to partially infer the
utility and the role of a protein in a specific process by observing its structure
is enough to generate interest around its analysis.

The structural organization in proteins can be in general divided into differ-
ent layers:

• Primary structure: consists in the actual sequence of amino acids that
forms the backbone of the protein

• Secondary structure: local structures stabilized by hydrogen bonds, most
commonly α− helices and β − sheets

• Tertiary structure: The 3D conformation of the protein, which depends on
how the protein folds on itself due to long range interaction between amino
acids, this structure thus strongly depends on the chemical and physical
properties of the amino acids constituting the chain. The folded state of
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the protein is called native state, some proteins fold into their native state
autonomously while others need so called molecular chaperones.

The tertiary structure of the protein in particular is strongly related to
its function, thus the problem of predicting the 3-dimensional folding of a
given protein is widely studied

• Quaternary structure: structure formed by different protein molecules
which are linked together via inter protein interactions forming a protein
complex

Figure 2.2: Representation of the different levels of protein structures introduced
in 2.1. Image taken from https://theory.labster.com/protein-structure/
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2.2 Multiple Sequence Alignments
With time, proteins undergo changes in their structure due to mutations of
various natures, this can result in the existence of sequences that are different
from each other but share a common ancestor, those sequences are said to be
homologous [21]. In the context of the alignment, differences among homolo-
gous proteins are modeled through three possible moves: insertion, deletion and
substitution of single amino acids. The effect resulting from the applications
of many of these moves to a starting sequence during the course of time is the
difference we see between sequences of homologous proteins. Notice how per-
forming an insertion or a deletion on a protein sequence varies its length, to be
able to always compare sequences of the same length we thus need to introduce
a gap "-".

Still, homologous proteins generally have similar structures, consequently
similar functions, and can be thought to constitute a protein family. We can
interpret these homologous proteins as different realizations of a single protein,
this intuition of course suggests the possibility to employ statistical methods in
the analysis of the protein families.

The data structure that follows from this idea and allows for the application
of different methods of analysis to a protein family is the Multiple Sequence
Alignment (MSA) [17], which can be modeled as a matrix in which each row is
a protein sequence. More formally we can say that the matrix has dimensions
M × L, where M is the number of sequences in the alignment and L is their
length, and each row can be written as a vector Si = (si1, s

i
2, . . . , s

i
L), i =

1, . . . ,M . Each sij lives over a discrete alphabet of symbols, each representing
an amino acid. Generally the number of symbols is 21, 20 canonically coded(?)
amino acids, to which we add one symbol encoding the gap, those symbols can
be mapped to integer numbers 1, . . . , q, with q = 21 as just stated. In this case
the MSA will be represented as a M × L matrix with numeric entries.

There exist different methods through which the actual alignment of the
protein sequences (rows of the MSA) is constructed [18] [19], our aim is in
general to find an alignment that maximises some score. Those methods will
not be discussed in this introduction as it goes beyond the scope of this work.

We now introduce two quantities, which will be treated in this work in the
following chapters, deriving from basic statistical analysis performed on the
Multiple Sequence Alignment, and discuss their relevancy regarding biological
information. {

pi(a) =
1
M

∑M
m=1 δ(a, s

m
i )

pij(a, b) =
1
M

∑M
m=1 δ(a, s

m
i )δ(b, smj )

(2.1)

where pi is the single-site frequency, that is, the normalised count of repeated
amino acid a in column i of the alignment, and pij is the two-site frequency, the
normalised count of the times the two amino acids a and b concurrently appear
in column i and j respectively. The δ used in eq. [2.1] has the usual form:
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Figure 2.3: Representation of the structure of an MSA. Image taken from
https://en.wikipedia.org/wiki/Multiple_sequence_alignment

δ(a, b) =

{
1 a = b

0 a ̸= b

An analysis of the form of these two quantities computed from the MSA
can reveal important and interesting biological information about the protein
family.

Considering, for example, the single site frequency pi, if we find that this is
noticeably polarised around specific values of a, that is, we can observe several
amino acids of type a along the column i of the alignment, this suggests that,
in the family under study, amino acid a tends to be conserved along the process
of evolution the protein.

From the point of view of the biological function of the protein, this means
that amino acid a in position i probably plays a key role, thanks to its chemi-
cophysical properties, in the execution of the protein functions.

Two-site frequency pij can instead be related to the concept of coevolution
of amino acid residues. Coevolution of residues is an essential process in the
shaping of a protein , by understanding which residues coevolve it is possible
to make better assumptions regarding a protein’s shape and the functions it
carries out, and even helps in identifying substitutions that may lead to desired
changes in the function of the protein [22].

The kind of observations we can make by analysing the two site frequencies
can regard, for example, if two amino acid residues are very often found together
in two given sites, or if with the variation of one residue due to mutations,
another one tends to change as well. This kind of relation hints at the possibility
of the two residues being in contact in the 3D structure of the protein or generally
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working together to ensure the correct "behaviour" of the protein in terms of its
functionality.[23] [25] So that when one residue mutates, the functionality of the
protein is hindered, unless the mutation reverses or the other residue undergoes
a suitable mutation as well.

We can of course practically analyse correlations among sites of the protein
sequences by observing the difference between pij and pipj , this difference, and
thus the correlations, is zero if pij = pipj , that is, if the two sites are indepen-
dent.

It is important to specify, though, how even in the case of non zero correla-
tions it cannot be said that the amino acid residues in exam certainly coevolve,
as the correlations might arise from indirect influence, more refined statisti-
cal methods are used to solve this problem, distinguishing possibly coevolving
residues from ones that are only linked indirectly.[24]

2.3 Potts Energy
In this section, we introduce the Potts model and its use in the course of our
study.

The general idea leading to the use of the Potts model in this context, is the
need for a global model able to estimate the strength of a direct contact between
two residues of the protein sequence. This kind of method is generally called
Direct Coupling Analysis (DCA) and it is used in several different applications
such as the inference of protein residue contacts or, as in our case, the modelling
of a fitness landscape. [29] [30] In the context of proteins, the Potts model is
shown to outperform local measures of correlations, such as Mutual Information
(MI) [27]

To determine the form of the probability of a sequence within this model,
we look for the probability distribution P (S) that maximises entropy (following
the principle of maximum entropy) while reproducing the empirical observations
coming from the dataset [31], in our case, those observations are the one site
and two site frequencies introduced in the previous section (eq. [2.1]).

Explicitly writing the conditions we just mentioned:{
pi(a) =

∑
{S} P (S)δ(a, si) = Pi(a)

pij(a, b) =
∑

{S} P (S)δ(a, si)δ(b, sj) = Pi,j(a, b)
(2.2)

together with equations 2.2 the normalisation condition for P (S)

∑
{S}

P (S) = 1

must also be imposed.
Recalling that our aim is to find P (S) such that the entropy is maximised,

we report the usual form of the Shannon entropy of the distribution:

15



S[P ] =
∑
{S}

−P (S) logP (S)

by imposing the constraints eq. [2.2] and the normalisation condition with
the use of the Lagrange multipliers formalism, we finally find the expression of
the functional we need to optimise:

F [P ] = −
∑
{S}

{
P (S) logP (S) +

∑
i

λi(si) [Pi(si)− pi(si)] +

+
∑
i<j

λij(si, sj) [Pij(si, sj)− pij(si, sj)] + Λ [1− P (S)]
}

(2.3)

The form of the probability distribution P (S) is now obtained as the solution
of

δF [P ]

δP
= 0 (2.4)

By identifying λi(si) = hi(si) and λij(si, sj) = Jij(si, sj), the resulting form
of P is

P (S) =
1

Z
exp

{∑
i

hi(si) +
∑
i<j

Jij(si, sj)

}
(2.5)

where Z =
∑

{S} exp

{∑
i hi(si) +

∑
i<j Jij(si, sj)

}
is the partition function

ensuring the normalisation of the probability distribution.
We can interpret eq. [2.5] as an equilibrium Boltzmann distribution, conse-

quently defining the Hamiltonian:

H(S) = −
∑
i

hi(si)−
∑
i<j

Jij(si, sj) (2.6)

This energy function is the generalised Potts model. The calculations shown
in this section only derive the functional form of the Hamiltonian, the actual
values for the parameters h and J must be inferred from the dataset through
different possible methods.

In the context of our study, assuming the values of the parameters as given,
eq. [2.6] allows us to assign an energy value to a given protein sequence, pro-
viding an estimated measure of its fitness. [28] The energy landscape around
a sequence, which takes into account the possible variations occurring to the
protein, has in fact been shown to be informative about the effects of mutations
on the protein’s functionality. [26]
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Chapter 3

Application of PCA method
to our case of study

We now discuss the application of the Principal Components Analysis method
described in Chapter 1 to our specific case of study, that is Multiple Sequence
Alignments (MSA) of various protein families. After this, we will show some of
the results obtained through this method.

The starting dimensionality of our problem varies, as of course it is linked
to the specific family we are working with. In particular, the dimensionality of
the actual problem we are working with will depend on the length of the chosen
protein sequence (which in our analysis is the same for all sequences in a given
family) and the possible number of symbols for each position in the sequence.
We will denote as L the length of a sequence in a given family and with q the
number of possible symbols in each position (in our case q = 21). By one hot
encoding the sequences we can consider both of those factors just considering
the length of the one hot encoded vector. The process of one hot encoding in
this case of course consists in the transformation of an L-dimensional sequence
into a higher dimensional (qL) one by writing each symbol as a sequence of
length q composed of only zeros and a one in the position corresponding to the
value of the symbol we are considering.

Following what we said in chapter one, our aim is now to reduce the di-
mensionality of the problem from the starting q × qL dimensions to a number
Nc of dimensions. To do so, we introduce a linear transformation of the data,
where the projection matrix O has size Nc × qL. In particular, our choice is
to project the data into the first Nc components of the PCA space: therefore,
the projection matrix encodes the first Nc eigenvectors of the covariance matrix
computed from the MSA.

y = Ox (3.1)

where x ∈ {0, 1}q×L is the starting one hot encoded sequence and y is the
Nc dimensional vector we wanted to obtain.
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Once the Nc dimensional vector is obtained it is interesting to observe how,
if Nc = 2 (otherwise we can consider the first two coordinates), the projections
of the one hot encoded sequences in the starting natural alignment are dis-
tributed in this reduced dimensional space. We show these results for different
protein families in the figure 3.1, where each subfigure depicts the density of the
projections in the plane identified by the first two principal components for the
various families

(a) PF14 (b) WW

(c) PF00595 (d) PF13354

Figure 3.1: Density of the projections for four different protein families MSA

We note how these projections often form clusters, which, in the context of
protein sequences, are observed to separate according to the functionality or
phylogenetic relationship among sequences.

This result highlights the usefulness of dimensionality reduction, as the trans-
formation of high-dimensional data in a low-dimensional representation often
allows for a higher degree of interpretability with respect to the starting prob-
lem.

The reported images are also an example of the advantages, regarding the
separation of clusters, carried by our choice of using the principal components,
and their link to the variance of the dataset (see chapter 1 for a more in depth
discussion).
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3.1 Explained Variance
Another aspect we discussed in the theoretical introduction in chapter 1 and
that we now practically present is the concept of the explained variance. The
behaviour of the explained variance for the different protein families just intro-
duced is depicted in figure 3.2

(a) PF14 (b) WW

(c) PF00595 (d) PF13354

Figure 3.2: In the graphs the percentage of explained variance associated with
each principal component is shown in blue, the plot of the cumulative of the
explained variance is instead depicted in red

Note that the portion of the x-axis that is shown has been chosen in such a
way that the cumulative curve reaches at least 80%, the remaining components,
depending on the protein family in analysis, may be numerous and contribute
only negligibly to the total explained variance compared with their number.

The chosen protein families are the same as in the previous graph. In this
context, it is useful to explicitly state the values of L for the different families.
For PF00014 (called PF14 in the images) L = 53, for PF00397 (WW domain)
L = 31, for PF00595 L = 82 and for PF13354 L = 202.

The number of principal components we are going to keep will vary depend-
ing on the protein family and on the different applications we will be focusing
on, the chosen value of Nc will be specified in each different case.
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By then looking at the graphs we have just shown it will then be possible to
assess the percentage of explained variance in that specific case.
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Chapter 4

Introduction to Expectation
Propagation (EP)

Generative models as solutions of inverse problems in re-
duced space
Having now discussed the process through which we reduce the dimensionality
of our system, the next step is the description of the analysis we will perform
in the obtained lower dimensional space.

Given that, as previously mentioned, in the case of proteins the first eigen-
vectors can cope with a classification of the original dataset into interpretable
clusters that separate according to the functionality or phylogenetic relation-
ship among sequences. We thus assume that sequences belonging to one of the
retrieved clusters have specific properties and differ from sequences of other clus-
ters. The question we would like to ask is: Can we generate sequences revealing
specific properties given only information in the reduced space?

4.1 Inverse problem in the reduced space
Recalling what we described in Chapter 1, the operation of transforming the
original data in a low-dimensional representation can be formalized as a matrix
product of the kind

y = Ox (4.1)

where x is the qL-dimensional vector containing one of the instances of the
original data, O is the Nc×qL rotational matrix associated with the transforma-
tion, and y is an Nc-component transformation of the original instance. In the
case of the principal component analysis of protein sequences x ∈ {0, 1}L×q is
the one-hot encoding of a sequence of length L in an alphabet of q symbols, and
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the columns of O contain the first Nc eigenvectors of the sequence covariance
matrix.

Mathematically speaking, we can rephrase the inverse problem as follows:
Given a projection y, namely a low-dimensional representation of an existing
sequence, is it possible to generate sequences satisfying the linear relationship in
Eq. (4.1)? Using Bayes theorem we formally define an a posteriori probability
of the type

P (x|y) ∝ P (y|x)P (x) (4.2)
∝ I [y = Ox]P (x) (4.3)

where P (x) is the prior probability over the target variables.
I introduced in eq. 4.3 is the indicator function, restricting the values of y

to respect the projection constraints.
We first relax x to a real variable and we then set the prior probability to

enforce (i) the binary nature of the original variables and (ii) the constraints
carried by the one-hot encoding. Indeed, given a vector x one can retrieve a
sequence only if, in each of the q−blocks composing x, only one component is
equal to one. This is equivalent to saying that the sum of the variables belonging
to each of the blocks must be one. Formally, we can define a vector 1 = {1}L,
and a matrix

A =



1, 1, . . . , 1︸ ︷︷ ︸
q−block

. . . 0 0

0 1, 1, . . . , 1︸ ︷︷ ︸
q−block

. . . 0

...
. . .

...
0 0 0 1, 1, . . . , 1︸ ︷︷ ︸

q−block


such that

Ax = 1 (4.4)

The prior is then given by

P (x) = I [Ax = 1]
∏
i

[ρδ (xi = 1) + (1− ρ) δ (xi = 0)] (4.5)

where ρ = 1/q. Sampling from P (x|y) would provide sequences satisfying the
constraints in the low-dimensional space but, unfortunately, considering that in
general Nc ≪ N , the target probability is hard to determine.
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4.2 Approximate solution through Expectation
Propagation

We aim at approximating the probability distribution in Eq. (4.3) as a multi-
variate Gaussian density. Before going into the details of the approximation, we
can notice that the two linear constraints in Eqs. (4.1)(4.4) can be collected in
a unique system of linear equations involving the x−variables and a Gaussian
elimination of the matrix rows can be applied. As a consequence, we end up
with two sets of variables, an independent set and a dependent set, of Ni and
Nd variables respectively, linked by the linear operation

xd = −Fxi + z (4.6)

where the entries of F and z are the result of the Gaussian elimination operation.
The exact a posteriori probability is therefore given by

P
(
xd,xi

)
∝ I

[
xd = −Fxi + z

] ∏
α∈{i,d}

∏
j

[
ρδ

(
xα
j = 1

)
+ (1− ρ) δ

(
xα
j = 0

)]
(4.7)

We can then resort to a Gaussian approximation of the overall set of variables

Q
(
xd,xi

)
∝

Ni∏
j=1

e
− 1

2di
j
(xi

j−ai
j)

2 Nd∏
j=1

e
− 1

2dd
j
(xd

j−ad
j )

2

(4.8)

= e
− 1

2

[
(xi−ai)

T
Di(xi−ai)+(xd−ad)

T
Dd(xd−ad)

]
(4.9)

that using Eq. (4.6) becomes a function of the free variables only

Q
(
xi
)
∝ e

− 1
2

[
(xi−µ)

T
Σ−1(xi−µ)

]
(4.10)

for {
Σ−1 = Di + FTDdF

µ = Σ
[
Diai + FTDd

(
z − ad

)] (4.11)

The parameters of the approximation encoded in the (diagonal) matrices
and vectors

{
Di,Dd,ai,ad

}
are determined by a fixed point set of equations

analyzed in the following section. Note that from Eqs. (4.6)(4.10) one can
determine the one-point and two-point statistics of both sets of variables as

〈
xi
j

〉
Q
= µj〈

xd
j

〉
Q
= [−Fµ+ z]j

〈
xi2

j

〉
Q
−

〈
xi
j

〉2
Q
= Σjj〈

xd2

j

〉
Q
−
〈
xd
j

〉2
Q
=

[
FΣFT

]
jj

j =1, . . . , Ni

j =1, . . . , Nd

(4.12)
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4.2.1 Moment matching
Let us assume to be interested in the computation of the marginal probability
of a specific variable, i.e. x. For the sake of simplicity, let us consider it as an
independent variable. Given the full multivariate in Eq. (4.8), we can get a
Gaussian marginal of the type

Q
(
xi
j

)
=

∫
dNdxd

∫
dNi−1xi

/xi
j
Q
(
xd,xi

)
(4.13)

As an alternative, one may consider part of the exact prior in Eq. (4.7)
involving the xj-variable: let us define the tilted distribution associated with the
target variable as an approximation where we use the approximating Gaussian
densities for all variables except xj , times the exact prior enforcing the binary
nature of the variable

Q(j,i)
(
xi
j

)
∝

[∫
dNdxd

∫
dNi−1xi

/xi
j
Q
(
xd,xi

)
e

1

2di
j
(xi

j−aj)
2
]
×

×
[
ρδ

(
xi
j = 1

)
+ (1− ρ) δ

(
xi
j = 0

)]
The integral within the parenthesis will give a univariate Gaussian density,

the so-called cavity distribution Q\j,i (xi
j

)
, that we parametrize by a mean µ\j,i

and a variance Σ\j,i. Let us consider now the general case of a variable xα
j for

α = {i, d}; the tilted distribution and the univariate Gaussian can be computed
respectively as

Q(j,α)
(
xα
j

)
∝ e

− 1

2Σ\j,α (x
α
j −µ\j,α)

2 [
ρδ

(
xα
j = 1

)
+ (1− ρ) δ

(
xα
j = 0

)]
(4.14)

Q
(
xα
j

)
∝ e

− 1

2Σ\j,α (x
α
j −µ\j,α)

2

e
− 1

2dα
j
(xα

j −aα
j )

2

(4.15)

Since part of the exact prior is encoded in the tilted distribution, we may
assume that this approximation will be more accurate than Eq. (4.13); this
observation can be exploited to tune the parameters

(
aαj , d

α
j

)
. Ideally, we aim

at getting the best set of parameters such that Eq. (4.15) is as close as possible to
the tilted in Eq. (4.14); formally we can minimize the Kullback-Leibler distance
between the two. [32] The explicit computation is reported in Appendix A. The
result of the minimization is the moment matching condition:

〈
xα
j

〉
Q

=
〈
xα
j

〉
Q(j,α)〈

xα2

j

〉
Q

=
〈
xα2

j

〉
Q(j,α)

Since this holds for all variables, we get a set of fixed point equations that
can be used to iteratively update the unknown parameters of the approximation{
Di,Dd,ai,ad

}
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dαj =

(
1

⟨xα2
j ⟩

Q(j,α)−⟨xα
j ⟩2Q(j,α)

− 1
Σ\j,α

)−1

aαj = dαj

[〈
xα
j

〉
Q(j,α)

(
1
dα
j
+ 1

Σ\j,α

)
− µ\j,α

Σ\j,α

] (4.16)

This is a very general result; the details of the problem only enter in the
type of prior we are considering and, therefore, in the computation of the first
and second moments of the tilted distributions. Note that, in principle, one
has to compute Ni +Nd Gaussian integrals to get the parameters of the cavity(
µ\j,α,Σ\j,α) for all j′s of the two sets, but this costly operation can be skipped

by noting that the cavity parameters are linked to the parameters of the full
Gaussian distribution in Eq. (4.10) by


Σ\j,i =

Σjj

1−Σjj(di
j)

−1

µ\j,i =
µj−ai

jΣjj(di
j)

−1

1−Σjj(di
j)

−1


Σ\j,d =

[FΣFT ]
jj

1−[FΣF]jj(dd
j )

−1

µ\j,d =
[−Fµ+z]j−ad

j [FΣFT ]
jj
(dd

j )
−1

1−[FΣFT ]jj(dd
j )

−1

(4.17)

4.3 Generative EP
Given a particular instance, i.e. a natural sequence x(n), we can devise an
Expectation Propagation approximation of P

(
x|y(n)

)
. At convergence, we can

use the approximate Gaussian in Eq. (4.10) to sample the independent variables
and then, using Eq. (4.6), we can obtain the associated dependent variables.
Let us call the final result as the sample x(t) composed of

x(t),i ∼ N(n) (µ,Σ)

x(t),d = −Fx(t),i + z

The quality of the sampled sequences depends on (i) the number of compo-
nents Nc used to obtain the projections and, possibly, (ii) the “temperature” at
which the sampling is performed. Indeed, one can use

x(t),i ∼ N(n) (µ, TΣ)

x(t),d = −Fx(t),i + z

for T ̸= 1.
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Chapter 5

Application of the
Expectation Propagation
(EP) method

In this chapter we will discuss the results obtained via the implementation of
the method described in chapter 4. In particular the scope of this section is only
to evaluate how well the method is able to generate qL dimensional sequences
starting from Nc dimensional projections, while tweaking the controllable pa-
rameters of the method. Leaving the actual analysis of the protein families and
the distribution of the sequences in the lower dimensional space to the next
chapters.

We start by considering the Hamming distance between the starting natural
sequence and the sequence obtained from the application of the Expectation
Propagation method on the Nc dimensional projection of the starting sequence.
This is done for different values of Nc and the result is shown in figure 5.1

(a) PF14 (b) WW

Figure 5.1: Hamming distances of the sampled sequences compared to the start-
ing natural sequences
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The results, as expected, show that for an increasing Nc the Hamming dis-
tance decreases, as the "reconstruction" of the original sequence improves. For
some value of Nc the Hamming distance clearly goes to zero, marking the thresh-
old over which we observe a perfect reconstruction of the original sequence. The
graphs just shown depict an average of the behaviour of 6 randomly picked se-
quences. We now focus on two of the protein families illustrated in Chapter 3,in
particular, we will now focus on PF14 and PF397 (WW domain)

To give some context before the results shown in the next graphs, we first
illustrate the distribution of the energy of the natural sequences for both PF14
and WW alignment:

(a) PF14 (b) WW

Figure 5.2: Distribution of Potts energies of the natural sequences for PF14 and
WW

We now show graph similar to the one shown in figure 5.1, regarding instead
the difference in terms of Potts energy between the sequences obtained via the
application of EP and the natural sequences, results are illustrated in figure 5.3

(a) PF14 (b) WW

Figure 5.3: Energy difference between the sampled sequences and the starting
natural sequences

The results are coherent with what we already observed in Figure 5.1 regard-
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ing the Hamming distance. In this case, the energy of the sequence obtained
with the application of EP tends to the energy of the starting natural sequence,
as in the case of the previous graph we obtain a perfect reproduction for Nc

larger than some threshold that we will call N∗
c , this value clearly varies de-

pending on the protein family we are considering and will be important in the
next chapters to identify the point in which we are operating along the working
range of the method.

We also notice how, in the plots just shown, energy values for a small num-
ber of Nc are lower than the energy of the starting natural sequence. This is
an interesting recurring behaviour, as the obtained sequences, despite the good
results in terms of Potts energies, actually correspond to projections in the two
dimensional PCA space which are not close to the projections of the starting
natural sequences and are not distributed in a way which seems coherent with
the clusters formed by the projections of the sequences in the MSA under anal-
ysis, as shown in figure 5.4.

(a) PF14 (b) WW

Figure 5.4: The projections of the obtained sequences with better energy than
the natural sequences shown in figure 5.3

The points of the scatter plot shown in the figure represent the projections on
the Nc-dimensional space of the sequences obtained from the application of the
EP method on the projections of the same natural sequences used to compute
the plot in figure 5.3. In particular, since we are interested in the projections
of the obtained sequences that display a lower Potts energy with respect to the
starting natural proteins, we chose sequences obtained for Nc = 6 in the case of
PF14 and Nc = 2 for WW. Those values correspond, in fact, to the portion of
the plots in figure 5.3 in which the energy difference is smaller than 0.

We can observe how those projections are indeed positioned out of the area
occupied by the clusters of projections of the natural sequences of the alignment.
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5.1 Application of generative EP
Much in the same way we can study the results obtained through the generative
EP approach described at the end of chapter 4. In this case, another variable
apart from Nc can be modified, that is the "temperature" T . In figure 5.5
we show once again the difference in Hamming distance between natural and
sampled sequences for different protein families

(a) PF14 (b) WW

Figure 5.5: Hamming distances of the sampled sequences with respect to the
starting natural sequences, the colour shown in the graph represents the Ham-
ming distance

and the difference in terms of Potts energies is shown in figure 5.6 . As
in the case of the previous graphs we represented the energy of the sampled
sequences minus the energy of the starting natural sequences, so that a negative
value means that the energy of the sampled sequence is lower with respect to
the natural sequence.

(a) PF14 (b) WW

Figure 5.6: Energy difference between the sampled sequences and the starting
natural sequences, the colour shown in the graph represents this Potts energy
difference

In figures 5.3 and 5.4 the existence of a critical value of Nc, identifying the
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threshold over which we obtain a perfect reconstruction of the original sequence
starting from its projection in the reduced dimensional space, is even clearer
than in the graphs shown in the previous paragraph. This value of Nc is gen-
erally close to the value of L and doesn’t seem to vary for different values of
T.

The influence of T becomes clearer in the range of Nc smaller than N∗
c , with

an higher temperature causing a worsening of the obtained results.
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Chapter 6

Results for several protein
families

We now show some of the results obtained with the application of the previously
described methods to some of the protein families introduced in chapter 3 where
we described the results obtained through the application of PCA.

As we saw in the chapter about the application of the EP method to our
case, the quality of the reconstruction of the starting sequence and its con-
sistency largely depends on the parameters T and (especially) on the number
of dimensions of the reduced-dimensional space on which we projected the se-
quences in the context of Principal Components Analysis, that is what we called
Nc. Depending on which point of the working range of EP application we showed
in chapter 6 we decide to operate in, different results can be obtained. Firstly
we focus on the results for values of Nc smaller than N∗

c , where N∗
c is the crit-

ical valuefor Nc we introduced in chapter 5, in this case the application of the
method is mainly sampling, starting from the natural sequences in the original
alignment we project them onto the Nc-dimensional space as described in chap-
ter 3, compute, using EP, the probability distribution of the original sequence
and use it to generate a given number of sampled sequences. In the following
we shall present the main features of the results obtained in this context.

6.1 Analysis of the statistics of the sampled se-
quences

To start we show a more complete depiction of the actual distribution of the
variables considered in the graphs regarding the working range for the EP algo-
rithm, as in that case only partial information in conveyed . For example, the
distribution of the Hamming distance between the sampled sequences and the
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starting (natural) sequence is shown in figure 6.1

(a) PF14 (b) WW

Figure 6.1: Hamming distances of the sampled sequences with respect to the
starting natural sequences

each of those graphs again referring to PF14 and WW families was done
considering 50 starting sequences and computing 500 samples using the distri-
butions obtained via the EP algorithm at Nc equal to 40 for PF14 and 31 for
WW domain, with T equal to 2 for both families

Similarly, we show the graph regarding the difference in terms of Potts en-
ergies between the sampled sequences and the starting (natural) sequence

(a) PF14 (b) WW

Figure 6.2: Potts energy difference between the sampled sequences and the
starting natural sequences

All of the graphs in figures 6.1 and 6.2 are clearly peaked around 0, repre-
senting the case in which we manage to sample exactly the same sequence whose
projection we started from. We will briefly return to these results in the next
section about walks, as at that point the reason why the graphs take this form
will be clearer.

A first way to test the quality of these results is comparing the histograms
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shown in figures 6.1 and 6.2, with histograms obtained in the same way but
that are instead computed using randomly generated sequences of comparable
Hamming distance from the natural sequences. This is depicted in figure 6.3

(a) PF14 (b) WW

Figure 6.3: Comparison of the energy differences for the sampled sequences and
of the randomly generated sequences

it is clear how the distribution of the energy is much better (the average
energy is lower) in the case of the sequences generated via the application of
PCA and EP with subsequent sampling than in the case of randomly generated
sequences. This tells us how the method can retain the important biological
information about the protein sequence (so it keeps a low Potts energy) when
"passing" through a reduction of dimensionality as imposed by PCA.

6.1.1 Distribution of samples’ projections in the first two
coordinates of the reduced dimensional space

Given the aim of the application of PCA and EP in this regime, that is, sampling,
it is interesting to analyse the projections of the sequences obtained from said
sampling, on the Nc dimensional space, comparing it with the original Nc-space
distribution of the projections of the natural sequences. It is evident how some
of these projections cannot be represented fully, particularly the ones for which
Nc > 3. In those cases we will represent the first two coordinates, that is the
ones that exhibit the clusterization in the projection of the natural sequences
shown in chapter 4.

These results are illustrated in figure 6.4.
the graphs were done in the same conditions as the previous ones, starting

from the same 50 natural sequences and computing 500 samples at the same
values of Nc and T . We see how the samples’ projections are mainly spread
around their respective starting sequence, in the sampling we thus retain the
information regarding position in Nc-dimensional space.

As before, we now compare these results with the same graphs obtained
using random sequences of comparable Hamming distance with respect to the
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(a) PF14 (b) WW

Figure 6.4: Comparison of projections of the sampled sequences and of the
natural sequences

starting sequence. This is shown in figure 6.5

(a) PF14 (b) WW

Figure 6.5: Comparison of projections of the randomly generated sequences and
of the natural sequences

It is clear how in this case all information regarding the position of the
starting sequence is lost.

Another notable feature of the sampled alignment is the autodistance of
its sequences, that is the Hamming distances between each of the sampled se-
quences, and its comparison with the autodistance in the starting (natural)
alignment.

We can visualise the autodistances of an alignment as a matrix D of di-
mensions M ×M in which the entry on the i-th row and j-th column is equal
to the Hamming distance between the i-th and the j-th sequences of the MSA,
that is, the i-th and j-th rows of the matrix representing the alignment. All of
the entries of D (except for the ones on the diagonal) are then plotted as an
histogram.

We expect to reproduce a similar behaviour for the autodistances of the two
alignments.
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The two behaviours again for PF14 and WW domain are represented in fig-
ure 6.6, which are simple histograms of the computed autodistances representing
explicitly each value of the autodistance for both the natural and sampled align-
ment.

(a) PF14 (b) WW

Figure 6.6: Autodistances of the original alignment and of the sampled align-
ment

The obtained distribution of the autodistances in the case of the sampled
alignment is similar to the one obtained from the natural sequences, in this
case, the results were obtained starting from 200 sequences and sampling 100
sequences for each of them at values of Nc equal to 40 for PF14 and 31 for WW.

As we did in the case of the variation of energy, also in this context a compar-
ison with the autodistance computed on an alignment of randomly generated
sequences can be useful to verify the quality of the obtained results. This is
shown in figure 6.7

(a) PF14 (b) WW

Figure 6.7: Autodistances of the original natural alignment, the sampled align-
ment and of the random one
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6.1.2 Single site and two site frequencies
An important check, regarding the statistics of the obtained sampled sequences,
is the comparison of single site frequencies and two site frequencies between the
original (natural) alignment and the ones we computed. In particular, to take
into account the behaviour of the two site frequencies we show the matrix C,
whose entries are defined as cij = pij−pipj . Of course the result we would want
to obtain is a certain degree of correspondance between those two quantities,
to highlight this, we represent each of the components of the frequencies in a
scatter plot, in which we plot on the x-axis the natural frequencies and on the
y-axis the ones computed from the sampled sequences.

It is clear how, given that the order of both vectors containing the frequencies
is the same, the more the two vectors are similar the more the points in the plot
will be placed along the diagonal direction. We show those graphs in figure 6.8

(a) PF14 (b) WW

Figure 6.8: Comparison of the single site frequencies computed from the natural
alignment and from the sampled alignment

The comparison between entries of the matrix C is instead shown in figure
6.9 Note how, to plot the two site frequencies in the same way as the single site
ones, the matrix containing the data has to be "flattened" to a vector, because
of the high number of points we also chose to show the results using a density
plot instead of the scatter plot as in figure 6.8.

The results for WW family behave as expected, with the points of the two
plots generally aligned with the plotted diagonal line, indicating a good repro-
duction of the single and two site statistics in the sampled alignment. In the case
of PF14 the method seems to fail in reproducing the correct statistical prop-
erties, we in fact obtain a much higher single site frequency for some residues
that are not that present in the original MSA and a very noisy plot regarding
the entries of C.
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(a) PF14 (b) WW

Figure 6.9: Comparison of the two site frequencies computed from the natural
alignment and from the sampled alignment
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Chapter 7

Random walks on
Nc-dimensional space

After talking, in chapter 6, about the results obtained in the range characterized
by Nc < N∗

c , in this chapter we will focus on the possible results in the case
Nc > N∗

c . In particular we saw how in this regime the relation between the
projected natural sequences and the natural sequences in the full dimensional
space is bijective, we can use this result to explore the Nc-dimensional space in
which those projections live.

We start by briefly commenting on how the direction and length of the
step are chosen, starting from the latter. The first thing we need to specify
is the unit of length used to measure the displacement. To determine this, all
of the Euclidean distances (in the Nc-dimensional space) between each pair of
sequences in the natural alignment are computed and the minimum among them
is chosen as the unit of length that we call δ, which will be used to describe all
displacements in this section. Notice how the actual value of δ is different for
each protein family. In each analysis the appropriate value of the unit length
will of course be used. Results for the distribution of distances between all
sequences in the natural alignment and the value of δ are shown in figure 7.1
for PF14 and WW domain families.

It is interesting to observe how the large majority of the sequences are at a
distance of approximately 5 (depending on the protein family) from each other,
the tail of the distribution arrives to values of distance much smaller than the
peak (this minimum value is what we identified as δ) but includes only a very
small portion of the total number of proteins in the alignment. Another funda-
mental aspect that needs to be highlighted is that the actual resulting modulus
of the displacement,in the context of this study, is dependent on the direction ,
so, when talking about the choice of the length of the step, the parameter that
can be controlled is actually the isotropic displacement (measured in terms of
δ), which will then be weighted by the anisotropic contribution coming from the
directionality and by an isotropic random contribution.
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(a) PF14 (b) WW

Figure 7.1: Euclidean distances between all sequences in the natural alignment

We now explain the origin of those two added contributions, the random
element is, quite simply, a Normally distributed random variable weighing each
component of the vector representing the displacement (a different random vari-
able is used for every component), the second one is instead linked to the in-
formation provided by the reduced space landscape, each component of the
displacement vector is multiplied by the square root of the corresponding eigen-
value of the covariance matrix obtained from the alignment.

To sum it up, the displacement is computed as: xt+1
i = xt

i +
√
λi ∗W ∗ nδ

with i = 1, 2, ..., Nc

where xt
i is the i-th component of the coordinate at step t, λi is i-th eigen-

value of the covariance matrix, W is the Normal distributed random variable
and n is the length of the chosen isotropic displacement measured in "times of
δ"

7.1 Variation of Hamming distance with respect
to a displacement in Nc-dimensional space

A first interesting result to observe in the analysis of the movement in the lower
dimensional space is the relation between the distance between two points in
the Nc-dimensional space and the resulting difference, in terms of Hamming dis-
tance, between the sequences (in the full dimensional space) corresponding to
those points. In particular, this is done starting from projections of sequences
from the natural alignment, generating a step with an arbitrary length and
along an arbitrary direction (in agreement with what we said in the previous
paragraph) following which we move to a different point in the Nc-dimensional
space, then a sequence is obtained via the EP algorithm starting from the co-
ordinates of the point we moved to and the Hamming distance is computed
for this sequence with respect to the natural sequence we started from. This
procedure is repeated several times for each sequence and then the same is done
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for different sequences.
Graphs resulting from this kind of analysis are shown in figure 7.2

(a) PF14 (b) WW

Figure 7.2: Hamming distance with respect to PCA distance

The plots shown in Figure 7.2 show the results obtained by considering
several starting sequences, and considering then various different steps starting
from those sequences. We notice how the behaviour clearly varies among the
two different families, with the value of δ obtained for both PF14 and WW
domain still having a meaningful role in determining the distance over which
the algorithm is still able to reconstruct the original sequence.

7.2 Walks along a line connecting two natural se-
quences

Once the space surrounding the sequences has been analyzed in terms of Ham-
ming distances, we can now switch to the analysis of the Potts energy landscape
in the Nc-dimensional space. As a first method, we consider the study of a walk
going in a straight line from one known (natural) sequence to another known
sequence, each of the points in this walk is then studied applying the EP al-
gorithm and extracting the wanted information (in this case the Potts energy)
from the obtained sequence.

Notice how, in order to correctly generate the straight path connecting the
two chosen sequences, in this case we will need to eliminate the anisotropic
contribution to the step generation that was put in through the eigenvalues of
the covariance matrix, as previously explained. In this context we will then use
a value of a step such that each point in the discrete walk is equally spaced.

In order to give a more complete view of the typical landscape of the Potts
energy in the reduced dimensional space we will consider, for each sequence,
three different walks. The first is the walk between the chosen sequence and the
natural sequence that is closer to it (in the Nc-dimensional space), the second
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is the walk between the chosen sequence and the furthest one, and finally the
walk between the chosen sequence and a random one from the alignment.

To make it easier to visualise the process, we show in figure 7.3 the first
two coordinates of the projections of the chosen natural sequences, highlighting
the starting point and the three different target sequences. These points are
plotted over the density graph representing the projections of all the sequences
of the Multiple Sequence Alignment, as the ones showed in chapter 3. We also
specify the values of Euclidean distance in the Nc-dimensional space and the
Hamming distance between the starting sequence and the three target ones.
For PF14 the Euclidean distance between the chosen starting sequence and
the nearest sequence is 0.86 with Hamming distance 4, the distance from the
furthest sequence is 6.41 with Hamming distance 40 , while for the randomly
picked target sequence we find a distance of approximately 5.4 and an Hamming
distance equal to 35. For WW, only reporting the values following the same
order as in the case of PF14, 1.18 and 6, 5.94 and 23, 5.2 and 23.

(a) PF14 (b) WW

Figure 7.3: First two coordinates of the projections of the natural sequences
involved in the walk described in section 7.2

We start by showing the case of the walk to the nearest sequence, some
examples of the typical behaviour of the Potts energy of the reconstructed se-
quences along the line connecting the two sequences are shown in the graphs
below (figure 7.4). The direction of the movement is from left to right of the
graph.

Graphs in figure 7.5 now illustrate the case of the walk to the furthest se-
quence from the chosen starting point, and finally in figure 7.6 we show the case
of the walk to a randomly picked sequence.

As evident from these graphs, the kind of Potts energy landscape which
seems to be resulting from this analysis is composed of "peaks" of energy located
around the middle of the line connecting the two sequences, and wells of varying
width depending on the specific sequence, having most of the time a minimum
corresponding to the coordinate of the target sequence itself.

The difference between the three analysed cases is also noticeable, with en-
ergy peaks along the walk being considerably higher in the case of sequences

41



(a) PF14 (b) WW

Figure 7.4: Potts energy behaviour along the line connecting the two natural
sequences, this is the case of a randomly picked sequence and the one nearest
to it

(a) PF14 (b) WW

Figure 7.5: Potts energy behaviour along the line connecting the two natural
sequences, this is the case of a randomly picked sequence and the one furthest
from it

which are more distant in the reduced dimensional space.
At this point we can go back to the results obtained in the previous section

about sampling, and give an interpretation. What we observed in the graphs
regarding the energy difference with respect to the starting (natural) sequence
(Figure 6.2) was a distribution peaked around small energy difference values,
with energies of the samples being almost always higher than the one of the
natural sequence energy. Here we found how this result is coherent with the
characteristics of the energy landscape we just analysed, that is, given the con-
straint of a local sampling around the starting sequence and a structure of the
energy landscape formed by wells positioned in correspondence to the natural
sequences, a distribution in the form of the one we obtained is to be expected.

It is also interesting to show the graphs regarding the behaviour of the
Hamming distance of the sequences along the walk with respect to both the
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(a) PF14 (b) WW

Figure 7.6: Potts energy behaviour along the line connecting the two natural
sequences, in this case both of the sequences are picked randomly

starting and the target sequence. This is shown in figure 7.7.

(a) PF14 (b) WW

Figure 7.7: Hamming distance behaviour along the line connecting the two
natural sequences, this is the case of a randomly picked sequence and the one
nearest to it

These graphs are computed for the same sequences as the previous ones. The
result is of course as expected, with one of the curves starting from the value
of the Hamming distance between the two natural sequences and going to zero,
and the other displaying the exact opposite behaviour. Also in this case the
range of variation of the Hamming distance along the walk considerably varies
in three cases we considered, though this could be due to the initial difference
in Hamming distance among the three selected sequences and the starting one.

7.2.1 Effect of the variation of Nc on the Potts energy
landscape

The results shown in this section seem to indicate a structure of the energy
landscape constituted of wells in correspondence of a natural protein sequence
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(a) PF14 (b) WW

Figure 7.8: Hamming distance behaviour along the line connecting the two
natural sequences, this is the case of a randomly picked sequence and the one
furthest from it

(a) PF14 (b) WW

Figure 7.9: Hamming distance behaviour along the line connecting the two
natural sequences, in this case both of the sequences are picked randomly

and higher energy peaks in the space between them. In order to better under-
stand the structure of the landscape near these points, and later its dependence
on the number of components Nc, it is interesting to perform the same analysis
we just showed with an increased number of steps in the neighborhood of the
target sequence. These results are reported in figure 7.10

The same study is then performed with an increased value of Nc, in partic-
ular, we chose Nc = 250 for PF14 and Nc = 200 for WW. The graphs in figure
7.11 depict the results found in this case.

Aside from observing that the value of the distance between the two natural
sequences is different, due to the variation in the dimensionality of the space,
the most important information we can deduce from this graph is that a higher
value of Nc effectively widens the range inside which EP converges to the natural
sequences, we also observe an increase in the amplitude of the energy well located
in correspondence of the natural sequence under analysis.
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(a) PF14 (b) WW

Figure 7.10: Energy profile along the line connecting the two chosen natural
sequences

(a) PF14 (b) WW

Figure 7.11: Energy profile along the line connecting the two chosen natural
sequences, we have now increased the number of components Nc

7.3 Montecarlo method for optimisation of the
energy

The final analysis we perform regarding the study of the Potts energy landscape
in the reduced dimensional space is the use of a Monte Carlo random walk, in
an attempt to optimise the energy of a given protein sequence by moving its
associated projection in the Nc-dimensional space.

In particular, we will apply this method to the same walk analysed in the
previous section, our aim is to optimise each of the points of the walk, in this
way we attempt to find the path of minimal energy between two given natural
sequences. In the plot 7.12 we show the energy profile obtained in the same
way as the one in figure 7.6 and the new energy profile resulting from the
optimisation process. Notice how both the profiles are plotted with respect to
the number of the steps, while in section 7.2, we showed the behaviour along
the line connecting the two sequences, this is of course because the new steps
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of the walk are no longer positioned along the same line as the old steps as a
consequence of the optimisation.

(a) PF14 (b) WW

Figure 7.12: Energy profiles of the optimised and unoptimised walks

We can see how the Monte Carlo random walk is able to visit sequences
with generally lower energy along the path. For completeness we also show the
variations in the profile of the Hamming distance (see figure 7.13)

(a) PF14 (b) WW

Figure 7.13: Hamming distance profiles of the optimised and unoptimised walks

Interestingly, the Hamming distance of the optimised sequences is, for almost
all the steps, very close to the value of the unoptimised ones.

An increase in the number of steps of the walk would be beneficial in order
to prove the existence of a minimum energy path connecting the two sequences.

Some interesting observations we can make about the shown results, though,
are that it is, in general, possible to lower the Potts energy starting from a given
point in the reduced dimensional space, and that as a result of the optimisation
we found sequences with Potts energies comparable with the energies of the
proteins belonging to the MSA.
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Chapter 8

Conclusions

In this thesis we presented, on chapters 1 to 4, the methods, the characteristics
of our data and the structure of the dataset. In chapters 5 and 6 we discussed
the properties of the mapping between the full dimensional space and the Nc

dimensional one, observing, for example, the variations in the results of the
application of EP for different values of Nc, or the statistics of alignments of
sequences sampled starting from the projections of the natural sequences in the
reduced dimensional space.

By observing these results we concluded that, over a certain value of Nc,
dependent on the specific protein family, the mapping between the two spaces
is bijective. The value of Nc can be then chosen in accord with the application
of the method we are interested in. The sampling process is of course also
dependent on the chosen value of Nc.

Once we analysed the properties of the mapping, we focused on the analysis
of the reduced dimensional space, computing the effect (in terms of Hamming
distance) of a displacement in the Nc dimensional space or studying the Potts
energy landscape in which the proteins live. We recall how the Potts energy was
chosen to represent a measure of the fitness of a given sequence, observations
on such energy landscape assume then particular relevance.

In this regard, we found how the energy landscape in the reduced dimen-
sional space seems to be characterised by wells of low energy, positioned in
correspondence of the projections of the natural sequences, while higher energy
sequences are found in the space between the wells.

Some of the possible further results in a future perspective include a refine-
ment of the application of the Monte Carlo method, which we basically just
proved to work in general terms. An analysis of the predicted protein con-
tacts performed on the sampled sequences could be an interesting test of the
predictive power of this method.
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Appendix A

Appendix A

We report here the explicit derivation of the moment matching condition shown
in chapter 4, our aim is to minimize the Kullback-Leibler divergence, which in
this case takes the form:
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Taking the derivative with respect to the parameter aαj :
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By putting the form of the derivative just found equal to 0 we find:
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The same calculation, with very similar steps, can be done for the derivative
with respect to the parameter dαj , here we only report the final result:
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Combining the two obtained results (eq. A.3 and A.4) we clearly find the
moment matching condition
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